
Chapter 9
Secure Estimation Under Model
Uncertainty

Saurabh Sihag and Ali Tajer

9.1 Introduction

Cyber-physical systems are deployed in a variety of technical domains such as critical
infrastructure, healthcare devices, and transportation. The rapid rise in their appli-
cations has exposed them to different vulnerabilities, threats, and attacks (Humayed
et al. 2017). An abstract representation consisting of three main components: mon-
itoring, communications, and computation and control, captures the fundamental
aspects of cyber-physical systems. The monitoring component observes the environ-
ment and communicates with the computation and control component, which in turn
processes the observations to form and communicate decisions. Each of these compo-
nents could potentially be exploited or compromised, causing unexpected behaviors
and compromised integrity and performance for the system.

The source of security threats to a cyber-physical system can broadly be cat-
egorized into three groups: an attacker with a malicious intent, functional failure
of components in the system, and environmental threats such as natural disasters.
While the impacts of operational failures of the system due to environmental threats
or internal failures can be minimized by robust strategies (Hu et al. 2016), mali-
cious attacks on cyber-physical systems intend to deceive the controller into making
highly damaging decisions via well-crafted adversarial strategies. Therefore, spe-
cialized security measures are required to mitigate such attacks (Li et al. 2020).

Adversarial attacks that exploit the vulnerabilities of the inference and control
algorithms deployed in the cyber-physical systems and potential defense strategies
against them have been subjects of active research (Li et al. 2020; Fawzi et al. 2014;
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Ahmed et al. 2021). The taxonomy of the adversarial attacks on cyber-physical
systems can be specified along three axes. The first axis pertains to the influence of
the attack, where the attacker is capable of probing the algorithms for vulnerabilities.
The attacker can further leverage these vulnerabilities to impose false decisions or
outcomes in the system. The second axis pertains to the specificity of the attack, i.e.,
the attack can be either indiscriminate and affect all decisions made by the system, or
targeted to impose false decisions only in specific scenarios. The third axis is related
to the violation induced by the attack, where the attack can distort the integrity of the
decisions made by the system in specific scenarios or overwhelm the system with
malicious inputs, thus rendering it incapable of making any decision (for instance,
through denial of service attacks).

In this chapter, we design a statistical inference framework for systems vulnerable
to adversarial attacks. Statistical inference leverages the data sampled from a popu-
lation to deduce its statistical properties. The commonly studied modes of statistical
inference are broadly focused on discerning the statistical model of the population
or estimating unknown, underlying parameters that characterize the statistical model
of the population. Vulnerability to an attack induces uncertainties in the inference
decisions, and therefore, must be accounted for in the design of inference algorithms
that are resilient to adversarial attacks.

9.1.1 Overview and Contributions

Westart by laying the context for the problem studied in this chapter. For this purpose,
we consider the canonical parameter estimation problem in which the objective is
to estimate a stochastic parameter X , which lies in a known set X ⊆ R

p, from the
data samples Y � [Y1, . . . ,Yn], where the sample Yr is distributed according to a
statistical model with probability density function (pdf) PX and lies in a known set
Y ⊆ R

m . In practice, the dimension of the data points m could correspond to the
number of data collecting entities in the system. Furthermore, the statistician assumes
a prior data model for X and Yr , determined through historical data. We denote the
assumed underlying pdfs for X and Y by π and f (· | X), respectively, i.e.,

Y ∼ f (· | X) , with X ∼ π. (9.1)

For our analysis, we assume that the pdfs do not have any non-zero probabilitymasses
over lower-dimensional manifolds. The objective of the statistician is to formalize a
reliable estimator

X̂(Y) : Y n �→ X . (9.2)

For elaborate discussions on the design of statistical estimators, we refer the readers
to Poor (1998). In an adversarial environment, the attacker may launch an attack on
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different components of the data model defined in (9.1) to degrade the quality of
X̂(Y). Next, we discuss two specific adversarial attack scenarios.

False data injection attacks: The purpose of false data injection attacks is to distort
the data samples Y such that the data model deviates from (9.1) for at least a subset
of coordinates in Y.

Causative attacks: The purpose of a causative attack is to compromise the process
that underlies acquiring the statistical models in (9.1). We emphasize that such an
attack is different from false data injection attack because the effect of a causative
attack ismisleading the statistician about the truemodel f (· | X) that it assumes about
the data. Such attacks are possible by compromising the historical (or training) data
that is used for specifying a model for the data.

We remark that the nature of security vulnerabilities that inference algorithms
are exposed to in causative attacks is fundamentally distinct from that of the data
that faces false data injection attacks. Specifically, in the case of a false data injection
attack, the information of the decision algorithm about the data model remains intact,
while the data fed to the algorithm is anomalous. Therefore, when the sampled data is
compromised, an inference algorithm produces decisions based on the truemodel for
the data in the attack-free scenario, while the data that it receives and processes are
compromised.On the other hand,when the historical data leveraged by the statistician
to determine the truemodel are compromised, an inference algorithm functions based
on an incorrect model for the data, in which case even un-compromised sampled
data produces unreliable decisions. Both attack scenarios mentioned above force the
inference algorithm to deviate from its optimal structure and, if not mitigated, may
produce decisions that serve the adversary’s purposes.

Depending on the specificity and the extent of an adversarial attack, e.g., the
fraction of the observed data or training data that is compromised, the true model
f (· | X) can be assumed to deviate to the space of alternative data models, which
we denote by F . The attack can be characterized by alterations in the statistical
distributions of any number of the m coordinates of Y. There are two major aspects
of selecting F as a viable model space.

• An attack is effective in degrading the quality of estimation if the compromised
model is sufficiently distinct from themodel assumed by the statistician for design-
ing the estimator. Hence, even though, in general, F can be thought of as any
representation of possible kernels f (· | X) mapping Y to R

m , only a subset of
such mappings pertain to the set of effective attacks.

• There exists a tradeoff between the complexity of the model space and its expres-
siveness. Specifically, an overly expressive space can represent the possible com-
promised models with a more refined accuracy, albeit at the expense of more
complex statistical inference rules.

We will discuss the specifics of the attack model in Sect. 9.2. Note that the potential
adversarial presence induces a new dimension to the estimation problem in (9.2).
Specifically, the optimal estimator design hinges on the knowledge of the true statis-
tical model of the measurements Y. However, detecting whether the data model has
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been compromised and discerning the true model, itself being an inference task, is
never perfect. These observations imply an inherent coupling between the original
estimation problem of interest and the introduced auxiliary problem due to potential
adversarial behavior (i.e., detecting the presence of an attacker and isolating the true
model). Therefore, the quality of the estimator is expected to degrade with respect to
an attack-free setting due to uncertainties in the true model in the adversarial setting.
Our objective is to characterize the fundamental interplay between the quality of
discerning the true model and the degradation in the estimation quality.

9.1.2 Related Studies

The problem of secure inference is studied primarily in the context of sensor net-
works, where a subset of sensors may be corrupted by an attacker. The study in
Wilson and Veeravalli (2016), in particular, considers the problem of secure esti-
mation in a two-sensor network, in which one sensor is assumed to be secured ,
and the other sensor is vulnerable to attacks. According to the heuristic estimation
design in this context, first, a decision is formed on the attacker’s activity on the
unsecured sensor . If it is deemed to be attacked, then the estimation design relies
only on the secured sensor , and otherwise, it uses the data collected at both sensors.
In contrast to Wilson and Veeravalli (2016), we consider a model with an arbitrary
dimension of data, assume that all data coordinates are vulnerable to the attack, and
characterize the optimal secure inference structure, which is distinct from being a
detection -driven design studied in Wilson and Veeravalli (2016).

The adversarial setting considered in this chapter has similarities with the widely-
investigated Byzantine attack models in sensor networks. In Byzantine attack mod-
els, the data corresponding to the compromised sensors is modified arbitrarily by the
adversaries with an aim to degrade the inference quality. The impact of Byzantine
attacks on the quality of inference and relevant mitigation strategies in sensor net-
works are discussed in Vempaty et al. (2013). Various detection-driven estimation
strategies (i.e., when attack detection precedes and guides the estimation routine)
for scenarios where the impacts of the Byzantine attacks on data are characterized by
randomly flipped information bits, are discussed in Vempaty et al. (2013), Ebinger
and Wolthusen (2009), Zhang et al. (2015), Zhang and Blum (2014). Furthermore,
attack-resilient target localization strategies are studied in Vempaty et al. (2013,
2014), where the assumption is that the attacker adopts a fixed strategy that leads
to maximum disruption in the inference. In these studies, however, an attacker can
deviate from the worst-case attack strategy of incurring the maximum damage, and
launch a less impactful but sustained attack, which may remain undetected. Finally,
various strategies for isolating the compromised sensors in sensor networks are stud-
ied inRawat et al. (2010), Soltanmohammadi et al. (2013), Vempaty et al. (2011). The
emphasis of these studies is primarily detection of attacks or isolating the attacked
sensors, whereas this chapter focuses on parameter estimation.



9 Secure Estimation Under Model Uncertainty 213

Secure estimation in linear dynamical systems that characterize cyber-physical
systems has been actively studied in recent years (Fawzi et al. 2011, 2014; Yong
et al. 2015; Pajic et al. 2014, 2015; Shoukry et al. 2017; Mishra et al. 2015). The
studies with more relevance to the scope of this chapter include Fawzi et al. (2014),
Mishra et al. (2015), and Pajic et al. (2014), which investigate robust estimation in
dynamic systems. Specifically, a coding-theoretic interplay between the number of
sensors compromised by an adversary and the guarantees on perfect system state
recovery are characterized in Fawzi et al. (2014), a Kalman filter-based approach for
identifying the most reliable set of sensors for inference is investigated in Mishra
et al. (2015), and the design of estimators that is robust in the presence of dynamical
model uncertainty is studied in Pajic et al. (2014). Furthermore, the degradation
impact on estimation performance in a dynamical system consisting of a single
sensor network is investigated from the adversary’s perspective in Bai and Gupta
(2014), where bounds on the degradation in estimation quality with the stealthiness
of the attacker are characterized.

Secure estimation is also linked to robust estimation (Shen et al. 2014; Sayed
2001; Al-Sayed et al. 2017; Chen et al. 2017; Lin and Abur 2020; Zhao et al. 2016).
These two problems share some aspects (e.g., datamodel uncertainty), but their infer-
ence tasks are distinct. Specifically, besides the estimation objective, both problems
also face the problem of resolving uncertainties about the data model. The main
distinction between secure estimation and robust estimation lies in their resolution
of the model uncertainties, which results in significant differences in the formula-
tion of the problems and the designs of the optimal decision rules. Specifically, in
robust estimation , the emphasis is laid on forming the most reliable estimates, and
as an intermediate step, the model uncertainty must also be resolved as a second
inference task. Resolution of model uncertainties can be executed by a wide range
of approaches, which include averaging out the effect of the model or forming an
estimate of the model. The ultimate objective of robust estimation is optimizing the
estimation quality, and it generally does not account for the quality of the decisions
involved in resolving model uncertainty, i.e., model uncertainty resolution will be
dictated by the decision rules optimized for producing the best estimates.

The aforementioned studies that study secure estimation, despite their discrep-
ancies, conform to an underlying design principle, which decouples the estimation
design from all other decisions involved (e.g., attack detection or attacked sen-
sor isolation), and leads to either detection -driven estimators or estimation -driven
detection routines. The sub-optimality of decoupling such intertwined estimation
and detection problems into independent estimation and detection routines is
well-investigated (Middleton and Esposito 1968; Zeitouni et al. 1992; Moustakides
et al. 2012; Jajamovich et al. 2012). In contrast, in secure estimation, our focus is
on the qualities of both decisions: estimating the desired parameter and detecting
the unknown model. Hence, unlike robust estimation, we face combined estimation
and detection decisions. The problem formulation is motivated by our recent work
in Sihag and Tajer (2020), which emphasizes the natural coupling between the two
inference tasks and requires that the optimal decisions are determined jointly.
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9.2 Data Model and Definitions

Our focus is on the estimation problem in (9.2) and in this context, we discuss the
data models under the attack-free and adversarial scenarios.

9.2.1 Attack Model

The objective is to form an optimal estimate X̂(Y) (under the general cost functions
specified in Sect. 9.2.2) in the potential presence of an adversary. In the attack-free
setting, the data is assumed to be generated according to a known model specified
in (9.1). In an adversarial setting, an adversary, depending on its strength and desired
impact, can launch an attack with the ultimate purpose of degrading the quality of
the estimate of X . We assume that the adversary can corrupt the data model of up to
K ∈ {1, . . . ,m} coordinates of Y. Hence, for a given K , there exist T = ∑K

i=1

(m
i

)

number of attack scenarios, each of which is associated with a distinct data model. To
formalize this, we defineS � {S1, . . . , ST } as the set of all possible attack scenarios,
where Si ⊆ {1, . . . ,m} describes the set of coordinates ofY the models of which are
compromised under attack scenario i ∈ {1, . . . , T }.

Under the attack scenario i ∈ {1, . . . , T }, if r ∈ Si , the data model deviates from
f to a model in the space Fi . Clearly, the attack can be effective if it encompasses
sufficiently distinct models. For our analysis, we assume thatFi � { fi (· | X)}, i.e.,
Fi consists of one alternative distribution. Based on thismodel, when the datamodels
in the coordinates contained in Si are compromised, the joint distribution changes
from f (· | X) to fi (· | X).

In practice, the resources and preferences of the attacker may determine the like-
lihood of an attack scenario. For instance, attacking one coordinate may be easier or
more desirable as compared to others. To account for such likelihoods, we adopt a
Bayesian framework in which we define ε0 as the prior probability of an attack-free
scenario and define εi as the prior probability of the event that the attacker compro-
mises the data at coordinates specified by Si . A block diagram of the attack model
and the inferential goals is depicted in Fig. 9.1.

9.2.2 Decision Cost Functions

In the adversarial setting, the estimation decision is intertwined with the decision
on the true model, and therefore, it constantly faces the uncertainty induced by the
action or inaction of the adversary. A decoupled strategy of decisions for isolating
the model and estimating the parameter under the isolated model does not generally
guarantee optimal performance. In fact, there exist extensive studies on formaliz-
ing and analyzing such compound decisions, which generally aim to decouple the
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Fig. 9.1 The effect of the adversary on the data model, and the inferential decisions involved.
Depending on the adversarial action, the data model may either deviate from f to one among the
alternative data models ({ fi : i ∈ {0, . . . , T }}) or retain the original data model (given by f0)

inferential decisions. For instance, in Zeitouni et al. (1992), it is shown that the gen-
eralized likelihood ratio test (GLRT), which uses maximum likelihood estimates of
unknown parameters in its decision rule, is not always optimal. In Moustakides et al.
(2012) and Jajamovich et al. (2012), non-asymptotic frameworks for optimal joint
detection and estimation are provided. Specifically, in Moustakides et al. (2012),
a binary hypothesis testing problem is studied in a setting where one hypothesis is
composite and consists of an unknown parameter to be estimated. In Jajamovich
et al. (2012), the principles in Moustakides et al. (2012) are extended to a composite
binary hypothesis testing problem in which both hypotheses correspond to compos-
ite models. We used similar principles as established in Moustakides et al. (2012)
and Jajamovich et al. (2012) in our recent study on secure estimation in Sihag and
Tajer (2020). We borrow the principles adopted in Sihag and Tajer (2020) to discuss
secure estimation in the context of cyber-physical systems in this chapter. We next
discuss the cost functions for true model detection and estimation quality.

9.2.2.1 Attack Detection Costs

Due to the existence of multiple attack scenarios, the true model detection problem
can be formulated as the following (T + 1)-composite hypothesis testing problem.

H0 : Y ∼ f (Y | X), with X ∼ π(X)

Hi : Y ∼ fi (Y | X), with X ∼ π(X) , for i ∈ {1, . . . , T },
(9.3)

where H0 is the hypothesis that represents the attack-free setting, and Hi is the
hypothesis corresponding to an attack scenario where the attack is launched at the
coordinates in Si ∈ S . For the convenience in notation, we denote the attack-free
datamodel by f0(· | X), i.e., f0(· | X) = f (· | X). To formalize relevant costs for the
detection decisions, we define D ∈ {H0, . . . ,HT } as the decision on the hypothesis
testing problem in (9.3), and T ∈ {H0, . . . ,HT } as the true hypothesis. The true
hypothesis is discerned via a general randomized test δ(Y) � [δ0(Y), . . . , δT (Y)],
where δi (Y) ∈ [0, 1] denotes the probability of deciding in favor of Hi . Clearly
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T∑

i=0

δi (Y) = 1. (9.4)

Hence, the probability of forming a decision in favor of H j while the true model is
Hi is given by

P(D=H j |T=Hi ) =
∫

Y
δ j (Y) fi (Y) dY. (9.5)

We define Pmd as the aggregate probability of error in identifying the true model
when there exist compromised data coordinates due to attacker’s activity, i.e.,

Pmd(δ) � P(D �= T | T �= H0)

= 1

P(T �= H0)

T∑

i=1

P(D �= Hi | T = Hi )P(T = Hi ) (9.6)

=
T∑

i=1

εi

1 − ε0
· P(D �= Hi | T = Hi ). (9.7)

Furthermore, we define Pfa as the aggregate probability of erroneously deciding that
a set of coordinates is compromised while operating in an attack-free scenario. In
this context, we have

Pfa(δ) � P(D �= H0 | T = H0) =
T∑

i=1

P(D=Hi |T=H0). (9.8)

9.2.2.2 Secure Estimation Costs

In this subsection, we discuss the estimation cost functions that capture the quality
of the estimate X̂(Y). For this purpose, we adopt a generic and non-negative cost
functionC(X,U (Y)) that quantifies the discrepancy between the ground truth X and
a generic estimatorU (Y). Since the data models under different attack scenarios are
distinct, we consider having possibly distinct estimators under each attack scenario.
Therefore, we denote the estimate of X under model Hi by X̂i (Y), and accordingly,
we define

X̂(Y) � [X̂0(Y), . . . , X̂T (Y)]. (9.9)

Therefore, the estimation cost C(X, X̂i (Y)) is relevant only if the decision is Hi .
Hence, for a generic estimator Ui (Y) of X under model Hi , we define the decision-
specific average cost function as
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Ji (δi ,Ui (Y)) � Ei [C(X,Ui (Y)) | D = Hi ] , ∀i ∈ {0, . . . , T } (9.10)

where the conditional expectation is with respect to X and Y. Accordingly, we
leverage (9.10) to define an aggregate average estimation cost according to

J (δ,U) � max
i∈{0,...,T } Ji (δi ,Ui (Y)), (9.11)

where we haveU � [U0(Y), . . . ,UT (Y)]. Finally, in the attack-free scenario, corre-
sponding to any generic estimator V (Y), we define the average estimation according
to

J0(V ) = E[C(X, V (Y))], (9.12)

where the expectation is with respect to X andY under model f . Note that J0 defined
in (9.12) corresponds to the scenario in which the attack-free model f is the only
possibility for the data model and is, therefore, fundamentally different from J (δ,U)

defined in (9.11). In the analysis, J0 furnishes a baseline to assess the impact of
potential adversarial action on the estimation quality.

9.3 Secure Parameter Estimation

In this section, we formalize the problem of secure estimation. There exists an inher-
ent interplay between the quality of estimating X and the quality of isolation deci-
sion to identify the true model governing the data. On the one hand, detecting the
adversary’s attack model perfectly is not possible. At the same time, the estimation
quality critically hinges on the successful isolation of the true data model. There-
fore, an imperfection in the decision about the data model is expected to degrade the
estimation quality with respect to the attack-free scenario. To quantify such an inter-
play as well as the degradation in estimation quality with respect to the attack-free
scenario, we provide the following definition.

Definition 9.1 (Estimation Degradation Factor) For a given estimator V in the
attack-free scenario, and a secure estimation framework specified by the rules (δ,U)

in the adversarial scenario, we define the estimation degradation factor (EDF) as

q(δ,U, V ) � J (δ,U)

J0(V )
. (9.13)

Based on Definition 9.1, we define the performance region for secure estimation
that encompasses all the pairs of estimation quality q(δ,U, V ) and detection perfor-
mance Pmd(δ) over the space characterized by all possible decision rules (δ,U, V ).
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Definition 9.2 (Performance Region) We define the performance region as the
region of all simultaneously achievable estimation quality q(δ,U, V ) and detec-
tion performance Pmd(δ).

Next, we leverage the definition of performance region to define the notion of (q, β)-
security , which is instrumental for formalizing the secure estimation problem. For
this purpose, we first note that the two estimation cost functions involved in the EDF
q(δ,U, V ) can be computed independently, and as a result, their attendant decision
rules can be determined independently. For this purpose, we define V ∗ as the optimal
estimator under the attack-free scenario, and J ∗

0 as the corresponding estimation cost,
i.e.,

V ∗ � argmin
V

J0(V ), and J ∗
0 � min

V
J0(V ). (9.14)

Definition 9.3 ((q, β)-security) In the adversarial scenario, an estimation procedure
specified by (δ,U, V ∗) is called (q, β)-secure if the decision rules (δ,U) yield the
minimal EDF among all the decision rules corresponding to which the average rate
of missing the attacks does not exceed β ∈ (0, 1], i.e.,

q � min
δ,U

q(δ,U, V ∗), s.t. Pmd(δ) ≤ β. (9.15)

The performance region, and its boundary that specifies the interplay between q and
β are illustrated figuratively in Fig. 9.2. Based on the definitions in this subsection, we
aim to characterize the region of all simultaneously achievable values of q(δ,U, V ∗)
and Pmd(δ) (represented by the dashed region in Fig. 9.2) and the (q, β)-secure
decision rules that solve (9.15), and specify the boundary of the performance region
(illustrated by a solid line as the boundary of the performance region in Fig. 9.2).

By noting that q(δ,U, V ∗) = J (δ,U)

J ∗
0

, where J ∗
0 is a constant, we formalize the

problem of determining the performance region and the (q, β)-secure decision rules
as

Q(β) �
{
minδ,U J (δ,U)

s.t. Pmd(δ) ≤ β
. (9.16)

Fig. 9.2 Performance region
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We note that although Q(β) ensures that the likelihood of missing an attack is
confined below β, it is insensitive to the rate of the false alarms, that is, the rate
of erroneously declaring an attack when there is no attack. If it is also desirable to
control the rate of false alarms, we can further extend the notion of (q, β)-security
as follows.

Definition 9.4 An estimation procedure is (q, α, β)-secure if it is (q, β)-secure
and the likelihood of false alarms does not exceed α ∈ (0, 1].
The (q, α, β)-secure decisions are determined by the optimal decision rules that
form the solution to

P(α, β) =

⎧
⎪⎨

⎪⎩

minδ,U J (δ,U)

s.t. Pmd(δ) ≤ β

Pfa(δ) ≤ α

. (9.17)

Remark 9.1 It is straightforward to verify that Q(β) = P(1, β).

Remark 9.2 (Feasibility) The Neyman–Pearson theory (Poor 1998) dictates that
the probabilities Pmd(δ) and Pfa(δ) cannot be made arbitrarily small simultaneously.
Specifically, for any given α, there exists a smallest feasible value for β, denoted by
β∗(α).

We provide the optimal solution to problemsP(α, β) andQ(β) in closed-forms in
Sect. 9.4.

9.4 Secure Parameter Estimation: Optimal Decision Rules

In this section, we characterize an optimal solution to the general problemP(α, β) to
determine the designs for the estimators {X̂i (Y) : i ∈ {0, . . . , T }} and the detectors
{δi (Y) : i ∈ {0, . . . , T }}. We first leverage the expansions of the error probability
terms Pmd(δ) and Pfa(δ) in terms of the data models and decision rules. Based on
(9.5) and (9.6), we have

Pmd(δ) =
T∑

i=1

εi

1 − ε0

T∑

j=0
j �=i

∫

Y
δ j (Y) fi (Y) dY. (9.18)

Similarly, by noting (9.5) and based on (9.8), we have

Pfa(δ) =
T∑

i=1

∫

Y
δi (Y) f0(Y) dY. (9.19)
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By using the expansions in (9.18) and (9.19), the equivalent problem to (9.17) is
given by

P(α, β) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min(δ,U) J (δ,U)

s.t.
T∑

i=1

εi
1−ε0

T∑

j=0
j �=i

∫

Y
δ j (Y) fi (Y) dY ≤ β

T∑

i=1

∫

Y
δi (Y) f0(Y) dY ≤ α

. (9.20)

Note that the estimators {Ui (Y) : i ∈ {0, . . . , T }} are restricted to the utility function
J (δ,U), which allows us to decouple the problem P(α, β) into two sub-problems,
formalized next.

Theorem 9.1 The optimal secure estimators of X under different models, i.e., X̂ =
[X̂0, . . . , X̂T ] are the solutions to

X̂ = argmin
U

J (δ,U). (9.21)

Furthermore, the solution of P(α, β), and subsequently the design of the attack
detectors, can be found by equivalently solving

P(α, β) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minδ J (δ, X̂)

s.t.
T∑

i=1

εi
1−ε0

T∑

j=0
j �=i

∫

Y
δ j (Y) fi (Y) dY ≤ β

T∑

i=1

∫

Y
δi (Y) f0(Y) dY ≤ α

. (9.22)

By leveraging the design in (9.21) and the decoupled structure of the problem
P(α, β) in (9.22), in the following theorem, we discuss optimal designs for the
estimators in the secure estimation problem.

Theorem 9.2 ((q, α, β)-secure Estimators) For the optimal secure estimators X̂,
we have:

1. The minimizer of the estimation cost Ji (δi ,Ui (Y)), i.e., the estimation cost
function under model Hi , is given by

U ∗
i (Y) � arg inf

Ui (Y)
Cp,i (Ui (Y) | Y), (9.23)

where Cp,i (U (Y) | Y) is the average posterior cost function denoted by

Cp,i (U (Y) | Y) � Ei
[
C(X,U (Y)) | Y]

, (9.24)

where the conditional expectation in (9.24) is with respect to X under modelHi .
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2. The optimal estimator X̂ = [X̂0, . . . , X̂T ], specified in (9.21), is given by

X̂i (Y) = U ∗
i (Y). (9.25)

3. The cost function J (δ, X̂) is given by

J (δ, X̂) = max
i∈{0,...,T }

⎧
⎪⎪⎨

⎪⎪⎩

∫

Y
δi (Y)C∗

p,i (Y) fi (Y)dY
∫

Y
δi (Y) fi (Y)dY

⎫
⎪⎪⎬

⎪⎪⎭

, (9.26)

where we have defined

C∗
p,i (Y) � inf

Ui (Y)
Cp,i (Ui (Y) | Y). (9.27)

Proof See Appendix 1. �

Wenext discuss the application of decision rules inTheorem9.2 in a specific example.
Specifically, in the next corollary, we discuss the closed-forms of these decision rules
when the distributions { fi (· | X) : i ∈ {0, . . . , T }} are Gaussian.
Corollary 9.1 ((q, α, β)-secure Estimators in Gaussian Models) When the data
models are Gaussian, i.e.,

fi (· | X) ∼ N (θi , X), for θi ∈ R (9.28)

such that the mean values are distinct, and

X ∼ X −1(ζ, φ), (9.29)

where X −1(ζ, φ) denotes the inverse chi-squared distribution with parameters ζ

and φ, such that ζ + n > 4, and the cost C(X,U (Y)) is the mean squared error,
given by

C(X,U (Y)) = ‖X −U (Y )‖2, (9.30)

for the optimal secure estimators X̂, we have:

1. The minimizer of the estimation cost J (δi ,Ui (Y)), i.e., the estimation cost
function under model Hi , is given by

U ∗
i (Y) =

ζφ +
n∑

r=1
‖Yr − θi‖22

ζ + n − 2
. (9.31)
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2. The optimal estimator X̂ = [X̂0, . . . , X̂T ], specified in (9.21), is given by

X̂i (Y) = U ∗
i (Y). (9.32)

3. The cost function J (δ, X̂) is given by

J (δ, X̂) = max
i∈{0,...,T }

⎧
⎪⎪⎨

⎪⎪⎩

∫

Y
δi (Y)C∗

p,i (Y) fi (Y)dY
∫

Y
δi (Y) fi (Y)dY

⎫
⎪⎪⎬

⎪⎪⎭

, (9.33)

where we have

C∗
p,i (Y) =

2(ζφ +
n∑

r=1
‖Yr − θ1‖2)2

(ζi + n − 2)2(ζ + n − 4)
. (9.34)

Next, given the optimal estimators X̂, we provide the optimal detection rules in
the next theorem. We note that the decision rules depend on the metrics computed
based on the optimal estimation costs, establishing the coupling of estimation and
true model detection decisions. We show that by using the solution of the specific
auxiliary convex problem in a variational form in the next theorem, we can solve
P(α, β) in (9.22).

Theorem 9.3 For any arbitrary u ∈ R+, we have P(α, β) ≤ u if and only if
R(α, β, u) ≤ 0, where we have defined

R(α, β, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minδ η

s.t.
∫

Y
δi (Y) fi (Y)[C∗

p,i (Y) − u] dY ≤ η, ∀ i ∈ {0, . . . , T }
T∑

i=1

εi

1 − ε0

T∑

j=0
j �=i

∫

Y
δ j (Y) fi (Y) dY ≤ β + η

T∑

i=1

∫

Y
δi (Y) f0(Y) dY ≤ α + η

.

(9.35)

Furthermore, R(α, β, u) is convex, and R(α, β, u) = 0 has a unique solution in u,
which we denote by u∗.

Proof See Appendix 2. �

The point u∗ plays a pivotal role in the structure of optimal detection decision
rules. We define the constants {�i : i ∈ {0, . . . , T + 2}} as the dual variables in
the Lagrange function for the convex problem R(α, β, u∗). Given u∗ and {�i : i ∈
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{0, . . . , T + 2}}, we can characterize the optimal detection rules in closed-forms, as
specified in the following theorem.

Theorem 9.4 ((q, α, β)-secure Detection Rules) The optimal decision rules for iso-
lating the compromised coordinates are given by

δi (Y) =
{

1, if i = i∗

0, if i �= i∗
, (9.36)

where we have defined

i∗ � argmin
i∈{0,...,T }

Ai . (9.37)

Constants {A0, . . . , AT } are specified by the data models, u∗, and its associated
Langrangian multipliers {�i : i ∈ {0, . . . , T + 2}}. Specifically, we have

A0 � �0 f0(Y)[C∗
p,0(Y) − u∗] + �T+1

T∑

i=1

εi

1 − ε0
fi (Y), (9.38)

and for i ∈ {1, . . . , T }, we have

Ai � �i fi (Y)[C∗
p,i (Y) − u∗] + �T+1

T∑

j=1, j �=i

ε j

1 − ε0
f j (Y) + �T+2 f0(Y). (9.39)

Proof See Appendix 3. �

In the next corollary, we discuss the application of these decision rules when the
distributions { fi (· | X) : i ∈ {0, . . . , T }} are all Gaussian.
Corollary 9.2 ((q, α, β)-secure Detection Rules in Gaussian Models) When the
data models { fi (· | X) : i ∈ {0, . . . , T }} have the following Gaussian distributions

fi (· | X) ∼ N (θi , X) , for θi ∈ R (9.40)

where the mean values are distinct, and

X ∼ X −1(ζ, φ), (9.41)

the optimal decision rules for isolating the compromised coordinates are given by

δi (Y) =
{

1, if i = i∗

0, if i �= i∗
, (9.42)
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where we have defined

i∗ � argmin
i∈{0,...,T }

Ai . (9.43)

Constants {A0, . . . , AT } are specified by the data models, u∗, and its associated
Langrangian multipliers {�i : i ∈ {0, . . . , T + 2}}. Specifically, we have

A0 � �0 f0(Y)(C∗
p,0(Y) − u∗) + �T+1

T∑

i=1

εi

1 − ε0
fi (Y), (9.44)

and for i ∈ {1, . . . , T }, we have

Ai � �i fi (Y)(C∗
p,i (Y) − u∗) + �T+1

T∑

j=1
j �=i

ε j

1 − ε0
f j (Y) + �T+2 f0(Y). (9.45)

When the cost function C(X,U (Y)) is the mean squared error cost, and C∗
p,i (Y) is

evaluated using (9.34), we obtain

fi (Y) = (ζφ)
ζ

2

π
n
2 Γ (ζ/2)

· Γ (ζ + n)/2

(ζφ +
n∑

r=1
‖Yr − θi‖2) ζ+n

2

. (9.46)

Figure9.3 illustrates the performance region and the corresponding (q, β)-security
curve for the case T = 1, n = 1, θ0 = 0, θ1 = 2, ζ = 4, and φ = 1. The (q, β)-
security curve in Fig. 9.3 depicts the tradeoff between the quality of the true model
detection and the degradation in the estimation quality. Note that this tradeoff is
inherently due to secure estimation problem formulation. Essentially, the design
of the problem P(α, β) as specified in (9.17) enables the trade of the quality of
detection in favor of improving the estimation cost.

Fig. 9.3 Performance region
for the Gaussian data model
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We provide Algorithm 9.1, which summarizes all the steps for solving P(α, β)

for any feasible pair of α and β, and it encapsulates the decision rules specified by the
theorems in this section and the detailed steps of specifying the parameters involved
in characterizing the decision rules.

Algorithm 9.1 – Solving P(α, β)

Input: α and β and evaluate β∗(α)

if β < β∗(α) then
P(α, β) not feasible for given choice of α and β;
break;

else
Initialize u0 = 0, u1;
Evaluate optimal posterior estimation costs in (9.27);
repeat

û ← (u0 + u1)/2;
for every �̂ � 0 in the discretized space ‖�̂‖1 = 1 do

Compute δ from Theorem 9.4;
Compute M(�̂) � R(α, β, û) ;
if min

�̂
M(�̂) ≤ 0 then

u1 ← û, � ← �̂;

else
u0 ← û;

until u1 − u0 ≤ ε, for ε sufficiently small;
P(α, β) ← u∗ = u1;
Output: Decision rules δ

9.5 Case Studies: Secure Estimation in Sensor Networks

We evaluate the secure estimation framework using the example of a two-sensor
network with a fusion center (FC). Each sensor collects a stream of data consisting of
n samples. Sensor i ∈ {1, 2} collects nmeasurements, denoted byYi = [Y i

1, . . . ,Y
i
n],

where each sample Y i
j ∈ R in an attack-free scenario follows the model

Y i
j = hi X + Ni

j , (9.47)

where hi models the channel connecting sensor i to the FC and Ni
j accounts for

the additive channel noise. Different noise terms are assumed to be independent and
identically distributed (i.i.d.) generated according to a known distribution. We will
consider two adversarial scenarios that impact the data model in (9.47) and evaluate
the optimal performance.
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9.5.1 Case 1: One Sensor Vulnerable to Causative Attacks

We first consider an adversarial setting in which the data model from only one sensor
(sensor 1) is vulnerable to an adversarial attack while the other sensor (sensor 2) is
secured. Under this setting, we clearly have only one attack scenario, i.e., T = 1
and S1 = {1}. Accordingly, we have ε0 + ε1 = 1. Under the attack-free scenario, the
noise terms Ni

j are distributed according toN (0, σ 2
n ), i.e.,

Y i
j | X ∼ N (hi X, σ 2

n ). (9.48)

When sensor 1 is compromised, the actual conditional distribution of Y 1
j |X is distinct

from the above distribution. The inference objective under such a setting, in prin-
ciple, becomes similar to the adversarial setting of Wilson and Veeravalli (2016),
which focuses on data injection attack. Hence, for comparison with the performance
of the secure estimation framework with that of Wilson and Veeravalli (2016), we
assume that the conditional distribution of Y 1

j |X when sensor 1 is under attack is
N (hi X, σ 2

n ) ∗ Unif[a, b], where a, b ∈ R are fixed constants and ∗ denotes convo-
lution. Therefore, the composite hypothesis test for estimating X and discerning the
model in (9.3) simplifies to a binary test with the prior probabilities ε0 and ε1.

H0 : Y ∼ f0(Y | X), with X ∼ N (0, σ 2)

H1 : Y ∼ f1(Y | X), with X ∼ N (0, σ 2).
(9.49)

Figure9.4 shows the variations of the estimation quality, captured by q, versus the
miss-detection rate β, where it is observed that the estimation quality improves
monotonically with an increase in β, and it reaches its maximum quality as β

approaches 1. This observation is in line with the analytic implications of the formu-
lations of the secure parameter estimation problem in (9.16) and (9.17). A similar
setting is studied in Wilson and Veeravalli (2016), where the attack is induced addi-
tively into the data of sensor 1 and can be any real number. This setting can be
studied in the context of adversarial attacks where the attacker compromises the data
by adding a uniformly distributed disturbance. Figure9.4 also shows the comparison
of the estimation quality of the secure estimation framework in this chapter, with
that from themethodology inWilson and Veeravalli (2016). InWilson and Veeravalli
(2016), the estimator is designed to obtain the most robust estimate corresponding
to an optimal false alarm probability α∗, which, in turn, fixes the miss-detection
error probability. Therefore, the framework inWilson and Veeravalli (2016) does not
provide the flexibility to change the miss-detection rate β.

The results presented in Fig. 9.4 correspond to σ = 3, σn = 1, h1 = 1, h2 = 4,
a = −40, b = 40. The upper bound on Pfa is set to α∗ = 0.1, where α∗ is obtained
using the methodology in Wilson and Veeravalli (2016).
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Fig. 9.4 q versus β for fixed
α∗ = 0.1
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9.5.2 Case 2: Both Sensors Vulnerable to Adversarial Attacks

We consider the same model for X , and in this setting, we assume that both sen-
sors are vulnerable to attack. The attacker can compromise the data of at most one
sensor. Under this setting, we have T = 2, S1 = {1}, and S2 = {2}. Therefore, in the
adversarial setting, the following hypothesis model forms the basis of the secure
estimation problem

H0 : Y ∼ f0(Y | X), with X ∼ π(X)

H1 : Y ∼ f1(Y | X), with X ∼ π(X)

H2 : Y ∼ f2(Y | X), with X ∼ π(X),

(9.50)

where H0 is the attack-free setting and Hi corresponds to sensor i being compro-
mised. Since the sensor with higher gain hi is expected to provide a better estimate,
we explore a scenario in which the sensor with the higher gain is more likely to be
attacked. Hence, we select the parameters h1 = 1, and h2 = 2, and set the probabili-
ties (ε0, ε1, ε2) = (0.2, 0.2, 0.6). We assume the distribution of X to beUnif[−2, 2].
We assume that Y i

j , for i ∈ {1, 2}, given X , is distributed according to N (hi X, 1)
in the attack-free setting. When sensor i is compromised, we assume that Y i

j , for
i ∈ {1, 2}, given X , follows the distribution N (hi X, 5).

Figure9.5 shows the performance region illustrated in Fig. 9.2, which corresponds
to the variations of q with β for three different values of α. The region spanned by the
plots between q and β for different values of α is the feasible region of operation and
allows the FC to adjust the emphasis on either the estimation or detection decisions.
As expected, the estimation quality improves monotonically as α and β increase.
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Fig. 9.5 q versus β for
different values of α
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9.6 Conclusions

Wehave formalized and analyzed the problemof secure estimation under adversarial
attacks on the data model. The possible presence of adversaries results in uncertainty
in the statistical model of the data. This further leads the estimation algorithm to
exhibit degraded performance compared to the attack-free setting.Wehave character-
ized closed-form optimal decision rules that provide the optimal estimation quality
(minimum estimation cost) while controlling for the error in detecting the attack and
isolating the truemodel of the data. Our analysis has shown that the design of optimal
estimators is intertwined with that of the detection rules to determine the true model
of the data. Based on this, we have provided the optimal decision rules that combine
the estimation quality with detection power. This allows the decision-maker to place
any desired emphasis on the estimation and detection routines involved to study the
tradeoff between the two.

Appendix 1

We start the proof of Theorem 9.2 by defining the cost function Ji (δi ,Ui ) and analyz-
ing a lower bound on it. Our analysis will show that the lower bound on the Ji (δi ,Ui )

is achieved for the choice of estimator in (9.53). From (9.10), we have
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Ji (δi ,Ui ) = E
[
C(X,Ui (Y)) |D=Hi

]

=

∫

Y

∫

X
δi (Y)C(X,Ui (Y)) fi (Y | X)π(X)dXdY

∫

Y
δi (Y) fi (Y)dY

.

By leveraging the definition of Cp,i (Ui (Y) | Y) from (9.24), we have

Ji (δi ,Ui ) =

∫

Y
δi (Y)Cp,i (Ui (Y) | Y) fi (Y)dY

∫

Y
δi (Y) fi (Y)dY

≥

∫

Y
δi (Y) inf

Ui (Y)
Cp,i (Ui (Y) | Y) fi (Y)dY

∫

Y
δi (Y) fi (Y)dY

, (9.51)

which implies that

Ji (δi ,Ui ) ≥

∫

Y
δi (Y)C∗

p,i (Y) fi (Y)dY
∫

Y
δi (Y) fi (Y)dY

. (9.52)

Using the definition of X̂i (Y) in (9.23), the above lower bound is achieved when the
estimator Ui (Y) is selected to be

X̂i (Y) = arg inf
Ui (Y)

Cp,i (Ui (Y) | Y), (9.53)

which proves that the estimator in (9.23) is the optimal estimator for minimizing the
cost Ji (δi ,Ui ). The corresponding minimum average estimation cost is

Ji (δi , X̂i ) =

∫

Y
δi (Y)C∗

p,i (Y) fi (Y)dY
∫

Y
δi (Y) fi (Y)dY

. (9.54)

Next, we prove that

max
i

min
U

{Ji (δi ,Ui )} ≡ min
U

max
i

{Ji (δi ,Ui )} . (9.55)

Recall from (9.11), the estimation cost J (δ,U) is defined as
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J (δ,U) = max
i

{Ji (δi ,Ui )} . (9.56)

We define C (Ω, δ,U) as a convex function of Ji (δi ,Ui ), i ∈ {0, . . . , T }, given by

C (Ω, δ,U) �
T∑

i=0

Ωi Ji (δi ,Ui ), (9.57)

where Ω = [Ω0, . . . ,ΩT ], and Ωi satisfy

T∑

i=0

Ωi = 1 , and Ωi ∈ [0, 1]. (9.58)

J (δ,U) can be represented as a function of C (Ω, δ,U) in the following form

J (δ,U) = max
Ω

C (Ω, δ,U).

Let Ω∗ = {Ω∗
j : j = 0, . . . , T } be defined as

Ω∗ � argmax
Ω

C (Ω, δ,U),

where Ω∗
j = 1 if

j = argmax
i

{Ji (δi ,Ui )} . (9.59)

From (9.53) and (9.54), we observe that

max
Ω

min
U

C (Ω, δ,U) = max
Ω

C (Ω, δ, X̂)

≥ min
U

max
Ω

C (Ω, δ,U). (9.60)

Also, we have

max
Ω

C (Ω, δ,U) ≥ max
Ω

min
U

C (Ω, δ,U), (9.61)

which implies that

min
U

max
Ω

C (Ω, δ,U) ≥ max
Ω

min
U

C (Ω, δ,U). (9.62)

From (9.60) and (9.62), it is easily concluded that

max
Ω

min
U

C (Ω, δ,U) = min
U

max
Ω

C (Ω, δ,U), (9.63)
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which completes the proof for (9.55). Using the results in (9.55) and (9.54), the cost
function J (δ, X̂) is given by

J (δ, X̂) = min
U

max
i

{Ji (δi ,Ui )}
= max

i
min
U

{Ji (δi ,Ui )}

= max
i

{
Ji (δi , X̂i )

}
(9.64)

= max
i

⎧
⎪⎪⎨

⎪⎪⎩

∫

Y
δi (Y)C∗

p,i (Y) fi (Y)dY
∫

Y
δi (Y) fi (Y)dY

⎫
⎪⎪⎬

⎪⎪⎭
. (9.65)

Appendix 2

The function Ji (δi ,Ui ) is a quasi-convex function. The weighted maximum function
preserves the quasi-convexity and therefore, Ji (δi , X̂i ) is a quasi-convex function
from its definition in (9.26). This allows us to find the solution by solving an equiv-
alent feasibility problem given below (Boyd and Vandenberghe 2004). Specifically,
for u ∈ R+, it is observed that

J (δ, X̂) ≤ u ≡
∫

Y
δi (Y) fi (Y)(C∗

p,i (Y) − u)dY ≤ 0, for i ∈ {0, . . . , T } . (9.66)

Hence, the feasibility problem equivalent to (9.22) is given by

P(α, β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minδ u

s.t.
∫

Y
δi (Y) fi (Y)(C∗

p,i (Y) − u)dY ≤ 0, ∀i ∈ {0, . . . , T }
T∑

j=1

T∑

i=0,i �= j

ε j

1−ε0

∫

Y
δi (Y) f j (Y)dY ≤ β

T∑

i=1

∫

Y
δi (Y) f0(Y)dY ≤ α

.

(9.67)

The above problem is feasible if P(α, β) ≤ u, where P(α, β) is the lowest value
of u for which the problem is feasible and all constraints are satisfied. Given an
interval [u0, u1] containing P(α, β), the detection rule δ and the estimation cost
P(α, β) are determined by a bi-section search between u0 and u1 iteratively, solving
the feasibility problem in each iteration. We define an auxiliary convex optimization
problem that allows us to solve the feasibility problem
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R(α, β, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minδ η

s.t.
∫

Y
δi (Y) fi (Y)(C∗

p,i (Y) − u)dY ≤ η, ∀i ∈ {0, . . . , T }
T∑

j=1

T∑

i=0,i �= j

ε j

1−ε0

∫

Y
δi (Y) f j (Y)dY ≤ β + η

T∑

i=1

∫

Y
δi (Y) f0(Y)dY ≤ α + η

.

(9.68)

Algorithm 9.2 summarizes the steps for determining P(α, β).

Algorithm 9.2 Bi-section Search
Input: Initialize u0, u1
repeat

û ← (u0 + u1)/2;
Solve R(α, β, û);
if J (α, β, û) ≤ 0 then

u1 ← û;

else
u0 ← û;

until u1 − u0 ≤ ε, for ε sufficiently small;
Output: P(α, β) ← u1

Appendix 3

To solve the problem in (9.68), a Lagrangian function is constructed according to

Q(δ, η, �) �
(

1 −
T+2∑

i=0

�i

)

η

+
T∑

i=0

�i

∫

Y
δi (Y) fi (Y)(C∗

p,i (Y) − u)dY

+ �T+1

T∑

j=1

T∑

i=0,i �= j

ε j

1 − ε0

∫

Y
δi (Y) f j (Y)dY − �T+1β

+ �T+2

T∑

i=1

∫

Y
δi (Y) f0(Y)dY − �T+2α,
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where � �
[
�0, . . . , �T+2

]
are the non-negative Lagrangian multipliers selected to

satisfy the constraints in (9.22), such that

T+2∑

i=0

�i = 1. (9.69)

The Lagrangian dual function is given by

d(�) � min
δ,η

Q(δ, η, �)

= min
δ

(
T∑

i=0

∫

Y
δi (Y)AidY

)

− �T+1β − �T+2α, (9.70)

where

A0 � �0 f0(Y)[C∗
p,0(Y) − u] + �T+1

T∑

i=1

εi

1 − ε0
fi (Y), (9.71)

and for i ∈ {1, . . . , T }

Ai � �i fi (Y)[C∗
p,i (Y) − u] + �T+1

T∑

j=1, j �=i

ε j

1 − ε0
f j (Y) + �T+2 f0(Y). (9.72)

Therefore, the optimum detection rules that minimize d(�) are given by:

δi (Y) =
{

1, if i = i∗

0, if i �= i∗
, (9.73)

where i∗ = argmini∈{0,...,T } Ai . Hence, the proof is concluded.
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