
Chapter 8
State and Attacks Estimation
for Nonlinear Takagi–Sugeno Multiple
Model Systems with Delayed
Measurements

Souad Bezzaoucha Rebai, Holger Voos, and Mohamed Darouach

8.1 Introduction

The present work deals with state and cyber-attacks estimation for nonlinear Takagi–
Sugeno systems with variable time-delay measurements. The use of the sector non-
linearity approach with the nonlinear Takagi–Sugeno systems allows us to extend the
results to a wide variety of control process. Indeed, fuzzy control systems have been
presented as an important tool to represent and implement human heuristic knowl-
edge to control a system. This theory is based on a class of fuzzy models presented
by the authors in Takagi and Sugeno (1985), which were designed to describe nonlin-
ear systems as a collection of Linear Time-Invariant (LTI) models blended together
with nonlinear functions, known as weighting functions. The Takagi–Sugeno (T–S)
fuzzy structure, also called quasi-LPV (linear parameter variable) systems, offers
an efficient representation of nonlinear behavior while relatively simple compared
to general nonlinear models (Benzaouia and Hajaji 2014). In this contribution, we
propose to represent the nonlinear system described by T–S models by an equivalent
form extending the result presented in Bezzaoucha and Voos (2019) and Bezzaoucha
Rebai and Voos (2019) for state and attacks estimation with delayed measurement.
The objective is to obtain sufficient conditions in terms of LM Is formulation for
the observer design in order to ensure the asymptotic convergence of the estimation
errors with an L2 attenuation constraint.
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The aim of this chapter is to tackle the state estimation of a nonlinear system
subject to data deception attacks and variable time-delay measurements. Based on
the same principle of own previous contributions (Gerard et al. 2018; Bezzaoucha
Rebaiı et al. 2018) the malicious attacks can be modeled as adversary signals (i.e.,
like disturbances, unknown inputs, faults,...) introduced via the internal network by
hackers and affecting the sensors and/or actuators data (Pajic et al. 2017; Teixeira
et al. 2012). The isolation and reconstruction of these cyber-attacks can be seen from
a control point of view as uncertain parameter problem.

Indeed, based on Bezzaoucha et al. (2013), we propose to use previously devel-
oped approach, applied for joint state and time-varying parameters estimation of
Takagi–Sugeno models in order to reconstruct the state and cyber-attack signals for
nonlinear LPV systems. In this book chapter, wewill consider in addition the delayed
measurement constraints.

The considered actuator/sensor attacks are modeled as time-varying parameters
withmultiplicative effect on the actuator input signal and sensor output signal, respec-
tively. Based on the sector nonlinearity description, and using the convex property,
the nonlinear model will be presented in a Linear Parameter-Varying (LPV) form,
then an observer allowing both state and attack reconstruction is designed by solving
an LM I optimization problem, exactly as detailed in Bezzaoucha and Voos (2019).

So far, to the best of our knowledge, there has been no delay-dependent method
reported to study the observer-based H∞ control for T–S fuzzy systems dealing with
the state and attack reconstruction problem. Indeed, in general, practical problems,
especially in Networked Control Systems (NCS) , the delayed measurement such
as traffic flow in communication networks have to be considered, especially for
stability reasons and measurement-based observer design. As it was developed in
Orjuela et al. (2007) and Bezzaoucha et al. (2017), the considered approach provides
an alternative and attractive path to dealwith complex nonlinear systems and to obtain
an equivalent representation by bounding the parameters and using the well-known
sector nonlinearity transformation (SNT).

8.1.1 Contributions and Outline

Robust control and quadratic stabilization for linear systems with uncertain parame-
ters have been considered in Shaked (2001). For fuzzy systemswithout uncertainties,
Liu and Zhang in Liu and Zhang (2003) have proposed a new design method based
on the H∞ norm. However, their technique is based on a two-step approach which
appears to be a drawback. Like in Bezzaoucha and Voos (2019), we proposed a
method to simplify and to improve the existing design methods of robust fuzzy state
observer design with disturbance attenuation for uncertain T–S fuzzy systems. The
developed method gives not only the observer gains (for the state and the attacks) on
a single-step analysis.

In practice, time delay often occurs in the transmission of information or material
between different parts of a system.Transportation systems, communication systems,
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chemical systems, and power systems are example of time-delay systems. Also, it has
been shown that the existence of time delay usually becomes the source of instability
and deteriorates the performances of systems. Therefore, T–S fuzzy systems have
been extended to deal with nonlinear systems with time-delay (Benzaouia and Hajaji
2014). The existing results of stabilization and stability criteria for this class of T–S
fuzzy systems can be classified into two types: delay independent, which is applicable
to delays of arbitrary sizes, and delay dependent, which includes information on the
size of delays.

Although it is well known that delay-dependent results are less conservative than
delay-independent ones, there are few delay-dependent results which study the prob-
lem of observer-based H∞ control for T–S fuzzy systems with varying time delay.
This motivates the research in this work to study this problem, i.e., the state and
attacks reconstruction problem for nonlinear Takagi–Sugeno systems with delayed
measurements. In this chapter, the asymptotic stabilization of uncertain (attacked)
T–S observer systems with variable time-delay measurement is studied. Different
from the methods currently found in the literature (Yue and Han 2005; Tian and
Peng 2003), the proposed method does not need any transformation in the LKF
(Lyapunov–Krasovskii functional), and thus avoids the restriction resulting from
any used transformation. It improves the presented results in Bezzaoucha and Voos
(2019) and Bezzaoucha et al. (2013) for two main aspects. The first one concerns the
polytopic rewriting of the time-varying data deception attacks, and the second one
is the time-delay measurement consideration and the delay-dependent stabilization
conditions. Based on previous results, published in Bezzaoucha and Voos (2019),
and on the sector nonlinearity approach, sufficient conditions in term of LM Is for-
mulation are given for the observer design. We will show that, despite the presence
of cyber-attack (i.e., data deception attacks on both actuators and sensors) and the
delayed measurements, the proposed observer is efficient and ensures the asymptotic
convergence of the estimation errors with an L2 attenuation constraint.

8.1.2 Chapter Organization

The present contribution is organized as follows.After a brief introduction and a short
overview of related works in Sect. 8.1, the problem statement is detailed in Sect. 8.2
by the presentation of the polytopic modeling of time-varying nonlinear systems and
time-varying parameters (malicious attacks) with an LPV model of physical plant
under data deception attacks. In Sect. 8.3, the main result/contribution of this work is
given in terms of a general theorem for the observer design strategy and time-delay-
dependent stability conditions. In Sect. 8.5, an illustrative example is given. From
a basic nonlinear model of a biological wastewater treatment plant, the proposed
approach is applied and illustrated with simulations. Conclusion will be given in the
last section.
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8.2 Problem Statement

The problem of state reconstruction in the presence of faults and attacks, also denoted
as secure state estimation, has recently attracted considerable attention from the con-
trol community. The problemof reconstructing the state under actuator/sensor attacks
is closely related to fault-detection and fault-tolerant state reconstruction. Based on
the approach presented in previous works Bezzaoucha et al. (2013), Bezzaoucha
et al. (2013) and adapted to the cyber-security problem, as presented in Bezzaoucha
and Voos (2019) we address the design of observers that can accurately reconstruct
the state and attacks of a cyber-physical system under actuator/sensor attacks with
delayed measurements.

For that, we propose a simultaneous state and time-varying (attacks) observers
for nonlinear systems in the presence of corrupted inputs and measurements, more
specifically, the so-called false data injection attacks. In the spirit of a Luenberger
observer, a state and attacks reconstruction algorithm is proposed based on the LM I
approach and convex optimization problem. The second point of the problem state-
ment will be about the variable time-delay measurements, which will be considered
in the observer analysis, as shown in Orjuela et al. (2007).

8.2.1 False Data Injection Attacks on Actuators/Sensors

Based on results presented in Bezzaoucha and Voos (2019) and Orjuela et al. (2007),
we assume that the attacker modifies the gain/s of the sensor and/or the actuator of
the control system, which represent the injection of false information from sensors
or controllers. This chapter is also dealing with a problem characterizing dynamical
systems, which is the variable time-delay measurements. Mathematically speaking,
explicit equations of both sensor and actuator signal attacks are derived and repre-
sented as time-varying multiplicative actuator/sensor faults/attacks. The Polytopic
T–S approach is then used to reconstruct these signals in real time.

In this section, we assume that a malicious third party wants to compromise the
integrity of the system. The attacker is assumed to have the following capabilities:

• He/she knows the system model, i.e., we assume that the hacker knows the system
model and matrices.

• He/she can control the readings of the sensors and the actuators, i.e., modifies their
values.

• The intrusions are represented as time-varying multiplicative actuator—sensor
faults—attacks. The attacks signals are, of course, unknown, but bounded. Their
min and max values are supposed to be known. Indeed, this assumption is not
conservative sincewe suppose that if the boundaries are exceeded the attacks effect
will be too obvious and easily detectable. Meaning, the hacker should respect the
min and max values to a certain extent if he/she wants to remain undetectable.
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• The nonlinear system is subject to time-variable delayed measurements. The time
delay τ(t) is assumed perfectly known and satisfies the following conditions:

{
0 ≤ τ(t) ≤ τ

τ̇ (t) ≤ γ < 1.
(8.1)

8.2.2 Polytopic Modeling of Time-Varying Nonlinear Systems
with Delayed Measurements

Let us consider the nonlinear system represented by the following equations:

⎧⎪⎨
⎪⎩
ẋ(t) =

r∑
i=1

μi (x(t))(Ai x(t) + Bi (t)u(t))

y(t) = C(t)x(t),

(8.2)

s.t. Ai , Bi , and C(t) are constant matrices with appropriate dimensions.
With the time-varying matrices Bi (t) and C(t) defined by the following:

⎧⎪⎨
⎪⎩

Bi (t) = Bi +
nθu∑
j=1

θu
j (t)Bi j

C(t) = (Im + F(t))C,

(8.3)

s.t. Bi , Bi j are constant matrices with appropriate dimensions and θu
j (t) time-varying

unknown parameters and correspond to the multiplicative actuator attacks.
The matrix F(t) ∈ R

m×m is defined by

F(t) = diag(θ y(t)), (8.4)

s.t. diag(θ y(t)) corresponds to a diagonal matrix with the terms θ
y
j (t) (sensor attacks)

on its diagonal.

The time-varying parameter vector θ(t), θ(t) ∈ R
n is defined by θ(t) =

(
θu(t)
θ y(t)

)

with θu(t) ∈ R
nθu and θ y(t) ∈ R

nθy correspond, respectively, to the actuator and
sensor attacks (n = nθu + nθy ). x(t) ∈ R

nx , y(t) ∈ R
m and u(t) ∈ R

nu correspond,
respectively, to the system state, output, and control. The nonlinear system ismodeled
thanks to a polytopic representation with r sub-models. This representation may be
obtained in a straightforward way by applying the Sector Nonlinearity Transforma-
tion (SNT). The interested readers can refer to Bezzaoucha et al. (2013) and Tanaka
and Wang (2001) for more development details.

F(t) may be expressed as
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F(t) =
nθy∑
j=1

θ
y
j (t)Fj , (8.5)

with nθy = m, Fj are matrices of dimension Rm×m and where the element of coordi-
nate ( j, j) is equal to 1 and 0 elsewhere. The coordinate j corresponds to the number
of the attacked sensor. The terms θ

y
j (t) are time-varying unknown parameters and

represent the multiplicative sensor attacks.

8.2.3 Polytopic Modeling of Time-Varying Parameters
(Malicious Attacks)

Aspresented inBezzaoucha andVoos (2019), the actuator data deception or false data
injection is modeled thanks to the time-varying parameters θu

j (t). These attacks are

of course unknown but bounded θu
j (t) ∈ [θ2

j
u
, θ1

j
u], with known bounds. Applying

the SNT transformation, each parameter θu
j (t) can always be expressed as

θu
j (t) = μ̃1

j (θ
u
j (t))θ

1
j
u + μ̃2

j (θ
u
j (t))θ

2
j
u
, (8.6)

with

μ̃1
j (θ

u
j (t)) = θu

j (t) − θ2
j
u

θ1
j
u − θ2

j
u , μ̃2

j (θ
u
j (t)) = θ1

j
u − θ j (t)

θ1
j
u − θ2

j
u (8.7)

μ̃1
j (θ

u
j (t)) + μ̃2

j (θ
u
j (t)) = 1, ∀t.

Based on the same way, the sensor data deception or false data injection is modeled
thanks to the time-varying parameters θ

y
j (t), such that

θ
y
j (t) = μ1

j (θ
y
j (t))θ

1
j
y + μ2

j (θ
y
j (t))θ

2
j
y

(8.8)

with

μ1
j (θ

y
j (t)) = θ

y
j (t) − θ2

j
y

θ1
j
y − θ2

j
y , μ2

j (θ
y
j (t)) = θ1

j
y − θ j (t)

θ1
j
y − θ2

j
y (8.9)

μ1
j (θ

y
j (t)) + μ2

j (θ
y
j (t)) = 1, ∀t.

Replacing (8.6) and (8.8) into (8.3), we obtain
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Bi (t) = Bi +
nθu∑
j=1

2∑
k=1

μ̃k
j (θ j (t))θ

k
j
u
Bi j

C(t) =
⎛
⎝I +

nθy∑
j=1

2∑
k=1

μk
j (θ

y
j (t))θ

k
j
y
Fj

⎞
⎠C.

(8.10)

8.2.4 LPV Model of Physical Plant Under Data Deception
Attacks and Delayed Measurements

In order to have the same weighting functions for all the time-varying matrices Bi (t)
and write C(t) as a simple polytopic matrix, exploiting the convex sum property of
the weighting functions μ̃ j (θ

u
j (t)) and μ j (θ

y
j (t)) of each parameter θu

j (t) and θ
y
j (t)

(see Bezzaoucha et al. 2013 for computation details), (8.10) is written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bi (t) =
nθu∑
j=1

[[
(μ̃1

j (θ
u
j (t))θ

1
j
u + μ̃2

j (θ
u
j (t))θ

2
j
u
)Bi j

]]
×

⎡
⎢⎣

nθu∏
k=1
k �= j

2∑
m=1

μ̃m
k (θu

k (t))

⎤
⎥⎦ + Bi

= Bi +
2nθu∑
j=1

μ̃ j (θ
u(t))Bi j

C(t) =
⎛
⎝I +

2
nθy∑
j=1

μ j (θ
y(t))F j

⎞
⎠C

(8.11)

with

μ̃ j (θ
u(t)) =

nθu∏
k=1

μ̃
σ k
j

k (θu
k (t)),Bi j =

nθu∑
k=1

θu
k

σ k
j Bik (8.12)

and

μ j (θ
y(t)) =

nθy∏
k=1

μ
σ k
j

k (θ
y
k (t)), F j =

nθy∑
k=1

θ
y
k

σ k
j Fj , (8.13)

where the global weighting functions μ̃ j (θ
u(t)) and μ j (θ

y(t)) satisfy the convex
sum property. The index σ k

j is either equal to 1 or 2 and indicates which partition
of the kth parameter (μ̃k

1 or μ̃k
2, i.e., μk

1 or μk
2) is involved in the j th sub-model.

The relation between the sub-model number j and the σ k
j indices is given by the

following equation:
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j = 2nθu −1σ 1
j + 2nθu −2σ 2

j + · · · + 20σ nθu
j − (21 + 22 + · · · + 2nθu −1) (8.14)

for the actuator, and in the same way for the sensor:

j = 2nθy −1σ 1
j + 2nθy −2σ 2

j + · · · + 20σ
nθy

j − (21 + 22 + · · · + 2nθy −1). (8.15)

Finally, using Eq. (8.11), the nonlinear LPV system (8.2) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) =
r∑

i=1

2nθu∑
j=1

μi (x(t))μ̃ j (θ
u(t))(Ai x(t) + Bi j u(t))

y(t) =
2
nθy∑
k=1

μk(θ
y(t))C̃k x(t),

(8.16)

Bi j = Bi + Bi j , C̃k = C + FkC. (8.17)

Now, if we consider some time-varying delay τ(t) in the output measurements, the
nonlinear LPV system (8.16) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) =
r∑

i=1

2nθu∑
j=1

μi (x(t))μ̃ j (θ
u(t))(Ai x(t) + Bi j u(t))

y(t) =
2
nθy∑
k=1

μk(θ
y(t − τ(t)))C̃k x(t − τ(t)).

(8.18)

8.3 Main Result: Observer Design

From the system equations (8.18), the aim of this chapter is to tackle the state and
actuator/sensor data deception estimation of a nonlinear system subject to delayed
measurements, and represented in a polytopic form. An L2 attenuation approach
is applied in order to minimize the attacks effect on the state and malicious input
estimation error.

The state and actuator/sensor data deception observer is given by the following
equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) =
r∑

i=1

2nθu∑
j=1

μi (x̂(t))μ̃ j (θ̂u(t))

(
Ai x(t) + Bi j u(t) + Li j (y(t) − ŷ(t))

)
˙̂
θu(t) =

r∑
i=1

2nθu∑
j=1

μi (x̂(t))μ̃ j (θ̂u(t))

(Ku
i j (y(t) − ŷ(t)) − αu

i j θ̂
u(t))

˙̂
θ y(t) =

r∑
i=1

2
nθy∑
k=1

μi (x̂(t))μk(θ̂ y(t − τ(t)))

(K y
ik(y(t) − ŷ(t)) − α

y
ik θ̂

y(t))

ŷ(t) =
2
nθy∑
k=1

μk(θ̂ y(t − τ(t)))C̃k x̂(t − τ(t)),

(8.19)

where Li j ∈ R
nx×m , Ku

i j ∈ R
n×m , αu

i j ∈ R
n×n , K y

ik ∈ R
m×m , and α

y
ik ∈ R

m×m are
parameter matrices to be determined s.t. the estimated state and malicious input
parameters converge to the real system state and attacks (i.e., the estimation errors
for both state and malicious input parameters converge to zero).

Let us define the state and data deception estimation errors ex (t), eθu (t) and eθ y (t)
as

ex (t) = x(t) − x̂(t)
eθu (t) = θu(t) − θ̂u(t)
eθ y (t) = θ y(t) − θ̂ y(t).

(8.20)

Based on the convex sum property of the weighting functions, from the results pre-
sented in Bezzaoucha et al. (2013) and in order to be able to calculate the estimation
error dynamics, the system equations (8.16) are rewritten as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
r∑

i=1

2nθu∑
j=1

[μi (x̂(t))μ̃ j (θ̂u(t))(Ai x(t) + Bi j u(t))+
δi j (t)(Ai x(t) + Bi j u(t))]

y(t) =
2
nθy∑
k=1

[
μk(θ̂ y(t − τ(t)))C̃k x(t − τ(t))

+δk(t − τ(t))C̃k x(t − τ(t))
]
,

(8.21)

where δi j (t) and δk(t) are defined by the following equations:

δi j (t) = μi (x(t))μ̃ j (θ
u(t)) − μi (x̂(t))μ̃ j (θ̂u(t)) (8.22)

δk(t − τ(t)) = μk(θ
y(t − τ(t))) − μk(θ̂ y(t − τ(t))) (8.23)



196 S. Bezzaoucha Rebai et al.

and satisfy the inequalities:

− 1 ≤ δi j (t) ≤ 1,−1 ≤ δk(t) ≤ 1. (8.24)

Equation (8.21) allows to deduce the state and data deception estimation error dynam-
ics in a straightforwardway, since the state and output arewritten nowonly depending
on the weighting functions of the estimate μi (x̂(t)), μ̃ j (θ̂u(t)), and μk(θ̂ y(t)).

Now, let us define the following matrices:

ΔA(t) =
r∑

i=1

2nθu∑
j=1

δi j(t)Ai = A 	(t)EA (8.25)

ΔB(t) =
r∑

i=1

2nθu∑
j=1

δi j (t)Bi j = B	(t)EB (8.26)

C̃(∇) = [
δ1(∇)C̃1 . . . δ2nθy (∇)C̃2

nθy

]
(8.27)

with

A =
[

A1 . . . A1︸ ︷︷ ︸
2nθu times

. . . Ar . . . Ar︸ ︷︷ ︸
2nθu times

]
(8.28)

B = [
B11 . . . Br2n

]
(8.29)

	(t) = diag(δ11(t), . . . , δr2n (t)) (8.30)

EA = [
Inx . . . Inx

]T
, EB = [

Inu . . . Inu
]T

. (8.31)

From (8.24) to (8.30), we have

	T (t)	(t) ≤ I. (8.32)

By using (8.25)–(8.31) and the notation ∇ = t − τ(t), system (8.21) can be written
as an uncertain system given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
r∑

i=1

2nθu∑
j=1

μi (x̂(t))μ̃ j (θ̂u(t))

((Ai + ΔA(t))x(t) + (Bi j + ΔB(t))u(t))

y(t) =
2
nθy∑
k=1

μk(θ̂ y(∇))(C̃k + C̃(∇))x(∇).

(8.33)

From Eqs. (8.33) and (8.20), the estimation error dynamics are then given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėx (t) =
r∑

i=1

2nθu∑
j=1

2
nθy∑
k=1

μi (x̂(t))μ̃ j (θ̂u(t))μk(θ̂ y(∇))

(Aiex (t) − Li j C̃kex (∇)

+ΔA(t)x(t) − Li j C̃(∇)x(∇) + ΔB(t)u(t))

ėθu (t) =
r∑

i=1

2nθu∑
j=1

2
nθy∑
k=1

μi (x̂(t))μ̃ j (θ̂u(t))μk(θ̂ y(∇))

(−Ku
i j C̃kex (∇) − αu

i j eθu (t)
−Ku

i j C̃(∇)x(∇) + αu
i jθ

u(t) + θ̇u(t))

ėθ y (t) =
r∑

i=1

2
nθy∑
k=1

μi (x̂(t))μk(θ̂ y(∇))

(−K y
ikC̃kex (∇) − α

y
ikeθ y (t)

−K y
ikC̃(∇)x(∇) + α

y
ikθ

y(t) + θ̇ y(t)).

(8.34)

Let us now consider the augmented vectors ea(t) and ω(t), such that

ea(t) =

⎛
⎜⎜⎝

x(t)
ex (t)
euθ (t)
eyθ (t)

⎞
⎟⎟⎠ , ω(t) =

⎛
⎜⎜⎜⎜⎝

θu(t)
θ y(t)
θ̇u(t)
θ̇ y(t)
u(t)

⎞
⎟⎟⎟⎟⎠ . (8.35)

From (8.34) and (8.35), it follows that

ėa(t) =
r∑

i=1

2nθu∑
j=1

2
nθy∑
k=1

μi (x̂(t))μ̃ j (θ̂u(t))μk(θ̂ y(∇))

(
Φi jk(t)ea(t) + Ψi jk(t)ω(t) − Ri jk(∇)ea(∇)

) (8.36)

with

Φi jk(t) =

⎛
⎜⎜⎝

Ai 0 0 0
ΔA(t) Ai 0 0

0 0 −αu
i j 0

0 0 0 −α
y
ik

⎞
⎟⎟⎠ (8.37)

Ψi jk(t) =

⎛
⎜⎜⎝

0 0 0 0 Bi j + ΔB(t)
0 0 0 0 ΔB(t)

αu
i j 0 I 0 0
0 α

y
ik 0 I 0

⎞
⎟⎟⎠ (8.38)
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Ri jk(∇) =

⎛
⎜⎜⎝

0 0 0 0
Li j C̃(∇) Li j C̃ 0 0
Ku

i j C̃(∇) Ku
i j C̃ 0 0

K y
ikC̃(∇) K y

ikC̃ 0 0.

⎞
⎟⎟⎠ . (8.39)

Now, the objective is to find the observer parameter matrices such that the transfer
from ω(t) to ea(t) is minimized. This approach assumes that the disturbance, i.e.,
the external input ω(t) belongs to a set of norm bounded functions, i.e., is of finite
energy. For the considered problem, knowing that the attacks do not appear all time
(stealthy attacks), the assumption is realized.

Let us define the following Lyapunov–Krasovskii functional candidate Mondié
and Kharitonov (2005):

V (t) = eTa (t)Pea(t) +
∫ 0

−τ(t)
eTa (t + θ)e2αθ Qea(t + θ)dθ, (8.40)

where P and Q are symmetric, positive definite matrices. The convergence with L2

attenuation is then guaranteed if the following conditions are satisfied:

V (t) > 0 (8.41)

V̇ (t) + eTa (t)ea(t) − ωT (t)Γ ω(t) < −2αV (t) (8.42)

with
Γ = diag(Γl), Γl < β I, for l = 1, . . . , 6. (8.43)

An appropriate choice of Γ enables to attenuate the transfer from ω(t) to ea(t).
The time derivative of V (t) along the trajectory of (8.36) is given by

V̇ (t) = ėaT (t)Pea(t) + ea(t)PėaT (t) + eTa (t)Qeat (t)
−(1 − τ̇ (t))e−2ατ(t)eTa (∇)Qea(∇)

−2α
∫ 0
−τ(t) e

T
a (t + θ)e2αθ Qea(t + θ)dθ,

(8.44)

which is upper bounded thanks to the time-delay condition (8.1) by

V̇ (t) ≤ ėaT (t)Pea(t) + ea(t)PėaT (t) + eTa (t)Qeat (t)
−(1 − γ )e−2ατ eTa (∇)Qea(∇)

−2α
∫ 0
−τ(t) e

T
a (t + θ)e2αθ Qea(t + θ)dθ.

(8.45)

By considering (8.36), we also have
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V̇ (t) + eTa (t)ea(t) − ωT (t)Γ ω(t) =
r∑

i=1

2nθu∑
j=1

2
nθy∑
k=1

μi (x̂(t))μ̃ j (θ̂u(t))μk(θ̂ y(∇))

⎛
⎝ ea(t)

ω(t)
ea(∇)

⎞
⎠

T ⎛
⎝ΦT

i j (t)P + PΦi j (t) + I PΨi (t) −PRi jk(∇)

Ψ T
i (t)P −Γ 0

∗ ∗ −(1 − γ )e2ατ Q

⎞
⎠

⎛
⎝ ea(t)

ω(t)
ea(∇)

⎞
⎠

−2α
∫ 0
−τ(t) e

T
a (t + θ)e2αθ Qea(t + θ)dθ

(8.46)
and

V̇ (t) + eTa (t)ea(t) − ωT (t)Γ ω(t) + 2αV (t) ≤
r∑

i=1

2nθu∑
j=1

2
nθy∑
k=1

μi (x̂(t))μ̃ j (θ̂u(t))μk(θ̂ y(∇))

⎛
⎝ ea(t)

ω(t)
ea(∇)

⎞
⎠

T

⎡
⎣
⎛
⎝ΦT

i j (t)P + PΦi j (t) + I PΨi (t) −PRi jk(∇)

Ψ T
i (t)P −Γ 0

∗ ∗ −(1 − γ )e2ατ Q

⎞
⎠

+2α

⎛
⎝ P 0 0)

0 0 0
0 0 0

⎞
⎠
⎤
⎦
⎛
⎝ ea(t)

ω(t)
ea(∇)

⎞
⎠ .

(8.47)

The negativity of condition (8.47) due to the convex sum property of the weighting

functions and the quadratic form of the vector

⎛
⎝ ea(t)

ω(t)
ea(∇)

⎞
⎠

T

is therefore guaranteed

if: ⎛
⎝ C1 PΨi (t) −PRi jk(∇)

Ψ T
i (t)P −Γ 0

∗ ∗ −(1 − γ )e2ατ Q

⎞
⎠ < 0, (8.48)

where C1 = (Φi j + α I )T (t)P + P(Φi j (t) + α I ) + I . It is also important to high-
light that the matrices C̃(∇) can be written as

C̃(∇) =
2
nθy∑
l=1

δl(∇)C̃l . (8.49)

From (8.49), and based on the convex sum property of δl(t), the matrix inequalities
(8.48) become

∑2
nθy

l=1 δl(∇)

⎛
⎝ C1 PΨi (t) −PRi jk

Ψ T
i (t)P −Γ 0

∗ ∗ −(1 − γ )e2ατ Q

⎞
⎠ < 0, (8.50)
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where

Ri jk =

⎛
⎜⎜⎝

0 0 0 0
Li j C̃ Li j C̃ 0 0
Ku

i j C̃ K u
i j C̃ 0 0

K y
ikC̃ K y

ikC̃ 0 0

⎞
⎟⎟⎠ , (8.51)

which is equivalent to solve

⎛
⎝ C1 PΨi (t) −PRi jk

Ψ T
i (t)P −Γ 0

∗ ∗ −(1 − γ )e2ατ Q

⎞
⎠ < 0. (8.52)

The observer gains are then obtained by solving the above constraints with the suffi-
cient condition inequality (8.52) for i = 1, . . . , r , j = 1, . . . , 2nθu , k = 1, . . . , 2nθy ,
and l = 1, . . . , 2nθy .

The results may be summarized by the following theorem:

Theorem 8.1 There exists a state andactuator/sensor date deceptionattackobserver
(8.19) for a nonlinear system (8.2) with delayed measurements and an L2 gain
from ω(t) to ea(t) bounded by β (β > 0) if there exist positive symmetric matri-
ces P1 = PT

1 > 0, P2 = PT
2 > 0, P3 = PT

3 > 0, P4 = PT
4 > 0 and Q1 = QT

1 > 0,
Q2 = QT

2 > 0, Q3 = QT
3 > 0, Q4 = QT

4 > 0; positive matrices Γl , l = 1, . . . , 5;
matrices αu

i j , α
y
ik , F

u
i j , F

y
ik , Ri j ; and scalars positive β, λA λ1B, λ2B, and α solution

of the following optimization problem under LMI constraints (8.54) and (8.57) (see
next page)

min
{P1,P2,P3,Ri j ,Fu

i j ,F
y
ik ,α

u
i j ,α

y
ik ,Γl ,λA,λ1B ,λ2B ,}

β, (8.53)

for i = 1, . . . , r , j = 1, . . . , 2nθu , k = 1, . . . , 2nθy , and l = 1, . . . , 2nθy , where the
scalar α is called the delay rate.

Γl < β I for l = 1, . . . , 5 (8.54)

with
Q11

i = P1(Ai + α I ) + (Ai + α I )T P1 + Inx
Q5 = −Γ1 + λAET

A EA

Q8 = −Γ4 + λ1B ET
B EB

Q9 = −Γ5 + λ2B ET
B EB

Q10 = −(1 − γ )e2ατ Q1

Q11 = −(1 − γ )e2ατ Q2

Q12 = −(1 − γ )e2ατ Q3

Q13 = −(1 − γ )e2ατ Q4,

(8.55)

where the observer gains are given by



8 State and Attacks Estimation for Nonlinear Takagi–Sugeno Multiple … 201

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Li j = P−1
2 Ri j

K u
i j = P−1

3 Fu
i j

K y
ik = P−1

4 Fy
ik

αu
i j = P−1

3 αu
i j

α
y
ik = P−1

4 α
y
ik .

(8.56)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q11
i 0 0 0 0 0 0 0 P1B i j 0 0 0 0 0 P1B 0
∗ P2Ai 0 0 0 0 0 0 0 −Ri j C̃ −Ri j C̃ 0 0 P2A 0 P2B
∗ ∗ −αui j 0 αui j 0 P3 0 0 Fu

i j C̃ Fu
i j C̃ 0 0 0 0 0

∗ ∗ ∗ −α
y
ik 0 α

y
ik 0 P4 0 Fy

ik C̃ F y
ik C̃ 0 0 0 0 0

∗ ∗ ∗ ∗ Q5 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Γ2 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Γ3 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Q8 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Q9 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q10 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q11 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q12 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q13 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λA I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ1B I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2B I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0.

(8.57)

Proof Based on condition (8.52), with (8.37) and the variable change (8.56), with
the decomposition (8.25) and (8.26), properties (8.32), Schur’s complement, and the
following lemma:

Lemma 8.1 Consider (Zhou and Khargonekar 1988) two matrices X and Y with
appropriate dimensions, a time-varying matrix Δ(t) and a positive scalar ε. The
following property is verified

XTΔT (t)Y + Y TΔ(t)X ≤ εXT X + ε−1Y T Y, (8.58)

for ΔT (t)Δ(t) ≤ I

following the same development as the work presented in Bezzaoucha et al. (2013),
Bezzaoucha et al. (2013), the Lyapunov stability with an L2 transfer from ω(t)
to ea(t) is obtained by solving the optimization problem (8.53) under the LM I
constraints (8.54) and (8.57), which ends the proof. �

8.4 Numerical Simulation

In the following, the proposed approach for state and attacks estimation is applied to
a basic model of a biological wastewater treatment plant (Bezzaoucha et al. 2013).
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The mathematical model is represented thanks to two state variables x1(t) and x2(t),
corresponding to the biomass and substrate concentration, respectively, the input
u(t), which represents the dwell time in the treatment plant and the measured output
which is the biomass concentration (y(t) = x1(t)). The time delay that appears in
the output of the system has the form τ(t) = 0.5 + 0.45 sin(0.5t). The upper bound
of its derivative is then equal to γ = 0.225.

8.4.1 LPV Representation of The Process

First step, let us write the nonlinear system equations (8.59) in a polytopic form. As
it was developed in Bezzaoucha et al. (2013), and under specific assumptions, some
simplifications can be made and the nonlinear model may be given by

⎧⎪⎨
⎪⎩
ẋ1(t) = ax1(t)x2(t)

x2(t)+b − x1(t)u(t)

ẋ2(t) = − cax1(t)x2(t)
x2(t)+b + (d − x2(t))u(t),

(8.59)

where a, b, c, and d are known parameters.
From the system nonlinearities, applying the sector nonlinearity approach with

the premise variables ρ1(t) and ρ2(t) chosen as follows:

ρ1(t) = −u(t), ρ2(t) = ax1(t)

x2(t) + b
. (8.60)

From (8.59) to (8.60), the quasi-LPV system (8.61) is deduced as

ẋ(t) =
(

ρ1(t) ρ2(t)
0 −cρ2(t) + ρ1(t)

)
x(t) +

(
0
d

)
u(t). (8.61)

Since an LPV representation is deduced in a compact set of the state space, the max
and min values of the terms ρ1(t) and ρ2(t) may be calculated using the knowledge
of the domain of variation of u(t), i.e., ρ1(t) ∈ [−1,−0.2] and ρ2(t) ∈ [0.004, 15].

Applying the convex polytopic transformation, two partitions for each premise
variable are defined as

{
ρ1(t) = �11(ρ1)ρ

2
1 + �12(ρ1)ρ

1
1

ρ2(t) = �21(ρ2)ρ
2
2 + �22(ρ2)ρ

1
2

(8.62)

with �11(ρ1) = ρ1(t) − ρ2
1

ρ1
1 − ρ2

1

, �12(ρ1) = ρ1
1 − ρ1(t)

ρ1
1 − ρ2

1

�21(ρ2) = ρ2(t) − ρ2
2

ρ1
2 − ρ2

2

, �22(ρ2) = ρ1
2 − ρ2(t)

ρ1
2 − ρ2

2

,

(8.63)
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where the scalars ρ1
1 , ρ

2
1 , ρ

1
2 , and ρ2

2 are defined as

ρ1
1 = max

u
ρ1(t), ρ2

1 = min
u

ρ1(t)

ρ1
2 = max

x
ρ2(t), ρ2

2 = min
x

ρ2(t).
(8.64)

The sub-models are defined by the sets (Ai , Bi ,C) with i = 1, 2, 3, 4. Based on ρ1

and ρ2 definitions, all the Bi matrices are set to B = [
0 d

]T
. The output matrix

C = [
1 0

]
and the matrices Ai are given by

A1 =
(

ρ1
1 ρ1

2
0 −cρ1

2 + ρ1
1

)
, A2 =

(
ρ1
1 ρ2

2
0 −cρ2

2 + ρ1
1

)

A3 =
(

ρ2
1 ρ1

2
0 −cρ1

2 + ρ2
1

)
, A4 =

(
ρ2
1 ρ2

2
0 −cρ2

2 + ρ2
1 .

)
.

The weighting functions μi (t) are defined by the following equations:

μ1(t) = ρ11(ρ1(t))ρ21(ρ2(t)), μ2(t) = ρ11(ρ1(t))ρ22(ρ2(t))

μ3(t) = ρ12(ρ1(t))ρ21(ρ2(t)), μ4(t) = ρ12(ρ1(t))ρ22(ρ2(t)).
(8.65)

Since the polytopic representation is obtained in a compact set of the state space,
maximum and minimum values that occur in ρ1(t) and ρ2(t) may be calculated
using the knowledge of the domain of variation of u(t): ρ1(t) ∈ [−1,−0.2] and
ρ2(t) ∈ [0.004, 15].

8.4.2 Date Deception Attacks Representation
on The Actuator/Sensor

Two types of data deception attacks are considered, i.e., attacks on actuators and
sensors. It is assumed that, mathematically speaking, these attacks are modeled as
bounded multiplicative actuator and sensor time-varying faults.

For the considered example, it is assumed that parameter d may be hacked. This
actuator attack is represented by d(t), such that

d(t) = d + Δd(t). (8.66)

It can also be written as

d(t) = d + θu(t)d, θu(t) ∈ [θu2, θu1] (8.67)
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with d = 2.5, d = 2.1 and θu2 = −0.1958, θu1 = 0.1979. Parameters a, b, and c
have been identified and set to a = 0.5, b = 0.07, and c = 0.7.

Considering the attack on the actuator, the polytopic representation of the input
matrix B is then given by two sub-models, such that

B1 = B + θu1B, B2 = B + θu2B, (8.68)

where it is defined by B := [
0 d

]T
. The weighting functions μ̃ j (θ

u(t)) are defined
as given in (8.7) and (8.12).

Now, for the sensor attack, it is assumed that a bounded multiplicative sensor fault
θ y(t) affects the output y(t) such that

y(t) = (1 + θ y(t − τ))x1(t − τ). (8.69)

As previously explained, θ y(t) can also be written as

θ y(t) = μ1
1(θ y(t))θ y1 + μ2

1(θ
y(t))θ y2, θ y(t) ∈ [θ y2, θ y1] (8.70)

with θ y2 = 0.125, θ y1 = 0.625, μ1
1(θ y(t)), and μ2

1(θ
y(t)) are defined by (8.9) and

(8.13).
The polytopic form of the output is then given by

y(t) =
2∑

k=1

μk(θ
y(t − τ(t)))C̃k x(t − τ(t)) (8.71)

with C̃1 = (
1 + θ y2 0

)
, C̃2 = (

1 + θ y1 0
)
.

8.4.3 Simulation Results

From the considered example, with both attacks on the actuator/sensor, applying the
proposed approach by solvingTheorem8.1, a simultaneous state and attacks observer
is designed such that the system initial conditions are taken as x(0) = (

0.1 1.5
)
and

x̂(0) = (
0.09 2.3

)
for its observer. For both attacks, the initial conditions are set to

zero, i.e., θ̂u(0) = 0 and θ̂ y(0) = 0.
The state vector, its estimate as well as the data deception attacks with their

estimates are depicted in Figs. 8.1, and 8.2, respectively. From the obtained plots, the
efficiency of the proposed observer is highlighted; indeed, both system states and the
time-varying multiplicative actuator/sensor attacks are well estimated.
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Fig. 8.1 System states and their estimates
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Fig. 8.2 Data deception attacks and their estimates

8.5 Conclusions

In the present book chapter, a polytopic approach was applied to cope with the sys-
tem state and data deception attacks estimation and delayed measurements. Based
on previous work, both attacks on actuator and sensor are modeled as multiplicative
time-varying faults and written in a convex set, based only on their min and max
bound. A simultaneous state and attack observer is designed by minimizing the L2
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gain from the augmented input to the different estimation errors. The chosen appli-
cation example is an activated sludge reactor with attacks represented by unknown
time-varying parameters on the parameter d and the output. From the nonlinear equa-
tions of the system, an LPV model is derived. The proposed observer is designed
and the obtained results illustrate its performance.
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