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Resilient State Estimation and Attack
Mitigation in Cyber-Physical Systems
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7.1 Introduction

Cyber-Physical Systems (CPS), e.g., power grids, autonomous vehicles, medical
devices, etc., are systems in which computational and communication components
are deeply intertwined and interactingwith each other in severalways to control phys-
ical entities. While the cyber-physical coupling introduces new functions to control
systems and improves their performance, these systems also become exposed to new
cyber-vulnerabilities. Such safety-critical systems, if jeopardized or malfunctioning,
can cause serious detriment to their operators andusers, aswell as the controlled phys-
ical components. A need for CPS security and for new designs of resilient estimation,
attack mitigation and control has been accentuated by recent incidents of attacks on
CPS, e.g., the Iranian nuclear plant, the Ukrainian power grid, and the Maroochy
water service (Cárdenas et al. 2008; Farwell and Rohozinski 2011; Richards 2008;
Slay andMiller 2007; Zetter 2016). Specifically,mode and false data injection attacks
are among themost serious types of attacks on CPS, wheremalicious and/or strategic
attackers compromise the true mode (i.e., discrete state) of the system and/or inject
counterfeit data signals into the sensor measurements and actuator signals to cause
damage, steal energy, etc. Hence, reliable estimates of modes, (continuous) states,
and unknown inputs (attacks) are indispensable and useful for the sake of attack
identification and mitigation and resilient control. Similar state and input estimation
problems can be found across a wide range of disciplines, from input estimation
in physiological systems (De Nicolao et al. 1997), to fault detection and diagnosis
(Patton et al. 1989), to the estimation of mean areal precipitation (Kitanidis 1987).
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7.1.1 Literature Review

Characterization of undetectable attacks as well as attack detection and identification
techniques have been extensively studied in the literature, which range from data-
driven approaches (e.g., the use of data time-stamps in Zhu and Martínez (2013),
Wasserstein metric in Li and Martínez (2020) or higher-order moments in Ren-
ganathan et al. 2021) to the works seeking closed-form solutions for selecting various
types of detector thresholds (e.g., Murguia and Ruths 2016; Milošević et al. 2018)
to anomaly detection methods using residuals (e.g., Mo and Sinopoli 2010; Weimer
et al. 2012;Kwon et al. 2013)with empirically chosen thresholds to trade-off between
false alarms and probability of anomaly/attack detection. On the other hand, attack
mitigation can be preventive and/or reactive (Cómbita et al. 2015). Preventive attack
mitigation identifies and removes system vulnerabilities to prevent exploitation (e.g.,
Dan and Sandberg 2010), while reactive attack mitigation, which is mainly studied
using either game theory (e.g., Ma et al. 2013; Zhu and Martínez 2011; Zhu and
Basar 2015) or adaptive learning and control architectures for mitigating sensor and
actuator attacks (e.g., Jin et al. 2017; Yadegar et al. 2019; Jin and Haddad 2019,
2020), initiates countermeasures after detecting an attack.

The ability to reliably estimate the true system states despite attacks (i.e., resilient
estimates) is also desirable in addition to attack detection or the resulting attack
mitigation, because the availability of resilient state estimates would allow for con-
tinued operation with the same controllers as in the case without attacks or for
pricing/prediction based on the real unbiased/compatible state information despite
attacks. This problem has been addressed for both static systems (e.g., Liu et al. 2011;
Kosut et al. 2011; Liang et al. 2017 and references therein) and dynamic systems
(e.g., Mishra et al. 2015; Cárdenas et al. 2008; Mo and Sinopoli 2010; Pasqualetti
et al. 2013; Fawzi et al. 2014; Pajic et al. 2014, 2015; Yong et al. 2016a; Dahleh and
Diaz-Bobillo 1994; Shamma and Tu 1999; Blanchini and Sznaier 2012; Yong 2018;
Yong et al. 2018).

In particular, resilient state estimators for deterministic linear dynamic systems
under actuator and sensor signal attacks (e.g., via false data injection Cárdenas et al.
2008;Mo and Sinopoli 2010; Pasqualetti et al. 2013), have been proposed as a relaxed
�0 optimization problem in Fawzi et al. (2014), and extensions in Pajic et al. (2014),
Pajic et al. (2015) compute the worst-case bound on the state estimate errors in the
presence of additive noise errors with known bounds, while Yong et al. (2016a)
propose the resilient state estimators that are robust to bounded multiplicative and
additive modeling and noise errors. On the other hand, our previous work Yong et al.
(2015), Yong (2018) proposed to use a simultaneous input and state estimation (see,
e.g., Yong 2018; Gillijns and De Moor 2007a, b; Yong et al. 2016b, 2017) approach
for resilient state estimation ,wherewemodeled the data injection attacks as unknown
inputs of dynamical systems and derived stability and optimality properties for our
estimators, as well as their relationship to strong detectability (Yong et al. 2016b).

In addition, a serious CPS security concern has emerged more recently from the
attacks that alter the CPS network topology or exploit the switching vulnerability
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of CPS, e.g., attacks on the power system network topology (Weimer et al. 2012),
or on the circuit breakers of a smart grid (Liu et al. 2013), on the meter/sensor data
network topology (Kim andTong 2013) or on the logicmode (e.g., failsafemode) of a
traffic infrastructure (Ghena et al. 2014). To address this concern, our previous works
(Yong et al. 2021, 2018; Khajenejad and Yong 2019) proposed inference algorithms
that estimate hidden modes, unknown inputs (attacks) and states simultaneously as a
means to obtain resilient state estimation despite switching (mode/topology) attacks
as well as attacks on actuator and sensor signals. This framework is inspired by
the multiple-model approach (see e.g., Bar-Shalom et al. 2004; Mazor et al. 1998
and references therein) and can be viewed as a generalization of the robust control-
inspired approach in Nakahira andMo (2018) that considers resilient state estimation
against sparse data injection attacks on only the sensors.

In the context of reactive attack mitigation, the work in Ma et al. (2013) uti-
lized a Markov game analysis for attack-defense in power systems, while a leader–
follower (Stackelberg) game formulation was developed in Zhu andMartínez (2011)
to model the interdependency between the operator and adversaries and solved using
a receding-horizon Stackelberg control law tomaintain the closed-loop system stabil-
ity and some performance specifications. Further, a cross-layer coupled design was
presented in a hybrid game-theoretic framework in Zhu and Basar (2015), where
the occurrence of unanticipated events was modeled by stochastic switching , and
deterministic uncertainties were represented by disturbances with a known range,
and a robust controller was then designed at the physical layer to take into account
risks of failures due to the cyber-system.

In this chapter, assuming different models for uncertainties/noise signals, we pro-
pose resilient state estimation algorithms that output reliable estimates of the true
system states despite false data injection attacks and switching attacks. Our resilient
estimation algorithms address switching attacks aswell as actuator and sensor attacks
in the presence of stochastic and/or set-valued noise signals. Our approach is built
upon a general purpose inference algorithm developed and applied in our previous
works (Yong et al. 2021, 2018;Khajenejad andYong 2019) for hidden-mode stochas-
tic/bounded error switched linear systems with unknown inputs (attacks). We model
switching and false data injection attacks on Cyber-Physical Systems (CPS) in the
presence of stochastic/distribution-free noise signals as an instance of this system
class. By doing so,we show that unbiased and set-valued state estimates (i.e., resilient
state estimates) can be (asymptotically) recovered with the algorithms in Yong et al.
(2021), Khajenejad and Yong (2019). Secondly, we characterize fundamental limi-
tations to resilient estimation that is useful for preventative mitigation, such as the
upper bound on the number of correctable/tolerable attacks, and consider the sub-
ject of attack detection. In addition, we provide sufficient conditions for designing
unidentifiable attacks (from the attacker’s perspective) and also sufficient conditions
to obtain resilient state estimates even when the attacks are not identified (from the
system operator/defender’s perspective). Finally, we design an attack-mitigating and
stabilizing dynamic H∞-controller that contributes to the literature on non-game-
theoretic reactive attack mitigation.
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An earlier manuscript appeared in Yong et al. (2018), where we addressed the
resilient state estimation problem under switching and false data injection attacks
for stochastic hidden-mode CPS only, while in this chapter, we also consider the
uncertainties that are set-valued and further present a novel dynamic H∞-optimal
controller design for attack mitigation. Further, we provide necessary conditions
for the attack signal to be unidentifiable to add to the previously derived sufficient
conditions in Yong et al. (2018).

Notation:Rn denotes the n-dimensional Euclidean space andN nonnegative inte-
gers. For a vector v ∈ R

n and a matrix M ∈ R
p×q , ‖v‖2 �

√
v�v, ‖v‖∞ � max

1≤i≤n
|

vi | and ‖M‖2, and σmin(M) denote their induced 2-norm and non-trivial least sin-
gular value, respectively.

7.2 Problem Formulation

7.2.1 Attack Modeling

Similar to Yong et al. (2018), two different classes of possibly time-varying attacks
on Cyber-Physical Systems (CPS) are considered:

Data Injection Attacks: Attacks on actuator and sensor signals via manipulation
or injection with “false” signals of unknown magnitude and location (i.e., subset
of attacked actuators or sensors). In other words, signal attacks consist of both sig-
nal magnitude attacks and signal location attacks. Examples: Denial-of-service,
deceptive attacks via data injection (Cárdenas et al. 2008; Pasqualetti et al. 2013).

Switching Attacks: Attacks on the switching mechanisms that change the sys-
tem’s mode of operation, or on the sensor data or interconnection network topol-
ogy, which we will also refer to as mode attacks. Examples: Attack on circuit
breakers (Liu et al. 2013), power network topology (Weimer et al. 2012), sensor
data network (Kim and Tong 2013) and logic switch of a traffic infrastructure
(Ghena et al. 2014).

7.2.1.1 Data Injection Attacks

For clarity, we assume for the moment that there is only one mode of operation, and
that the linear system dynamics is not perturbed by any noise signals:

xk+1 = Akxk + Bk(uk + da
k ), yk = Ckxk + Dk(uk + da

k ) + ds
k ,

where xk ∈ R
n is the continuous state, yk ∈ R

� is the sensor output, uk ∈ R
m is

the known input, da
k ∈ R

m and ds
k ∈ R

� are attack signals that are injected into the
actuators and sensors, respectively. The attack signals are sparse, i.e., if sensor i ∈
{1, . . . , �} is not attacked then necessarily ds,(i)

k = 0 for all time steps k; otherwise
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ds,(i)
k can take any value. Since we do not know which sensor is attacked, we refer to
this uncertainty as the signal location attack, and the arbitrary values that ds,(i)

k can
take as the signal magnitude attack. This holds similarly for attacks on actuators da

k .
If we have additional knowledge of which of the actuators and sensors are vulner-

able to data injection attacks, we will use Gk and Hk to incorporate this information,
resulting in the following system dynamics

xk+1 = Akxk + Bkuk + Gkda
k , yk = Ckxk + Dkuk + Dkda

k + Hkds
k .

If no such information is available,Gk = Bk , Dk = Dk , and Hk = I . Further, in some
cases, the actuator and sensor attack signals are coupled and cannot be separated.
In order to take this into consideration, we represent the potentially coupled attack
signals with dk and introduce corresponding Gk and Hk matrices to obtain

xk+1 = Akxk + Bkuk + Gkdk, yk = Ckxk + Dkuk + Hkdk .

The special case where the actuator and sensor attack signals are independent can be
obtained with dk = [

(da
k )� (ds

k )
�]�

, Gk = [
Gk 0

]
and Hk = [

Dk Hk

]
, which will

be made more precise in Sect. 7.2.2.

7.2.1.2 Switching Attacks

A system may have multiple modes of operation, denoted by the set Qm of cardi-
nality tm � |Qm |, due to the presence of switching mechanisms or different config-
urations/topologies of the sensor data or interconnection network, where each mode
q ∈ Qm has its corresponding set of system matrices, {Aq

k , B
q
k ,Cq

k , Dq
k ,G

q
k , H

q
k }. A

switching attack or mode attack then refers to the change of the mode of operation
q by an adversary without the knowledge of the system operator/defender.

7.2.1.3 Attacker Model Assumptions

The malicious signal magnitude attack may be a signal of any type (random or
strategic) or model, and we assume that no ‘useful’ knowledge of the dynamics of
dk is available (uncorrelated with {d�} for all k �= �, {w�} and {v�} for all �).

7.2.2 System Description

Our role as a system operator/defender is to obtain resilient/reliable state estimates.
Thus, we model the system in a way that facilitates this. In other words, we model
the switching and false data injection attacks on a “noisy” dynamic system using
a hidden-mode switched linear discrete-time system with unknown inputs (i.e., a
dynamical system with multiple modes of operation where the system dynam-
ics in each mode is linear and uncertain, and the mode and some inputs are not
known/measured):
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(xk+1, qk) = (Aq
k xk + Bq

k u
q
k + Gq

kd
q
k + w

q
k , q), xk ∈ Cq ,

(xk, q)+ = (xk, δ
q(xk)), xk ∈ Dq , (7.1)

yk = Cq
k xk +Dq

k u
q
k + Hq

k d
q
k + v

q
k ,

where xk ∈ R
n is the continuous system state and q ∈ Q = {1, 2, . . . ,N} is the

hidden discrete state or mode, which a malicious attacker can influence, while Cq

and Dq are flow and jump sets, and δq(xk) is the mode transition function. More
details on the hybrid systems formalism can be found in Goebel et al. (2009). For
eachmodeq,uqk ∈ Uq ⊂ R

m is the known input,dq
k ∈ R

p the unknown input orattack
signal1 and yk ∈ R

l the output, whereas the corresponding process noise w
q
k ∈ R

n

and measurement noise v
q
k ∈ R

l satisfy one of the following sets of assumptions for
the system uncertainties:

Assumption 7.1 (Aleatoric Uncertainty) The system is perturbed by random
(unbounded) process and measurement noise signals with process noise w

q
k and

measurement noise v
q
k that are mutually uncorrelated, zero-mean Gaussian white

random signals with known covariance matrices, Qq
k = E[wq

kw
q�
k ] 
 0 and Rq

k =
E[vq

k v
q�
k ] � 0, respectively. Moreover, x0 is independent of v

q
k and w

q
k for all k.

Assumption 7.2 (Epistemic Uncertainty) The system is perturbed by uncertain,
bounded process and measurement noise signals, where the corresponding process
noise w

q
k and measurement noise v

q
k are distribution-free uncertain bounded signals

with known bounds, i.e., ‖wq
k ‖ ≤ ηw and ‖vq

k ‖ ≤ ηv , respectively (thus, they are �∞
sequences), where η

q
w and η

q
v are known parameters. We also assume an estimate x̂0

of the initial state x0 is available, where ‖x̂0 − x0‖ ≤ δ
q,x
0 with known δ

q,x
0 .

Assumption 7.3 (Aleatoric + Epistemic Uncertainty) The system is perturbed
by random and bounded process and measurement noise signals, where the cor-
responding process noise w

q
k and measurement noise v

q
k are mutually uncorre-

lated, zero-mean “truncated" Gaussian white random signals with known covariance
matrices, Qq

k = E[wq
kw

q�
k ] 
 0 and Rq

k = E[vq
k v

q�
k ] � 0, and bounded norms, i.e.,

‖wq
k ‖ ≤ η

q
w and ‖vq

k ‖ ≤ η
q
v , respectively, where η

q
w and η

q
v are known. Moreover, x0

is independent of v
q
k and w

q
k for all k, and an estimate x̂0 of the initial state x0 is

available, where ‖x̂0 − x0‖ ≤ δ
q,x
0 with known δ

q,x
0 .

In the case of the stochastic/aleatoric uncertainty (i.e., if Assumption 7.1 holds and
consequently, the uncertainty is characterized using probability distributions), the
emphasis is on expected/average performance of the resilient state estimator. In this
case, CPS safety/resilience is guaranteed based on probability of violation/chance
constraints. On the other hand, in the case of set-valued/epistemic uncertainty (i.e., if
Assumption 7.2 holds and hence the uncertainty is characterized by sets), the empha-
sis would be on the best worst-case performance and the CPS safety/resilience is

1 Note that while the unknown inputs may also be used to represent uncertainties or noise that are
unbounded or have unknown bounds, we primarily use this term to represent attack signals in this
chapter and thus, we often use the terms unknown inputs and attacks interchangeably.
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Fig. 7.1 Different
assumptions on the
considered uncertainty in
System (7.1)

guaranteed in the worst case, including rare events/corner cases. Finally, if Assump-
tion 7.3 holds, we can combine the information of the stochastic uncertainties and
the set-membership uncertainties from Assumptions 7.1 and 7.2 to benefit from
the advantages of both. Figure7.1 illustrates the aforementioned system uncertainty
models/assumptions.

Both categorical and continuous natures of the uncertainties introduced by the
switching and data injection attacks to the system of interest can be captured by the
Cyber-Physical System (CPS)model in (7.1). The categorical nature of the switching
and data injection attacks (mode attack and signal location attack) is modeled using
the hidden mode, whereas the unknown input captures the continuous nature of the
signal magnitude attacks. At any particular time k, the stochastic/bounded-error CPS
is in precisely one of its modes, which is not measured, hence hidden.

Similar to Yong et al. (2018), we consider the model set Q � Qm × Qd (whose
cardinality will be characterized in Theorem 7.2 in Sect. 7.3.3.2) that include

(i) themodes of operation,Qm (representing attacked switchingmechanisms (e.g.,
circuit breakers, relays) via access to the jump set Dq and the mode transition
function δq(·), or the possible interconnection network topologies that affect
the system matrices, Aq

k and Bq
k , and the sensor data network topologies, Cq

k
and Dq

k ) that an attacker can choose (mode attack), as well as
(ii) the different hypotheses for each mode, Qd , about which actuators and sen-

sors are attacked or not attacked, represented by Gq
k and Hq

k , where our
approach specifies which actuators and sensors are not attacked, in contrast
to the approach in Mishra et al. (2015), which removes attacked sensor mea-
surements and is not applicable for actuator attacks. (signal location attack).

More precisely, for sparse false data injection attacks, we let Gq
k � GkI

q
G and

Hq
k � HkI

q
H for some input matrices Gk ∈ R

n×ta and Hk ∈ R
�×ts , where ta and

ts are the number of actuator and sensor signals that are vulnerable, respectively
and encode the sparsity using I q

G ∈ R
ta×p and I q

H ∈ R
ts×p as index matrices such

that da,q
k � I q

Gdk and ds,q
k � I q

Hdk are subvectors of dk ∈ R
p representing signal

magnitude attacks on the actuators and sensors, respectively. These matrices provide
ameans to incorporate information about how the attacks affect the system, e.g., if the
same attack is injected to an actuator and a sensor, or if some signals are not attacked,
according to a particular hypothesis/mode q about the signal attack location.
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The following are some examples from Yong et al. (2018) for choosing Gk , Hk ,
I q

G , and I q
H to encode additional information about the nature/structure of data

injection attacks.

Example 7.1 For a two-state system with two vulnerable actuators and one vulner-
able sensor, if the same attack signal is injected into the first actuator and the sensor
under the hypothesis corresponding to mode q, then Gk = I2,Hk = 1,I q

G = I2 and
I q

H = [
1 0

]
. In this case, we obtain Gq

k = I2 and Hq
k = [

1 0
]
.

Example 7.2 For a three-state system with three actuators and two sensors, if the
first actuator and the second sensor are not vulnerable and there are three attacks

according to the hypothesis corresponding to mode q, then Gk =
⎡

⎣
0 0
1 0
0 1

⎤

⎦, Hk =
[
1
0

]
, I q

G =
[
1 0 0
0 1 0

]
and I q

H = [
0 0 1

]
. In this case, we have Gq

k =
⎡

⎣
0 0 0
1 0 0
0 1 0

⎤

⎦ and

Hq
k =

[
0 0 1
0 0 0

]
.

Note that we assume that pqa ≤ ta ≤ m (i.e., the number of attacked actuator signals
pqa under mode/hypothesis q cannot exceed the number of vulnerable actuators and
in turn cannot exceed the total number of actuators ma) and pqs ≤ ts ≤ � (with pqs
attacked sensors from ts vulnerable sensors out of � measurements). Moreover, we
assume that the maximum total number of attacks is p � pqa + pqs ≤ p∗, where p∗
is the maximum number of asymptotically correctable signal attacks (cf. Theorem
7.1 for its characterization).

7.2.2.1 System Assumptions

We require that the system is strongly detectable2 in each mode. In fact, strong
detectability is necessary for each mode in order to asymptotically correct the
unknown attack signals, as shown in Yong et al. (2018) [Theorem 4.3] and is also
necessary for deterministic systems [Sundaram and Hadjicostis (2007), Theorem
6]. Note that similar to the detectability property, strongly detectable systems need
not be stable (cf. example in the proof of Theorem 7.1), but rather that the strongly
undetectable modes of such systems are stable.

7.2.2.2 Knowledge of the System Operator/Defender

The matrices Aq
k , B

q
k , G

q
k , C

q
k , D

q
k , and Hq

k are known and the system (Aq
k ,G

q
k ,C

q
k ,

Hq
k ) is strongly detectable in each mode. Further, the defender only knows (i) the

2 A linear system is strongly detectable if yk = 0 ∀k ≥ 0 implies xk → 0 as k → ∞ for all initial
states x0 and input sequences {di }i∈N (see [Yong et al. (2016b), Sect. 3.2] for necessary and sufficient
conditions for this property).
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upper bound on the number of actuators/sensors that can be attacked, p, and (ii)
the switching mechanisms/topologies that may be compromised. The upper bound
p allows the defender, in the worst case, to enumerate all possible combinations of
Gq

k and Hq
k , while the latter assumption allows the defender to consider all possible

topologies/modes of operations, representing Aq
k , B

q
k , C

q
k and Dq

k .
In addition, note that the above assumption of strong detectability can be viewed

as recommendations or guidelines for system designers/operators to secure their sys-
tems as a preventative attack mitigation measure, since without strong detectability,
resilient (i.e., unbiased or bounded) state estimates cannot be guaranteed. In other
words, the requirement of strong detectability allows system designers to determine
which actuators or sensors need to be safeguarded to guarantee resilient estimation.

7.2.3 Security Problem Statement

With the above modeling framework, the resilient state estimation problem can be
posed as a problem of mode, state and input estimation, where the unknown inputs
represent the unknown signal magnitude attacks and each mode/model represents an
attack mode (resulting from the unknown mode attacks and unknown signal attack
locations). The objective of this chapter is:

Problem 7.1 Given an uncertain Cyber-Physical System (CPS) described by (7.1),

1. Design a resilient estimator that asymptotically recovers unbiased estimates of
the system state and attack signal in the presence of aleatoric/stochastic uncer-
tainty (i.e., if Assumption 7.1 holds), or finds the set-valued estimates of compat-
ible states and unknown inputs in the presence of epistemic uncertainty (i.e., if
Assumption 7.2 holds), irrespective of the location or magnitude of attacks on its
actuators and sensors as well as switching mechanism/topology (mode) attacks.

2. Investigate the fundamental limitations of the estimation algorithms, specifically
the maximum number of asymptotically correctable signal attacks and the maxi-
mum number of required models with our multiple-model approach.

3. Find the conditions under which attacks can be detected and under which the
attack strategy can be identified.

4. Design attack mitigation tools via H∞-control with attack rejection.

7.3 Resilient State Estimation

Similar to a previous approach for stochastic systems in Yong et al. (2021), we
propose the use of a multiple-model estimation approach to solve Problem 7.1.1.
Then, we will consider Problem 7.1.2 and characterize some fundamental limitations
to resilient estimation in Sect. 7.3.3.
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7.3.1 Multiple-Model State and Input Filtering/Estimation
Algorithm

Inspired by the multiple-model filtering algorithms for hidden-mode hybrid systems
with known inputs (e.g., Bar-Shalom et al. (2004); Mazor et al. (1998) and refer-
ences therein), our multiple-model (MM) framework (see Fig. 7.2) consists of three
components: (i) a bank of mode-matched filters/observers, (ii) a mode estimator that
finds the most likely or compatible modes, and (iii) a global fusion estimator that
combines/fuses states and unknown input (attack) estimates from (i) based on the
estimated modes in (ii), which are described in greater detail below.

7.3.1.1 Mode-Matched Filters/Observers

The bank of filters/observers is comprised of N simultaneous state and input fil-
ters/observers, one for each mode, that differ based on the assumptions on system
uncertainties and noise signals. If Assumption 7.1 (the aleatoric/stochastic uncer-
tainty model) holds, the optimal recursive filter developed in Yong et al. (2016b) can
be applied, while if Assumption 7.2 (the epistemic/set-valued uncertainty model)
holds, the recursive set-valued observer developed in Yong (2018) can be utilized.
Both variants are recursive and involve the same three-step structure as follows:

Fig. 7.2 Multiple-model framework for hidden mode, input and state estimation, which consists of
a (i) bank of mode-matched filters/observers, (ii) a mode estimator and (iii) a global fusion estimator
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Unknown Input Estimation:

d̂q
1,k = Mq

1,k(z
q
1,k − Cq

1,k x̂
q
k|k − Dq

1,ku
q
k ),

d̂q
2,k−1 = Mq

2,k(z
q
2,k − Cq

2,k x̂
q
k|k−1 − Dq

2,ku
q
k ),

d̂q
k−1 = V q

1,k−1d̂
q
1,k−1 + V q

2,k−1d̂
q
2,k−1.

(7.2)

Time Update:

x̂qk|k−1 = Aq
k−1 x̂

q
k−1|k−1 + Bq

k−1u
q
k−1 + Gq

1,k−1d̂
q
1,k−1,

x̂�,q
k|k = x̂qk|k−1 + Gq

2,k−1d̂
q
2,k−1.

(7.3)

Measurement Update:

x̂qk|k = x̂�,q
k|k + L̃q

k (z
q
2,k − Cq

2,k x̂
�,q
k|k − Dq

2,ku
q
k ), (7.4)

where x̂qk−1|k−1, d̂
q
1,k−1, d̂

q
2,k−1 and d̂q

k−1 denote the optimal point estimates of xqk−1,
dq
1,k−1, d

q
2,k−1 and d

q
k−1, respectively, if Assumption 7.1 holds (cf. Algorithm 7.1 that

summarizes the optimal filter for mode q in the presence of stochastic (aleatoric)
uncertainty) and denote the centroids of the hyperball-valued estimates of xqk−1,
dq
1,k−1, d

q
2,k−1 and d

q
k−1, respectively, if Assumption 7.2 holds (cf. Algorithm 7.3 that

finds theH∞-optimal set-valued state and input estimates for mode q in the presence
of distribution-free (epistemic) uncertainty).

The rest of the notations are clarified in the context of the system transformation
described in Appendix7.1.1. For details of the filter/observer derivation of both vari-
ants, as well as necessary and sufficient conditions for filter stability and optimality
of the mode-matched filters/observers, the reader is referred to Yong et al. (2016b)
and Yong (2018) for the aleatoric and epistemic uncertainty models, respectively.

It is worth mentioning that in the case that Assumption 7.3 holds (i.e., with a
combination of aleatoric and epistemic uncertainties), we can compute (in parallel)
both the point estimates corresponding to aleatoric/stochastic uncertainty and the
set-valued estimates corresponding to the epistemic/bounded-error uncertainty, and
utilize their combination as described in the following subsections.

7.3.1.2 Mode Estimator

Themode estimator seeks to determine themost likely or all compatiblemodes based
on the observations. For this purpose, we consider three cases:

(a) Aleatoric Uncertainty. In this case, Assumption 7.1 holds and consequently, a
mode probability computation is performed for all modes as described in Yong
et al. (2018). The multiple-model approach computes the probability of each
mode by exploiting the whiteness property [Yong et al. (2021), Theorem 1] of
the generalized innovation sequence, νq

k , defined as

ν
q
k � Γ̃

q
k (zqa,2,k − Cq

a,2,k x̂
�,q
a,k|k − Dq

a,2,ku
q
k ), (7.5)
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i.e., νq
k ∼ N (0, Sqk ) (a multivariate normal distribution) with covariance Sqk �

E[νq
k ν

q�
k ] = Γ̃

q
k R̃�,q

2,k Γ̃
q�
k and where Γ̃

q
k is chosen such that Sqk is invertible and

R̃�,q
2,k is given in Algorithm 7.1. This generalized innovation represents a residual

signalwith false data injection attacks removed that can be used to define the like-
lihood function for each mode q at time k conditioned on all prior measurements
Zk−1:

L (q|z2,k) � N (ν
q
k ; 0, Sqk ) = exp(− 1

2ν
q �
k (Sqk )−1ν

q
k )

√
|2π Sqk |

. (7.6)

Then, the posterior probabilityμ
j
k for each mode j is recursively computed from

the prior probability μ
j
k−1 using Bayes’ rule as follows:

μ
j
k = P(q = j |z1,k, z2,k, Zk−1) = N (ν

j
k ; 0, S j

k )μ
j
k−1

∑N
i=1 N (νi

k; 0, Sik)μ j
k−1

. (7.7)

Furthermore, to keep the modes “alive” in case of a switch in the attacker’s
strategy, a heuristic lower bound on all mode probabilities is imposed.

(b) Epistemic Uncertainty. In the presence of distribution-free and bounded norm
noise signals, i.e., when Assumption 7.2 holds, a mode elimination process is
performed to eliminate themodes that are incompatiblewith observations, which
results in a set of compatible modes. The mode elimination approach relies on
the checking of some residual signals against some thresholds. We first define
the residual signal rqk for each mode q at time step k as:

rqk � zqe,2,k − Cq
e,2,k x̂

�,q
a,k|k − Dq

e,2,ku
q
k . (7.8)

Then, leveraging an approach in Khajenejad and Yong (2019), if the residual
signal of a particular mode exceeds its upper bound conditioned on this mode
being true, we can conclusively rule it out as incompatible. To do so, for each
mode q, we compute a tractable upper bound (δ̂qr,k ; cf. Proposition 7.2) for the
2-norm of its corresponding residual at time k, conditioned on q being the true
mode. Then, comparing the 2-norm of residual signal in (7.8) with δ̂

q
r,k , we can

eliminatemode q if the residual’s 2-norm is strictly greater than the upper bound,
i.e., if ‖rqk ‖2 > δ̂

q
r,k . This can be formalized using the following proposition (cf.

[Khajenejad and Yong (2019), Proposition 1 and Theorem 2] for more details
and a formal proof of this result).

Proposition 7.1 Consider mode q and its residual signal rqk at time step k. Assume
that δ

q,∗
r,k is any signal that satisfies ‖rq|∗

k ‖2 ≤ δ
q,∗
r,k , where rq|∗

k is the true mode’s
residual signal (i.e., q = q∗, where q∗ denotes the true mode), defined as follows:

rq|∗
k � zq∗

e,2,k − Cq
e,k,2 x̂

�,q
e,k|k − Dq

e,k,2u
q
k = T q∗

e,k,2yk − Cq
e,k,2 x̂

�,q
e,k|k − Dq

e,k,2u
q
k . (7.9)
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Then, mode q is not the true mode, i.e., can be eliminated at time k, if

‖rqk ‖2 > δ
q,∗
r,k . (7.10)

Note that by [Khajenejad and Yong (2019), Lemmas 1 and 2], the sequence {δq,∗
r,k }∞k=0

is uniformly bounded and admits a finite valued upper sequence. Although comput-
ing the tightest possible residual norm’s upper sequence potentially can eliminate
the most possible number of modes, it requires to the solution a norm maximiza-
tion problem over the intersection of level sets of lower dimensional norm functions
that is NP-hard [Bodlaender et al. (1990)]. Thus, by applying [Khajenejad and Yong
(2019), Theorem 3], we instead compute a tractable over-approximation of the resid-
ual norm’s upper bound sequence, denoted by {δ̂qr,k}∞k=0, i.e.,∀k ∈ {0, . . . ,∞}, δq,∗

r,k ≤
δ̂
q
r,k , and use this upper bound sequence as a tractable mode elimination criterion as
follows (cf. [Khajenejad and Yong (2019), Theorem 3] for more details):

Proposition 7.2 Mode q is not the true mode, i.e., can be eliminated at time k, if

‖rqk ‖2 > δ̂
q
r,k � min{δq,in f

r,k , δ
q,tr i
r,k }, (7.11)

where δ
q,in f
r,k and δ

q,tr i
r,k are two tractable computed upper bounds for the residual

norm and are given in Appendix7.1.2.

(c) Combined Uncertainty. In the presence of truncated Gaussian noise signals,
i.e., if Assumption 7.3 holds, both mode probability computation procedure
(described in (7.3.1.2)) and mode elimination approach (described in (7.3.1.2))
are applicable and can be combined. Specifically, we first apply the mode elim-
ination algorithm from Khajenejad and Yong (2019) to obtain a set of compati-
ble modes, and then compute mode probabilities for only the “non-eliminated"
modes using (7.7).

7.3.1.3 Global Fusion Estimator

Finally, the global fusion estimator combines the estimates from the bank of mode-
matched state and input estimators and mode observer, under the three different
system uncertainty models, as follows:

(a) Aleatoric Uncertainty. Based on the posterior mode probabilities in (7.7), the
most likely mode at each time k, q̂k , and the associated state and input estimates
and covariances, x̂a,k|k , d̂a,k , Px

k|k and Pd
k , can be determined:

q̂k = j∗ = argmax j∈{1,...,N} μ
j
k ,

x̂a,k|k = x̂ j∗
a,k|k, d̂a,k = d̂ j∗

a,k,

Px
k|k = Px, j∗

k|k , Pd
k = Pd, j∗

k .

(7.12)
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(b) Epistemic Uncertainty. Using the computed residuals (7.9) and their upper
bound sequences (7.11), our proposed global fusion observer finds all modes
that are not eliminated and computes the input and state set-valued estimates,
D̂k−1 and X̂k , by taking the union of the mode-matched state and unknown input
(attack) set estimates over the compatible modes:

Q̂k = {q ∈ Q | ‖rq‖2 ≤ δ̂
q
r,k},

D̂k−1 = ∪q∈Q̂ k
Dq

k−1,

X̂k = ∪q∈Q̂ k
Xq
k .

(7.13)

(c) Combined Uncertainty. In this case, after eliminating all modes that satisfy
(7.11), the most likely mode and its associated state and input estimates and
covariances at each time can be determined using only the set of non-eliminated
modes (instead of all modes as in the case of aleatoric uncertainty), i.e.,

ˆ̂qk = j∗∗ = argmax j∈Q̂ μ
j
k ,

x̂c,k|k = x̂ j∗∗
c,k|k, d̂c,k = d̂ j∗∗

c,k ,

Px
c,k|k = Px, j∗∗

k|k , Pd
c,k = Pd, j∗∗

k .

(7.14)

The multiple-model approach is summarized in Algorithms 7.1–7.4 for the aleatoric/
stochastic and epistemic/set-valued uncertainties, respectively.

7.3.2 Properties of the Resilient State Estimator

Our previous results in Yong et al. (2021); Khajenejad andYong (2019); Yong (2018)
show that the resilient state estimator has nice properties, which can be summarized
as follows.

7.3.2.1 Optimality

Given the attacked switched linear systemwith hiddenmodes in (7.1), if Assumption
7.1 holds (aleatoric uncertainty), the resilient state estimator (i.e., Algorithms 7.1 and
7.2) is asymptotically optimal, i.e., the state and input estimates in (7.12) converge
on average to optimal state and input estimates in the minimum variance unbiased
sense [Yong et al. (2021), Corollary 13]. On the other hand, if Assumption 7.2 holds
(epistemic uncertainty), the resulting set-valued estimates in (7.13) are uniformly
bounded [Yong (2018), Lemma 1] and the resilient state and input observer is stable
and optimal in the H∞-norm sense [Yong (2018) [Theorem 2]]. Further, in the
presence of truncated Gaussian noise signals, i.e., if Assumption 7.3 is satisfied, it
can be shown that the set-valued estimates are uniformly bounded, but the resilient



7 Resilient State Estimation and Attack Mitigation … 163

state estimates obtained from Algorithms 7.3 and 7.4, may not be asymptotically
optimal.

7.3.2.2 Mode Detectability

Given the attacked switched linear system with hidden modes in (7.1), in the pres-
ence of aleatoric/stochastic uncertainty, i.e., if Assumption 7.1 holds, the resilient
state estimator is mean consistent, i.e., the geometric mean of the mode probability
for the true model q∗ ∈ Q asymptotically converges to one for all initial mode prob-

Algorithm 7.1 Opt- Filter finds the optimal state and input estimates for mode q
in the presence of stochastic (aleatoric) uncertainty

Input: q, x̂qk−1|k−1, d̂
q
1,k−1, P

x,q
k−1|k−1, P

xd,q
1,k−1, P

d,q
1,k−1

[superscript “q" and subscript “a" (referring to aleatoric uncertainty) omitted in the following]
� Estimation of d2,k−1 and dk−1

Âk−1 = Ak−1 − G1,k−1M1,k−1C1,k−1;
Q̂k−1 = G1,k−1M1,k−1R1,k−1M�

1,k−1G
�
1,k−1 + Qk−1;

P̃k = Âk−1Px
k−1|k−1 Â

�
k−1 + Q̂k−1;

R̃2,k = C2,k P̃kC�
2,k + R2,k ;

Pd
2,k−1 = (G�

2,k−1C
�
2,k R̃

−1
2,kC2,kG2,k−1)

−1;

M2,k = Pd
2,k−1G

�
2,k−1C

�
2,k R̃

−1
2,k ;

x̂k|k−1 = Ak−1 x̂k−1|k−1 + Bk−1uk−1 + G1,k−1d̂1,k−1;
d̂2,k−1 = M2,k(z2,k − C2,k x̂k|k−1 − D2,kuk);
d̂k−1 = V1,k−1d̂1,k−1 + V2,k−1d̂2,k−1;
Pd
12,k−1 = M1,k−1C1,k−1Px

k−1|k−1A
�
k−1C

�
2,kM

�
2,k − Pd

1,k−1G
�
1,k−1C

�
2,kM

�
2,k ;

Pd
k−1 = Vk−1

[
Pd
1,k−1 Pd

12,k−1
Pd�
12,k−1 Pd

2,k−1

]
V�
k−1;

� Time update
x̂�
k|k = x̂k|k−1 + G2,k−1d̂2,k−1;

P�x
k|k = G2,k−1M2,k R2,kM�

2,kG
�
2,k + (I − G2,k−1M2,kC2,k)P̃k(I − G2,k−1M2,kC2,k)

�;
R̃�
2,k = C2,k P�x

k|kC�
2,k + R2,k − C2,kG2,k−1M2,k R2,k − R2,kM�

2,kG
�
2,k−1C2,k ;

� Measurement update
P̆k = P�x

k|kC�
2,k − G2,k−1M2,k R2,k ;

L̃k = P̆k R̃
�†
2,k ;

x̂k|k = x̂�
k|k + L̃k(z2,k − C2,k x̂�

k|k − D2,kuk);

Px
k|k = L̃k R�

2,k L̃
�
k − L̃k P̆�

k − P̆k L̃�
k ;� Estimation of d1,k

R̃1,k = C1,k Px
k|kC�

1,k + R1,k ;

M1,k = 
−1
k ;

Pd
1,k = M1,k R̃1,kM1,k ;

d̂1,k = M1,k(z1,k − C1,k x̂k|k − D1,kuk);
return R̃�,q

2,k , x̂
�,q
k|k
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Algorithm 7.2 Resilient State Estimator (Static- MM- Estimator) finds
resilient state estimates corresponding tomost likelymode in the presence of stochas-
tic (aleatoric) uncertainty

Input: ∀ j ∈ {1, 2, . . . ,N}: x̂ j
0|0; μ

j
0;

[subscript “a" (referring to aleatoric uncertainty) omitted in the following]
d̂ j
1,0 = (


j
0 )−1(z j1,0 − C j

1,0 x̂
j
0|0 − D j

1,0u0);

Pd, j
1,0 = (


j
0 )−1(C j

1,0P
x, j
0|0 C

j�
1,0 + R j

1,0)(

j
0 )−1;

for k = 1 to N do
for j = 1 toN do

� Mode-Matched Filtering Run Opt- Filter( j ,x̂ j
k−1|k−1, d̂

j
1,k−1, P

x, j
k−1|k−1, P

d, j
1,k−1);

ν
j
k � z j2,k − C j

2,k x̂
�, j
k|k − D j

2,kuk ;

L ( j |z j2,k) = 1

(2π)
p
j
R̃

/2|R̃ j,�
2,k |1/2+

exp

(
− ν

j�
k R̃ j,�†

2,k ν
j
k

2

)
;

for j = 1 toN do
� Mode Probability Update (small ε > 0)
μ

j
k = max{L ( j |z j2,k)μ j

k−1, ε};
for j = 1 toN do

� Mode Probability Update (normalization)

μ
j
k = μ

j
k∑N

�=1 μ�
k

;

� Output
Compute (7.12);

return x̂k|k , Px
k|k

abilities [Yong et al. (2021), Theorem 8]. Furthermore, in the case of epistemic/set-
valued uncertainty, i.e., if Assumption 7.2 holds, the resilient state estimator ismode
detectable by [Khajenejad and Yong (2019), Theorem 4], i.e., there exists a natural
number K > 0, such that for all time steps k ≥ K , all false modes are eliminated,
if either the whole observation/measurement and state spaces are bounded or the
unknown input/attack signal has an unlimited energy, as well as some additional
mild conditions hold (cf. [Khajenejad and Yong (2019), Assumptions 1&2, Lemmas
3–5 and Theorem 4] for more details). Similarly, if Assumption 7.3 holds, all false
modes (except for the true mode) will be eliminated after some large enough finite
time under the same assumption of bounded state spaces or unlimited energy, and
the unique true mode will have probability one.

7.3.3 Fundamental Limitations of Attack-Resilient
Estimation

Next, to address Problem 1.2, we characterize fundamental limitations of the attack-
resilient estimation problem and of our multiple mode filtering/estimation approach.
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Algorithm 7.3 Opt- Observer finds the H∞-optimal set-valued state and input
estimates for mode q in the presence of distribution-free (epistemic) uncertainty

Input: q, x̂qk−1|k−1, d̂
q
k−1

[superscript “q" and subscript “e" (referring to the epistemic (set-valued) uncertainty) omitted in
the following]
� Estimation of d2,k−1 and dk−1

M1,k = 
−1
k ,

M2,k = (C2,kG2,k)
†,

Âk−1 = Ak−1 − G1,k−1M1,k−1C1,k−1;
Φk = I − G2,kM2,kC2,k ;
Ak = Φk Âk ;
Ve,k = V1,kM1,kC1,k + V2,kM2,kC2,k Âk ;
Ae,k = (I − L̃kC2,k)Ak ;
Be,w,k = (I − L̃kC2,k)Φk ;
Be,v1,k = −(I − L̃kC2,k)ΦkG1,kM1,kT1,k ;
Be,v2,k = −((I − L̃kC2,k)G2,kM2,k + L̃k)T2,k ;
x̂k|k−1 = Ak−1 x̂k−1|k−1 + Bk−1uk−1 + G1,k−1d̂1,k−1;
d̂2,k−1 = M2,k(z2,k − C2,k x̂k|k−1 − D2,kuk);
d̂k−1 = V1,k−1d̂1,k−1 + V2,k−1d̂2,k−1;
δdk−1 = δx0‖Ve,k Ak−1

e,k ‖ + ηw(
∑k−2

i=0 ‖Ve,k Ak−2−i
e,k Be,w,k‖ + ‖V2,kM2,kC2,k‖) +

ηv(‖V2,kM2,kT2,k‖ + ‖Ve,k Ak−2
e,k Be,v1,k‖ + ‖Ve,k Be,v2,k + (V1,k − V2,kM2,kC2,kG1,k)M1,kT1,k‖ +

∑k−2
i=1 ‖Ve,k Ak−2−i

e,k (Be,v1,k + Ae,k Be,v2,k)‖);
D̂k−1 = {d ∈ R

l : ‖d − d̂k−1‖ ≤ δdk−1};� Time update
x̂�
k|k = x̂k|k−1 + G2,k−1d̂2,k−1;

� Measurement update
x̂k|k = x̂�

k|k + L̃k(z2,k − C2,k x̂�
k|k − D2,kuk);

δxk = δx0‖Ak
e,k‖ + ηw

∑k−1
i=0 ‖Ai

e,i Be,w,i‖ + ηv(‖Be,v2,k‖ + ‖Ak−1
e,k Be,v1,k‖ +

∑k−2
i=0 ‖Ai

e,i (Be,v1,i + Ae,k Be,v2,i )‖);
X̂k = {x ∈ R

n : ‖x − x̂k|k‖ ≤ δxk };
� Estimation of d1,k
d̂1,k = M1,k(z1,k − C1,k x̂k|k − D1,kuk);
return X̂q

k , D̂
q
k−1

Note that these fundamental limitations apply to all hidden-mode switched linear
systems with unknown inputs (attacks) (7.1), regardless of the assumptions about
the system uncertainties. First, under the assumption that there is only false data
injection attacks (no switching attacks), we find an upper bound on the number of
correctable signal attacks/errors (i.e., signal attacks whose effects can be negated or
cancelled). Then, we characterize the maximum number of models that is required
by our multiple-model approach to obtain resilient estimates despite attacks.
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Algorithm 7.4 Resilient Mode, State and Input Estimator simultaneously
finds compatible sets of modes, unknown inputs (attacks) and states in the presence
of distribution-free (epistemic) uncertainties

Input: Q � {1, 2, . . . ,N}, ∀ j ∈ {1, 2, . . . ,N}: x̂ j
0|0;

[subscript “e" (referring to the epistemic (set-valued) uncertainty) omitted in the following]
Q̂0 = Q;
for k = 1 to N do

for q ∈ Q̂k−1 do�Mode-Matched State and Input Set-Valued Estimates
Run Opt- Observer(q,x̂qk−1|k−1, d̂

q
k−1);

zq2,k = T q
2 yk ;

�Mode Observer via Elimination
Q̂k = Q̂k−1;
Compute rq via (7.8)
and δ̂

q
r,k via Proposition 7.2;

if ‖rq‖2 > δ̂
q
r,k then

Q̂k = Q̂k\{q};
�State and Input Estimates
X̂k = ∪q∈ ˆQ k

X̂q
k ;

D̂k−1 = ∪q∈ ˆQ k
D̂q
k−1;

return Q̂k , D̂k−1, X̂k

7.3.3.1 Number of Asymptotically Correctable Signal Attacks

We begin by defining the notion of correctable signal attacks in the setting with only
data injection attacks, which is itself an interesting CPS security research problem.

Definition 7.1 (Correctable Signal Attacks)We say that p actuators and sensors sig-
nal attacks are correctable, if for any initial state x0 ∈ R

n and signal attack sequence
{d j } j∈N in R

p, we have an estimator/observer such that the estimate bias asymptot-
ically/exponentially tends to zero (under aleatoric uncerainty, cf. Assumption 7.1),
i.e., E[x̂a,k|k − xk] → 0 (and E[d̂a,k−1 − dk−1] → 0) as k → ∞ or if the set estima-
tion errors are ultimately uniformly bounded sequences (under epistemic uncertainty,
cf. Assumption 7.2).

To derive an estimation-theoretic upper bound on the maximum number of signal
attacks that can be asymptotically corrected, we assume that the true model or mode
(q = q∗) is known. Thus, depending on the type of uncertainty, the resilient state
estimation problem is identical to the state and input estimation problem in Yong
et al. (2016b) or Yong (2018), where the unknown inputs represent the attacks on
the actuator and sensor signals. It has been shown in Yong et al. (2016b) and Yong
(2018) that the system property of strong detectability is a necessary condition for
obtaining uniformly bounded estimates (cf. Yong et al. (2016b); Yong (2018) for
more details, e.g., regarding filter/observer stability and existence). Thus, we will
use this necessary system property to find an upper bound on the maximum number
of signal attacks that can be corrected, similar to Yong et al. (2018), as follows:
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Theorem 7.1 (Maximum Correctable Data Injection Attacks) The maximum num-
ber of correctable actuators and sensors signal attacks, p∗, for system (7.1) is equal
to the number of sensors, l, i.e., p∗ ≤ l and the upper bound is achievable.

Proof A necessary and sufficient condition for strong detectability (with the true
model q = q∗) is given in Yong et al. (2016b); Yong (2018) as

rk

[
z I − A∗ −G∗

C∗ H∗

]
= n + p∗, ∀z ∈ C, |z| ≥ 1. (7.15)

Since the above system matrix has only n + l rows, it follows that its rank is at
most n + l. Thus, from the necessary condition for (7.15), we obtain n + p∗ ≤ n +
l ⇒ p∗ ≤ l. The upper bound is achievable using the example of the discrete-time
equivalent model (with time stepΔt = 0.1s) of the smart grid case study in Liu et al.
(2013), as shown in Yong et al. (2018) [Theorem 4.3]. �

The above result means that for each mode, the total number of vulnerable actu-
ators and sensors must not exceed the number of measurements, which can serve as
a guide for preventative attack mitigation, where the actuators or sensors that need
to be safeguarded to guarantee resilient estimation can be determined. Note that the
result in Theorem 7.1 is stronger than the standard and well-known result in the
literature (e.g., in Fawzi et al. 2014, Proposition 3), where the maximum number
of correctable attacks is at most equal to half of the number of sensors, presumably
since we only require strong detectability instead of strong observability.

7.3.3.2 Number of Required Models for Estimation Resilience

Next, returning to the more general case with false date injection as well as switching
attacks, i.e., the hidden-mode switched linear system in (7.1), we characterize the
maximum number of models N∗ that are needed with the multiple-model approach
in Sect. 7.3.1, which is independent of the size of the system, e.g., the number of
buses in a power system, as well as the type/model of system uncertainty:

Theorem 7.2 (MaximumNumber ofModels/Modes) Suppose there are ta actuators
and ts sensors, and at most p ≤ l of these signals are attacked. Suppose also that
there are tm possible attack modes (mode attack). Then, the combinatorial number
of all possible models, and hence the maximum number of models that need to be
considered with the multiple-model approach, is

N∗ = tm

(
ta + ts

p

)
= tm

(
ta + ts

ta + ts − p

)
.

Proof It is sufficient to consider onlymodels corresponding to themaximumnumber
of attacks p. All models with strictly less than p attacks are contained in this set of
models with the attack vectors having some identically zero elements for which our
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estimation algorithm is still applicable. Thus, we only need to consider combinations
of p attacks among ta + ts sensors and actuators for each of the tm attack modes of
operation/topologies. Note that this number is the maximum because resilience may
be achievable with less models: For instance, when tm = 1, ta = 0 and ts = 2 = l,

p = 1, A =
[
0.1 1
0 0.2

]
and C = I2, we haveN∗ = 2, but it can be verified that with

G = 02×2 and H = I2 (only one model, i.e., 1 = N < N∗), the system is strongly
detectable. �

Note that the number of required models may change if additional knowledge
about the data injection attack strategies is available. For instance, if we know that
there are atmostna ≤ ta andns ≤ ts attacks on the actuators and sensors, respectively,
with a total of p attacks (where p ≤ l and p ≤ na + ns), then the maximum number
of models that are required,

N∗ = tm

min{na ,p}∑

i=0

(
ta
i

)(
ts

min{p − i, ns}
)

is less than the number required in combinatorial case in Theorem 7.2.
On the other hand, the number of models may actually increase with less vul-

nerable actuators or sensors, as shown in the following example with tm = 1 (one

mode of operation), na = 0 (no attacks on actuators), A =
[
0.1 1
0 1.2

]
and C = I .

If only one of the two sensors is vulnerable (ns = p = 1 < l = 2), we have two

models with G =
[
0
0

]
, H1 =

[
1
0

]
and H2 =

[
0
1

]
, but if both sensors are vulnerable

(ns = p = 2), only one model is required with G = 0 and H = I . Note that the
latter case is not strongly detectable with zeros at {0.1, 1.2}, thus this system violates
the necessary condition in Yong et al. (2016b); Yong (2018) for obtaining resilient
estimates. However, both systems in the former case can be verified to be strongly
detectable, thus, resilient estimates can be obtained in this case with less vulnerable
sensors, as one may expect.

7.4 Attack Detection and Identification

Next, we address Problem 1.3 by investigating how the properties of the resilient
state estimation algorithm in Sect. 7.3.2 affect attack detection and identification.

To begin, it is worth recalling that the resilient state estimation algorithms in the
previous section are indifferent about whether the switching and false data injection
attacks on the system are strategic. Nonetheless, it is critical to understand how
our algorithms can detect or identify strategic attacks. In particular, we consider
strategic attackers who aim to deceive the system operator/defender into believing
that the mode of operation is q ∈ Q, q �= q∗, by means of selecting data injection
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signals dk and the true mode q∗ ∈ Q. We call an attack unidentifiable, if the system
operathor is not able to reconstruct/identify it. Moreover, the attack is undetectable,
if it is unidentifiable and is unnoticeable. Below, we formally define the concepts of
attack detection and attack identification, which are extensions of their counterparts
in Yong et al. (2018) [Definitions 5.1 & 5.2].

Definition 7.2 (Switching and Data Injection Attack Detection) A switching and
data injection attack is detected if the true mode q∗ ∈ Q (chosen by attacker) has the
maximum mean probability when using the resilient state estimation algorithm in
Algorithm 7.2 or is not distinguishable from another mode q ∈ Q, q �= q∗ (chosen
by defender) on average, in the presence of the stochastic/aleatoric uncertainty (i.e.,
if Assumption 7.1 holds), or if it is not eliminated by applying Algorithm 7.4 in the
presence of the set-valued/epistemic uncertainty (i.e., if Assumption 7.2 holds).

Definition 7.3 (Switching andData InjectionAttack Identification)A switching and
data injection attack strategy is identified if the attack is detected and in addition,
the true mode q∗ ∈ Q is uniquely determined on average (under aleatoric/stochastic
uncertainty) or all false modes are eliminated (under epistemic/set-valued uncer-
tainty), which reveals that themode attack and signal attack location, and asymptot-
ically unbiased estimates and/or uniformly bounded set-valued estimates of attack
signals dk can be obtained, i.e., the signal magnitude attack is reliably estimated.

It is obvious from the definitions above that if an attack is undetectable, it is
also unidentifiable. Equivalently, if an attack is identifiable, then it is detectable. It
is worth noting however that attack detection or identification is not required for
calculating resilient state estimates. For example, in the simple case where there are
no attacks, i.e., dk = 0 for all k, the performance of state estimates of all models will
be equally good, meaning that the attacks need not be detected or identified in order
to obtain resilient state estimates.

7.4.1 Attack Detection

Our resilient state estimation approach (i.e., Algorithms 7.2 and 7.4) guarantees that
an attack will always be detected by Definition 7.2 for all three uncertainty models.
This is formally stated through the following theorem, which is a generalization of
[Yong et al. (2018), Theorem 5.3].

Theorem 7.3 (Attack Detection) The resilient state estimation algorithms in Algo-
rithms 7.2 (with ratios of prior being identically 1) and 4 guarantee that switching
and data injection attacks are always detectable, for all three uncertainty models.

Proof First, note that if Assumption 7.2 holds, i.e., in the presence of distribution-
free and norm-bounded noise signals, by (7.9), (7.10) and Proposition 7.1, ‖rq∗

k ‖2 ≤
δ
q,∗
r,k ≤ δ̂

q∗
r,k , i.e., (7.11) never holds for q = q∗ and hence, q∗ is never eliminated. On
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the other hand, ifAssumption 7.1 holds, i.e., in the presence ofGaussian noise signals,
since the Kullback Leibler divergence D( f ∗

� ‖ f q� ) is greater than or equal to zero with
equality if and only if f ∗

� = f q� ( [Kullback and Leibler (1951), Lemma 3.1]), with
j = q∗ ∈ Q as the true model and i ∈ Q, i �= q∗, the summand in the exponent of
the ratio of geometric means whose expression is given in Yong et al. (2021)[Lemma
14] is always non-negative, i.e., D( f ∗

� ‖ f i� ) − D( f ∗
� ‖ f ∗

� ) = D( f ∗
� ‖ f i� ) ≥ 0. In other

words, the ratio of the true model mean probability to the model mean probabilities
of any other mode (i ∈ Q, i �= q∗) cannot decrease and can at best remain the same
as the ratio of their priors being one by assumption. Thus, either the true model is
identified or both modes are indistinguishable and a flag can be raised for attack
detection. �

7.4.2 Attack Identification

A combination of switching and false data injection attacks may not be identifi-
able, even if it is detectable. On the other hand, it directly follows from Definition
7.3 that the mode detectability/mean consistency is sufficient to identify an attack
strategy/action. This is formalized via the following theorem.

Theorem 7.4 (Attack Identification) Suppose mode detectability and/or mean con-
sistency, i.e., Yong et al. (2021), Theorem 8 and/or Khajenejad and Yong (2019),
Theorem 4 hold (and hence Yong et al. 2021, Corollary 13 also holds). Then, the
switching and data injection attack strategy can be identified using the resilient state
estimation algorithms in Algorithms 7.1–7.4.

7.4.2.1 Sufficient or Necessary Condition for Unidentifiable Attacks

Under the stochastic uncertainty model (cf. Assumption 7.1), if the true mode is
in the set of models and even if the estimator is not mean consistent, a sufficient
condition for an attack signal to be unidentifiable was derived in our previous work
(Yong et al. (2018)), which we recap here for the sake of completeness (for more
details, see [Yong et al. (2018), Sect. 5.2]).

Theorem 7.5 (Unidentifiable Attack) [Yong et al. (2018), Theorem 5.5] If Assump-
tion 7.1 or 7.3 hold, Γ̃

q
k T

q
a,2,k H

∗
k has linearly independent rows and there exists

q �= q∗ ∈ Q such that

D s
k � (Γ̃

q
k T

q
a,2,k H

∗
k )†(S∗

k − Γ̃
q
k T

q
a,2,k(E[μq|∗

k μ
q|∗�
k ] + Rk)(Γ̃

q
k T

q
a,2,k)

�))(Γ̃
q
k T

q
a,2,k H

∗
k )†�

(7.16)

is positive definite (
 0) for all k. Moreover, we assume that μ∗
0 = μ

q
0 . Then, the

attack is unidentifiable if the attacker chooses this mode q∗ �= q as well as the attack
signal dk as a Gaussian sequence
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dk ∼ N (dd
k ,D s

k ), ∀k (7.17)

with D s
k defined in (7.16) and dd

k is given by

ddk � E[dk ] = −(Γ̃
q
k T

q
a,2,k H

∗
k )†Γ̃

q
k T

q
a,2,k(C

q∗
k E[xk ] − Cq

k x̂
�,q
a,k|k + (Dq∗

k − Dq
k )E[uk ])

= −(Γ̃
q
k T

q
a,2,k H

∗
k )†Γ̃

q
k T

q
a,2,k(C

q∗
k x̂q

∗
a,k|k − Cq

k x̂
�,q
a,k|k + (Dq∗

k − Dq
k )E[uk ]), ∀k.

(7.18)

The above theorem highlights that an unidentifiable attack strategy oftenmust rely
on the existence of system “vulnerabilities” as well as the computational capability
and system knowledge that are comparable to that of the system operator/defender.
For the former factor, a system designer can consider these conditions as preventative
mitigation guides for securing the system.

On the other hand, if Assumption 7.2 or 7.3 hold (i.e., epistemic/set-valued uncer-
tainty is present), we provide a necessary condition for the attack signals to be uniden-
tifiable, i.e., a condition that the attacker must ensure in order to guarantee that the
attack signals are not identifiable.

Theorem 7.6 (ANecessaryCondition forUnidentifiableAttacks) SupposeAssump-
tion 7.2 or 7.3 holds and T q

e,2,k �= T q ′
a,2,k,∀k ≥ 0,∀q, q ′ ∈ Q, q �= q ′. Then, a neces-

sary condition for the attack signal to be unidentifiable is that it has limited energy

when q = q∗, i.e., lim
k→∞ ‖dq∗

0:k‖2 < ∞, where dq∗
0:k �

[
dq∗�
k dq∗�

k−1 . . . dq∗�
0

]�
.

Proof Using contraposition, suppose the attack signal has unlimited energy. Then,
by [Khajenejad and Yong (2019), Theorem 4], all false modes will be eliminated
after some large enough time step K and hence, the system is mode detectable (cf.
Sect. 7.3.2.2). Thus, by Theorem 7.4, the attack strategy can be identified using the
resilient state estimation algorithm and consequently, the attack signal cannot be
unidentifiable. �

This result has the important implication that attack signals must have limited
energy to remain unidentifiable, and in this case, the harm that an attacker can inflict
on a Cyber-Physical Systems (CPS) may also be limited. Note that the attack impact
could still be catastrophic in this case, which incentives us to design attackmitigation
approach in Sect. 7.5.

7.4.2.2 A Sufficient Condition for Resilient State Estimation

Finally, under the assumption of stochastic/aleatoric uncertainty (cf. Assumption
7.1), a sufficient condition can be found in Yong et al. (2018) to ensure that the state
estimates are unbiased, even when the true mode is not uniquely determined and the
attack signal cannot be estimated/identified, which is restated below.
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Theorem 7.7 (Resilience Guarantee) [Yong et al. (2018), Theorem 5.7] Suppose
Hq

k = Hk and Dq
k = Dk for all q ∈ Q. Moreover, for all q, q ′ ∈ Q, if there exists T

such that for all k ≥ T and the following hold

(i) rank
[
Γ̃

q
k T

q
a,2,kC

q ′
k Γ̃

q
k T

q
a,2,kC

q
k

]
= 2n, if Cq

k �= Cq ′
k ,

(ii) rank(Γ̃ q
k T

q
a,2,kC

q ′
k ) = rank(Γ̃ q

k T
q
a,2,kC

q
k ) = n, if Cq

k = Cq ′
k ,

then the state estimates obtained using Algorithm 7.2 are guaranteed to be resilient
(i.e., asymptotically unbiased).

7.5 Attack Mitigation

We now move on to the challenge of minimizing the impact of attacks, i.e., attack
mitigation (Problem 1.4), which is a step beyond attack detection and identification.
In particular, we investigate the problem of rejecting/canceling data injection attacks
assuming that the attack mode can be detected (thus, the superscript q is omitted
throughout this section), while using the resilient state estimates for H∞ controller
synthesis, in the sense of guaranteeing the boundedness of the expected/worst case
states and minimizing the effect of the attack signals. To this end, we consider a
linear dynamic controller with attack/disturbance rejection terms in the following
form, where x̂k|k, d̂1,k, d̂2,k−1 are obtained from Algorithms 7.1 or 7.3:

xck+1 = Ac
kx

c
k + Bc

k ỹk,
uk = Cc

k x
c
k + Dc

k ỹk,
(7.19)

with Kc
k �

[
Ac
k Bc

k
Cc
k Dc

k

]
being the dynamic controller gain that will be designed, ỹk �

[
x̂�
k|k d̂

�
1,k d̂

�
2,k−1

]�
, Bc

k �
[
Bc
x,k Bc

d1,k
Bc
d2,k

]
and Dc

k �
[
Dc

x,k Dc
d1,k

Dc
d2,k

]
. Note that

we have used a delayed estimate of d2,k−1 given in (7.2), which is the only estimate
we can obtain in light of [Yong et al. (2016b), Eq. (6)]. Before designing Kc

k for
the purpose of attack mitigation and stabilization, we first show that there exists a
separation principle for linear discrete-time systems with unknown inputs (attacks),
i.e., when the true mode is known, which allows us to design the controller gain Kc

k

independently of the observer gain L̃k .

Lemma 7.1 (Separation Principle) The state feedback controller gain K c
k in (7.19)

can be designed independently of the state and input estimator gains L̃k , M1,k and
M2,k in Algorithms 7.1 and 7.3.

Proof Using the dynamic controller (7.19) and the filter/observer equations in (7.2),
(7.3) and (7.4), it can be verified that the system and controller states and the estimator
error dynamics are given by
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⎡

⎣
xck+1
xk+1

x̃k+1|k+1

⎤

⎦ =
⎡

⎣
Ac
k Bc

x,k −Bc
x,k

BkCc
k Ak + BkDc

k,x −BDc
k,x

0 0 (I − L̃k+1C2,k)Ak

⎤

⎦

⎡

⎣
xck
xk
x̃k|k

⎤

⎦

+
⎡

⎣
Bc
d1,k

Bc
d2,k

G1,k + BkDc
d1,k

G2,k + BkDc
d2,k

0 0

⎤

⎦
[
d1,k
d2,k

]
+

⎡

⎣
−Bc

d1,k
−Bc

d1,k−BkDc
d1,k

−Bk Dc
d2,k

0 0

⎤

⎦
[

d1,k − d̂1,k
d2,k − d̂2,k−1

]

(7.20)

+

⎡

⎢
⎢⎢
⎢
⎣

0 0 0
I 0 0

(I − L̃k+1C2,k+1)

(I − G2,kM2,k+1

C2,k+1)

−(I − L̃k+1C2,k+1)

(I − G2,kM2,k+1C2,k+1)

G1,kM1,k

−(I − L̃k+1C2,k+1)

G2,kM2,k+1 − L̃k+1

⎤

⎥
⎥⎥
⎥
⎦
wk ,

where wk �
[
w�

k v�
1,k v�

2,k+1

]�
and Ak � (I − G2,k−1M2,kC2,k)(Ak − G1,kM1,k

C1,k). Since the state matrix has a block upper triangular structure, the eigenval-
ues of the controller and estimator are independent of each other, thus Kc

k and L̃k

can be designed separately. �

Armedwith the above lemma,wepresent anH∞ controller design for determining
the controller gain matrix Kc

k that stabilizes the closed-loop system and mitigates the
effects of attack signals.

Theorem 7.8 (Attack-Mitigating and Stabilizing H∞Controller) Suppose the sys-
tem (7.1) is controllable in the true mode q ∈ Q (known or detected). Then, the
dynamic controller in (7.19) mitigates the effects of data injection attacks and mini-
mizes theH∞-gain from the augmented noise signal w̃k to the state as the desired out-

put, i.e., z̃k = xk, using feedback based on estimates ỹk �
[
x̂�
k d̂�

1,k d̂
�
2,k−1

]�
, where

the gain matrix K c
k is the H∞-controller gain matrix that can be synthesized (e.g.,

using hinfsyn in MATLAB) for the following augmented system:

ξk+1 = Ãkξk + B̃1,kw̃k + B̃2,kuk,
z̃k = C̃1,kξk + D̃11,kw̃k + D̃12,kuk,
ỹk = C̃2,kξk + D̃21,kw̃k + D̃22,kuk,

(7.21)

where Ãk �

⎡

⎣
Ak G1,k G2,k

0 0 0
0 0 0

⎤

⎦, B̃1,k �

⎡

⎣
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0

⎤

⎦, B̃2,k �

⎡

⎣
Bk

0
0

⎤

⎦, C̃1,k �
[
I 0 0

]
,

C̃2,k �

⎡

⎣
I 0 0
0 I 0
0 0 I

⎤

⎦, D̃11,k �
[
0 0 0 0 0 0 0

]
, D̃12,k � 0, D̃21,k �

⎡

⎣
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

⎤

⎦ and

D̃22,k �
[
0 0 0

]�
.

Proof By Lemma 7.1, the state feedback gain, Kc
k , can be independently designed

with no effect on the stability of the resilient state estimator/observer. In other words,
Kc

k can be chosen optimally, in the sense of anH∞-controller such that the augmented



174 M. Khajenejad and S. Z. Yong

closed-loop system is stable, and that the effects of the augmented noise w̃k on the
desired controlled output z̃k � xk are minimized. To achieve this, we consider the
following augmented system:

xk+1 = Akxk + Bkuk + G1,kd1,k + G2,kd2,k + wk,

d1,k+1 = w̃1,k,

d2,k+1 = w̃2,k,

(7.22)

with the augmented state ξk �
[
x�
k d�

1,k d
�
2,k

]�
, where the goal is to use the dynamic

controller (7.19) with estimates/“observations" ỹk �
[
x̂�
k d̂�

1,k d̂
�
2,k−1

]�
to stabilize

the desired output/state z̃k � xk , while minimizing the effect of the augmented noise

signal w̃k �
[
w�

k w̃�
1,k w̃�

2,k x̃k|k d̃�
1,k d̃

�
2,k

]�
. Then, by plugging the control input uk

from (7.19) into (7.22), we obtain (7.21), where anH∞-controller can be synthesized
to achieve theminimumH∞ performance. It is worth re-emphasizing that the control
synthesis process is completely independent of the observer gains L̃k, M1,k, M2,k . �

Remark 7.1 The dynamic feedback gain Kc
k can be synthesized using the command

[Kc
k ,CLk, γk] = hinfsyn(P, size(D22,k, 1), size(D22,k, 2))

in MATLAB, where P �

⎡

⎣
Ãk B̃1,k B̃2,k

C̃1,k D̃11,k D̃12,k

C̃2,k D̃21,k D̃22,k

⎤

⎦.

7.6 Simulation Examples

7.6.1 Benchmark System (Signal Magnitude Location
Attacks)

The resilient state estimation problem for a system (modified fromYong et al. (2016b)
and has been used as a benchmark for several state and input filters/observers) is
considered in this example, where there exists only one mode of operation (tm = 1)
as well as possible attacks on the actuator and four of the five sensors (ta = 1, ts = 4):
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A=

⎡

⎢⎢⎢⎢
⎣

0.5 2 0 0 0
0 0.2 1 0 1
0 0 0.3 0 1
0 0 0 0.7 1
0 0 0 0 0.1

⎤

⎥⎥⎥⎥
⎦
; B=G=

⎡

⎢⎢⎢⎢
⎣

1
0.1
0.1
1
0

⎤

⎥⎥⎥⎥
⎦
; C =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 1 −0.1 0 0
0 0 1 −0.5 0.2
0 0 0 1 0
0 0.25 0 0 1

⎤

⎥⎥⎥⎥
⎦
;

H =

⎡

⎢⎢
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥⎥
⎥⎥
⎦
; Q=10−4

⎡

⎢⎢
⎢⎢
⎣

1 0 0 0 0
0 1 0.5 0 0
0 0.5 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥
⎥⎥
⎦
; R=10−4

⎡

⎢⎢
⎢⎢
⎣

1 0 0 0.5 0
0 1 0 0 0.3
0 0 1 0 0
0.5 0 0 1 0
0 0.3 0 0 1

⎤

⎥⎥
⎥⎥
⎦
.

We consider the known input uk =

⎧
⎪⎨

⎪⎩

2, 100 ≤ k ≤ 300

−2, 500 ≤ k ≤ 700

0, otherwise

, whereas the

unknown inputs (attacks) are as depicted in Fig. 7.4. Moreover, we assume that there
are at most p = 4 attacks with no constraints on na and ns , and consequently, there
are N = 1 · (5

4

) = 5 models. The signal attack locations alternate between q = 3
(attack on actuator and sensors 1, 3, 4) and q = 2 (attack on actuator and sensors 1,
2, 4) every 350s, i.e., the dwell time is 350s.

From the top plot in Fig. 7.3 that depicts the computed mode probabilities (under
aleatoric Gaussian uncertainties), we observe that except during the short transients
after t = 350s and t = 700s due to switching, the mode probabilities converge to
their true values (q∗ = 3 → q∗ = 2 → q∗ = 3). On the other hand, Fig. 7.3 (bottom)
depicts the values ofmode indicator index, q × iq for eachmode, over time, assuming
epistemic bounded-norm distribution-free uncertainties, with iq defined as

iq �
{
0, if q is eliminated,

1, otherwise,
∀q ∈ Q.

Hence, q × iq equals q if the mode q is not eliminated and is zero otherwise. As
expected, it can be observed from Fig. 7.3 (bottom) that except for q = 3 and q = 2,
the other modes are eliminated after some time steps.

Figure7.4 shows computed state and unknown attack point estimates for the case
of aleatoric (stochastic) uncertaintymodel, aswell set-valued sate and unknown input
(attack) estimates, when epistemic (distribution-free and norm-bounded) uncertainty
model is assumed. The point estimates are seen to be close to the true values, even
before the mode probabilities converge, and both the point estimates and the actual
values of the states and unknown inputs (attacks) are within the set estimates, which
are uniformly bounded and convergent set sequences, as expected. Similar results
(not shown for brevity) are obtained for all other attack modes, q = 1 (attack on
actuator and sensors 1, 2, 3), q = 4 (attack on actuator and sensors 2, 3, 4) and q = 5
(attack on sensors 1, 2, 3, 4). Thus, this example illustrates that when switching
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Fig. 7.3 Mode probabilities (top) assuming aleatoric/stochastic uncertainty model, as well as mode
indicators (bottom) assuming epistemic/set-valued uncertainty model for the system in Sect. 7.6.1
with alternating switchings between q = 3 and q = 2 every 350s

Fig. 7.4 State and attack magnitude estimates in Sect. 7.6.1 with switching between q = 3 and
q = 2 with the dwell time 350 s
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attacks and signal location attacks do not change quickly/frequently, i.e., the dwell
time is large enough, our proposed methods work well.

7.6.2 IEEE 68-Bus Test System (Mode and Signal Magnitude
Attacks)

The proposed algorithms are also applied to the IEEE 68-bus test system shown in
[Yong et al. (2018), Fig. 7] to demonstrate their scalability to large systems, as well
as to apply our attack mitigation approach.

An undirected graph (V ,E ) with the set of nodes (buses), V � {1, . . . , N } and
the set of edges (transmission/tie lines) E ⊆ V × V is often used to describe a
power network, where the busses may represent generator buses i ∈ G , or load buses
i ∈ L . Si � { j ∈ V \ {i}|(i, j) ∈ E } denotes the set of neighboring buses of i ∈
V . In particular, there are 16 generator buses and 52 load buses for the IEEE 68-
bus test system, i.e., |G | = 16, |L | = 52 and |V | = 68. Similar to [Wood et al.
(2013), Chap. 10], the dynamics of each bus, i ∈ V , can be described by the following
dynamical system:

θ̇i (t) = ωi (t),
ω̇i (t) = − 1

mi
[Diωi (t) + ∑

j∈S i
Pi j
tie(t) − (PMi (t) + da,i (t)) + PLi (t) + wi (t)],

(7.23)

with the system states being the phase angle θi (t) and angular frequency ωi (t)
(hence, the state space dimension is n = 136) and an actuator attack signal da,i (t).
The power flow between neighboring buses i, j , such that (i, j) ∈ E , is given by
Pi j
tie(t) = −P ji

tie(t) = ti j (θi (t) − θ j (t)), while PMi (t) and PLi (t) denote themechan-
ical power and power demand, respectively. The mechanical power PMi (t) is the
control input for the generator bus i ∈ G and is zero at load bus i ∈ L . On the other
hand, power demand PLi (t) is taken as a known input since it can be calculated using
load forecasting methods (e.g., Alfares and Nazeeruddin 2002). We assume that the
noise wi (t) is a zero-mean truncated Gaussian signal (satisfying Assumption 7.3)
with covariance matrix Qi (t) = 0.01, ηw = 0.03 and the system parameters being
adopted from Kundur et al. (1994) [p. 598]: Di = 1, ti j = 1.5 for all i ∈ V , j ∈ Si

and ti j = 0 otherwise. Angular momentums aremi = 10 for i ∈ G and a larger value
mi = 100 for load buses i ∈ L .

Themeasurements are sampled at discrete times (with sampling timeΔt = 0.01s),
satisfying the following output equation:

yi,k = [
Pelec,i,k θi,k ωi,k

]� + vi,k, (7.24)

where Pelec,i,k = Diωi,k + PLi ,k is the electrical power output and vi,k is a truncated
zero-mean Gaussian noise signal with covariance matrix Ri (t) = 0.014 I3 and ηv =
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0.03. The continuous system dynamics (7.23) is also discretizedwith a sampling time
ofΔt = 0.01s. Furthermore, in this example, we choose the control inputs PMi ,k and
PLi ,k through synthesizing anH∞-optimal dynamic controller in the form of (7.19),
as described in Theorem 7.8, to regulate the phase angles to θi = 10 rad and mitigate
the effect of the unknown attack signal.

As shown in Yong et al. (2018) [Fig. 7], the attacker could inject false data into the
actuators and attack the transmission lines. Eight potential attack modes (|Q| = 8)
are considered:

Mode q = 1: Lines {27,53},{53,54},{60,61} & actuator G1.
Mode q = 2: Lines {18,49},{18,50} & actuator G2.
Mode q = 3: Line {40,41} & actuator G3.
Mode q = 4: Lines {18,49},{18,50},{27,53},{53,54},{60,61} & actuator G4.
Mode q = 5: Lines {27,53},{40,41},{53,54},{60,61} & actuator G5.
Mode q = 6: Lines {18,49},{18,50},{40,41} & actuator G6.
Mode q = 7: Lines {18,49},{18,50},{27,53},{40,41},{53,54},{60,61} &

actuator G7.
Mode q = 8: Actuator G8.

We study a time-varying attack scenario where the attack mode is q = 2 for
t = [0, 2.5)s followed by q = 5 for t = [2.5, 5)s, while the actuator attack signal is
given in Fig. 7.6. Our goal is to demonstrate that attack signals can be detected, iden-
tified, and mitigated by our proposed approach. To synthesize the attack-mitigating
dynamic controller in the form of (7.19), we consider three cases, depending on the
three different assumptions on possible uncertainty models: (i) aleatoric/stochastic
uncertainty (cf. Assumption 7.1), where we use x̂a,k|k and d̂a,k−1 (i.e., the most likely
estimates among all mode-matched estimates) returned by Algorithm 7.2 in (7.19),
(ii) epistemic/bounded norm uncertainty (cf. Assumption 7.2), where we plug x̂e,k|k
and d̂e,k−1 (i.e., the centroids of the union of all the set-estimates that correspond
to non-eliminated modes) returned by Algorithm 7.4 in (7.19), and (iii) combined
uncertainty (cf. Assumption 7.3), wherewe use themost likely point (stochastic) esti-
mates among all the ones that correspond to the non-eliminated modes, as described
in Sect. 7.3.1.

Figure7.5 demonstrates that attacks are detected almost instantaneously, and the
attack modes are quickly identified. Further, Fig. 7.6 depicts the successful identifi-
cation of the actuator attack signal and estimation of all system states (not depicted
for brevity). Finally, the proposed attack mitigation is shown to be effective in reg-
ulating the phase angles at 10 rad/s despite attacks, while without attack mitigation,
attackers can drastically influence the phase angles as shown in Fig. 7.6.

7.7 Conclusion

Weaddressed the problem of resilient state estimation for switching (mode/topology)
attacks and attacks on actuator and sensor signals of Cyber-Physical Systems
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Fig. 7.5 Estimates ofmode probabilitieswhen the attackmode switches fromq = 2 toq = 5 at 2.5s
assuming stochastic uncertainties, as well as mode indicators assuming bounded norm uncertainties
in Sect. 7.6.2

Fig. 7.6 A comparison of system states with and without the proposed attack mitigation, as well
as the attack signal and its point-valued (stochastic) and set-valued (bounded-error) estimates
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(CPS). We modeled the problem as a hidden-mode switched linear system with
unknown inputs, where we considered three uncertainty models for the noise signals:
(a) aleatoric/stochastic, (b) epistemic/set-valued and distribution-free, (c) truncated
Gaussian uncertainties. We showed that the multiple-model inference algorithm in
Yong et al. (2021); Khajenejad and Yong (2019) is a good solution to these problems.
Furthermore, for the multiple-model approach, we presented an achievable upper
bound on the maximum number of correctable signal attacks, as well as the max-
imum number of required models. We also derived sufficient conditions for attack
(un-)detectability and identification and necessary conditions for the attack signal
to be unidentifiable. Moreover, we designed an attack-mitigating H∞-controller to
minimize the effects of the attack signals. The effectiveness of our methods for
resilient estimation, attack detection, and mitigation was demonstrated in simula-
tions, including using an IEEE 68-bus test system.

Appendix

System Transformation

To obtain the mode-matched input and state estimator (7.2)–(7.4), we will consider
a system transformation for the continuous system dynamics and output equation in
(7.1) for each mode q (Yong et al. 2016b). First, we rewrite the direct feedthrough

matrix Hk using singular value decomposition as Hk = [
U1,k U2,k

] [

k 0
0 0

] [
V �
1,k

V �
2,k

]
,

where 
k ∈ R
pHk ×pHk is a diagonal matrix of full rank, U1,k ∈ R

l×pHk , U2,k ∈
R

l×(l−pHk ), V1,k ∈ R
p×pHk and V2,k ∈ R

p×(p−pHk ) with pHk := rk(Hk), while Uk :=[
U1,k U2,k

]
and Vk := [

V1,k V2,k
]
are unitary matrices. When there is no direct

feedthrough, 
k , U1,k and V1,k are empty matrices,3 and U2,k and V2,k are arbitrary
unitary matrices.

Further, we define two orthogonal components of the unknown input dk given by

d1,k � V�
1,kdk, d2,k � V�

2,kdk . (7.25)

Since Vk is unitary, dk = V1,kd1,k + V2,kd2,k . Thus, the continuous system dynamics
and output equation in (7.1) for each mode q can be rewritten as

xk+1 = Akxk + Bkuk + G1,kd1,k + G2,kd2,k + wk, (7.26)

yk = Ckxk + Dkuk + H1,kd1,k + vk, (7.27)

3 We adopt the convention that the inverse of an empty matrix is also an empty matrix and assume
that operations with empty matrices are possible.
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where G1,k := GkV1,k , G2,k := GkV2,k , and H1,k := HkV1,k = U1,k
k . Next, we

decouple the output yk using a nonsingular transformation Ta,k = [
T�
a,1,k T�

a,2,k

]� =[
IpHk −U�

1,k RkU2,k(U�
2,k RkU2,k)

−1

0 I(l−pHk )

] [
U�

1,k
U�

2,k

]
in the presence of aleatoric uncertainty,

i.e., if Assumption 7.1 holds, Te,k = [
T�
e,1,k T�

e,2,k

]� = [
U1,k U2,k

]�
in the presence

of epistemic uncertainty, i.e., if Assumption 7.2 holds, and both in the presence
of truncated Gaussian uncertainty, i.e., if Assumption 7.3 holds. Consequently, we
obtain zt,1,k ∈ R

pHk and zt,2,k ∈ R
l−pHk , ∀t ∈ {a, e}, as

zt,1,k � Tt,1,k yk = Ct,1,k xk + Dt,1,kuk + 
kd1,k + vt,1,k,

zt,2,k � Tt,2,k yk = Ct,2,k xk + Dt,2,kuk + vt,2,k,
(7.28)

where Ct,1,k � Tt,1,kCk , Ct,2,k � Tt,2,kCk = U�
2,kCk , Dt,1,k � Tt,1,k

Dk ,Dt,2,k � Tt,2,k Dk = U�
2,k Dk ,vt,1,k � Tt,1,kvk , andvt,2,k � Tt,2,kvk = U�

2,kvk . This
system transformation essentially decouples the output equation involving yk into
two components, one with a full rank direct feedthrough matrix and the other with-
out direct feedthrough. The transformation is also chosen such that in the case of
aleatoric uncertainty, the measurement noise terms for the decoupled outputs are
uncorrelated. The covariances of v1,k and v2,k are

R1,k � E[v1,kv�
1,k] = Ta,1,k RkT�

a,1,k � 0,
R2,k � E[v2,kv�

2,k] = Ta,2,k RkT�
a,2,k = U�

2,k RkU2,k � 0,
R12,k � E[v1,kv�

2,k] = Ta,1,k RkT�
a,2,k = 0,

R12,(k,i) � E[v1,kv�
2,i ] = Ta,1,kE[vkv�

i ]T�
a,2,i = 0, ∀k �= i.

(7.29)

Moreover, v1,k and v2,k are uncorrelated with the initial state x0 and process noise
wk . Further, in the case of bounded-norm uncertainty, the transform is also chosen
such that ‖ [

v�
1,k v�

2,k

]� ‖ = ‖ [
U1,k U2,k

]�
vk‖ = ‖vk‖.

Residual Upper Bounds

The upper bounds on the residual signal in Proposition 7.2 can be found as in Kha-
jenejad and Yong (2019) [Theorem 3]:

δ
q,in f
r,k � ‖Aq

k t
�
k ‖2,

δ
q,tr i
r,k � δ

x,q
0 ‖Cq

e,2,k A
q
k A

q
e,k

k−1‖2 + ηw(‖Cq
e,2,k A

q
k A

q
e,k

k−2‖2 + ‖Cq
e,2,k B

�,q
e,w,k‖2)

+ ∑k−2
i=1 [ηw‖Cq

e,2,i A
q
i A

q
e,i

i
Bq
e,w,i‖2 + ηv‖Cq

e,2,i A
q
i A

q
e,i

i
(Bq

e,v1,i
+ Aqe,i B

q
e,v2,i

)‖2]
+ ηv(‖Cq

e,2,k A
q
k A

q
e,k

k−2
Bq
e,v1,k

‖2 + ‖Cq
e,2,k (B

q,�
e,v1,k

+ A
q
k B

q
e,v2,k

)‖2
+ ‖Cq

e,2,k B
q,�
e,v2,k

+ Tq
e,2,k‖2), (7.30)
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where t�k is a vertex of the following hypercube:

X q
k �

{
x ∈ R

(n+l)(k+1) : |x(i)| ≤

⎧
⎪⎨

⎪⎩

δx0 , 1 ≤ i ≤ n

ηw, n + 1 ≤ i ≤ n(k + 1)

ηv, n(k + 1) + 1 ≤ i ≤ (n + l)(k + 1)

}
,

i.e.,

t�k (i) ∈

⎧
⎪⎨

⎪⎩

{−δx0 , δ
x
0 }, 1 ≤ i ≤ n,

{−ηw, ηw}, n + 1 ≤ i ≤ n(k + 1),

{−ηv, ηv}, n(k + 1) + 1 ≤ i ≤ (n + l)(k + 1)

and

Ak � Φk Âk, Ve,k � V1,kM1,kC1,k + V2,kM2,kC2,k Âk, Ae,k � (I − L̃kC2,k)Ak,

Be,w,k � (I − L̃kC2,k)Φk, Be,v1,k � −(I − L̃kC2,k)ΦkG1,kM1,kT1,k,

Be,v2,k � −((I − L̃kC2,k)G2,kM2,k + L̃k)T2,k .

References

H. Alfares, M. Nazeeruddin, Electric load forecasting: literature survey and classification of meth-
ods. Int. J. Syst. Sci. 33(1), 23–34 (2002)

Y. Bar-Shalom, X. Li, T. Kirubarajan, Estimation with Applications to Tracking and Navigation:
Theory Algorithms and Software (Wiley, 2004)

Y. Bar-Shalom, X. Li, T. Kirubarajan, Estimation with Applications to Tracking and Navigation:
Theory Algorithms and Software (Wiley, 2004)

F. Blanchini, M. Sznaier, A convex optimization approach to synthesizing bounded complexity �∞
filters. IEEE Trans. Autom. Control 57(1), 216–221 (2012)

H. Bodlaender, P. Gritzmann, V. Klee, J. Van Leeuwen, Computational complexity of norm-
maximization. Combinatorica 10(2), 203–225 (1990)

A.Cárdenas, S. Amin, S. Sastry, Research challenges for the security of control systems, in Pro-
ceedings of the 3rd Conference on Hot Topics in Security, ser. HOTSEC’08 (2008), pp. 6:1–6:6

A.Cárdenas, S. Amin, S. Sastry, Secure control: towards survivable cyber-physical systems, in
International Conference on Distributed Computing Systems Workshops (2008), pp. 495–500

L. Cómbita, J. Giraldo, A. Cárdenas, N. Quijano, Response and reconfiguration of cyber-physical
control systems: a survey, in IEEE Colombian Conference on Automatic Control (CCAC) (2015),
pp. 1–6

M. Dahleh, I. Diaz-Bobillo, Control of Uncertain Systems: a Linear Programming Approach
(Prentice-Hall, Inc., 1994)

G. Dan, H. Sandberg, Stealth attacks and protection schemes for state estimators in power systems,
in IEEE International Conference on Smart Grid Communications (SmartGridComm) (2010),
pp. 214–219

G. De Nicolao, G. Sparacino, C. Cobelli, Nonparametric input estimation in physiological systems:
problems, methods, and case studies. Automatica 33(5), 851–870 (1997)



7 Resilient State Estimation and Attack Mitigation … 183

J. Farwell, R. Rohozinski, Stuxnet and the future of cyber war. Survival 53(1), 23–40 (2011)
H. Fawzi, P. Tabuada, S. Diggavi, Secure estimation and control for cyber-physical systems under
adversarial attacks. IEEE Trans. Autom. Control 59(6), 1454–1467 (2014)

B. Ghena, W. Beyer, A. Hillaker, J. Pevarnek, J. Halderman, Green lights forever: Analyzing the
security of traffic infrastructure, in 8th USENIX Workshop on Offensive Technologies, vol. 14,
pp. 7–7 (2014)

S. Gillijns, B. De Moor, Unbiased minimum-variance input and state estimation for linear discrete-
time systems. Automatica 43(1), 111–116 (2007)

S. Gillijns, B. De Moor, Unbiased minimum-variance input and state estimation for linear discrete-
time systems with direct feedthrough. Automatica 43(5), 934–937 (2007)

R. Goebel, R. Sanfelice, A. Teel, Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93
(2009)

X. Jin, W. Haddad, An adaptive control architecture for leader-follower multi-agent systems with
stochastic disturbances and sensor and actuator attacks. Int. J. Control 92(11), 2561–2570 (2019)

X. Jin, W. Haddad, Adaptive control for multi-agent systems with sensor-actuator attacks and
stochastic disturbances. J. Guid. Control Dyn. 43(1), 15–29 (2020)

X. Jin, W. Haddad, T. Yucelen, An adaptive control architecture for mitigating sensor and actuator
attacks in cyber-physical systems. IEEE Trans. Autom. Control 62(11), 6058–6064 (2017)

M. Khajenejad, S.Z. Yong, Simultaneous mode, input and state set-valued observers with applica-
tions to resilient estimation against sparse attacks, in 2019 IEEE 58th Conference on Decision
and Control (CDC) (IEEE, 2019), pp. 1544–1550

J. Kim, L. Tong, On topology attack of a smart grid: undetectable attacks and countermeasures.
IEEE J. Sel. Areas Commun. 31(7), 1294–1305 (2013)

P. Kitanidis, Unbiased minimum-variance linear state estimation. Automatica 23(6), 775–778
(1987)

O. Kosut, L. Jia, R. Thomas, L. Tong, Malicious data attacks on the smart grid. IEEE Trans. Smart
Grid 2(4), 645–658 (2011)

S. Kullback, R. Leibler, On information and sufficiency. Ann. Math. Stat. 22, 49–86 (1951)
P. Kundur, N.J. Balu, M.G. Lauby, Power System Stability and Control (McGraw-Hill New York,
1994)

C. Kwon,W. Liu, I. Hwang, Security analysis for cyber-physical systems against stealthy deception
attacks, in IEEE American Control Conference (ACC) (2013), pp. 3344–3349

D. Li, S. Martínez, High-confidence attack detection via Wasserstein-metric computations. IEEE
Control Syst. Lett. 5(2), 379–384 (2020)

G. Liang, J. Zhao, F. Luo, S. Weller, Z.Y. Dong, A review of false data injection attacks against
modern power systems. IEEE Trans. Smart Grid 8(4), 1630–1638 (2017)

Y. Liu, P. Ning, M. Reiter, False data injection attacks against state estimation in electric power
grids. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(1), 13 (2011)

S. Liu, S. Mashayekh, D. Kundur, T. Zourntos, K. Butler-Purry, A framework for modeling cyber-
physical switching attacks in smart grid. IEEE Trans. Emerging Top. Comput. 1(2), 273–285
(2013)

C. Ma, D. Yau, X. Lou, N. Rao, Markov game analysis for attack-defense of power networks under
possible misinformation. IEEE Trans. Power Syst. 28(2), 1676–1686 (2013)

E. Mazor, A. Averbuch, Y. Bar-Shalom, J. Dayan, Interacting multiple model methods in target
tracking: a survey. IEEE Trans. Aerosp. Electron. Syst. 34(1), 103–123 (1998)
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