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Framework for Detecting APTs Based
on Steps Analysis and Correlation

Hope Nkiruka Eke, Andrei Petrovski, Hatem Ahriz, and M. Omar Al-Kadri

6.1 Introduction

Safety and security measures in place in terms of maintaining resource availability,
integrity, and confidentiality of the operational CPS state against cyber-threat such
as APT remain one of the biggest challenges facing organizations and industries at
various levels of operation (Eke et al. 2020).

The CPS systems are composed of computer and subsystems that are intercon-
nected based on the context within which an exchange of vital information through
computer network takes place (Monostori et al. 2016; Cardenas et al. 2009; Jazdi
2014; Petrovski et al. 2015). CPS such as distributed control system (DCS) and
SCADA contain control systems that are used in critical infrastructures such as
nuclear power plants (Eke et al. 2020; Kim et al. 2000), water, sewage, and irriga-
tion systems (Humayed et al. 2017).

An APT, presented in Fig. 6.1, is an attack that navigates around defences, breach
networks, and evades detection, due to APTs stealthy characteristics and sophisti-
cated levels of expertise and significant resources of contemporary attackers (Eke
et al. 2019). While APTs have been attracting an increasing attention from the indus-
trial security community, the current APTs best practices require a wide range of
security countermeasures, resulting in a multi-layered defence approach that opens
new research directions (Majdani et al. 2020). This type of attacks has drawn special
attention to the possibilities of APT attacks on CPS devices, such as SCADA-based
system. There have been few cases of successful attacks on ICS as recorded in NJC-
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CIC (2017) and Slowik (2019), these led to several attempts in developing methods
to detect intrusions within network and isolated devices.

Most of these approaches focus on detection of APT attack with respect to a
specific domain. Work by authors in Nissim et al. (2015) detects malicious PDFs
based onwhitelists and their compatibility as viable PDF files while study in Chandra
et al. (2016) that focus on “Tokens” and utilizes mathematical and computational
analysis to filter spam emails focus on detection of only one step of APT lifecycle.

The computer systems used to control physical functions of the operating sys-
tems are not immune to the threat of today’s sophisticated cyber-attacks and can be
potentially vulnerable (Linda et al. 2009). Potential threats can affect ICS devices
at different level. Hence, security of each component within each level is extremely
important to avoid compromise on any level (Harris and Hunt 1999).

APT attacks on a control system can be considered as stealthy disturbances,
carefully designed with highly sophisticated combination of different techniques
to achieve a specifically targeted and highly valuable goal by attackers (Eke et al.
2020). These attackers are known to possess sophisticated levels of expertise and sig-
nificant resourceswhich allow them to create opportunities to achieve their objectives
by using multiple attack vectors such as cyber, physical, and deception. However, a
well-designed control systemmay repel against external disturbances such as Recon-
naissance. The unknown and dynamic nature of designed disturbance rules poses a
security threat to CPS, which can be vulnerable to various types of cyber-attacks
without any sign of system component failure (Wu et al. 2016). Examples of these
could be noticeable time delays and serious control system degradation as a result
of control systems been vulnerable to a denial-of-service (DoS) attack.

Fig. 6.1 Advanced Persistent Threats (APTs)
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The successful removal or mitigating existing vulnerabilities, assessing whether
a control system is experiencing any form of attack, and maintaining a secure and
stable system state are the main CPS security.

6.1.1 Targeted APT Attack on CPSs

APT attacks have affected many organizations as far back as 1998, with the first
public recorded targeted attack named Moonlight Maze (Thakur et al. 2016). This
Moonlight Maze attack targeted Pentagon, National Aeronautics and Space Admin-
istration (NASA), the US Energy Department, research laboratories, and private uni-
versities by successfully compromised Pentagon computer networks, and accessed
tens of thousands of file (Smiraus and Jasek 2011). Past years have seen an increase
in the number of organizations coming forward, admitting they have been targeted.
Unfortunately, in the bid to protect organization’s image and to avoid providing hack-
ers with feedback, majority of those organization are not willing to share the attack
details.

However, the four main recorded targeted attacks malware tailored against ICSs
are STUXNET, BLACKENERGY 2, HAVEX, and CRASHOVERRIDE (Lee et al.
2017; Domović 2017). STUXNET is the first ever recorded attack aimed at disrupt-
ing physical industrial processes resulting in violation of system availability, while
CRASHOVERRIDE is the second and also the first known to specifically target the
electric grid (NJCCIC 2017; Slowik 2019). CRASHOVERRIDE is not unique to any
vendor or configuration but utilizes the knowledge of grid operations and network
communications to cause disruptions resulting in electric outages (Lee et al. 2017;
Hemsley and Fisher 2018).

6.1.2 Safety of Cyber-Physical Systems (CPSs)

CPS utilizes diverse communication platforms and protocols to increase efficiency
and productivity. This is to reduce operational costs and further improve organiza-
tion’s support model (Odewale 2018). The complexity of the ICS architecture and
the increased efforts of controlling physical functions in processing and analyzing
data has led to an intensified interaction between control and business networks
(Odewale 2018; Nazarenko and Safdar 2019). The possibility of deliberate targeted
attacks as examined in Pasqualetti et al. (2015) on control systems and the daily
operational challenges due to this increased cyber-physical interaction are on the
high side (Humayed et al. 2017; Nazarenko and Safdar 2019).

Ensuring the security of these systems is critical in order to avoid any operational
disruption. However, this requires a complex approach to identify and mitigate secu-
rity vulnerabilities or compromise at all levels within the ICS to maintain resource
availability, safety, integrity, and confidentiality, as well as becoming resilient against
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attacks (Cazorla et al. 2016). We have suggested and implemented a multi-layered
security model based on ensemble deep neural networks approach to secure ICSs.

The contribution of this chapter can be summarized as follows:

• WediscussAPTcharacteristics, lifecycle, andgive examples of themost significant
confirmed cases of attack on CPS devices.

• We propose a novel approach using ensemble deep neural networks for realizing
multi-layered security detection for ICS devices. This approach takes RNNs vari-
ants to learn features from raw data in order to capture the malicious sequence
patterns which reduce the cost of artificial feature engineering.

• We designed and implemented Deep APT Steps Analysis and Correlation (APT-
DASAC)—a multi-layered security detection approach, that takes into considera-
tion the distributed and multi-level nature of ICS architecture and reflects on the
four main SCADA-based cyber-attacks. We further used stacked ensemble for
APT-DASAC to combine networks’ results for optimizing detection accuracy.

• A series of evaluation experiment, including individual APT step detection and
attack-type classification, were carried out. The achieved results suggest that the
proposed approach has got the attack detection capability and demonstrated that
performance of attack detection techniques applied can be influenced by the nature
of network transactions with respect to the domain of application.

6.1.3 Organization of Book Chapter

The remainder of this book chapter is organized as follows. Section 6.2 contains an
overview of APT and APT lifecycle, brief discussion of related work directed toward
the security of CPS. In Sect. 6.3, a detailed description of our proposed approach
“architectural design ofAPT-DASAC” is discussed. The implementation of ourAPT-
DASAC approach and the datasets used are discussed in Sect. 6.4. Experimental
results are discussed in Sect. 6.5. Section 6.6 presents the conclusion of this book
chapter.

6.2 Advanced Persistent Threats (APTs)

APTs and the actors behind them constitute a serious global threat. This type of
attacks differs from common threats that seek to gain immediate advantage. APTs
are broad in their targeting and processing. An APT is also very

• resourceful;
• with well-defined objectives and purpose;
• uses sophisticated methods and technology; and
• substantially funded.
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6.2.1 Characteristics of APTs

An APT threat process follows a staged approach to target, penetrate, and exploit its
target. Understanding the advanced, sophisticated, and persistent nature of APT is
unavoidable in defending against such attacks.

• Advanced - The advanced nature of APT provides the attackers with the capability
of maintaining prolonged existence through stealthy approach inside an organiza-
tion once they successfully breach security controls. Attackers use sophisticated
tools and techniques such as malware, if the malware is detected and removed,
they change their tactics to secondary attack strategies as necessary (Giura and
Wang 2012).

• Persistent - The meaning of “Persistent” is expanded to persistently launching
spear-phishing attacks against the targets by navigating a victim’s network from
system to system, obtaining confidential information, monitoring network activity,
and adapting to be resilient against new security measures while maintaining a
stealthy approach to reach its target (Siddiqi and Ghani 2016). The mode of attack
indicates the main functions of the APT-type malware, which usually placed more
focus on spying instead of financial gain.

• Threat - The actors also have the capability of gaining access to electronically
stored sensitive information other than the purpose of collecting national secrets
or political espionage, based on the functions discovered, it is believed that this type
of threats can also be applied to the cases in business or industrial espionage, spying
acts, or even unethical detective investigations (Brand et al. 2010; Shashidhar and
Chen 2011).

Examining the APTmethods used to breach today’s ICS security, it boils down to
a basic understanding that attackers, especially those who have significant financial
motivation, have devised an effective attack strategies centered on penetrating some
of the most commonly deployed security controls. Most often it uses custom or
dynamically generated malware for the initial breach and data-gathering step. The
“Advanced” and “Persistent” are major features that differentiate APT from other
cyber-attacks.

6.2.2 Life Cycle of APTs Attack

APT attacks are generally known to utilize a zero-day exploits of unpublished vul-
nerabilities in computer programs or operating systems in combination with social
engineering techniques. This is to maximize the effectiveness of the exploits that
target unpatched vulnerabilities. Launching an APT attack involves numerous hack-
ing tools, a sophisticated pattern, high-level knowledge, and varieties of resources
and processes. APTs proved extremely effective at infiltrating their targets and going
undetected for extended periods of time, increasing their appeal to hackers who tar-
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get businesses as highlighted in several large-scale security breaches (McClure et al.
2010; Alperovitch 2011; Villeneuve et al. 2013).

Although each attack is customized with respect to attacker’s target and aims
at various stages of the kill chain, the patterns of APT attacks are similar in most
cases but differ in the techniques used at each stage. For this study, we will describe
six basic APT attack phases as used in our study, based on the literature review in
combination with the “Intrusion Kill Chain (IKC)” model, described in Giura and
Wang (2012), Singh et al. (2019), Hutchins et al. (2011).

1. Reconnaissance and Weaponization - This stage involves information gathering
about the target. This could be, but not limited to, about organizational environ-
ment, employees’ personal details, the type of network, and defence target in use.
The information gathering can be done through social engineering techniques,
port scanning, and open-source intelligence (OSINT) tools.

2. Delivery -At this stage, attackers utilize the information gathered from reconnais-
sance stage to execute their exploits either directly or indirectly to the targets. In
direct delivery, the attackers apply social engineering such as spear phishing by
sending phishing email to target. While in indirect delivery, attacker will compro-
mise a trusted third party, which could be a vendor or frequently visited website
by the target and uses these to deliver an exploit.

3. Initial Intrusion and Exploitation -At this stage, attacker gains access to target’s
network by utilizing the credential information gathered through social engineer-
ing. Themalware code delivered at this stage is downloaded, installed, and activate
backdoor malware, creating a command and control (C&C) connection between
the target machine and a remote attacker’s machine. Once a connection to the
target machine has been secured, the attacker continues to gather more relevant
information such as security configuration, user names, and sniff passwords from
target networkwhilemaintaining a stealthy behavior in preparation for next attack.

4. Lateral Movement and Operation - At this stage, once the attacker estab-
lishes communication between the target’s compromised systems and servers,
the attacker moves horizontally within the target network, identify the servers
storing the sensitive information on users with high access privileges. This is to
elevate their privileges to access sensitive data. This makes their activities unde-
tectable or even untraceable due to the level of access they have. Attackers also
create strategy to collect and export the obtained information.

5. Data Collection - This stage involves utilizing the privileged users credentials
captured during the previous stage to gain access to the targeted sensitive data.
With the attackers having a privileged access, they will now create redundant
copies of C&C channels should there be any change in security configuration.
Once the target information has been accessed, redundant copies are created at
several staging points where the gathered information is packaged and encrypted
before exfiltration.

6. Exfiltration - At this stage, once an attacker has gained full control of target
systems, they proceed with the theft of intellectual property or other confidential
data. The stolen information is transferred to attackers’ external servers in the
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form of encrypted package, password-protected zip files, or through clear web
mail. The idea of transferring information to multiple servers is an obfuscation
strategy to stop any investigation from discovering the final destination of the
stolen data.

6.2.3 Related Work

Diverse approaches have been proposed and successfully implemented to address
different types of attacks. These proposed methods have led to a significant pool of
solutions geared toward addressing security and resilience of CPS devices. Most of
these approaches focus on detection of attack with respect to a specific domain.

6.2.3.1 Attack Detection

One of this detection model is intrusion cyber-kill chain (IKC). This was created
by Lockheed Martin analysts in 2011 to support a better detection and response
to attacker’s intrusions by applying the IKC model to describe different stages of
intrusion (Hutchins et al. 2011; Assante and Lee 2015). Although this model is not
directly applicable to the ICS-custom cyber-attacks, it serves as a great building
foundation and concept to start with (Hutchins et al. 2011). Few other approaches in
the literature include, but not limited to, the attack detection based on communication
channels, a notion of stealthiness, false data injection attacks (FDI), and network
information flow analysis.

Work in Carvalho et al. (2018) made use of the possibility of unprotected commu-
nication channels for sensor and actuator signals in plant, which may allow attackers
to potentially inject false signals into the system. The authors model an approach
to capture the vulnerabilities and the consequences of an attack on the ICSs, being
focused on “The closed-loop control system architecture”, where the plant is con-
trolled by the supervisor through sensors and actuators in a traditional feedback loop.
Their approach aims at detecting an active online attack and disables all controllable
events after detecting the attack, preventing thereby the system from reaching a pre-
defined set of unsafe states. This work is a complementary study to another work in
Paoli et al. (2011), where the authors investigated an online active approach using
a multiple-supervisor architecture that actively counteracts the effect of faults and
introduces the idea of safe controllability in active fault-tolerant systems to char-
acterize the conditions that must be satisfied when dealing with the issue of fault
tolerance.

Other proposed approaches that mainly focus on APT detection based on network
information flow analysis that is not specific for CPS as reviewed for this work
include an APT attack detection method based on deep learning using information
flows to analyze network traffic into IP-based network flows, reconstruct the IP
information flow, and use deep learning models to extract features for detecting
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APT attack IPs from other IPs (Do Xuan et al. 2022). The authors in Shang et al.
(2021) propose an approach to detect the hidden C&C channel of unknown APT
attacks using network flow-based C&C detection method as inspired from the belief
that: (i) different APT attacks share the same intrusion techniques and services,
(ii) unknown malware evolves from existing malware, and (iii) different malware
groups share the same attributes resulting to hidden shared features in the network
flows between themalware and theC&C serverwithin different attacks. They applied
deep learning techniques to dealwith unknownmalicious networkflows and achieved
an f 1− score of 96.80%.

6.2.3.2 Attack Mitigation

Authors in Bai et al. (2017) considered a notion of stealthiness for stochastic CPS
that is independent of the attack detection algorithm to quantify the difficulty of
detecting an attack from the measurements. With the belief that the attacker knows
the system parameters and noise statistics and can hijack and replace the nominal
control input by characterizing the largest degradation ofKalman filtering induced by
stealthy attacks. The study reveals that the nominal control input is the only critical
piece of information to induce the largest performance degradation for right-inverting
systems, while providing an achievability result that lower bounds of performance
degradation that an optimal stealthy attack can achieve within non-right-inverting
systems. While Miloševič et al in (2017) examined the presence of bias injection
attacks for state estimation problem for stochastic linear dynamical systemagainst the
Kalman filter as an estimator equipped with the chi-squared been used as a detector
of anomalies. This work suggests that the issue of finding a worst-case bias injection
attack can be controlled to a certain degree.

Also, Xu et al. (2020) focus on a stealthy estimation attack that can modify the
state estimation result of the CPS to evade detection. In their study, the chi-square
statistic was used as a detector. A signaling game with evidence (SGE) was used
to find the optimal attack and defense strategies that can mitigate the impact of the
attack on the physical estimation, guaranteeing thereby CPS stability.

Furthermore, study on industrial fault diagnosis using deep Boltzmann machine
and multi-grained scanning forest ensemble was done by Hu et al. (2018) and
FDI (Eke et al. 2020). Also, the possibility of accurately reconstructing adversarial
attacks using estimation and control of linear systems when sensors or actuators are
corrupted (Fawzi et al. 2014) is studied in the quest for CPS security and more
resilience against targeted attacks. The authors in Shi et al. (2021) considered the
case of the FDI attack detection issue as a binary classification case and propose a
statistical FDI attack detection approach based on a new dimensionality reduction
method using a Gaussian mixture model and a semi-supervised learning algorithm
to examine the coordinates of the data under the newly orthogonal axes obtained
to establish FDI attacks if the outputs of the Gaussian mixture model exceed the
pre-determined threshold.
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6.3 APT Detection Framework

In this section, we present the description of our proposed APT-DASAC framework
architectural design for APT intrusion detection. APT attack purposefully launched
to target critical infrastructures, such as SCADA network as highlighted in Eke et al.
(2019), is a multi-step attack. The detection of a single step of an APT itself does
not imply detecting an APT attack (Eke et al. 2020). Hence, APT detection systems
should be able to detect every single possible step applied by an APT attacker during
the attack process.

6.3.1 Architectural Design of APT-DASAC

The design of our proposed model for APT intrusion detection system (IDS) is built
to run through three stages. This involves implementing a multi-layered security
detection approach based on Deep Leaning (DL) that takes into consideration the
distributed and multi-level nature of the ICS architecture and reflect on the APT
lifecycle for the four main SCADA cyber-attacks as suggested in Eke et al. (2020).

The implementation of our designmodel shown in Fig. 6.2 consists of three stages:

Stage 1: Data input and probing layer.
Stage 2: Data analysis layer.
Stage 3: Decision layer.

6.3.2 Three Layers of APT-DASAC

The processes taken to implement our proposed model “APT-DASAC” are discussed
as follows.

For the purpose of this model explanation and illustration, the New Gas Pipeline
(NGP) and University of New South Wales (UNSW-NB15) datasets were used. The
specific step-by-step pseudocode for APT-DASAC and the detection process are
described in the following subsection.

The first stage of this approach “Data input and probing layer” involves data
gathering andpre-processing sample data by transforming the data into an appropriate
data format ready to be used in the second stage “Data analysis Layer”. This second
stage applies the core process of APT-DASAC, which takes stacked recurrent neural
network (RNN) variant to learn the behavior of APT steps from the sequence data.
These steps reflect the pattern of APT attack steps. In the final stage “Decision
Layer”, we use ensemble RNN variants to integrate the output and make a final
prediction result.
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6.3.2.1 Step-by-Step Pseudocode for APT-DASAC Layers

The experimental implementation pseudocode of our proposed framework in Fig.
6.2 is represented by Algorithm 6.2–6.3 as used to build the proposed model:

• Pseudocode for data pre-processing.
• Pseudocode for data analysis.
• Pseudocode for detection and prediction process.

The pre-processing data stage takes raw network traffic data as an input from a
specific problem domain, processes, and transforms the data into a meaningful
data format that the algorithm requires by converting any symbolic attributes
into usable features and deals with null values using Step 1 to Step 7c in Algo-
rithm 6.2. The output from this stage is a new transformed data containing
valuable information that the analyses stage will utilize.

6.3.2.2 Data Input and Probing Layer

This layer consists of two modules: (i) Data Input and (ii) Probing Module. Algo-
rithm 6.2 shows the steps for this module process.

Fig. 6.2 Detection framework based on deep APT steps analysis and correlation (APT-DASAC)
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1. Data Input involves data gathering, raw sample/simulated synthetic data been
introduced into the system and transfer the collected data to probing module.

2. Probing Module involves data pre-processing and feature transformation which
runs through four stages. Here all the data that has been collected and introduced
into the module are encoded into numerical vector by the pre-processor ready to
go through the neural network.

a. Feature Transformation: UNSW-NB15 dataset consists of 42 features with
three of these features been categorical (proto, service, and state) data. These
three features need to be encoded into numeric feature vector as it goes to the
neural network for analysis, classification, detection, and prediction. For this
reason, Pandas getdummies() function was used, this function creates new
dummy columns for each individual categorical feature. This leads to increase
in the number of columns from42 to 196 features available for onward analysis.

b. Balancing Training and Testing Data Features: Both training and test-
ing data contain different number of categorical features, this implies that
getdummies() function will generate different number of columns for train-
ing and testing data. However, the number of features in both sets need to
be the same. In this case, we deployed set ().union() function to balance the
training and testing datasets.

c. Normalization: At this stage, the ZScore method of standardization is used
to normalize all numerical features to preserve the data range, to introduce
the dispersion of the series, and to improve model convergence speed during
training.

6.3.2.3 Analysis Layer

The rate of attack detection is affected by the parameters used as these parameters
have direct impact on attack detection. Based on this, several experiments with dif-
ferent network configuration were implemented to find the best optimal values for
parameters such as learning rate and network structure.

Also, to achieve a good detection rate for rare attack steps while maintaining
overall good model performance, two issues need to be considered—the rare attack
class distribution and the difficulty of correctly classifying the rare class. When
considering the class distribution, more emphasis should be placed on the classes
with fewer examples. Secondly, more emphasis should be given to examples that are
difficult to be correctly classified.

At this layer, the processed data are used to build a model that analyzes and
distinguishes attack(s) from normal activities, taken note of the identified issues
with class distribution and classification of rare attacks. The result of this layer is
passed to Decision Engine layer.
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Algorithm 6.1 Data Input and Probing Layer Pseudocode

- Pseudocode for Data Pre-processing

Step 1: Input the sample dataset

Step 2: Convert the symbolic attributes features

Step 3: Return new set of data

Step 4: Separate the instances of dataset into classes

(y)

Step 5: Scale & normalize data (x_(t)) into values from

[0 to 1]

Step 6: Split dataset into training and testing data

Step 7: Prepare and store transformed training and testing data

Step 7a: Balance & reshape the training & testing

data features

Step 7b: Return balanced & reshaped training &

testing data

Step 7c: Pickle transformed data into a byte stream

and store it in a file/database (.pki)

Algorithm 6.2 Analysis Layer Pseudocode

- Pseudocode for Sequence Data Training and Testing

During the training and testing stage, steps 8a-8e

are followed in each iteration.

Step 8: Train the model with this new training dataset

Step8a: Sequentially fetch a sample data (x_(t))

from the training set

Step8b: Estimate the probability (p) that the

example should be used for training

Step8c: Generate a uniform random real number Âμ

between 0 and 1

Step8d: If Âμ < p, then use x_(t)to update the RNN by

(5) for any training sample (x_(i), y_(i))

Step8e: Repeat steps 1-4 (Algorithm 6.1) until there is no

sample left in the training set

Step 9: Test model with testing data from Step 7b

Step10: Compute and evaluate the model performance

accuracy output - classification, detection

and prediction
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6.3.2.4 Decision Layer

This layer operates using three approaches: firstly, it receives information from the
analysis layer and extract the attack step present. Secondly, it processes this infor-
mation and links it to the related attack steps. Lastly, it uses voting and probability
confidence to establish if the attack is a potential chain of attack campaign is found,
and if it is consistent with other attack campaigns.

Algorithm 6.3 Decision Layer Pseudocode

- Pseudocode for Analysis, Detection and Prediction

In analysis detection and prediction stage, steps

11-16 are followed in each iteration.

Step11: Set ip_units, lstm_units, op_units and

optimizer to define LST Network (DL)

Step12: Fetch the processed data (x_(i))

#pre-processed data through steps 1-7 (Algorithm 6.1)

Step13: Select specified training window size (tws)

and arrange x_(i) accordingly

Step14a: for n_epochs and batch_size do #each iteration

Step14b: Take the input vector within specified

training window size (x_(tws)) at time (t)

together with previous information,

initially set to 0

Step14c: Train the Network L with x_(tws+1))

Step14d: end for

Step15: Run Predictions using L

Step16: Calculate the categorical_loss_function L(o,y)

Step17: Output result

Step17a: Percentage detection rate of individual

attacks detected

Step17b: Overall detection rate

Step17c: Confirmation if there is any existence

or complete APT steps (full APT scenario)

6.3.2.5 Attack Step Impacts

The attack impact is determined at this stage through the decision engine by corre-
lating the output from the analysis layer using probability confidence to check for
any presence of security risks. If an attack or security risk is present, it requests the
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defence response module to raise a security alert. This is checked with the previ-
ously detected step to see if this could be related to the newly discovered security
risk alert. This is to reconstruct APT attack campaign steps, and hence highlights an
APT campaign scenario so that an appropriate action can be taken.

The impact of an attack can be considered as low depending on the attack activity
stage. However, if this stage can be linked with other attack steps to show that it
is part of that attack campaign, forming a full APT step cycle, then the impact at
this stage can be considered as high. With this information in mind an appropriate
response can be taken.

6.4 Implementation of APT-DASAC Approach

In this section, we describe the platform and the approach taken to implement the
APT-DASAC. These include the implementation setup, the hyperparameter settings
used, and the datasets used.

6.4.1 Implementation Setup

The ensemble RNN-based attack detection models as explained in Eke et al. (2020)
were implemented. The network topology and payload information values of the
NGP dataset containing 214,580 Modbus network packets with 60,048 packets that
are associated with cyber-attacks were used. These attacks are placed into 7 different
categories with 35 different specific attack types as explained in Turnipseed (2020),
Morris andGao (2014). These attack categories align with APT lifecycle. Figures 6.3
and 6.4 show the number of records in each of the categories and the main four
types of attacks as contained in the NGP data. During the experimental setup, the
first taskwas focused on deriving hyperparameter values for best performancemodel.
Secondly, the best hyperparameter values were implemented in measuring the model
performance.

The standard data mining processes such as data cleaning and pre-processing,
normalization, visualization, and classification were implemented in Python. The
batch size of 124–300 epochs is run with a learning rate set in the range of 0.01–0.5
on a GPU-enabled TensorFlow network architecture. All the 17 features were used
as input vector with 70% as training set and 30% as validation set for the multi-attack
classification. The training dataset was normalized from0 to 1. Thiswas trained using
sigmoid activation function through time with ADAM optimizer, sigmoid function
was used on all the three gates and categorical cross-entropy as loss function for
error rate. Also, these tasks were carried out with traditional machine learning (ML)
classification algorithms—Decision Tree (DT). The ML classification result was
compared to stacked Deep ensemble RNNs-LSTM result in order to further evaluate
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the APT steps detection capability of the experimental approach. Result evaluation
is discussed in Sect. 6.5.

6.4.1.1 Hyperparameters Settings

• Batch sizes: 64 and 128.
• Learning rate: 0.0002–0.00005 with polynomial decay over all the epochs.
• Epochs: 100–300 epochs.
• Neural network: Four layers were used.
• Each of the hidden layers has a sigmoid/ReLU activation function applied
to it to produce nonlinearity. This transforms the input into values usable by
the output layer.

Fig. 6.3 NGP dataset records

Fig. 6.4 Four main attack group and normal classes
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• The softmax function is applied to the output layer to get probabilities of
categories. This also helps in learning with cross-entropy loss function.

• Adaptive Moment Estimation, (ADAM) optimizer is used for the backprop-
agation to minimize the loss of categorical cross-entropy.

• The dropout is used to alleviate the over-fitting (used as regularization tech-
nique used to prevent over-fitting in neural networks. This randomly removes
the units along with connections.

6.4.2 Implementation Dataset

Due to the specific dynamic nature of APT attack that does not follow a unique
pattern, availability and accessibility of dataset containing realistic APT scenario
have become a challenging issue when testing and comparing APT detectionmodels.
For the implementation of our approach, the NGP1 and UNSW-NB152 datasets were
used. Both datasets are available for research purposes.

6.4.2.1 New Gas Pipeline Dataset (NGP) Explained

The NGP data is generated through network transactions between a RTU and aMTU
within a SCADA-based gas pipeline at Mississippi State University. This data was
collected by simulating real attacks and operator activity on a gas pipeline using
a novel framework for attack simulation as described in Turnipseed (2020) and
Morris et al. (2015). The data contains three separate main categories of features—
the network information, payload information, and labels.

The network topologies and the payload information values of SCADA systems
are very important to understand the SCADA system performance and detecting if
the system is in an out-of-bounds or critical state.3

6.4.2.2 Three Main Features of NGP dataset

• Network Information -This category provides a communication pattern for an IDS
to train against. In SCADA systems, network topologies are fixed with repetitive
and regular transactions between the nodes. This static behavior favors IDS in
anomalous activities detection.

1 https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets.
2 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/.
3 http://www.simplymodbus.ca/TCP.htm.Accessedon10/03/2021.

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
http://www.simplymodbus.ca/TCP.htm. Accessed on 10/03/2021
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• Payload Information - This provides an important information about the gas
pipeline’s state, settings, and parameters, which helps to understand the system
performance and detecting if the system is in a critical or out-of-bounds state.

• Labels - It is attached to each line in data to indicate if the transaction within the
system activity is normal or malicious activities.

6.4.2.3 Identified Cyber-Threats in NGP dataset

The original gas pipeline data as in Morris and Gao (2014) was improved to create
a new NGP data by

• parameterizing and randomizing the order in which the attacks were executed;
• executing all the attacks as contained in the original data created by Gao Morris
and Gao (2014);

• implementing all the attacks in a man-in-the-middle fashion;
• to include all the four types of attacks as shown below:

– Interception - In this type of attack, attacks are sent to both the attacker and to
the initial receiver. These types of attacks enable gaining system information
such as normal system operation, each protocol node, the brand and model of
the RTUs that the system is using.

– Interruption - This type of attack is used to block all communication between
two nodes in a system—e.g., DoS between the MTU and an RTU slave device
in the gas pipeline.

– Modification - This type of attacks allows an attacker to modify parameters (set
point parameter exclusively and leave all other parameters untouched) or states
in a system, such as the gas pipeline.

– Fabrication - Attackers execute this type of attack creating a new packet to be
sent between the MTU and RTU.

Fig. 6.5 The instances within NGP raw dataset
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6.4.2.4 Raw Dataset

In this subsection, we will use Fig. 6.5 to describe and illustrate the instance features
as contained within the NGP dataset.

• The first feature represents the Modbus frame as received either by the master or
slave device. All valuable information from the network, state, and parameters of
the gas pipeline are also contained in this Modbus frame.

• The second and third feature represent the attack category and specific attack that
were executed. In case of Modbus frame normal operation, both of these features
will report a zero. Both are useful to train a supervised learning algorithm, as they
allow the algorithm to learn the behavior of these attack patterns.

• The fourth and fifth features represent the source and destination of the frame.
There are only three possible values for the source and destination feature. The
value can be a “1” indicates that the master device sent the packet, “2”, meaning
the man-in-the-middle computer sent the packet, or “3” indicates that the slave
device sent the packet.

• The last feature (6th) in the raw data contains a time stamp which can be used
to calculate the time interval between change. In system normal operation, slight
change may be observed between time intervals, however any modification or
malicious activity such as malicious command injection may lead to noticeable
time interval change.

6.4.2.5 Cyber-Attacks as Contained in the NGP Dataset Record

The NGP data contains 214,580 Modbus network packets with 60,048 packets asso-
ciated with cyber-attacks. Each record contains 17 features in each network packet.
These attacks are placed into 7 different attack categories with 35 different spe-
cific type of attacks. These attack categories and the individual specific attack as
represented in Fig. 6.3 and Table 6.1 will be used to demonstrate an APTs steps
detection with our proposed APTs detection framework in line with APTs lifecycle
as described in Eke et al. (2019).

These seven attack categories are further grouped into four overall categories to
align with APT lifecycle and the four identified types of cyber-attacks as described
below.

• Response injection attacks contains two types of attacks, naïvemalicious response
injection (NMRI) (which occurs when themalicious attacker do not have sufficient
information about the physical system process) and complex malicious response
injection (CMRI) (these type of attack designs attacks that mimic certain normal
behaviors using physical process information making it more difficult to detect).

• Command injectionattacks contains three attacks,malicious state command injec-
tion (MSCI), malicious parameter command injection (MPCI), and malicious
function code injection attacks (MFCI). These attacks inject control configuration
commands to modify the system state and behavior, resulting to (a) loss of process
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Table 6.1 Attack categories with normal records type

Attack categories Abbreviation Values APTs step

Normal Normal 0 Not applicable

Naïve malicious
response injection

NMRI 1 Delivery

Complex malicious
response injection

CMRI 2 Exploitation,
Exfiltration

Malicious state
command injection

MSCI 3 Data collection,
Exploitation

Malicious parameter
command injection

MPCI 4 Data collection,
Exploitation

Malicious function
code injection

MFCI 5 Data collection,
exploitation,
exfiltration

Denial of service Dos 6 Data collection,
exploitation,
exfiltration

Reconnaissance Recon 7 Reconnaissance

control, (b) device communication interruption, unauthorized modification of (c)
process set points, and (d) device control.

• DoS attacks disrupt communications between the control and the process through
interruption of wireless networks or network protocol exploits.

• Reconnaissance collects network and system information through passive gath-
ering or by forcing information from a device.

6.4.2.6 UNSW-NB15 Dataset

UNSW-NB15 dataset as represented in Figs. 6.6 and 6.7 was created by Australian
Centre for Cyber-Security (ACCS)4 in their Cyber-Security Lab. A hybrid of the
modern normal and abnormal network traffic features of UNSW-NB15 data was cre-
ated using the IXIA PerfectStorm tools5 to simulate nine families of attack categories
as follows: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode, andWorms. In other to identify an attack on a network system, a compre-
hensive dataset that contains normal and abnormal behaviors are required to carry
out a proper evaluation of network IDS effectiveness and performance (Gogoi et al.
2012). Hence, the UNSW-NB15 dataset (Moustafa and Slay 2015) was chosen
for this study as the IXIA PerfectStorm tool used to generate the data contains all

4 https://www.unsw.adfa.edu.au/unsw-canberra-cyber.
5 https://www.ixiacom.com/products/perfectstorm.

https://www.unsw.adfa.edu.au/unsw-canberra-cyber
https://www.ixiacom.com/products/perfectstorm
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Fig. 6.6 UNSW-NB15 train dataset

Fig. 6.7 UNSW-NB15 test dataset

information about new attacks on CVE website,6 which is the dictionary of publicly
known information security vulnerability and exposure and is updated continuously
as stated in Moustafa and Slay (2015).

6.5 Experimental Evaluation of APT-DASAC Approach

Generally, accuracy is used as a traditional way of measuring classification perfor-
mance. This metric measure is no longer appropriate when dealing with multi-class
imbalance data since the minority class has little or no contribution when compared
to majority classes toward accuracy (Sun et al. 2009). For these reasons, we applied
synthetic minority oversampling technique (SMOTE) for handling data imbalance
as explained in Eke et al. (2020).

6 https://cve.mitre.org/.

https://cve.mitre.org/
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Evaluation Metrics: We used precision, recall, f1-score, overall accuracy,
area under the curve (AUC) receiver operating characteristic (ROC), and
confusion matrix to validate the performance of implementing APT-DASAC
for attack detection and clearer understanding of the output.

6.5.1 Result and Discussion

In our previous study (Eke et al. 2020), we implemented a DLmulti-layered security
detection approachwhich focused on detecting command injection (CI) and response
injection (RI) attacks. We noticed a higher detection rate of CI to RI, although CI
has more connection records and obtained a significant detection rate with 0% False
Positive Rate (FPR) and True Positive Rate (TPR) of 96.50%. Based on the outcome
of our analysis, we arrived on the conclusion that performance of attack detection
techniques applied can be influenced by the nature of the network transactions with
respect to the domain of application and made suggestion for further investigation
in different domain.

We acknowledge the need to investigate this further in other to ascertain this
claim.We implemented the application of stacked ensemble-LSTMvariants forAPT-
DASAC. This approach combines networks’ results as to optimize attack detection
rate. To validate this approach for detecting APT step attacks, statistical metrics such
as precision, recall, f1-score, AUC-ROC , and overall accuracy are calculated (i)
to evaluate the ability of this approach to accurately detect and classify an abnormal
network as an attack, (ii) to check the ability of this model to detect different type of
attacks accurately, and (iii) to get a clearer understanding of the output.

Figures 6.8 and6.9 contain the statistical classification report obtained from imple-
menting deep ensemble-LSTM variants and ML-DT on NGP dataset, respectively.
These reports show that our approach achieved an average P , R, and f 1 of 88%,
86%, and 82%, respectively, with overall detection accuracy of 85% and macro-f1
of 62%, while the implemented ML-DT obtains 95% for P , R, and f 1 with overall
detection accuracy of 94% in detecting attacks.

Considering the fact that the proposed approach detects APT step activities in
different stages, we generated ROC curves score for the stages as shown in Fig. 6.10.

Fig. 6.8 Classification—
report for ensemble-LSTM
variants on NGP dataset
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The average of the five-step curves is evaluated and consolidated into a single graph
representing their respective AUCcurve and obtain micro-average ROC curve area
of 91% and macro-average ROC curve area of 72%. It is evident from Fig. 6.10 that
the classification of APT attack detection in class 3 stage has the ROC curve area of
93% , this is largely attributed to the number of connection record exhibited in this
stage, while the class 4 stage has the lowest ROC curve area of 51%. Our proposed
approach seems to achieve a good performance since the weighted average of the
ROC curve area is closer to 1. A high area under the curve represents both high recall
and high precision, an ideal model with high precision and high recall will return
many results, with all results labeled correctly.

The results shown in Figs. 6.11 and 6.12 are the visual representation of each
algorithm’s validation accuracy and loss rate on each epochs. There are some spikes
in the validation accuracy and loss, following the individual model accuracy and
loss per epoch, achieving training and validation accuracy of 85.59%, 85.88% with
validation loss of 33% for LSTM; 85.97%, 85.16% with validation loss of 35%
for RNN; and 86.13%, 85.71% with validation loss of 34% for GRU. It is worth
noting that the value of training and validation accuracy are quite close to each other,
indicating that the model is not over-fitting with overall average mean detection
accuracy and validation average accuracy of 85%.

We also implemented the same approach with UNSW-NB15 data, the average
detection accuracy of 93.67% as recorded in Table 6.2, which is slightly higher than
85% obtained when NGP data was implemented.

6.5.1.1 The Proposed Approach and Other Works on APTs Detection

Few proposed APT detection approach recorded in Table 6.3 as reviewed for this
chapter includes, work in Do Xuan et al. (2022), an APT attack detection method
based on Bidirectional Long Short-Term Memory (BiLSTM) and Graph Convolu-

Fig. 6.9 Classification—
report for ML-DT on NGP
dataset

Fig. 6.10 AUC-ROC—
vreport for ensemble-LSTM
variants on NGP dataset
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tional Networks (GCN) to analyze network traffic into IP-based network flows. This
approach achieved 98.24% of normal IPs and 68.89% of APT attack IPs using Mal-
ware Capture CTU-13 data warehouse dataset. The authors in Shang et al. (2021),
tackled APT attack detection using network flow-based C&C detection method to
detect the hiddenC&Cchannel of unknownAPTattacks and achieved an f 1− score
of 96.80% but did not provide the actual detection rate for their approach. Also, the
author in Zimba et al. (2020) proposed a detection framework based on an enhanced
SNN algorithm using semi-supervised learning approach on LANL dataset to scores
suspicious APTs-related activities at three different stages of APT attack lifecycle
given a high weight rank to hosts depicting characteristics of data exfiltration with
the believe that main APT attack is data exfiltration. This study faced a higher com-
putational overhead cost.

In our previous work in Eke et al. (2019), we proposed an approach using deep
neural networks for APT multi-step detection which takes stacked LSTM-RNNs
networks to automatically learn features from the raw data to capture the malicious
patterns of APT activities usingKDDCup99 dataset. This approach achieved a detec-
tion rate of 99.90%, see Table 6.3. The current chapter proposes a framework named
APT-DASAC based on stacked ensemble-LSTM variants, taken into consideration
the distributed and multi-level nature of ICS architecture and reflect on the four
main SCADA cyber-attacks which are interception, interruption, modification and

Fig. 6.11 Validation accuracy against epochs on NGP dataset
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Fig. 6.12 Validation loss against epochs on NGP dataset

Table 6.2 Performance report for ensemble-LSTM variants on UNSW-NB15 dataset

Algorithm Average accuracy (%) Validation accuracy
(%)

Validation loss (%)

LSTM 93.74 82.29 21.82

RNN 92.88 81.43 20.50

GRU 94.41 82.11 20.46

Ensemble-LSTM
variants

93.67 84.94 20.47

fabrication as recorded in Turnipseed (2020) to demonstration the ability of this
approach in detecting different stages of APT activities. This approach achieved an
overall detection rate of 85% for NGP dataset and 93.67% for UNSW-NB15 dataset.
Also, when ML-DT were implemented within our approach, we obtained 95% on
both NGP and UNSW-NB15 datasets.

All the reviewed approach on this study have demonstrated a significant APT
attack detection capability, however, none of these approach used the same dataset
(see Table 6.3), making it difficult to rank the performance of these approaches. Also,
the unavailability of a standard dataset or suitable public accessible dataset is a huge
challenge in the field of cyber-security, making it unfavorable to compare an APT
detection system performance so as to choose an appropriate model for any given
domain.
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6.6 Conclusion

In this study, to overcome the issue of detecting APT dynamics attack lifecycle,
we have used supervised learning approach and a multi-layered attack detection
framework that takes into consideration the distributed and multi-level nature of ICS
architecture and reflects on the four main SCADA-based cyber-attacks. Therefore, a
detection framework based on stacked ensemble-LSTM variants algorithm has been
proposed and evaluated. This accounts as one of the contributions of this chapter. Due
to the dynamic nature of APT lifecycle, APT attack cannot be detected automatically,
and hence this model serves as a supplement to automated IDS. The implemented
algorithms achieved a competitive overall detection rate of 85%, 93.67%, and 95%
with micro-average ROC curve area of 91%. These results suggest that both stacked
ensemble-LSTMvariants andML-DT approach are good candidates to be considered
for developing an APT detection system.

From Fig. 6.8, the value of recall achieved also illustrates that when DL is used
within the proposed approach, it did struggle to identify the relevant cases of com-
mand injection attack, DoS, and Response Injection attacks within the NGP dataset.
The class with more connection records seems to be learnt properly without con-
fusing their identity while those with fewer connection records during training did
not show good true positive rate as it was had to identify them. This indicates a data
imbalance problem. However, this was not the case when ML was used in place of
DL as the system achieved good precision and recall as evidenced in Table 6.3.
Also, if the output from this study is compared to our previous work in Eke et al.
(2019), where we have implemented the same procedure with KDDCup99 dataset,
the average detection rate achieved is 99.9% (see Table 6.3).

Table 6.3 Our proposed approach and other works on APTs detection

Proposed method Approach Dataset Outcome Reference

Enhanced
SNNalgori thm

Semi-supervised
learning approach

LANL 90.50% Zimba et al.
(2020)

BiLSTM&GCN Network flow
analysis

Malware capture
CTU-13 data
warehouse

68.89% (APT IPs
attack)

Do Xuan et al.
(2022)

Network flow
based on C&C
detection method

DL techniques Contagio blog
malware

96.80% (f-score) Shang et al.
(2021)

Stacked
RNN variants

DL techniques KDDCup99 99.90% Eke et al. (2019)

APT-DASAC ML–DT NGP &
UNSW-NB15

95% This chapter

APT-DASAC Ensemble
LST Mvariants

NGP &
UNSW-NB15

85% This chapter
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We can see that this approach performed very well on KDDCup99 dataset as the
feature set contained within this data is highly distinguishable in nature. The result is
slightly higher when both NGP and UNSW-NB15 dataset were used. This account
as an identified issue from this study when it comes to comparing performance of
various proposed detection framework with regard to accessibility and availability of
suitable data/network flow information in security industries with respect to domain
of interest.

Considering the different results obtained with three different datasets from
diverse domains, our implemented approach showed a significant attack detection
capability. This has also demonstrated that performance of attack detection approach
applied can be influenced by the nature of network connections with respect to the
domain of application. This suggests that the ability and resilience of operational
CPS state to withstand attack and maintain system performance are regulated by the
safety and security measures in place, which is specific to that CPS devices or appli-
cation domain. Hence, there is every need to investigation the nature of the network
flow information within any system in mind to determine the security measures that
will be suitable for that system.
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