
Chapter 5
Resilient Observer Design for
Cyber-Physical Systems with
Data-Driven Measurement Pruning

Yu Zheng and Olugbenga Moses Anubi

5.1 Notation

The following notation and definitions are used throughout the whole chapter:
R,Rn,Rn×m denote the space of real numbers, real vectors of length n, and real
matrices of n rows and m columns respectively. R+ denotes the space of positive
real numbers. Normal-face lower-case letters (e.g., x ∈ R) are used to represent real
scalars, bold-face lower-case letters (e.g., x ∈ R

n) represent vectors, while normal-
face upper-case letters (e.g., X ∈ R

n×m) represent matrices. X�
. denotes the trans-

pose of matrix X . 1n and In denote vector of ones and identity matrix of size n
respectively. Let T ⊆ {1, . . . , n}, then for a matrix X ∈ R

m×n , XT ∈ R
|T |×n is the

sub-matrix obtained by extracting the rows of X corresponding to the indices in
T . T c denotes the complement of a set T , and the universal set on which it is
defined will be clear from the context. The support of a vector x ∈ R

n , a set of the
indices of nonzero entries, is denoted by supp(x) � {i ⊆ {1, . . . , n} | xi �= 0}. If
|supp(x)| = k, we say x is a k-sparse vector. Moreover, Σk ⊂ R

n denotes the set of
all k-sparse vectors inRn . The operator argsort ↓ (x) denotes a function that returns
the sorted indices of vector x in descending order of the magnitude of xi . The symbol
& denotes logical “AND” operator. The symbol ∗ denotes the convolution opera-
tor for vectors. The symbol 	 denotes element-wise multiplication of two vectors,
z = x 	 y ⇒ zi = xiyi . The expression x ∼ B(1, p) means that random variable x
follows the Bernoulli distribution with Pr{x = 1} = p. The weighted 1-norm of a
vector z ∈ R

n with the weight vector w ∈ R
n is given by ‖z‖1,w �

∑n
i=1 wizi .
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5.2 Introduction

As the backbone of future critical infrastructures, Cyber-Physical Systems (CPS) are
complicated integration of computation, communication, and physical components.
Security, within the context of CPSs, poses more challenges compared to both tradi-
tional information technology (IT) security and operational technology (OT) security
due to the temporal dynamics brought by physical environment and the heteroge-
neous nature of operation of CPSs (Khaitan and McCalley 2014). In the context of
CPS, failures induced by malicious attacks are beyond random failures studied in
reliability engineering or well-defined uncertainty classes in robust control. More-
over, the coupling of computation and communication with distributed sensing and
actuation components increases the vulnerability to attacks (Zetter 2015; Lee et al.
2014; Slay and Miller 2007; Chen and Abu-Nimeh 2011).

The control design for CPSs usually consists of an observer to estimate the states
of the physical system and a controller to compute the control commands based on
the state estimation. Thus, the control system receives diverse information frommea-
surement substations and distributes the computed control commands to a number of
actuators through a communication network (Burg et al. 2017). Thus, an elaborate
attack on a CPS can be designed by considering the networked closed-loop interac-
tion between the cyber and physical agents. Furthermore, the dispersed geographical
distribution and abundance of unmanned facilities also provide malicious attackers
the opportunity to construct coordinated attacks. These attacks, studied extensively
in literature, either targets the system integrity (Bishop 2003), such as stealth attacks
(Sui et at. 2020), replay attacks (Fang et al. 2020), covert attacks (de Sá et al. 2017),
and FDIA (Zheng and Anubi 2020) or the availability (Bishop 2003), such as denial
of service (DoS) (Pelechrinis et al. 2010). The locations of those attacks are shown in
Fig. 5.1. It was shown in Liu et al. (2011), Guo et al. (2016), Mo and Sinopoli (2010),
that if FDIA is defined properly, it can exploit certain underlying vulnerabilities of
bad data detection (BDD) schemes in order to force an erroneous state estimation
using sparse measurement corruption. Consequently, in this chapter, we consider
the resiliency of a class of observers against FDIA. If the observer estimates, using
compromised measurements, are close to the true states, then control performance
can be guaranteed with any control design which is robust to estimation error.

Fig. 5.1 Locations of
attacks in CPS in the context
of security control (SA:
stealth attack, CA: covert
attack, RA: replay attack,
FDIA: false data injection
attack, DoS: denial of
service)
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One of the pioneering works on resilient observer was presented in Fawzi et al.
(2014), where an unconstrained �1 observer was proposed to achieve exact state
recovery. A necessary and sufficient condition for exact recovery is that less than
half of the system’s measurements be compromised. The authors in Shoukry and
Tabuada (2015) proved this condition from an interesting aspect of s-sparse observ-
ability and proposed an event-triggered Luenberger observer against FDIA. In Chong
et al. (2015), the authors presented a more systematical work on the observability of
the linear system under attacks and proposed aGramian-based estimator. The authors
in Pajic et al. (2015) and the authors in Lee et al. (2015) both considered resilient
estimation in the presence of noise and attacks at the same time and constructed
�1-�2 observers. The authors in Nakahira and Mo (2018) considered a robust esti-
mation scheme against FDIA, in which local robust estimators and global fusion are
combined to achieve resilient-robust estimation. Readers can also refer to Shoukry
et al. (2017) for feasible resilient estimation methods by Satisfiability Modulo The-
ory (SMT) solvers. However, all the above observers would not achieve successful
resilient estimationwhen 50%, ormore, of systemmeasurements are attacked. Equiv-
alently, the system is not 2k-detectable, where k is the number of attacks. This is a
significant limitation since it requires that there be twice as many as needed mea-
surement stations installed for a CPS, and the system has to be observable for every
combination of 50% of the total sensors. This is a property that is currently not
achieved by most critical cyber-physical critical infrastructures like the power grid.

In order to increase the corresponding percentage of attacked nodes forwhich state
recoveries can be guaranteed, researchers have begun to incorporate prior information
into the underlying resilient observer design framework. There aremainly three kinds
of prior information considered in literature: state prior (Shinohara et al. 2019), mea-
surement prior (Anubi and Konstantinou 2019; Anubi et al. 2020), and support prior
(Anubi et al. 2018; Zheng and Anubi 2020). In Shinohara et al. (2019), three types of
state prior were discussed: sparsity information of the estimated states, (α, n0) spar-
sity information, where the estimated states are assumed to have α instead of 0 in the
sparsity form, and side information, which is the knowledge of the initial states from
the physical attribution of the system and cannot bemanipulated bymalicious agents.
Although the resiliency of the observer can be improved with such knowledge of the
states of the system, it is very difficult to obtain such information in practice. This will
require a prior determination of the state distribution for all operating conditions of an
uncertain, large-scale nonlinear, and sometimes hybrid system.

Support prior is the estimated information of attack locations, which can be
given by some data-driven localization algorithm or learning-based anomaly detec-
tion methods, such as watermark-based methods (Liu et al. 2020), moving-target
based approach (Weerakkody and Sinopoli 2015), distributed support vectormachine
(Esmalifalak et al. 2014), deep learning neural network (He et al. 2017), and many
more (Ozay et al. 2015; Abbaszadeh et al. 2019, Deldjoo et al. 2021, Huang et al.
2014). Although the localization algorithms can be readily defined and are very use-
ful for monitoring purposes, using this kind of support prior to resilient estimation
has two main drawbacks; imprecise classification and high training price. This limits
their applicability for piratical purposes. In this chapter, we examine a class of prun-
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ingmethods to generate a feasible pruned support prior with predetermined precision
guarantees. Coupling the pruning algorithm with any localization algorithm can sig-
nificantly improve the resulting precision, which directly improves the resiliency of
the underlying resilient estimation process. This means a less precise localization
algorithm can be tolerated, thus slashing the required training price. The initial prun-
ing idea was introduced in Anubi et al. (2018), analyzed, and improved in Zheng and
Anubi (2021). In this chapter, a more detailed mathematical foundation is given, in
addition to improved implementation.

Measurement prior is a collection of additional auxiliary information about system
measurements that is unknown to the malicious attackers. A direct use of measure-
ment prior in resilient observer design was shown in Anubi et al. (2020), Anubi
and Konstantinou (2019), Anubi et al. (2019) to improve the limit of the percentage
of compromised measurement for which exact recovery is guaranteed from 50% to
80%. Also, the watermark-based detection approaches (Liu et al. 2020) and moving-
average detection approaches (Weerakkody and Sinopoli 2015) both use the addi-
tional information in an authentication layer in order to detect the attacks. Thus,
against measurement attacks, the measurement prior and support prior are related.
An advantage of measurement prior is its expansibility to the authentication layer.
Themoremeasurement priors that can be constructed usually provide better detection
precision. In this chapter, we will utilize a measurement prior constructed by using
a data-driven auxiliary model between auxiliary variables and the system measure-
ments. The attacked measurements will then be detected if they cannot be explained
by both the system dynamics and the measurement model prior with high likelihood,
thus reducing the resulting attack surface.

The remainder of this chapter is organized as follows: In Sect. 5.3, concurrent
models of CPS, including physical model, monitoring model, thread model, prior
model, and pruning algorithm are given; in Sect. 5.4, the resilient observer design
with data-driven measurement pruning is given; in Sect. 5.5, numerical simulation
and application examples are given to demonstrate the performance of the designed
observer compared to other resilient observers in the severe adversarial environment;
concluding remarks follow in Sect. 5.6.

5.3 Concurrent Models

To discuss the resilient observer design, relevant model developments are discussed
in this section. Since CPS is a seamless integration of computational components,
physical processes, and communication network systems, a single-layer model can-
not sufficiently describe the complex characteristics of CPS. Also, as a closed-loop
system, separately and independentlymodeling the separate layers cannot capture the
tight interaction between the cyber and physical layers (Lee 2010). Concurrent mod-
eling has been used as a good way to describe the complex operation on CPS (Derler
et al. 2011), where different models in different hierarchies work concurrently. As
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shown in Fig. 5.2, this small version of CPS has four concurrent loops; the physical
dynamical loop, prior generation loop, monitoring path, and attack injection.

The rest of the subsections are dedicated to discussing, in more detail, the mod-
eling aspects for each layer, the underlying assumptions, and connections with the
subsequent resilient observer design.

5.3.1 Physical Model and Monitor

A linear time invariant (LTI) model is considered to describe the physical behavior
of the CPS in Fig. 5.2.

xi+1 = Axi
yi = Cxi + ei ,

(5.1)

wherexi ∈ R
n is the internal state vector of physicalmodel at time i which is unknown

to other parts of the concurrent model, yi ∈ R
m is the measurement vector, ei ∈ R

m

is the time-varying attack-noise vector. The measurement attacks and noise terms
are modeled as additional error signals. Control inputs may be included in the model
above. However, since control inputs are generally irrelevant to state estimation
problems, we suppress it in the model considered here.

The following assumptions are used in subsequent developments:

1. The pair (A,C) is observable.
2. The measurements are redundant (m > n).
3. The attack signal is possibly unbounded and sparse, ei ∈ Σk for some k < m.
4. The attack-free part of ei is bounded,

∑

i∈T c

|ei | < ε, for some ε > 0.

Fig. 5.2 Concurrent model
on CPS (xa is an auxiliary
state used in the prior model)
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By iterating the systemmodel (5.1) T time steps backwards, the T -horizon obser-
vation model is given by

yT = Hxi−T+1 + eT , (5.2)

where yT = [y�
i , y�

i−1, . . . , y
�
i−T+1]� ∈ R

Tm is a sequence of observation in the
moving window [i − T + 1, i], xi−T+1 ∈ R

n is the state vector at time i − T + 1,
eT = [e�

i , e�
i−1, . . . , e

�
i−T+1]� is the sequence of attack-noise vectors in the same

moving window, H ∈ R
Tm×n is the observation matrix, H =

⎡

⎢
⎢
⎢
⎣

CAT−1

...

CA
C

⎤

⎥
⎥
⎥
⎦

.

The following definitions formalize the notions of a decoder and a detector, which
are used subsequently.

Definition 5.1 (Decoder) Given an observable pair (A,C) and a horizon parameter
T , a decoder D : RTm → R

n is an operator given by

x̂ = D(yT | H) = argmin
x∈Rn

‖yT − Hx‖1, (5.3)

where yT = {yi , yi−1, . . . , yi−T+1} is a moving-windowed measurement vector his-
tory and x̂ ∈ R

n is the resulting estimated initial state vector xi−T+1. When the
parameter is clear from context, they are dropped from the argument list for clarity.

Definition 5.2 (Detector) Given the measurements yT ∈ R
Tm taken in the moving

window [i − T + 1, i], a detector based on the �1 decoder is mapping of the form:

ΨT : {yT } → {Ψ1, Ψ2},

where Ψ1 ∈ {0, 1}1 is the first output argument indicating whether or not the mea-
surement yT is attacked,Ψ2 ∈ 2{1,2,··· ,m} is the second output argument indicating the
support of attack locations.

The decoder–detector pair constitutes a monitor scheme for the system (5.1), as
shown in the remark below.

Remark 5.1 (Residual-based monitor mechanism) Given a threshold value ε0 > 0,
the monitor returns Ψ1 = {0} in the first output argument for a given measurement
vector history yT = {yi , yi−1, . . . , yi−T+1} if there exists a corresponding state tra-
jectory X̂T = {x̂i , x̂i−1, . . . , x̂i−T } such that

‖x̂ j+1 − Ax̂ j‖ ≤ ε0, j = i − T, . . . , i − 1

‖y j − C x̂ j‖ ≤ ε0, j = i − T + 1, . . . , i.

1 0: safe, 1: unsafe.
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Otherwise, the monitor returns Ψ1 = {1} in the first output argument and also the
support of the sparsest attack trajectory eT = {ei , ei−1, . . . , ei−T+1} such that

‖x̂ j+1 − Ax̂ j‖ ≤ ε0, j = i − T, . . . , i − 1

‖y j − C x̂ j − e j‖ ≤ ε0, j = i − T + 1, . . . , i.

5.3.2 Threat Model

Following the setup above, we give a formal definition of successful FDIA and
prescribe conditions under which an FDIA will successfully corrupt a decoder while
evading detection by the residual-based monitor. To design a successful FDIA, the
following assumptions aremade, which arewidely used in literatureMo and Sinopoli
(2010), Mo and Sinopoli (2015):

1. The attacker has perfect knowledge of the system dynamics in (5.1).
2. The attacker can inject arbitrary bias at the compromised nodesT ⊂ {1, · · · ,m}.
3. The number of nodes the attacker can simultaneously compromise at any given

time is bounded. In other words, the attackers have limited resources.

Notice, the known information of system to attacker includes the system dynamics,
for example, the H matrix, and the decoder–detector scheme. All other information,
such as the true state variables, are unknown to the attacker.

Definition 5.3 (Successful FDIA Mo and Sinopoli (2010)) Consider the CPS in
(5.1) and the corresponding measurement model (5.2). Given a positive integer k <

m, the attack sequence eT ∈ ΣT k is said to be (ε, α)-successful against the decoder-
detection pair described above if

‖x� − D(yT )‖2 ≥ α, and ‖yT − HD(yT )‖2 ≤ ε, (5.4)

where yT = y�
T + eT with y∗

T ∈ R
Tm being the true measurement vector, and x� is

the true state vector.

In the above definition, k quantifies the attack sparsity level per time. Specifically, it
is the maximum number of attacks at each time index. Given the support sequence
T = {Ti Ti−1 · · ·Ti−T+1} with |Ti | ≤ k. Let xe be an optimal solution of the opti-
mization program

Maxmize : ‖HT x‖1,
Subject to : ‖HT cx‖1 ≤ ε.

(5.5)

Then a FDIA can be defined as

eT = HT xe, eT c = 0. (5.6)
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The following theorem shows the condition under which the defined FDIA above
is (ε, α)-successful for the given attack support T .

Proposition 5.1 (Zheng and Anubi (2021)) Suppose there exists a vector w ∈
range(H) such that

‖wT ‖1 > ‖wT c‖1, (5.7)

then the FDIA in (5.6) is (ε, α)-successful against the decoder-detector pair in

Definition 5.1 and Remark 5.1 for all α ≤ σ1−1√|T |σT −σT c
ε, with |T | >

σ 2
T c

σ 2
T
, where

σT and σT c are the largest and smallest non-zero singular values of HT and HT c

respectively, and

σ1 = max
v∈Rn\{0}

‖HT v‖1
‖HT cv‖1 .

Remark 5.2 If, in addition, null(HT c)\null(HT ) �= ∅, let vn ∈
null(HT c)\null(HT ), then ‖HT cvn‖1 = 0 but ‖HT vn‖1 > 0. Thus, σ1 ≥ ‖HT v‖1

‖HT c v‖1
is infinite, which implies that the FDIA in (5.6) is (ε, α)-successful for all ε, α ∈ R+.

5.3.3 Data-Driven Auxiliary Measurement Prior

In this subsection, we present a data-driven auxiliary measurement prior based on
a generative probabilistic regression model constructed using the Gaussian process
(GP). This prior model is a mapping from the chosen auxiliary variables to the
observed measurements, which plays the role of an additional authentication layer.

Given a dataset Z ,Y , where Z ∈ R
p×N is thematrix collecting the auxiliary states

columnwise, Y ∈ R
m×N is the matrix of the corresponding observed measurements,

the goal is to learn the underlying function f : Rp → R
m such that

yi = f (zi ) + ε, i = 1, · · · , N , (5.8)

where ε ∼ N (0, σ 2). To achieve this goal, certain restrictions have to be made on
the properties of the underlying function. Otherwise, all potential functions fitting the
training dataset would be equally valid. As a means of regularization, we assume that
the underlying function f is restricted to a class defined by a given Gaussian process.
A Gaussian process (GP) is a generalization of Gaussian probabilistic distribution
Rasmussen (2003). It is a collection of random variables, every finite subset of which
are jointly Gaussian (Urtasun and Darrell 2008). Gaussian process regression (GPR)
uses GPs to encode prior distribution over functions f . Thus, suppose f ∈ GP, then
it satisfies the following distribution point-wise:

f (z) ∼ N (m(z), k(z, z′)), (5.9)
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wherem(z) = E[ f (z)] is themean function and k(z, z′) = E[( f (z) − m(z))( f (z′) −
m(z′))�] is the covariance function encoded, apriori, by the kernel function k. The
model of GP contains two parts: a joint distribution model and a kernel function.
Kernel functions capture the similarity between the function’s (or model’s) outputs,
for given inputs. The design of the kernel function depends on the prior knowledge
of the process that generated the data in question. For example, suppose we know
that the output of the process changes slowly with respect to change in input, the
smoothness of prior knowledge can be modeled in the kernel function used by the
GP. One of the commonly used kernel functions is the square exponential covariance
function (also called RBF), given by Liu et al. (2018)

k
(
z, z′) = A exp

{

−‖z − z′‖2
2l

}

, (5.10)

where the hyperparameters A and l are amplitude coefficients and describe a single
scaling factor on the influence of nearby observations, respectively. For a compre-
hensive summary of kernel functions, the readers are directed to Liu et al. (2018).

Given a query point z� ∈ R
p for the auxiliary measurement, by applying Bayes’s

rule, the posterior distribution for j-th observed measurement y j = f j (z) is given
by

p(y j | z,D) = N (μ j (z),Σ j (z)), (5.11)

where

μ j (z) = k(z)�(K + σ 2
j I )

−1Y�
j

Σ j (z) = k(z�, z�) − k(z)�(K + σ 2
j I )

−1k(z), j = 1, 2, · · · ,m,
(5.12)

and K =
⎡

⎢
⎣

k(z1, z1) · · · k(z1, zN )
...

. . .
...

k(zN , z1) · · · k(zN , zN )

⎤

⎥
⎦ ∈ R

N×N , k(z) =
⎡

⎢
⎣

k(z1, z�)
...

k(zN , z�)

⎤

⎥
⎦ ∈ R

N are

covariance matrix on training dataset, and covariance vector between training
auxiliary states zi , i = 1, 2, · · · , N and the query point z� respectively.

The overall observed measurements’ posterior distribution is then given by

p(y | z,D) =
m∏

j=1

N
(
μ j (z),Σ j (z)

) = N (μ(z),Σ(z)), (5.13)

where μ(z) =
⎡

⎢
⎣

μ1(z)
...

μm(z)

⎤

⎥
⎦ , Σ(z) =

⎡

⎢
⎣

Σ1(z)
. . .

Σm(z)

⎤

⎥
⎦ . Next, the localization

algorithm based on the trained GPRs in (5.12), (5.13) is given in Algorithm 5.1.
Based on the localization algorithm, if a measurement cannot be explained by the
trained prior model, it will be recognized as being attacked. In other words, the prior
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model provides an additional layer of security by (1) requiring the attacker to have
knowledge of the auxiliary model and the parameters and (2) limiting the magnitude
of possible state corruption.

Algorithm 5.1 Localization Algorithm with Measurement Prior
I. Inputs: y ∈ R

m (real measurement), z ∈ R
p (auxiliary variables)

II. Parameters: m trained GPR models GP
III. Posterior distribution:

GP j (z) → {μ j ,Σ j } ∀ j = 1, 2, · · · ,m

IV. Calculate Z-score:

z j = y j − μ j

Σ j

V. Calculate probability:

pc j = 1 − PX (|x | ≤ |z j |) = 1 −
∫

|z j |
e− x2

2√
2π

∀ j = 1, 2, · · · ,m

VI. Attack support prior:

T = 0m; T j = 1 if pc j ≤ 0.5 ∀ j = 1, 2, · · · ,m

VII. Outputs: T ∈ R
m , (support prior), pc ∈ R

m (confidence)

5.3.4 Prior Pruning

As shown in the previous subsection, estimated support prior T̂ can be generated by
somemachine learning localization algorithms. However, there are major limitations
preventing their direct usage as the prior information in resilient observer design. One
is the huge amount of training often needed for high enough precision will prevent
such prior from being deployed for a dynamic observer, where the real-time update
is paramount. Another limitation is that the precision of data-driven results cannot
be guaranteed due to their inherent uncertainties. Consequently, several fundamental
questions emerge, which require significant research effort to address. For example,
what is the quantitative relation between the resulting resilient estimation error bound
and the auxiliary model uncertainty? In this subsection, a relationship is derived, or
such connection, and a prior pruningmethod is considered tomend some deficiencies
in order to improve the degradation due to the uncertainty of the prior model in the
final estimation error bound.

Let T = supp(e) be the unknown actual support of attacked channels. Let the
vector q ∈ {0 1}Tm be an indicator of T defined element-wise as:
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qi =
{
0 if i ∈ T
1 otherwise.

(5.14)

Thus, the output of the localization algorithm T̂ ⊆ {1, 2, · · · , Tm} is actually an
estimate of T , and its corresponding indicator q̂ ∈ {0 1}Tm is defined similarly to
(5.14). Consequently, the precision of the support prior is evaluated using positive
prediction value (Fawcett 2006) instead of true positive rate, F1 score, or other
evaluation metrics. This is because the only factor affecting the resilient estimation
performance is the error in the estimated prior support of safe nodes T̂ c, which is
directly used in the observer.

Definition 5.4 (Positive Prediction Value, Precision, PPV (Fawcett (2006))) Given
an estimate q̂ ∈ {0, 1}Tm of an unknown attack support indicator q ∈ {0, 1}Tm , PPV
is the proportion of q that is correctly identified in q̂. It is given by

PPV = ‖q 	 q̂‖�0

‖q̂‖�0

. (5.15)

Aswill be shown in subsequent sections, the precisionPPV is positively correlated
to the performance of resilient estimation.

The agreement between T̂ andT can be described using a Bernoulli uncertainty
model since T̂ can be seen as an output of binary classifier. Thus, the following
uncertainty model is considered:

qi = εi q̂i + (1 − εi )(1 − q̂i ), (5.16)

where εi ∼ B(1,pi ), with known pi ∈ R+ based on Receiver Operating Character-
istic (ROC). Here pi = E[εi ] = Pr {εi = 1}. Next, some initial results are given to
aid in the subsequent observer development.

Lemma 5.1 With respect to the uncertainty model in (5.16), the PPV defined in
(5.15) can be expressed as:

PPV = 1

|T̂ c|
∑

i∈ ˆT c

εi . (5.17)

Proof From (5.16), it follows that qi q̂i = εi q̂i . This implies that

PPV = ‖q 	 q̂‖�0

‖q̂‖�0

=
∑Tm

i=1 qi q̂i
∑Tm

i=1 q̂i
= 1

|T̂ c|
Tm∑

i=1

εi q̂i = 1

|T̂ c|
∑

i∈ ˆT c

εi .

�
Proposition 5.2 (Zheng and Anubi (2021)) The support estimate is better than
random flip of a fair coin if and only if
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Tm∑

i=1

pi > TmpA, (5.18)

where pA ∈ (0, 1) is the expected fraction of attacked nodes. Moreover, if pA is
the maximum fraction of attacked nodes, then the conclusion is sufficient, but not
necessary.

Lemma 5.2 (Fernández and Williams (2010)) Given mutually independent
Bernoulli random variables εi ∼ B(1,pi ), i = 1, · · · , N, the following holds:

Pr

{
N∑

i=1

εi = k − 1

}

= r(k), k = 1, · · · , N + 1, (5.19)

where r = β ·
[−s1

1

]

∗
[−s2

1

]

∗ · · · ∗
[−sm

1

]

, with β =
N∏

i=1

pi and si =

−1 − pi
pi

.

Now, we are ready to introduce the pruning method. The central idea is: if we
could identify the errors in the prior information, then the precision of prior can be
improved. In fact, the precision of prior will be improved by choosing an appropriate
subset. However, how to achieve the best pruning performance, quantify the precision
improvement, and improve resulting estimation resiliency are all essential but open
questions. Here, we will give a formal definition of pruning operation, then provide
some answers and give a simple algorithm to achieve sub-optimal pruning goal.

Definition 5.5 (Pruning, Pruning Operation, PPVη) Given a prior support estimate
T̂ , Pruning Operation, with parameter η, is any operation, or sequence of operations,
which returns an updated estimated support prior T̂η ⊂ {1, · · · , Tm} such that

T̂ c
η ⊆ T̂ c.

Also the precision of pruned support prior T̂η is given by

PPVη = 1

|T̂ c
η |
∑

i∈ ˆT c
η

εi . (5.20)

The following proposition quantifies the resulting precision improvement through
the defined pruning operation.

Proposition 5.3 Given an estimated attack support T̂ ⊆ {1, 2, · · · , Tm} with the
uncertainty characteristic described in (5.16). Let T̂η be a pruned support estimate

satisfying T̂ c
η ⊆ T̂ c, then, for any γ ∈ (0, 1),
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Fig. 5.3 A comparison
between random pruning
operation and ordered
pruning operation

Pr
{
PPVη − γPPV ≥ 0

} ≥
| ˆT c

η |+1
∑

j=1

⎛

⎝rη( j)
Φ j−1+1∑

i=1

r̃(i)

⎞

⎠ , (5.21)

where

rη =
⎛

⎜
⎝
∏

i∈T̂ c
η

pi

⎞

⎟
⎠

[−sη,1
1

]

∗
[−sη,2

1

]

∗ · · · ∗
[−s

η,|T̂ c
η |

1

]

, sη,i = −
1 − p

T̂ c
η ,i

p
T̂ c

η ,i

,

r̃ =
⎛

⎜
⎝

∏

i∈T̂ c\T̂ c
η

pi

⎞

⎟
⎠

[−s̃1
1

]

∗
[−s̃2

1

]

∗ · · · ∗
[−s̃|T̂ c\T̂ c

η |
1

]

, s̃i = −
1 − p

T̂ c\T̂ c
η ,i

p
T̂ c\T̂ c

η ,i

,

and Φk = min

{

�[
] |T̂ c|

γ |T̂ c
η | − 1�k, |T̂ c| − |T̂ c

η |
}

.

The lower bound given by Proposition 5.3 can be expressed as r�
η rΦ, where

rΦ ∈ [0, 1]| ˆT c
η | is a vector whose entries are functions of |T̂ c|, |T̂ c

η |, γ and r̃. Thus,

given pi , T̂ , γ and a fixed integer lη ≤ |T̂ c|, the pruned support T̂η can be chosen to
maximize r�

η rΦ . However, such optimization problem is challenging and potentially
NP-hard due to the index searching operation involved. But a simple heuristic of
returning the indices of the channels with largest pi in T̂ c

η can provide a very good
sub-optimal estimation. This idea is central to the pruning algorithm considered
in this chapter. Figure5.3 shows the comparison of the ordered pruning idea vs.
randomly selecting a subset of T̂ . This illustrative example clearly demonstrates
that ordered operation can offer some advantages. Next, one of the ordered pruning
algorithms is given in Algorithm 5.2.
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Algorithm 5.2 Support Prior Pruning Algorithm
I. Obtaining reliable trust parameter
Given reliability level η ∈ (0, 1), return the maximum size lη such that lη safe nodes are correctly
localized with a probability of at least η:

lη = max

⎧
⎨

⎩
k | Pr

⎧
⎨

⎩

∑

i∈ ˆT c

εi ≥ k

⎫
⎬

⎭
≥ η

⎫
⎬

⎭

= max

{

k |
k+1∑

i=1

r ˆT c (i) ≤ 1 − η

} (5.22)

where r ˆT c is given by (5.19), using the index set T̂ c. II. Pruning
A pruned support prior is obtained through a robust extraction:

T̂ c
η = {argsort ↓ (p 	 pc)

}lη
1 . (5.23)

where, {·}lη1 is an index extraction from the first elements to lη elements, pc is the confidence vector
outputted by Algorithm 5.1, p is the probability vector of agreement ε based on ROC.

For pragmatic reasons, it is important to ensure that lη > 0 in (5.21). This is
guaranteed if η is chosen such that at least one node is selected into the pruned set.
Formally, this condition is given by:

η ≤ max
i∈ ˆT c

(pi ). (5.24)

Definition 5.6 (η-successful pruning algorithm) A η-successful pruning algorithm
is any pruning operation, as defined in Definition 5.5, that achieves:

Pr
{
PPVη = 1

} ≥ η.

Proposition 5.4 (Zheng and Anubi (2021)) Given support prior estimate T̂ gener-
ated by an underlying localization algorithm with associated uncertainty model in
(5.16), the pruning algorithm in Algorithm 5.2 is η-successful.

5.4 Pruning-Based Resilient Estimation

In this section,wewill go through resilient observer designs using �0\�1 minimization
schemes. Firstly, the unconstrained �1 observer will be stated. Then, we will give a
weighted �1 observer design and state the condition for resilient estimation with the
pruned prior support. Furthermore, the quantified relationship between the precision
of prior support and the resilient estimation performance will be clarified.
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Researchers in compressed sensing have paid much attention to the recoverabil-
ity of �0\�1 minimization problem in the last decade. Most of the effort focused
on finding well-defined compressed matrix satisfying Null Space Property (NSP) or
Restricted Isometry Property (RIP) . Then, the complete information can be recon-
structed by �0\�1 minimization problem from the compressed measurements. From
a mathematical aspect, the decoding process is to solve an under-determined set of
equations, which does generally not have unique solutions. However, if the required
solution is sparse, it can be recovered completely via �0 minimization. The condition
on sparsity for exact unique recovery is also well known. However, the �0 mini-
mization problem is an NP-hard optimization problem. However, NSP or RIP pave
way for a convex relaxation via the �1 minimization problem. Interested readers are
directed to Donoho (2006), Candès et al. (2006), Candes and Tao (2005), Fornasier
and Rauhut (2015) for more comprehensive treatment of compressed sensing, and
Candes and Tao (2007), Friedlander et al. (2011) for several extension cases.

The basic motivation for using �1 minimization for attack-resilient estimation
is because the attack is possibly unbounded but is necessarily sparse. Consider the
measurementmodel in (5.2), if a codingmatrix F can be found that satisfies FH = 0,
then a new under-determined equation Fy = Fe is obtained. If the sparse attack
vector is recovered, the resilient estimation goal is easily achieved. In this section,
instead of finding a coding matrix F directly, we would formulate the problem
within the familiar framework of linear systems theory and prove results similarly
to compressed sensing literature.

5.4.1 Unconstrained �1 Observer

In this subsection, we discuss the uniqueness of resilient estimation solutions in
the presence of measurement attacks and introduce the concept of Column Space
Property (CSP). Furthermore, the estimation error bound is given using CSP.

Consider the system model in (5.1) and the unconstrained �1 decoder in (5.3), a
formal notion of attack recovery is given as following:

Definition 5.7 (Resilient Recovery) k sensor attacks are correctable after T steps
by D : (Rm)T → R

n if for any x0 ∈ R
n and any sequence of attack vectors

e0, e1, . . . , eT−1 ∈ R
m with supp(et ) ≤ k, we have D(y0, · · · , yT−1) = x0.

The following theorem states the uniqueness of resilient estimation solution:

Theorem 5.1 Given attack support T = {Ti ,Ti−1, . . . ,Ti−T+1} with |Ti | ≤ k.
Consider the noise-free version of the measurement model in (5.2). If, for any
h ∈ range(H), it is true that

‖hS ‖1 ≤ ‖hS c‖1, ∀S ⊂ {1, 2, · · · , Tm}, |S | ≤ T k, (5.25)

then, for each attacked measurement yT ∈ R
Tm, there exists an unique state vector

x̂ ∈ R
n and T k-sparse attack vector ê which satisfy (5.2).
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Proof Let (z1, e1), (z2, e2) ∈ R
n × ΣT k such that yT = Hz1 + e1 = Hz2 + e2,

then H(z1 − z2) = e2 − e1. Thus, the uniqueness condition holds iff range(H) ∩
Σ2T k = {0}. Now, given h ∈ range(H) which satisfies (5.25), it suffices to show
that ‖h‖0 > 2T k.

Suppose, for the sake of contradiction, that ‖h‖0 ≤ 2T k. Choose S ∈
{1, 2, · · · , Tm}, |S | = T k to be the indices of the largest components of h in abso-
lute value.

Then, it must be that

‖hS ‖0 > ‖hS c‖0 ⇒ ‖hS ‖1 > ‖hS c‖1,

which is a contradiction. Thus, (5.25) implies that ‖h‖0 > 2T k. �

Consequently, a formal definition of column space property is given as follows.

Definition 5.8 (Column Space Property (CSP)) A matrix H ∈ R
m×n has a Column

Space Property of order s < m (denoted as H � CSP(s)) if there exists β ∈ (0, 1)
such that, for every h ∈ range(H),

‖hS ‖1 ≤ β‖hS c‖1, ∀S ⊂ {1, 2, · · · ,m}, |S | ≤ s. (5.26)

The above definition is similar to the well-known Null Space Property but defined
on the range space instead. For dynamic system (5.1), the unconstrained �1 observer
is defined as a moving-horizon unconstrained �1 minimization problem:

Minimize
i∑

j=i−T+1

‖y j − Cx j‖1

Subject to x j+1 − Ax j = 0, j = i − T + 1, . . . , i − 1.

(5.27)

An equivalent optimization problem of (5.27) is given by

Minimize
x∈Rn

‖yT − Hx‖1. (5.28)

The following theorem gives the conditions for resilient recovery of the state
vector obtained by the above observer.

Theorem 5.2 (Resilient Recovery with CSP) Consider the measurement model in
(5.2), let T = {Ti ,Ti−1, . . . ,Ti−T+1}, with |Ti | ≤ k, be the unknown sequence of
the attack support. If H � CSP(T k), the estimation error due to the decoder in (5.28)
can be upper bounded as:

‖x̂ − x‖2 ≤ 2(1 + β)

σ(1 − β)
ε, (5.29)

for some β ∈ (0, 1), and σ is the smallest singular value of H.
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Proof Let x̂ be the optimal solution of (5.28), then its optimality yields

‖y − H x̂‖1 ≤ ‖y − Hx‖1 = ‖e‖1
‖y − Hx + H(x − x̂)‖1 ≤ ‖e‖1.

Let x̃ = x − x̂, and since 1-norm is decomposable for disjoint sets, then

‖e + H x̃‖1 ≤ ‖e‖1,
‖eT + HT x̃‖1 + ‖eT c + HT c x̃‖1 ≤ ‖eT ‖1 + ‖eT c‖1,

‖eT ‖1 − ‖HT x̃‖1 − ‖eT c‖1 + ‖HT c x̃‖1 ≤ ‖eT ‖1 + ‖eT c‖1.

And let h = H x̃, it follows

‖hT c‖1 ≤ ‖hT ‖1 + 2ε. (5.30)

Since H � CSP(T k), there exist β ∈ (0, 1) such that ‖hT ‖1 ≤ β‖hT c‖1.
Thus ‖hT ‖1 ≤ 2β

1−β
ε. Then, ‖h‖2 ≤ ‖hT ‖1 + ‖hT c‖1 ≤ 2‖hT ‖1 + 2ε ≤ 2(1+β)

1−β
ε.

Finally, combining with σ‖x̃‖2 ≤ ‖h‖2 yields the error bound in (5.29). �

Notice that the CSP condition with β ∈ (0, 1) is a violation of the condition stated
in (5.7), which is a guarantee of successful FDIA. TheCSP condition is relevant to the
sparsity of the attack vector. As shown in literature Fawzi et al. (2014), the number of
attacks is one of the most important factors deciding if successful resilient estimation
would be achieved.With the increasing power of FDIA, it is more likely that the CSP
condition would be violated. This is one of the motivations for finding an improved
resilient estimation method in the worst environment.

5.4.2 Resilient Pruning Observer

In this subsection, we incorporate prior information into the resilient observer design.
First, support prior T̂ is generated by the localization algorithm in Algorithm 5.1.
Then the pruning algorithm in Algorithm 5.2 is used to improve the precision of
the support prior. Finally, a weighted �1 observer scheme is proposed to utilize the
pruned support prior T̂η. This process is summarized in Fig. 5.4.

Fig. 5.4 Schematic
depiction of resilient
observer design with prior
pruning
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Consider a time horizon T and a set of attack support prior obtained by
Algorithm 5.1: T̂ = {T̂i , T̂i−1, . . . , T̂i−T+1}. The following weighted �1 observer
is considered:

Minimize
i∑

j=i−T+1

‖y j − Cx j‖1,w( ˆT j ,ω)

Subject to x j+1 − Ax j = 0, j = i − T + 1, . . . , i − 1,

(5.31)

where, for ω ∈ (0, 1), the weight vector w(T̂ j , ω) ∈ R
m is defined element-wise

as

w(T̂ j , ω)l =
{

ω if l ∈ T̂ j

1 otherwise.
(5.32)

The optimization problem in (5.31) is equivalent to

Minimize
z∈Rn

‖yT − Hz‖1,w( ˆT ,ω)
, (5.33)

where w(T̂ , ω) =
⎡

⎢
⎣

w(T̂i , ω)
...

w(T̂i−T+1, ω)

⎤

⎥
⎦ ∈ R

Tm .

Theorem 5.3 (Resilient Recovery with support prior T̂ ) Consider the measure-
ment model in (5.2), let T = {Ti ,Ti−1, . . . ,Ti−T+1}, with |Ti | ≤ k, be the
unknown support sequence of the attack vector such that

∑

i∈T c

|ei | < ε. Let T̂ =
{T̂i , T̂i−1, . . . , T̂i−T+1} be a support prior estimate satisfying

|T̂ | = ρ|T | and |T ∩ T̂ | = α|T̂ |. (5.34)

If H � CSP(κT k), where κ = ρ + 1 − 2αρ with ρ > 0, α ∈ (0, 1), then the esti-
mation error due to the decoder in (5.31) can be upper bounded as:

‖x̂ − x‖2 ≤ 2(1 + β)

σ(1 − β)
ε, (5.35)

for some β ∈ (0, 1), where σ is the smallest singular value of H.

Proof Let x̂ be the optimal solution of (5.33), and define x̃ = x − x̂,h = H x̃. Similar
to the proof of Theorem 5.2, the optimality of x̂ yields

‖e + h‖1,w( ˆT ,ω)
≤ ‖e‖1,w( ˆT ,ω)

. (5.36)
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By the definition of weighted 1-norm, it follows that ω‖e ˆT + h ˆT ‖1 + ‖e ˆT c +
h ˆT c‖1 ≤ ω‖e ˆT ‖1 + ‖e ˆT c‖1, then

ω‖e ˆT ∩T + h ˆT ∩T ‖1 + ω‖e ˆT ∩T c + h ˆT ∩T c‖1 + ‖e ˆT c∩T + h ˆT c∩T ‖1
+ ‖e ˆT c∩T c + hc

ˆT c∩T ‖1 ≤ ω‖e ˆT ∩T ‖1 + ‖e ˆT ∩T c‖1 + ‖e ˆT c∩T ‖1 + ‖e ˆT c∩T c‖1.

Using the reverse triangle inequality yields

ω‖h ˆT ∩T c‖1 + ‖h ˆT c∩T c‖1 ≤ ‖h ˆT c∩T ‖1 + ω‖h ˆT ∩T ‖1 + 2(‖e ˆT c∩T c‖1 + ‖e ˆT ∩T c‖1).

Adding and subtracting ω‖h ˆT c∩T c‖1 on the left, and ω‖h ˆT c∩T ‖1, ω‖e ˆT c∩T c‖1 on
the right yields:

ω‖hT c‖1 + (1 − ω)‖h ˆT c∩T c‖1 ≤ (1 − ω)‖h ˆT c∩T ‖1 + ω‖hT ‖1
+2(ω‖eT c‖1 + (1 − ω)‖e ˆT c∩T c‖1).

Again, adding and subtracting (1 − ω)‖h ˆT ∩T c‖1 on the left and substituting∑

i∈T c

|ei | < ε yields:

‖hT c‖1 ≤ ω‖hT ‖1 + (1 − ω)(‖h ˆT c∩T ‖1 + ‖h ˆT ∩T c‖1) + 2ε.

Let Tα � (T̂ c ∩ T ) ∪ (T̂ ∩ T c) = T̂ ∪ T \ T̂ ∩ T . It follows that |Tα| =
κ|T | ≤ κT k. Also, since T̂ c ∩ T and T̂ ∩ T c are disjoint, the inequality above
becomes

‖hT c‖1 ≤ ω‖hT ‖1 + (1 − ω)‖hTα
‖1 + 2ε. (5.37)

Since H � CSP(κT k), we have

‖hT ‖1 ≤ β‖hT c‖1 (5.38)

‖hTα
‖1 ≤ β‖hT c

α
‖1. (5.39)

Using (5.39) and property of 1-norm yields:

‖hTα
‖1 + ‖hT c

α
‖1 = ‖h‖1

‖hTα
‖1 ≤ β

1 + β
‖h‖1. (5.40)

Then, substituting (5.38) and (5.40) into (5.37) yields

(1 − βω)‖hT c‖1 ≤ β(1 − ω)

1 + β
‖h‖1 + 2ε. (5.41)

Next,
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‖h‖1 = ‖hT ‖1 + ‖hT c‖1 ≤ (1 + β)‖hT c‖1 ≤ β(1 − ω)

1 − βω
‖h‖1 + 2(1 + β)

1 − βω
ε,

then ‖h‖2 ≤ ‖h‖1 ≤ 2(1+β)

1−β
ε. Finally, combiningwith σ‖x̃‖2 ≤ ‖h‖2 yields the error

bound in (5.35). �

The estimation error bound in Theorem 5.3 is the same as the one in Theorem 5.2.
The only difference is that the upper bound of the number of attacks which can be
corrected by the underlying observer is governed by κ . If κ < 1, then the weighted
�1 observer with prior (5.31) has better attack-resiliency compared to the uncon-
strained �1 observer (5.27). Furthermore, the size of κ is actually the relative size of
the disagreement set Tα = T̂ ∪ T \ T̂ ∩ T between T and T̂ . Specifically, the
quantified relationship between the precision of support prior PPV and the disagree-
ment size κ is given by:

κ = ρ − 1 + 2(1 − PPV)(Tm − ρ|T |)
|T | ,

where ρ is given in (5.34). It is seen that the precision of support prior has a negative
correlation to the disagreement size κ . Thus, it has a positive correlation to the
attack-resiliency of the underlying observer. Another way to see this is to observe
that the condition in Theorem 5.3 can be stated as |Ti | ≤ Tk

κ
and H � CSP(T k),

from which it is clear that κ < 1 implies that more attacks can be accommodated by
the observer with prior. This is the main motivation for the pruning algorithm. Next,
the following corollary gives a better attack-resiliency of weighted �1 observer with
the pruned support T̂η.

Corollary 5.1 (Resilient Recovery with Pruned Prior T̂η) Given a support prior
T̂ = {T̂i , T̂i−1, · · · , T̂i−T+1} generated by the localization algorithm in Algo-
rithm 5.1. Let T̂η be the pruned support prior obtained from T̂ according to Algo-
rithm 5.2 with a parameter η ∈ (0, 1). Let the precision of T̂η be denoted by PPVη.

If H � CSP(κ1T k), where κ1 = |T c|+lη(1−2PPVη)

|T | , then the estimation error due to

(5.31) with T̂η can be upper bounded as

‖x̂ − x‖2 ≤ 2(1 + β)

σ(1 − β)
ε, (5.42)

for some β ∈ (0, 1), and σ is the smallest singular value of H.
Furthermore,with probability at leastη, the smallest disagreement size is obtained

as

κ1 = Tm − lη
|T | − 1. (5.43)

Proof (5.42) can be obtained by following the proof of Theorem 5.3 but usingPPVη

instead. To obtain (5.43), observe that with probability at least η, PPVη = 1. �
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5.5 Simulation Results

In this section, three application examples are given in power grid, wheeled mobile
robot, and water distributed system, respectively. These application examples are
used to demonstrate how to implement the developed observer in previous sections.
And the proposed pruning-based observer is compared to some well-known resilient
observers in literature, which shows the resilience of CPS is improved using the
pruning algorithm and concurrent learning prior.

5.5.1 Resilient Power Grid

Here, we implement the proposed pruning observer on an IEEE 14-bus system. The
simulation scenario is shown in Fig. 5.5. The bus system has nb = 14 buses and
ng = 5 generators. It is assumed that each bus in the network is equipped with IIoT
sensor devices, which provide the corresponding active power injection and flow
measurements.

A small signal model is constructed by linearizing the generator swing and power
flow equations around the operating point. The following linearizing assumptions
are made:

1. Voltage is tightly controlled at their nominal value.
2. Angular difference between each bus is small.
3. Conductance is negligible therefore the system is lossless.

By ordering the buses such that the generator nodes appear first, the admittance-

weightedLaplacianmatrix can be expressed as L =
[
Lgg Llg

Lgl Lll

]

∈ R
N×N , where N =

Fig. 5.5 Block diagram depiction of resilient power grid
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Fig. 5.6 Bad data detection result (the residual threshold is set as 0.05, 60% of measurement nodes
are attacked)

ng + nb. Thus, the dynamical linearized swing equations and algebraic DC power
flow equations are given by:

⎡

⎣
I 0 0
0 M 0
0 0 0

⎤

⎦ ẋ = −
⎡

⎣
0 −I 0
Lgg Dg Llg

Lgl 0 Lll

⎤

⎦ x +
⎡

⎣
0 0
I 0
0 I

⎤

⎦u, (5.44)

where x = [δ� ω� θ�]� ∈ R
2ng+nb is the state vector containing generator rotor

angle δ ∈ R
nb , generator frequency ω ∈ R

ng , and voltage bus angles θ ∈ R
nb . u =

[P�
g P�

d ]� ∈ R
ng+nb is the input vector consisting of mechanical input power from

each generator Pg ∈ R
ng and active power demand at each bus Pd ∈ R

nb , M is a
diagonal matrix of inertial constants for each generator, and Dg is a diagonal matrix
of damping coefficients.API regulator is included to regulate the generator frequency
in order to control the Pg . The system in (5.44) is then simplified as follows:

[
δ̇

ω̇

]

=
[

0 I
−M−1(Lgg − Lgl L

−1
ll Llg) −M−1Dg

] [
δ

ω

]

+
[

0 0
M−1 −M−1Lgl L

−1
ll

]

u,

[
ω

Pnet

]

=
[

0 I
−PnodeL

−1
ll Llg 0

] [
δ

ω

]

+
[

0 0
PnodeL

−1
ll 0

]

u,

θ = −L−1
ll (Llgδ − Pd ),

(5.45)
where Pnode is a function of the system incidence and susceptance matrices obtained
by linearizing the active power injections at the buses (Scholtz 2004), and Pnet is the
net power injected at each bus. As shown in Fig. 5.5, the FDIA designed using (5.5)
and (5.6) is injected into system through the sensor channels. The bad data detection
residual is then calculated after the FDIA is injected, as shown in Fig. 5.6. The figure
indicates the designed FDIA can bypass the bad data detector.

The prior model is a set of trained Gaussian process regression models mapping
from the real load data of New York (NY) state provided by the NY Independent
System Operator (NYISO) to IEEE 14-bus model (see Power System Test Case
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Fig. 5.7 GPRs’ prediction error metrics for all measurement nodes (The mean relative absolute
error is used to evaluate the prediction performance)

Fig. 5.8 The precision of support prior generated by the localization algorithm in Algorithm 5.1
for the power grid (The mean of precision is 0.655)

Archive 2022 for details of the model) measurements. Five-minute load data of
NYISO for 3months (between January and March) in 2017 and 2018 are used. The
IEEE 14-bus model is mapped onto the NYISO transmission grid (see New York
control area load zone map 2022 for details) as follows: A → 2, B → 3, C → 4,
D → 5, E → 6, F → 9, G → 10, H → 11, I → 12, J → 13, K → 14. Then,
the market variables downloaded from the respective nodes of NYISO transmission
grid are collected into the auxiliary vector variable z = [zlbmp zmcl zmcc], where
zlbmp is the locational bus marginal prices ($/MWh), zmcl is the marginal cost loses
($/MWh), and zmcc is the marginal cost congestion ($/MWh).

Using the load data downloaded at NY load zones for the same time period and
interval as output, GPR models were trained to map the auxiliary vector z to each
corresponding bus measurements y j containing active power and reactive power of
load buses. As shown in (5.12), the trained GPR models are executed to give the
mean μ(z) and the covariance Σ(z) of prior model for each of the measurements.
The prediction performance of those GPR models, measured by the mean relative
absolute errors (MRAE), is shown in Fig. 5.7. Finally, the localization algorithm in
Algorithm 5.1 is implemented on the system model in (5.45). The precision of the
generated support prior calculated at each time instance is shown in Fig. 5.8. The
mean of precision is 0.655, which indicates the localization algorithm at least works
better than random flip of fair coin.
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Furthermore, the developed resilient observer with support prior pruning is com-
pared with some well-known resilient observers in literature. Luenberger observer
(LO) is also included to serve as a reference and to show the effectiveness of the
designedFDIA.The unconstrained �1 observer (UL1O) (5.27), event-triggeredLuen-
berger observer (ETLO) (Shoukry and Tabuada 2015), and multi-model observer
(MMO) (Anubi et al. 2020) are all resilient observers included in the comparison.
MMO is a �1 observer with multiple constraints including system updating law and
themeasurement prior in (5.12). The core optimization problem solved for theMMO
is:

Minimize
k∑

i=k−T+1

‖yi − Cxi‖1

Subject to xi+1 − Axi − Bui = 0 j = i − T + 1, . . . , i − 1

‖Cxk − μ (zk)‖2Σ−1(z) ≤ χ2
m(τ ),

(5.46)

where χ2
m(τ ) is the quantile function for probability τ of the chi-squared distribution

with m degrees of freedom, and τ is the a pre-defined confidence threshold.
ETLO uses event-triggered projected gradient descent technique to achieve fast

and reliable solution to the batch optimization problem

Minimize: ‖Yt − [H I ]zt‖22
Subject to: zt ∈ R

n × ΣT k,

(5.47)

where the decision variable zt is an augmented states containing desired initial states
and all injected measurement error in T time horizon, Yt = [y1(t − T + 1)� y1(t −
T + 2)� · · · y1(t)� · · · · · · ym(t − T + 1)� ym(t − T + 2)� · · · ym(t)�]� ∈
RTm is the collection of measurements in T time horizon. A recursive solution to
(5.47) is then implemented as a Luenberger-like update

ẑ(m+1)
t = ẑ(m)

t + 2[H I ]�(Yt − [H I ]ẑ(m)
t ), (5.48)

alternated with a projection

ẑΠ = Π(ẑ), (5.49)

where Π : Rn × R
Tm → R

n × ΣT k is the associated projection operator.
Figure5.9 shows the comparison of the bus angles estimation errors for the dif-

ferent observers. it is seen that the RPO has the least error of all five observers.
The Luenberger observer is completely unstable as a result of the FDIA, which was
designed by compromising 19 sensor measurements. For the MMO, the value of
τ = 0.1 was used for the confidence value. For the ETLO, the value of v = −0.01
was used for the decreasing level of V . According to Theorem 5.3, it is proved that
the resiliency of observer can be improved by including support prior, thus, UL10
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Fig. 5.9 A comparison result of estimation error of bus angles by five observers on IEEE 14-bus
system (5.45) (LO: Luenberger observer, UL1O: unconstrained �1 observer, ETLO: event-triggered
Luenberger observer, MMO: multi-model observer, RPO: resilient pruning observer)

Fig. 5.10 Awater distribution tank coupling control system under false data injection attacks (black
solid lines are water pipelines, blue dotted lines are wireless data transmission lines for sensors data
and control commands, orange dotted lines are the attack injection paths)

works worse than MMO using the measurement prior directly and RPO using the
pruned support prior. Based on the Proposition 5.3, the pruning algorithm improves
the precision of the prior information, thereby the localization precision of the mea-
surement prior used in MMO is worse than the precision of the pruned support prior
used in RPO. Although there is no strict theoretical proof, it can be seen in Fig. 5.9
that RPO has better resiliency than MMO. Moreover, ETLO has the most smooth
estimation results since it used a projected gradient descent technique to solve the
optimization program in (5.47), which scarifies partial resilient performance during
recursive process.
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5.5.2 Resilient Water Distribution System

In this subsection,we introduce another application example on awater tank coupling
control system, shown in Fig. 5.10. The tank coupling system in Yang et al. 2020 is
extended to an 11-tank system, which contains 10 operatingwater tanks and a storage
tank. The goal is to regulate all operating tanks’ water levels around desired values.
The magnetic valves v at the entrance pipelines of operating tanks are controlled
to adjust the tank water levels. The magnetic valve at the entrance of the storage
tank is fixed at a constant opening value. It is assumed that there are water level
measurement sensors and pressure sensors in the pipelines. The pressure sensors can
measure the difference in water levels between adjoin tanks on each line. Thus, there
are 19 measurements total. The water level adjustment process can be approximated
by the LTI model:

ḣ = Ah + Bv

y = Ch,
(5.50)

where h, v ∈ R
10, y ∈ R19. The system dynamics is given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.5815 0 0 0 0 0 0 0 0 0
0.1870 −0.5906 0 0 0 0 0 0 0 0

0 0.1870 −0.5127 0 0 0 0 0 0 0
0 0 0.1870 −0.5913 0 0 0 0 0 0
0 0 0 0.1870 −0.5632 0 0 0 0 0
0 0 0 0 0.1870 −0.5098 0 0 0 0
0 0 0 0 0 0.1870 −0.5278 0 0 0
0 0 0 0 0 0 0.1870 −0.5547 0 0
0 0 0 0 0 0 0 0.1870 −0.5958 0
0 0 0 0 0 0 0 0 0.1870 −0.5965

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.8315 −0.8450 0 0 0 0 0 0 0 0
0 0.9941 −0.8450 0 0 0 0 0 0 0
0 0 0.9914 −0.8450 0 0 0 0 0 0
0 0 0 0.8971 −0.8450 0 0 0 0 0
0 0 0 0 0.9610 −0.8450 0 0 0 0
0 0 0 0 0 0.8284 −0.8450 0 0 0
0 0 0 0 0 0 0.8844 −0.8450 0 0
0 0 0 0 0 0 0 0.9831 −0.8450 0
0 0 0 0 0 0 0 0 0.9584 −0.8450
0 0 0 0 0 0 0 0 0 0.9919

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I10

1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The model in (5.50) was discretized using Euler discretization scheme with
sampling time 0.01s. A discrete LQR controller is designed using Q = 103 ×
diag{2, 1, 1, 2, 1, 1, 2, 1, 1, 2} and R = 0.2 × I10 to obtain the feedback control gain
K to regulate the water levels at hd = 0.01 ∗ 110, The control law is given by

v = −K (h − hd) − B−1Ahd + B−1hd .

The attack percentage is set as PA = 0.6, and by using the designed FDIA (5.6), it can
bypass the bad data detection threshold. Due to the lack of actual auxiliary data for
this case, sample support prior is created by generating uniformly distributed random
numbers in the interval [0, 1] for each measurement node. These numbers represent
the localization confidence values pi ’s used in Algorithm 5.2. The generated prior
information represents a localization algorithm whose performance is comparable
to the random flip of a fair coin. The reason for this is to show how the observers
perform using a relatively poor localization algorithm. The precision of the generated
support prior is shown in Fig. 5.11, the mean of precision is 0.5588. For a more
realistic situation, possible candidate auxiliary variables include atmospheric data
like temperature, humidity, atmospheric pressure, or any other values that can affect
the flow of water in a long pipe. Market data and time of day are also great candidates
for auxiliary variables.

Then the resilient estimation schemes described in the last subsection are also
implemented for this system. The comparison of the resulting estimation errors is
presented in Table5.1, in which relative mean square error and maximum absolute
error are given. Again, as seen in the table, the RPO outperforms the other observers
in terms of the given error metrics.

5.5.3 Resilient Wheeled Mobile Robot

For this example, a nonlinear observer scheme based on prior information is given
for the resilient motion control of wheeled mobile robot. Non-holonomic wheeled
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Fig. 5.11 The precision of support prior generated by the localization algorithm in Algorithm 5.1
for water tank coupling system (The mean of precision is 0.5588)

Table 5.1 Error metric values for four resilient observers on water tank coupling system (RMS
Metric: relative mean square error, Max. Ans. Metric: maximum absolute error)

RMS Metric Max. Ans. Metric

LO UL1O MMO RPO LO UL1O MMO RPO

e1 1.4434 2.5657e-6 2.0794e-6 3.5704e-10 21.8421 4.6746e-5 4.6655e-5 5.7127e-9

e2 1.5088 5.8117e-6 2.1444e-8 4.3079e-10 23.0772 1.5826e-4 5.1996e-7 5.7700e-9

e3 0.8018 4.1172e-8 2.1381e-10 4.3901e-10 13.9374 1.1886e-6 3.4310e-9 9.6873e-9

e4 0.7350 4.5476e-6 4.5476e-6 3.2479e-10 14.4943 1.4388e-4 1.4388e-4 4.4373e-9

e5 0.5645 2.2444e-5 1.7216e-5 3.5302e-10 9.8116 4.7845e-4 3.7122e-4 4.8049e-9

e6 1.0332 3.3578e-5 1.7473e-5 4.1156e-10 15.5191 5.5419e-4 3.7748e-4 8.1021e-9

e7 1.1802 2.2776e-5 1.6834e-5 3.8149e-10 17.1720 4.1583e-4 3.7724e-4 5.5387e-9

e8 1.2172 3.8198e-5 2.2591e-6 1.1470e-6 20.5512 0.0010 6.1343e-5 3.6289e-5

e9 0.9802 2.2720e-5 2.2118e-5 2.0543e-6 18.1152 3.4706e-4 3.4706e-4 6.2776e-5

e10 2.6151 1.0291e-4 2.0641e-6 2.3344e-7 28.5826 0.0030 6.1424e-5 7.3509e-6

mobile robot is considered with IIoT sensors, its dynamical and kinematic model
can be described as Dhaouadi and Hatab (2013)

q̇ = M−1(−Dq + Bτ ) + w � g(x, u) + w
⎡

⎣
θ̇

· · ·
ż

⎤

⎦ =
⎡

⎣
0 1
· · ·
C(θ)

⎤

⎦q � C̄(θ)q,
(5.51)

where q = [v ω]� is the generalized body velocities vector, u � τ = [τR τL ]� is
a vector of the wheels torques, and z = [x y]� is the task-space position vector,
x = [θ v ω]� is defined as a state vector, w ∼ N (0, R) is the process noise in
dynamics. The kinematic and dynamical parameters are given by:

M =
[
m 0
0 md2 + J

]

, D =
[

0 −mdω

mdω 0

]

, B = 1

r

[
1 1
L −L

]

,C(θ) =
[
cos(θ) −d sin(θ)

sin(θ) d cos(θ)

]

.
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Fig. 5.12 Block diagram depiction of the resilient motion control of wheeled mobile robot

The corresponding measurement system is given by

y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1

1/4r L/4r
1/4r −L/4r
cos(θ) −d sin(θ)

sin(θ) d cos(θ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

· q + v � f (x) + v + e, (5.52)

where v denotes measurement noise terms, e denotes the attack vector.
Given a desired 2D “Fig. 5.8” path described by the continuous function:

zd =
[
xd(t)
yd(t)

]

=
[

a cos(t)
1+sin2(t)

a sin(t) cos(t)
1+sin2(t)

]

, θd(t) = arctan

(
yd(t)

xd(t)

)

,

a stable path-tracking controller was given in Zheng and Anubi (2020) as

τ = B−1(Mu + Dq), (5.53)

where u = −kq(q − qd) + q̇d − C̄(θ)�̃e, with

qd = C−1(θ)(żd − keez),

q̇d = −ke(Ċ
−1(θ)ez + q) + C−1(θ)[z̈d + (ke + C(θ)Ċ−1(θ))żd ],

and kq , ke are positive scalar control gains.
The next task is to design a nonlinear observer to recover the real state x under the

compromised measurements y, shown in Fig. 5.12. According to Theorem 5.4, the
precision of T̂ c

η can achieve 100% with a probability lower bound. Thus, Unscented

Kalman Filter (UKF) can be used on the safe subset ofmeasurements denoted by T̂ c
η .

The control system with resilient Kalman filter is shown schematically in Fig. 5.12.
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Fig. 5.13 Path tracking performance (UKF: unscented Kalman filter, UKF with prior: unscented
Kalman filter with the prior generated by localization algorithm in Algorithm 5.1, UKF with prior
pruning: unscented Kalman filter with pruned prior generated by Algorithm 5.2)

Fig. 5.14 Estimations of robot’s forward velocity v and angular velocity ω by three observers
(Black line is the nominal state estimation, blue line is the estimation by those three observers in
presence of FDIA)
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Figures5.13 and 5.14 show the comparisons of the tracking performances between
UKF, UKF with the prior, and UKF with prior and pruning. It is well known in the
literature that KF cannot recover exact states in the presence of FDIA. Figures5.13
and 5.14 confirm this fact. Specifically, it is seen that the path-tracking task and state
estimation totally fail with only UKF. By adding prior information obtained by the
localization algorithm whose mean of precision is around 0.6, the motion control
performance is improved but has big oscillatory due to the imperfect precision.
However, with the developed pruning algorithm, the robot was able to track the
reference path very closely and smoothly.

5.6 Conclusion

In this chapter, a resilient observer design with prior pruning was described. First,
it was shown that good support prior (better than the random flip of a fair coin)
can result in significant improvement over well-known resiliency limits in literature.
Next, a pruning algorithm was given to improve the resulting localization precision
without additional training effort. This makes the support information more useful
for estimation purposes. Finally, a pruning-based observer scheme was given and
analyzed. It was shown that the resulting observer outperforms well-known resilient
observers in literature. Moreover, other minor contributions of this chapter include
a formal definition of successful FDIA and associated optimization-based FDIA
design.
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