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4.1 Introduction

Cyber-physical systems’ (CPS) security has become a critical research topic as more
and more CPS applications are making increasing impacts in diverse industrial sec-
tors. Due to the tight interaction between cyber- and physical components, CPS
security requires a different strategy from the traditional Information Technology
(IT) security. Cyber-Physical Systems (CPS) are an integral system featuring strong
interactions between its cyber- (e.g., networks and computation) and physical com-
ponents (Khaitan and McCalley 2014). CPS applications have been making great
impacts on many industrial sectors, including energy, transportation, healthcare, and
manufacturing. With the development of Internet of Things (IoT), more and more
devices with potential security vulnerabilities are linked to CPS, which makes CPS
susceptible to adversary attacks (Yan et al. 2019). While progress with machine and
equipment automation has beenmade over the last several decades, and systems have
become “smarter”, the intelligence of any individual cyber-physical system to pre-
dict failures (e.g., equipment malfunction, sensor faults, etc.), outages, degradation
or slow drift in performance, and cyber-threats in real time to provide early warning
is difficult. Several methods have been proposed for anomaly forecast and prognostic
in different industrial control systems (Abbaszadeh and Marquez 2010, 2007; Alle-
gorico andMantini 2014; Chandola et al. 2009; Clifton et al. 2014; Ehlers et al. 2011;
Gupta et al. 2008; Lamedica et al. 1996; Pimentel et al. 2014; Rigatos et al. 2021;
Sridhar and Govindarasu 2014; Xue and Yan 2007; Zaher et al. 2009; Zimek et al.
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2012). Although technology exists to predict when systems fail, approaches used to
predict failures from a Prognostics and Health Management (PHM) perspective are
not directly applicable to situation awareness of cyber-incidents since they (1) do
not model large-scale transient data incorporating fast system dynamics (i.e., have
improper estimation models) and (2) do not to process multiple signals simultane-
ously to account for anticipated changes in future times in system behavior accurately
based on current and past data (i.e., have inaccurate decision thresholds/boundaries)
(Mestha et al. 2017). Especially, when it comes to forecasting cyber-attacks propa-
gation and impact, the difficulty is further compounded by not knowing attackers’
intention and their next move for exploiting weakness/vulnerabilities in the system.

There can be various types of known attacks that a system may be subjected to
such as espionage attacks, eavesdropping, denial-of-service attacks, zero dynamics
attack, deception attacks (e.g., covert/stealthy attack), false data injection attack,
replay attack, and the like, which are just a short sampling of potential threats that
exist to cyber-physical systems (Park et al. 2019). These attacks will exhibit dif-
ferent levels of disclosure, disruption, and knowledge to be executed successfully,
corresponding to adversaries’ recourses, expertise, and intent. Also, cyber-hackers
always invent many new ways to create malicious code and disrupt the operation of
the physical system. Present condition monitoring technology used for failure detec-
tion, prediction, and monitoring or the threat detection technologies included inside
information and operational technologies (IT and OT) does not adequately provide
forecasting to protect assets from such attacks. There are many examples in physical
systems (e.g., electric grid, ventricular assist devices, etc.), wherein early warning of
only a few seconds may be sufficient to take actions that would protect vulnerable
equipment or loss of life (Kokkonen et al. 2016; Nateghi et al. 2018a, b; Skopik et al.
2015).

Proper early warning generation could thwart an attack entirely or help neutral-
ize its effects, such as damage to equipment or sustain the operation. The goal of
this chapter is to provide an innovative predictive situational awareness framework
in order to maintain high levels of reliability and availability, while continuing to
retain expected performance against abnormalities created by the system faults or
the adversary. Building upon our previous results on anomaly detection and fore-
casting (Abbaszadeh et al. 2018; Mestha et al. 2017; Yan et al. 2019), the predictive
situational awareness framework developed in this chapter is based on dynamic
weighted averaging of multi-model ensemble forecasts both for anomaly detection
and isolation. Ensemble forecasting has been proven to be very efficient in forecasting
complex dynamic phenomena such as wind and other weather conditions and Inter-
net communication traffics (Cortez et al. 2012; Gneiting and Raftery 2005). In the
context of an industrial control system,we use ensembles to cover the plant variations
both in operating space and ambient conditions. The ensembles are selected using
GMM clustering, which provides both centroid (i.e., respective operating points)
and probability membership functions. A state-space model is developed for each
ensemble of each monitoring node, which is used in an adaptive multi-step Kalman
predictor to provide ensemble forecast in a receding horizon fashion. Then, the
ensemble forecasts are fused via dynamic averaging. Dynamic model averaging has



4 Predictive Situation Awareness and Anomaly Forecasting … 63

been shown to be superior to other ensemble methods such as Markov Chain Monte
Carlo (MCMC) especially for large datasets (Koop and Korobilis 2012; McCormick
et al. 2012; Raftery et al. 2010). It is an effective way for estimation of fusion of
ensemble models.

We carry out all key processing in a high-dimensional feature space by analyzing
time-series signals received from multiple system monitoring nodes (a combination
of selected control system sensors and actuators), comparing the forecasted features
with anomaly decision boundaries. The decision boundaries are computed for each
individual monitoring node using machine learning techniques. We use Extreme
Learning Machine (ELM) as our binary classification decision boundary. ELM is
a special type of flashforward neural network recently developed for fast training
(Huang et al. 2012). Numerous empirical studies and recently some analytical stud-
ies as well have shown that ELM has better generalization performance than other
machine learning algorithms including Support Vector Machines (SVM) and is effi-
cient and effective for both classification and regression (Huang et al. 2012; Huang
2014; Huang et al. 2006). It is worth mentioning that the framework presented here
is not limited to using Kalman predictors or ELM classifiers and can be used along
with other forms of linear or nonlinear time-series models, predictors, and classifiers.

The rest of the chapter is organized as follows. In Sect. 4.2, the overall forecast-
ing framework is described. Sections4.3 and 4.4 provide details of the ensemble
modeling and receding horizon ensemble forecasting. In Sect. 4.4, we demonstrate
our algorithm in a sensor attack of a gas turbine using a high-fidelity simulation
environment, followed by conclusions in Sect. 4.5.

4.2 Forecasting Framework

In this section, we discuss the framework used for anomaly forecast and early warn-
ing generation. The framework is applicable to both cyber-driven and fault-driven
incidents in a unified manner.

4.2.1 Digital Twin Simulation Platform

We demonstrate our approach on a utility-scale (250MW maximum output) power-
generating gas turbine. However, the methods and techniques presented in this work
are applicable to any cyber-physical system.We have created both normal and abnor-
mal (attack and fault) datasets using GE ARTEMIS high-fidelity power plant simu-
lation platform. The simulation environment consists of a closed loop Digital Twin
of a utility-scale power generation gas turbine, a very complex nonlinear and time-
varying physics-based model with adaptive parameters and factors such as asset
performance degradation due to ageing. The closed-loop system contains multiple
control loops along with their interconnections as in a real gas turbine in the field.
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Fig. 4.1 Plant HMI used for dataset generation

The availability of such a platform enables realistic simulations of attack and
fault scenarios, which, compared to normal operation data, are usually rare in the
data collected from the field. This in turn enables deployment of high-performance
supervised learning algorithms, as opposed to semi-supervised learning that only uses
normal data. The normal dataset can be collected from the field, generated through
simulations, or a combination of both. The abnormal dataset is synthesized utilizing
the simulation platform. Our dataset consists of thousands of normal and abnor-
mal time series of the monitoring nodes, resulting in over 2 million samples when
projected into feature space. Figure4.1 shows the HMI used for dataset generation.

4.2.2 Anomaly Forecasting Approaches

Depending on the scale of the system and outcome of the features dimensionality
reduction, either the features or directly, the anomaly score may be forecasted. Each
of these approaches have their pros and cons. Forecasting features make the forecast-
ing framework independent of the decision boundary (i.e., the classifier), but it might
be very difficult to do if the number of features is very large, they are highly non-
linear, discontinuous, etc. On the other hand, forecasting the anomaly score directly
simplifies the problem quite a bit, but makes the forecasting framework dependent
on the particular anomaly classifier used (as will be described more).
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Fig. 4.2 Feature forecasting approach for anomaly prediction

Fig. 4.3 Anomaly score forecasting approach for anomaly prediction

• Forecasting Features: In this approach, features are forecasted using dynamic
models built for the time evolution of features, and the forecasted values are sent
to classifier. A high-level depiction of the feature forecasting approach is shown
in Fig. 4.2, where the feedback loop depicts the repetition of the forecasting for
multi-step ahead prediction.

• Forecasting Anomaly Score: In this approach, the anomaly score is directly
forecasted, as depicted in Fig. 4.3. Hence, instead of forecasting the features and
sending the forecasted features to the classifier, the dynamic models are built for
the anomaly score time series directly.

Note that assuming that there is only a single classifier for global detection and
a single classifier for each local node, the anomaly score of each classification is a
scalar, so suchmodelwould only have a single output. This significantly simplifies the
dynamic models, reducing the number of model outputs from the number of features
to only 1. Again, the anomaly score forecasting may be done both at the local and
global levels. The states of the such a model may be the features or just the anomaly
score. This method essentially simplifies the problem into forecasting a scalar. Note
that as shown in Fig. 4.3, this brings the decision boundary into the forecasting loop.
The dynamic models built in this approach will collectively represent the feature
evaluation and the anomaly score evolution combined.

4.2.3 Dimensionality Reduction

Large-scale systems might have hundreds of monitoring nodes. Feature discovery
techniques may lead to selection of several features for each node, resulting in a
very large number of features to be forecasted. The following methods are used for
dimensionality reduction in those large-scale systems.
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4.2.3.1 Forecasting Features

In Feature Space

The number of features may be reduced using data dimensionality reduction meth-
ods such as PCA, ICA, and isoMap. This may be done for both the local and global
levels. This enables the creation of scalable dynamic models.

In Dynamic State Space

Once the dynamic models are built, if the number of states (features and their lagged
values) at each node or that of the global level is still large (normally> 50), dynamic
model-order reduction techniques, such as balanced truncation or H∞ norm-based
model-order reduction, may be used to further reduce the dimensionality of the fore-
casting problem. The model-order reduction is performed using these two criteria:

• Model Accuracy: The error between the original model and the reduced-order
model is less than a prescribed threshold using Hankel norm or H∞ norm bounds.
This determines the order of the reduced-order model. The error threshold may
be selected by evaluating the forecasting accuracy of the reduced-order model or
based on the preservation of the model observability (described below).

• Model Observability: The reduced-order model remains observable. In particular,
in the original model, the features might be both the states and the outputs (i.e., an
identity state to output mapping). Hence, the reduced-order model may have more
outputs than states. The order and the model accuracy threshold then are selected
in a manner to preserve the observability.

4.2.3.2 Forecasting Anomaly Score

If after dimensionality reductions in feature and/or state spaces, the order of themodel
is still high (normally > 50) or if the dimensionality reduction cannot be done in a
way to properly satisfy the aforementioned criteria, then instead of forecasting the
features, the anomaly score of the classifier is directly forecasted. In this approach,
instead of forecasting the features and sending the forecasted features to the classifier,
the dynamic models are built for the anomaly score time series directly. Note that
the anomaly score is a scalar, so such model would only have a single output. This
significantly simplifies the model reduces the number of model outputs (from the
number of features to 1). Again, the anomaly score forecasting may be done both at
the local and global levels. The states of such a model may be the features or just the
anomaly score.

In the rest of this chapter, wewill focus on forecasting using the feature forecasting
approach, but the same tools and technique are applicable to the anomaly score
forecasting as well.
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4.2.4 Forecasting Process

The forecasting system is comprised of offline (training) and online (operation)
modules.During the offline training, as shown inFig. 4.4 themonitoringnodedatasets
are used for feature engineering and decision boundary generation. To select the
features, feature discovery techniques are used as described inSect. 4.2.5. Then, state-
space ensemble dynamicmodels are generated for the time evolution of features both
at the global (for overall system status) and local (i.e., per monitoring node) levels
as described in Sect. 4.3.1. At each level, dynamic forecasting models are generated
for forecasting at three time scales, short term, mid-term, and long term, depending
on the fundamental sampling time of the control system. Also, decision boundaries
are computed both at the local and global levels as binary classifiers using machine
learning techniques as described in Sect. 4.3.5.

The online module of forecasting system is shown in Fig. 4.5. First, each monitor-
ing node signal goes through real-time feature extraction to create real-time feature
time series. The features are computed using a sliding window over the monitoring
node signals. In the next step, the extracted feature time series are inputted to multi-
step predictors, both at the local and global levels. Using the models generated in the
training phase and the multi-step predictors, future values of the feature time series
are forecasted, both for local and global features, in three time scales:

1. Short-term feature forecast: future values of the global and local features (e.g.,
up to several seconds).

2. Mid-term feature forecast: future values of the global and local features (e.g.,
up to several minutes).

3. Long-term feature forecast: future values of the global and local features (e.g.,
up to several days).

Fig. 4.4 Anomaly forecast systems: offline training



68 M. Abbaszadeh et al.

Fig. 4.5 Anomaly forecast systems: online operation

While the short-term forecast is useful for rapid detection of the incipient and tran-
sient faults and cyber-attacks, mid-term and long-term forecasts are helpful in early
detection of stealthy cyber-attacks as well as component failures due to degradation.
The forecasted outputs of models (aka, future values of the features) are compared
to the corresponding decision boundaries for predictive anomaly detection. While
comparing the feature vectors to the decision boundary, estimated time to cross the
decision boundary will provide information for future anomaly. If a future anomaly
is detected, an early warning is generated in the operator display with anticipated
time to reach anomalous state and a message is sent to the automatic accommodation
system (such as an attack-tolerant or fault-tolerant resilient control mechanism) for
potential early engagement. The current values of the features along with the deci-
sion boundaries provide a deterministic decision of the current status of the system,
while the forecasted features provide a probabilistic decision on the future system
status. The global feature forecast is used for system-level anomaly detection (overall
system health status) and the local feature forecasts are used for anomaly isolation
(locate the abnormal nodes of the system).Using this framework a predictive situation
awareness is established for the system.

4.2.5 Feature Discovery

The proposed sensing approach should handle many types of inputs from multiple
heterogeneous data stream in complex hyper-connected systems. Signals from time
domain are converted to features using multi-modal multi-disciplinary (MMMD)
feature discovery framework employed as in machine learning discipline (Yan and
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Yu 2015). A “feature” may refer to, for example, mathematical characterizations of
data and is computed in each overlapping batch of data stream. Examples of features
as applied to sensor data can be classified broadly into knowledge-based, shallow,
and deep features.

Knowledge-based features use domain or engineering knowledge of physics of the
system to create features. These features can be simply statistical descriptors (e.g.,
max, min, mean, variance), and different orders of statistical moments, calculated
over a window of a time-series signal and its corresponding FFT spectrum as well.
Shallow features are from unsupervised learning (e.g., k-means clustering), mani-
fold learning, and nonlinear embedding (e.g., isoMap, locally linear embedding), low
dimension projection (e.g., principal component analysis, independent component
analysis), and neural networks, along with genetic programming and sparse cod-
ing. Deep learning features can be generated using deep learning algorithms which
involve learning good representations of data through multiple levels of abstraction.
By hierarchically learning features layer by layer, with higher level features repre-
senting more abstract aspects of the data, deep learning can discover sophisticated
underlying structure and features. Still other examples include logical features (with
semantic abstractions such as “yes” and “no”) and interaction features.

Several methods have been proposed in the literature for feature selection and
features ranking of ELM for classification and regression problems )(Wang et al.
2018; Yin et al. 2017). Machine learning-based attack and fault-detection algorithms
can in general incorporate large number of features, with the number of features
selected based on the Receiver Operating Characteristic (ROC) curve analysis to
optimize the detection and false alarm rates. Different number of features might be
selected for each individual monitoring node, however, from a systems engineering
perspective, to streamline the design, it is preferred to choose the same type and
number of features for all nodes, except if a particular node needs special treatment.
In this work, for each monitoring node of the gas turbine, we have selected five
features which are a combination of statistical and temporal features. At the system
level, we have also selected multivariate features which consist of cross-correlations
between critical measurements.

For the forecasting at the global level (i.e., the system level), the global feature
vector is formed by stacking up the local feature vectors of the individual monitoring
nodes. For large-scale systems with many monitoring nodes, the size of the global
feature vector might be very large, and thus it can be reduced by dimensionality
reduction techniques such as Principal Component Analysis (PCA).

4.3 Ensemble Forecasting

The forecasting framework described in the previous section is based on ensemble
models which are used in adaptive Kalman predictors to provide ensemble feature
forecasts. The ensemble feature forecasts are then averaged using dynamic weights
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to provide the overall feature forecast. The process described in the section is applied
separately and in parallel to the local features of each individual monitoring node,
as well as to the global feature vector.

4.3.1 Ensemble Modeling in Feature Space

The forecasting models at each time scale (short term, mid-term, and long term)
consist of a collection of ensemble models, each providing an ensemble forecast
of the features. These ensembles ensure coverage of whole operating space with
operational and ambient condition variations. The operating space is partitioned
through Gaussian Mixture Model clustering. A mixture model is a statistical model
for representing datasets which display behavior that cannot be well described by a
single standard distribution. It allows a complex probability distribution to be built
from a linear superposition of simpler components. Gaussian distributions are the
most common choice as mixture components because of the mathematical simplicity
of parameter estimation as well as their ability to perform well in many situations
(Dempster et al. 1977).

Gaussian mixture models can be used for stochastic data clustering. To select
the operating point associated with each ensemble model, we use GMM clustering
in the feature space. The GMM clustering partitions the operating space (projected
into feature space) into multiple clusters each represented by a multivariate Gaus-
sian process described by a mean (centroid) and a covariance matrix. The centroid
of each cluster represents the operating point for each ensemble model, while its
covariance matrix establishes a probabilistic membership function. The Expectation
Maximization (EM) algorithm is a maximum likelihood estimation method that fits
GMM clusters to the data. The EM algorithm can be sensitive to initial conditions,
and therefore we repeat the GMM clustering multiple times with randomly selected
initial values and choose the fit that has the largest likelihood.

Since GMM is a soft clustering method (i.e., overlapping clusters), all points
in the operating space belong to all clusters with a membership probability. As an
example, Fig. 4.6 shows the GMM clustering at the global level for our gas turbine
dataset, where the horizontal axis is the number of clusters and the vertical axis is the
Bayesian Information Criterion (BIC) computed for different covariance structures
per number of clusters. BIC provides a right trade-off between model accuracy and
complexity, thus avoiding over-fitting to the training dataset. The model with the
lowest BIC is selected. As seen in the figure, the optimal clustering is achieved with
seven clusters with Gaussian models having full (i.e., non-diagonal) unshared (i.e.,
individual) covariance matrices.

Remark 4.1 Note that at the local node level, GMM clustering can be done for each
monitoring node separately, resulting in different number of ensembles for eachmon-
itoring node.
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Fig. 4.6 BIC for GMM clustering. ©2018 IEEE. Reprinted, with permission, from (Abbaszadeh
et al. 2018)

4.3.2 Adjusting Cluster Centroids to Physical Points

The GMM clustering may select centroid of the clusters as any arbitrary real-valued
vector in the feature space. However, since centroids are deemed as operating points
to create state-spacemodels, they need to be associatedwith actual physical operating
points of the system. This can be achieved in two ways:

• Mixed-integer programming for EM: GMM clustering uses Expectation Maxi-
mization (EM) algorithm for cluster optimization. Rather than running the standard
EM, one can use a modified EM to enforce searching for centroids only among
the points given in the training dataset (which are readily physical points of the
systems). This is essentially similar to running k-medoids clustering rather than k-
means clustering but in a GMM framework. This normally requires mixed-integer
programming and is feasible for small- and medium-sized datasets.

• Heuristics based: Adjust the centroids of GMM into closest point in the dataset
in post-processing. This is particularly efficient for large datasets. Moreover, since
large datasets comprise of high granularity data, the distance of the initial centroid
to the closest point in the data is often small and negligible. This can be further
validated by putting a threshold on such point adjustments. As a result of centroid
adjustment, the covariance matrices of each GMM clusters are also adjusted. Sup-
pose thatμi andΣi are the centroid and covariance of the i-th cluster, respectively,
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and the closest point to μi is μ̄i whose Euclidean distance to μi in feature space
is di , i.e., μ̄i − μi = di . Then, we have

μi → μ̄i = μi + di , (4.1)

Σi → Σ̄i = Σi + didi
T , (4.2)

which means that the Gaussian model associated with the i-th cluster is adjusted
from N (μi ,Σi ) toN (μ̄i , Σ̄i ).

In this work, since we have a large-scale dataset with high resolution, we use the
heuristics-based method described above to adjust the cluster centroids to the nearest
physical point as needed.

4.3.3 Dynamic Modeling

Once the number and structure of the clusters are determined, the cluster centroids
are selected as the representative operating points of the system, and a dynamic
model is developed for the time series of each monitoring node of each operating
point (aka ensemble models). The time-series dynamic modeling can happen using
different linear or nonlinear time-series modeling techniques. The choice of linear
versus nonlinear modeling can be made by assessing the feature time series through
linearity tests such as those described in Harvey and Leybourne (2007). For linear
time-series data, Vector Autoregressive (VAR) models are proved to be a powerful
tool. For nonlinear time-series modeling, nonlinear autoregressive models, Volterra
series, or recurrent neural networks (such as LSTM) could be used. In this work,
due to the good fit of the feature time-series data in the linear space, the time series
are modeled as VAR models. A VAR model is a multivariate autoregressive model
that relates the current value of the time series to its previous values through a linear
mapping plus a constant bias term. Essentially, this is not an input–output modeling
but a time-series output modeling, assumed to be derived by an unknown stochastic
input. VAR models are vastly used for modeling of time-series signals (Johansen
1995), similar to what we measure here from our monitoring nodes. The number of
lags required for eachVARmodel is again determined usingBIC. This determines the
order of the models, which could be different among the ensembles. The parameters
of the VARmodels are identified, and the models are then converted into the standard
state-space form for each ensemble, as follows:

x[k + 1] = Ax[x] + Bu[k] + Qe[k], (4.3)

y[k] = Cx[k] + v[k], (4.4)

where x is the vector of monitoring node features and their lagged values, u is a
fictitious Heaviside step function capturing the bias term of the VAR model, e is a
zero-mean Gaussian white noise with Identity covariance, E[eeT ] = I , and Q is the
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process noise covariance. The model outputs y here are the monitoring node features
with some assumedmeasurement noise v, whose covariance R is adaptively updated,
as will be described later.

If the model is VAR(1), i.e., having one lag, then C = Iq , where q is the num-
ber of local features for each individual monitoring node (here, for our gas turbine
application, q = 5). In general, for a VAR(p) model with p lags, per ensemble, per
node, we have

x[k] =
[
x f
1 [k] · · · x f

q [k] · · · x f
1 [k − p + 1] · · · x f

q [k − p + 1]
]T

, (4.5)

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 A2 · · · Ap−1 Ap

Iq 0q · · · 0q 0q
0q Iq · · · 0q 0q
...

...
. . .

...
...

0q 0q · · · Iq 0q

⎤
⎥⎥⎥⎥⎥⎦

, (4.6)

B =
[
b 0q · · · 0q︸ ︷︷ ︸

1,...,p−1, p>1

]T

, C =
[
Iq 0q · · · 0q︸ ︷︷ ︸

1,...,p−1, p>1

]
, (4.7)

where x f
i , i = 1, . . . , q are the local features for an individual monitoring node.

The initial value of R is set using noise characteristics of the raw measurements,
linearly projected into the feature space as follows. Suppose yr is the raw measured
value of an individual monitoring node and the scalar vr is the corresponding mea-
surement noise, yr [k] = r [k] + vr [k], where r is the true value of the signal and vr is
a zero-mean Gaussian white noise with variance σ . The feature vector y correspond-
ing to this particular monitoring node is the projection of yr in the feature space.
Suppose that F : R → Rq is the mapping from the raw signal measurement to its
features. The raw data is projected into the feature space as

[
x f
1 [k] · · · x f

q [k]
]T = Cx[k] = F (r [k]). (4.8)

Then we have

y[k] = F (yr [k]) = F (y[k] + vr [k])
� F (r [k]) + ∂F

∂r |r=r [k]
vr [k] � Cx[k] + J (r [k])vr [k]

� Cx[k] + v[k], (4.9)

where v is the derived measurement noise in the feature space and J is the Jaco-
bian of F with respect to r . From (4.9), it is clear that the covariance of v is
σ J (r [k])T J (r [k]). Note that the scalar measurement noise of an individual mon-
itoring node in the signal space is projected into a multivariate noise in the feature
space. The linear approximation of noise maintains the noise zero-mean Gaussian
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white. This approximation is only used for the initial guess of the covariance, since
after the initialization it is adaptively estimated.

As mentioned before, the number of such state-space models for each monitoring
node equals the number of correspondingGMMclusters. The order of the state-space
models remains the same within the ensembles of one particular node, but may differ
from one node to another depending on the number of local features selected for
each node.

4.3.4 Dynamic Ensemble Forecast Averaging

Within our proposed framework, different type of the predictors may be used
to provide ensemble forecasts. This simplest predictor could be the model (4.4)
itself, repeatedly executed using previous predictions through the prediction hori-
zon. Although simple, this approach quickly leads to large prediction errors since
there is no control or adjustment over the error covariance. Another simple approach
is to use parametric predictionmethods such as exponential smoothing. They provide
certain level of parameter tuning capability but still suffer from proper error control.
As such, although both approaches are applicable within our proposed framework,
they are both limited to only very short prediction horizons.

In this chapter, an adaptive Kalman predictor (AKP) is applied to each ensemble
model to provide ensemble forecasts. The process noise covariance of the Kalman
predictor is readily available as Q as in (4.4). It is worthmentioning that for nonlinear
models, an adaptive EKF or UKF can be used still in a similar fashion within the
same framework. The covariance of themeasurement noise of eachAKP is estimated
adaptively using the method proposed in Ding et al. (2007); Rutan (1991) as follows.

v̂[k] = y[k] − CT x̂[k|k − 1], (4.10)

R[k] =

⎧⎪⎪⎨
⎪⎪⎩

σ J (r [k])T J (r [k]) k = 1, . . .m
1
m

[∑m
j=1 v̂[k − j]v̂[k − j]

]
. . .

−CT Pe[k|k − 1]C k > m,

(4.11)

where v̂ is the predictor innovation sequence,m is the width of an empirically chosen
rectangular smoothing window for the innovations sequence, and Pe is the predic-
tion error covariance matrix. The smoothing operation improves the statistical sig-
nificance of the estimator for R[k], as it now depends on many residuals. Figure4.7
shows the block diagram for dynamic ensemble forecast averaging, where N is the
number of ensembles corresponding to a monitoring node and P is the forecast-
ing horizon. It is worth mentioning that the ensemble modeling (GMM clustering
and state-space system identification) is performed using normal dataset only as the
models capture the normal operational behavior of the system, while the decision
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Fig. 4.7 Block diagram for dynamic ensemble forecast averaging. ©2018 IEEE. Reprinted, with
permission, from (Abbaszadeh et al. 2018)

boundaries are computed using both normal and abnormal datasets. Furthermore, to
emphasize the recent data, a forgetting factor is used in the covariance matrix update
of each of the Kalman predictors.

The forecasting horizon of the multi-step forecasts can be determined using simu-
lations, based on the prediction error and some threshold on the confidence interval.
As the forecasting horizon extends, the confidence interval expands and eventually
passes the threshold. Each AKP provides an ensemble forecast ŷM , M = 1, . . . , N .
The ensemble forecasts are dynamically averaged using weight w1, . . . ,wN . The
weights are time varying and computed as normalized probabilities using the multi-
variate Gaussian probability density functions with mean and covariances computed
during the GMMclustering. Suppose the real-time value of the feature vector is x[k],
and the mean and covariance of each Gaussian cluster are μi and Σi , respectively.
Then we have

dM [k] = Pr
{
x[k] | x[k] ∼ N (μi ,Σi )

}
, M = 1, . . . , N ,

wM [k] = dM [k]∑N
M=1 dM [k] ,

N∑
M=1

wM [k] = 1,

ŷ[k + i] =
N∑

M=1

wM [k]ŷM [k + i], i = 1, . . . , P.
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The ensemble averaged forecast ŷ[k + i] is returned back to the AKPs as the next
input, to provide the next-step forecast receding horizon fashion, up to the forecast-
ing horizon.

Remark 4.2 Alternatively, the ensemble forecast of each AKP, ŷM [k + i], could be
fed back for multi-step forecasting, but feeding back ŷ[k + i] to all AKPs is better,
since it is a better prediction of system’s true behavior.

4.3.5 Receding Horizon Anomaly Forecast

The forecasted features, ŷ, are compared to a decision boundary for anomaly fore-
casting in each node. At each sampling time, a P-step ahead forecast of the features
is computed using the dynamic ensemble averaging method. In the next sampling
time, the horizon moves forward (recedes) by one time step, and a new forecast is
computed through the new forecasting horizon.

k :
[
ŷ[k + 1],ŷ[k + 2], . . . , ŷ[k + P]

]
,

k + 1 :
[
ŷ[k + 2], ŷ[k + 3], . . . , ŷ[k + P + 1]

]
,

k + 2 :
[
ŷ[k + 3], ŷ[k + 4], . . . , ŷ[k + P + 2]

]
,

. . .

At each sampling time, the last forecast in the horizon ŷ[k + P] is compared to the
decision boundary. This is similar to the Model Predictive Control (MPC), except
that in MPC, at each sampling time, the first control action in the horizon is applied
to the system.

Each decision boundary is computed by training an Extreme Learning Machine
(ELM) as a binary classifier in a supervised training framework. ELM is a special
type of feed-forward neural networks recently introduced (Huang et al. 2012). ELM
was originally developed for the single hidden layer feed-forward neural networks
(SLFNs) and was later extended to the generalized SLFNs where the hidden layer
need not be neuron alike (Huang et al. 2013). Unlike in traditional feed-forward
neural networks where training the network involves finding all connection weights
and bias, in ELM, connections between input and hidden neurons are randomly
generated and fixed, that is, they do not need to be trained. Thus training an ELM
becomes finding connections between hidden and output neurons only, which is
simply a linear least squares problem whose solution can be directly generated by
the generalized inverse of the hidden layer output matrix (Huang et al. 2012).

Because of such special design of the network, ELM training becomes very fast.
The structure of a one-output ELM networks is depicted in Fig. 4.8. Assume the
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Fig. 4.8 An ELM network
with one output. ©2018
IEEE. Reprinted, with
permission, from
(Abbaszadeh et al. 2018)
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number of hidden neurons is L. Then the output function of ELM for generalized
SLFNs is

f (x) =
L∑
j=1

β j h j (x) � h(x)βββ, (4.12)

where hi (x) = G(φi , bi , x) is the output of j th hidden neuron with respect to the
input x ;G(φ, b, x) is a nonlinear piecewise continuous function satisfying ELMuni-
versal approximation capability theorems (Huang et al. 2006); β j is the output weight
vector between j th hidden neuron to the output node; and h(x) = [h1(x), . . . , hL(x)]
is a random feature map, mapping the data from d-dimensional input space to the
L-dimension random feature space (ELM feature space).

The objective function of ELM is an equality-constraint optimization problem, to
minimize both the training errors and the output weights, which can be written as

Minimize: Lp = 1

2
‖βββ‖2 + 1

2
c

Nd∑
i=1

ξ 2
i (4.13)

s.t.: h(xi )βββ = li − ξi , i = 1, . . . , Nd , (4.14)

where ξi is the training error with respect to the training sample xi , li is the label of the
i th sample, and Nd is the number of training samples (in the normal and abnormal
datasets combined). The constant c controls the trade-off between the output weights
and the training error.

Based on the Karush–Kuhn–Tucker (KKT) condition, we can have the analytic
solutions for the ELM output function f for non-kernel and kernel cases, respec-
tively (see Huang (2014) for details). Since kernel two-class ELM learns a nonlinear
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hyperplane, it generally works better than non-kernel two-class ELM. Therefore, we
have used a kernel ELM using a Radial Basis Function (RBF) kernel.

The distance d of any point (a sample) to the hyperplane constructed by the
ELM can conveniently serve as an anomaly score, that is, the larger the distance,
the more likely the sample is abnormal. Here f is an anomaly score function whose
sign (compared to a threshold, normally, zero) determines the binary classification
decision on the system status. We have trained the ELM such that normal samples
generate negative scores.

4.3.6 Committed Horizon Anomaly Forecast

An extension to receding horizon prediction is committed horizon prediction (Chen
et al. 2019). It considers a so-called commitment level V < P , and instead of com-
mitting to only one estimate obtains the final predicted value at time k by combining
(e.g., via a weighted average) the estimates of the V receding horizon instances from
time k + 1 to k + V . Therefore, with a P-step look ahead, the effective prediction
horizon is P − V . In other words, at each time instance, there is a delay of V sam-
pling times to get the forecast of P steps ahead. Committed horizon prediction tends
to give better estimates because it accounts for both future and past information,
and also provides an additional mechanism to adjust the trade-off between delay and
prediction accuracy (Chen et al. 2019). However, it reduces the effective prediction
horizon, and hence its capability to generate rapid early warnings for anomaly detec-
tion applications. Nevertheless, the committed horizon prediction approach may still
be effectively used for short-term forecasting, especially if the sampling rate is much
faster than the system dynamics.

4.4 Predictive Situation Awareness

In general, predictive situation awareness has three main elements (Endsley 1995):

1. Perception: monitoring the environment.
2. Comprehension: understanding the current situation.
3. Projection: predicting the evolution of the situation.

Figure4.9 depicts the block diagram of situation awareness modules in this work.
Here, the perception element consists of collecting and pre-processing data from
the monitoring nodes including feature extraction and any dimensionality reduction.
Comprehension is provided by the anomaly detection module supplying the current
system status, and Projection is performed through anomaly forecasting.

As data is processed in stream or batch modes, anomaly detection provides an
instance decision on the current system status, which is either normal or abnormal
(attack or fault). Before an anomaly happens, the current system status is normal
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and it remains normal until an anomaly actually occurs. The anomaly detection
algorithm detects an anomaly once it happens based on an anomaly score calculated
at the current time instant passing a prescribed threshold (which could be fixed or
adaptive itself). In addition, the situation awareness provides a predictive decision
and generates early warnings. At each time instant, the forecasting algorithm projects
the current status into future using stochastic dynamic forecasting described in the
previous sections. The predictive status remains normal until the predicted anomaly
score passes the threshold. Once an early warning is generated, future forecasting
still continues, with a probabilistic decision on the predicted systems status based
on anomaly score. The anomaly score increases between the time an early warning
is generated and the time an anomaly actually happens, at which point the current
status also reflects the anomaly. The concept is depicted in Fig. 4.10.
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4.5 Simulation Results

To generate the early warning, the forecasted outputs of models (aka, future values
of the features) are compared to the corresponding decision boundaries for anomaly
detection. While comparing the feature vectors to the decision boundary, estimated
time to cross the decision boundary will provide information for future anomaly.
Figure4.11 shows the early warning generation for a DWATT (gas turbine-generated
power) sensor false data injection attack based on a short-term (10 s ahead) forecast.
It is worth mentioning that this attack case was not included in the training dataset
so this simulation represents an independent cross-validation of the algorithm. The
attack is injected at t = 129.Without forecasting, the detection algorithm detects it at
t = 150.With the 10-s ahead forecast, the forecasted features pass the local boundary
at t = 140, at which point an early warning is generated. As seen, the forecasting is
able to generate early warning 10 s ahead of the actual detection happening. With
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Fig. 4.11 Anomaly forecast and early warning generation for DWATT sensor. ©2018 IEEE.
Reprinted, with permission, from (Abbaszadeh et al. 2018)
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Fig. 4.12 Forecasted score for DWATT and confidence intervals for the whole simulation time and
one forecasting horizon. ©2018 IEEE. Reprinted, with permission, from (Abbaszadeh et al. 2018

this technology, we are able to compensate for the delay in detection and generate
early warning in the very early stage of an attack. Similarly, once the disturbance
rejection control of the gas turbine brings the system back into the normal region,
the forecasting algorithm is able to predict that before the actual system status goes
back to normal. Note that here we are forecasting the features directly, and the
anomaly score indirectly by passing the forecasted features through the decision
boundary. Hence, the confidence intervals of ensemble feature forecasts are readily
available from theAKPs, while those of the averaged forecasts and the anomaly score
are computed using interval arithmetic (Bland and Altman 1996). The forecasted
features are computed in a receding horizon with a forecasting horizon of 10 s (i.e.,
10-step ahead forecasts are used for anomaly decision). In every sampling time, a
10-s forecast is computed along with its confidence interval. In the next sampling
time, a new receding horizon forecast is computed, sliding the previous horizon by
1 s. Figure4.12 shows the forecasted score for DWATT and confidence intervals for
the whole simulation time and one forecasting horizon, respectively. The simulation
is performed for 250 s (thus, 240 s of 10-step ahead receding horizon forecasts).
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4.6 Conclusions

In this work, a framework for anomaly forecasting and early warning generation
in industrial control systems is proposed based on a new feature-based dynamic
ensemble forecasting method. The cyber-physical system anomalies addressed here
could be either of cyber-incident or of naturally occurring faults/failures nature. The
ensembles are selected via GMM clustering based on BIC criterion, each repre-
senting an operating point of the system. The cluster centroids are adjusted to the
nearest physical points in the training dataset, and the associated covariance matri-
ces are updated accordingly. Ensemble forecasts are provided by adaptive Kalman
predictors applied to dynamic VAR models in the feature space, and fused through
dynamic averaging, while the averaging weights are calculated using the Gaussian
clusters mean and covariance matrices. The forecasts are multi-step and performed
on different time scales in a receding horizon fashion. To predict the future status
of the system, the forecasts are compared to decision boundaries computed using
extreme learning machines. High-fidelity simulations on a GE gas turbine digital
twin platform show the efficacy of our approach.

Acknowledgements This material is based on work supported by the US Department of Energy
under Award Number DE-OE0000833.

Disclaimer This reportwas prepared as an account ofwork sponsored by an agency of theUnited
States Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency
thereof.

References

M. Abbaszadeh, H.J. Marquez, Nonlinear observer design for one-sided Lipschitz systems, in
Proceedings of the 2010 American Control Conference (IEEE, 2010), pp. 5284–5289

M. Abbaszadeh, H.J. Marquez, Robust state observation for sampled-data nonlinear systems with
exact and euler approximate models, in American Control Conference (IEEE, 2007), pp. 1687–
1692

M. Abbaszadeh, L. K. Mestha, W. Yan, Forecasting and early warning for adversarial targeting in
industrial control systems, in 2018 IEEE Conference on Decision and Control (CDC) (IEEE,
2018), pp. 7200–7205

C. Allegorico, V. Mantini, A data-driven approach for on-line gas turbine combustion monitor-
ing using classification models, in Second European Conference of the Prognostics and Health
Management Society (2014), pp. 92–100



4 Predictive Situation Awareness and Anomaly Forecasting … 83

J.M. Bland, D.G. Altman, Transformations, means, and confidence intervals. BMJ: British Med. J.
312(7038), 1079 (1996)

V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey. ACM Comput. Surv. (CSUR)
41(3), 15 (2009)

H. Chen, N. Paoletti, S.A. Smolka, S. Lin, Committedmoving horizon estimation for meal detection
and estimation in type 1 diabetes, in American Control Conference (ACC) (IEEE, 2019), pp.
4765–4772

L. Clifton, D.A. Clifton, Y. Zhang, P. Watkinson, L. Tarassenko, H. Yin, Probabilistic novelty
detection with support vector machines. IEEE Trans. Reliab. 63(2), 455–467 (2014)

P. Cortez, M. Rio, M. Rocha, P. Sousa, Multi-scale internet traffic forecasting using neural networks
and time series methods. Expert Syst. 29(2), 143–155 (2012)

A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM
algorithm. J. R. Stat. Soc. Ser. B (methodological) 1–38 (1977)

W. Ding, J. Wang, C. Rizos, D. Kinlyside, Improving adaptive Kalman estimation in GPS/INS
integration. J. Navig. 60(3), 517–529 (2007)

J. Ehlers, A. van Hoorn, J. Waller, W. Hasselbring, Self-adaptive software system monitoring for
performance anomaly localization, in Proceedings of the 8th ACM International Conference on
Autonomic Computing (ACM, 2011), pp. 197–200

M.R. Endsley, Toward a theory of situation awareness in dynamic systems. Hum. Factors 37(1),
32–64 (1995)

T. Gneiting, A.E. Raftery, Weather forecasting with ensemble methods. Science 310(5746), 248–
249 (2005)

S. Gupta, A. Ray, S. Sarkar, M. Yasar, Fault detection and isolation in aircraft gas turbine engines.
Part 1: underlying concept. Proc. Inst. Mech. Eng. Part G: J. Aeros. Eng. 222(3), 307–318 (2008)

D.I. Harvey, S.J. Leybourne, Testing for time series linearity. Econometr. J. 10(1), 149–165 (2007)
W. Huang, N. Li, Z. Lin, G.-B. Huang, W. Zong, J. Zhou, Y. Duan, Liver tumor detection and seg-
mentation using kernel-based extreme learning machine, in 35th annual international conference
of the IEEE Engineering in medicine and biology society (EMBC) (IEEE, 2013), pp. 3662–3665

G.-B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass
classification. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 42(2), 513–529 (2012)

G.-B. Huang, An insight into extreme learning machines: random neurons, random features and
kernels. Cogn. Comput. 6(3), 376–390 (2014)

G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications. Neuro-
computing 70(1), 489–501 (2006)

S. Johansen, Likelihood-Based Inference in Cointegrated Vector Autoregressive Models (Oxford
University Press, 1995)

S.K.Khaitan, J.D.McCalley,Design techniques and applications of cyberphysical systems: a survey.
IEEE Syst. J. 9(2), 350–365 (2014)

T. Kokkonen, J. Hautamäki, J. Siltanen, T. Hämäläinen, Model for sharing the information of cyber
security situation awareness between organizations, in 2016 23rd International Conference on
Telecommunications (ICT) (IEEE, 2016), pp. 1–5

G. Koop, D. Korobilis, Forecasting inflation using dynamic model averaging. Int. Econ. Rev. 53(3),
867–886 (2012)

R. Lamedica,A. Prudenzi,M. Sforna,M.Caciotta,V.O.Cencellli, A neural network based technique
for short-term forecasting of anomalous load periods. IEEE Trans. Power Syst. 11(4), 1749–1756
(1996)

T.H. McCormick, A.E. Raftery, D. Madigan, R.S. Burd, Dynamic logistic regression and dynamic
model averaging for binary classification. Biometrics 68(1), 23–30 (2012)

L.K. Mestha, O.M. Anubi, M. Abbaszadeh, Cyber-attack detection and accommodation algorithm
for energy delivery systems, in IEEEConference onControl Technology andApplications (CCTA)
(2017), pp. 1326–1331



84 M. Abbaszadeh et al.

S. Nateghi, Y. Shtessel, J.-P. Barbot, C. Edwards, Cyber attack reconstruction of nonlinear systems
via higher-order sliding-mode observer and sparse recovery algorithm, in 2018 IEEE Conference
on Decision and Control (CDC) (IEEE, 2018), pp. 5963–5968

S. Nateghi, Y. Shtessel, J.-P. Barbot, G. Zheng, L. Yu, Cyber-attack reconstruction via sliding mode
differentiation and sparse recovery algorithm: Electrical power networks application, in 15th
International Workshop on Variable Structure Systems (VSS) (IEEE, 2018), pp. 285–290

G. Park, C. Lee, H. Shim, Y. Eun, K.H. Johansson, Stealthy adversaries against uncertain cyber-
physical systems: threat of robust zero-dynamics attack. IEEE Trans. Autom. Control 64(12),
4907–4919 (2019)

M.A. Pimentel, D.A. Clifton, L. Clifton, L. Tarassenko, A review of novelty detection. Signal
Process. 99, 215–249 (2014)
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