
Chapter 3
Fundamental Stealthiness–Distortion
Trade-Offs in Cyber-Physical Systems

Song Fang and Quanyan Zhu

3.1 Introduction

Security issues such as the presence of malicious attacks could cause severe conse-
quences in cyber-physical systems, which are safety-critical in most cases since they
are interacting with the physical world. In the trend that cyber-physical systems are
becoming more and more prevalent nowadays, it is also increasingly critical to be
fully aware of such systems’ performance limits (Fang et al. 2017), e.g., in terms of
performance degradation, after taking the security issues into consideration. Accord-
ingly, in this chapter, we focus on analyzing the fundamental limits of resilience in
cyber-physical systems, including open-loop dynamical systems and (closed-loop)
feedback control systems. More specifically, we examine the fundamental trade-offs
between the systems’ performance degradation that can be brought about by a mali-
cious attack and the possibility of it being detected, of which the former is oftentimes
measured by the mean squared-error distortion, whereas the latter is fundamentally
determined by the Kullback–Leibler (KL) divergence.

The KL divergence was proposed in Kullback and Leibler (1951) (see also Kull-
back (1997)), and ever since it has been employed in various research areas, including,
e.g., information theory (Cover and Thomas 2006), signal processing (Kay 2020),
statistics (Pardo 2006), control and estimation theory (Lindquist and Picci 2015),
system identification (Stoorvogel and Van Schuppen 1996), and machine learning
(Goodfellow et al. 2016). Particularly, in statistical detection theory (Poor 2013), KL
divergence provides the optimal exponent in probability of error for binary hypothe-
ses testing problems as a result of the Chernoff–Stein lemma (Cover and Thomas
2006). Accordingly, in the context of determining whether an attack signal is present
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or not in security problems, the KL divergence has also been employed as a measure
of stealthiness for attacks (see detailed discussions in, e.g., Bai et al. (2017a, b)).

In the context of dynamical and control systemsecurity (see, e.g., Poovendran et al.
(2012), Johansson et al. (2014), Sandberg et al. (2015), Cheng et al. (2017), Giraldo
et al. (2018), Weerakkody et al. (2019), Dibaji et al. (2019), Chong et al. (2019) and
the references therein), particularly in dynamical and control systems under injection
attacks, fundamental stealthiness–distortion trade-offs (with the mean squared-error
as the distortion measure and the KL divergence as the stealthiness measure) have
been investigated for feedback control systems (see, e.g., Zhang and Venkitasubra-
maniam (2017), Bai et al. (2017b)) as well as state estimation systems (see, e.g., Bai
et al. (2017a), Kung et al. (2016), Guo et al. (2018)). Generally speaking, the problem
considered is: Given a constraint (upper bound) on the level of stealthiness, what is
the maximum degree of distortion (for control or for estimation) that can be caused
by the attacker? This is dual to the following question: Given a least requirement
(lower bound) on the degree of distortion, what is the maximum level of stealthiness
that can be achieved by the attacker? Answers to these questions can not only capture
the fundamental trade-offs between stealthiness and distortion but also characterize
what the worst-case attacks are.

In this chapter, unlike the aforementionedworks inBai et al. (2017a, b), Kung et al.
(2016), Zhang and Venkitasubramaniam (2017), Guo et al. (2018), we adopt an alter-
native approach to this stealthiness–distortion trade-off problem using power spectral
analysis. The scenarios we consider include linear Gaussian open-loop dynamical
systems and (closed-loop) feedback control systems. By using the power spectral
approach, we obtain explicit formulas that characterize analytically the stealthiness–
distortion trade-offs as well as the properties of the worst-case attacks. It turns out
that theworst-case attacks are stationary coloredGaussian attackswith power spectra
that are shaped specifically according to the transfer functions of the systems and the
power spectra of the system outputs, the knowledge of which is all that the attacker
needs to have access to in order to carry out the worst-case attacks. In other words,
the attacker only needs to know the input–output behaviors of the systems, whereas
it is not necessary to know their state-space models.

The remainder of the chapter is organized as follows. Section3.2 provides the
technical preliminaries. Section3.3 is divided into two subsections, focusing on
open-loop dynamical systems and feedback control systems, respectively. Section3.4
presents numerical examples. Concluding remarks are given in Sect. 3.5.

More specifically, Theorem3.1, as the firstmain result, characterizes explicitly the
stealthiness–distortion trade-off and the worst-case attack in linear Gaussian open-
loop dynamical systems. Equivalently, Corollary 3.1 considers the dual problem to
that of Theorem 3.1. On the other hand, Theorem 3.2, together with Corollary 3.2
(in a dual manner), provides analytical expressions for the stealthiness–distortion
trade-off and the worst-case attack in linear Gaussian feedback control systems. In
addition, the preliminary results on the implications in control design, as presented
in the Conclusion, indicate how the explicit stealthiness–distortion trade-off formula
for feedback control systems can be employed to render the controller design explicit
and intuitive.
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Note that this chapter is based upon (Fang and Zhu 2021), which, however, only
discusses the case of open-loop dynamical systems. Meanwhile, in this chapter,
we also consider (closed-loop) feedback control systems. Note also that the results
presented in this book chapter are applicable to discrete-time systems.

Notation:Throughout the chapter, we consider zero-mean real-valued continuous
random variables and random vectors, as well as discrete-time stochastic processes.
We represent random variables and random vectors using boldface letters, e.g., x,
while the probability density function of x is denoted as px. In addition, x0,...,k will
be employed to denote the sequence x0, . . . , xk or the random vector

[
xT
0 , . . . , xT

k

]T
,

depending on the context. Note in particular that, for simplicity and with abuse of
notations, we utilize x ∈ R and x ∈ R

m to indicate that x is a real-valued random
variable and that x is a real-valued m-dimensional random vector, respectively.

3.2 Preliminaries

A stochastic process {xk} , xk ∈ R is said to be stationary if Rx (i, k) := E
[
xixi+k

]

depends only on k, and can thus be denoted as Rx (k) for simplicity. The power
spectrum of a stationary process {xk} , xk ∈ R is defined as

Sx (ω) :=
∞∑

k=−∞
Rx (k) e−jωk .

Moreover, the variance of {xk} is given by

σ 2
x = E

[
x2
k

] = 1

2π

∫ π

−π

Sx (ω) dω.

The KL divergence (see, e.g., Kullback and Leibler (1951)) is defined as follows.

Definition 3.1 Consider random vectors x ∈ R
m and y ∈ R

m with probability den-
sities px (u) and py (u), respectively. The KL divergence from distribution px to
distribution py is defined as

KL
(
py‖px

) :=
∫

py (u) ln
py (u)

px (u)
du.

The next lemma (see, e.g., Kay (2020)) provides an explicit expression of KL
divergence in terms of covariance matrices for Gaussian random vectors; note that
herein and in the sequel, all random variables and random vectors are assumed to be
zero mean.

Lemma 3.1 Consider Gaussian random vectors x ∈ R
m and y ∈ R

m with covari-
ance matrices Σx and Σy, respectively. The KL divergence from distribution px to
distribution py is given by
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KL
(
py‖px

) = 1

2

[
tr
(
ΣyΣ

−1
x

)− ln det
(
ΣyΣ

−1
x

)− m
]
.

It is clear that in the scalar case (whenm = 1), Lemma3.1 reduces to the following
formula for Gaussian random variables:

KL
(
py‖px

) = 1

2

[
σ 2

y

σ 2
x

− ln

(
σ 2

y

σ 2
x

)

− 1

]

.

TheKLdivergence rate (see, e.g., Lindquist andPicci (2015)) is defined as follows.

Definition 3.2 Consider stochastic processes {xk} , xk ∈ R
m and {yk} , yk ∈ R

m with
densities p{xk} and p{yk}, respectively; note that p{xk} and p{yk} will be denoted by px

and py for simplicity in the sequel. Then, the KL divergence rate from distribution
px to distribution py is defined as

KL∞
(
py‖px

) := lim sup
k→∞

KL
(
py0,...,k‖px0,...,k

)

k + 1
.

The next lemma (see, e.g., Lindquist and Picci (2015)) provides an explicit expres-
sion of KL divergence rate in terms of power spectra for stationary Gaussian pro-
cesses.

Lemma 3.2 Consider stationary Gaussian processes {xk} , xk ∈ R and {yk} , yk ∈
R with densities px and py as well as power spectra Sx (ω) and Sy (ω), respectively.
Suppose that Sy (ω) /Sx (ω) is bounded (see Lindquist and Picci (2015) for details).
Then, the KL divergence rate from distribution px to distribution py is given by

KL∞
(
py‖px

) = 1

2π

∫ 2π

0

1

2

{
Sy (ω)

Sx (ω)
− ln

[
Sy (ω)

Sx (ω)

]
− 1

}
dω. (3.1)

3.3 Stealthiness–Distortion Trade-Offs and Worst-Case
Attacks

In this section,we analyze the fundamental stealthiness–distortion trade-offs of linear
Gaussian open-loop dynamical systems and (closed-loop) feedback control systems
under data injection attacks, whereas the KL divergence is employed as the stealth-
iness measure. Consider the scenario where attacker can modify the system input,
and consequently, the system state and system output will then all be changed. From
the attacker’s point of view, the desired outcome is that the change in system state
(as measured by state distortion) is large, while the change in system output (as
measured by output stealthiness) is relatively small, so as to make the possibility
of being detected low. Meanwhile fundamental trade-offs in general exist between
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state distortion and output stealthiness, since the system’s state and output are cor-
related. In other words, increase in state distortion may inevitably lead to decrease
in output stealthiness, i.e., increase in the possibility of being detected. How to cap-
ture such trade-offs? And what is the worst-case attack that can cause the maximum
distortion given a certain stealthiness level, or vice versa? The answers are provided
subsequently in terms of power spectral analysis.

3.3.1 Open-Loop Dynamical Systems

In this subsection, we focus on open-loop dynamical systems. Specifically, consider
the scalar dynamical system depicted in Fig. 3.1 with state-space model given by

{
xk+1 = axk + buk + wk,

yk = cxk + vk,

where xk ∈ R is the system state, uk ∈ R is the system input, yk ∈ R is the system
output, wk ∈ R is the process noise, and vk ∈ R is the measurement noise. The
system parameters are a ∈ R, b ∈ R, and c ∈ R; we further assume that |a| < 1 and
b, c �= 0, i.e., the system is stable, controllable, and observable. Accordingly, the
transfer function of the system is given by

P (z) = bc

z − a
. (3.2)

(It is clear that P (z) is minimum phase.) Suppose that {wk} and {vk} are stationary
white Gaussian with variances σ 2

w and σ 2
v , respectively. Furthermore, {wk}, {vk}, and

x0 are assumed to be mutually independent. Assume also that {uk} is stationary with
power spectrum Su (ω). As such, {xk} and {yk} are both stationary, and denote their
power spectra by Sx (ω) and Sy (ω), respectively.

kx kz

kv

ku 1z
1kx

ky

a

c

kw

b

Fig. 3.1 A dynamical system
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Fig. 3.2 A dynamical system under injection attack

Consider then the scenario that an attack signal {nk} , nk ∈ R, is to be added to
the input of the system {uk} to deviate the system state, while aiming to be stealthy
in the system output; see the depiction in Fig. 3.2. In addition, denote the true plant
input under attack as {̂uk}, where

ûk = uk + nk, (3.3)

whereas the system under attack {nk} is given by

{
x̂k+1 = ax̂k + bûk + wk = ax̂k + buk + bnk + wk,

ŷk = ĉxk + vk .
(3.4)

Meanwhile, suppose that the attack signal {nk} is independent of {uk}, {wk}, {vk},
and x0; consequently, {nk} is independent of {xk} and {yk} as well.

The following questions then naturally arise: What is the fundamental trade-off
between the degree of distortion caused in the system state (as measured by the mean
squared-error distortion E

[
(̂xk − xk)2

]
between the original state {xk} and the state

under attack denoted as {̂xk}) and the level of stealthiness resulted in the system
output (as measured by the KL divergence rate KL∞

(
p̂y‖py

)
between the original

output {yk} and the output under attack denoted as {̂yk})?More specifically, to achieve
a certain degree of distortion in state, what is the maximum level of stealthiness that
can be maintained by the attacker? And what is the worst-case attack in this sense?
The following theorem, as the first main result of this chapter, answers the questions
raised above.

Theorem 3.1 Consider the dynamical system under injection attacks depicted in
Fig.3.2. Suppose that the attacker aims to design the attack signal {nk} to satisfy the
following attack goal in terms of state distortion:

E
[
(̂xk − xk)2

] ≥ D. (3.5)

Then, the minimum KL divergence rate between the original output and the attacked
output is given by
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inf
E[(̂xk−xk )2]≥D

KL∞
(
p̂y‖py

) = 1

2π

∫ 2π

0

1

2

{
Ŝn (ω)

Sy (ω)
− ln

[
1 + Ŝn (ω)

Sy (ω)

]}
dω, (3.6)

where

Ŝn (ω) = ζ S2y (ω)

1 − ζ Sy (ω)
, (3.7)

and Sy (ω) is given by

Sy (ω) = b2c2
∣∣ejω − a

∣∣2
Su (ω) + c2

∣∣ejω − a
∣∣2

σ 2
w + σ 2

v . (3.8)

Herein, ζ is the unique constant that satisfies

1

2π

∫ π

−π

ζ S2y (ω)

1 − ζ Sy (ω)
dω = c2D, (3.9)

while

0 < ζ < min
ω

1

Sy (ω)
. (3.10)

Moreover, the worst-case (in the sense of achieving this minimum KL divergence
rate) attack {nk} is a stationary colored Gaussian process with power spectrum

Sn (ω) =
∣∣ejω − a

∣∣2

b2c2
ζ S2y (ω)

1 − ζ Sy (ω)
. (3.11)

Proof To begin with, it can be verified that the power spectrum of {yk} is given by

Sy (ω) = ∣∣P (ejω)∣∣2 Su (ω) + 1

b2
∣∣P
(
ejω
)∣∣2 σ 2

w + σ 2
v ,

= b2c2
∣
∣ejω − a

∣
∣2
Su (ω) + c2

∣
∣ejω − a

∣
∣2

σ 2
w + σ 2

v .

Note then that due to the property of additivity of linear systems, the system in
Fig. 3.2 is equivalent to that of Fig. 3.3, where

ŷk = yk + n̂k,

and {̂nk} is the output of the subsystem
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Fig. 3.3 A dynamical system under injection attack: equivalent system

{
x̂k+1 − xk+1 = a (̂xk − xk) + bnk,

n̂k = c (̂xk − xk) ,

as depicted by the upper half of Fig. 3.3; note that in this subsystem, (̂xk − xk) ∈ R

is the system state, nk ∈ R is the system input, and n̂ ∈ R is the system output. On
the other hand, the distortion constraint

E
[
(̂xk − xk)2

] ≥ D

is then equivalent to being with a power constraint

E
[
n̂2
k

] ≥ c2D,

since n̂k = ŷk − yk and thus

n̂2
k = (yk − ŷk)2 = (cxk − ĉxk)2 = c2 (xk − x̂k)2 .

Accordingly, the system in Fig. 3.3 may be viewed as a “virtual channel” modeled
as

ŷk = yk + n̂k

with noise constraint

E
[
n̂2
k

] ≥ c2D,
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where {yk} is the channel input, {̂yk} is the channel output, and {̂nk} is the chan-
nel noise. In addition, due to the fact that {nk} is independent of {yk}, {̂nk} is also
independent of {yk}.

The approachwe shall take herein, as developed inCover andThomas (2006), is to
treat themultiple uses of a scalar channel (i.e., a scalar dynamic channel) equivalently
as a single use of parallel channels (i.e., a set of parallel static channels). We consider
first the case of a finite number of parallel static channels with

ŷ = y + n̂,

where y, ŷ, n̂ ∈ R
m , and n̂ is independent of y. In addition, y is Gaussian with covari-

ance Σy, and the noise power constraint is given by

tr (Σn̂) = E

[
m∑

i=1

n̂2 (i)

]

≥ c2D,

where n̂ (i) denotes the i-th element of n̂. In addition, according to Fang and Zhu
(2020) (see Proposition 2 therein), we have

KL
(
p̂y‖py

) ≥ KL
(
p̂yG‖py

)
,

where ŷG denotes a Gaussian random vector with the same covariance as ŷ, and
equality holds if ŷ is Gaussian. Meanwhile, it is known from Lemma 3.1 that

KL
(
p̂yG‖py

) = 1

2

[
tr
(
ΣŷΣ

−1
y

)− ln det
(
ΣŷΣ

−1
y

)− m
]
.

On the other hand, since y and n̂ are independent, we have

Σŷ = Σn̂+y = Σn̂ + Σy.

Consequently,

tr
(
ΣŷΣ

−1
y

)− ln det
(
ΣŷΣ

−1
y

) = tr
[(

Σn̂ + Σy
)
Σ−1

y

]− ln det
[(

Σn̂ + Σy
)
Σ−1

y

]
.

Denote the eigendecomposition of Σy by UyΛyUT
y , where

Λy = diag (λ1, . . . , λm) .

Then,
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tr
[(

Σn̂ + Σy
)
Σ−1

y

]− ln det
[(

Σn̂ + Σy
)
Σ−1

y

]

= tr
[(

Σn̂ +UyΛyU
T
y

) (
UyΛyU

T
y

)−1
]

− ln det
[(

Σn̂ +UyΛyU
T
y

) (
UyΛyU

T
y

)−1
]
,

= tr
[(

Σn̂ +UyΛyU
T
y

)
UyΛ

−1
y UT

y

]− ln det
[(

Σn̂ +UyΛyU
T
y

)
UyΛ

−1
y UT

y

]
,

= tr
[
UyU

T
y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y UT

y

]

− ln det
[
UyU

T
y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y UT

y

]
,

= tr
{
Uy
[
UT

y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y

]
UT

y

}

− ln det
{
Uy
[
UT

y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y

]
UT

y

}
,

= tr
[
UT

y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y

]− ln det
[
UT

y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y

]
,

= tr
[(
UT

y Σn̂Uy + Λy
)
Λ−1

y

]− ln det
[(
UT

y Σn̂Uy + Λy
)
Λ−1

y

]
,

= tr
[(

Σ n̂ + Λy
)
Λ−1

y

]− ln det
[(

Σ n̂ + Λy
)
Λ−1

y

]
,

where Σ n̂ = UT
y Σn̂Uy. Denoting the diagonal terms of Σ n̂ by σ 2

n̂(i), i = 1, . . . ,m,
it is known from (Fang and Zhu 2020) (see Proposition 4 therein) that

tr
[(

Σ n̂ + Λy
)
Λ−1

y

]− ln det
[(

Σ n̂ + Λy
)
Λ−1

y

]
,

≥
m∑

i=1

[
σ 2

n̂(i) + λi

λi

]

−
m∑

i=1

ln

[
σ 2

n̂(i) + λi

λi

]

,

=
m∑

i=1

[

1 + σ 2
n̂(i)

λi

]

−
m∑

i=1

ln

[

1 + σ 2
n̂(i)

λi

]

,

where equality holds if Σ n̂ is diagonal. For simplicity, we denote

Σ n̂ = diag
(
σ 2

n̂(1), . . . , σ
2
n̂(m)

) = diag
(
N̂1, . . . , N̂m

)

when Σ n̂ is diagonal. Then, the problem reduces to that of choosing N̂1, . . . , N̂m to
minimize

m∑

i=1

(
1 + N̂i

λi

)
−

m∑

i=1

ln

(
1 + N̂i

λi

)

subject to the constraint that

m∑

i=1

N̂i = tr
(
Σ n̂
) = tr

(
UT

y Σn̂Uy
) = tr

(
Σn̂UyU

T
y

) = tr (Σn̂) = mc2D.

Define the Lagrange function by
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m∑

i=1

(
1 + N̂i

λi

)
−

m∑

i=1

ln

(
1 + N̂i

λi

)
+ η

(
m∑

i=1

N̂i − N̂

)

,

and differentiate it with respect to N̂i , then we have

1

λi
− 1

N̂i + λi
+ η = 0,

or equivalently,

N̂i = 1
1
λi

+ η
− λi = λi

1 + ηλi
− λi = −ηλ2

i

1 + ηλi
,

where η satisfies

m∑

i=1

N̂i =
m∑

i=1

−ηλ2
i

1 + ηλi
= mc2D,

while

− min
i=0,...,m

1

λi
< η < 0.

For simplicity, we denote ζ = −η, and accordingly,

N̂i = ζλ2
i

1 − ζλi
,

where ζ satisfies

m∑

i=1

N̂i =
m∑

i=1

ζλ2
i

1 − ζλi
= mc2D,

while

0 < ζ < min
i=0,...,m

1

λi
.

Correspondingly,
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inf
pn̂

KL
(
p̂y‖py

) = 1

2

[
m∑

i=1

(
1 + N̂i

λi

)
−

m∑

i=1

ln

(
1 + N̂i

λi

)
− m

]

,

=
m∑

i=1

1

2

[
N̂i

λi
− ln

(
1 + N̂i

λi

)]
.

Consider now a scalar dynamic channel

ŷk = yk + n̂k,

where yk, n̂k, ŷk ∈ R, while {yk} and {̂nk} are independent. In addition, {yk} is sta-
tionary colored Gaussian with power spectrum Sy (ω), whereas the noise power
constraint is given by E

[
n̂2
k

] ≥ c2D. We may then consider a block of consecutive
uses from time 0 to k of this channel as k + 1 channels in parallel Cover and Thomas
(2006). Particularly, let the eigendecomposition of Σy0,...,k be given by

Σy0,...,k = Uy0,...,kΛy0,...,kU
T
y0,...,k ,

where

Λy0,...,k = diag (λ0, . . . , λk) .

Then, we have

min
pn̂0,...,k :

∑k
i=0 E[̂n2

i ]≥(k+1)c2D

KL
(
p̂y0,...,k‖py0,...,k

)

k + 1
= 1

k + 1

k∑

i=0

1

2

[
N̂i

λi
− ln

(
1 + N̂i

λi

)]
,

where

N̂i = ζλ2
i

1 − ζλi
, i = 0, . . . , k.

Herein, ζ satisfies

k∑

i=0

N̂i =
k∑

i=0

ζλ2
i

1 − ζλi
= (k + 1) c2D,

or equivalently,

1

k + 1

k∑

i=0

N̂i = 1

k + 1

(
ζλ2

i

1 − ζλi

)
= c2D,

while
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0 < ζ < min
i=0,...,k

1

λi
.

In addition, since the processes {yk}, {̂nk}, and {̂yk} are stationary, we have

lim
k→∞ min

pn̂0,...,k :
∑k

i=0 E[̂n2
i ]≥(k+1)c2D

KL
(
p̂y0,...,k‖py0,...,k

)

k + 1

= inf
E[̂n2

k]≥c2D
lim
k→∞

KL
(
p̂y0,...,k‖py0,...,k

)

k + 1
= inf

E[̂n2
k]≥c2D

lim sup
k→∞

KL
(
p̂y0,...,k‖py0,...,k

)

k + 1

= inf
E[̂n2

k]≥c2D
KL∞

(
p̂y‖py

) = inf
E[(̂xk−xk )2]≥D

KL∞
(
p̂y‖py

)
.

On the other hand, since the processes are stationary, the covariance matrices are
Toeplitz (Grenander and Szegö 1958), and their eigenvalues approach their limits as
k → ∞. Moreover, the densities of eigenvalues on the real line tend to the power
spectra of the processes (Gutiérrez-Gutiérrez and Crespo 2008; Lindquist and Picci
2015; Pinsker 1964). Accordingly,

inf
E[(̂xk−xk )2]≥D

KL∞
(
p̂y‖py

) = lim
k→∞

1

k + 1

k∑

i=0

1

2

[
N̂i

λi
− ln

(
1 + N̂i

λi

)]
,

= 1

2π

∫ 2π

0

1

2

{
Ŝn (ω)

Sy (ω)
− ln

[
1 + Ŝn (ω)

Sy (ω)

]}
dω,

where

Ŝn (ω) = ζ S2y (ω)

1 − ζ Sy (ω)
,

and ζ satisfies

lim
k→∞

1

k + 1

k∑

i=0

N̂i = 1

2π

∫ π

−π

Ŝn (ω) dω = 1

2π

∫ π

−π

ζ S2y (ω)

1 − ζ Sy (ω)
dω = c2D,

while

0 < ζ < min
ω

1

Sy (ω)
.

Lastly, note that

Ŝn (ω) = ∣∣P (ejω)∣∣2 Sn (ω) = b2c2
∣∣ejω − a

∣∣2
Sn (ω) ,
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and hence

Sn (ω) =
∣∣ejω − a

∣∣2

b2c2
Ŝn (ω) =

∣∣ejω − a
∣∣2

b2c2
ζ S2y (ω)

1 − ζ Sy (ω)
.

This concludes the proof. �

It is clear that Sn (ω) may be rewritten as

Sn (ω) = 1
∣∣P
(
ejω
)∣∣2

ζ S2y (ω)

1 − ζ Sy (ω)
. (3.12)

This means that the attacker only needs the knowledge of the power spectrum of the
original system output {yk} and the transfer function of the system (from {nk} to {̂yk}),
i.e., P (z), in order to carry out this worst-case attack. It is worth mentioning that the
power spectrum of {yk} can be estimated based on its realizations (see, e.g., Stoica
and Moses (2005)), while the transfer function of the system can be approximated
by system identification (see, e.g., Ljung (1999)).

Note that it can be verified (Kay 2020) that the (minimum) output KL divergence
rateKL∞

(
p̂y‖py

)
increases strictlywith the state distortion bound D. In otherwords,

in order for the attacker to achieve larger distortion, the stealthiness level of the attack
will inevitably decrease.

On the other hand, the dual problem to that of Theorem 3.1 would be: Given a
certain stealthiness level in output, what is the maximum distortion in state that can
be achieved by the attacker? And what is the corresponding attack? The following
corollary answers these questions.

Corollary 3.1 Consider the dynamical system under injection attacks depicted in
Fig.3.2. Then, in order for the attacker to ensure that the KL divergence rate between
the original output and the attacked output is upper bounded by a (positive) constant
R as

KL∞
(
p̂y‖py

) ≤ R, (3.13)

the maximum state distortion E
[
(̂xk − xk)2

]
that can be achieved is given by

sup
KL∞( p̂y‖py)≤R

E
[
(̂xk − xk)2

] = 1

2π

∫ π

−π

1

c2

[
ζ S2y (ω)

1 − ζ Sy (ω)

]

dω, (3.14)

where ζ is the unique constant that satisfies
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1

2π

∫ 2π

0

1

2

⎧
⎨

⎩

ζ S2y (ω)

1−ζ Sy(ω)

Sy (ω)
− ln

⎡

⎣1 +
ζ S2y (ω)

1−ζ Sy(ω)

Sy (ω)

⎤

⎦

⎫
⎬

⎭
dω

= 1

2π

∫ 2π

0

1

2

{
ζ Sy (ω)

1 − ζ Sy (ω)
− ln

[
1

1 − ζ Sy (ω)

]}
dω = R, (3.15)

while

0 < ζ < min
ω

1

Sy (ω)
. (3.16)

Note that herein Sy (ω) is given by (3.8). Moreover, this maximum distortion is
achieved when the attack signal {nk} is chosen as a stationary colored Gaussian
process with power spectrum

Sn (ω) =
∣∣ejω − a

∣∣2

b2c2
ζ S2y (ω)

1 − ζ Sy (ω)
. (3.17)

3.3.2 Feedback Control Systems

We will now proceed to examine (closed-loop) feedback control systems in this
subsection. Specifically, consider the feedback control system depicted in Fig. 3.4,
where the state-space model of the plant is given by

{
xk+1 = axk + buk + wk,

yk = cxk + vk,

while K (z) is the transfer function of the (dynamic) output controller. Herein, xk ∈ R

is the plant state, uk ∈ R is the plant input, yk ∈ R is the plant output, wk ∈ R is the

Fig. 3.4 A feedback control system
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Fig. 3.5 A feedback control system under actuator attack

process noise, and vk ∈ R is the measurement noise. The system parameters are
a ∈ R, b ∈ R, and c ∈ R. Note that the plant is not necessarily stable. Meanwhile,
we assume that b, c �= 0, i.e., the plant is controllable and observable, and thus can
be stabilized by controller K (z). On the other hand, the transfer function of the plant
is given by

P (z) = bc

z − a
. (3.18)

Suppose that {wk} and {vk} are stationary white Gaussian with variances σ 2
w and σ 2

v ,
respectively. Furthermore, {wk}, {vk}, and x0 are assumed to be mutually indepen-
dent. Assume also that K (z) stabilizes P (z), i.e., the closed-loop system is stable.
Accordingly, {xk} and {yk} are both stationary, and denote their power spectra by
Sx (ω) and Sy (ω), respectively.

Consider then the scenario that an attack signal {nk} , nk ∈ R, is to be added to
the input of the plant {uk} to deviate the plant state, while aiming to be stealthy in
the plant output; see the depiction in Fig. 3.5. In fact, this corresponds to actuator
attack. Note in particular that since we are now considering a closed-loop system,
the presence of {nk} will eventually distort the original {uk} (through feedback) as
well, which is an essential difference form the open-loop system setting considered
in Sect. 3.3.1, and the distorted {uk} will be denoted as {uk}. In addition, we denote
the true plant input under attack as {̂uk}, where

ûk = uk + nk, (3.19)

whereas the plant under attack {nk} is given by

{
x̂k+1 = ax̂k + bûk + wk = ax̂k + buk + bnk + wk,

ŷk = ĉxk + vk .
(3.20)

Meanwhile, suppose that the attack signal {nk} is independent of {wk}, {vk}, and x0;
consequently, {nk} is independent of {xk} and {yk} as well.
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The following theorem, as the secondmain result of this chapter, characterizes the
fundamental trade-off between the distortion in state and the stealthiness in output
for feedback control systems.

Theorem 3.2 Consider the feedback control system under injection attacks depicted
in Fig.3.5. Suppose that the attacker needs to design the attack signal {nk} to satisfy
the following attack goal in terms of state distortion:

E
[
(̂xk − xk)2

] ≥ D. (3.21)

Then, the minimum KL divergence rate between the original output and the attacked
output is given by

inf
E[(̂xk−xk )2]≥D

KL∞
(
p̂y‖py

) = 1

2π

∫ 2π

0

1

2

{
Ŝn (ω)

Sy (ω)
− ln

[
1 + Ŝn (ω)

Sy (ω)

]}
dω,

(3.22)

where

Ŝn (ω) = ζ S2y (ω)

1 − ζ Sy (ω)
, (3.23)

and Sy (ω) is given by

Sy (ω) =
∣∣
∣∣∣

c

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
w +

∣∣
∣∣∣

ejω − a

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
v . (3.24)

Herein, ζ is the unique constant that satisfies

1

2π

∫ π

−π

ζ S2y (ω)

1 − ζ Sy (ω)
dω = c2D, (3.25)

while

0 < ζ < min
ω

1

Sy (ω)
. (3.26)

Moreover, the worst-case attack {nk} is a stationary colored Gaussian process with
power spectrum

Sn (ω) =
∣
∣∣∣∣
ejω − a + K

(
ejω
)
bc

bc

∣
∣∣∣∣

2
ζ S2y (ω)

1 − ζ Sy (ω)
. (3.27)
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Fig. 3.6 A feedback control system under actuator attack: equivalent system

Proof Note first that when the closed-loop system is stable, the power spectrum of
{yk} is given by

Sy (ω) = 1

b2

∣∣
∣∣∣

P
(
ejω
)

1 + K
(
ejω
)
P
(
ejω
)

∣∣
∣∣∣

2

σ 2
w +

∣∣
∣∣∣

1

1 + K
(
ejω
)
P
(
ejω
)

∣∣
∣∣∣

2

σ 2
v ,

= 1

b2

∣∣∣∣∣

bc
ejω−a

1 + K
(
ejω
)

bc
ejω−a

∣∣∣∣∣

2

σ 2
w +

∣∣∣∣∣
1

1 + K
(
ejω
)

bc
ejω−a

∣∣∣∣∣

2

σ 2
v ,

=
∣∣
∣∣∣

c

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
w +

∣∣
∣∣∣

ejω − a

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
v .

Note then that since the systems are linear, the system in Fig. 3.5 is equivalent to that
of Fig. 3.6, where

ŷk = yk + n̂k,

and {̂nk} is the output of the closed-loop system composed by the controller K (z)
and the plant

{
x̂k+1 − xk+1 = a (̂xk − xk) + b (uk − uk) + bnk,

n̂k = c (̂xk − xk) ,

as depicted by the upper half of Fig. 3.6. Meanwhile, as in the case of Fig. 3.3, the
system in Fig. 3.6 may also be viewed as a “virtual channel” modeled as
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ŷk = yk + n̂k

with noise constraint

E
[
n̂2
k

] ≥ c2D,

where {yk} is the channel input, {̂yk} is the channel output, and {̂nk} is the channel
noise that is independent of {yk}. Then, following procedures similar to those in the
proof of Theorem 3.1, it can be derived that

inf
E[(̂xk−xk )2]≥D

KL∞
(
p̂y‖py

) = 1

2π

∫ 2π

0

1

2

{
Ŝn (ω)

Sy (ω)
− ln

[
1 + Ŝn (ω)

Sy (ω)

]}
dω,

where

Ŝn (ω) = ζ S2y (ω)

1 − ζ Sy (ω)
,

and ζ is the unique constant that satisfies

1

2π

∫ π

−π

Ŝn (ω) dω = 1

2π

∫ π

−π

ζ S2y (ω)

1 − ζ Sy (ω)
dω = c2D,

while

0 < ζ < min
ω

1

Sy (ω)
.

In addition, since

Ŝn (ω) =
∣
∣∣∣∣

P
(
ejω
)

1 + K
(
ejω
)
P
(
ejω
)

∣
∣∣∣∣

2

Sn (ω) =
∣
∣∣∣∣

bc
ejω−a

1 + K
(
ejω
)

bc
ejω−a

∣
∣∣∣∣

2

Sn (ω) ,

=
∣∣∣∣
∣

bc

ejω − a + K
(
ejω
)
bc

∣∣∣∣
∣

2

Sn (ω) ,

we have

Sn (ω) =
∣∣∣∣∣
ejω − a + K

(
ejω
)
bc

bc

∣∣∣∣∣

2

Ŝn (ω) =
∣∣∣∣∣
ejω − a + K

(
ejω
)
bc

bc

∣∣∣∣∣

2
ζ S2y (ω)

1 − ζ Sy (ω)
.

This concludes the proof. �
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It is worth mentioning that the Sy (ω) for Theorem 3.2 is given by (3.24), which
differs significantly from that given by (3.8) for Theorem 3.1, although the notations
are the same. Accordingly, η, Sn (ω), and so on, will all be different between the two
cases in spite of the same notations.

Note also that Sn (ω) can be rewritten as

Sn (ω) =
∣∣
∣∣∣
1 + K

(
ejω
)
P
(
ejω
)

P
(
ejω
)

∣∣
∣∣∣

2
ζ S2y (ω)

1 − ζ Sy (ω)
, (3.28)

which indicates that the attacker only needs to know the power spectrum of the
original system output {yk} and the transfer function of the closed-loop system (from
{nk} to {̂yk}), i.e.,

P (z)

1 + K (z) P (z)
, (3.29)

in order to carry out this worst-case attack.
Again, we may examine the dual problem as follows.

Corollary 3.2 Consider the feedback control systemunder injectionattacks depicted
in Fig.3.5. Then, in order for the attacker to ensure that the KL divergence rate
between the original output and the attacked output is upper bounded by a (positive)
constant R as

KL∞
(
p̂y‖py

) ≤ R, (3.30)

the maximum state distortion E
[
(̂xk − xk)2

]
that can be achieved is given by

sup
KL∞( p̂y‖py)≤R

E
[
(̂xk − xk)2

] = 1

2π

∫ π

−π

1

c2

[
ζ S2y (ω)

1 − ζ Sy (ω)

]

dω, (3.31)

where ζ satisfies

1

2π

∫ 2π

0

1

2

⎧
⎨

⎩

ζ S2y (ω)

1−ζ Sy(ω)

Sy (ω)
− ln

⎡

⎣1 +
ζ S2y (ω)

1−ζ Sy(ω)

Sy (ω)

⎤

⎦

⎫
⎬

⎭
dω

= 1

2π

∫ 2π

0

1

2

{
ζ Sy (ω)

1 − ζ Sy (ω)
− ln

[
1

1 − ζ Sy (ω)

]}
dω = R, (3.32)

while

0 < ζ < min
ω

1

Sy (ω)
. (3.33)
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Note that herein Sy (ω) is given by (3.24). Moreover, this maximum distortion is
achieved when the attack signal {nk} is chosen as a stationary colored Gaussian
process with power spectrum

Sn (ω) =
∣∣∣∣∣
ejω − a + K

(
ejω
)
bc

bc

∣∣∣∣∣

2
ζ S2y (ω)

1 − ζ Sy (ω)
. (3.34)

3.4 Simulation

In this section, we will utilize (toy) numerical examples to illustrate the fundamental
stealthiness–distortion trade-offs in linear Gaussian open-loop dynamical systems as
well as (closed-loop) feedback control systems.

Consider first open-loop dynamical systems as in Sect. 3.3.1. Let a = 0.5, b =
1, c = 1, σ 2

w = 1, σ 2
v = 1, and Su (ω) = 1 therein for simplicity. Accordingly, we

have

Sy (ω) = 2
∣∣ejω − 0.5

∣∣2
+ 1 = 2

(cosω − 0.5)2 + sin2 ω
+ 1.

In such a case, the relation between the minimum KL divergence rate KL∞
(
p̂y‖py

)

(denoted as K L in the figure) and the distortion bound D is illustrated in Fig. 3.7. It
is clear that K L increases (strictly) with D, i.e., in order for the attacker to achieve
larger distortion, the stealthiness level of the attack will inevitably decrease.

Note that the relation between the maximum distortion E
[
(̂xk − xk)2

]
and the

KL divergence rate bound R in Corollary 3.1 is essentially the same as that between
the distortion bound D and the minimum KL divergence rate KL∞

(
p̂y‖py

)
in

Theorem 3.1.

Fig. 3.7 The relation
between KL∞

(
p̂y‖py

)

(denoted as K L) and D in
Open-Loop Dynamical
Systems

0 0.5 1 1.5 2

D

0

0.01

0.02

0.03

0.04

K
L
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Fig. 3.8 The relation
between KL∞

(
p̂y‖py

)

(denoted as K L) and D in
Feedback Control Systems
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0

0.005

0.01

0.015
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Consider then feedback control systems as in Sect. 3.3.2. Let a = 2, b = 1, c = 1,
σ 2

w = 1, σ 2
v = 1, and K (z) = 2 therein for simplicity. Accordingly, we have

Sy (ω) = 1 + ∣∣ejω − 2
∣∣2 = 1 + (cosω − 2)2 + sin2 ω.

In such a case, the relation between the minimum KL divergence rate KL∞
(
p̂y‖py

)

(denoted as K L in the figure) and the distortion bound D is illustrated in Fig. 3.8.
Again, K L increases (strictly) with D, whereas the relationship between the maxi-
mum distortion E

[
(̂xk − xk)2

]
and the KL divergence rate bound R in Corollary 3.2

is essentially the same as that between the distortion bound D and the minimum KL
divergence rate KL∞

(
p̂y‖py

)
in Theorem 3.2.

3.5 Conclusion

In this chapter, we have presented the fundamental stealthiness–distortion trade-offs
of linear Gaussian open-loop dynamical systems and (closed-loop) feedback control
systems under data injection attacks, and explicit formulas have been obtained in
terms of power spectra that characterize analytically the stealthiness–distortion trade-
offs as well as the properties of the worst-case attacks.

So why do we care about explicit formulas in the first place? One value of the
explicit stealthiness–distortion trade-off formula for feedback control systems, for
instance, is that they render the subsequent controller design explicit (and intuitive)
as well. To be more specific, given a threshold on the output stealthiness, it is already
known from Corollary 3.2 what the maximum distortion in state that can be achieved
by the attacker is. Then, one natural control design criterion will be to design the
controller K (z) so as to minimize this maximum distortion. Mathematically, this
minimax problem can be formulated as follows:
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inf
K (z)

sup
KL∞( p̂y‖py)≤R

E
[
(̂xk − xk)2

] = inf
K (z)

{
1

2π

∫ π

−π

1

c2

[
ζ S2y (ω)

1 − ζ Sy (ω)

]

dω

}

,

where

Sy (ω) =
∣∣
∣∣∣

c

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
w +

∣∣
∣∣∣

ejω − a

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
v ,

=
∣∣∣∣∣

P
(
ejω
)

1 + K
(
ejω
)
P
(
ejω
)

∣∣∣∣∣

2
σ 2

w

b2
+
∣∣∣∣∣

1

1 + K
(
ejω
)
P
(
ejω
)

∣∣∣∣∣

2

σ 2
v ,

whereas the infimum is taken over all K (z) that stabilizes the plant P (z). Herein, ζ
can be treated as a tuning parameter as long as it satisfies

0 < ζ < min
ω

1

Sy (ω)
.

We will, however, leave more detailed investigations of this formulation to future
research.

Other potential future research directions include the investigation of such trade-
offs for state estimation systems. It might also be interesting to examine the security–
privacy trade-offs (see, e.g., Farokhi and Esfahani (2018), Fang and Zhu (2020,
2021)).

References

C.-Z. Bai, V. Gupta, F. Pasqualetti, On Kalman filtering with compromised sensors: attack stealth-
iness and performance bounds. IEEE Trans. Autom. Control 62(12), 6641–6648 (2017)

C.-Z. Bai, F. Pasqualetti, V. Gupta, Data-injection attacks in stochastic control systems: detectability
and performance tradeoffs. Automatica 82, 251–260 (2017)

P. Cheng, L. Shi, B. Sinopoli, Guest editorial special issue on secure control of cyber-physical
systems. IEEE Trans. Control Netw. Syst. 4(1), 1–3 (2017)

M.S. Chong, H. Sandberg, A.M. Teixeira, A tutorial introduction to security and privacy for cyber-
physical systems, inProceedings of the EuropeanControl Conference (ECC) (2019), pp. 968–978

T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, 2006)
S.M. Dibaji, M. Pirani, D.B. Flamholz, A.M. Annaswamy, K.H. Johansson, A. Chakrabortty, A
systems and control perspective of CPS security. Ann. Rev. Control 47, 394–411 (2019)

S. Fang, J.Chen,H. Ishii,Towards IntegratingControl and InformationTheories:From Information-
Theoretic Measures to Control Performance Limitations (Springer, 2017)

S. Fang, Q. Zhu, Channel leakage, information-theoretic limitations of obfuscation, and optimal
privacy mask design for streaming data (2020), arXiv:2008.04893

S. Fang, Q. Zhu, Fundamental limits of obfuscation for linear Gaussian dynamical systems: an
information-theoretic approach, in Proceedings of the American Control Conference (2021)

S. Fang, Q. Zhu, Fundamental stealthiness-distortion tradeoffs in dynamical systems under injection
attacks: a power spectral analysis, in Proceedings of the European Control Conference (2021)

http://arxiv.org/abs/2008.04893


60 S. Fang and Q. Zhu

S. Fang, Q. Zhu, Independent Gaussian distributions minimize the Kullback–Leibler (KL) diver-
gence from independent Gaussian distributions (2020), arXiv: 2011.02560

F. Farokhi, P.M. Esfahani, Security versus privacy, in Proceedings of the IEEE Conference on
Decision and Control (2018), pp. 7101–7106

J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N.O. Tippenhauer, H. Sandberg,
R. Candell, A survey of physics-based attack detection in cyber-physical systems. ACMComput.
Surv. (CSUR) 51(4), 76 (2018)

I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning (MIT Press, 2016)
U. Grenander, G. Szegö, Toeplitz Forms and Their Applications (University of California Press,
1958)

Z.Guo,D. Shi, K.H. Johansson, L. Shi,Worst-case stealthy innovation-based linear attack on remote
state estimation. Automatica 89, 117–124 (2018)

J.Gutiérrez-Gutiérrez, P.M.Crespo,Asymptotically equivalent sequences ofmatrices andHermitian
block Toeplitz matrices with continuous symbols: applications to MIMO systems. IEEE Trans.
Inf. Theory 54(12), 5671–5680 (2008)

K.H. Johansson, G.J. Pappas, P. Tabuada, C.J. Tomlin, Guest editorial special issue on control of
cyber-physical systems. IEEE Trans. Autom. Control 59(12), 3120–3121 (2014)

S.M.Kay, Information-Theoretic Signal Processing and its Applications (Sachuest Point Publishers,
2020)

S. Kullback, Information Theory and Statistics (Courier Corporation, 1997)
S. Kullback, R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)
E. Kung, S. Dey, L. Shi, The performance and limitations of ε-stealthy attacks on higher order
systems. IEEE Trans. Autom. Control 62(2), 941–947 (2016)

A. Lindquist, G. Picci, Linear Stochastic Systems: A Geometric Approach to Modeling. Estimation
and Identification. (Springer, 2015)

L. Ljung, System Identification: Theory For the User (Prentice Hall, 1999)
L. Pardo, Statistical Inference Based on Divergence Measures (CRC Press, 2006)
M.S. Pinsker, Information and Information Stability of Random Variables and Processes (Holden
Day, San Francisco, CA, 1964)

H.V. Poor, An Introduction to Signal Detection and Estimation (Springer, 2013)
R. Poovendran, K. Sampigethaya, S.K.S. Gupta, I. Lee, K.V. Prasad, D. Corman, J.L. Paunicka,
Special issue on cyber-physical systems [scanning the issue]. Proc. IEEE 100(1), 6–12 (2012)

H. Sandberg, S. Amin, K.H. Johansson, Cyberphysical security in networked control systems: an
introduction to the issue. IEEE Control Syst. Mag. 35(1), 20–23 (2015)

P. Stoica, R. Moses, Spectral Analysis of Signals (Prentice Hall, 2005)
A. Stoorvogel, J. Van Schuppen, System identification with information theoretic criteria, in Iden-
tification, Adaptation, Learning: The Science of Learning Models from Data, ed. by S. Bittanti,
G. Picci (Springer, 1996)

S.Weerakkody, O. Ozel, Y.Mo, B. Sinopoli, Resilient control in cyber-physical systems: countering
uncertainty, constraints, and adversarial behavior, Foundations and Trends®. Syst. Control 7(1–
2), 1–252 (2019)

R. Zhang, P. Venkitasubramaniam, Stealthy control signal attacks in linear quadratic Gaussian
control systems: detectability reward tradeoff. IEEE Trans. Inf. Foren. Secur. 12(7), 1555–1570
(2017)

http://arxiv.org/abs/2011.02560

	3 Fundamental Stealthiness–Distortion Trade-Offs in Cyber-Physical Systems
	3.1 Introduction
	3.2 Preliminaries
	3.3 Stealthiness–Distortion Trade-Offs and Worst-Case Attacks
	3.3.1 Open-Loop Dynamical Systems
	3.3.2 Feedback Control Systems

	3.4 Simulation
	3.5 Conclusion
	References


