
Chapter 2
Introduction to Cyber-Physical Security
and Resilience

Masoud Abbaszadeh and Ali Zemouche

2.1 Introduction

Motivated by increasing demand for performance, availability, efficiency, and
resilience, several sectors including energy, manufacturing, healthcare, and trans-
portation have adopted latest advances in controls, automation, communications,
and monitoring in the past decades, moving towards semi-autonomous or fully
autonomous systems in some cases. The resulting integration of information, control,
communication, and computation with physical systems, demands new methodolo-
gies for detailed systematic and modular analysis and synthesis of Cyber-Physical
Systems (CPSs) as a means to realize the desired performance metrics of efficiency,
sustainability, and safety (Dibaji et al. 2019). However, CPSs suffer from extendable
vulnerabilities that are beyond classical networked systems due to the tight integra-
tion of cyber- and physical components. Sophisticated and malicious cyber-attacks
continue to emerge to adversely impact CPS operation, resulting in performance
degradation, service interruption, and system failure. Cyber-physical security pro-
vides a new line of defense at the physical domain layer (i.e., the process level) in
addition to the network Information Technology (IT) and higher level Operational
Technology (OT) solutions.

In the past few years, there has been tremendous research and development efforts
in cyber-physical security and resilience. The forefront of these efforts is to develop
theory and technology to detect and localize cyber-attacks, identify attack types,
estimate, and reconstruct attacks, and to perform secure estimation and control under
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attack. To this end, a variety of results have been proposed based on bothmodel-based
and data-driven methodologies (Abbaszadeh et al. 2018; Akowuah and Kong 2021;
Alguttar et al. 2020; AlZubi et al. 2021; Ameli et al. 2018; An and Yang 2020; Ao
et al. 2016; Azzam et al. 2021; Baniamerian et al. 2019; Brentan et al. 2017; Buason
et al. 2019; Cao et al. 2020; Chen et al. 2021, 2016; Cómbita et al. 2020; Dibaji
et al. 2018; Ding et al. 2020a, b, 2021, 2018; Dutta et al. 2021; Fang et al. 2020;
Farivar et al. 2019; Ferrari and Teixeira 2017; Fillatre et al. 2017; Giraldo et al. 2018;
Gu et al. 2020; Guan and Ge 2017; Han et al. 2021; Hendrickx et al. 2014; Housh
and Ohar 2018; Humayed and Luo 2015; Humayed et al. 2017; Iwendi et al. 2021;
Jahromi et al. 2021, 2019; Junejo and Goh 2016; Khan et al. 2020; Kim et al. 2021;
Kozik et al. 2018; Krishnamurthy et al. 2014; Kumar et al. 2022; Lee et al. 2014; Li
et al. 2021a, b, 2020; Loukas et al. 2019; Mestha et al. 2017; Narayanan et al. 2021;
Noorizadeh et al. 2021; Olowononi et al. 2020; Orumwense and Abo-Al-Ez 2019;
Paredes et al. 2021; Park et al. 2015, 2019; Pasqualetti et al. 2013; Pirani et al. 2021;
Roy and Dey 2021; Sahoo et al. 2018; Semwal 2021; Shin et al. 2017; Su et al. 2020;
Taheri et al. 2020; Tan et al. 2020; Teixeira et al. 2015; Tian et al. 2020; Tiwari et al.
2021; Tsiami and Makropoulos 2021; Valencia et al. 2019; Wang et al. 2021a, b,
2020; Wu et al. 2021; Xiong and Wu 2020; Yan et al. 2018, 2019; Ye et al. 2020;
Zhang et al. 2021a, b, c, d, 2017; Zhang and Zhu 2020; Zhu et al. 2018).

Cyber-physical security technologies leverage dynamicmodels of the closed-loop
control systems through utilization of first-principle or data-driven (e.g., system
identification-based) modeling paradigms. This, in addition to utilizing historical
operational data, enables realistic simulations of attack and fault scenarios, which,
compared to normal operation data, are usually rare in the field. This in turn, enables
utilization of bothmodel-based and data-driven detectors, and in terms of data-driven
detectors, enables exploiting both supervised and unsupervised machine learning
approaches.

2.2 Cyber-Physical Security and Resilience Functionality
Overview

Cyber-physical security and resilience generally consists of the following function-
ality modules:

• Detection: Determines if an attack has happened.
• Isolation: Determines what is under attack, in terms of sensor, actuator, or con-
trol nodes. It may also provide foundations for early warning generation at the
system/subsystem/component level.

• Identification: Determines severity and impact of the attack (including attack
type and magnitude), and backtracks the attack to find its source through attack
forensics. It may also separate the source of the abnormality and distinguishes
malicious attacks from naturally occurring faults/failures.
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Fig. 2.1 Cyber-physical security & resilience functionality diagram

• Resilience: Maintains the integrity, operability, and availability of the system by
accommodating (mitigating) the attack through resilient estimation and control,
with/without a degraded performance (i.e., curtailment); or commands a controlled
safe shutdown.

Figure2.1 shows an example of a cyber-physical security system functionality dia-
gram with modules as described above. The detection (and isolation) decisions may
be made in one shot or in a two-step process, in which a second decision algo-
rithm resolves the gray zones in the first decision. The system may be completely
autonomous or with a human in the loop, in which case the operator may be in the
loop for the whole process with the ability to override machine-made decisions. The
system may also provide visual and/or textual status reports to the operator in real
time through security user interfaces such as a Security Information and Event Man-
agement (SIEM) dashboard. Furthermore, to increase the decisions accuracy and
speed, the detection and isolation decisions may be taken in parallel and fused with
potential input from the operator.

Cyber-physical security goes beyond cyber-security, as it can provide an additional
layer of defence. Attack neutralization through resilient estimation and control, helps
providing the system with capabilities to overcome damage and continue operation
when sensors or control signals are disrupted by adversarial threats.
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Development of a cyber-physical security technology should follow a design phi-
losophy that includes three main aspects:

1. Scalability: This is itself two-fold (a) to be organically expandable to large-scale
systems, and (b) to be applicable to horizontal and cross-domain applications
with reasonable system modeling/dataset generation, while the core algorithms
and architecture remaining domain-agnostic.

2. Robustness: Ability to perform in high performance (in terms of requirements
such as false positive and false negative rates, speed of detection, etc.) in the
presence ofmodel uncertainty, data value and label uncertainty, aswell as system’s
operational and configuration/manufacturing variations.

3. Coherence:Having a unified architecture with modularity and flexibility to iden-
tify essential and optional modules and to fit into different application domains.

2.3 Cyber-Physical Security Versus Adjacent Fields

From the security perspective, cyber-physical security provides a new layer of
defence against cyber-attacks, complementing the existing defence in the IT and
higher level OT network security, and increasing the overall security posture of sys-
tems via a defence-in-depth strategy (Mosteiro-Sanchez et al. 2020). The focus of
cyber-physical security is on the impact of the attack on the physical behavior of the
system as opposed to monitoring data communications and network traffic. Further-
more, the attack resilience capabilitymaintains safe operation and/or prevents system
damage even at the presence of attacks which may go stealthy and undetected by the
IT/OT network-layer security solutions. This increases the availability and integrity
of the systems under protection.

2.3.1 Cyber-Physical Security Versus Cyber-Security

Although sounding similar, there are important distinctions between cyber-security
and cyber-physical security. The IT layer cyber-security is concerned with data
authenticity and integrity. Cyber-physical security, on the other hand, addresses the
availability and reliability, in addition to the IT layer, and maintains system operabil-
ity in an operational technology (OT) environment, at the physical layer. Therefore,
mere access control, for example, does not help in the OT layer, e.g., the industrial
communication bus in Supervisory Control, Data Acquisition (SCADA) systems or
Distributed Control Systems (DCS), and physical layers. For example, in a data-only
IT layer, it is possible to log out users or prevent their access to the network, but
in the OT layer, operators should never be log out of the system during an emer-
gency. Cyber-physical security complements IT and higher level OT cyber-security.
While cyber-security tries to prevent a cyber-attack from happening at the first place,
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cyber-physical security comes into playwhen an attacker has already bypassed the IT
and higher level OT layers, and thus, an attack has already happened. Furthermore, a
cyber-security solution detects an attack through anomalous activities in a communi-
cation data network, while cyber-physical security detects an attack by analyzing its
impact on the physical behavior of the system. Additionally, cyber-security detects
network attacks only, while cyber-physical security, due to its interaction with the
physical world, can also detect physical attacks. Finally, cyber-security is often based
on static analyses (in terms of system dynamics), while cyber-physical security is
essentially based on physical dynamics of the system.

2.3.2 Cyber-Physical Security Versus FDII

A fault is a natural cause, while a cyber-attack is amalicious cause, often intelligently
designed and targeted towards specific aspect(s) of a system. A fault is due to a
component/system natural malfunction. Therefore, it is highly unlikely that multiple
independent and unrelated faults happen simultaneously. A multi-fault scenario is
most often a cascaded event started by a single fault. Fault Detection, Isolation,
and Identification (FDII) methods cannot detect and isolate multiple simultaneous
uncorrelated faults. A cyber-attack on the other hand, is artificially designed and
can target multiple places of a system or even multiple systems as the same time
without any system relations. Faults usually happen in the sensors, actuators, or
some other hardware nodes, while a cyber-attack may happen in any hardware (e.g.,
sensor or actuator) or software (e.g., inside controller) node. Software faults are rare,
especially in a certified code. For example, the probability of a software fault in
an airworthy code certified by DO-178 aviation standard is less than 10−6 (RTCA
2011). There is yet no certification against a cyber-attack. FDI often works against
a pre-determined set of system faults, identified through tools such as fault tree
analysis (FTA) or Failure Mode and Effect Analysis (FMEA). A cyber-attack can
very much go beyond specified or even known system faults. A cyber-attack can
target or randomly activate a vulnerability even unknown to the system designers.
Furthermore, FDI cannot detect stealthy attacks that keep the monitored signals
within normal operational ranges.

2.3.3 Cyber-Physical Security Versus Prognostics

Prognostics concerns aspects like system ageing, estimation of the remaining use-
ful life (RUL), life optimization, condition monitoring, and condition-based main-
tenance. These are all categorized under industrial asset performance management
(APM). Prognostics provides a solution to the APMproblem, which is quite different
from what cyber-physical security is all about. Due to its mission, prognostics hap-
pens at time scales much slower than what is needed for cyber-physical security. Fast
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response at the sampling rate of a real-time controller, as needed in cyber-physical
security and resilience, is simply out of scope for prognostics. As a result, prognos-
tics often uses steady-state or quasi-steady-state models. Cyber-physical security, on
the other hand, often requires dynamic models of higher fidelity. In summary, prog-
nostics is often a tool for gaining more financial benefit from an existing asset that
would operate otherwise, anyway. However, cyber-physical security and resilience
is about maintaining system operability at the first place, and therefore must enable
the system to withstand and respond to existential threats.

2.4 Attack Detection, Isolation, and Identification

In this section, we provide a survey of some of the main and latest results on cyber-
attack detection, isolation, and identification for cyber-physical systems.

AgenericCPS architecture by considering the applications related to secure indus-
trial control system (ICS) to explain the cyber resilience concepts is illustrated in
Fig. 2.2, which is from the US DHS ICS-CERT recommended practice for defense-
in-depth strategies (Dakhnovich et al. 2019; Homeland Security 2014), and based on
the Purdue five-level model (Dakhnovich et al. 2019). An ICS is a set of electronic
devices tomonitor, control, and operate the behavior of interconnected systems. ICSs
receive data from remote sensors measuring process variables, compare those values
with desired values, and take necessary actions to drive (through actuators) or control
the system to function at the required level of services (Galloway and Hancke 2013).
Industrial networks are composed of specialized components and applications, such
as programmable logic controllers (PLCs), SCADA systems, and DCS. There are
other components of ICS such as remote terminal unit (RTU), intelligent electronic
devices (IED), and phasor measurement units (PMU). Those devices communicate
with the human–machine interface (HMI) located in the control network. With the
rise of 5G and industrial IoT, the ICS architecture is becoming even more connected
with lower level edge devices increasingly connected to each other and to the cloud,
hence, expanding the attack surface and demanding for better cybersecurity solu-
tions (Abosata et al. 2021). This increased connectivity and reduced latency have
also enabled design of distributed architectures and distributed edge computing, cre-
ating both cybersecurity opportunities and challenges.

Cyber-attack detection is in general concerned with detecting a malicious cyber-
incident in a system, while cyber-attack isolation is concerned with pinpointing
specifics part(s) of the system that are under attack, and trying to trace back the
entry point(s), and the root cause of the cyber-attack. Localizing the initial point(s)
of cyber-incident is both critical and hard, in the sense that the attack may cause a
series of cascaded events or propagate through the system, especially in feedback
control systems. For cyber-physical systems, attack detection and isolation at the
physical process level is based on monitoring the process variables such as sensor
measurements and actuator commands in a control system. Several recent surveys
on attack detection and isolation are available, covering the space from different
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Fig. 2.2 Secure ICS architecture. Reproduced from (Dakhnovich et al. 2019), originally published
under a CC BY 3.0 license, doi:10.1088/1757-899X/497/1/012006

https://iopscience.iop.org/article/10.1088/1757-899X/497/1/012006
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perspectives and for different application domains including for general CPS (Ding
et al. 2018; Giraldo et al. 2018; Humayed et al. 2017; Li et al. 2020; Tan et al.
2020), ICS (Zhang et al. 2021d), smart grid (Musleh et al. 2019; Peng et al. 2019),
autonomous vehicles (Chowdhury et al. 2020; Grigorescu et al. 2020; Loukas et al.
2019) and energy systems (Orumwense and Abo-Al-Ez 2019).

Attack identification is concerned with providing additional insights about the
nature of the attack, identifying the type of the attack, impact analysis and forensics
(Long et al. 2005; Pasqualetti et al. 2013; Xuan and Naghnaeian 2021). Another
important aspect of attack identification is to separate anomalies from novelties
(e.g., environmental or operational changes) which can have process-level impacts,
and hence, may be detected by attack detectors, and to distinguish cyber-attacks
from naturally occurring faults or failures (Anwar et al. 2015; Pan et al. 2015).
Attack detection, isolation, and identification (ADII) has similarities with FDII, but
as mentioned before, also has major differences, especially for detecting and locating
stealthy and coordinated attacks. Similar to other anomaly detection paradigms,ADII
algorithms face fundamental design trade-offs among performance and robustness
requirements such as false positive rate, false negative rate, and speed of detection
(Ding et al. 2018; Li et al. 2020; Zhang et al. 2021d). Many of ADII algorithms are
passive in the sense that they receive time-series data from sensors, actuators, and
controller, without altering the system. These methods may not be effective against
replay attacks. In a replay attack, themalware first records healthy system data during
the normal operation, then injects malicious signals into sensors and/or actuators,
while masking the real-time data to be sent to the HMI and replaying the prerecorded
healthy data instead. Detection of replay attacks often requires active methods. To
address this, dynamic physical watermarking methods are proposed (Porter et al.
2020; Satchidanandan and Kumar 2016, 2019). In these methods, carefully designed
watermark signals are injected into the system on top of the control commands. The
presence of the expected watermark fingerprints in the outputs, determines whether
the system is uncompromised. These additional injections, however, may affect the
control performance or reduce the stability margins. So, they need to be designed
and implemented in a safe manner, through a trade-off optimization between attack
detectability and control performance (Khazraei et al. 2017b, a).

The ADII algorithms may work stand-alone for monitoring and alarm generation,
or may work in conjunction with an automatic attack mitigation and neutralization
algorithm (Li et al. 2020; Mestha et al. 2017), or as part of a cyber-situational aware-
ness system (Abbaszadeh et al. 2018; Chang et al. 2017; Pöyhönen et al. 2021.
The ADII techniques can be categorized into two main categories: (i) model-based
approaches and (ii) data-driven approaches. Next, we will provide an overview of
some of the latest results in each category.
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2.4.1 Model-Based ADII

Model-Based ADII utilizes a systemmodel in the detection, isolation, and identifica-
tionprocedures. Themodel canbe a simple encapsulationof domainknowledgeof the
system operation such as in traditional rule-based or expert systems, or can be a more
formal dynamic system model, such as a state space model, developed using first-
principles or system identification. Once such amodel is available, an observer-based
method is often used for attack detection and isolation. The most popular of such
observers is the Kalman filter, providing an innovation signal between the measured
outputs and the predicted outputs by the model. Detection and isolation procedures
are mainly based on two threshold mechanisms over the innovation signal: (i) the
chi-square distribution and (ii) the Cumulative Sum (CUSUM) (Ahmed et al. 2017;
Housh and Ohar 2018; Sridhar and Govindarasu 2014). The CUSUM approach has
the advantage to make a more robust decision based on a weighted sequential sum of
the innovation signal as opposed to its instantaneous value, potentially reducing the
false positives. However, it may induce a time delay in detecting cyber-events. The
attack isolation is done mainly using two techniques, (i) a bank of observers (such as
Kalman filters) running in parallel, each designed to be sensitive to a specific element
of the innovation vector (Taheri et al. 2020; Ye et al. 2020; Zhang and Zhu 2020) and
(ii) a hierarchical approach in which a hierarchy of detectors is designed to zoom in
from the top system level into specific subsystems, components, or sensors/actuaros
in a top-down manner (Karimipour and Leung 2019; Li et al. 2021a). Model-based
attack identification mainly relies upon modeling different attack types and scenar-
ios, and exploiting those attack models along with the system model (Azzam et al.
2021; Li et al. 2020; Park et al. 2019; Teixeira et al. 2015).

2.4.2 Data-Driven ADII

Many attacks detection algorithms available in the literature root back to fault detec-
tion techniques. Indeed, from the physical process perspective, cyber-attacks can
be viewed as intelligent disturbances, which can affect the system in a malicious
manner. To solve complex architectures of cyber-physical attacks, it is necessary to
go beyond the traditional methods resulting from fault diagnosis. Novel and intelli-
gent techniques are needed to deal with malicious attacks that appear nonlinearly in
mathematical models. To this end, to avoid the need of conservative mathematical
conditions, merging learning-based algorithms with standard control theory based
techniques is gaining a lot of interest as a promising hybrid approach and a compelling
solution.

In recent years,machine learning and deep learningmethods have become popular
inADII Zhang et al. (2021c), Narayanan et al. (2021). Recent results for ICS andCPS
include classification using statistical machine learning (Ameli et al. 2018; Lee et al.
2014), deep neural networks (Jahromi et al. 2021, 2019; Lee et al. 2014; Yan et al.
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2018; Zhu et al. 2018), and pattern recognition (Brentan et al. 2017). Distributed
machine learning methods are also proposed for large-scale systems including in
IoT and edge computing (Guan and Ge 2017; Kozik et al. 2018). A challenge for
adoptingAI/ML techniques for CPSADII is how to obtain the right training data sets,
specially for supervised learning methods, and in particular for two-class learning, in
which both normal and abnormal samples are required. To overcome this challenge,
some researchers have proposed unsupervised learning methods, where no labeled
data are required (Jahromi et al. 2019; Tiwari et al. 2021). Unsupervised machine
learning methods have also been used in the past in anomaly and intrusion detection
in communication and computer networks. However, these approaches need to go
through an initial learning phase, often in-field, during which they tend to have a
large false alarm rate. Their final accuracy is also often lower than those achieved
by supervised learning methods. The alternative approach is to generate synthetic
training data using a simulation platform of the system. To this end, digital twins have
become a powerful tools to conduct controlled simulations, and to generate labeled
data samples of both normal and abnormal classes, both for training and validation
of the machine learning models (Abbaszadeh et al. 2018; Mestha et al. 2017; Yan
et al. 2018). Digital twin simulations can be used together with available historical
field data to address class imbalance (caused due to scarcity of abnormal data in
the field), and also to generate data for complete coverage of normal operational
and environmental conditions. Furthermore, intelligently designed experiments for
digital twin simulations can reduce the need for large training datasets (Abbaszadeh
et al. 2018; Yan et al. 2019).

Machine learning algorithms used for ADII are themselves susceptible to cyber-
attacks, and hence, need to be secured via hardware and software protections. Robust
and adversarial machine learning are active fields of research addressing the secu-
rity and resilience of machine learning algorithms. A survey on secure and resilient
machine learning for CPS security is given in (Olowononi et al. 2020). Besides, in
order to be adopted in safety-critical and mission-critical systems, machine learning
algorithms must exhibit trustworthiness, which includes certain level of explain-
ability in a human-readable fashion. The explainability can, for example, include
providing physical insights, outputting decision factors and their contributions to the
overall decision, and giving decision confidence scores based on conformal predic-
tion methods.

2.5 Attack Resilience

In this section, we provide an introduction to the notion of resilience, and a survey of
some of the main results. Then in Sects. 2.6 and 2.7, we will cover some of the latest
results on two major approaches towards achieving resilience for cyber-physical
systems, namely, resilient estimation and resilient control.

Real-world attacks on control systems have in fact occurred in the past decade
and have in some cases caused significant damage to the targeted physical processes.
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One of the most popular examples is the attack onMaroochy Shire Council’s sewage
control system in Queensland, Australia, that happened in January 2000 Cardenas
et al. (2008), Slay and Miller (2007). In this incident, an attacker managed to hack
into some controllers that activate and deactivate valves causing flooding of the
grounds of a hotel, a park, and a river with a million liters of sewage (Cardenas et al.
2008). Another well-known example of an attack launched on physical systems is
the Stuxnet virus that targeted Siemens’ supervisory control on an Iranian uranium
enrichment plant targeting a commercially available PLC. Operating under a narrow
set of conditions, the attackers were able to ensure the attack reached its intended
recipient with limited fallout. They inserted a malware which would lie dormant in
the system and go undetected (Falliere et al. 2018). This shows that even air-gapped
systems are susceptible to cyber-espionage and -attack.

Given that the end-goal of CPS is a reliable and safe functioning at all times, cyber-
physical resilience of CPS is a necessary requirement. It corresponds to the ability to
withstand high-impact disturbances, which may occur due to either physical outages
or cyber-causes, and to continue to deliver acceptable performance even under attack.

The term resilience is being discussed increasingly in the context of CPS lately,
ranging from transportation (Ip and Wang 2011), power (Albasrawi et al. 2014; Zhu
and Basar 2011), control systems (Rieger et al. 2009, 2013; Zhu and Basar 2011) as
well as other types of systems such as ecological (Holling 1996, 1973) and biolog-
ical (Kitano 2004). Resilience is often discussed concomitantly with other system-
oriented notions such as robustness, reliability, and stability (Levin and Lubchenco
2008) and quite often used interchangeably with the term robustness. We argue how-
ever that these two terms are distinct. The reason is that resilience and robustness
characterize fundamentally different system properties. The term robustness applies
in the context of small bounded disturbances while resilience, in the context of
extreme high-impact disturbances. Resilience of a CPS with respect to a class of
extreme and high-impact disturbances, is the property that characterizes its ability
to withstand and recover from this particular class of disturbances by being allowed
to temporarily transit to a state where its performance is significantly degraded and
returning within acceptable time to a state where certain minimal but critical perfor-
mance criteria are met (Baros et al. 2017).

The National Academy of Sciences (NAS) (Cutter et al. 2013) defined resilience
as the ability to prepare and plan for, absorb, recover from, ormore successfully adapt
to actual or potential adverse events. The authors in Linkov et al. (2013) used the
resilience definition provided by NAS to define a set of resilience metrics spread over
four operational domains: physical, information, cognitive, and social. In another
work (Linkov et al. 2013), the authors applied the previous resilience framework
by Linkov et al. (2013) to develop and organize useful resilience metrics for cyber-
systems. In Bruneau et al. (2003), the authors have proposed a conceptual framework
initially to define seismic resilience, and later in Tierney and Bruneau (2007) the
R4 framework for disaster resilience is introduced. It comprises robustness (ability
of systems to function under degraded performance), redundancy (identification of
substitute elements that satisfy functional requirements in event of significant per-
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formance degradation), resourcefulness (initiate solutions by identifying resources
based on prioritization of problems), and rapidity (ability to restore functionality in
timely fashion).

The design of control and estimation algorithms that are resilient against faults
and failures is certainly not a new problem. In fault-detection and identificationMas-
soumnia et al. (1989), Blanke et al. (2006), the objective is to detect if one or more of
the components of a system has failed. Traditionally, this is done by comparing the
measurements of the sensors with an analytical model of the system and by forming
the so-called residual signal. This residual signal is then analyzed (e.g., using signal
processing techniques) in order to determine if a fault has occurred, however, in such
algorithms there is in general one residual signal per failure mode and in some prob-
lems formulations, the number of failure modes can be very large and one cannot
afford to generate and analyze a residual signal for each possible failure mode (Fawzi
et al., 2014).

In another area, namely robust control (Zhou andDoyle 1998), one seeks to design
control methods that are robust against disturbances in the model. However, these
disturbances aremainly treated as natural disturbances to the system and are assumed
to be bounded. This does not apply in the context of security since the disturbances
will typically be adversarial and therefore cannot be assumed bounded which is also
the case in stochastic control and estimation, where the disturbances are assumed to
follow a certain probabilistic model, which we cannot adopt for CPSs.

Resilient or secure state estimation and control constitute effective and promis-
ing means for addressing various security-related issues of CPSs. The main objec-
tive is to keep an acceptable performance level of the CPS by resorting to differ-
ent security countermeasures, including attack attenuation and mitigation, isolation,
detection, and compensation. When an attack occurs, the developed secure estima-
tion/control mechanisms possess certain capabilities to mitigate or counteract attack
effects, or prevent CPSs from severe performance degradation and loss, or allow
the system designers to make corrections and recover the system from any unsafe
operation (Ding et al. 2020a).

Recently, there are several survey papers of security-oriented CPSs. For example,
the recent progress of secure communication and control of smart grids under mali-
cious cyber-attacks is reviewed in Peng et al. (2019), where different attack models
and effects as well as security strategies are reviewed from IT protection and secure
control-theoretic perspectives. A summary of detection methods of false data injec-
tion (FDI) attacks on smart grids is made in Musleh et al. (2019). The existing FDI
attack detection algorithms in smart grids are classified into model-based types and
data-driven types. From a systems and control perspective, the CPS security issue
is evaluated in Dibaji et al. (2019), where some latest systems and control methods
are reviewed and classified into prevention, resilience, detection, and isolation. An
overview of security control and attack detection for industrial CPSs is conducted
inDing et al. (2018). An intensive discussion of adversarial attacks and their defenses
is provided in Li et al. (2020) for sensor-based CPSs in the field of computer vision.
Emerging techniques improving the safety and security of CPSs and IoT systems are
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surveyed in Wolf and Serpanos (2017) from two aspects: (1) design time techniques
verifying properties of subsystems and (2) runtime mechanisms helpful against both
failures and attacks.

2.6 Resilient Estimation

This section is devoted to a general state of the art on available resilient and secure
estimation algorithms in cyber-physical systems. Before recalling existing estimation
methods, we give a general introduction to emphasize the importance of resilient
and secure estimation, and explain what the software sensors have to face to ensure
resilience and security of the estimation. State estimation plays an important role in
better understanding the real-time dynamics of CPSs and executing some specific
control tasks. These states can be reconstructed based on only measured yet possibly
corrupted information from sensors. Different from traditional control systems, the
tight integration of physical and cyber-components, and the occurrence of various
malicious attacks pose nontrivial challenges to the performance analysis and the
design of state estimators or filters. Vulnerability of cyber-physical systems may
come from two kind of malicious attacks, namely cyber-attacks and physical attacks:

• Cyber-attacks:Cyber-attacks occur on the cyber-variables of the system.Theymay
be due to a software virus or to a corruption in communication channels. The well-
known Stuxnet malware is one of the relevant examples of cyber-attacks Mishra
et al. (2016), Ferrari and Teixeira (2021, Chap.7). The attackers exploited vulner-
abilities of the system such as those running over SCADA devices (Fig. 2.2) to for
example, inject false data in the sensor measurements gathered by the SCADA
system.

• Physical attacks: Physical attacks (also called kinetic attacks) are intentional
offensive actions which aim to get unauthorised access to physical assets such as
infrastructure, hardware, or interconnection. Sensors are among the devices most
exposed to this type of attack. This will have a direct and significant impact on any
estimation algorithm using measurements issued from such sensors because, in
addition to susceptible manipulations on the cyber-layer, sensor readings rely on
physical layer properties that can be manipulated (Taormina et al. 2016). Exam-
ples of physical attacks include manipulating gyroscopes used to stabilize drones
during formation flights, spoofing LiDAR sensors used in autonomous driving,
manually deactivating the pump to disconnect the network from the reservoir in
modern water distribution systems, and spoofing magnetic sensors used in several
applications, like anti-lock braking systems in automotive.

In the following, we classify some existing secure state estimation approaches
according to performance indicators and defense strategies against cyber-attacks.
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2.6.1 State of the Art on Resilient and Secure Estimation:
A Glimpse on Existing Methods

This section is dedicated to a short but complete overview of existing secure and
resilient estimation methods. The overview is shared into two categories (Ding et al.
2020a), namely statistical methods and Lyapunov stability-based techniques.

2.6.1.1 Resilient Estimation Based on Statistical Methods

The statistical-based state estimation aims to select appropriate gain parameters
to minimize estimation error variance, hence, the structured information of cyber-
attacks, such as statistical information or boundedness information, is assumed to be
known. Following this idea, the main focus is then placed on disclosing or offsetting
the undesirable impact from compromised data generated bymalicious attacks (Ding
et al. 2020a. In Ma et al. (2017), an algorithm of variance-constrained filtering over
sensor networks is proposed for discrete time-varying stochastic systems and by
resorting to the recursive linear matrix inequality approach, a sufficient condition is
established for the existence of the desired filter satisfying the pre-specified require-
ments on the estimation error variance. In the framework of Kalman filtering, a
distributed filter with double gains is designed in Ding et al. (2017) which can be
regarded as two weight matrices reflecting the different confidence levels of the
information from itself and from neighboring nodes.

Estimators or filters can be integrated in some detection mechanisms to remove
the compromised data generated bymalicious attacks asmuch as possible. Benefiting
from their favorable statistical characteristics, χ2 detector and its variants are widely
adopted. In light of such a detection rule, a critical attack probability is analyzed
in Yang et al. (2019) where it is shown that when the considered probability is bigger
than some critical value, the steady-state solution of estimation error covariance
could exceed a preset value.

It is worth noting that the estimation performance can be properly warranted
if the corrupted sensor is accurately detected and effectively isolated. For example,
inMishra et al. (2016) they have estimated the state of a noisy linear dynamical system
when an unknown subset of sensors is arbitrarily corrupted by an adversary. They
have proposed a secure state estimation algorithm, and derived optimal bounds on
the achievable state estimation error given an upper bound on the number of attacked
sensors. The proposed state estimator involves Kalman filters operating over subsets
of sensors to search for a sensor subset which is reliable for state estimation. When
the attack subset is properly identified, the performance of the developed algorithm
does not exceed the one by the worst-case Kalman estimation. The optimal secure
estimation is pursued in Shoukry et al. (2017) for attacks without restrictions on
their statistical properties, boundedness, and time evolution in comparison with the
sparse attacks. They have presented a novel algorithm that uses a satisfiabilitymodulo
theory approach to harness the complexity of secure state estimation.
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2.6.1.2 Lyapunov Theory-Based Methods

Inspired by its mature approaches, an analysis of vulnerabilities of cyber-physical
systems in the face of unforeseen failures and external attacks has received increas-
ing attention in the recent years and some preliminary results have been published in
literature, see, for instance, Ao et al. (2016), Pasqualetti et al. (2013). In Pasqualetti
et al. (2013), the authors have characterized fundamentalmonitoring limitations from
system-theoretic and graph-theoretic perspectives and a Luenberger-type detection
filter is designed. Similarly, detectability of attacks is explored in Ao et al. (2016) in
which detectability of attacks based on linear system theory is explored and some suf-
ficient conditions of detecting state attacks and sensor attacks are established. Then,
two adaptive sliding mode observers with online parameter estimation are designed
to estimate state attacks and sensor attacks with uniformly bounded errors. A co-
estimation of system states and attacks inspiration from fault-tolerant state recon-
struction, as an alternative scheme, is investigated in Amin et al. (2012), Shoukry
and Tabuada (2015). For instance, a scheme based on an unknown input observer
is developed in Amin et al. (2012) to estimate the states of SCADA systems sub-
ject to stealthy deception attacks. In Fawzi et al. (2014), the secure state estimation
problem is transformed into the solvability of an l0 optimization issue and an �1/�r
optimization issue in Liu et al. (2016), or the performance analysis problem of �2,
H2, and H∞ systems in Nakahira and Mo (2018) by virtue of the classical robust
control, and fault detection and isolation methods.

Employing some artificial saturation constraint on state estimators is regarded
as a promising security measure for constraining attacker capability and mitigating
the impulsive outlier-like effects of cyber-attacks by attenuating the effects of these
attack-incurred abnormal measurements using estimators with some saturated output
rejection. For example, a saturated innovation update scheme is adopted in Chen et al.
(2018) for distributed state estimators with an adaptive threshold of the saturation
level, and in Sun et al. (2021) for stochastic nonlinear systems with a sector bounded
condition on the saturation constraint. In Xie and Yang (2018), a saturated innovation
schemewith an adaptive gain coefficient and amode switchmechanism is developed,
where themismatched unknown inputs are suppressed by resorting to thewell-known
L2-gain attenuation property. Dynamic saturations with an adaptive rule are further
developed in Alessandri and Zaccarian (2018); Casadei et al. (2019). It is noted
that dynamic saturations with adaptive saturation levels enjoy more flexible attack
attenuation capability and less estimation performance degradation.

2.7 Resilient Control

Besides the resilient state estimation above, CPSs also need to mitigate the threat
from secret attackers via various control strategies. Compared with other control
applications, security control techniques for CPSs are yet in their infancy, and few
results can be found in literature Ding et al. (2018). There are two main lines of
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research on secure control for CPSs under cyber-attacks, which are categorized as
attack-tolerant control and attack-compensated control. The first category focuses on
the design of a suitable control policy/law to tolerate unpredictable anomalies caused
by attacks (Zhao et al. 2019). In Zhao et al. (2019), a novel observer-based PID con-
troller is proposed and sufficient conditions are derived underwhich the exponentially
mean square input-to-state stability is guaranteed and the desired security level is
then achieved. An emphasis is then placed on examining the prescribed tolerance
capability or pursuing the maximal tolerance capability for the controlled system,
allowing further intervention actions to be made from the system designers. The sec-
ond category deals with the design of preferable compensation schemes to prevent
the system performance and stability from severe deterioration or even becoming
unstable. For this purpose, it is essential to implement appropriate attack detection
mechanisms to identify and locate the occurrence of cyber-attacks. With respect to
networked control systems subject to various cyber-attacks, some preliminary and
interesting results can be found in Dolk et al. (2016); Long et al. (2005); Zhang
et al. (2016) for DoS attacks, in Amin et al. (2012), Ding et al. (2016a), Dolk et al.
(2016), Ding et al. (2016b), Pang and Liu (2011), Pang et al. (2016) for deception
attacks, and in Lee et al. (2014); Zhu and Martinez (2013) for replay attacks. The
latest development of secure control is evaluated from three aspects: (1) centralized
secure control; (2) distributed secure control; and (3) resource-aware secure control.

2.7.1 Centralized Secure Control

When CPSs are subjected to DoS attacks, they operate in an open-loop manner as
the desired controller is not capable to receive any sensor data for feedback. To
ensure the secure control for CPSs under such DoS attacks, switched system theory
is deployed, allowing the system to operate in closed-loop mode during attack-free
case and in open-loop mode otherwise. It is noteworthy, however, that the resulting
system performance depends on the running duty cycle, which is commonly known
as dwell time, between the two cases. Hence, the primary goal of secure control is
to find the tolerant duration and/or attack frequency such that the desired system
performance remains achievable. For example, a robustness measure against DoS
attacks, which describes the tolerable maximum attack frequency and duration is
investigated in De Persis and Tesi (2015), where an explicit characterization of the
frequency and duration of DoS attacks under which closed-loop stability can be
preserved is given. The obtained characterization is flexible enough so as to allow
the designer to choose from several implementation options that can be used for
trading-off performance versus communication resources. Such a robustnessmeasure
is further extended in Feng and Tesi (2017) by resorting to an impulsive controller
based on a dynamic observer. A cyclic dwell-time switching strategy is proposed
in Zhu and Zheng (2019) where an observer-based output feedback control problem
for a class of cyber-physical systems with periodic (DoS) attacks is investigated; the
attacks coexist both in themeasurement and control channels in the network scenario.
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By means of a cyclic piecewise linear Lyapunov function approach, the exponential
stability and �2-gain analysis, and observer-based controller design are carried out
for the augmented discrete-time cyclic switched system. Then, the desired observer
and controller gains in piecewise linear form are determined simultaneously so as to
ensure that the resulting closed-loop system is exponentially stable with a prescribed
H∞ performance index. Furthermore, a switching signal taking values in a finite set
is employed to model the number of consecutive DoS attacks in Pessim and Lacerda
(2020), where the corresponding stability criterion is derived by making use of a
switching parameter-dependent Lyapunov function.

Adaptive detection of cyber-attacks offers an effective means to enhance the sys-
tem’s adaptation to malicious attacks. In An and Yang (2018), an adaptive switching
logic is exploited to provide an online location of the real systemmode via observing
the variation of the traditional quadratic cost in the framework of linear quadratic
control. A Kalman-based attack detector with an observation window of a given
length is designed in Du et al. (2018) to remove the occurred deception attacks.
When the noise level is below a threshold derived, the maximum allowable duration
of deception attacks is obtained to maintain the exponential stability of the system.
A common feature of the above detectors is that the duration of deception attacks is
captured to describe their negative effects. Then, the maximum allowable duration
threshold is examined to maintain the desired system stability.

Complete security of CPSs is generally difficult to be maintained from a control-
oriented perspective. As a result, an alternative indicator, known as security in proba-
bility, is exploited (Ding et al. 2016c).Adefinition of security in probability is adopted
to account for the transient dynamics of controlled systems. Then, a dynamic output
feedback controller is designed such that the prescribed security in probability is
guaranteed while obtaining an upper bound of the quadratic cost criterion and an
original easy-solution scheme of desired controller gain is derived via the matrix
inverse lemma.

2.7.2 Distributed Secure Control

In distributed CPSs, the subsystems are connected through communication links,
which constitute a communication topology modeled by the Laplacian matrix (Chen
and Shi 2017; Liu 2019). According to attack locations, the cyber-attacks in dis-
tributed CPSs are classified into two types: (1) intrasystem attacks and (2) inter-
system attacks. As such, a critical concern is to design a suitable distributed secure
controller to render the resulting closed-loop system survivable or recoverable from
cyber-attacks by embedding attack model information (i.e., statistical or structured
information). For example, inHe et al. (2020) a distributed impulsive controller using
a pinning strategy is redesigned, which ensures that mean square bounded synchro-
nization is achieved in the presence of randomly occurring deception attacks, and
in the presence of distributed DoS attacks, a control protocol guaranteeing scala-
bility and robustness is proposed in Xu et al. (2019) for multi-agent systems under



26 M. Abbaszadeh and A. Zemouche

event-triggered communication. On the other hand, the classical fault detection and
estimation approaches provide a foundation to deal with the secure control issue of
CPSs with an understanding of similarities of both mathematical descriptions and
practical influences between faults and certain cyber-attacks. As in Modares et al.
(2019); Moghadam and Modares (2018), a distributed state predictor is employed to
estimate the existing attacks, and then a resilient controller is designed to guarantee
robust performance and to adaptively compensate for the influence of attacks.

2.7.3 Resource-Aware Secure Control

In, the context of communication scheduling, it is apparent that cyber-attacks can
result in a tremendous data sparsity issue because less sensor/control data is adopted
for achieving feedback control. This further leads to some inherent and nontrivial
challenges for performance analysis and secure control design of CPSs that are
beyond the capacity of the existing results on stability analysis and controller design
of event-based control systems without cyber-attacks.

The time series of data transmissions or updates under communication schedules
become more complex due to the interference of malicious attacks, which poses a
significant challenge for continuous-time physical systems. Under the assumption
that the execution period and a uniform lower bound of sleeping periods are a priori
known, a sufficient condition of exponential stability is derived in Hu et al. (2018)
by using a piecewise Lyapunov functional along with a reconstructed state error-
dependent switched system. An event-triggered scheduling and control co-design
algorithm is developed in Peng et al. (2016) to obtain both the triggering parameter
and the control gain. This event-triggered scheme is improved by integrating mea-
surement variations with a minimal trigger sleeping interval in order to avoid the
well-known Zeno behavior (Hu et al. 2019; Lu and Yang 2019). Then, under a sparse
observability condition, an observer in a delta domain is designed in Gao et al. (2020)
to estimate the system state under sensor and actuator attacks, and a self-triggered
controller is designed via iterative analysis.

In the context of distributed secure control, there are considerable results reported
for CPSs under event-triggered communication scheduling. In Ding et al. (2018), an
observer-based event-triggering consensus control problem is investigated for a class
of discrete-time multi-agent systems with lossy sensors and cyber-attacks. A novel
distributed observer is proposed to estimate the relative full states and the estimated
states are then used in the feedback protocol in order to achieve the overall consensus.
An event-triggeredmechanismwith state-independent threshold is adopted to update
the control input signals so as to reduce unnecessary data communications. In Feng
and Hu (2019), two elaborate interval classifications are constructed by introducing
the upper bound of adjacent event intervals under DoS attacks, their duration and
their launching time, and then the switched system theory is employed to derive the
consensus condition. It should be noted that the presence of cyber-attacks makes
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the exclusion of Zeno behavior from the designed distributed event-triggered secure
controllers generally difficult. This is because the interval of two consecutive data
transmissions may not be that of two adjacent events invoked.

To mention a few, an event-triggered controller is designed in Dolk et al. (2016)
to tolerate DoS attacks characterized by given frequency and duration properties. An
optimal schedule of jamming attacks is proposed in Zhang et al. (2016) to maximize
the linear quadratic Gaussian cost under energy constraints. An event-triggering
consensus resilient-control with a state-independent threshold is discussed in Ding
et al. (2016a) for discrete-time multi-agent systems with both lossy sensors and
cyber-attacks.
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