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Plants
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12.1 Introduction

The wastewater treatment plant (WWTP) is an important step in water recycling
(Qu et al. 2013). WWTP is usually composed of several interconnected operation
units. State estimation is a process of constructing system state based on output mea-
surements and system model. State estimation is important for WWTP since many
related states in WWTP cannot be measured or affected by significant noise. Cyber-
physical systems (CPS) integrates communication network, engineering, comput-
ing, and physical process components and uses the network to realize the interaction
between computing processes and physical processes (Zhang et al. 2021) and oper-
ate physical entities in a remote, reliable, real-time, secure (Wang et al. 2021), and
cooperative way (Ding et al. 2020). When the distributed state estimation of sewage
treatment system is carried out, in order to improve the efficiency, two or more
computer equipment are often used for calculation and processing. That is, each
computer processes a subsystem state estimation. Among the subsystems, the state
information needs to be exchanged through the communication network. Therefore,
WWTP can be regarded as an information physical system in which physical pro-
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cesses and networks are connected (Anter et al. 2020;Wei et al. 2020). In Barbu et al.
(2011), deterministic and stochastic observers were developed. A univariate statis-
tical technique was proposed in Baklouti et al. (2018) to enhance the monitoring of
WWTP and the state estimation of two-time scale nonlinear systems was considered
in Kiss et al. (2011). In Busch et al. (2013), a synthesis method based on optimiza-
tion for the design and estimation of sensor networks was proposed and was applied
to the WWTP system. Extended Kalman filter (EKF) and unscented Kalman filter
(UKF) were used to estimate the unmeasurable states in WWTP system in Wahab
et al. (2012). In Yin and Liu (2018), EKF and the moving horizon estimator (MHE)
estimators were proposed based on model reduction for improved computational
efficiency. Also, there are some researches on distributed state estimation.

WWTP is considered critical infrastructure and their resiliency is vital. The
resilience against natural disasters (storm and rain) as opposed to cyber-incidents
is critical. Performing distributed state estimation is one of the effective ways to
improve the resiliency of the system, compared to a centralized scheme applied to
the whole system. There are some existing results on the distributed state estimation
method for the WWTP system, i.e., in Zeng et al. (2016), distributed EKF (DEKF)
was applied toWWTP system, and distributedMHEwas studied in Yin et al. (2018).
However, the existing distribution control and estimation usually assume that the
system decomposition is available. A systematic approach to decompose the large-
scale system into subsystems has not yet received enough attention and is crucial
for distributed state estimation (Dunbar 2007). When applying the distributed state
estimation, a good subsystem decomposition with weak inter-subsystem interactions
can improve the resiliency of the system.

In Heo et al. (2015), there are some important results about the decomposition
algorithm of distributed control system. In Yin et al. (2016), a subsystem decomposi-
tion method for distributed estimation was proposed and applied to WWTP system.
In Yin and Liu (2019), the existing community discovery algorithm was extended
to the common framework of distributed state estimation and control. However, the
above subsystem partition based on community discovery algorithm only considers
the correlation degree of the system and ignores the connection strength between
different variables. In Zhang et al. (2019), a method of subsystem partition based
on weighted edge group detection was proposed and was applied in distributed state
estimation. However, the weighted community discovery algorithm for distributed
control has not been investigated.Also, there are little results about subsystemdecom-
position method for WWTP system. Thus, community structure detection is used to
decompose the WWTP into smaller groups, such that the intra-connection within
each group is made much stronger than the interaction among different groups. Sub-
system models that are appropriate for distributed state estimation are configured
based on the variables assigned to the groups.

In this work, an optimal subsystem decompositionmethod is investigated for com-
plex cyber-physical systems for the purpose of improving the resiliency under the
distributed state estimation. The main contributions lie in the following: (1) a sub-
system decomposition method based on community structure discovery algorithm is
proposed for the WWTP system; (2) to deal with the natural disasters and the unre-
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liable communication networks, a resilient distributed framework is proposed with
information compensation strategy; (3) comparative study is carried out for WWTP
system to show that the subsystem decomposition and resilient distributed state esti-
mation scheme improves the resiliency of the system, compared to a centralized
scheme applied to the whole system.

12.2 Model Description of Wastewater Treatment Plants

In this work, optimal subsystem decomposition and distributed EKF methods are
designed. The theoretical results will be validated in a benchmark WWTP system
(Alex et al. 2008). The benchmark WWTP system model will be reviewed in this
part and the motivation for decomposing the WWTP system will be derived. The
plant layout is shown in Fig. 12.1. In this process, the five activated sludge reactors
are composed of two sections: (1) The anoxic section: reactor 1 and reactor 2, where
the bacteria convert nitrate into nitrogen (i.e., denitrification biological reactions).
(2) The aerated section: reactor 3, reactor 4, and reactor 5, where the bacteria oxidize
ammonium to nitrate (i.e., nitrification reactions).

For each reactor, the following variables (k = 1 to 5) are defined: flow rate: Qk ;
concentration: Zas,k ; the volume of anoxic section: Vas,1 = Vas,2 = 1000m3; the
volume of aerobic section: Vas,3 = Vas,4 = Vas,5 = 1333m3; reaction rate: ri . In this
model, the general equation of mass balance of bioreactor (two anoxic reactors and
three aerobic reactors) follows from Alex et al. (2008).

For reactor 1 (k = 1),

dZas,1

dt
= 1

Vas,1
(Qint Zint + Qr Zr + Qi Zi + rZ ,1Vas,1 − Q1Zas,1), (12.1)

Q1 = Qint + Qr + Qi . (12.2)

Fig. 12.1 General overview of the BSM1 plant
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For reactor 2–5 (k = 2 − 5),

dZas,k

dt
= 1

Vas,k
(Qk−1Zas,k−1 + rZ ,kVas,k − Qk Zas,k), (12.3)

Qk = Qk−1. (12.4)

Special case for oxygen (SO,k):

dSO,as,k

dt
= 1

Vas,k
(Qk−1SO,as,k−1 + rZ ,kVas,k + (KLa)kVas,k(S

∗
O − SO,as,k) − Qk SO,as,k),

(12.5)
where the saturation concentration of oxygen is S∗

O = 8g · m3, and rk denotes the
conversion rate of different compounds in the reactor; the detailed calculation of rZ ,k

can be found in Alex et al. (2008). The flow rate of the reaction process in Fig. 12.1
satisfies the following:

Zint = Zas,5,

Z f = Zas,5,

Zw = Zr ,

Q f = Qe + Qr + Qw = Qe + Qu . (12.6)

The solid flux caused by gravity is Js = vs(Xsc)Xsc, where Xsc denotes the total
sludge concentration (i.e., including XI , XS , XB,H , XB,A, XP , and XND). The double
exponential settlement velocity function is selected:

vs(Xsc) = max
[
0,min

{
v

′
0, v0

(
e−rh(Xsc−Xmin) − e−rp(Xsc−Xmin)

)}]
, (12.7)

where Xmin = fns X f , X f is the total solids concentration from the bioreactor. The
upward velocity (vup) and the downward velocity (vdn) are calculated as follows:

vup = Qu

A = Qr+Qw

A ,

vdn = Qe

A . (12.8)

According to these symbols, the mass balance of sludge is written as follows:

m = 1 : dXsc,m

dt
= vdn(Xsc,m+1 − Xsc,m) + min(Js,m , Jsc,m+1)

zm
(12.9a)

m = 2 − 5 : dXsc,m

dt
= vdn(Xsc,m+1 − Xsc,m) + min(Js,m , Jsc,m+1) − min(Js,m , Jsc,m−1)

zm
(12.9b)

m = 6 : dXsc,m

dt
=

Q f X f
A + Jsc,m+1 − (vup + vdn)Xsc,m − min(Js,m , Jsc,m−1)

zm
(12.9c)



12 Optimal Subsystem Decomposition and Resilient … 303

m = 7 − 9 : dXsc,m

dt
= vup(Xsc,m−1 − Xsc,m) + Jsc,m+1 − Js,m

zm
(12.9d)

m = 10 : dXsc,m

dt
= vup(Xsc,m−1 − Xsc,m) − Js,m

zm
, (12.9e)

where the critical concentration is Xt = 3000g/m3, and the detailed calculation of
Jsc,m can be found in Alex et al. (2008).

For soluble components (i.e., SI , SS , SO , SNO , SNH , SND , and SALK ), each layer
represents the volume of complete mixing, and the concentration of soluble compo-
nents is calculated accordingly.

m = 1 − 5 : dZsc,m

dt
= vdn(Zsc,m+1 − Zsc,m)

zm
(12.10a)

m = 6 : dZsc,m

dt
=

Q f X f

A − (vup + vdn)Zsc,m

zm
(12.10b)

m = 7 − 10 : dZsc,m

dt
= vup(Zsc,m−1 − Zsc,m)

zm
, (12.10c)

where the concentration in the recycle and waste stream is equal to that in the first
layer (bottom layer), that is, Zu = Zsc,1.

According to the concentration in compartment 5 of the activated sludge reactor,
the sludge concentration can be calculated directly as follows:

X f = 1

f rCOD−SS
(XS,as,5 + XP,as,5 + XI,as,5 + XB,H,as,5 + XB,A,as,5), (12.11)

where the conversion coefficient f rCOD−SS from COD to SS is equal to 4/3. The
same principle applies X − u (in the underflow of the secondary sedimentation tank)
and X − e (at the outlet of the secondary sedimentation tank).

Then, Eqs. (12.1)–(12.11) form the WWTP system model. Typically, there are
145 states in the system and it is difficult to design centralized controller or estimator
for the WWTP system. Thus, distributed control/estimation method is necessary. To
do this, we have to (1) decompose the whole system into subsystems and (2) design
distributed controller/estimator.

12.3 Subsystem Decomposition

In this section, we will present a subsystem decomposition method for WWTP sys-
tem. The existing decomposition method usually ignores the weights on the edges.
We will present a weighted directed graph-based subsystem decomposition method
for large-scale system. The whole system will be represented by a weighted directed
graph, and the community structure detection method is derived for decomposition.
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The dynamic model of WWTP system can be formulated as follows:

ẋ(t) = f (x(t), u(t)) (12.12a)

y(t) = h(x(t)), (12.12b)

where x ∈ R
nx , u ∈ R

ny , and y ∈ R
ny , respectively, represent the state vector of the

system, the vector of inputs, and the vector of measured outputs, and f and h are
two vector fields describing the dynamics of the nonlinear system and the output
relation, respectively. The objective is to decompose system (12.12) into subsystems
with the form:

ẋi (t) = fi (xi (t), Xi (t), ui (t),Ui (t)) (12.13a)

yi (t) = hi (xi (t)), (12.13b)

where i = 1, . . . , p, with p being the number of subsystems, xi ∈ R
nxi denotes the

state vector of the i th subsystem, ui ∈ R
nui denotes the input vector of the i th subsys-

tem, yi ∈ R
nyi is the output vector of the i th subsystem, and Xi andUi are the vector

that comprises the states and input of all the subsystems that affect the dynamics of
subsystem i directly.

The weighted subsystem decomposition method is extended from our early work
(Zhang et al. 2019) to simultaneous state estimation and control (see Fig. 12.2). In the
proposed approach, system (12.12) is characterized by a weighted directed graph.
The graph characterizes the connectivity between the state, input, and measured
output variables. When the entire system is not observable or not controllable, we
have to adjust the system structure to get a observable or controllable system. For the
observation, we can add more sensors to make sure that the observability matrix is
full rank. Also, we can addmore control variables to guarantee that the controllability
matrix is full rank.

Specifically, the weighted directed graph is created based on the methods for
generating unweighted directed graphs described. All the state, input, and measured
output variables are considered as vertices of a graph, which are connected through
directed edges. Let fi , i = 1, · · · , nx , denote the i th element of the vector field f ,
and h j , j = 1, . . . , ny , denote the j th element of the vector field h. In addition, let
us denote xi , i = 1, . . . , nx , as the i th element of x , denote uk, k = 1, . . . , nu , as the
j th element of u, and denote y j , j = 1, . . . , ny , as the j th element of y. The edges
in a directed graph are constructed based on the following rules:

• State-to-state edge: there is a unidirectional edge from a state vertex xi to another
state vertex xl , if

∂ fl (x,u)

∂xi
�= 0, l, i = 1, . . . , nx .

• State-to-input edge: there is a unidirectional edge from an output vertex y j to a
state vertex xl , if

∂ fi (x,u)

∂uk
�= 0, i = 1, . . . , nx , k = 1, . . . , nu .

• State-to-output edge: there is a bidirectional edge from an output vertex y j to a

state vertex xl , if
∂h j (x)

∂xl
�= 0, l = 1, . . . , nx , j = 1, . . . , ny .
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Fig. 12.2 The flowchart of
the optimal subsystem
decomposition

Then, the weighted directed graphs are constructed with G = (V, E), where V =
{xi , yi , ui } is set of the vertices and E is the set of the edges. The edges are constructed
as follows:

S(uk, xi ) = ∂ fi (x, u)

∂uk

∣∣
(xs ,us )

(12.14a)

S(xi , xl) = ∂ fl(x, u)

∂xi

∣∣
(xs ,us )

(12.14b)

S(xl , y j ) = ∂h j (x)

∂xl

∣∣
x=xs

, (12.14c)

where S(xi , xl) is the sensitivity for a state-to-state pair (xi , x j ) and S(xl , y j ) is the
sensitivity for a state-to-output pair (xl , y j ). A sensitivity matrix is constructed as
follows:

S =
⎡
⎣

A B C
T

0nu×nx 0nu×nu 0nu×ny

C 0ny×nu 0ny×ny

⎤
⎦

nx+nu+ny

, (12.15)

where Ā, B̄, and C̄ are obtained by taking the Jacobian of system (12.12) at (xs, us),
respectively, as follows:
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A =

⎡
⎢⎢⎣

∂ f1
∂x1

· · · ∂ f1
∂xnx

...
. . .

...
∂ fnx
∂x1

· · · ∂ fnx
∂xnx

⎤
⎥⎥⎦

(xs ,us )

, B =

⎡
⎢⎢⎣

∂ f1
∂u1

· · · ∂ f1
∂unu

...
. . .

...
∂ fnx
∂u1

· · · ∂ fnx
∂unu

⎤
⎥⎥⎦

(xs ,us )

, C =

⎡
⎢⎢⎣

∂h1
∂x1

· · · ∂h1
∂xny

...
. . .

...
∂hny
∂x1

· · · ∂hny
∂xny

⎤
⎥⎥⎦

x=xs

.

(12.16)
The weights of the edges are defined as follows:

• Weight of state-to-state edge:

w(xi , xl) =
⎧
⎨
⎩

1

|S(xi , xl)| , if
∂ fl(x, u)

∂xi

∣∣∣
(xs ,us )

�= 0, l, i = 1, . . . , nx

∞, otherwise.
(12.17)

• Weight of input-to-state edge:

w(uk , xi ) =
⎧⎨
⎩

1

|S(uk , xi )| , if
∂ fi (x, u)

∂uk

∣∣∣
(xs ,us )

�= 0, k = 1, . . . , nu , i = 1, . . . , nx

∞, otherwise.
(12.18)

• Weight of state-to-output edge:

w(xl, y j ) =
⎧⎨
⎩

1

|S(xl , y j )| , if
∂h j (x)

∂xl

∣∣∣
xs

�= 0, l = 1, . . . , nx , j = 1, . . . , ny

∞, otherwise.
(12.19)

The shortest paths can be identified for constructing the adjacency matrix. The
lengths of the path Lil(Pil) from xi to xl and xl to an output vertex y j have been
given in Zhang et al. (2019). Additionally, we need to take the connection from uk to
a state vertex xi and path from a input vertex uk to an output vertex y j into account.

The length of the path Lki (Pki ) from a input vertex uk to a state vertex xi is given
as follows:

Lki (Pki ) = w
(
uk, x

(k,i)
1

)
+ · · · + w

(
x (k,i)
N (Pki )

, xi
)

. (12.20)

The corresponding shortest path d(uk, xi ) is calculated as follows:

d(uk, xi ) = min
Pki∈Pki

Lki (Pki )

= min
Pki∈Pki

⎧
⎪⎨
⎪⎩

1∣∣∣S
(
uk, x

(k,i)
1

) ∣∣∣
α + · · · + 1∣∣∣S

(
x (k,i)
N (Pki )

, xi
) ∣∣∣

α

⎫
⎪⎬
⎪⎭

,
(12.21)

where k = 1, . . . , nu , i = 1, . . . , nx , and Pki and Pki represent the set of all the paths
and one of path from a input vertex uk to a state vertex xi , respectively.
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The length of the path Lkj (Pkj ) from a input vertex uk to an output vertex y j is
given as follows:

Lkj (Pkj ) = w
(
uk, x

(k, j)
1

)
+ · · · + w

(
x (k, j)
N (Pkj )

, y j
)

. (12.22)

The corresponding shortest path d(uk, y j ) is calculated as follows:

d(uk, y j ) = min
Pkj∈Pk j

Lk j (Pkj )

= min
Pkj∈Pk j

⎧⎪⎨
⎪⎩

1∣∣∣S
(
uk, x

(k, j)
1

) ∣∣∣
α + · · · + 1∣∣∣S

(
x (k, j)
N (Pkj )

, y j
) ∣∣∣

α

⎫⎪⎬
⎪⎭

,
(12.23)

where k = 1, . . . , nu , j = 1, . . . , ny , andPk j and Pkj represent the set of all the paths
and one of path from a input vertex uk to an output vertex y j , respectively.

The length of the path L jm(Pjm) from an output vertex y j to another output vertex
ym is given as follows:

L jm(Pjm) = w
(
y j , x

( j,m)

1

)
+ · · · + w

(
x ( j,m)

N (Pjm ), ym
)

. (12.24)

The corresponding shortest path d(y j , ym) is calculated as follows:

d(y j , ym) = min
Pjm∈P jm

L jm(Pjm)

= min
Pjm∈P jm

⎧⎪⎨
⎪⎩

1∣∣∣S
(
y j , x

( j,m)

1

) ∣∣∣
α + · · · + 1∣∣∣S

(
x ( j,m)

N (Pjm ), ym
) ∣∣∣

α

⎫⎪⎬
⎪⎭

,
(12.25)

where j,m = 1, . . . , ny , and P jm and Pjm represent the set of all the paths and one
of path from an output vertex y j to another output vertex ym , respectively.

An adjacency matrix Aw ∈ R
na×na involving all the vertices is then constructed

based on d(xi , xl), d(xl , y j ), d(uk, xi ), d(uk, y j ), and d(y j , ym), i, l = 1, . . . , nx ,
k = 1, . . . , nu , j,m = 1, . . . , ny :

Aw =
⎡
⎣
Aw,11 Aw,12 A

T
w,31

0nu×nx 0nu×nu 0nu×ny

Aw,31 Aw,32 Aw,33

⎤
⎦

na×na

, (12.26)

where Aw,11, Aw,12, Aw,31, Aw,32, and Aw,33 are constructed as follows:
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Aw,11 =

⎡
⎢⎢⎣

1
d(x1,x1)

· · · 1
d(x1,xnx )

...
. . .

...
1

d(xnx ,x1)
· · · 1

d(xnx ,xnx )

⎤
⎥⎥⎦ , Aw,12 =

⎡
⎢⎢⎣

1
d(u1,x1)

· · · 1
d(u1,xnx )

...
. . .

...
1

d(unu ,x1)
· · · 1

d(unu ,xnx )

⎤
⎥⎥⎦ ,

Aw,31 =

⎡
⎢⎢⎣

1
d(x1,y1)

· · · 1
d(x1,yny )

...
. . .

...
1

d(xnx ,y1)
· · · 1

d(xnx ,yny )

⎤
⎥⎥⎦ , Aw,32 =

⎡
⎢⎢⎣

1
d(u1,y1)

· · · 1
d(u1,yny )

...
. . .

...
1

d(unu ,y1)
· · · 1

d(unu ,yny )

⎤
⎥⎥⎦ ,

Aw,33 =

⎡
⎢⎢⎣

1
d(y1,y1)

· · · 1
d(y1,yny )

...
. . .

...
1

d(yny ,y1)
· · · 1

d(yny ,yny )

⎤
⎥⎥⎦ .

(12.27)

The weighted adjacency matrix Aw is constructed following (Zhang et al. 2019).
The problem of subsystem decomposition is equivalent to performing community
structure detection by finding a higher value of modularity Q. Community struc-
ture detection (Zhang et al. 2019) is used to decompose the network into smaller
groups, such that the intra-connection within each group is made much stronger than
the interaction among different groups. Subsystem models that are appropriate for
distributed state estimation are configured based on the variables assigned to the
groups. To this end, we have constructed the subsystem model for distributed state
estimation. In the following section, we will present a resilient distributed estimator
for WWTP system.

12.4 Resilient Distributed State Estimator Design

In distributed state estimation design, the distributed operation of each subsystem
is usually carried out by multiple physical devices and the subsystem information
needs to be exchanged. The physical equipment operation is supported by the com-
munication network, and the subsystem information is transmitted through the com-
munication network. Because the communication network may be unreliable, the
data exchanged between subsystems may be altered, and they may be damaged by
malicious network attacks. There are two common types of attacks, denial-of-service
attack (DoS) and false data injection (FDI). DoS attack usually blocks the informa-
tion flow between the sending device and the receiving device, thus increasing the
packet loss rate in the communication process. FDI attack will hijack network nodes
or physical devices and inject wrong or useless data information into the system,
seriously endangering the safe and reliable operation of the system. To deal with the
unreliable communication networks, a resilient distributed framework is proposed
with information compensation strategy.

Based on the decomposed subsystems, distributed state estimator will be designed
to show the improvement of the resiliency compared to the centralized state estimator.
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During the distributed state estimator design, the subestimators will work colorably
tomake a coordination. Denote X̂i (tk−1) as the latest subsystem estimate information
of X(i)(t) for time t ∈ [tk−1, tk] available to filter i . The communication network can
be unreliable, i.e., X̂i (tk−1) is attacked or lost. When the communication network
is suffering FDI attack, the exchanged status will change to X̂i (tk−1) = X̂i (tk−1) +
Xa(tk−1). Thus, resilient distributed state estimator is necessary.

In the designed resilient DEKF, the attack is evaluated before each communication
between subsystems with following strategy:

a =
{
1, if ‖yi (tk−1) − Ci X̂i (tk−1)‖ > Δ or X̂i (tk−1) is not received

0, if ‖yi (tk−1) − Ci X̂i (tk−1)‖ ≤ Δ.
(12.28)

X̂i (tk−1) =

⎧⎪⎨
⎪⎩

X̂i (tk−1), if a = 0

X̂i (tk−2) +
∫ tk−1

tk−2

fi (x̂i (tk−2), X̂i (t), ui (t),Ui (t)))dt, if a = 1.

(12.29)
In the resilient distributedEKFdesign, each local filter is designed as a continuous–

discrete EKF. The resilient distributed EKF is implemented with the prediction step
and update step.

(1) Prediction step:

x̂i (tk |tk−1) = x̂i (tk−1) +
∫ tk

tk−1

fi (x̂i (t), X̂i (tk−1), ui (t),Ui (t))dt, (12.30)

Pi (tk |tk−1) = Ai (tk−1)Pi (tk−1)Ai (tk−1)
T + Qi . (12.31)

(2) Update step:

Ki (tk) = Pi (tk |tk−1)C
T
i

[
Ci Pi (tk |tk−1)C

T
i + Ri

]−1
, (12.32)

x̂i (tk) = x̂i (tk |tk−1) + Ki (tk)
[
yi (tk) − Ci x̂i (tk |tk−1)

]
, (12.33)

Pi (tk) = [I − Ki (tk)Ci ] Pi (tk |tk−1), (12.34)

where x̂i (tk |tk−1) denotes the state prediction at time tk , and, Pi (tk−1) is used to
denote the error covariance matrix of x(i)(tk−1). Pi (tk |tk−1) refer to the predicted
error covariance matrix for time tk . Qi and Ri are the covariances of process noise
and measurement noise of subsystem i , respectively; Ai (tk−1) is the Jacobian of f(i)
with respect to x(i) at time tk−1; and Ki (tk) is the filter gain at tk .

To show the derivation of the distributed EKF algorithm, the system is discretized
at time interval Δ, such that tk = kΔ:
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xi (tk) = fi (xi (tk−1), Xi (tk−1), ui (tk−1),Ui (tk−1)) + wi (tk−1) (12.35a)

yi (tk) = hi (xi (tk)) + vi (tk). (12.35b)

Assuming that the estimated error between the estimated value and the real
value and the prediction error between the predicted value and the real value are
ei (tk) = xi (tk) − x̂i (tk) and ei (tk |tk−1) = xi (tk) − x̂i (tk |tk−1), respectively, and the
estimation error covariance matrix and the prediction error covariance matrix are
Pi (tk) = E{ei (tk)eTi (tk)} and Pi (tk |tk−1) = E{ei (tk |tk−1)eTi (tk |tk−1)}, respectively,
where E{·} denotes mathematical expectation, then x̂i (tk |tk−1) and x̂i (tk) are

x̂i (tk |tk−1) = x̂i (tk−1) +
∫ tk

tk−1

fi (x̂i (t), X̂i (tk−1), ui (t),Ui (t)dt

x̂i (tk) = x̂i (tk |tk−1) + Ki (tk)[yi (tk) − hi (x̂i (tk |tk−1))],
(12.36)

where Ki (tk) is the filter gain at tk . The Taylor expansion of yi (tk) in Eq. (12.35) at
x̂i (tk |tk−1)

yi (tk) = hi (x̂i (tk |tk−1)) + Ci (xi (tk) − x̂i (tk |tk−1)) + vi (tk). (12.37)

So the estimation error and the estimation error covariance matrix are

ei (tk) = xi (tk) − x̂i (tk) = xi (tk) − x̂i (tk |tk−1) − Ki (tk)[yi (tk) − hi (x̂i (tk |tk−1))]
= xi (tk) − x̂i (tk |tk−1) − Ki (tk)[Ci (xi (tk) − x̂i (tk |tk−1)) + vi (tk)]
= (I − Ki (tk)Ci )(xi (tk) − x̂i (tk |tk−1)) − Ki (tk)vi (tk),

(12.38)
Pi (tk) = E{ei (tk)eTi (tk)}

= E{[(I − Ki (tk)Ci )(xi (tk) − x̂i (tk |tk−1)) − Ki (tk)vi (tk)]
[(I − Ki (tk)Ci )(xi (tk) − x̂i (tk |tk−1)) − Ki (tk)vi (tk)]T }

= (I − Ki (tk)Ci )E{ei (tk |tk−1)e
T
i (k|tk−1)}(I − Ki (tk)Ci )

T + Ki (tk)Ri K
T
i (tk)

= (I − Ki (tk)Ci )Pi (tk |tk−1)(I − Ki (tk)Ci )
T + Ki (tk)Ri K

T
i (tk).

(12.39)

Because the diagonal element of Pi (tk) is the square of the estimation error, the
trace of the matrix (expressed by T [·]) is the mean square deviation, that is,

T [Pi (tk)] = T [Pi (tk |tk−1)] − 2T [Ki (tk)Ci Pi (tk |tk−1)]
+ T [Ki (tk)(Ci Pi (tk |tk−1)C

T
i + Ri )K

T
i (tk)].

(12.40)

To make the estimated value closer to the real value, the trace above must be as
small as possible. Therefore, it is necessary to obtain an appropriate Kalman gain
Ki (tk) to minimize the trace. The implication is to make the partial derivative of the
trace to Ki (tk) is zero, that is,
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dT [Pi (tk)]
dKi (tk)

= −2(Ci Pi (tk |tk−1))
T + 2Ki (tk)(Ci Pi (tk |tk−1)C

T
i + Ri ) = 0.

(12.41)
Furthermore, we have (12.32) and (12.34). The Taylor expansion of xi (tk) in Eq.

(12.35) at (x̂i (tk), X̂i (tk−1)):

xi (tk) = fi (x̂i (tk−1), X̂i (tk−1), ui (tk−1),Ui (tk−1))

+ Ai (tk−1)(xi (tk−1) − x̂i (tk−1)) + wi (tk−1),
(12.42)

where Ai (tk−1) is the Jacobian of f(i) with respect to x(i) at time tk−1. Discretize
x̂i (tk |tk−1) in Eq. (12.36):

x̂i (tk |tk−1) = fi (x̂i (tk−1), X̂i (tk−1), ui (tk−1),Ui (tk−1)). (12.43)

So the prediction error and its mathematical expectation are

ei (tk |tk−1) = xi (tk) − x̂i (tk |tk−1)

= Ai (tk−1)(xi (tk−1) − x̂i (tk−1)) + wi (tk−1),
(12.44)

E{ei (tk |tk−1)e
T
i (tk |tk−1)}

=E{[Ai (tk−1)(xi (tk−1) − x̂i (tk−1)) + wi (tk−1)]
[Ai (tk−1)(xi (tk−1) − x̂i (tk−1)) + wi (tk−1)]T }

=Ai (tk−1)E{[xi (tk−1) − x̂i (tk−1)][xi (tk−1) − x̂i (tk−1)]T )}AT
i (tk−1) + Qi .

(12.45)

To this end, we get (12.31).
An algorithm is adopted for distributed EKFs to work collaboratively in this

work. It is assumed that each local filter shares the state estimates with its interacting
subsystem for each sampling periods. The resilient distributed EKF algorithm is
implemented:

• Step 1: At t0 = 0, initialize xi (0), Pi (t0), i = 1, . . . , p.
• Step 2: For time tk > 0, each local estimator i receives the measured output of the
subsystem i , i.e., yi (tk).

• Step 3: Each distributed EKF receives the state estimates of the interacting sub-
systems at the time tk−1.

• Step 4: Check the communication network with (12.28) and set X̂i (tk−1) using
(12.29).

• Step 5: Based on the latest X̂(i)(tk−1), each EKF i calculates the state esti-
mates x̂i (tk), i = 1, . . . , p. The estimate of the entire system state is x̂(tk) =[
x̂1(tk)T . . . x̂ p(tk)T

]T
.

• Step 6: At k = k + 1, go to Step 2.
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12.5 Simulation

In this section, the proposed subsystem decomposition method is validated by
decomposing the subsystem model of WWTP system. The resilient distributed EKF
under different subsystem methods is tested to show the efficiency of improving the
resiliency of the system.

12.5.1 Subsystem Decomposition

In this section, the WWTP system will be divided into two sub-
systems for distributed state estimation. The input variables are u =
[Qi , Qint , KLa3, KLa4, KLa5, Qr , Qw]T . We use the initial conditions shown in
Tables12.1 and 12.2 and us = [18446, 18446, 55338, 240, 240, 84, 18446, 385]T
as the working point (xs, us).

Two subsystem models are shown in Table12.3, in which Decomposition 1 is
directly divided according to the physical structure (Zeng et al. 2016) and Decom-
position 2 is obtained by the proposed method in this work. As shown in Table12.3,
considering the circulating f low from the secondary clarifier to the first anoxic reac-
tor, Decomposition 1 divides the secondary clarifier and and anoxic section (i.e.,
reactor 1 and reactor 2) into a subsystem and aerated section (i.e., reactor 3, reactor
4, and reactor 5) into another subsystem. It can be seen that when divided by struc-
ture, a reactor is considered as a whole, and the connections between internal states
are not considered. While Decomposition 2 considers both the number and strength

Table 12.1 Initial condition of the biological reactor

i 2 3 4 5 1 Units

SI,i 30 30 30 30 30 g COD/m3

SS,i 2.81 1.46 1.15 1.00 0.89 g COD/m3

XI,i 1149.13 1149.13 1149.13 1149.13 1149.13 g COD/m3

XS,i 82.13 76.39 64.85 55.69 49.31 g COD/m3

XB,H,i 2551.77 2553.38 2557.13 2559.18 2559.34 g COD/m3

XB,A,i 148.39 148.31 148.94 149.53 149.80 g COD/m3

XP,i 448.85 449.52 450.42 451.31 452.21 g COD/m3

SO,i 0.004299 0.00006313 1.72 2.43 0.49 g (−COD)/m3

SNO,i 5.37 3.66 6.54 9.30 10.42 g N/m3

SNH,i 7.92 8.34 5.55 2.97 1.73 g N/m3

SND,i 1.22 0.88 0.83 0.77 0.69 g N/m3

XND,i 5.28 5.03 4.39 3.88 3.53 g N/m3

SALK ,i 4.93 5.08 4.67 4.29 4.13 mol/m3
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Table 12.2 Initial condition of the secondary clarifier
j X j SI, j SS, j SO, j SNO, j SN H, j SN D, j SALK , j

1 6393.98 30 0.89 0.49 10.42 1.73 0.69 4.13

2 356.07 30 0.89 0.49 10.42 1.73 0.69 4.13

3 356.07 30 0.89 0.49 10.42 1.73 0.69 4.13

4 356.07 30 0.89 0.49 10.42 1.73 0.69 4.13

5 356.07 30 0.89 0.49 10.42 1.73 0.69 4.13

6 356.07 30 0.89 0.49 10.42 1.73 0.69 4.13

7 68.98 30 0.89 0.49 10.42 1.73 0.69 4.13

8 29.54 30 0.89 0.49 10.42 1.73 0.69 4.13

9 18.11 30 0.89 0.49 10.42 1.73 0.69 4.13

10 12.50 30 0.89 0.49 10.42 1.73 0.69 4.13

units gCOD/m3 gCOD/m3 gCOD/m3 g(–COD)/m3 gN/m3 g N/m3 gN/m3 mol/m3

Table 12.3 Decomposition of WWTP

Decomposition 1

Subsystem 1: States: All states in the anoxic section (reactor 1 and reactor 2) and the
secondary clarifier

Outputs: All measured outputs in the anoxic section and the secondary
clarifier

Inputs: Qi , Qint , Qr , Qw

Subsystem 2: States: All states in the aerated section (reactor 3, reactor 4, and reactor
5)

Outputs: All measured outputs in the aerated section

Inputs: KLa3, KLa4, KLa5

Decomposition 2

Subsystem 1: States: All states in reactor 1, concentration of SALK in reactors 2–5,
concentration of X , SI , and SALK in the secondary clarifier

Outputs: All measured outputs in reactor 1, SALK in reactors 2–5, values
of X , SI , and SALK in the secondary clarifier

Inputs: Qi , KLa4, Qr , Qw

Subsystem 2: States: Concentration of compounds except SALK in reactors 2–5,
concentration of SS , SO , SNO , SNH , and SND in the secondary
clarifier

Outputs: Measured outputs except SALK in reactors 2–5, values of SS ,
SO ,SNO ,SNH , and SND in the secondary clarifier

Inputs: Qint , KLa3, KLa5

of connections between internal variables. In Decomposition 2, Reactor 1, concen-
tration of SALK in reactors 2–5, concentration of X , SI , and SALK in the secondary
clarifier are configured as subsystem 1 and subsystem 2 includes the concentration
of compounds except SALK in reactors 2–5, concentration of SS , SO , SNO , SNH , and
SND in the secondary clarifier. It can be seen that the concentration of SALK in all five
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reactors is taken out alone and put into subsystem 1 because it has little connection
with other compounds in the same reactor.

12.5.2 Resilient Distributed State Estimator Design

WWTP is considered critical infrastructure and their resiliency is vital. In this section,
the proposed subsystem decomposition and resilient distributed state estimation
scheme is tested in the WWTP system to show the improvement of the resiliency
compared to a centralized scheme applied to the whole system. We investigate the
resiliency analysis under the storm and rain conditions, in which the unreliable com-
munication networks are simultaneously considered.

The random process disturbance of the state equation and the noise in measure-
ment are generated by the normal distribution values with mean value of zero and
standard deviation ofwQx0 andwR y0, respectively, wherewQ andwR are parameters
and the symbol x0 represents the initial condition shown in Tables12.1 and 12.2, and
y0 can be calculated by y0 = Cx0.The initial guess in different estimation schemes is
set to be 1.1x0. The parameters used in the centralized EKF are Q = diag((wQx0)2),
R = diag((wR y0)2), and P(0) = Q = diag((wQx0)2), where diag(V ) is a diag-
onal matrix whose diagonal elements are elements of vector v. The parameters
used in the distributed EKF are Qi = diag((wQx0,i )2), Ri = diag((wR y0,i )2), and
Pi (0) = Qi = diag((wQx0,i )2), where x0,i and y0,i are the corresponding portion in
x0 and y0 to subsystem i .

In order to compare the performance of different state estimation schemes, we
calculate the error. In order to explain the different magnitude of estimation error
in different states, the error of each state is normalized according to the maximum
estimation error of all estimation schemes. The Euclidean norm of the normalized
estimation error is defined as follows:

e(tk) =
√√√√ 145∑

i=1

(ei (tk))2, (12.46)

where e(tk) is the normalized error of 145 states at time instant tk , and ei (tk) is the
normalized error of state i , i = 1, 2, . . . , 145, defined as follows:

ei (tk) = x̂i (tk) − xi (tk)

max(x̂i − xi )
, (12.47)

where the maximum error of given state i is the maximum error of state i in EKF and
distributed EKFmethods. This means that the error of each state is normalized based
on the maximum estimation error given by two different schemes. The average and
maximum value of the normalized estimation error can be defined as follows:
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Mean|e| = 1

K

K∑
k=1

(e(tk)) (12.48a)

Max |e| = max{e(t1), e(t1), · · · , e(tk)}, (12.48b)

where K is the total number of samples over the simulation period.
Rain conditions. We adjust wQ and wR to test the performance under different

interference and noise conditions. The average andmaximumvalues of the estimation
error calculated by the three schemes are shown in Table12.4. Figure12.3 shows the
actual process state trajectories and the estimates given by the centralized EKF and
the distributed EKF (see Zhang et al. 2019) under the Decomposition 1 and the
Decomposition 2, and Fig. 12.4 shows the trajectories of the Euclidean norms of the
normalized estimation errors given by the three different schemes whenwQ = wR =
0.1.

Simulation results in Table12.4 show that the average estimation error of dis-
tributed EKF under Decomposition 2 is always smaller than that of the distributed
EKF under Decomposition 1, which shows that the proposed decomposition method
makes the internal connection of subsystems closer, which can reduce the state esti-
mation error under the same state estimation scheme. It also shows that when the
noise is greater, the distributed EKF may have better performance. It is verified that
the proposed subsystem decomposition with weak inter-subsystem interactions can
improve the resiliency of the system when applying the distributed state estimation.

Table 12.4 Performance comparison for different schemes under rain conditions

wR wQ Centralized
EKF

Distributed EKF

D1 D2

Mean|e| 0.2 0.2 4.1954 4.0622 4.0493

0.2 0.1 3.2232 3.1938 3.1534

0.1 0.2 4.6826 4.6691 4.6407

0.1 0.1 3.6538 3.6934 3.6465

0.2 0.05 2.2295 2.4193 2.3614

0.05 0.2 4.9480 5.0382 4.9800

0.05 0.05 2.9801 3.1684 3.0746

Max|e| 0.2 0.2 6.2810 6.3798 6.2979

0.2 0.1 8.1007 8.1007 8.1007

0.1 0.2 7.6567 7.8353 7.7048

0.1 0.1 8.1256 8.1256 8.1256

0.2 0.05 9.3052 9.3052 9.3052

0.05 0.2 8.2770 8.4781 8.3283

0.05 0.05 9.9826 9.9826 9.9826
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Fig. 12.3 Trajectories of the actual process state (black solid lines) and the estimates given by the
centralized EKF (green dashed lines) and the distributed EKF under the Decomposition 1 (red solid
lines)and the Decomposition 2 (blue dash-dotted lines) of reactor 5 under rain conditions
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Fig. 12.4 Trajectories of the Euclidean norm of normalized estimation errors given by the EKF
(green dashed lines) and the distributed EKF under the Decomposition 1 (red solid lines)and the
Decomposition 2 (blue dash-dotted lines) under rain conditions
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Fig. 12.5 Trajectories of the actual process state (black solid lines) and the DEKF (red dashed
lines) and the resilient DEKF (blue solid lines) under the Decomposition 2 of reactor 1 under rain
conditions with unreliable communication network X̂i (t) = X̂i (t) + 0.5xinit during t = 3(days)
to t = 3.05(days)

Furthermore, the condition with unreliable communication network is tested to
show the resiliency of the system under the resilient distributed state estimator. The
exchanged estimated stated is set as X̂i (t) = X̂i (t) + 0.5xinit during t = 3(days)
to t = 3.05(days). This means that the exchange information could be attacked or
modified. The proposed resilient distributed state estimator is used to construct the
states under the reliable communication network. Trajectories of the actual process
state and the resilient DEKF under the Decomposition 2 when wQ = wR = 0.1 are
shown in Fig. 12.5. The trajectories of the Euclidean norm of normalized estimation
errors given by the Distributed EKF and the resilient distributed EKF under the
Decomposition 2 are shown in Fig. 12.6. The results show that the proposed resilient
distributed state estimation scheme can improve the resiliency of the system with
unreliable communication network.
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Fig. 12.6 Trajectories of the
Euclidean norm of
normalized estimation errors
given by the DEKF (red
dashed lines) and the
resilient DEKF (blue solid
lines) under the
Decomposition 2 under rain
conditions with unreliable
communication network
X̂i (t) = X̂i (t) + 0.5xinit
during t = 3(days) to
t = 3.05(days) 0 1 2 3 4 5 6 7
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Storm conditions.We further test the resilient distributed EKF under storm con-
ditions. The average and maximum value of the estimation error calculated by the
three schemes are shown in Table 12.5. Figure12.7 shows the actual process state
trajectories and the estimates given by the centralized EKF and the distributed EKF
under the Decomposition 1 and the Decomposition 2 and Fig. 12.8 shows the trajec-
tories of the Euclidean norms of the normalized estimation errors given by the three
different schemes when wQ = wR = 0.1.

Simulation results in Table12.5 show that the average estimation error of dis-
tributed EKF under Decomposition 2 is always smaller than that of the distributed

Table 12.5 Performance comparison for different schemes under storm conditions

wR wQ Centralized
EKF

Distributed EKF

D1 D2

Mean|e| 0.2 0.2 4.0668 4.0572 4.0232

0.2 0.1 3.0962 3.0886 3.0219

0.1 0.2 4.5115 4.5524 4.5201

0.1 0.1 3.5968 3.6204 3.5504

0.2 0.05 2.0707 2.3161 2.2007

0.05 0.2 4.8841 4.9917 4.9308

0.05 0.05 2.7948 2.9948 2.9138

Max|e| 0.2 0.2 6.0169 6.1214 6.0297

0.2 0.1 7.3005 7.3005 7.3005

0.1 0.2 6.9390 7.1451 7.0182

0.1 0.1 7.3580 7.3580 7.3580

0.2 0.05 8.3908 8.3908 8.3908

0.05 0.2 7.1152 7.2747 7.1426

0.05 0.05 8.8528 8.8528 8.8528
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Fig. 12.7 Trajectories of the actual state (black solid lines) and the estimated states given by the
centralized EKF (green dashed lines) and the distributed EKF under the Decomposition 1 (red solid
lines) and the Decomposition 2 (blue dash-dotted lines) of reactor 5 under storm conditions
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Fig. 12.8 Trajectories of the
Euclidean norm of
normalized estimation errors
given by the EKF (green
dashed lines) and the
distributed EKF under the
Decomposition 1 (red solid
lines)and the Decomposition
2 (blue dash-dotted lines)
under storm conditions
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EKF under Decomposition 1, which shows that the proposed decomposition method
makes the internal connection of subsystems closer, which can reduce the state esti-
mation error under the same state estimation scheme. It confirms that the proposed
subsystem decomposition with weak inter-subsystem interactions can improve the
resiliency of the system when applying the distributed state estimation.

Similarly, the condition with unreliable communication network is tested to show
the resiliency of the system under the storm condition. The exchanged estimated
stated is set as X̂i (t) = X̂i (t) + 0.5xinit during t = 3(days) to t = 3.05(days). Tra-
jectories of the actual process state and the resilientDEKFunder theDecomposition 2
whenwQ = wR = 0.1 are shown in Fig. 12.9. The trajectories of the Euclidean norm
of normalized estimation errors are shown in Fig. 12.10. The results confirm that the
proposed resilient distributed state estimation scheme can improve the resiliency of
the system with unreliable communication network.
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Fig. 12.9 Trajectories of the actual process state (black solid lines) and theDEKF (red dashed lines)
and the resilient DEKF (blue solid lines) of reactor 1 under storm conditions with communicate
attack which set X̂i (t) = X̂i (t) + 0.5xinit , t = 3 − 3.05(days)
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Fig. 12.10 Trajectories of
the Euclidean norm of
normalized estimation errors
given by the DEKF (red
dashed lines) and the
resilient DEKF (blue solid
lines) under the
Decomposition 2 under
storm conditions with
communicate attack which
set X̂i (t) = X̂i (t) + 0.5xinit ,
t = 3 − 3.05(days)
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12.6 Conclusion

In this work, an optimal subsystem decomposition algorithm is proposed based on
the community discovery algorithm with weighted network graph and is applied to
a benchmark WWTP system. A resilient distributed state estimator is designed and
carried out under the subsystem models which are divided by the physical struc-
ture and the subsystem model obtained using the proposed decomposition method.
The results show that the subsystem decomposition and distributed state estimation
scheme improves the resiliency of the system, compared to a centralized scheme
applied to the whole system.
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