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Resilient Control of Nonlinear
Cyber-Physical Systems: Higher-Order
Sliding Mode Differentiation and Sparse
Recovery-Based Approaches
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and Jean-Pierre Barbot

10.1 Introduction

Cyber-physical system security including information security, protection of CPS
from being attacked and detection in adversarial environments have been considered
in the literature (Pasqualetti et al. 2013; Jafarnia-Jahromi et al. 2012; Antsaklis 2014;
Nekouei et al. 2018; Cardenas et al. 2008). Cryptography and Randomization are the
two main approaches to protect a CPS against disclosure attacks: Cryptography is
an approach to prevent third parties or the public from reading private messages by
defining some protocols (Chen et al. 2016; Diffie andHellman 1976). Randomization
is a defensive strategy to confuse the potential attacker about deterministic rules and
information of the system (Farokhi et al. 2017).

However, another challenge is to ensure that the CPS can continue functioning
properly if a cyber-attack has happened. If the defense strategy just relies on detection,
then the system’s performance still degrades, and the threat of the same attack recur-
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ring is not diminished. In addition, in the interval between the onset of the attack and
detection, the system could experience significant damage (Jafarnia-Jahromi et al.
2012). A good example of such a scenario is the Stuxnet (Chen 2010). TheMaroochy
attack happened because of the lack of detection and resilience mechanisms as well
(Slay and Miller 2007). In RQ-170, the absence of resilience control caused the sys-
tem to be unable to defend itself against the spoofing attack (Hartmann and Steup
2013).

It is suggested in Dibaji et al. 2019 that information security mechanisms must
be complemented by specially designed resilient control systems until the system is
restored to normal operation. The focus of this chapter is on the reconstruction of
the cyber-attack as a step to provide resilient control for a CPS.

The control/estimation algorithms are proposed in the literature for recovering
CPS performance online if an attacker penetrates the information security mech-
anisms. A game-theoretic approach that provides resilience consists of trying to
minimize the damage that an attacker can apply to the system or maximize the price
of attacking a system. For example, a zero-sum stochastic differential game between
a defender and an attacker is used to find an optimal control design to provide sys-
tem security in Zhu and Başar (2011). Event-triggered control schemes instead of
time-triggered schemes, which are based on how frequent the attacks occur, are
an appropriate strategy to increase the resilience of CPS (Heemels et al. 2012).
Event-triggered control is especially used to mitigate the effect of a disruption attack
(Cetinkaya et al. 2016). Mean Subsequence Reduced as a resilient control approach
ignores suspicious values and computes the control input at every moment (LeBlanc
et al. 2013; Dibaji et al. 2017). In trust-based approaches, a function of trust value
between the nodes of the system is defined since some of the nodes of the systemmay
be untrustworthy (Ahmed et al. 2015). In Fawzi et al. (2014), authors found the num-
ber of attacks that can be tolerated so that the state of the system can still be exactly
recovered. They designed a secure local control loop to improve the resilience of the
system. In Jin et al. (2017), new adaptive control architectures that can foil malicious
sensors and actuator attacks are developed for linear CPS without reconstructing the
attacks, by means of feedback control only.

The mentioned approaches suffer some limitations including: I. It is assumed that
the maximum number of malicious sensors in the network is known and bounded.
Once the number of attacked sensors exceeds the upper bound, the proposed secure
estimation or resilient control schemes fail to work. II. Only specific types of mali-
cious actions acting on the cyber layer are considered. III. Only special structures of
the cyber-physical system are considered.

On the other hand, the Sliding Mode Control and Higher-Order Sliding Mode
Control (SMC/HOSM) and observation/differentiation techniques can handle sys-
tems of arbitrary relative degree perturbed by bounded attacks of arbitrary shape.
The Sliding Mode Observers/differentiators (SMO/D) are capable of estimating the
system states and reconstruct the bounded attacks asymptotically or in finite time
(Fridman et al. 2007; Utkin 1992; Shtessel et al. 2014; Fridman et al. 2008; Levant
2003; Nateghi and Shtessel 2018; Nateghi et al. 2020a, 2018a, b) while addressing
the outlined challenges.
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Detection and observation of a scalar attack by a SMO has been accomplished
for a linearized differential-algebraic model of an electric power network when
plant and sensor attacks do not occur simultaneously (Wu et al. 2018). An adap-
tive SMO is designed coupled with a parameter estimator and a robust differentia-
tor for detection and reconstruction of attacks in linear cyber-physical systems in
Huang et al. (2018) when state and sensor attacks do not happen simultaneously. In
Nateghi et al. (2020b, 2021), fixed-gain and adaptive-gain SMO are proposed for
the online reconstruction of sensor attacks. Especially, dynamic filters that address
the attack propagation dynamics are employed for attack reconstruction. A prob-
abilistic risk mitigation model for cyber-attacks against Phasor Measurement Unit
(PMU) networks is presented in Mousavian et al. (2014), where a risk mitigation
technique determines whether a certain PMU should be kept connected to the net-
work or removed while minimizing the maximum threat level for all connected
PMUs. In Taha et al. (2016), the sliding mode-based observation algorithm is used
to reconstruct the attacks asymptotically. This reconstruction is approximate only
since pseudo-inverse techniques are used. In the above mentioned studies, which use
a Sliding Mode approach for resilient control of CPSs, they all consider linear CPS
and have their specific limitations.

In this chapter, online cyber-attack reconstruction for nonlinear CPSs is investi-
gated. Two complement cases are considered: (I) When the number of sensors is less
than the number of potential sparse attacks. A sparse signal recovery (SR) algorithm
with a finite time convergence property (Yu et al. 2017) is used to reconstruct the
attacks and presented in Sect. 10.3. (II) when the number of sensors is equal or greater
than the number of potential attacks. A certain number of sensors are assumed to be
protected from cyber-attacks. A higher-order sliding mode observer/differentiator
(Fridman et al. 2008) is applied to estimate the states and reconstruct the attacks
provided in Sect. 10.4. The proposed algorithm ensures finite-time state estimation
of observable variables and asymptotic estimation of the unobservable variables for
the case when the system has asymptotically stable internal dynamics. In order to
maintain the CPS closed-loop dynamics to be the same as those prior to the attacks,
it is proposed to clean the corrupted measurements, as soon as the attacks are recon-
structed, thus preventing the attack propagation to the CPS through feedback control.
Actuator attacks are also cleaned from the reconstructed actuator attacks. The effec-
tiveness of the proposed algorithms in Sects. 10.3 and 10.4 to estimate the states and
reconstruct the attacks are tested on the attacked US WECC power network system.

10.2 Mathematical Modeling

Consider the following nonlinear CPS which is completely observable and asymp-
totically stable affected by attack

ẋ = f1(t) + B1(x)(u + du(t)), (10.1)
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where x ∈ Rn presents the state vector of CPS, f1(x) ∈ Rn is a smooth vector field,
y ∈ Rp denotes the sensormeasurement vector, and u ∈ Rq1 is the control signal. The
du ∈ Rq1 and dy ∈ Rq2 are the actuator and sensor attack, respectively. The vector
Cx ∈ Rp is the output smooth vector field, B1(x) ∈ Rn×q1 and D1 ∈ Rp×q2 denote
the attack/fault distribution matrices.

The output feedback control signal u is a function of sensor measurement y which
can be corrupted by the sensor attacks. This is

u(y) = γ (C(x) + dy) = γ (x + D1dy). (10.2)

Replacing control signal u in CPS (10.1) to find the closed-loop CPS model gives

ẋ = f1(t) + B1(x)(γ (x, dy), du(t)) = f1(t) + B1(x)(γ (x, dy) + B1(x)du(t)

y = C(x) + D1dy(t).
(10.3)

Assume that u can be written as

γ (x, dy) = γ1(x) + γ2(dy), (10.4)

then, the closed-loop CPS (10.3) is given as

ẋ = f1(t) + B1(x)(γ (x, dy), du(t))

= f1(t) + B1(x)γ1(x) + B1(x)γ2(dy) + B1(x)du(t)

y = C(x) + D1dy(t).

(10.5)

Therefore, the CPS (10.1) after applying control signal u is presented as

ẋ = f (t) + B1(x)dx (t)

y = C(x) + D1dy(t),
(10.6)

where
f (x) = f1(x) + B1(x)γ1(x)

dx (t) = γ2(dy) + du(t),
(10.7)

where dx (t) represents the plant/state attack.
Define the attack signal d(t) ∈ Rq where q = q1 + q2 as

d =
[
dx
dy

]
, (10.8)
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where dx ∈ Rq1 and dy ∈ Rq2 , and

B(x) = [
B1(x) 01

]
D = [

02 D1
]
,

(10.9)

where B1(x) ∈ Rn×q1 , D1 ∈ Rp×(q−q1), 01 ∈ Rn×(q−q1), 02 ∈ Rp×q1 . Then, the
closed-loop CPS (10.6) is rewritten as

ẋ = f (x) + B(x)d(t)

y = C(x) + Dd(t).
(10.10)

10.2.1 Problem Statement

The problem is two-fold
1. Develop an observation algorithm that reconstructs online the state x ∈ Rn and
attack signal d(t) ∈ Rq in CPS (10.10) so that

x̂(t) → x(t)

d̂(t) → d(t).
(10.11)

2. Develop an observation algorithm that reconstructs online the state x ∈ Rn , the
plant attack signal dx (t) ∈ Rq1 , and sensor attack signal dy(t) ∈ Rq2 in CPS (10.6)
as shown in the table below so that

x̂(t) → x(t)

d̂x (t) → dx (t)

d̂y(t) → dy(t)

(10.12)

as time increases.

Attack plan du (t) �= 0 dy (t) �= 0 Access to all sensors Need to know the system model

Stealth attack
√

Deception attack
√

Replay attack
√ √ √

Covert attack
√ √ √

False data injection attack
√ √

Remark 10.1 As soon as the sensor attack dy(t) and the state attack dx (t) are esti-
mated/reconstructed the measurement y = C(x) + D1dy(t) could be cleaned as

yclean = y − D1d̂y(t) = C(x̂) + D1(dy(t) − d̂y(t)) → yclean = C(x̂). (10.13)
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Next, the clean measurement yclean can be used in the feedback control of CPS. This
allows blocking the propagation of the sensor attack to the dynamics of CPS through
the feedback control. The modified actuator commands are also cleaned from esti-
mated actuator attacks, i.e., the actuator attack du(t) can be estimated/reconstructed
from (10.7) as d̂u(t) = d̂y(t) − γ2(d̂y), and the system (10.5) dynamics converge to

ẋ = f1(x) + B1(x)(u + du(t) − d̂u(t)) → ẋ = f1(t) + B1(x)u (10.14)

as time increases.
In this chapter, attack reconstruction is divided to two cases: when the number of

potential attacks is (I) greater or equal, and (II) less than the number of sensors. In
the following two sections, the mentioned cases are investigated.

10.3 Preliminary: Sparse Recovering Algorithm

The problem of recovering an unknown input signal from measurements is well
known, as a left invertibility problem, as seen in Sain and Massey (1969), Barbot
et al. (2009), but this problem was only treated in the case where the number of mea-
surements is equal or greater than the number of unknown inputs. The left invertibility
problem in the case of fewer measurements than unknown inputs has no solution or
more exactly has an infinity of solutions.

Note that the input signals can be considered sparse or compressive for trans-
mission. The compressive sensing theory could be a proper candidate to deal with
these constraints. Sparse recovery algorithm is used to address this problem. The
problem is to find the exact recovery under sparse assumption denoted for the sake
of simplicity as “Sparse Recovery”, i.e., finding a concise representation of a signal
which is described as

κ = Θ(s + ε), (10.15)

where s ∈ RN are the unknown inputs with nomore than j non-zero entries, κ ∈ RM

are the measurements, ε is a measurement noise, andΘ ∈ RM × N is a matrix where
M < N .

Assumption 10.1 The matrix Θ satisfies the Restricted Isometry Property (RIP)
condition of j-order with constant ζ j ∈ (0, 1) (ζ j is as small as possible for compu-
tational reasons).

Note that the condition of RIP in compressive sensing is an essential requirement
that ensures the recovery of sparse signal vectors. RIP property provides the necessary
and sufficient requirements for the compressive sensing matrix; however, it is not
robust enough for consideration under the noise.
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Assumption 10.1 implies that for any j sparse of signal s, i.e., vectors with at
most j non-zero elements, the following condition is verified

(1 − ζs)‖s‖22 ≤ ‖Θs‖22 ≤ (1 + ζs)‖s‖22. (10.16)

Consider Γ as the index set of non-zero elements of Θ , then (10.16) is equivalent to
Yu et al. (2017), Candes and Tao (2005)

1 − ζs ≤ eig(ΘT
Γ ΘΓ ) ≤ 1 + ζs, (10.17)

where ΘΓ is the sub-matrix of Θ with active nodes. The problem of SR is often cast
as an optimization problem that minimizes a cost function constructed by leveraging
the observation error term and the sparsity inducing term (Yu et al. 2017), i.e.,

s∗ = arg min
s∈RN

1

2
‖κ − Θs‖21 + λ	(s), (10.18)

where the sparsity term 	(s) can be replaced by 	(s) = ‖s‖1 ≡ ∑
i |si | as long as

the RIP conditions hold. The λ > 0 in (10.18) is the balancing parameter and s∗ is
the critical point, i.e., the solution of (10.15).

For sparse vectors s with j-sparsity, where j must be equal or smaller than M−1
2 ,

solution to the SR problem is unique and coincides with the critical point of (10.15)
when the RIP condition for Θ with order 2 j is verified (Yu et al. 2017). Under the
sparse Assumption 10.1 of s and fulfilling j-RIP condition of matrix, the estimate of
the sparse signal s as proposed in Yu et al. (2017) is

μν̇(t) = −
ν(t) + (ΘTΘ − IN×N )a(t) − ΘT κ�β

ŝ = a(t),
(10.19)

where ν ∈ RN is the state vector, ŝ(t) represents the estimate of the sparse signal s
of (10.15), andμ > 0 is a time-constant determined by the physical properties of the
implementing system. Note that 
.� = |.|βsign(.) and a(t) = Hλ(ν), where Hλ(.) is
a continuous soft thresholding function and is defined as

Hλ(ν) = max(|ν| − λ, 0)sgn(ν), (10.20)

where λ > 0 is chosen with respect to the noise and the minimum absolute value of
the non-zero terms.

Under Assumption 10.1 the state ν of (10.19) converges in finite time to its equi-
librium point ν∗, and ŝ(t) in (10.19) converges in finite time to s∗ of (10.18).
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10.4 Attack Reconstruction When the Number of Potential
Attacks is Greater Than the Number of Sensors

The nonlinear CPS in (10.10) is considered when the number of potential attacks is
greater than the number of sensors, i.e.,

ẋ = f (x) + B(x)d(t)

y = C(x) + Dd(t) where q > p.
(10.21)

Assumption 10.2 Itisassumedthattheattackvectorissparse,meaningthatnumerous
attacks are possible, but the attacks are not coordinated, and only fewnon-zero attacks
happen at the same time, i.e., the index set of non-zero attacks is presented as

ΦΓ = {k1, k2, . . . , k j }, j < q where

2 j + 1 ≤ p.
(10.22)

The objective is to reconstruct online the time-varying attack sparse vector based on
the sensor measurement in CPS (10.21).

10.4.1 System Transformation

Feeding the sensor measurements under attack, y, of the CPS (10.21) to the input of
the low-pass filter that facilitates filtering out the possible measurement noise gives
Nateghi et al. (2018b)

ż = 1

τ
(−z + C(x) + D(x)d(t)), (10.23)

whose output z ∈ Rp, is available. Then, the CPS in (10.21) is rewritten as

ξ̇ = η(ξ) + Ωd(t)

ψ = Cξ,
(10.24)

where ψ ∈ Rp, and

ξ =
[
z
x

]
(p+n)×1

, η(ξ) =
[− 1

τ I 0
0 0

] [
z
x

]
+

[ 1
τ C(x)
f (x)

]

Ω =
[ 1

τ B(x)
B(x)

]
= [

Ω1, Ω2, . . . , Ωq
]
(p+n)×q

C = [
C1,C2, . . . ,Cp+n

] = [
Ip×p 0p×n

]
.

(10.25)
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Assumption 10.3 The transformed CPS (10.25) is assumed to have a vector relative
degree r = {r1, r2, . . . , rp}, i.e.,

ΓΩ j Γ
λ
η ψi (ξ) = 0 ∀ j = 1, . . . , q ∀λ < ri − 1 ∀i = 1, . . . , p

ΓΩ j Γ
ri−1
η ψi (ξ) �= 0 f or at least one 1 ≤ j ≤ q.

(10.26)

Assumption 10.4 The distribution Γ = span{b1, b2, . . . , bq} is involutive, where
bi is the i th column of matrix B in (10.21). This means that no new direction is
generated by the Lie bracket of the distribution vector fields. This ensures that the
zero dynamics (when exist) can be rewritten independently of the unknown input.

Assumption 10.5 Here it is assumed that there are no zero dynamics in system
(10.24), i.e., total relative degree equal to the system’s (10.10) order: n = r1 + r2 +
· · · + rp.
Assuming that the Assumptions (10.4) and (10.5) are satisfied, then input–output
dynamics of system (10.24) are presented as Fridman et al. (2008)

Υ̇i =

⎡
⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...

0 0 0 0 0

⎤
⎥⎥⎥⎦Υi +

⎡
⎢⎢⎢⎣

0
0
...

Lri
f ψi (ξ)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
0
...∑q

j=1 LΩ j L
ri−1
f ψi (ξ)di

⎤
⎥⎥⎥⎦ , (10.27)

where

Υi =

⎡
⎢⎢⎢⎣

Υ i
1 (ξ)

Υ i
2 (ξ)
...

Υ i
ri (ξ)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ψi (ξ)

Lψi (ξ)
...

Lri−1
f ψi (ξ)

⎤
⎥⎥⎥⎦ f or i = 1, . . . , p, (10.28)

where ψi (ξ) is the i th entry of vector ψ(ξ). Each of system output ψi at its own
relative degree ri , satisfies following equation (Fridman et al. 2008)

Υ̇ i
ri (ξ) = Lri

f ψi (ξ) +
α∑
j=1

LΩ j L
ri−1
f ψi di i = 1, . . . , p. (10.29)

Therefore, system (10.24) can be rewritten as the following algebraic equation

Z p = F(ξ)d(t), (10.30)

where

Z p =
⎡
⎢⎣

Υ̇ 1
r1
...

Υ̇
p
rp

⎤
⎥⎦ −

⎡
⎢⎣
Lr1

f ψ1(ξ)

...

L
rp
f ψp(ξ)

⎤
⎥⎦ , (10.31)
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where Z p ∈ Rp, F(ξ) ∈ Rp×q , and

F(ξ) =

⎡
⎢⎢⎢⎢⎣

LΩ1L
r1−1
f ψ1 LΩ2L

r1−1
f ψ1 . . . LΩq L

r1−1
f ψ1

LΩ1L
r2−1
f ψ2 LΩ2L

r2−1
f ψ2 . . . LΩq L

r2−1
f ψ2

...
...

LΩ1L
rP−1
f ψP LΩ2L

rp−1
f ψp . . . LΩq L

rP−1
f ψp

⎤
⎥⎥⎥⎥⎦ . (10.32)

Remark 10.2 The derivative Υ̇ 1
r1 , . . . , Υ̇

p
rp are computed exactly in finite time using

higher-order sliding mode differentiators (Fridman et al. 2008; Levant 2003). The
details about the HOSMC differentiation algorithms and their parametric tuning can
be found in Fridman et al. (2008), Levant (2003).

10.4.2 Attack Reconstruction

Assumption 10.6 The matrix F(ξ) in (10.30)–(10.32) is assumed to satisfy the RIP
condition as in Assumption 10.1.

The attack in (10.30) is reconstructed using the SR Algorithm as

μν̇(t) = −
ν(t) + (F(ξ)T F(ξ) − IN×N )a(t) − F(ξ)T Z p�β

d̂ = a(t),
(10.33)

where d̂(t) represents the estimate of the sparse signal d(t) of (10.30).
Under Assumption 10.6, the d̂(t) in (10.33) converges in finite time to d(t) of

(10.30) (Yu et al. 2017).

10.5 Attack Reconstruction When the Number of Sensors is
Greater Than the Number of Potential Sensor Attacks

Consider the nonlinear CPS model under the state and sensor attack in (10.10) when
the number of sensors is greater than the number of sensor attacks, that is

ẋ = f (x) + B1(x)dx (t)

y = C(x) + D1dy(t) where p > q − q1,
(10.34)

where y ∈ Rp, dx (t) ∈ Rq1 and dy(t) ∈ Rq−q1 . Since there are more sensors than
potential sensor attacks in CPS (10.34), there exists a nonsingular output transfor-
mation M ∈ RR×R so that
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ȳ = M−1y = M−1C(x) + M−1D1dy, (10.35)

where the matrix M is selected to satisfy the condition

M−1D =
[
03
D2

]
, (10.36)

where 03 ∈ Rp1×(q−q1), D2 ∈ R(p−p1)×(q−q1), and p − p1 ≤ q − q1. The transformed
sensor measurement vector in (10.35) is partitioned as

ȳ =
[
ȳ1
ȳ2

]
, (10.37)

where ȳ1 ∈ Rp
1 and ȳ2 ∈ Rp−p1 .

Next, CPS (10.34) is presented in a partitioned format in accordance with (10.37)
as

ẋ = f (x) + B1(x)dx (t)

ȳ1 = C1(x)

ȳ2 = C2(x) + D2dy(t).

(10.38)

C1 ∈ Rp1 and C2 ∈ Rp−p1 .

Remark 10.3 The virtual measurement ȳ1 in (10.38) is not affected by the attack
corruption signal and can be classified as a protected measurement.

Assumption 10.7 The number of protected measurements is equal or greater than
the number of plant attacks, i.e.,

q1 ≤ p1. (10.39)

Remark 10.4 Equation (10.39) gives that the number of unprotected measurements
is equal or less than the number of attacks that may corrupt the measurements, i.e.,

p − p1 ≤ q − q1. (10.40)

The considered problem is: given the nonlinear CPS dynamics in Eq. (10.38) with
virtual protected ȳ1 ∈ Rp

1 and ȳ2 ∈ Rp−p1 unprotected sensors, and attack signals
dx ∈ Rq1 on the plant and dy ∈ Rq−q1 on the sensors (sensor corruption signals),
reconstruct the attack signals. The attack reconstruction is to be accomplished in two
steps:

Step 1:The plant state x(t) and the attack dx (t) vectors are estimated by applying the
HOSM observer, described in the next section, with respect to the protected output
ȳ1 only, so that

x̂(t) → x(t), d̂x (t) → dx (t) (10.41)
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in finite time, where x̂(t) and d̂x (t) are the estimation of CPS states and the recon-
struction of plant attack, respectively.

Step 2: Given the state x̂(t), which is estimated online, the unprotected sensor
attack dy is then estimated by applying the SR algorithm described in Sect. 10.3.

10.5.1 State Attack Reconstruction

Consider the part of CPS (10.38) associated with the virtual measurements protected
from the attacks

ẋ = f (x) + B1(x)dx (t)

ȳ1 = C1(x).
(10.42)

Note that only q1 out of p1 virtual protectedmeasurements are employed, and that the
other p1 − q1 virtual protected measurements can be used at the second step of the
proposed algorithm. The aforementioned modifications are addressed by defining ȳ1
and B1 in (10.42) as ȳ1 = [ȳ11, . . . , ȳ1q1 ]T , B1 = [b1, b2, . . . , bq1 ] ∈ Rn×q1 , where
bi ∈ Rn,∀i = 1, 2, . . . , q1 are smooth vector fields defined on an openΩ ⊂ Rn . The
problem is to estimate the states of nonlinear CPS (10.42) with unknown input, and
reconstruct the state attack vector dx (t).

Assume that the CPS in (10.42) has the vector relative degree r = {r1, r2, . . . , rq1}
as it is defined in Assumption 10.3.

Assumption 10.8 The matrix

L(x) =

⎡
⎢⎢⎢⎢⎣

Lb1(L
r1−1
f ȳ1) Lb2(L

r1−1
f ȳ1) . . . Lbq1

(Lr1−1
f ȳ1)

Lb1(L
r2−1
f ȳ2) Lb2(L

r2−1
f ȳ2) . . . Lbq1

(Lr2−1
f ȳ2)

...
...

Lb1(L
rq1−1
f ȳq1) Lb2(L

rq1−1
f ȳq1) . . . Lbq1

(L
rq1−1
f ȳq1)

⎤
⎥⎥⎥⎥⎦ (10.43)

is full rank.

If the CPS in (10.42) satisfies Assumptions (10.4) and (10.8), then the CPS given by
Eq. (41) with the involutive distribution Γ = span{b1, b2, . . . , bq1} and total relative
degree r = ∑q1

i=1 ri ≤ n can be rewritten as Fridman et al. (2008)

δ̇i =

⎡
⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...

0 0 0 0 0

⎤
⎥⎥⎥⎦ δi +

⎡
⎢⎢⎢⎣

0
0
...

Lri
f ȳ1i (x)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
0
...∑m

j=1 Lbj L
ri−1
f ȳ1i (x)dx (t)

⎤
⎥⎥⎥⎦

∀i = 1, . . . , q1
γ̇ = g(δ, γ ),

(10.44)
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where

δ =

⎡
⎢⎢⎢⎣

δ1
δ2
...

δq1

⎤
⎥⎥⎥⎦ , δi =

⎡
⎢⎢⎢⎣

δi1
δi2
...

δir1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ηi1(x)
ηi2(x)

...

ηir1 (x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ȳ1i (x)
L f ȳ1i (x)

...

Lri−1
f ȳ1i (x)

⎤
⎥⎥⎥⎦ ∈ Rri ∀i = 1, . . . , q1

γ =

⎡
⎢⎢⎢⎣

γ1
γ2
...

γn−r

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ηr+1(x)
ηr+2(x)

...

ηn(x)

⎤
⎥⎥⎥⎦ .

(10.45)

Assumption 10.9 The norm-bounded solution of the internal dynamics (10.44) γ̇ =
g(δ, γ ) is assumed to be locally asymptotically stable (Fridman et al. 2008) as it is
mentioned in (A3).
The variables ηr+1(x), ηr+2(x), . . . , ηn(x) are defined to satisfy

Lbj ηi (x) = 0 ∀i = r + 1, . . . , n, ∀ j = 1, . . . , q1, (10.46)

if Assumption 10.4 is satisfied, then it is always possible to find n − r functions
ηr+1(x), ηr+2(x), . . . , ηn(x) such that

Ψ (x) = col{η11(x), . . . , η1r1(x), ηq11(x), . . . , ηq1rq1 (x), ηr+1(x), . . . , ηn(x)} ∈ Rn.

(10.47)

is a local diffeomorphism in a neighborhood of any point x ∈ Ω̄ ⊂ Ω ⊂ Rn , which
means that

x = Ψ −1(x)(δ, γ ). (10.48)

To estimate the derivatives δi j ,∀i = 1, . . . , q1,∀ j = 1, . . . , ri of the outputs yi in
finite time, higher-order sliding mode differentiators (Levant 2003) are used

żi0 = νi
0, νi

0 = −λi
0|zi0 − yi (t)|(ri/(ri+1))sign(zi0 − yi (t)) + zi1

żi1 = νi
1, νi

1 = −λi
1|zi1 − νi

0|((ri−1)/ri )sign(zi1 − νi
0) + zi2

...

żiri−1 = νi
ri−1, νi

ri−1 = −λi
ri−1|ziri−1 − νi

ri−2|(1/2)sign(ziri−1 − νi
ri−2) + ziri

żiri = −λi
ri sign(ziri − νi

ri−1),

(10.49)
for i = 1, . . . , q1.
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By construction

δ̂11 = η̂11(x) = z10, . . . , δ̂1r1 = η̂1r1(x) = z1r1−1,
ˆ̇δ11 = ˆ̇η1r1(x) = z1r1

...

δ̂
q1
1 = η̂

q1
1 = zq10 , . . . , δ̂

q1
rq1

= η̂
q1
rq1

= zq1rq1−1,
ˆ̇δq1rq1 = ˆ̇ηq1rq1 = z1rq1

.

(10.50)

Therefore, the following exact estimates are available in finite time

δ̂i =

⎡
⎢⎢⎢⎢⎣

δ̂i1
δ̂i2
...

δ̂ir1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

η̂i1(x̂)
η̂i2(x̂)

...

η̂ir1(x̂)

⎤
⎥⎥⎥⎦ ∈ Rri ∀i = 1, . . . , q1 δ̂ =

⎡
⎢⎢⎢⎢⎣

δ̂1

δ̂2

...

δ̂q1

⎤
⎥⎥⎥⎥⎦ ∈ Rrt . (10.51)

Integrating the second equation in (10.44) and replacing δ by δ̂, the internal dynamics
is given as ˙̂γ = g(γ̂ , δ̂), (10.52)

and with some initial condition from the stability domain of the internal dynamics,
a asymptotic estimate γ̂ can be obtained locally as

γ̂ =

⎡
⎢⎢⎢⎣

γ̂1
γ̂2
...

γ̂n−r

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

η̂r+1(x)
η̂r+2(x)

...

η̂n(x)

⎤
⎥⎥⎥⎦ . (10.53)

Therefore, the asymptotic estimate for the mapping (10.49) is identified as

Ψ (x̂) = col{η̂11(x̂), . . . , η1r1(x̂), . . . , ηq1rq1 (x̂), η̂r+1(x̂), η̂n(x̂)}. (10.54)

The asymptotic estimate x̂ of the state vector x of CPS (10.42) can be easily identified
via (10.51) and (10.53) as

x̂ = Ψ −1(δ̂, γ̂ ). (10.55)

An asymptotic estimate d̂x (t) of the cyber state attack dx (t) in (10.42) can be iden-
tified as Nateghi et al. (2018a)

d̂x (t) = L−1(Ψ −1(δ̂, γ̂ ))

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

ˆ̇δ1r1ˆ̇δ2r2
...

ˆ̇δqrq

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

Lr1
f y1(Ψ

−1(δ̂, γ̂ ))

Lr2
f y2(Ψ

−1(δ̂, γ̂ ))

...

L
rq
f yq(Ψ

−1(δ̂, γ̂ ))

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ , (10.56)

where L−1(Ψ −1(δ̂, γ̂ )) = ∑q
j=1 Lbj L

ri−1
f ȳ1i (x).
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10.5.2 Sensor Attacks Reconstruction

After the state vector x(t) and the plant attack dx (t) of CPS (10.34) are reconstructed
in (10.55) and (10.56), then the sensor attacks dy(t) can be reconstructed as the
following discussion: Consider the attacked part of system (10.38) as

ẋ = f (x) + B1(x)dx (t)

ȳ2 = C2(x) + D2dy(t),
(10.57)

where y2 ∈ Rp−q1 , D2 ∈ R(p−q1)×(q−q1), dy(t) ∈ Rq−q1 .
Two cases that cover all possible situations are considered to reconstruct the sensor

attack dy(t).
Case 1: If the number of sensor attacks and the number of corrupted sensors is the
same, i.e., p − q1 = q − q1, and D2 is invertible, then using x̂ estimated by the SMO
in (10.55), there is a unique solution for estimation of sensor attack as Nateghi et al.
(2018a)

d̂y(t) = D−1
2 (y2 − C2(x̂)). (10.58)

Case 2: If the number of sensor attacks is greater than the number of corrupted
sensors, i.e., p − q1 < q − q1 and the following assumption is verified for sensor
attack dy .

Assumption 10.10 It is assumed that the sensor attack vector dy ∈ Rq−q1 is sparse,
meaning that there is only a small number of non-zero sensor attacks at any point in
time.

Assumption 10.11 Matrix D2 satisfies the RIP condition in Assumption 10.1.

Under Assumptions (10.10) and (10.11), then the attack vector d(t) in (10.57) is
reconstructed using the SR algorithm presented in Sect. 10.3 as

d̂y(t) = a(t), (10.59)

where v ∈ Rq is the state vector, d̂y(t) represents the estimate of the sparse signal
dy(t), and μ > 0 is a time-constant determined by the physical properties of the
implementing system. The sensor attack estimation in (10.59) converges in finite
time to sensor attack dy(t) in CPS (10.34) (Yu et al. 2017).
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10.6 Case Study: Cyber Attack Reconstruction in the US
Western Electricity Coordinating Council Power
System

In a real-world electrical power network, only small groups of generator rotor angles
and rates are directly measured, and typical attacks aim at injecting disturbance
signals that mainly affect the sensor-less generators (Wu et al. 2018). The CPS that
motivates the results presented in this section is theUSWECCpower system (Scholtz
2004; Pasqualetti et al. 2015) under attack with three generators and six buses. The
proposed approaches in Sects. 10.4 and 10.5 are applied to the linearizedmodel of the
USWECC, to estimate the states and reconstruct the attacks affected the considered
WECC.

10.6.1 Mathematical Model of Electrical Power Network

The descriptor (Differential Algebraic Equations (DAE)) swing mathematical model
is adopted to describe the electromechanical behavior of the considered electrical
power networks (Taha et al. 2016; Yu et al. 2017). The DAE swing mathematical
model for a power network stabilized by a linear output feedback controller is given
by Yu et al. (2017):

⎡
⎣I 0 0
0 Mg 0
0 0 0

⎤
⎦

⎡
⎣ δ̇

ω̇

θ̇

⎤
⎦ = −

⎡
⎣ 0 −I 0
Lθ
g,g Eg Lθ

g,l

Lθ
l,g 0 Lθ

l,l

⎤
⎦

⎡
⎣δ

ω

θ

⎤
⎦ +

⎡
⎣ 0
Bω

Bθ

⎤
⎦ d(t) +

⎡
⎣ 0
Pω

Pθ

⎤
⎦

y = Cx + Dd(t),

(10.60)

where x = [
δT ωT θT

]
ᵀT is the vector of states of the system, δ ∈ Ra , ω ∈ Ra

and θ ∈ Rb are vectors of the phase angles of the source measured in rad, generator
speed deviations from synchronous measured in rad/s, and the bus angles measured
in rad, respectively. The index a is the number of generators, and b is the number of
buses in the electrical system. The vector y ∈ Rp is the sensor measurement vector,
the vector d ∈ Rq is the attack vector, and B ∈ R(2a+b)×q , D ∈ Rp×q are the attack
distribution matrices; Pω, Pθ are known changes in the mechanical input power to
the generators or real power demand at the loads. The matrices Eg , Mg ∈ Ra×a are
diagonal matrices whose non-zero entries consist of the damping coefficients and the
normalized inertias of the generators, respectively. Finally, the matrices Lθ

g,g , L
θ
g,l ,

Lθ
l,g Lθ

l,l form the following symmetric susceptance matrix

Lθ =
[
Lθ
g,g Lθ

g,l

Lθ
l,g Lθ

l,l

]
(10.61)
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that is the Laplacian associated with the susceptance-weighted graph.

Assumption 10.12 Thematrix Lθ
l,l is nonsingular (such an assumption usually holds

in practical electric power systems).

Note that the following terms that appear in the electric power network model (59)

⎡
⎣ 0
Bω

Bθ

⎤
⎦ d(t) +

⎡
⎣ 0
Pω

Pθ

⎤
⎦ (10.62)

are due to the output feedback control that processes the output corrupted by the
attack signal.

10.6.2 Transformation of DAE to ODE

Assuming (A10) holds, then the variable θ can be expressed as

θ = (Rθ
l,l)

−1(−Rθ
l,gδ + Pθ + Bθd) (10.63)

substituting (10.63) into (10.60) gives

[
δ̇

ω̇

]
=

[
φδ(δ, ω)

φω(δ, ω)

]
+

[
0
Pθω

]
+

[
0
Bθω

]
d(t)

y = C

[
δ

ω

]
+ Dd(t),

(10.64)

where
[
φδ(δ, ω)

φω(δ, ω)

]
=

[
0 Ip×p

M−1
g (−Rθ

g,g + Rθ
g,l(R

θ
l,l)

−1Rθ
l,g) −M−1

g Eg

] [
δ

ω

]

Pθω = M−1
g (Pω − Rθ

g,l(R
θ
l,l)

−1Pθ ), Bθω = M−1
g (Bω − Rθ

g,l(R
θ
l,l)

−1Bθ ).

(10.65)

10.6.3 Parameterization of Mathematical Model of Western
Electricity Coordinating Council Power System

The electrical power network considered here is a classical nine-bus configuration
adopted from Scholtz (2004), Pasqualetti et al. (2015). It consists of 3 generators
{g1, g2, g3} and 6 load buses {b1, . . . , b6}. Therefore, we have ω = [

ω1 ω2 ω3
]
ᵀT ∈

R3 , δ = [
δ1 δ2 δ3

]
ᵀT ∈ R3, and θ ∈ R6.

The matrices Eg, Mg ∈ Ra×a are given as
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Mg =
⎡
⎣0.125 0 0

0 0.034 0
0 0 0.016

⎤
⎦ , Eg =

⎡
⎣0.125 0 0

0 0.068 0
0 0 0.048

⎤
⎦ . (10.66)

The symmetric susceptance matrix Lθ including Lθ
g,g ∈ R3×3, Lθ

g,l ∈ R3×6, Lθ
l,g ∈

R6×3, Lθ
l,l ∈ R6×6 is equal to

Lθ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.058 0 0 −0.058 0 0 0 0 0
0 0.063 0 0 −0.063 0 0 0 0
0 0 0.059 0 0 0.059 0 0 0

−0.058 0 0 0.0265 0 0 −0.085 −0.092 0
0 −0.063 0 0 0.296 0 −0.161 0 −0.072
0 0 −0.059 0 0 0.330 0 −0.170 −0.101
0 0 0 −0.085 −0.161 0 0.246 0 0
0 0 0 −0.092 0 −0.170 0 0.262 0
0 0 0 0 −0.072 −0.101 0 0 0.173

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10.67)
The inputs Pω and Pθ are defined as

Pω = [
0.716 1.62 0.85

]
ᵀT , Pθ = [

0 −1.25 0.94 0 −1 0
]
ᵀT . (10.68)

10.6.4 Reconstruction of Attacks via Sparse Recovery
Algorithm: The Number of Potential Attacks
is Greater Than the Number of Sensors

Consider theWECC power system (10.60) under attack signal d = [
dT
x dT

y

]T ∈ R18

where dx ∈ R12, and dy ∈ R6 are the attacks of the plant and sensors, respectively.
The attacks dx ,dy are further decoupled as follows:

d1 =
⎡
⎣dδ

x(3×1)

dω
x(3×1)

dθ
x(6×1)

⎤
⎦ , d2 =

[
dδ
y(3×1)

dω
y(3×1)

]
, (10.69)

where dδ
x , d

ω
x , dθ

x are attacks on δ, ω, θ , and dδ
y, d

ω
y are attacks on measurements of

δ and ω, respectively. It is considered that
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Bδ ∈ R3×18 = [
I3×3 03×15

]
Bω ∈ R3×18 = [

03×3 I3×3 03×12
]

Bθ ∈ R6×18 = [
06×6 I6×6 06×6

]
Dδ ∈ R3×18 = [

03×12 I3×3 03×3
]

Dω ∈ R3×18 = [
03×15 I3×3

]
.

(10.70)

The corrupted sensor measurements y =
[
δ

ω

]
∈ R6 are fed to the low-pass filter

(10.23) and the new variable ξ is defined as

ξ =
[
z
y

]
∈ R12, (10.71)

where z =
[
z13×1

z23×1

]
∈ R6 is the output of LPF.

Then, the WECC (10.60) with the LPF (10.23)–(10.25) is presented as

ξ̇ =

⎡
⎢⎢⎢⎢⎢⎣

−1

τ
0

1

τ
0

0
−1

τ
0

1

τ
0 0 0 1
0 0 M−1

g (−Pθ
g,g + Pθ

g,l(R
θ
l,l)

−1Rθ
l,g) −M−1

g Eg

⎤
⎥⎥⎥⎥⎥⎦

× ξ +

⎡
⎢⎢⎢⎢⎢⎣

1

τ
Dδ

1

τ
Dω

Bδ

Bδω

⎤
⎥⎥⎥⎥⎥⎦
d+

⎡
⎢⎢⎣

0
0
0

−M−1
g Pθ

g,l + Pθ−1
l,l Pθ + M−1

g Pω)

⎤
⎥⎥⎦

ψ = [
I6,6 06,6

]
ξ.

(10.72)
Considering ψ = [

ψ1 ψ2
]T

where ψ1(3×1) = z1(3×1) , ψ2(3×1) = z2(3×1) , then

ż1 = 1

τ
(−z1 + δ + dδ

2), ż2 = 1

τ
(−z2 + ω + dω

2 ). (10.73)

To verify if the (10.73) satisfies the RIP condition in Assumption 10.1, (10.17), the
Eq. (10.73) is rewritten in a format of (10.15) as Nateghi et al. (2018b)

⎡
⎢⎣ ż1 + 1

τ
z1 − 1

τ
δ

ż2 + 1

τ
z2 − 1

τ
ω

⎤
⎥⎦ =

⎡
⎢⎣03×3 03×3 03×6 (

1

τ
)I3×3 03×3

03×3 03×3 03×6 03×3 (
1

τ
)I3×3

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

dδ
1

dω
1
dθ
1
dδ
2

dω
2

⎤
⎥⎥⎥⎥⎦ . (10.74)
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Apparently, F(ξ) in (10.74) doesn’t satisfy the RIP condition (10.17), therefore,
another differentiation of ż1, ż2 is required:

z̈1 = 1

τ
(−ż1 + δ̇ + ḋδ

2), z̈2 = 1

τ
(−ż2 + ω̇ + ḋω

2 ). (10.75)

Taking into account the output filter dynamics (10.23), and bearing in mind that

δ̇ = ω + Bδd = (τ ż2 + z2 − dω
2 ) + Bδd (10.76)

and

ω̇ = φ21δ + φ22ω + Pθω + Bθωd(t)

= φ21(τ ż1 + z1 − dδ
2) + φ22(τ ż2 + z2 − dω

2 ) + Pθω + Bθωd(t),
(10.77)

where Bθωd(t) = M−1
g dω

g,l − M−1
g pθ

g,l(p
θ
l,l)

−1
dθ
1

then (10.75) is rewritten as
Z̃ = F̃ d̃ (10.78)

where

Z̃m =
⎡
⎢⎣ z̈1 + 1

τ
ż1 − ż2 − 1

τ
z2

z̈2 + 1

τ
ż2 − φ21 ż1 − 1

τ
φ21z1 − φ22 ż2 − 1

τ
φ22z2 − 1

τ
Pθω

⎤
⎥⎦ (10.79)

F̃ =

⎡
⎢⎢⎣
1

τ
0 0 0 −1

τ

1

τ
0

0
M−1

g

τ

M−1
g Pθ

g,l(P
θ
l,l)

−1

τ

−φ21

τ

−φ22

τ
0

1

τ

⎤
⎥⎥⎦ (10.80)

d̃24×1 =
[
(dδ

1)
T

(dω
1 )T (dθ

1 )
T

(dδ
2)

T
(dω

2 )T (ḋδ
2)

T
(ḋω

2 )
T
]T

. (10.81)

Now, F̃ in (10.80) satisfies the RIP condition (10.17), therefore, the SR algorithm
can be applied to (10.78).

Remark 10.5 The derivatives z̈1, z̈2, ż1 and ż2 that appear in the entries of the virtual
measurement vector Z̃m are obtained using HOSM differentiators (Fridman et al.
2008).

Assumption 10.13 The sensor attack signals dδ
2 and d

ω
2 are assumed to be slowwith

respect to system (10.17) dynamics. In other words, it is assumed ḋδ
s ≈ 0 and dω

s ≈ 0
(Nateghi et al. 2018b).

Assumption 10.14 The attacks are assumed to be not coordinated, and only two out
of possible 18 attacks of following attack signal
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d18×1 =
[
(dδ

1)
T

(dω
1 )T (dθ

1 )
T

(dδ
2)

T
(dω

2 )T
]T

, (10.82)

are assumed to happen (it is not known which ones), the other 16 unknown attacks
are assumed non-existent. These two attacks are recovered using the SR algorithm
described in Sect. 3 applied to filtered WECC power system (10.72).

10.6.4.1 Simulation Results

The simulation results have been obtained via MATLAB.

Simulation Experiment 1 Two constant attacks (dω
1 )2 = −1 which is the second

entry of dω
1 , and (dω

2 )1 = 1 affect the filtered WECC power system (10.72) at the
time t = 0.4 s, and τ = 0.01. The SR algorithm was used to recover the attacks. The
results of the simulations are shown in Fig.10.1. The simulated two non-zero attacks,
which are shown by dash line and dot line, are accurately recovered in finite time,
while the estimated values of other zero attacks, which are shown by solid lines,
converge to zero in finite time. In Figs.10.1, 10.2 and 10.3, Attack1 and Attack2 are
used to describe the real attack signals and d1 − d18 display the reconstructed plant
and sensor attacks.

Simulation Experiment 2 Two time-varying attacks, (dω
1 )1 = sin(π t) and

(dω
1 )2 = sin(π t) affect the filtered WECC power system (10.60) at the time

t = 0.4 s. The simulated two time-varying non-zero attacks are accurately recov-
ered in finite time, which are illustrated by dash line and dot line, while the estimated
values of other 16 zero attacks appear to converge to zero in finite time. The solid
lines illustrate them.

Simulation Experiment 3 Two non-zero attacks are generated and affected the
filtered WECC power system (10.60) at the time t = 0.4 s, the plant attack is time
varying (dω

1 )2 = sin(π t), and sensor attack is constant (dω
2 )1 = −1. The simulation

result in Fig.10.3 shows 2 non-zero and 16 zero attacks were accurately recovered
in finite time.

The Simulation results in Figs. 10.1, 10.2 and 10.3 show that SR algorithm can
reconstruct the time-varying sparse attack signal in finite time.

10.6.5 Reconstruction of Attacks and Estimation of States:
The Number of Sensors is Greater Than the Number
of Potential Sensor Attacks

In this section, we investigate theWECC power system (10.60) as a nonlinear system
whenwe havemore sensors rather than potential sensor attacks, i.e., there are 6 sensor
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Fig. 10.1 Reconstruction of Two Constant Plant Attack and Sensor Attack in a Sparse Attack
Signal, ©2018 IEEE. Reprinted, with permission, from Nateghi et al. (2018b)

Fig. 10.2 Reconstruction of Two Time Varying Plant Attack in a Sparse Attack Signal, ©2018
IEEE. Reprinted, with permission, from Nateghi et al. (2018b)
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Fig. 10.3 Reconstruction of Time Varying Plant Attack and Constant Sensor Attack in a Sparse
Attack Signal, ©2018 IEEE. Reprinted, with permission, from Nateghi et al. (2018b)

measurements and 3 plant attacks. The matrices B and D in (10.60) are defined in
such a way that plant attack dx and sensor attack dy can be written separately as
follows:

⎡
⎣I 0 0
0 Mg 0
0 0 0

⎤
⎦

⎡
⎣ δ̇

ω̇

θ̇

⎤
⎦ = −

⎡
⎣ 0 −I 0
Rθ
g,g Eg Rθ

g,l

Rθ
l,g 0 Rθ

l,l

⎤
⎦

⎡
⎣δ

ω

θ

⎤
⎦ +

⎡
⎣0
I
0

⎤
⎦ dx (t) +

⎡
⎣ 0
Pω

Pθ

⎤
⎦

y =
[
Cδ 0
0 Cω

] [
δ

ω

]
+

[
Dδ

Dω

]
dy(t),

(10.83)

where

Cδ = I3 ,Cω = I3 , Dδ = 03×6 , Dω ∈ R3×6 =
⎡
⎣0 1 2 0 1 1
1 0 0 2 1 0
0 0 1 0 1 0

⎤
⎦ . (10.84)

The WECC power system (10.84) can be rewritten as

[
δ̇

ω̇

]
=

[
ω

M−1
g (−Rθ

g,g + Rθ
g,l(R

θ
l,l)

−1
Rθ
l,g)δ − M−1

g Egω + Pθω

]
+ B̄dx (t)

[
y1
y2

]
=

[
C̄δ

C̄ω

] [
δ

ω

]
+

[
0
Dω

]
dy(t)

(10.85)
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where
Pθω = M−1

g (Pω − Lθ
g,l(L

θ
l,l)

−1
Pθ )

Bθω = M−1
g (Bω − Lθ

g,l(L
θ
l,l)

−1
Bθ )

C̄δ = [
I3 03

]
, C̄ω = [

03 I3
]
, B̄ =

[
03
M−1

g

]
.

(10.86)

Remark 10.6 It can be verified that Dω satisfies theRIP condition defined in (10.16).

Suppose that the following three plant attacks (Nateghi et al. 2018a)

dx =
⎡
⎣dx1
dx2
dx3

⎤
⎦ = (t − 10)

⎡
⎣ sin(0.5t)

0.5cos(0.5t)
0.5sin(0.5t) + 0.5cos(0.5t)

⎤
⎦ (10.87)

and the time-varying sensor attack

dy = 1(t − 10).
[
0 0 0 0.5cos(0.5t) 0 0

]
(10.88)

affect system (10.83) at t = 10 s.
The states δ̂, ω̂ and plant attacks dx (t) in (10.83) are reconstructed by usingHOSM

observer. Then, the estimated ω̂ is used in to give

y2 − ω̂ = Dωdy(t). (10.89)

The SR algorithm described in Sect. 10.3 can be applied to reconstruct the sparse
dy(t) in WECC power system (10.89), where only one out of six potential attacks
dy1 . . . dy6 is non-zero.

10.6.5.1 Simulation Results

The MATLAB software is used to simulate the system. The simulated plant attacks
dx1, dx2, dx3 and sensor attack dy1 . . . dy6 are accurately recovered in finite time and
are shown in Figs. 10.4 and 10.5, respectively. Reconstructed attacks are used for
cleaning the corrupted plant input andmeasurements. Figures10.6 and 10.7 compare
the corrupted measurements with the measurements when the system is not under
attack, and with the compensated measurements after being attacked.

Therefore, simulation results illustrate that compensated measurements converge
to the measurements without attack in finite time. As a result, actual measurements
are recovered from corrupted ones in finite time by using the HOSM observer and
SR algorithm.
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Fig. 10.4 Plant Attack dx1 , dx2 , dx3 Compare with its Reconstruction d̂x1 , d̂x2 , d̂x3 , ©2018 IEEE.
Reprinted, with permission, from Nateghi et al. (2018a)

Fig. 10.5 Sensor Attack dy Reconstruction, ©2018 IEEE. Reprinted, with permission, from
Nateghi et al. (2018a)
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Fig. 10.6 Corrupted WECC Power System Sensor Measurements y1, y2, y3 Compared with the
Compensated Measurements and to the Measurements without Attacks, ©2018 IEEE. Reprinted,
with permission, from Nateghi et al. (2018a)

Fig. 10.7 Corrupted WECC Power System Sensor Measurements y4, y5, y6 Compared with the
Compensated Measurements and to the Measurements without Attacks (Nateghi et al. 2018a)
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10.7 Conclusions

In this chapter, considering the nonlinear cyber-physical systems under deception
attacks and sparse sensor attacks, two complimentary cases are investigated. In the
first case, when the number of potential attacks is greater than the number of sensor
measurements, attacks are reconstructed using higher-order sliding mode differen-
tiation techniques in concert with the SR algorithm, when only several unknown
attacks out of all possible attacks are non-zero. In the second case, when the num-
ber of sensor measurements is equal or greater than the number of potential sensor
attacks, the states of the system and the state attacks are reconstructed online using
a HOSM observer. A SR algorithm is used to reconstruct the stealth sensor attacks
to the unprotected sensors. The effectiveness of the proposed algorithms to estimate
the states and reconstruct the attacks are tested on the US WECC power network
system. The simulation results confirm that the attacks degrade the performance of
CPS under attack and imply that cleaning the measurements from the reconstructed
attacks before using them in the feedback control can elevate CPS performance close
to the one without attack.
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