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Preface

Cyber-physical systems enable interoperability of cyber and physical worlds through
control, computation, and communications. Control, optimization, monitoring,
and diagnostic schemes that operate cyber-physical systems (e.g., power gener-
ation, transportation, oil & gas, computing and communication systems, health-
care systems, etc.) are increasingly connected via local networks or the Internet.
As a result, these control systems have been increasingly vulnerable to threats and
jamming, such as cyber-attacks (e.g., associated with a computer virus, malicious
software, etc.), that could disrupt their operation, damage equipment, inflict malfunc-
tions, etc. Many of current cybersecurity methods primarily consider attack detec-
tion and mitigation in Information Technology (“IT”, such as, computers that store,
retrieve, transmit,manipulate data) andOperational Technology (“OT”, such as direct
monitoring devices and communication bus interfaces) at the network and commu-
nication layers. Cyber-attacks can still penetrate through these protection layers and
reach the physical “domain” as seen in 2010 with the Stuxnet attack. Such attacks
can negatively affect the performance of a control system and may cause total shut
down or catastrophic damage to the system. Currently, fewer methods are avail-
able to automatically detect, during a cyber-incident, attacks at the physical domain
layer (i.e. the process level) where sensors, controllers, and actuators are located. In
some cases, multiple attacks may occur simultaneously (e.g., more than one actuator,
sensor, or parameter inside control system devices might be altered maliciously by
an unauthorized party at the same time). Furthermore, some subtle consequences of
cyber-attacks, such as stealthy attacks occurring at the physical layer, might not be
readily detectable (e.g.,whenonly onemonitoring node, such as a sensor node, is used
in a detection algorithm). In addition, to maintain system availability and integrity
and to protect assets, attack resilience much be achieved through resilient estima-
tion and control methodologies, which are beyond existing fault-tolerant control
approaches. It may also be important to determine and distinguish when amonitoring
node is experiencing a malicious attack (as opposed to a natural fault/failure) and, in
some cases, exactly what type of attack is occurring. Existing approaches to protect
an industrial control system, such as fault detection and diagnostics technologies,
may not adequately address these problems, especially when multiple, simultaneous
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vi Preface

attacks occur, since multiple faults/failure diagnostic technologies are not designed
for detecting stealthy attacks in an automatic manner. It would therefore be desir-
able to research and develop new theories and technologies to protect cyber-physical
systems, including those in critical infrastructure, from cyber-attacks in an automatic
and accurate manner even when attacks percolate through the IT and OT layers and
directly harm the control systems.

This book is intended to cover some of the latest research on cyber-physical
security and resilience and highlight active research directions and solutions that
are currently pursued in academia and industry. A collection of book chapters are
gathered from well-known experts in the field with diverse technical backgrounds
of controls, estimation, machine learning, signal processing, and information theory,
as well as diverse geographical representation from North America, Europe, and
Asia. The book addresses a very important topic with a growing attention from
the research community and critical applications and implications in industries and
governments. The book chapters comprise of a blend of new theoretical results on
detection, resilient estimation, and control combined with machine learning tech-
niques, as well as important application areas such as power generation, electric
power grid, autonomous systems, communication networks, and chemical plants. In
the recent years, there have been multiple books published on cyber-security from
various perspectives, including vulnerability and impact analysis, safety, security,
privacy, networks intrusion detection and mitigation, etc. While there are synergies
between the current book and the previously published books, the book complements
previous publications by addressing cyber-physical security at the physical sensing
and control layer of cyber-physical systems, and systems resilience under attack via
resilient estimation and control. The book is not solely based on control/estimation
theory but a combination of control theory andmachine learning approaches to cyber-
physical security and resilience, bywhich several chapters are taking a “Controls+AI”
approach. The book is aimed for both researchers and technology developers in the
academia and industry. This area is vast and rapidly growing, with crucial needs for
additional research and development. The editors hope that this book will be a useful
advancement in that front.

Finally, we deeply thank authors and reviewers for their contributions. We also
gratefully acknowledge support from Springer’s editorial and production staff. A.
Zemouche would like to thank the ANR agency for the partial support of this work
via the project ArtISMo ANR-20-CE48-0015.

New York, USA
Grand Est, France
October 2021

Masoud Abbaszadeh
Ali Zemouche
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Chapter 1
Overview

Masoud Abbaszadeh and Ali Zemouche

The increasing sophistication and severity of intelligently designed cyber-attacks
warrants new theoretical and technological developments beyond current detection,
estimation, and controlmethodologies.On the other hand, cyber-physical systems are
dramatically changing, incorporating new elements such as the Internet of Things
(IoT) connectivity and distributed intelligence into the perspective. This transfor-
mation further expands the digital footprint of these systems, hence making them
susceptible to cyber-attacks and other safety and security issues. Advanced targeted
attacks against control systems have increased in the past years with evidence of high
risks related to zero-day and replay attacks. In order to tackle this threat, we need
advances in detection, feedback control, and estimation with built-in resilience to
cyber-attacks, to maintain system integrity and reliability at all times, by providing
uninterrupted, equipment-safe, and controlled operation.

This book is intended to cover some of the latest theory and technology advance-
ments for detection and protection against cyber-attacks in cyber-physical systems.
This is a very important emerging field and a very active multidisciplinary research
and technology development area. The book covers some of the latest problems and
research on cyber-physical security and resilience, and highlights active research
directions and solutions that are currently pursued in academia and industry. The
topics comprise of a blend of new theoretical results on resilient estimation and
control combined with machine learning techniques, as well as important appli-
cation areas such as industrial control systems, power generation and distribution,
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2 M. Abbaszadeh and A. Zemouche

autonomous systems, wireless communication networks, and chemical plants. The
book comprises of a collection of chapters fromwell-known researchers in academia,
and industrial research labs providing a comprehensive perspective of some of the
latest advancements and prospects of cyber-physical security and resilience.

The book is structured as follows. It starts with an introductory chapter on cyber-
physical security and resilience (Chap.2), and continueswith chapters containing the-
oretical results on attack detection and situational awareness, resilient estimation, and
control, with case studies on power generation, transmission and distribution, sen-
sor networks, cooperative tracking, and autonomous vehicles (Chaps. 3–11). Then,
it moves to application-oriented chapters on wastewater treatment plants, oil refin-
ery, and wireless communication networks (Chaps. 12–14). A fundamental trade-off
study of stealthiness–distortion is offered in Chap. 3. This is an important topic and
sets foundations for future work in this emerging space. Chapter4 is dedicated to pre-
dictive situational awareness in which an anomaly detection and forecasting frame-
work is proposed, combining elements from estimation theory andmachine learning.
Chapter5 provides a resilient observer design solution using a concurrent learning
approach, while a framework for detection of advanced persistent threats is pre-
sented in Chap.6. Chapters7–10 are focused on secure and resilient estimation from
different perspectives. Chapter7 addresses the resilient state estimation and attack
mitigation problems for switched linear systems with stochastic and set-membership
uncertainties. Chapter8 is on state and attack estimation for nonlinear fuzzy systems
with delayed measurements. Chapter9 establishes the notion of secure estimation
under imperfect attack detection and isolation decisions and studies the fundamen-
tal couplings between those decisions and the estimation problem, characterizing
closed-form decision rules. Chapter10, addresses cyber-attack reconstruction using
higher-order sliding mode observers and sparse recovery methods. Chapter11 is
on resilient cooperative control over networks to achieve consensus tracking under
input constraints and communication restraints. Chapter 12 is on resilient distributed
estimation, addressing the resilience of wastewater treatment plants against natural
disasters. A distributed attack detection algorithm is proposed in Chap. 13 for crude
oil distillation columns. Chapter14 is on resilient estimation in optical wireless com-
munication networks for cooperative robot autonomy under actuator faults and noise
jamming. The titles and abstracts of the chapters are in the following.

Chapter2. Introduction to Cyber-Physical Security and Resilience: This
chapter describes the fundamentals of the cyber-physical security and resilience
approaches as well as some of the current research directions, and provides a survey
of latest results in attack detection, isolation, resilient estimation and resilient con-
trol. It also makes distinctions between cyber-physical security versus adjoining and
seemingly related applications such as fault detection, and data communications and
network security (a.k.a, cyber-security).

Chapter3.Fundamental Stealthiness–DistortionTradeoffs inCyber-Physical
Systems: In this chapter, we analyze the fundamental stealthiness–distortion trade-
offs of linear Gaussian open-loop dynamical systems and (closed-loop) feedback
control systems under data injection attacks using a power spectral analysis,, whereas
the Kullback–Leibler (KL) divergence is employed as the stealthiness measure. Par-

http://dx.doi.org/10.1007/978-3-030-97166-3_2
http://dx.doi.org/10.1007/978-3-030-97166-3_3
http://dx.doi.org/10.1007/978-3-030-97166-3_11
http://dx.doi.org/10.1007/978-3-030-97166-3_12
http://dx.doi.org/10.1007/978-3-030-97166-3_14
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1 Overview 3

ticularly, we obtain explicit formulas in terms of power spectra that characterize
analytically the stealthiness–distortion trade-offs as well as the properties of the
worst-case attacks. Furthermore, it is seen in general that the attacker only needs to
know the input–output behaviors of the systems in order to carry out the worst-case
attacks.

Chapter4. Predictive Situation Awareness and Anomaly Forecasting in
Cyber-Physical Systems: A new feature-based situation awareness and forecast-
ing framework is presented for rapid detection and early warning of abnormalities
in cyber-physical systems. The abnormalities may refer to intelligent cyber-attacks
or naturally occurring faults and failures. Techniques presented here are aimed at
protecting against unauthorized intrusions as well as fault prevention. Time series
signals from system monitoring nodes are converted to features using feature dis-
covery techniques. The feature behavior for each monitoring node is characterized in
the form of decision boundaries, separating normal and abnormal space with oper-
ating data collected from the plant or by running virtual models of the plant. A set
of ensemble state-space models are constructed for representing feature evolution
in time domain, where the ensembles are selected using Gaussian Mixture Model
(GMM) clustering. The forecasted outputs are anticipated time evolution of features,
computed by applying an adaptive Kalman predictor to each ensemble model. The
overall features forecast is then obtained through dynamic ensemble averaging. This
is done by projecting evolution of feature vector to future times. This projection can
be performed either in a receding horizon or a committed horizon fashion. The feature
forecasts are compared to the decision boundary to estimate if/when the feature vec-
tors will cross the boundary. The decision boundary is a high-dimensional manifold
in the feature space learned by a neural network. The training of the neural network
is based on labeled data provided either through simulation of the system digital twin
or by capturing historical field data. In this chapter, we also establish a framework
for situation awareness, discussing the different components to achieve full situation
awareness and showing the interactions between the attack detection, isolation, and
prediction modules at the system level. Simulation results in a high-fidelity GE gas
turbine platform show the effectiveness of our approach for forecasting abnormal-
ities, which can be used for protecting physical assets from abnormalities due to
cyber-intrusion or natural faults.

Chapter5.Resilient Observer Design for Cyber-Physical Systems with Data-
Driven Measurement Pruning: Resilient observer design for Cyber-Physical Sys-
tems (CPS) in the presence of adversarial false data injection attacks (FDIA) is an
active area of research. Existing state-of-the-art algorithms tend to break down as
more andmore knowledge of the system is built into the attackmodel; also as the per-
centage of attacked nodes increases. From the view of optimization theory, the prob-
lem is often cast as a classical error correction problem forwhich a theoretical limit of
50% has been established as the maximum percentage attacked nodes for which state
recovery is guaranteed. Beyond this limit, the performance of �1-minimization-based
schemes, for instance, deteriorates rapidly. Similar performance degradation occurs
for other types of resilient observers beyond certain percentages of attacked nodes.
In order to increase the corresponding percentage of attacked nodes for which state

http://dx.doi.org/10.1007/978-3-030-97166-3_4
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4 M. Abbaszadeh and A. Zemouche

recoveries can be guaranteed, researchers have begun to incorporate prior informa-
tion into the underlying resilient observer design framework. For the most pragmatic
cases, this prior information is often obtained through a data-driven machine learn-
ing process. Existing results have shown a strong positive correlation between the
maximum attacked percentages that can be tolerated and the accuracy of the data-
driven model. Motivated by these results, this chapter examines the case for pruning
algorithms designed to improve the Positive Prediction Value (PPV) of the result-
ing prior information, given stochastic uncertainty characteristics of the underlying
machine learning model. Theoretical quantification of the achievable improvement
is given. Simulation results show that the pruning algorithm significantly increases
the maximum correctable percentage of attacked nodes, even for machine learning
model whose prediction power is comparable to the random flip of a coin.

Chapter6. Framework for Detecting APTs Based on Steps Analysis andCor-
relation:An advanced persistent threat, (APT), is an attack that uses multiple attack
behavior to penetrate a system, to achieve specifically targeted and highly valuable
goals within a system. This type of attack has presented an increasing concern for
cyber-security and business continuity. The resource availability, integrity, and con-
fidentiality of the operational cyber-physical systems’ (CPS) state and control are
highly impacted by the safety and security measures adopted. In this study, we pro-
pose a framework based on deep APT steps analysis and correlation, abbreviated as
“APT-DASAC”, for securing industrial control systems (ICSs) against APTs. This
approach takes into consideration the distributed and multi-level nature of ICS archi-
tecture, and reflects on multi-step APT attack lifecycle. We validated the framework
with three case studies: (i) network transactions between a remote terminal unit (RTU)
and a master control unit (MTU) within a supervisory control and data acquisition
(SCADA) gas pipeline control system, (ii) a case study of command and response
injection attacks, and (iii) a scenario based on network traffic containing hybrid of
the real modern normal and the contemporary synthesized attack activities of the
network traffic. Based on the achieved result, we show that the proposed approach
achieves a significant attacks detection capability and demonstrates that attack detec-
tion techniques that performed very well in one application domain may not yield
the same result in another. Hence, robustness and resilience of operational CPS state
or any system and performance are determined by the security measures in place,
which is specific to the application system and domain.

Chapter7. Resilient State Estimation and Attack Mitigation in Cyber-
Physical Systems: Smart and Cyber-Physical Systems (CPS), e.g., power and traffic
networks and smart homes, are becoming increasingly ubiquitous as they offer new
opportunities for improved performance and functionalities. However, these often
safety-critical systems have also recently become the target of cyber- or physical
attacks. This chapter contributes to the area of CPS security from the perspective
of leveraging the knowledge of physical system dynamics as an additional “sensor”
to mitigate the effects of false data injection attacks on actuator and sensor signals
as well as attacks on the switching mechanisms, e.g., circuit breakers, on the state
estimation and control algorithms in these systems, in order to ensure continued
safety, reliability and integrity of systems despite attacks. Specifically, we consider

http://dx.doi.org/10.1007/978-3-030-97166-3_6
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1 Overview 5

physical models with switched linear dynamics subject to two classes of uncertain-
ties: (a) stochastic uncertainty (aleatoric), i.e., with (unbounded) stochastic process
and measurement noise signals and (b) set-membership uncertainty (epistemic), i.e.,
with distribution-free bounded-norm process and measurement disturbances. In both
settings, we model the system under attack as a hidden-mode switched linear sys-
temwith unknown inputs (attacks) and propose multiple-model inference algorithms
to perform attack-resilient state estimation with stability and optimality guarantees.
Moreover, we characterize fundamental limitations to resilient state estimation (e.g.,
upper bound on the number of tolerable signal attacks) and discuss the topics of attack
detection, identification, and mitigation under this framework. Simulation examples
of switching and false data injection attacks on a benchmark system and an IEEE
68-bus test system show the efficacy of our approach to recover resilient state esti-
mates as well as to identify and mitigate the attacks in the presence of stochastic and
set-membership uncertainties.

Chapter8. State and Attacks Estimation for Nonlinear Takagi–Sugeno Mul-
tiple Models Systems with DelayedMeasurements: In the following contribution,
a state and attacks estimation for nonlinear Takagi–Sugeno Systems with variable
time-delay measurements is proposed. Based on the sector nonlinearity approach,
sufficient conditions in term of Linear Matrix Inequalities (LM Is) formulation are
given for the observer design. It is demonstrated that, despite the presence of cyber-
attack (i.e., data deception attacks on both actuators and sensors), and the delayed
measurements, the proposed observer is quite efficient and ensures the asymptotic
convergence of the estimation errors with an L2 attenuation constraint.

Chapter9. Secure Estimation under Model Uncertainty: The increasing scale
and widespread deployment of cyber-physical systems for novel applications leave
them vulnerable to malicious intrusions and potential failures. Therefore, the per-
formance of a cyber-physical system hinges on both the successful detection and
elimination of malicious behavior. More importantly, the robustness of inference
algorithms in making high-quality inference decisions even under active malicious
behaviors is instrumental to making reliable decisions. This chapter focuses on the
robustness of state estimates in complex networks . In such systems, state estimation
is the key inference task at the core of monitoring and decision-making. One key
challenge when facing malicious attacks is uncertainty in the true underlying statis-
tical model of the data collected. Such uncertainty can be an outcome of a variety
of adversarial behaviors, such as false data injection attacks, denial of service (DoS)
attacks, and causative attacks . In all such scenarios, the estimation algorithms oper-
ate under a distorted statistical model with respect to what they expect. Therefore,
forming estimates under malicious attacks involves an additional decision pertinent
to the presence of an attack and isolating the true statistical model. This chapter
introduces new notions of secure estimation under the knowledge that imperfect
detection and isolation decisions induce a coupling between the desired estima-
tion performance and the auxiliary necessary detection and isolation decisions.
The fundamental interplay among the different decisions involved is established and
closed-form decision rules are provided.

http://dx.doi.org/10.1007/978-3-030-97166-3_8
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6 M. Abbaszadeh and A. Zemouche

Chapter10.Resilient Control of Nonlinear Cyber-Physical Systems: Higher-
Order Sliding Mode Differentiation and Sparse Recovery-based Approaches:
In this chapter, we focus on a cyber-attack reconstruction and secure state estimation
to facilitate the resilient control of nonlinear cyber-physical systems under sensor
and/or actuator attacks. The Sliding Mode Observation/Differentiation (SMO/D)
techniques, which can handle systems of arbitrary relative degree perturbed by
bounded attacks of arbitrary shape, are used for online reconstruction of the attacks
and secure state estimation in CPSs under attacks. The Sparse Recovery (SR) algo-
rithm is also employed to reconstruct the stealth sensor attacks to the unprotected
sensors. Next, the corrupted measurements and states are to be cleaned up online in
order to prevent the attack propagation to the CPS via the feedback control signal.
The case study based on the US Western Electricity Coordinating Council (WECC)
power network under attack is considered. The power network performance degrada-
tion as a result of cyber-attacks to actuators and/or sensors is observed. The proposed
SMO/DandSRalgorithms andmethodologies are applied to recover the performance
of the attacked WECC power network. Simulation results illustrate the efficacy of
the proposed approaches.

Chapter11. Resilient Cooperative Control of Input Constrained Networked
Cyber-Physical Systems: This chapter mainly studies the resilient cooperative con-
trol methods for Networked Cyber-Physical Systems (NCPS) subject to input satu-
ration constraints. First, input constrained asymptotic consensus tracking problems
for high-order triangular form NCPS are investigated. Sliding mode control meth-
ods are employed to achieve robust consensus tracking under input saturation and
bounded input disturbances. Both the cases of static leader and dynamic leader are
considered. Observer-based distributed controllers are further designed to reduce the
relative statemeasurement requirement between the systems. Then, input constrained
robust finite-time consensus tracking problems for high-order triangular form NCPS
are studied. A switching control strategy is proposed which is shown to achieve con-
sensus tracking in finite time under the input saturation constraint. Both the cases
with relative state measurement and only relative output measurement are handled.
The proposed control strategies are novel in that they are resilient to both the control
input constraints, the unknown external disturbances and the possible digital com-
munication restraints. Numerical simulation is performed and an application to the
vehicle platoon control problem is given to illustrate the effectiveness of the proposed
control strategies.

Chapter12. Optimal Subsystem Decomposition and Resilient Distributed
State Estimation for Wastewater Treatment Plants: In this work, an optimal sub-
system decomposition algorithm is proposed based on the community discovery
algorithm with weighted network graph and is applied to a benchmark wastew-
ater treatment plants (WWTP) system. With the obtained subsystems, a resilient
distributed state estimation method is further investigated to deal with the natural
disasters (storm and rain) and the unreliable communication networks. The nodes of
information graph theory are introduced to represent the state, input and output vari-
ables of theWWTP system. By defining a sensitivity of an edge, a weighted directed
graph of WWTP system is constructed. The nodes are connected by weighted edges

http://dx.doi.org/10.1007/978-3-030-97166-3_10
http://dx.doi.org/10.1007/978-3-030-97166-3_11
http://dx.doi.org/10.1007/978-3-030-97166-3_12
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with theweight reflecting the strength of the connection betweennodes. Theweighted
network graph can reflect both the connectivity and connection strength of the sys-
tem. The community structure discovery algorithm is used to divide all variables
into subsystem groups, such that the interaction between groups is strong. Then,
the subsystem decomposition of complex process system is obtained. The optimal
subsystem decomposition method is validated by designing a resilient distributed
state estimation for WWTP system with unreliable communication networks. An
information compensation strategy is proposed to coordinate the sub-estimators.
Comparative study is carried out for the subsystem decomposition by physical struc-
ture and unweighted network-based method. The results show that the subsystem
decomposition and distributed state estimation scheme improves the resiliency of
the system, compared to a centralized scheme applied to the whole system.

Chapter13. Cyber-Attack Detection for a Crude Oil Distillation Column:
Industrial control systems are recently being interfaced to the cyber-domain as com-
puting, communication, and electronics technologies continue to evolve giving rise
to what is known as Cyber-Physical Systems (CPSs). Integration of cyber-domain
makes these plants vulnerable to cyber-threats and hence it is indispensable to address
the cyber-security of these systems. The huge worldwide demand for crude oil can
make them a lucrative target for cyber-intrusions. In this chapter, a continuous binary
Distillation Column (DC) plant is considered as a CPS and a distributed attack
detection algorithm is proposed to enhance its security. In order to demonstrate the
real-time performance of attack detection algorithm, a hybrid Hardware-In-the-Loop
(HIL) testbed is developedwhere theDCplant is simulated in real time inside PC and
the controllers as well as the detection algorithms are implemented inside Siemens
PLC. Finally, the real-time performance of the developed attack detection algorithm
is validated through several attack scenarios.

Chapter14. A Resilient Nonlinear Observer for Light-Emitting Diode Opti-
cal Wireless Communication under Actuator Fault and Noise Jamming: Opti-
cal wireless communication is emerging as a low-power, low-cost, and high data
rate alternative to acoustic and radio-frequency communications in several short
to medium-range applications. However, it requires a close-to-line-of-sight link
between the transmitter and the receiver. Indeed, a severe misalignment can lead to
intolerable signal fades and can significantly degrade system performance. Despite
recent efforts to establish a line-of-sight (LOS) between transmitter and receiver by
improving system designs and active alignment, maintaining a perfect LOS between
the two sides despite the robot’s mobility remain a challenging task for cooperative
autonomy. On the other hand, the optical wireless communication system is often
hampered by noise jamming on the optical communication channel that reduces the
system capacity of the wireless optical mobile networks. Additionally, a situation of
an occurrence of actuator failures can occur due tomalfunctions or high instantaneous
torques of the actuator mechanism flexible on the receiver orientation. To address this
problem, we propose a novel extended state switched-gain discrete-time nonlinear
observer to simultaneously estimate the actuator fault and the optical communica-
tion system’s state variables subject to noise jamming attack. Furthermore, Lyapunov
function-based analysis is used to design the proposed unknown switched-gain input

http://dx.doi.org/10.1007/978-3-030-97166-3_13
http://dx.doi.org/10.1007/978-3-030-97166-3_14
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observer in each piecewise monotonic region of the optical communication model
output functions and ensures global stability of the extended error system. Numerical
simulation results are then provided to demonstrate the validity and effectiveness of
the proposed extended switched-gain state observer subject to noise jamming attack
on the optical communication link.



Chapter 2
Introduction to Cyber-Physical Security
and Resilience

Masoud Abbaszadeh and Ali Zemouche

2.1 Introduction

Motivated by increasing demand for performance, availability, efficiency, and
resilience, several sectors including energy, manufacturing, healthcare, and trans-
portation have adopted latest advances in controls, automation, communications,
and monitoring in the past decades, moving towards semi-autonomous or fully
autonomous systems in some cases. The resulting integration of information, control,
communication, and computation with physical systems, demands new methodolo-
gies for detailed systematic and modular analysis and synthesis of Cyber-Physical
Systems (CPSs) as a means to realize the desired performance metrics of efficiency,
sustainability, and safety (Dibaji et al. 2019). However, CPSs suffer from extendable
vulnerabilities that are beyond classical networked systems due to the tight integra-
tion of cyber- and physical components. Sophisticated and malicious cyber-attacks
continue to emerge to adversely impact CPS operation, resulting in performance
degradation, service interruption, and system failure. Cyber-physical security pro-
vides a new line of defense at the physical domain layer (i.e., the process level) in
addition to the network Information Technology (IT) and higher level Operational
Technology (OT) solutions.

In the past few years, there has been tremendous research and development efforts
in cyber-physical security and resilience. The forefront of these efforts is to develop
theory and technology to detect and localize cyber-attacks, identify attack types,
estimate, and reconstruct attacks, and to perform secure estimation and control under
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attack. To this end, a variety of results have been proposed based on bothmodel-based
and data-driven methodologies (Abbaszadeh et al. 2018; Akowuah and Kong 2021;
Alguttar et al. 2020; AlZubi et al. 2021; Ameli et al. 2018; An and Yang 2020; Ao
et al. 2016; Azzam et al. 2021; Baniamerian et al. 2019; Brentan et al. 2017; Buason
et al. 2019; Cao et al. 2020; Chen et al. 2021, 2016; Cómbita et al. 2020; Dibaji
et al. 2018; Ding et al. 2020a, b, 2021, 2018; Dutta et al. 2021; Fang et al. 2020;
Farivar et al. 2019; Ferrari and Teixeira 2017; Fillatre et al. 2017; Giraldo et al. 2018;
Gu et al. 2020; Guan and Ge 2017; Han et al. 2021; Hendrickx et al. 2014; Housh
and Ohar 2018; Humayed and Luo 2015; Humayed et al. 2017; Iwendi et al. 2021;
Jahromi et al. 2021, 2019; Junejo and Goh 2016; Khan et al. 2020; Kim et al. 2021;
Kozik et al. 2018; Krishnamurthy et al. 2014; Kumar et al. 2022; Lee et al. 2014; Li
et al. 2021a, b, 2020; Loukas et al. 2019; Mestha et al. 2017; Narayanan et al. 2021;
Noorizadeh et al. 2021; Olowononi et al. 2020; Orumwense and Abo-Al-Ez 2019;
Paredes et al. 2021; Park et al. 2015, 2019; Pasqualetti et al. 2013; Pirani et al. 2021;
Roy and Dey 2021; Sahoo et al. 2018; Semwal 2021; Shin et al. 2017; Su et al. 2020;
Taheri et al. 2020; Tan et al. 2020; Teixeira et al. 2015; Tian et al. 2020; Tiwari et al.
2021; Tsiami and Makropoulos 2021; Valencia et al. 2019; Wang et al. 2021a, b,
2020; Wu et al. 2021; Xiong and Wu 2020; Yan et al. 2018, 2019; Ye et al. 2020;
Zhang et al. 2021a, b, c, d, 2017; Zhang and Zhu 2020; Zhu et al. 2018).

Cyber-physical security technologies leverage dynamicmodels of the closed-loop
control systems through utilization of first-principle or data-driven (e.g., system
identification-based) modeling paradigms. This, in addition to utilizing historical
operational data, enables realistic simulations of attack and fault scenarios, which,
compared to normal operation data, are usually rare in the field. This in turn, enables
utilization of bothmodel-based and data-driven detectors, and in terms of data-driven
detectors, enables exploiting both supervised and unsupervised machine learning
approaches.

2.2 Cyber-Physical Security and Resilience Functionality
Overview

Cyber-physical security and resilience generally consists of the following function-
ality modules:

• Detection: Determines if an attack has happened.
• Isolation: Determines what is under attack, in terms of sensor, actuator, or con-
trol nodes. It may also provide foundations for early warning generation at the
system/subsystem/component level.

• Identification: Determines severity and impact of the attack (including attack
type and magnitude), and backtracks the attack to find its source through attack
forensics. It may also separate the source of the abnormality and distinguishes
malicious attacks from naturally occurring faults/failures.
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Fig. 2.1 Cyber-physical security & resilience functionality diagram

• Resilience: Maintains the integrity, operability, and availability of the system by
accommodating (mitigating) the attack through resilient estimation and control,
with/without a degraded performance (i.e., curtailment); or commands a controlled
safe shutdown.

Figure2.1 shows an example of a cyber-physical security system functionality dia-
gram with modules as described above. The detection (and isolation) decisions may
be made in one shot or in a two-step process, in which a second decision algo-
rithm resolves the gray zones in the first decision. The system may be completely
autonomous or with a human in the loop, in which case the operator may be in the
loop for the whole process with the ability to override machine-made decisions. The
system may also provide visual and/or textual status reports to the operator in real
time through security user interfaces such as a Security Information and Event Man-
agement (SIEM) dashboard. Furthermore, to increase the decisions accuracy and
speed, the detection and isolation decisions may be taken in parallel and fused with
potential input from the operator.

Cyber-physical security goes beyond cyber-security, as it can provide an additional
layer of defence. Attack neutralization through resilient estimation and control, helps
providing the system with capabilities to overcome damage and continue operation
when sensors or control signals are disrupted by adversarial threats.
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Development of a cyber-physical security technology should follow a design phi-
losophy that includes three main aspects:

1. Scalability: This is itself two-fold (a) to be organically expandable to large-scale
systems, and (b) to be applicable to horizontal and cross-domain applications
with reasonable system modeling/dataset generation, while the core algorithms
and architecture remaining domain-agnostic.

2. Robustness: Ability to perform in high performance (in terms of requirements
such as false positive and false negative rates, speed of detection, etc.) in the
presence ofmodel uncertainty, data value and label uncertainty, aswell as system’s
operational and configuration/manufacturing variations.

3. Coherence:Having a unified architecture with modularity and flexibility to iden-
tify essential and optional modules and to fit into different application domains.

2.3 Cyber-Physical Security Versus Adjacent Fields

From the security perspective, cyber-physical security provides a new layer of
defence against cyber-attacks, complementing the existing defence in the IT and
higher level OT network security, and increasing the overall security posture of sys-
tems via a defence-in-depth strategy (Mosteiro-Sanchez et al. 2020). The focus of
cyber-physical security is on the impact of the attack on the physical behavior of the
system as opposed to monitoring data communications and network traffic. Further-
more, the attack resilience capabilitymaintains safe operation and/or prevents system
damage even at the presence of attacks which may go stealthy and undetected by the
IT/OT network-layer security solutions. This increases the availability and integrity
of the systems under protection.

2.3.1 Cyber-Physical Security Versus Cyber-Security

Although sounding similar, there are important distinctions between cyber-security
and cyber-physical security. The IT layer cyber-security is concerned with data
authenticity and integrity. Cyber-physical security, on the other hand, addresses the
availability and reliability, in addition to the IT layer, and maintains system operabil-
ity in an operational technology (OT) environment, at the physical layer. Therefore,
mere access control, for example, does not help in the OT layer, e.g., the industrial
communication bus in Supervisory Control, Data Acquisition (SCADA) systems or
Distributed Control Systems (DCS), and physical layers. For example, in a data-only
IT layer, it is possible to log out users or prevent their access to the network, but
in the OT layer, operators should never be log out of the system during an emer-
gency. Cyber-physical security complements IT and higher level OT cyber-security.
While cyber-security tries to prevent a cyber-attack from happening at the first place,
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cyber-physical security comes into playwhen an attacker has already bypassed the IT
and higher level OT layers, and thus, an attack has already happened. Furthermore, a
cyber-security solution detects an attack through anomalous activities in a communi-
cation data network, while cyber-physical security detects an attack by analyzing its
impact on the physical behavior of the system. Additionally, cyber-security detects
network attacks only, while cyber-physical security, due to its interaction with the
physical world, can also detect physical attacks. Finally, cyber-security is often based
on static analyses (in terms of system dynamics), while cyber-physical security is
essentially based on physical dynamics of the system.

2.3.2 Cyber-Physical Security Versus FDII

A fault is a natural cause, while a cyber-attack is amalicious cause, often intelligently
designed and targeted towards specific aspect(s) of a system. A fault is due to a
component/system natural malfunction. Therefore, it is highly unlikely that multiple
independent and unrelated faults happen simultaneously. A multi-fault scenario is
most often a cascaded event started by a single fault. Fault Detection, Isolation,
and Identification (FDII) methods cannot detect and isolate multiple simultaneous
uncorrelated faults. A cyber-attack on the other hand, is artificially designed and
can target multiple places of a system or even multiple systems as the same time
without any system relations. Faults usually happen in the sensors, actuators, or
some other hardware nodes, while a cyber-attack may happen in any hardware (e.g.,
sensor or actuator) or software (e.g., inside controller) node. Software faults are rare,
especially in a certified code. For example, the probability of a software fault in
an airworthy code certified by DO-178 aviation standard is less than 10−6 (RTCA
2011). There is yet no certification against a cyber-attack. FDI often works against
a pre-determined set of system faults, identified through tools such as fault tree
analysis (FTA) or Failure Mode and Effect Analysis (FMEA). A cyber-attack can
very much go beyond specified or even known system faults. A cyber-attack can
target or randomly activate a vulnerability even unknown to the system designers.
Furthermore, FDI cannot detect stealthy attacks that keep the monitored signals
within normal operational ranges.

2.3.3 Cyber-Physical Security Versus Prognostics

Prognostics concerns aspects like system ageing, estimation of the remaining use-
ful life (RUL), life optimization, condition monitoring, and condition-based main-
tenance. These are all categorized under industrial asset performance management
(APM). Prognostics provides a solution to the APMproblem, which is quite different
from what cyber-physical security is all about. Due to its mission, prognostics hap-
pens at time scales much slower than what is needed for cyber-physical security. Fast
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response at the sampling rate of a real-time controller, as needed in cyber-physical
security and resilience, is simply out of scope for prognostics. As a result, prognos-
tics often uses steady-state or quasi-steady-state models. Cyber-physical security, on
the other hand, often requires dynamic models of higher fidelity. In summary, prog-
nostics is often a tool for gaining more financial benefit from an existing asset that
would operate otherwise, anyway. However, cyber-physical security and resilience
is about maintaining system operability at the first place, and therefore must enable
the system to withstand and respond to existential threats.

2.4 Attack Detection, Isolation, and Identification

In this section, we provide a survey of some of the main and latest results on cyber-
attack detection, isolation, and identification for cyber-physical systems.

AgenericCPS architecture by considering the applications related to secure indus-
trial control system (ICS) to explain the cyber resilience concepts is illustrated in
Fig. 2.2, which is from the US DHS ICS-CERT recommended practice for defense-
in-depth strategies (Dakhnovich et al. 2019; Homeland Security 2014), and based on
the Purdue five-level model (Dakhnovich et al. 2019). An ICS is a set of electronic
devices tomonitor, control, and operate the behavior of interconnected systems. ICSs
receive data from remote sensors measuring process variables, compare those values
with desired values, and take necessary actions to drive (through actuators) or control
the system to function at the required level of services (Galloway and Hancke 2013).
Industrial networks are composed of specialized components and applications, such
as programmable logic controllers (PLCs), SCADA systems, and DCS. There are
other components of ICS such as remote terminal unit (RTU), intelligent electronic
devices (IED), and phasor measurement units (PMU). Those devices communicate
with the human–machine interface (HMI) located in the control network. With the
rise of 5G and industrial IoT, the ICS architecture is becoming even more connected
with lower level edge devices increasingly connected to each other and to the cloud,
hence, expanding the attack surface and demanding for better cybersecurity solu-
tions (Abosata et al. 2021). This increased connectivity and reduced latency have
also enabled design of distributed architectures and distributed edge computing, cre-
ating both cybersecurity opportunities and challenges.

Cyber-attack detection is in general concerned with detecting a malicious cyber-
incident in a system, while cyber-attack isolation is concerned with pinpointing
specifics part(s) of the system that are under attack, and trying to trace back the
entry point(s), and the root cause of the cyber-attack. Localizing the initial point(s)
of cyber-incident is both critical and hard, in the sense that the attack may cause a
series of cascaded events or propagate through the system, especially in feedback
control systems. For cyber-physical systems, attack detection and isolation at the
physical process level is based on monitoring the process variables such as sensor
measurements and actuator commands in a control system. Several recent surveys
on attack detection and isolation are available, covering the space from different
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Fig. 2.2 Secure ICS architecture. Reproduced from (Dakhnovich et al. 2019), originally published
under a CC BY 3.0 license, doi:10.1088/1757-899X/497/1/012006

https://iopscience.iop.org/article/10.1088/1757-899X/497/1/012006
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perspectives and for different application domains including for general CPS (Ding
et al. 2018; Giraldo et al. 2018; Humayed et al. 2017; Li et al. 2020; Tan et al.
2020), ICS (Zhang et al. 2021d), smart grid (Musleh et al. 2019; Peng et al. 2019),
autonomous vehicles (Chowdhury et al. 2020; Grigorescu et al. 2020; Loukas et al.
2019) and energy systems (Orumwense and Abo-Al-Ez 2019).

Attack identification is concerned with providing additional insights about the
nature of the attack, identifying the type of the attack, impact analysis and forensics
(Long et al. 2005; Pasqualetti et al. 2013; Xuan and Naghnaeian 2021). Another
important aspect of attack identification is to separate anomalies from novelties
(e.g., environmental or operational changes) which can have process-level impacts,
and hence, may be detected by attack detectors, and to distinguish cyber-attacks
from naturally occurring faults or failures (Anwar et al. 2015; Pan et al. 2015).
Attack detection, isolation, and identification (ADII) has similarities with FDII, but
as mentioned before, also has major differences, especially for detecting and locating
stealthy and coordinated attacks. Similar to other anomaly detection paradigms,ADII
algorithms face fundamental design trade-offs among performance and robustness
requirements such as false positive rate, false negative rate, and speed of detection
(Ding et al. 2018; Li et al. 2020; Zhang et al. 2021d). Many of ADII algorithms are
passive in the sense that they receive time-series data from sensors, actuators, and
controller, without altering the system. These methods may not be effective against
replay attacks. In a replay attack, themalware first records healthy system data during
the normal operation, then injects malicious signals into sensors and/or actuators,
while masking the real-time data to be sent to the HMI and replaying the prerecorded
healthy data instead. Detection of replay attacks often requires active methods. To
address this, dynamic physical watermarking methods are proposed (Porter et al.
2020; Satchidanandan and Kumar 2016, 2019). In these methods, carefully designed
watermark signals are injected into the system on top of the control commands. The
presence of the expected watermark fingerprints in the outputs, determines whether
the system is uncompromised. These additional injections, however, may affect the
control performance or reduce the stability margins. So, they need to be designed
and implemented in a safe manner, through a trade-off optimization between attack
detectability and control performance (Khazraei et al. 2017b, a).

The ADII algorithms may work stand-alone for monitoring and alarm generation,
or may work in conjunction with an automatic attack mitigation and neutralization
algorithm (Li et al. 2020; Mestha et al. 2017), or as part of a cyber-situational aware-
ness system (Abbaszadeh et al. 2018; Chang et al. 2017; Pöyhönen et al. 2021.
The ADII techniques can be categorized into two main categories: (i) model-based
approaches and (ii) data-driven approaches. Next, we will provide an overview of
some of the latest results in each category.
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2.4.1 Model-Based ADII

Model-Based ADII utilizes a systemmodel in the detection, isolation, and identifica-
tionprocedures. Themodel canbe a simple encapsulationof domainknowledgeof the
system operation such as in traditional rule-based or expert systems, or can be a more
formal dynamic system model, such as a state space model, developed using first-
principles or system identification. Once such amodel is available, an observer-based
method is often used for attack detection and isolation. The most popular of such
observers is the Kalman filter, providing an innovation signal between the measured
outputs and the predicted outputs by the model. Detection and isolation procedures
are mainly based on two threshold mechanisms over the innovation signal: (i) the
chi-square distribution and (ii) the Cumulative Sum (CUSUM) (Ahmed et al. 2017;
Housh and Ohar 2018; Sridhar and Govindarasu 2014). The CUSUM approach has
the advantage to make a more robust decision based on a weighted sequential sum of
the innovation signal as opposed to its instantaneous value, potentially reducing the
false positives. However, it may induce a time delay in detecting cyber-events. The
attack isolation is done mainly using two techniques, (i) a bank of observers (such as
Kalman filters) running in parallel, each designed to be sensitive to a specific element
of the innovation vector (Taheri et al. 2020; Ye et al. 2020; Zhang and Zhu 2020) and
(ii) a hierarchical approach in which a hierarchy of detectors is designed to zoom in
from the top system level into specific subsystems, components, or sensors/actuaros
in a top-down manner (Karimipour and Leung 2019; Li et al. 2021a). Model-based
attack identification mainly relies upon modeling different attack types and scenar-
ios, and exploiting those attack models along with the system model (Azzam et al.
2021; Li et al. 2020; Park et al. 2019; Teixeira et al. 2015).

2.4.2 Data-Driven ADII

Many attacks detection algorithms available in the literature root back to fault detec-
tion techniques. Indeed, from the physical process perspective, cyber-attacks can
be viewed as intelligent disturbances, which can affect the system in a malicious
manner. To solve complex architectures of cyber-physical attacks, it is necessary to
go beyond the traditional methods resulting from fault diagnosis. Novel and intelli-
gent techniques are needed to deal with malicious attacks that appear nonlinearly in
mathematical models. To this end, to avoid the need of conservative mathematical
conditions, merging learning-based algorithms with standard control theory based
techniques is gaining a lot of interest as a promising hybrid approach and a compelling
solution.

In recent years,machine learning and deep learningmethods have become popular
inADII Zhang et al. (2021c), Narayanan et al. (2021). Recent results for ICS andCPS
include classification using statistical machine learning (Ameli et al. 2018; Lee et al.
2014), deep neural networks (Jahromi et al. 2021, 2019; Lee et al. 2014; Yan et al.
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2018; Zhu et al. 2018), and pattern recognition (Brentan et al. 2017). Distributed
machine learning methods are also proposed for large-scale systems including in
IoT and edge computing (Guan and Ge 2017; Kozik et al. 2018). A challenge for
adoptingAI/ML techniques for CPSADII is how to obtain the right training data sets,
specially for supervised learning methods, and in particular for two-class learning, in
which both normal and abnormal samples are required. To overcome this challenge,
some researchers have proposed unsupervised learning methods, where no labeled
data are required (Jahromi et al. 2019; Tiwari et al. 2021). Unsupervised machine
learning methods have also been used in the past in anomaly and intrusion detection
in communication and computer networks. However, these approaches need to go
through an initial learning phase, often in-field, during which they tend to have a
large false alarm rate. Their final accuracy is also often lower than those achieved
by supervised learning methods. The alternative approach is to generate synthetic
training data using a simulation platform of the system. To this end, digital twins have
become a powerful tools to conduct controlled simulations, and to generate labeled
data samples of both normal and abnormal classes, both for training and validation
of the machine learning models (Abbaszadeh et al. 2018; Mestha et al. 2017; Yan
et al. 2018). Digital twin simulations can be used together with available historical
field data to address class imbalance (caused due to scarcity of abnormal data in
the field), and also to generate data for complete coverage of normal operational
and environmental conditions. Furthermore, intelligently designed experiments for
digital twin simulations can reduce the need for large training datasets (Abbaszadeh
et al. 2018; Yan et al. 2019).

Machine learning algorithms used for ADII are themselves susceptible to cyber-
attacks, and hence, need to be secured via hardware and software protections. Robust
and adversarial machine learning are active fields of research addressing the secu-
rity and resilience of machine learning algorithms. A survey on secure and resilient
machine learning for CPS security is given in (Olowononi et al. 2020). Besides, in
order to be adopted in safety-critical and mission-critical systems, machine learning
algorithms must exhibit trustworthiness, which includes certain level of explain-
ability in a human-readable fashion. The explainability can, for example, include
providing physical insights, outputting decision factors and their contributions to the
overall decision, and giving decision confidence scores based on conformal predic-
tion methods.

2.5 Attack Resilience

In this section, we provide an introduction to the notion of resilience, and a survey of
some of the main results. Then in Sects. 2.6 and 2.7, we will cover some of the latest
results on two major approaches towards achieving resilience for cyber-physical
systems, namely, resilient estimation and resilient control.

Real-world attacks on control systems have in fact occurred in the past decade
and have in some cases caused significant damage to the targeted physical processes.
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One of the most popular examples is the attack onMaroochy Shire Council’s sewage
control system in Queensland, Australia, that happened in January 2000 Cardenas
et al. (2008), Slay and Miller (2007). In this incident, an attacker managed to hack
into some controllers that activate and deactivate valves causing flooding of the
grounds of a hotel, a park, and a river with a million liters of sewage (Cardenas et al.
2008). Another well-known example of an attack launched on physical systems is
the Stuxnet virus that targeted Siemens’ supervisory control on an Iranian uranium
enrichment plant targeting a commercially available PLC. Operating under a narrow
set of conditions, the attackers were able to ensure the attack reached its intended
recipient with limited fallout. They inserted a malware which would lie dormant in
the system and go undetected (Falliere et al. 2018). This shows that even air-gapped
systems are susceptible to cyber-espionage and -attack.

Given that the end-goal of CPS is a reliable and safe functioning at all times, cyber-
physical resilience of CPS is a necessary requirement. It corresponds to the ability to
withstand high-impact disturbances, which may occur due to either physical outages
or cyber-causes, and to continue to deliver acceptable performance even under attack.

The term resilience is being discussed increasingly in the context of CPS lately,
ranging from transportation (Ip and Wang 2011), power (Albasrawi et al. 2014; Zhu
and Basar 2011), control systems (Rieger et al. 2009, 2013; Zhu and Basar 2011) as
well as other types of systems such as ecological (Holling 1996, 1973) and biolog-
ical (Kitano 2004). Resilience is often discussed concomitantly with other system-
oriented notions such as robustness, reliability, and stability (Levin and Lubchenco
2008) and quite often used interchangeably with the term robustness. We argue how-
ever that these two terms are distinct. The reason is that resilience and robustness
characterize fundamentally different system properties. The term robustness applies
in the context of small bounded disturbances while resilience, in the context of
extreme high-impact disturbances. Resilience of a CPS with respect to a class of
extreme and high-impact disturbances, is the property that characterizes its ability
to withstand and recover from this particular class of disturbances by being allowed
to temporarily transit to a state where its performance is significantly degraded and
returning within acceptable time to a state where certain minimal but critical perfor-
mance criteria are met (Baros et al. 2017).

The National Academy of Sciences (NAS) (Cutter et al. 2013) defined resilience
as the ability to prepare and plan for, absorb, recover from, ormore successfully adapt
to actual or potential adverse events. The authors in Linkov et al. (2013) used the
resilience definition provided by NAS to define a set of resilience metrics spread over
four operational domains: physical, information, cognitive, and social. In another
work (Linkov et al. 2013), the authors applied the previous resilience framework
by Linkov et al. (2013) to develop and organize useful resilience metrics for cyber-
systems. In Bruneau et al. (2003), the authors have proposed a conceptual framework
initially to define seismic resilience, and later in Tierney and Bruneau (2007) the
R4 framework for disaster resilience is introduced. It comprises robustness (ability
of systems to function under degraded performance), redundancy (identification of
substitute elements that satisfy functional requirements in event of significant per-
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formance degradation), resourcefulness (initiate solutions by identifying resources
based on prioritization of problems), and rapidity (ability to restore functionality in
timely fashion).

The design of control and estimation algorithms that are resilient against faults
and failures is certainly not a new problem. In fault-detection and identificationMas-
soumnia et al. (1989), Blanke et al. (2006), the objective is to detect if one or more of
the components of a system has failed. Traditionally, this is done by comparing the
measurements of the sensors with an analytical model of the system and by forming
the so-called residual signal. This residual signal is then analyzed (e.g., using signal
processing techniques) in order to determine if a fault has occurred, however, in such
algorithms there is in general one residual signal per failure mode and in some prob-
lems formulations, the number of failure modes can be very large and one cannot
afford to generate and analyze a residual signal for each possible failure mode (Fawzi
et al., 2014).

In another area, namely robust control (Zhou andDoyle 1998), one seeks to design
control methods that are robust against disturbances in the model. However, these
disturbances aremainly treated as natural disturbances to the system and are assumed
to be bounded. This does not apply in the context of security since the disturbances
will typically be adversarial and therefore cannot be assumed bounded which is also
the case in stochastic control and estimation, where the disturbances are assumed to
follow a certain probabilistic model, which we cannot adopt for CPSs.

Resilient or secure state estimation and control constitute effective and promis-
ing means for addressing various security-related issues of CPSs. The main objec-
tive is to keep an acceptable performance level of the CPS by resorting to differ-
ent security countermeasures, including attack attenuation and mitigation, isolation,
detection, and compensation. When an attack occurs, the developed secure estima-
tion/control mechanisms possess certain capabilities to mitigate or counteract attack
effects, or prevent CPSs from severe performance degradation and loss, or allow
the system designers to make corrections and recover the system from any unsafe
operation (Ding et al. 2020a).

Recently, there are several survey papers of security-oriented CPSs. For example,
the recent progress of secure communication and control of smart grids under mali-
cious cyber-attacks is reviewed in Peng et al. (2019), where different attack models
and effects as well as security strategies are reviewed from IT protection and secure
control-theoretic perspectives. A summary of detection methods of false data injec-
tion (FDI) attacks on smart grids is made in Musleh et al. (2019). The existing FDI
attack detection algorithms in smart grids are classified into model-based types and
data-driven types. From a systems and control perspective, the CPS security issue
is evaluated in Dibaji et al. (2019), where some latest systems and control methods
are reviewed and classified into prevention, resilience, detection, and isolation. An
overview of security control and attack detection for industrial CPSs is conducted
inDing et al. (2018). An intensive discussion of adversarial attacks and their defenses
is provided in Li et al. (2020) for sensor-based CPSs in the field of computer vision.
Emerging techniques improving the safety and security of CPSs and IoT systems are
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surveyed in Wolf and Serpanos (2017) from two aspects: (1) design time techniques
verifying properties of subsystems and (2) runtime mechanisms helpful against both
failures and attacks.

2.6 Resilient Estimation

This section is devoted to a general state of the art on available resilient and secure
estimation algorithms in cyber-physical systems. Before recalling existing estimation
methods, we give a general introduction to emphasize the importance of resilient
and secure estimation, and explain what the software sensors have to face to ensure
resilience and security of the estimation. State estimation plays an important role in
better understanding the real-time dynamics of CPSs and executing some specific
control tasks. These states can be reconstructed based on only measured yet possibly
corrupted information from sensors. Different from traditional control systems, the
tight integration of physical and cyber-components, and the occurrence of various
malicious attacks pose nontrivial challenges to the performance analysis and the
design of state estimators or filters. Vulnerability of cyber-physical systems may
come from two kind of malicious attacks, namely cyber-attacks and physical attacks:

• Cyber-attacks:Cyber-attacks occur on the cyber-variables of the system.Theymay
be due to a software virus or to a corruption in communication channels. The well-
known Stuxnet malware is one of the relevant examples of cyber-attacks Mishra
et al. (2016), Ferrari and Teixeira (2021, Chap.7). The attackers exploited vulner-
abilities of the system such as those running over SCADA devices (Fig. 2.2) to for
example, inject false data in the sensor measurements gathered by the SCADA
system.

• Physical attacks: Physical attacks (also called kinetic attacks) are intentional
offensive actions which aim to get unauthorised access to physical assets such as
infrastructure, hardware, or interconnection. Sensors are among the devices most
exposed to this type of attack. This will have a direct and significant impact on any
estimation algorithm using measurements issued from such sensors because, in
addition to susceptible manipulations on the cyber-layer, sensor readings rely on
physical layer properties that can be manipulated (Taormina et al. 2016). Exam-
ples of physical attacks include manipulating gyroscopes used to stabilize drones
during formation flights, spoofing LiDAR sensors used in autonomous driving,
manually deactivating the pump to disconnect the network from the reservoir in
modern water distribution systems, and spoofing magnetic sensors used in several
applications, like anti-lock braking systems in automotive.

In the following, we classify some existing secure state estimation approaches
according to performance indicators and defense strategies against cyber-attacks.
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2.6.1 State of the Art on Resilient and Secure Estimation:
A Glimpse on Existing Methods

This section is dedicated to a short but complete overview of existing secure and
resilient estimation methods. The overview is shared into two categories (Ding et al.
2020a), namely statistical methods and Lyapunov stability-based techniques.

2.6.1.1 Resilient Estimation Based on Statistical Methods

The statistical-based state estimation aims to select appropriate gain parameters
to minimize estimation error variance, hence, the structured information of cyber-
attacks, such as statistical information or boundedness information, is assumed to be
known. Following this idea, the main focus is then placed on disclosing or offsetting
the undesirable impact from compromised data generated bymalicious attacks (Ding
et al. 2020a. In Ma et al. (2017), an algorithm of variance-constrained filtering over
sensor networks is proposed for discrete time-varying stochastic systems and by
resorting to the recursive linear matrix inequality approach, a sufficient condition is
established for the existence of the desired filter satisfying the pre-specified require-
ments on the estimation error variance. In the framework of Kalman filtering, a
distributed filter with double gains is designed in Ding et al. (2017) which can be
regarded as two weight matrices reflecting the different confidence levels of the
information from itself and from neighboring nodes.

Estimators or filters can be integrated in some detection mechanisms to remove
the compromised data generated bymalicious attacks asmuch as possible. Benefiting
from their favorable statistical characteristics, χ2 detector and its variants are widely
adopted. In light of such a detection rule, a critical attack probability is analyzed
in Yang et al. (2019) where it is shown that when the considered probability is bigger
than some critical value, the steady-state solution of estimation error covariance
could exceed a preset value.

It is worth noting that the estimation performance can be properly warranted
if the corrupted sensor is accurately detected and effectively isolated. For example,
inMishra et al. (2016) they have estimated the state of a noisy linear dynamical system
when an unknown subset of sensors is arbitrarily corrupted by an adversary. They
have proposed a secure state estimation algorithm, and derived optimal bounds on
the achievable state estimation error given an upper bound on the number of attacked
sensors. The proposed state estimator involves Kalman filters operating over subsets
of sensors to search for a sensor subset which is reliable for state estimation. When
the attack subset is properly identified, the performance of the developed algorithm
does not exceed the one by the worst-case Kalman estimation. The optimal secure
estimation is pursued in Shoukry et al. (2017) for attacks without restrictions on
their statistical properties, boundedness, and time evolution in comparison with the
sparse attacks. They have presented a novel algorithm that uses a satisfiabilitymodulo
theory approach to harness the complexity of secure state estimation.
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2.6.1.2 Lyapunov Theory-Based Methods

Inspired by its mature approaches, an analysis of vulnerabilities of cyber-physical
systems in the face of unforeseen failures and external attacks has received increas-
ing attention in the recent years and some preliminary results have been published in
literature, see, for instance, Ao et al. (2016), Pasqualetti et al. (2013). In Pasqualetti
et al. (2013), the authors have characterized fundamentalmonitoring limitations from
system-theoretic and graph-theoretic perspectives and a Luenberger-type detection
filter is designed. Similarly, detectability of attacks is explored in Ao et al. (2016) in
which detectability of attacks based on linear system theory is explored and some suf-
ficient conditions of detecting state attacks and sensor attacks are established. Then,
two adaptive sliding mode observers with online parameter estimation are designed
to estimate state attacks and sensor attacks with uniformly bounded errors. A co-
estimation of system states and attacks inspiration from fault-tolerant state recon-
struction, as an alternative scheme, is investigated in Amin et al. (2012), Shoukry
and Tabuada (2015). For instance, a scheme based on an unknown input observer
is developed in Amin et al. (2012) to estimate the states of SCADA systems sub-
ject to stealthy deception attacks. In Fawzi et al. (2014), the secure state estimation
problem is transformed into the solvability of an l0 optimization issue and an �1/�r
optimization issue in Liu et al. (2016), or the performance analysis problem of �2,
H2, and H∞ systems in Nakahira and Mo (2018) by virtue of the classical robust
control, and fault detection and isolation methods.

Employing some artificial saturation constraint on state estimators is regarded
as a promising security measure for constraining attacker capability and mitigating
the impulsive outlier-like effects of cyber-attacks by attenuating the effects of these
attack-incurred abnormal measurements using estimators with some saturated output
rejection. For example, a saturated innovation update scheme is adopted in Chen et al.
(2018) for distributed state estimators with an adaptive threshold of the saturation
level, and in Sun et al. (2021) for stochastic nonlinear systems with a sector bounded
condition on the saturation constraint. In Xie and Yang (2018), a saturated innovation
schemewith an adaptive gain coefficient and amode switchmechanism is developed,
where themismatched unknown inputs are suppressed by resorting to thewell-known
L2-gain attenuation property. Dynamic saturations with an adaptive rule are further
developed in Alessandri and Zaccarian (2018); Casadei et al. (2019). It is noted
that dynamic saturations with adaptive saturation levels enjoy more flexible attack
attenuation capability and less estimation performance degradation.

2.7 Resilient Control

Besides the resilient state estimation above, CPSs also need to mitigate the threat
from secret attackers via various control strategies. Compared with other control
applications, security control techniques for CPSs are yet in their infancy, and few
results can be found in literature Ding et al. (2018). There are two main lines of
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research on secure control for CPSs under cyber-attacks, which are categorized as
attack-tolerant control and attack-compensated control. The first category focuses on
the design of a suitable control policy/law to tolerate unpredictable anomalies caused
by attacks (Zhao et al. 2019). In Zhao et al. (2019), a novel observer-based PID con-
troller is proposed and sufficient conditions are derived underwhich the exponentially
mean square input-to-state stability is guaranteed and the desired security level is
then achieved. An emphasis is then placed on examining the prescribed tolerance
capability or pursuing the maximal tolerance capability for the controlled system,
allowing further intervention actions to be made from the system designers. The sec-
ond category deals with the design of preferable compensation schemes to prevent
the system performance and stability from severe deterioration or even becoming
unstable. For this purpose, it is essential to implement appropriate attack detection
mechanisms to identify and locate the occurrence of cyber-attacks. With respect to
networked control systems subject to various cyber-attacks, some preliminary and
interesting results can be found in Dolk et al. (2016); Long et al. (2005); Zhang
et al. (2016) for DoS attacks, in Amin et al. (2012), Ding et al. (2016a), Dolk et al.
(2016), Ding et al. (2016b), Pang and Liu (2011), Pang et al. (2016) for deception
attacks, and in Lee et al. (2014); Zhu and Martinez (2013) for replay attacks. The
latest development of secure control is evaluated from three aspects: (1) centralized
secure control; (2) distributed secure control; and (3) resource-aware secure control.

2.7.1 Centralized Secure Control

When CPSs are subjected to DoS attacks, they operate in an open-loop manner as
the desired controller is not capable to receive any sensor data for feedback. To
ensure the secure control for CPSs under such DoS attacks, switched system theory
is deployed, allowing the system to operate in closed-loop mode during attack-free
case and in open-loop mode otherwise. It is noteworthy, however, that the resulting
system performance depends on the running duty cycle, which is commonly known
as dwell time, between the two cases. Hence, the primary goal of secure control is
to find the tolerant duration and/or attack frequency such that the desired system
performance remains achievable. For example, a robustness measure against DoS
attacks, which describes the tolerable maximum attack frequency and duration is
investigated in De Persis and Tesi (2015), where an explicit characterization of the
frequency and duration of DoS attacks under which closed-loop stability can be
preserved is given. The obtained characterization is flexible enough so as to allow
the designer to choose from several implementation options that can be used for
trading-off performance versus communication resources. Such a robustnessmeasure
is further extended in Feng and Tesi (2017) by resorting to an impulsive controller
based on a dynamic observer. A cyclic dwell-time switching strategy is proposed
in Zhu and Zheng (2019) where an observer-based output feedback control problem
for a class of cyber-physical systems with periodic (DoS) attacks is investigated; the
attacks coexist both in themeasurement and control channels in the network scenario.
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By means of a cyclic piecewise linear Lyapunov function approach, the exponential
stability and �2-gain analysis, and observer-based controller design are carried out
for the augmented discrete-time cyclic switched system. Then, the desired observer
and controller gains in piecewise linear form are determined simultaneously so as to
ensure that the resulting closed-loop system is exponentially stable with a prescribed
H∞ performance index. Furthermore, a switching signal taking values in a finite set
is employed to model the number of consecutive DoS attacks in Pessim and Lacerda
(2020), where the corresponding stability criterion is derived by making use of a
switching parameter-dependent Lyapunov function.

Adaptive detection of cyber-attacks offers an effective means to enhance the sys-
tem’s adaptation to malicious attacks. In An and Yang (2018), an adaptive switching
logic is exploited to provide an online location of the real systemmode via observing
the variation of the traditional quadratic cost in the framework of linear quadratic
control. A Kalman-based attack detector with an observation window of a given
length is designed in Du et al. (2018) to remove the occurred deception attacks.
When the noise level is below a threshold derived, the maximum allowable duration
of deception attacks is obtained to maintain the exponential stability of the system.
A common feature of the above detectors is that the duration of deception attacks is
captured to describe their negative effects. Then, the maximum allowable duration
threshold is examined to maintain the desired system stability.

Complete security of CPSs is generally difficult to be maintained from a control-
oriented perspective. As a result, an alternative indicator, known as security in proba-
bility, is exploited (Ding et al. 2016c).Adefinition of security in probability is adopted
to account for the transient dynamics of controlled systems. Then, a dynamic output
feedback controller is designed such that the prescribed security in probability is
guaranteed while obtaining an upper bound of the quadratic cost criterion and an
original easy-solution scheme of desired controller gain is derived via the matrix
inverse lemma.

2.7.2 Distributed Secure Control

In distributed CPSs, the subsystems are connected through communication links,
which constitute a communication topology modeled by the Laplacian matrix (Chen
and Shi 2017; Liu 2019). According to attack locations, the cyber-attacks in dis-
tributed CPSs are classified into two types: (1) intrasystem attacks and (2) inter-
system attacks. As such, a critical concern is to design a suitable distributed secure
controller to render the resulting closed-loop system survivable or recoverable from
cyber-attacks by embedding attack model information (i.e., statistical or structured
information). For example, inHe et al. (2020) a distributed impulsive controller using
a pinning strategy is redesigned, which ensures that mean square bounded synchro-
nization is achieved in the presence of randomly occurring deception attacks, and
in the presence of distributed DoS attacks, a control protocol guaranteeing scala-
bility and robustness is proposed in Xu et al. (2019) for multi-agent systems under
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event-triggered communication. On the other hand, the classical fault detection and
estimation approaches provide a foundation to deal with the secure control issue of
CPSs with an understanding of similarities of both mathematical descriptions and
practical influences between faults and certain cyber-attacks. As in Modares et al.
(2019); Moghadam and Modares (2018), a distributed state predictor is employed to
estimate the existing attacks, and then a resilient controller is designed to guarantee
robust performance and to adaptively compensate for the influence of attacks.

2.7.3 Resource-Aware Secure Control

In, the context of communication scheduling, it is apparent that cyber-attacks can
result in a tremendous data sparsity issue because less sensor/control data is adopted
for achieving feedback control. This further leads to some inherent and nontrivial
challenges for performance analysis and secure control design of CPSs that are
beyond the capacity of the existing results on stability analysis and controller design
of event-based control systems without cyber-attacks.

The time series of data transmissions or updates under communication schedules
become more complex due to the interference of malicious attacks, which poses a
significant challenge for continuous-time physical systems. Under the assumption
that the execution period and a uniform lower bound of sleeping periods are a priori
known, a sufficient condition of exponential stability is derived in Hu et al. (2018)
by using a piecewise Lyapunov functional along with a reconstructed state error-
dependent switched system. An event-triggered scheduling and control co-design
algorithm is developed in Peng et al. (2016) to obtain both the triggering parameter
and the control gain. This event-triggered scheme is improved by integrating mea-
surement variations with a minimal trigger sleeping interval in order to avoid the
well-known Zeno behavior (Hu et al. 2019; Lu and Yang 2019). Then, under a sparse
observability condition, an observer in a delta domain is designed in Gao et al. (2020)
to estimate the system state under sensor and actuator attacks, and a self-triggered
controller is designed via iterative analysis.

In the context of distributed secure control, there are considerable results reported
for CPSs under event-triggered communication scheduling. In Ding et al. (2018), an
observer-based event-triggering consensus control problem is investigated for a class
of discrete-time multi-agent systems with lossy sensors and cyber-attacks. A novel
distributed observer is proposed to estimate the relative full states and the estimated
states are then used in the feedback protocol in order to achieve the overall consensus.
An event-triggeredmechanismwith state-independent threshold is adopted to update
the control input signals so as to reduce unnecessary data communications. In Feng
and Hu (2019), two elaborate interval classifications are constructed by introducing
the upper bound of adjacent event intervals under DoS attacks, their duration and
their launching time, and then the switched system theory is employed to derive the
consensus condition. It should be noted that the presence of cyber-attacks makes
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the exclusion of Zeno behavior from the designed distributed event-triggered secure
controllers generally difficult. This is because the interval of two consecutive data
transmissions may not be that of two adjacent events invoked.

To mention a few, an event-triggered controller is designed in Dolk et al. (2016)
to tolerate DoS attacks characterized by given frequency and duration properties. An
optimal schedule of jamming attacks is proposed in Zhang et al. (2016) to maximize
the linear quadratic Gaussian cost under energy constraints. An event-triggering
consensus resilient-control with a state-independent threshold is discussed in Ding
et al. (2016a) for discrete-time multi-agent systems with both lossy sensors and
cyber-attacks.
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S. Sahoo, S. Mishra, J.C.-H. Peng, T. Dragičević, A stealth cyber-attack detection strategy for dc
microgrids. IEEE Trans. Power Electron. 34(8), 8162–8174 (2018)

B. Satchidanandan, P.R. Kumar, Dynamic watermarking: active defense of networked cyber-
physical systems. Proc. IEEE 105(2), 219–240 (2016)

B. Satchidanandan, P. Kumar, On the design of security-guaranteeing dynamic watermarks. IEEE
Control Syst. Lett. 4(2), 307–312 (2019)

P. Semwal, A multi-stage machine learning model for security analysis in industrial control system,
in AI-Enabled Threat Detection and Security Analysis for Industrial IoT (Springer, 2021), pp.
213–236

J. Shin, Y. Baek, Y. Eun, S.H. Son, Intelligent sensor attack detection and identification for auto-
motive cyber-physical systems. IEEE Symp. Ser. Comput. Intell. (SSCI) 2017, 1–8 (2017)

Y. Shoukry, P. Tabuada, Event-triggered state observers for sparse sensor noise/attacks. IEEE Trans.
Autom. Control 61(8), 2079–2091 (2015)

Y. Shoukry, P. Nuzzo, A. Puggelli, A.L. Sangiovanni-Vincentelli, S.A. Seshia, P. Tabuada, Secure
state estimation for cyber-physical systems under sensor attacks: a satisfiability modulo theory
approach. IEEE Trans. Autom. Control 62(10), 4917–4932 (2017)

J. Slay, M. Miller, Lessons learned from the maroochy water breach, in International Conference
on Critical Infrastructure Protection (Springer, 2007), pp. 73–82

S. Sridhar, M. Govindarasu, Model-based attack detection and mitigation for automatic generation
control. IEEE Trans. Smart Grid 5(2), 580–591 (2014)

Q. Su, Z. Fan, Y. Long, J. Li, Attack detection and secure state estimation for cyber-physical systems
with finite-frequency observers. J. Franklin Inst. 357(17), 12 724–12 741 (2020)

Y. Sun, D. Ding, H. Dong, H. Liu, Event-based resilient filtering for stochastic nonlinear systems
via innovation constraints. Inf. Sci. 546, 512–525 (2021)

M. Taheri, K. Khorasani, I. Shames, N. Meskin, Cyber attack and machine induced fault detection
and isolation methodologies for cyber-physical systems (2020), arXiv:2009.06196

S. Tan, J.M. Guerrero, P. Xie, R. Han, J.C. Vasquez, Brief survey on attack detection methods for
cyber-physical systems. IEEE Syst. J. 14(4), 5329–5339 (2020)

R. Taormina, S. Galelli, N.O. Tippenhauer, A. Ostfeld, E. Salomons, Assessing the effect of cyber-
physical attacks on water distribution systems. World Environ. Water Res. Cong. 2016, 436–442
(2016)

A. Teixeira, F. Kupzog, H. Sandberg, K.H. Johansson, Cyber-secure and resilient architectures for
industrial control systems, in Smart Grid Security (Elsevier, 2015), pp. 149–183

http://arxiv.org/abs/2107.14159
http://arxiv.org/abs/2009.06196


34 M. Abbaszadeh and A. Zemouche

J. Tian, B. Wang, T. Li, F. Shang, K. Cao, R. Guo, Total: Optimal protection strategy against perfect
and imperfect false data injection attacks on power grid cyber-physical systems. IEEE Int. Things
J. 8(2), 1001–1015 (2020)

K. Tierney, M. Bruneau, Conceptualizing and measuring resilience: a key to disaster loss reduction.
TR News 250(1), 14–17 (2007)

D.D. Tiwari, S. Naskar, A.S. Sai, V.R. Palleti, Attack detection using unsupervised learning algo-
rithms in cyber-physical systems. Comput. Aided Chem. Eng. Elsevier 50, 1259–1264 (2021)

L. Tsiami, C. Makropoulos, Cyber-physical attack detection in water distribution systems with
temporal graph convolutional neural networks. Water 13(9), 1247 (2021)

C.M.P. Valencia, R.E. Alzate, D.M. Castro, A.F. Bayona, D.R. García, Detection and isolation
of dos and integrity attacks in cyber-physical microgrid system, in 2019 IEEE 4th Colombian
Conference on Automatic Control (CCAC) (IEEE, 2019), pp. 1–6

X. Wang, S. Li, M. Liu, Y. Wang, A.K. Roy-Chowdhury, Multi-expert adversarial attack detection
in person re-identification using context inconsistency (2021a), arXiv:2108.09891

H. Wang, X. Wen, S. Huang, B. Zhou, Q. Wu, N. Liu, Generalized attack separation scheme in
cyber physical smart grid based on robust interval state estimation. Int. J. Electr. Power Energy
Syst. 129 (2021b)

H. Wang, X. Wen, Y. Xu, B. Zhou, J.-C. Peng, W. Liu, Operating state reconstruction in cyber
physical smart grid for automatic attack filtering. IEEE Trans. Ind. Inf. (2020)

M.Wolf, D. Serpanos, Safety and security in cyber-physical systems and internet-of-things systems.
Proc. IEEE 106(1), 9–20 (2017)

C. Wu, W. Yao, W. Pan, G. Sun, J. Liu, L. Wu, Secure control for cyber-physical systems under
malicious attacks. IEEE Trans. Control Netw. Syst. (2021)

C.-H. Xie, G.-H. Yang, Secure estimation for cyber-physical systems with adversarial attacks and
unknown inputs: an l 2-gain method. Int. J. Robust Nonlinear Control 28(6), 2131–2143 (2018)

J. Xiong, J.Wu,Construction of approximate reasoningmodel for dynamicCPS network and system
parameter identification. Comput. Commun. 154, 180–187 (2020)

W. Xu, G. Hu, D.W. Ho, Z. Feng, Distributed secure cooperative control under denial-of-service
attacks from multiple adversaries. IEEE Trans. Cybern. 50(8), 3458–3467 (2019)

Y. Xuan, M. Naghnaeian, Detection and identification of cps attacks with application in vehicle
platooning: a generalized luenberger approach, in American Control Conference (ACC) (IEEE,
2021), pp. 4013–4020

W. Yan, L. Mestha, J. John, D. Holzhauer, M. Abbaszadeh, M.McKinley, Cyberattack detection for
cyber physical systems security–a preliminary study, in Proceedings of the Annual Conference
of the PHM Society, vol. 10 (2018)

W. Yan, L.K. Mestha, M. Abbaszadeh, Attack detection for securing cyber physical systems. IEEE
Int. Things J. 6(5), 8471–8481 (2019)

W. Yang, Y. Zhang, G. Chen, C. Yang, L. Shi, Distributed filtering under false data injection attacks.
Automatica 102, 34–44 (2019)

L. Ye, F. Zhu, J. Zhang, Sensor attack detection and isolation based on sliding mode observer for
cyber-physical systems. Int. J. Adapt. Control Signal Process. 34(4), 469–483 (2020)

K. Zhang, C. Keliris, T. Parisini, M.M. Polycarpou, Identification of sensor replay attacks and
physical faults for cyber-physical systems. IEEE Control Syst. Lett. (2021a)

K. Zhang, C. Keliris, M.M. Polycarpou, T. Parisini, Discrimination between replay attacks and sen-
sor faults for cyber-physical systems via event-triggered communication. Eur. J. Control (2021b)

J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, Y. Xiang, Deep learning based attack detection for
cyber-physical system cybersecurity: a survey. IEEE/CAA J. Automatica Sinica (2021c)

D. Zhang, Q.-G. Wang, G. Feng, Y. Shi, A. V. Vasilakos, A survey on attack detection, estimation
and control of industrial cyber–physical systems. ISA Trans. (2021d)

T. Zhang, Y. Wang, X. Liang, Z. Zhuang, W. Xu, Cyber attacks in cyber-physical power systems:
a case study with gprs-based scada systems, in 29th Chinese control and decision conference
(CCDC) (IEEE, 2017), pp. 6847–6852

http://arxiv.org/abs/2108.09891


2 Introduction to Cyber-Physical Security and Resilience 35

X. Zhang, F. Zhu, Observer-based sensor attack diagnosis for cyber-physical systems via zonotope
theory. Asian J. Control (2020)

H. Zhang, Y. Shu, P. Cheng, J. Chen, Privacy and performance trade-off in cyber-physical systems.
IEEE Netw. 30(2), 62–66 (2016)

D. Zhao, Z. Wang, D.W. Ho, G. Wei, Observer-based PID security control for discrete time-delay
systems under cyber-attacks, in IEEE Transactions on Systems, Man, and Cybernetics: Systems
(2019)

K. Zhou, J. Doyle, Diagnosis and Fault-Tolerant Control (Prentice-Hall, 1998)
Q. Zhu, T. Basar, Robust and resilient control design for cyber-physical systems with an application
to power systems, in 50th IEEE Conference on Decision and Control (IEEE, 2011)

M. Zhu, K. Ye, C.-Z. Xu, Network anomaly detection and identification based on deep learning
methods, in International Conference on Cloud Computing (Springer, 2018), pp. 219–234

M. Zhu, S. Martinez, On the performance analysis of resilient networked control systems under
replay attacks. IEEE Trans. Autom. Control 59(3), 804–808 (2013)

Y. Zhu, W.X. Zheng, Observer-based control for cyber-physical systems with periodic dos attacks
via a cyclic switching strategy. IEEE Trans. Autom. Control 65(8), 3714–3721 (2019)



Chapter 3
Fundamental Stealthiness–Distortion
Trade-Offs in Cyber-Physical Systems

Song Fang and Quanyan Zhu

3.1 Introduction

Security issues such as the presence of malicious attacks could cause severe conse-
quences in cyber-physical systems, which are safety-critical in most cases since they
are interacting with the physical world. In the trend that cyber-physical systems are
becoming more and more prevalent nowadays, it is also increasingly critical to be
fully aware of such systems’ performance limits (Fang et al. 2017), e.g., in terms of
performance degradation, after taking the security issues into consideration. Accord-
ingly, in this chapter, we focus on analyzing the fundamental limits of resilience in
cyber-physical systems, including open-loop dynamical systems and (closed-loop)
feedback control systems. More specifically, we examine the fundamental trade-offs
between the systems’ performance degradation that can be brought about by a mali-
cious attack and the possibility of it being detected, of which the former is oftentimes
measured by the mean squared-error distortion, whereas the latter is fundamentally
determined by the Kullback–Leibler (KL) divergence.

The KL divergence was proposed in Kullback and Leibler (1951) (see also Kull-
back (1997)), and ever since it has been employed in various research areas, including,
e.g., information theory (Cover and Thomas 2006), signal processing (Kay 2020),
statistics (Pardo 2006), control and estimation theory (Lindquist and Picci 2015),
system identification (Stoorvogel and Van Schuppen 1996), and machine learning
(Goodfellow et al. 2016). Particularly, in statistical detection theory (Poor 2013), KL
divergence provides the optimal exponent in probability of error for binary hypothe-
ses testing problems as a result of the Chernoff–Stein lemma (Cover and Thomas
2006). Accordingly, in the context of determining whether an attack signal is present
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or not in security problems, the KL divergence has also been employed as a measure
of stealthiness for attacks (see detailed discussions in, e.g., Bai et al. (2017a, b)).

In the context of dynamical and control systemsecurity (see, e.g., Poovendran et al.
(2012), Johansson et al. (2014), Sandberg et al. (2015), Cheng et al. (2017), Giraldo
et al. (2018), Weerakkody et al. (2019), Dibaji et al. (2019), Chong et al. (2019) and
the references therein), particularly in dynamical and control systems under injection
attacks, fundamental stealthiness–distortion trade-offs (with the mean squared-error
as the distortion measure and the KL divergence as the stealthiness measure) have
been investigated for feedback control systems (see, e.g., Zhang and Venkitasubra-
maniam (2017), Bai et al. (2017b)) as well as state estimation systems (see, e.g., Bai
et al. (2017a), Kung et al. (2016), Guo et al. (2018)). Generally speaking, the problem
considered is: Given a constraint (upper bound) on the level of stealthiness, what is
the maximum degree of distortion (for control or for estimation) that can be caused
by the attacker? This is dual to the following question: Given a least requirement
(lower bound) on the degree of distortion, what is the maximum level of stealthiness
that can be achieved by the attacker? Answers to these questions can not only capture
the fundamental trade-offs between stealthiness and distortion but also characterize
what the worst-case attacks are.

In this chapter, unlike the aforementionedworks inBai et al. (2017a, b), Kung et al.
(2016), Zhang and Venkitasubramaniam (2017), Guo et al. (2018), we adopt an alter-
native approach to this stealthiness–distortion trade-off problem using power spectral
analysis. The scenarios we consider include linear Gaussian open-loop dynamical
systems and (closed-loop) feedback control systems. By using the power spectral
approach, we obtain explicit formulas that characterize analytically the stealthiness–
distortion trade-offs as well as the properties of the worst-case attacks. It turns out
that theworst-case attacks are stationary coloredGaussian attackswith power spectra
that are shaped specifically according to the transfer functions of the systems and the
power spectra of the system outputs, the knowledge of which is all that the attacker
needs to have access to in order to carry out the worst-case attacks. In other words,
the attacker only needs to know the input–output behaviors of the systems, whereas
it is not necessary to know their state-space models.

The remainder of the chapter is organized as follows. Section3.2 provides the
technical preliminaries. Section3.3 is divided into two subsections, focusing on
open-loop dynamical systems and feedback control systems, respectively. Section3.4
presents numerical examples. Concluding remarks are given in Sect. 3.5.

More specifically, Theorem3.1, as the firstmain result, characterizes explicitly the
stealthiness–distortion trade-off and the worst-case attack in linear Gaussian open-
loop dynamical systems. Equivalently, Corollary 3.1 considers the dual problem to
that of Theorem 3.1. On the other hand, Theorem 3.2, together with Corollary 3.2
(in a dual manner), provides analytical expressions for the stealthiness–distortion
trade-off and the worst-case attack in linear Gaussian feedback control systems. In
addition, the preliminary results on the implications in control design, as presented
in the Conclusion, indicate how the explicit stealthiness–distortion trade-off formula
for feedback control systems can be employed to render the controller design explicit
and intuitive.
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Note that this chapter is based upon (Fang and Zhu 2021), which, however, only
discusses the case of open-loop dynamical systems. Meanwhile, in this chapter,
we also consider (closed-loop) feedback control systems. Note also that the results
presented in this book chapter are applicable to discrete-time systems.

Notation:Throughout the chapter, we consider zero-mean real-valued continuous
random variables and random vectors, as well as discrete-time stochastic processes.
We represent random variables and random vectors using boldface letters, e.g., x,
while the probability density function of x is denoted as px. In addition, x0,...,k will
be employed to denote the sequence x0, . . . , xk or the random vector

[
xT
0 , . . . , xT

k

]T
,

depending on the context. Note in particular that, for simplicity and with abuse of
notations, we utilize x ∈ R and x ∈ R

m to indicate that x is a real-valued random
variable and that x is a real-valued m-dimensional random vector, respectively.

3.2 Preliminaries

A stochastic process {xk} , xk ∈ R is said to be stationary if Rx (i, k) := E
[
xixi+k

]

depends only on k, and can thus be denoted as Rx (k) for simplicity. The power
spectrum of a stationary process {xk} , xk ∈ R is defined as

Sx (ω) :=
∞∑

k=−∞
Rx (k) e−jωk .

Moreover, the variance of {xk} is given by

σ 2
x = E

[
x2
k

] = 1

2π

∫ π

−π

Sx (ω) dω.

The KL divergence (see, e.g., Kullback and Leibler (1951)) is defined as follows.

Definition 3.1 Consider random vectors x ∈ R
m and y ∈ R

m with probability den-
sities px (u) and py (u), respectively. The KL divergence from distribution px to
distribution py is defined as

KL
(
py‖px

) :=
∫

py (u) ln
py (u)

px (u)
du.

The next lemma (see, e.g., Kay (2020)) provides an explicit expression of KL
divergence in terms of covariance matrices for Gaussian random vectors; note that
herein and in the sequel, all random variables and random vectors are assumed to be
zero mean.

Lemma 3.1 Consider Gaussian random vectors x ∈ R
m and y ∈ R

m with covari-
ance matrices Σx and Σy, respectively. The KL divergence from distribution px to
distribution py is given by
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KL
(
py‖px

) = 1

2

[
tr
(
ΣyΣ

−1
x

)− ln det
(
ΣyΣ

−1
x

)− m
]
.

It is clear that in the scalar case (whenm = 1), Lemma3.1 reduces to the following
formula for Gaussian random variables:

KL
(
py‖px

) = 1

2

[
σ 2

y

σ 2
x

− ln

(
σ 2

y

σ 2
x

)

− 1

]

.

TheKLdivergence rate (see, e.g., Lindquist andPicci (2015)) is defined as follows.

Definition 3.2 Consider stochastic processes {xk} , xk ∈ R
m and {yk} , yk ∈ R

m with
densities p{xk} and p{yk}, respectively; note that p{xk} and p{yk} will be denoted by px

and py for simplicity in the sequel. Then, the KL divergence rate from distribution
px to distribution py is defined as

KL∞
(
py‖px

) := lim sup
k→∞

KL
(
py0,...,k‖px0,...,k

)

k + 1
.

The next lemma (see, e.g., Lindquist and Picci (2015)) provides an explicit expres-
sion of KL divergence rate in terms of power spectra for stationary Gaussian pro-
cesses.

Lemma 3.2 Consider stationary Gaussian processes {xk} , xk ∈ R and {yk} , yk ∈
R with densities px and py as well as power spectra Sx (ω) and Sy (ω), respectively.
Suppose that Sy (ω) /Sx (ω) is bounded (see Lindquist and Picci (2015) for details).
Then, the KL divergence rate from distribution px to distribution py is given by

KL∞
(
py‖px

) = 1

2π

∫ 2π

0

1

2

{
Sy (ω)

Sx (ω)
− ln

[
Sy (ω)

Sx (ω)

]
− 1

}
dω. (3.1)

3.3 Stealthiness–Distortion Trade-Offs and Worst-Case
Attacks

In this section,we analyze the fundamental stealthiness–distortion trade-offs of linear
Gaussian open-loop dynamical systems and (closed-loop) feedback control systems
under data injection attacks, whereas the KL divergence is employed as the stealth-
iness measure. Consider the scenario where attacker can modify the system input,
and consequently, the system state and system output will then all be changed. From
the attacker’s point of view, the desired outcome is that the change in system state
(as measured by state distortion) is large, while the change in system output (as
measured by output stealthiness) is relatively small, so as to make the possibility
of being detected low. Meanwhile fundamental trade-offs in general exist between
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state distortion and output stealthiness, since the system’s state and output are cor-
related. In other words, increase in state distortion may inevitably lead to decrease
in output stealthiness, i.e., increase in the possibility of being detected. How to cap-
ture such trade-offs? And what is the worst-case attack that can cause the maximum
distortion given a certain stealthiness level, or vice versa? The answers are provided
subsequently in terms of power spectral analysis.

3.3.1 Open-Loop Dynamical Systems

In this subsection, we focus on open-loop dynamical systems. Specifically, consider
the scalar dynamical system depicted in Fig. 3.1 with state-space model given by

{
xk+1 = axk + buk + wk,

yk = cxk + vk,

where xk ∈ R is the system state, uk ∈ R is the system input, yk ∈ R is the system
output, wk ∈ R is the process noise, and vk ∈ R is the measurement noise. The
system parameters are a ∈ R, b ∈ R, and c ∈ R; we further assume that |a| < 1 and
b, c �= 0, i.e., the system is stable, controllable, and observable. Accordingly, the
transfer function of the system is given by

P (z) = bc

z − a
. (3.2)

(It is clear that P (z) is minimum phase.) Suppose that {wk} and {vk} are stationary
white Gaussian with variances σ 2

w and σ 2
v , respectively. Furthermore, {wk}, {vk}, and

x0 are assumed to be mutually independent. Assume also that {uk} is stationary with
power spectrum Su (ω). As such, {xk} and {yk} are both stationary, and denote their
power spectra by Sx (ω) and Sy (ω), respectively.

kx kz

kv

ku 1z
1kx

ky

a

c

kw

b

Fig. 3.1 A dynamical system
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Fig. 3.2 A dynamical system under injection attack

Consider then the scenario that an attack signal {nk} , nk ∈ R, is to be added to
the input of the system {uk} to deviate the system state, while aiming to be stealthy
in the system output; see the depiction in Fig. 3.2. In addition, denote the true plant
input under attack as {̂uk}, where

ûk = uk + nk, (3.3)

whereas the system under attack {nk} is given by

{
x̂k+1 = ax̂k + bûk + wk = ax̂k + buk + bnk + wk,

ŷk = ĉxk + vk .
(3.4)

Meanwhile, suppose that the attack signal {nk} is independent of {uk}, {wk}, {vk},
and x0; consequently, {nk} is independent of {xk} and {yk} as well.

The following questions then naturally arise: What is the fundamental trade-off
between the degree of distortion caused in the system state (as measured by the mean
squared-error distortion E

[
(̂xk − xk)2

]
between the original state {xk} and the state

under attack denoted as {̂xk}) and the level of stealthiness resulted in the system
output (as measured by the KL divergence rate KL∞

(
p̂y‖py

)
between the original

output {yk} and the output under attack denoted as {̂yk})?More specifically, to achieve
a certain degree of distortion in state, what is the maximum level of stealthiness that
can be maintained by the attacker? And what is the worst-case attack in this sense?
The following theorem, as the first main result of this chapter, answers the questions
raised above.

Theorem 3.1 Consider the dynamical system under injection attacks depicted in
Fig.3.2. Suppose that the attacker aims to design the attack signal {nk} to satisfy the
following attack goal in terms of state distortion:

E
[
(̂xk − xk)2

] ≥ D. (3.5)

Then, the minimum KL divergence rate between the original output and the attacked
output is given by
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inf
E[(̂xk−xk )2]≥D

KL∞
(
p̂y‖py

) = 1

2π

∫ 2π

0

1

2

{
Ŝn (ω)

Sy (ω)
− ln

[
1 + Ŝn (ω)

Sy (ω)

]}
dω, (3.6)

where

Ŝn (ω) = ζ S2y (ω)

1 − ζ Sy (ω)
, (3.7)

and Sy (ω) is given by

Sy (ω) = b2c2
∣∣ejω − a

∣∣2
Su (ω) + c2

∣∣ejω − a
∣∣2

σ 2
w + σ 2

v . (3.8)

Herein, ζ is the unique constant that satisfies

1

2π

∫ π

−π

ζ S2y (ω)

1 − ζ Sy (ω)
dω = c2D, (3.9)

while

0 < ζ < min
ω

1

Sy (ω)
. (3.10)

Moreover, the worst-case (in the sense of achieving this minimum KL divergence
rate) attack {nk} is a stationary colored Gaussian process with power spectrum

Sn (ω) =
∣∣ejω − a

∣∣2

b2c2
ζ S2y (ω)

1 − ζ Sy (ω)
. (3.11)

Proof To begin with, it can be verified that the power spectrum of {yk} is given by

Sy (ω) = ∣∣P (ejω)∣∣2 Su (ω) + 1

b2
∣∣P
(
ejω
)∣∣2 σ 2

w + σ 2
v ,

= b2c2
∣
∣ejω − a

∣
∣2
Su (ω) + c2

∣
∣ejω − a

∣
∣2

σ 2
w + σ 2

v .

Note then that due to the property of additivity of linear systems, the system in
Fig. 3.2 is equivalent to that of Fig. 3.3, where

ŷk = yk + n̂k,

and {̂nk} is the output of the subsystem
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Fig. 3.3 A dynamical system under injection attack: equivalent system

{
x̂k+1 − xk+1 = a (̂xk − xk) + bnk,

n̂k = c (̂xk − xk) ,

as depicted by the upper half of Fig. 3.3; note that in this subsystem, (̂xk − xk) ∈ R

is the system state, nk ∈ R is the system input, and n̂ ∈ R is the system output. On
the other hand, the distortion constraint

E
[
(̂xk − xk)2

] ≥ D

is then equivalent to being with a power constraint

E
[
n̂2
k

] ≥ c2D,

since n̂k = ŷk − yk and thus

n̂2
k = (yk − ŷk)2 = (cxk − ĉxk)2 = c2 (xk − x̂k)2 .

Accordingly, the system in Fig. 3.3 may be viewed as a “virtual channel” modeled
as

ŷk = yk + n̂k

with noise constraint

E
[
n̂2
k

] ≥ c2D,
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where {yk} is the channel input, {̂yk} is the channel output, and {̂nk} is the chan-
nel noise. In addition, due to the fact that {nk} is independent of {yk}, {̂nk} is also
independent of {yk}.

The approachwe shall take herein, as developed inCover andThomas (2006), is to
treat themultiple uses of a scalar channel (i.e., a scalar dynamic channel) equivalently
as a single use of parallel channels (i.e., a set of parallel static channels). We consider
first the case of a finite number of parallel static channels with

ŷ = y + n̂,

where y, ŷ, n̂ ∈ R
m , and n̂ is independent of y. In addition, y is Gaussian with covari-

ance Σy, and the noise power constraint is given by

tr (Σn̂) = E

[
m∑

i=1

n̂2 (i)

]

≥ c2D,

where n̂ (i) denotes the i-th element of n̂. In addition, according to Fang and Zhu
(2020) (see Proposition 2 therein), we have

KL
(
p̂y‖py

) ≥ KL
(
p̂yG‖py

)
,

where ŷG denotes a Gaussian random vector with the same covariance as ŷ, and
equality holds if ŷ is Gaussian. Meanwhile, it is known from Lemma 3.1 that

KL
(
p̂yG‖py

) = 1

2

[
tr
(
ΣŷΣ

−1
y

)− ln det
(
ΣŷΣ

−1
y

)− m
]
.

On the other hand, since y and n̂ are independent, we have

Σŷ = Σn̂+y = Σn̂ + Σy.

Consequently,

tr
(
ΣŷΣ

−1
y

)− ln det
(
ΣŷΣ

−1
y

) = tr
[(

Σn̂ + Σy
)
Σ−1

y

]− ln det
[(

Σn̂ + Σy
)
Σ−1

y

]
.

Denote the eigendecomposition of Σy by UyΛyUT
y , where

Λy = diag (λ1, . . . , λm) .

Then,
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tr
[(

Σn̂ + Σy
)
Σ−1

y

]− ln det
[(

Σn̂ + Σy
)
Σ−1

y

]

= tr
[(

Σn̂ +UyΛyU
T
y

) (
UyΛyU

T
y

)−1
]

− ln det
[(

Σn̂ +UyΛyU
T
y

) (
UyΛyU

T
y

)−1
]
,

= tr
[(

Σn̂ +UyΛyU
T
y

)
UyΛ

−1
y UT

y

]− ln det
[(

Σn̂ +UyΛyU
T
y

)
UyΛ

−1
y UT

y

]
,

= tr
[
UyU

T
y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y UT

y

]

− ln det
[
UyU

T
y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y UT

y

]
,

= tr
{
Uy
[
UT

y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y

]
UT

y

}

− ln det
{
Uy
[
UT

y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y

]
UT

y

}
,

= tr
[
UT

y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y

]− ln det
[
UT

y

(
Σn̂ +UyΛyU

T
y

)
UyΛ

−1
y

]
,

= tr
[(
UT

y Σn̂Uy + Λy
)
Λ−1

y

]− ln det
[(
UT

y Σn̂Uy + Λy
)
Λ−1

y

]
,

= tr
[(

Σ n̂ + Λy
)
Λ−1

y

]− ln det
[(

Σ n̂ + Λy
)
Λ−1

y

]
,

where Σ n̂ = UT
y Σn̂Uy. Denoting the diagonal terms of Σ n̂ by σ 2

n̂(i), i = 1, . . . ,m,
it is known from (Fang and Zhu 2020) (see Proposition 4 therein) that

tr
[(

Σ n̂ + Λy
)
Λ−1

y

]− ln det
[(

Σ n̂ + Λy
)
Λ−1

y

]
,

≥
m∑

i=1

[
σ 2

n̂(i) + λi

λi

]

−
m∑

i=1

ln

[
σ 2

n̂(i) + λi

λi

]

,

=
m∑

i=1

[

1 + σ 2
n̂(i)

λi

]

−
m∑

i=1

ln

[

1 + σ 2
n̂(i)

λi

]

,

where equality holds if Σ n̂ is diagonal. For simplicity, we denote

Σ n̂ = diag
(
σ 2

n̂(1), . . . , σ
2
n̂(m)

) = diag
(
N̂1, . . . , N̂m

)

when Σ n̂ is diagonal. Then, the problem reduces to that of choosing N̂1, . . . , N̂m to
minimize

m∑

i=1

(
1 + N̂i

λi

)
−

m∑

i=1

ln

(
1 + N̂i

λi

)

subject to the constraint that

m∑

i=1

N̂i = tr
(
Σ n̂
) = tr

(
UT

y Σn̂Uy
) = tr

(
Σn̂UyU

T
y

) = tr (Σn̂) = mc2D.

Define the Lagrange function by
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m∑

i=1

(
1 + N̂i

λi

)
−

m∑

i=1

ln

(
1 + N̂i

λi

)
+ η

(
m∑

i=1

N̂i − N̂

)

,

and differentiate it with respect to N̂i , then we have

1

λi
− 1

N̂i + λi
+ η = 0,

or equivalently,

N̂i = 1
1
λi

+ η
− λi = λi

1 + ηλi
− λi = −ηλ2

i

1 + ηλi
,

where η satisfies

m∑

i=1

N̂i =
m∑

i=1

−ηλ2
i

1 + ηλi
= mc2D,

while

− min
i=0,...,m

1

λi
< η < 0.

For simplicity, we denote ζ = −η, and accordingly,

N̂i = ζλ2
i

1 − ζλi
,

where ζ satisfies

m∑

i=1

N̂i =
m∑

i=1

ζλ2
i

1 − ζλi
= mc2D,

while

0 < ζ < min
i=0,...,m

1

λi
.

Correspondingly,
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inf
pn̂

KL
(
p̂y‖py

) = 1

2

[
m∑

i=1

(
1 + N̂i

λi

)
−

m∑

i=1

ln

(
1 + N̂i

λi

)
− m

]

,

=
m∑

i=1

1

2

[
N̂i

λi
− ln

(
1 + N̂i

λi

)]
.

Consider now a scalar dynamic channel

ŷk = yk + n̂k,

where yk, n̂k, ŷk ∈ R, while {yk} and {̂nk} are independent. In addition, {yk} is sta-
tionary colored Gaussian with power spectrum Sy (ω), whereas the noise power
constraint is given by E

[
n̂2
k

] ≥ c2D. We may then consider a block of consecutive
uses from time 0 to k of this channel as k + 1 channels in parallel Cover and Thomas
(2006). Particularly, let the eigendecomposition of Σy0,...,k be given by

Σy0,...,k = Uy0,...,kΛy0,...,kU
T
y0,...,k ,

where

Λy0,...,k = diag (λ0, . . . , λk) .

Then, we have

min
pn̂0,...,k :

∑k
i=0 E[̂n2

i ]≥(k+1)c2D

KL
(
p̂y0,...,k‖py0,...,k

)

k + 1
= 1

k + 1

k∑

i=0

1

2

[
N̂i

λi
− ln

(
1 + N̂i

λi

)]
,

where

N̂i = ζλ2
i

1 − ζλi
, i = 0, . . . , k.

Herein, ζ satisfies

k∑

i=0

N̂i =
k∑

i=0

ζλ2
i

1 − ζλi
= (k + 1) c2D,

or equivalently,

1

k + 1

k∑

i=0

N̂i = 1

k + 1

(
ζλ2

i

1 − ζλi

)
= c2D,

while
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0 < ζ < min
i=0,...,k

1

λi
.

In addition, since the processes {yk}, {̂nk}, and {̂yk} are stationary, we have

lim
k→∞ min

pn̂0,...,k :
∑k

i=0 E[̂n2
i ]≥(k+1)c2D

KL
(
p̂y0,...,k‖py0,...,k

)

k + 1

= inf
E[̂n2

k]≥c2D
lim
k→∞

KL
(
p̂y0,...,k‖py0,...,k

)

k + 1
= inf

E[̂n2
k]≥c2D

lim sup
k→∞

KL
(
p̂y0,...,k‖py0,...,k

)

k + 1

= inf
E[̂n2

k]≥c2D
KL∞

(
p̂y‖py

) = inf
E[(̂xk−xk )2]≥D

KL∞
(
p̂y‖py

)
.

On the other hand, since the processes are stationary, the covariance matrices are
Toeplitz (Grenander and Szegö 1958), and their eigenvalues approach their limits as
k → ∞. Moreover, the densities of eigenvalues on the real line tend to the power
spectra of the processes (Gutiérrez-Gutiérrez and Crespo 2008; Lindquist and Picci
2015; Pinsker 1964). Accordingly,

inf
E[(̂xk−xk )2]≥D

KL∞
(
p̂y‖py

) = lim
k→∞

1

k + 1

k∑

i=0

1

2

[
N̂i

λi
− ln

(
1 + N̂i

λi

)]
,

= 1

2π

∫ 2π

0

1

2

{
Ŝn (ω)

Sy (ω)
− ln

[
1 + Ŝn (ω)

Sy (ω)

]}
dω,

where

Ŝn (ω) = ζ S2y (ω)

1 − ζ Sy (ω)
,

and ζ satisfies

lim
k→∞

1

k + 1

k∑

i=0

N̂i = 1

2π

∫ π

−π

Ŝn (ω) dω = 1

2π

∫ π

−π

ζ S2y (ω)

1 − ζ Sy (ω)
dω = c2D,

while

0 < ζ < min
ω

1

Sy (ω)
.

Lastly, note that

Ŝn (ω) = ∣∣P (ejω)∣∣2 Sn (ω) = b2c2
∣∣ejω − a

∣∣2
Sn (ω) ,
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and hence

Sn (ω) =
∣∣ejω − a

∣∣2

b2c2
Ŝn (ω) =

∣∣ejω − a
∣∣2

b2c2
ζ S2y (ω)

1 − ζ Sy (ω)
.

This concludes the proof. �

It is clear that Sn (ω) may be rewritten as

Sn (ω) = 1
∣∣P
(
ejω
)∣∣2

ζ S2y (ω)

1 − ζ Sy (ω)
. (3.12)

This means that the attacker only needs the knowledge of the power spectrum of the
original system output {yk} and the transfer function of the system (from {nk} to {̂yk}),
i.e., P (z), in order to carry out this worst-case attack. It is worth mentioning that the
power spectrum of {yk} can be estimated based on its realizations (see, e.g., Stoica
and Moses (2005)), while the transfer function of the system can be approximated
by system identification (see, e.g., Ljung (1999)).

Note that it can be verified (Kay 2020) that the (minimum) output KL divergence
rateKL∞

(
p̂y‖py

)
increases strictlywith the state distortion bound D. In otherwords,

in order for the attacker to achieve larger distortion, the stealthiness level of the attack
will inevitably decrease.

On the other hand, the dual problem to that of Theorem 3.1 would be: Given a
certain stealthiness level in output, what is the maximum distortion in state that can
be achieved by the attacker? And what is the corresponding attack? The following
corollary answers these questions.

Corollary 3.1 Consider the dynamical system under injection attacks depicted in
Fig.3.2. Then, in order for the attacker to ensure that the KL divergence rate between
the original output and the attacked output is upper bounded by a (positive) constant
R as

KL∞
(
p̂y‖py

) ≤ R, (3.13)

the maximum state distortion E
[
(̂xk − xk)2

]
that can be achieved is given by

sup
KL∞( p̂y‖py)≤R

E
[
(̂xk − xk)2

] = 1

2π

∫ π

−π

1

c2

[
ζ S2y (ω)

1 − ζ Sy (ω)

]

dω, (3.14)

where ζ is the unique constant that satisfies
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1

2π

∫ 2π

0

1

2

⎧
⎨

⎩

ζ S2y (ω)

1−ζ Sy(ω)

Sy (ω)
− ln

⎡

⎣1 +
ζ S2y (ω)

1−ζ Sy(ω)

Sy (ω)

⎤

⎦

⎫
⎬

⎭
dω

= 1

2π

∫ 2π

0

1

2

{
ζ Sy (ω)

1 − ζ Sy (ω)
− ln

[
1

1 − ζ Sy (ω)

]}
dω = R, (3.15)

while

0 < ζ < min
ω

1

Sy (ω)
. (3.16)

Note that herein Sy (ω) is given by (3.8). Moreover, this maximum distortion is
achieved when the attack signal {nk} is chosen as a stationary colored Gaussian
process with power spectrum

Sn (ω) =
∣∣ejω − a

∣∣2

b2c2
ζ S2y (ω)

1 − ζ Sy (ω)
. (3.17)

3.3.2 Feedback Control Systems

We will now proceed to examine (closed-loop) feedback control systems in this
subsection. Specifically, consider the feedback control system depicted in Fig. 3.4,
where the state-space model of the plant is given by

{
xk+1 = axk + buk + wk,

yk = cxk + vk,

while K (z) is the transfer function of the (dynamic) output controller. Herein, xk ∈ R

is the plant state, uk ∈ R is the plant input, yk ∈ R is the plant output, wk ∈ R is the

Fig. 3.4 A feedback control system
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Fig. 3.5 A feedback control system under actuator attack

process noise, and vk ∈ R is the measurement noise. The system parameters are
a ∈ R, b ∈ R, and c ∈ R. Note that the plant is not necessarily stable. Meanwhile,
we assume that b, c �= 0, i.e., the plant is controllable and observable, and thus can
be stabilized by controller K (z). On the other hand, the transfer function of the plant
is given by

P (z) = bc

z − a
. (3.18)

Suppose that {wk} and {vk} are stationary white Gaussian with variances σ 2
w and σ 2

v ,
respectively. Furthermore, {wk}, {vk}, and x0 are assumed to be mutually indepen-
dent. Assume also that K (z) stabilizes P (z), i.e., the closed-loop system is stable.
Accordingly, {xk} and {yk} are both stationary, and denote their power spectra by
Sx (ω) and Sy (ω), respectively.

Consider then the scenario that an attack signal {nk} , nk ∈ R, is to be added to
the input of the plant {uk} to deviate the plant state, while aiming to be stealthy in
the plant output; see the depiction in Fig. 3.5. In fact, this corresponds to actuator
attack. Note in particular that since we are now considering a closed-loop system,
the presence of {nk} will eventually distort the original {uk} (through feedback) as
well, which is an essential difference form the open-loop system setting considered
in Sect. 3.3.1, and the distorted {uk} will be denoted as {uk}. In addition, we denote
the true plant input under attack as {̂uk}, where

ûk = uk + nk, (3.19)

whereas the plant under attack {nk} is given by

{
x̂k+1 = ax̂k + bûk + wk = ax̂k + buk + bnk + wk,

ŷk = ĉxk + vk .
(3.20)

Meanwhile, suppose that the attack signal {nk} is independent of {wk}, {vk}, and x0;
consequently, {nk} is independent of {xk} and {yk} as well.
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The following theorem, as the secondmain result of this chapter, characterizes the
fundamental trade-off between the distortion in state and the stealthiness in output
for feedback control systems.

Theorem 3.2 Consider the feedback control system under injection attacks depicted
in Fig.3.5. Suppose that the attacker needs to design the attack signal {nk} to satisfy
the following attack goal in terms of state distortion:

E
[
(̂xk − xk)2

] ≥ D. (3.21)

Then, the minimum KL divergence rate between the original output and the attacked
output is given by

inf
E[(̂xk−xk )2]≥D

KL∞
(
p̂y‖py

) = 1

2π

∫ 2π

0

1

2

{
Ŝn (ω)

Sy (ω)
− ln

[
1 + Ŝn (ω)

Sy (ω)

]}
dω,

(3.22)

where

Ŝn (ω) = ζ S2y (ω)

1 − ζ Sy (ω)
, (3.23)

and Sy (ω) is given by

Sy (ω) =
∣∣
∣∣∣

c

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
w +

∣∣
∣∣∣

ejω − a

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
v . (3.24)

Herein, ζ is the unique constant that satisfies

1

2π

∫ π

−π

ζ S2y (ω)

1 − ζ Sy (ω)
dω = c2D, (3.25)

while

0 < ζ < min
ω

1

Sy (ω)
. (3.26)

Moreover, the worst-case attack {nk} is a stationary colored Gaussian process with
power spectrum

Sn (ω) =
∣
∣∣∣∣
ejω − a + K

(
ejω
)
bc

bc

∣
∣∣∣∣

2
ζ S2y (ω)

1 − ζ Sy (ω)
. (3.27)
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Fig. 3.6 A feedback control system under actuator attack: equivalent system

Proof Note first that when the closed-loop system is stable, the power spectrum of
{yk} is given by

Sy (ω) = 1

b2

∣∣
∣∣∣

P
(
ejω
)

1 + K
(
ejω
)
P
(
ejω
)

∣∣
∣∣∣

2

σ 2
w +

∣∣
∣∣∣

1

1 + K
(
ejω
)
P
(
ejω
)

∣∣
∣∣∣

2

σ 2
v ,

= 1

b2

∣∣∣∣∣

bc
ejω−a

1 + K
(
ejω
)

bc
ejω−a

∣∣∣∣∣

2

σ 2
w +

∣∣∣∣∣
1

1 + K
(
ejω
)

bc
ejω−a

∣∣∣∣∣

2

σ 2
v ,

=
∣∣
∣∣∣

c

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
w +

∣∣
∣∣∣

ejω − a

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
v .

Note then that since the systems are linear, the system in Fig. 3.5 is equivalent to that
of Fig. 3.6, where

ŷk = yk + n̂k,

and {̂nk} is the output of the closed-loop system composed by the controller K (z)
and the plant

{
x̂k+1 − xk+1 = a (̂xk − xk) + b (uk − uk) + bnk,

n̂k = c (̂xk − xk) ,

as depicted by the upper half of Fig. 3.6. Meanwhile, as in the case of Fig. 3.3, the
system in Fig. 3.6 may also be viewed as a “virtual channel” modeled as
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ŷk = yk + n̂k

with noise constraint

E
[
n̂2
k

] ≥ c2D,

where {yk} is the channel input, {̂yk} is the channel output, and {̂nk} is the channel
noise that is independent of {yk}. Then, following procedures similar to those in the
proof of Theorem 3.1, it can be derived that

inf
E[(̂xk−xk )2]≥D

KL∞
(
p̂y‖py

) = 1

2π

∫ 2π

0

1

2

{
Ŝn (ω)

Sy (ω)
− ln

[
1 + Ŝn (ω)

Sy (ω)

]}
dω,

where

Ŝn (ω) = ζ S2y (ω)

1 − ζ Sy (ω)
,

and ζ is the unique constant that satisfies

1

2π

∫ π

−π

Ŝn (ω) dω = 1

2π

∫ π

−π

ζ S2y (ω)

1 − ζ Sy (ω)
dω = c2D,

while

0 < ζ < min
ω

1

Sy (ω)
.

In addition, since

Ŝn (ω) =
∣
∣∣∣∣

P
(
ejω
)

1 + K
(
ejω
)
P
(
ejω
)

∣
∣∣∣∣

2

Sn (ω) =
∣
∣∣∣∣

bc
ejω−a

1 + K
(
ejω
)

bc
ejω−a

∣
∣∣∣∣

2

Sn (ω) ,

=
∣∣∣∣
∣

bc

ejω − a + K
(
ejω
)
bc

∣∣∣∣
∣

2

Sn (ω) ,

we have

Sn (ω) =
∣∣∣∣∣
ejω − a + K

(
ejω
)
bc

bc

∣∣∣∣∣

2

Ŝn (ω) =
∣∣∣∣∣
ejω − a + K

(
ejω
)
bc

bc

∣∣∣∣∣

2
ζ S2y (ω)

1 − ζ Sy (ω)
.

This concludes the proof. �
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It is worth mentioning that the Sy (ω) for Theorem 3.2 is given by (3.24), which
differs significantly from that given by (3.8) for Theorem 3.1, although the notations
are the same. Accordingly, η, Sn (ω), and so on, will all be different between the two
cases in spite of the same notations.

Note also that Sn (ω) can be rewritten as

Sn (ω) =
∣∣
∣∣∣
1 + K

(
ejω
)
P
(
ejω
)

P
(
ejω
)

∣∣
∣∣∣

2
ζ S2y (ω)

1 − ζ Sy (ω)
, (3.28)

which indicates that the attacker only needs to know the power spectrum of the
original system output {yk} and the transfer function of the closed-loop system (from
{nk} to {̂yk}), i.e.,

P (z)

1 + K (z) P (z)
, (3.29)

in order to carry out this worst-case attack.
Again, we may examine the dual problem as follows.

Corollary 3.2 Consider the feedback control systemunder injectionattacks depicted
in Fig.3.5. Then, in order for the attacker to ensure that the KL divergence rate
between the original output and the attacked output is upper bounded by a (positive)
constant R as

KL∞
(
p̂y‖py

) ≤ R, (3.30)

the maximum state distortion E
[
(̂xk − xk)2

]
that can be achieved is given by

sup
KL∞( p̂y‖py)≤R

E
[
(̂xk − xk)2

] = 1

2π

∫ π

−π

1

c2

[
ζ S2y (ω)

1 − ζ Sy (ω)

]

dω, (3.31)

where ζ satisfies

1

2π

∫ 2π

0

1

2

⎧
⎨

⎩

ζ S2y (ω)

1−ζ Sy(ω)

Sy (ω)
− ln

⎡

⎣1 +
ζ S2y (ω)

1−ζ Sy(ω)

Sy (ω)

⎤

⎦

⎫
⎬

⎭
dω

= 1

2π

∫ 2π

0

1

2

{
ζ Sy (ω)

1 − ζ Sy (ω)
− ln

[
1

1 − ζ Sy (ω)

]}
dω = R, (3.32)

while

0 < ζ < min
ω

1

Sy (ω)
. (3.33)
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Note that herein Sy (ω) is given by (3.24). Moreover, this maximum distortion is
achieved when the attack signal {nk} is chosen as a stationary colored Gaussian
process with power spectrum

Sn (ω) =
∣∣∣∣∣
ejω − a + K

(
ejω
)
bc

bc

∣∣∣∣∣

2
ζ S2y (ω)

1 − ζ Sy (ω)
. (3.34)

3.4 Simulation

In this section, we will utilize (toy) numerical examples to illustrate the fundamental
stealthiness–distortion trade-offs in linear Gaussian open-loop dynamical systems as
well as (closed-loop) feedback control systems.

Consider first open-loop dynamical systems as in Sect. 3.3.1. Let a = 0.5, b =
1, c = 1, σ 2

w = 1, σ 2
v = 1, and Su (ω) = 1 therein for simplicity. Accordingly, we

have

Sy (ω) = 2
∣∣ejω − 0.5

∣∣2
+ 1 = 2

(cosω − 0.5)2 + sin2 ω
+ 1.

In such a case, the relation between the minimum KL divergence rate KL∞
(
p̂y‖py

)

(denoted as K L in the figure) and the distortion bound D is illustrated in Fig. 3.7. It
is clear that K L increases (strictly) with D, i.e., in order for the attacker to achieve
larger distortion, the stealthiness level of the attack will inevitably decrease.

Note that the relation between the maximum distortion E
[
(̂xk − xk)2

]
and the

KL divergence rate bound R in Corollary 3.1 is essentially the same as that between
the distortion bound D and the minimum KL divergence rate KL∞

(
p̂y‖py

)
in

Theorem 3.1.

Fig. 3.7 The relation
between KL∞

(
p̂y‖py

)

(denoted as K L) and D in
Open-Loop Dynamical
Systems

0 0.5 1 1.5 2

D

0

0.01

0.02

0.03

0.04

K
L
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Fig. 3.8 The relation
between KL∞

(
p̂y‖py

)

(denoted as K L) and D in
Feedback Control Systems
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D

0

0.005

0.01

0.015

0.02

K
L

Consider then feedback control systems as in Sect. 3.3.2. Let a = 2, b = 1, c = 1,
σ 2

w = 1, σ 2
v = 1, and K (z) = 2 therein for simplicity. Accordingly, we have

Sy (ω) = 1 + ∣∣ejω − 2
∣∣2 = 1 + (cosω − 2)2 + sin2 ω.

In such a case, the relation between the minimum KL divergence rate KL∞
(
p̂y‖py

)

(denoted as K L in the figure) and the distortion bound D is illustrated in Fig. 3.8.
Again, K L increases (strictly) with D, whereas the relationship between the maxi-
mum distortion E

[
(̂xk − xk)2

]
and the KL divergence rate bound R in Corollary 3.2

is essentially the same as that between the distortion bound D and the minimum KL
divergence rate KL∞

(
p̂y‖py

)
in Theorem 3.2.

3.5 Conclusion

In this chapter, we have presented the fundamental stealthiness–distortion trade-offs
of linear Gaussian open-loop dynamical systems and (closed-loop) feedback control
systems under data injection attacks, and explicit formulas have been obtained in
terms of power spectra that characterize analytically the stealthiness–distortion trade-
offs as well as the properties of the worst-case attacks.

So why do we care about explicit formulas in the first place? One value of the
explicit stealthiness–distortion trade-off formula for feedback control systems, for
instance, is that they render the subsequent controller design explicit (and intuitive)
as well. To be more specific, given a threshold on the output stealthiness, it is already
known from Corollary 3.2 what the maximum distortion in state that can be achieved
by the attacker is. Then, one natural control design criterion will be to design the
controller K (z) so as to minimize this maximum distortion. Mathematically, this
minimax problem can be formulated as follows:
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inf
K (z)

sup
KL∞( p̂y‖py)≤R

E
[
(̂xk − xk)2

] = inf
K (z)

{
1

2π

∫ π

−π

1

c2

[
ζ S2y (ω)

1 − ζ Sy (ω)

]

dω

}

,

where

Sy (ω) =
∣∣
∣∣∣

c

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
w +

∣∣
∣∣∣

ejω − a

ejω − a + K
(
ejω
)
bc

∣∣
∣∣∣

2

σ 2
v ,

=
∣∣∣∣∣

P
(
ejω
)

1 + K
(
ejω
)
P
(
ejω
)

∣∣∣∣∣

2
σ 2

w

b2
+
∣∣∣∣∣

1

1 + K
(
ejω
)
P
(
ejω
)

∣∣∣∣∣

2

σ 2
v ,

whereas the infimum is taken over all K (z) that stabilizes the plant P (z). Herein, ζ
can be treated as a tuning parameter as long as it satisfies

0 < ζ < min
ω

1

Sy (ω)
.

We will, however, leave more detailed investigations of this formulation to future
research.

Other potential future research directions include the investigation of such trade-
offs for state estimation systems. It might also be interesting to examine the security–
privacy trade-offs (see, e.g., Farokhi and Esfahani (2018), Fang and Zhu (2020,
2021)).
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Chapter 4
Predictive Situation Awareness and
Anomaly Forecasting in Cyber-Physical
Systems

Masoud Abbaszadeh, Weizhong Yan, and Lalit K. Mestha

4.1 Introduction

Cyber-physical systems’ (CPS) security has become a critical research topic as more
and more CPS applications are making increasing impacts in diverse industrial sec-
tors. Due to the tight interaction between cyber- and physical components, CPS
security requires a different strategy from the traditional Information Technology
(IT) security. Cyber-Physical Systems (CPS) are an integral system featuring strong
interactions between its cyber- (e.g., networks and computation) and physical com-
ponents (Khaitan and McCalley 2014). CPS applications have been making great
impacts on many industrial sectors, including energy, transportation, healthcare, and
manufacturing. With the development of Internet of Things (IoT), more and more
devices with potential security vulnerabilities are linked to CPS, which makes CPS
susceptible to adversary attacks (Yan et al. 2019). While progress with machine and
equipment automation has beenmade over the last several decades, and systems have
become “smarter”, the intelligence of any individual cyber-physical system to pre-
dict failures (e.g., equipment malfunction, sensor faults, etc.), outages, degradation
or slow drift in performance, and cyber-threats in real time to provide early warning
is difficult. Several methods have been proposed for anomaly forecast and prognostic
in different industrial control systems (Abbaszadeh and Marquez 2010, 2007; Alle-
gorico andMantini 2014; Chandola et al. 2009; Clifton et al. 2014; Ehlers et al. 2011;
Gupta et al. 2008; Lamedica et al. 1996; Pimentel et al. 2014; Rigatos et al. 2021;
Sridhar and Govindarasu 2014; Xue and Yan 2007; Zaher et al. 2009; Zimek et al.

M. Abbaszadeh (B) · W. Yan
GE Research, Niskayuna, NY, USA
e-mail: masoud@ualberta.net

W. Yan
e-mail: yan@ge.com

L. K. Mestha
Genetic Innovations Inc. (work performed while at GE Research), Honolulu, HI, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Abbaszadeh and A. Zemouche (eds.), Security and Resilience in Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-97166-3_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97166-3_4&domain=pdf
mailto:masoud@ualberta.net
mailto:yan@ge.com
https://doi.org/10.1007/978-3-030-97166-3_4


62 M. Abbaszadeh et al.

2012). Although technology exists to predict when systems fail, approaches used to
predict failures from a Prognostics and Health Management (PHM) perspective are
not directly applicable to situation awareness of cyber-incidents since they (1) do
not model large-scale transient data incorporating fast system dynamics (i.e., have
improper estimation models) and (2) do not to process multiple signals simultane-
ously to account for anticipated changes in future times in system behavior accurately
based on current and past data (i.e., have inaccurate decision thresholds/boundaries)
(Mestha et al. 2017). Especially, when it comes to forecasting cyber-attacks propa-
gation and impact, the difficulty is further compounded by not knowing attackers’
intention and their next move for exploiting weakness/vulnerabilities in the system.

There can be various types of known attacks that a system may be subjected to
such as espionage attacks, eavesdropping, denial-of-service attacks, zero dynamics
attack, deception attacks (e.g., covert/stealthy attack), false data injection attack,
replay attack, and the like, which are just a short sampling of potential threats that
exist to cyber-physical systems (Park et al. 2019). These attacks will exhibit dif-
ferent levels of disclosure, disruption, and knowledge to be executed successfully,
corresponding to adversaries’ recourses, expertise, and intent. Also, cyber-hackers
always invent many new ways to create malicious code and disrupt the operation of
the physical system. Present condition monitoring technology used for failure detec-
tion, prediction, and monitoring or the threat detection technologies included inside
information and operational technologies (IT and OT) does not adequately provide
forecasting to protect assets from such attacks. There are many examples in physical
systems (e.g., electric grid, ventricular assist devices, etc.), wherein early warning of
only a few seconds may be sufficient to take actions that would protect vulnerable
equipment or loss of life (Kokkonen et al. 2016; Nateghi et al. 2018a, b; Skopik et al.
2015).

Proper early warning generation could thwart an attack entirely or help neutral-
ize its effects, such as damage to equipment or sustain the operation. The goal of
this chapter is to provide an innovative predictive situational awareness framework
in order to maintain high levels of reliability and availability, while continuing to
retain expected performance against abnormalities created by the system faults or
the adversary. Building upon our previous results on anomaly detection and fore-
casting (Abbaszadeh et al. 2018; Mestha et al. 2017; Yan et al. 2019), the predictive
situational awareness framework developed in this chapter is based on dynamic
weighted averaging of multi-model ensemble forecasts both for anomaly detection
and isolation. Ensemble forecasting has been proven to be very efficient in forecasting
complex dynamic phenomena such as wind and other weather conditions and Inter-
net communication traffics (Cortez et al. 2012; Gneiting and Raftery 2005). In the
context of an industrial control system,we use ensembles to cover the plant variations
both in operating space and ambient conditions. The ensembles are selected using
GMM clustering, which provides both centroid (i.e., respective operating points)
and probability membership functions. A state-space model is developed for each
ensemble of each monitoring node, which is used in an adaptive multi-step Kalman
predictor to provide ensemble forecast in a receding horizon fashion. Then, the
ensemble forecasts are fused via dynamic averaging. Dynamic model averaging has
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been shown to be superior to other ensemble methods such as Markov Chain Monte
Carlo (MCMC) especially for large datasets (Koop and Korobilis 2012; McCormick
et al. 2012; Raftery et al. 2010). It is an effective way for estimation of fusion of
ensemble models.

We carry out all key processing in a high-dimensional feature space by analyzing
time-series signals received from multiple system monitoring nodes (a combination
of selected control system sensors and actuators), comparing the forecasted features
with anomaly decision boundaries. The decision boundaries are computed for each
individual monitoring node using machine learning techniques. We use Extreme
Learning Machine (ELM) as our binary classification decision boundary. ELM is
a special type of flashforward neural network recently developed for fast training
(Huang et al. 2012). Numerous empirical studies and recently some analytical stud-
ies as well have shown that ELM has better generalization performance than other
machine learning algorithms including Support Vector Machines (SVM) and is effi-
cient and effective for both classification and regression (Huang et al. 2012; Huang
2014; Huang et al. 2006). It is worth mentioning that the framework presented here
is not limited to using Kalman predictors or ELM classifiers and can be used along
with other forms of linear or nonlinear time-series models, predictors, and classifiers.

The rest of the chapter is organized as follows. In Sect. 4.2, the overall forecast-
ing framework is described. Sections4.3 and 4.4 provide details of the ensemble
modeling and receding horizon ensemble forecasting. In Sect. 4.4, we demonstrate
our algorithm in a sensor attack of a gas turbine using a high-fidelity simulation
environment, followed by conclusions in Sect. 4.5.

4.2 Forecasting Framework

In this section, we discuss the framework used for anomaly forecast and early warn-
ing generation. The framework is applicable to both cyber-driven and fault-driven
incidents in a unified manner.

4.2.1 Digital Twin Simulation Platform

We demonstrate our approach on a utility-scale (250MW maximum output) power-
generating gas turbine. However, the methods and techniques presented in this work
are applicable to any cyber-physical system.We have created both normal and abnor-
mal (attack and fault) datasets using GE ARTEMIS high-fidelity power plant simu-
lation platform. The simulation environment consists of a closed loop Digital Twin
of a utility-scale power generation gas turbine, a very complex nonlinear and time-
varying physics-based model with adaptive parameters and factors such as asset
performance degradation due to ageing. The closed-loop system contains multiple
control loops along with their interconnections as in a real gas turbine in the field.
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Fig. 4.1 Plant HMI used for dataset generation

The availability of such a platform enables realistic simulations of attack and
fault scenarios, which, compared to normal operation data, are usually rare in the
data collected from the field. This in turn enables deployment of high-performance
supervised learning algorithms, as opposed to semi-supervised learning that only uses
normal data. The normal dataset can be collected from the field, generated through
simulations, or a combination of both. The abnormal dataset is synthesized utilizing
the simulation platform. Our dataset consists of thousands of normal and abnor-
mal time series of the monitoring nodes, resulting in over 2 million samples when
projected into feature space. Figure4.1 shows the HMI used for dataset generation.

4.2.2 Anomaly Forecasting Approaches

Depending on the scale of the system and outcome of the features dimensionality
reduction, either the features or directly, the anomaly score may be forecasted. Each
of these approaches have their pros and cons. Forecasting features make the forecast-
ing framework independent of the decision boundary (i.e., the classifier), but it might
be very difficult to do if the number of features is very large, they are highly non-
linear, discontinuous, etc. On the other hand, forecasting the anomaly score directly
simplifies the problem quite a bit, but makes the forecasting framework dependent
on the particular anomaly classifier used (as will be described more).
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Fig. 4.2 Feature forecasting approach for anomaly prediction

Fig. 4.3 Anomaly score forecasting approach for anomaly prediction

• Forecasting Features: In this approach, features are forecasted using dynamic
models built for the time evolution of features, and the forecasted values are sent
to classifier. A high-level depiction of the feature forecasting approach is shown
in Fig. 4.2, where the feedback loop depicts the repetition of the forecasting for
multi-step ahead prediction.

• Forecasting Anomaly Score: In this approach, the anomaly score is directly
forecasted, as depicted in Fig. 4.3. Hence, instead of forecasting the features and
sending the forecasted features to the classifier, the dynamic models are built for
the anomaly score time series directly.

Note that assuming that there is only a single classifier for global detection and
a single classifier for each local node, the anomaly score of each classification is a
scalar, so suchmodelwould only have a single output. This significantly simplifies the
dynamic models, reducing the number of model outputs from the number of features
to only 1. Again, the anomaly score forecasting may be done both at the local and
global levels. The states of the such a model may be the features or just the anomaly
score. This method essentially simplifies the problem into forecasting a scalar. Note
that as shown in Fig. 4.3, this brings the decision boundary into the forecasting loop.
The dynamic models built in this approach will collectively represent the feature
evaluation and the anomaly score evolution combined.

4.2.3 Dimensionality Reduction

Large-scale systems might have hundreds of monitoring nodes. Feature discovery
techniques may lead to selection of several features for each node, resulting in a
very large number of features to be forecasted. The following methods are used for
dimensionality reduction in those large-scale systems.
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4.2.3.1 Forecasting Features

In Feature Space

The number of features may be reduced using data dimensionality reduction meth-
ods such as PCA, ICA, and isoMap. This may be done for both the local and global
levels. This enables the creation of scalable dynamic models.

In Dynamic State Space

Once the dynamic models are built, if the number of states (features and their lagged
values) at each node or that of the global level is still large (normally> 50), dynamic
model-order reduction techniques, such as balanced truncation or H∞ norm-based
model-order reduction, may be used to further reduce the dimensionality of the fore-
casting problem. The model-order reduction is performed using these two criteria:

• Model Accuracy: The error between the original model and the reduced-order
model is less than a prescribed threshold using Hankel norm or H∞ norm bounds.
This determines the order of the reduced-order model. The error threshold may
be selected by evaluating the forecasting accuracy of the reduced-order model or
based on the preservation of the model observability (described below).

• Model Observability: The reduced-order model remains observable. In particular,
in the original model, the features might be both the states and the outputs (i.e., an
identity state to output mapping). Hence, the reduced-order model may have more
outputs than states. The order and the model accuracy threshold then are selected
in a manner to preserve the observability.

4.2.3.2 Forecasting Anomaly Score

If after dimensionality reductions in feature and/or state spaces, the order of themodel
is still high (normally > 50) or if the dimensionality reduction cannot be done in a
way to properly satisfy the aforementioned criteria, then instead of forecasting the
features, the anomaly score of the classifier is directly forecasted. In this approach,
instead of forecasting the features and sending the forecasted features to the classifier,
the dynamic models are built for the anomaly score time series directly. Note that
the anomaly score is a scalar, so such model would only have a single output. This
significantly simplifies the model reduces the number of model outputs (from the
number of features to 1). Again, the anomaly score forecasting may be done both at
the local and global levels. The states of such a model may be the features or just the
anomaly score.

In the rest of this chapter, wewill focus on forecasting using the feature forecasting
approach, but the same tools and technique are applicable to the anomaly score
forecasting as well.
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4.2.4 Forecasting Process

The forecasting system is comprised of offline (training) and online (operation)
modules.During the offline training, as shown inFig. 4.4 themonitoringnodedatasets
are used for feature engineering and decision boundary generation. To select the
features, feature discovery techniques are used as described inSect. 4.2.5. Then, state-
space ensemble dynamicmodels are generated for the time evolution of features both
at the global (for overall system status) and local (i.e., per monitoring node) levels
as described in Sect. 4.3.1. At each level, dynamic forecasting models are generated
for forecasting at three time scales, short term, mid-term, and long term, depending
on the fundamental sampling time of the control system. Also, decision boundaries
are computed both at the local and global levels as binary classifiers using machine
learning techniques as described in Sect. 4.3.5.

The online module of forecasting system is shown in Fig. 4.5. First, each monitor-
ing node signal goes through real-time feature extraction to create real-time feature
time series. The features are computed using a sliding window over the monitoring
node signals. In the next step, the extracted feature time series are inputted to multi-
step predictors, both at the local and global levels. Using the models generated in the
training phase and the multi-step predictors, future values of the feature time series
are forecasted, both for local and global features, in three time scales:

1. Short-term feature forecast: future values of the global and local features (e.g.,
up to several seconds).

2. Mid-term feature forecast: future values of the global and local features (e.g.,
up to several minutes).

3. Long-term feature forecast: future values of the global and local features (e.g.,
up to several days).

Fig. 4.4 Anomaly forecast systems: offline training
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Fig. 4.5 Anomaly forecast systems: online operation

While the short-term forecast is useful for rapid detection of the incipient and tran-
sient faults and cyber-attacks, mid-term and long-term forecasts are helpful in early
detection of stealthy cyber-attacks as well as component failures due to degradation.
The forecasted outputs of models (aka, future values of the features) are compared
to the corresponding decision boundaries for predictive anomaly detection. While
comparing the feature vectors to the decision boundary, estimated time to cross the
decision boundary will provide information for future anomaly. If a future anomaly
is detected, an early warning is generated in the operator display with anticipated
time to reach anomalous state and a message is sent to the automatic accommodation
system (such as an attack-tolerant or fault-tolerant resilient control mechanism) for
potential early engagement. The current values of the features along with the deci-
sion boundaries provide a deterministic decision of the current status of the system,
while the forecasted features provide a probabilistic decision on the future system
status. The global feature forecast is used for system-level anomaly detection (overall
system health status) and the local feature forecasts are used for anomaly isolation
(locate the abnormal nodes of the system).Using this framework a predictive situation
awareness is established for the system.

4.2.5 Feature Discovery

The proposed sensing approach should handle many types of inputs from multiple
heterogeneous data stream in complex hyper-connected systems. Signals from time
domain are converted to features using multi-modal multi-disciplinary (MMMD)
feature discovery framework employed as in machine learning discipline (Yan and
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Yu 2015). A “feature” may refer to, for example, mathematical characterizations of
data and is computed in each overlapping batch of data stream. Examples of features
as applied to sensor data can be classified broadly into knowledge-based, shallow,
and deep features.

Knowledge-based features use domain or engineering knowledge of physics of the
system to create features. These features can be simply statistical descriptors (e.g.,
max, min, mean, variance), and different orders of statistical moments, calculated
over a window of a time-series signal and its corresponding FFT spectrum as well.
Shallow features are from unsupervised learning (e.g., k-means clustering), mani-
fold learning, and nonlinear embedding (e.g., isoMap, locally linear embedding), low
dimension projection (e.g., principal component analysis, independent component
analysis), and neural networks, along with genetic programming and sparse cod-
ing. Deep learning features can be generated using deep learning algorithms which
involve learning good representations of data through multiple levels of abstraction.
By hierarchically learning features layer by layer, with higher level features repre-
senting more abstract aspects of the data, deep learning can discover sophisticated
underlying structure and features. Still other examples include logical features (with
semantic abstractions such as “yes” and “no”) and interaction features.

Several methods have been proposed in the literature for feature selection and
features ranking of ELM for classification and regression problems )(Wang et al.
2018; Yin et al. 2017). Machine learning-based attack and fault-detection algorithms
can in general incorporate large number of features, with the number of features
selected based on the Receiver Operating Characteristic (ROC) curve analysis to
optimize the detection and false alarm rates. Different number of features might be
selected for each individual monitoring node, however, from a systems engineering
perspective, to streamline the design, it is preferred to choose the same type and
number of features for all nodes, except if a particular node needs special treatment.
In this work, for each monitoring node of the gas turbine, we have selected five
features which are a combination of statistical and temporal features. At the system
level, we have also selected multivariate features which consist of cross-correlations
between critical measurements.

For the forecasting at the global level (i.e., the system level), the global feature
vector is formed by stacking up the local feature vectors of the individual monitoring
nodes. For large-scale systems with many monitoring nodes, the size of the global
feature vector might be very large, and thus it can be reduced by dimensionality
reduction techniques such as Principal Component Analysis (PCA).

4.3 Ensemble Forecasting

The forecasting framework described in the previous section is based on ensemble
models which are used in adaptive Kalman predictors to provide ensemble feature
forecasts. The ensemble feature forecasts are then averaged using dynamic weights



70 M. Abbaszadeh et al.

to provide the overall feature forecast. The process described in the section is applied
separately and in parallel to the local features of each individual monitoring node,
as well as to the global feature vector.

4.3.1 Ensemble Modeling in Feature Space

The forecasting models at each time scale (short term, mid-term, and long term)
consist of a collection of ensemble models, each providing an ensemble forecast
of the features. These ensembles ensure coverage of whole operating space with
operational and ambient condition variations. The operating space is partitioned
through Gaussian Mixture Model clustering. A mixture model is a statistical model
for representing datasets which display behavior that cannot be well described by a
single standard distribution. It allows a complex probability distribution to be built
from a linear superposition of simpler components. Gaussian distributions are the
most common choice as mixture components because of the mathematical simplicity
of parameter estimation as well as their ability to perform well in many situations
(Dempster et al. 1977).

Gaussian mixture models can be used for stochastic data clustering. To select
the operating point associated with each ensemble model, we use GMM clustering
in the feature space. The GMM clustering partitions the operating space (projected
into feature space) into multiple clusters each represented by a multivariate Gaus-
sian process described by a mean (centroid) and a covariance matrix. The centroid
of each cluster represents the operating point for each ensemble model, while its
covariance matrix establishes a probabilistic membership function. The Expectation
Maximization (EM) algorithm is a maximum likelihood estimation method that fits
GMM clusters to the data. The EM algorithm can be sensitive to initial conditions,
and therefore we repeat the GMM clustering multiple times with randomly selected
initial values and choose the fit that has the largest likelihood.

Since GMM is a soft clustering method (i.e., overlapping clusters), all points
in the operating space belong to all clusters with a membership probability. As an
example, Fig. 4.6 shows the GMM clustering at the global level for our gas turbine
dataset, where the horizontal axis is the number of clusters and the vertical axis is the
Bayesian Information Criterion (BIC) computed for different covariance structures
per number of clusters. BIC provides a right trade-off between model accuracy and
complexity, thus avoiding over-fitting to the training dataset. The model with the
lowest BIC is selected. As seen in the figure, the optimal clustering is achieved with
seven clusters with Gaussian models having full (i.e., non-diagonal) unshared (i.e.,
individual) covariance matrices.

Remark 4.1 Note that at the local node level, GMM clustering can be done for each
monitoring node separately, resulting in different number of ensembles for eachmon-
itoring node.
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Fig. 4.6 BIC for GMM clustering. ©2018 IEEE. Reprinted, with permission, from (Abbaszadeh
et al. 2018)

4.3.2 Adjusting Cluster Centroids to Physical Points

The GMM clustering may select centroid of the clusters as any arbitrary real-valued
vector in the feature space. However, since centroids are deemed as operating points
to create state-spacemodels, they need to be associatedwith actual physical operating
points of the system. This can be achieved in two ways:

• Mixed-integer programming for EM: GMM clustering uses Expectation Maxi-
mization (EM) algorithm for cluster optimization. Rather than running the standard
EM, one can use a modified EM to enforce searching for centroids only among
the points given in the training dataset (which are readily physical points of the
systems). This is essentially similar to running k-medoids clustering rather than k-
means clustering but in a GMM framework. This normally requires mixed-integer
programming and is feasible for small- and medium-sized datasets.

• Heuristics based: Adjust the centroids of GMM into closest point in the dataset
in post-processing. This is particularly efficient for large datasets. Moreover, since
large datasets comprise of high granularity data, the distance of the initial centroid
to the closest point in the data is often small and negligible. This can be further
validated by putting a threshold on such point adjustments. As a result of centroid
adjustment, the covariance matrices of each GMM clusters are also adjusted. Sup-
pose thatμi andΣi are the centroid and covariance of the i-th cluster, respectively,
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and the closest point to μi is μ̄i whose Euclidean distance to μi in feature space
is di , i.e., μ̄i − μi = di . Then, we have

μi → μ̄i = μi + di , (4.1)

Σi → Σ̄i = Σi + didi
T , (4.2)

which means that the Gaussian model associated with the i-th cluster is adjusted
from N (μi ,Σi ) toN (μ̄i , Σ̄i ).

In this work, since we have a large-scale dataset with high resolution, we use the
heuristics-based method described above to adjust the cluster centroids to the nearest
physical point as needed.

4.3.3 Dynamic Modeling

Once the number and structure of the clusters are determined, the cluster centroids
are selected as the representative operating points of the system, and a dynamic
model is developed for the time series of each monitoring node of each operating
point (aka ensemble models). The time-series dynamic modeling can happen using
different linear or nonlinear time-series modeling techniques. The choice of linear
versus nonlinear modeling can be made by assessing the feature time series through
linearity tests such as those described in Harvey and Leybourne (2007). For linear
time-series data, Vector Autoregressive (VAR) models are proved to be a powerful
tool. For nonlinear time-series modeling, nonlinear autoregressive models, Volterra
series, or recurrent neural networks (such as LSTM) could be used. In this work,
due to the good fit of the feature time-series data in the linear space, the time series
are modeled as VAR models. A VAR model is a multivariate autoregressive model
that relates the current value of the time series to its previous values through a linear
mapping plus a constant bias term. Essentially, this is not an input–output modeling
but a time-series output modeling, assumed to be derived by an unknown stochastic
input. VAR models are vastly used for modeling of time-series signals (Johansen
1995), similar to what we measure here from our monitoring nodes. The number of
lags required for eachVARmodel is again determined usingBIC. This determines the
order of the models, which could be different among the ensembles. The parameters
of the VARmodels are identified, and the models are then converted into the standard
state-space form for each ensemble, as follows:

x[k + 1] = Ax[x] + Bu[k] + Qe[k], (4.3)

y[k] = Cx[k] + v[k], (4.4)

where x is the vector of monitoring node features and their lagged values, u is a
fictitious Heaviside step function capturing the bias term of the VAR model, e is a
zero-mean Gaussian white noise with Identity covariance, E[eeT ] = I , and Q is the
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process noise covariance. The model outputs y here are the monitoring node features
with some assumedmeasurement noise v, whose covariance R is adaptively updated,
as will be described later.

If the model is VAR(1), i.e., having one lag, then C = Iq , where q is the num-
ber of local features for each individual monitoring node (here, for our gas turbine
application, q = 5). In general, for a VAR(p) model with p lags, per ensemble, per
node, we have

x[k] =
[
x f
1 [k] · · · x f

q [k] · · · x f
1 [k − p + 1] · · · x f

q [k − p + 1]
]T

, (4.5)

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 A2 · · · Ap−1 Ap

Iq 0q · · · 0q 0q
0q Iq · · · 0q 0q
...

...
. . .

...
...

0q 0q · · · Iq 0q

⎤
⎥⎥⎥⎥⎥⎦

, (4.6)

B =
[
b 0q · · · 0q︸ ︷︷ ︸

1,...,p−1, p>1

]T

, C =
[
Iq 0q · · · 0q︸ ︷︷ ︸

1,...,p−1, p>1

]
, (4.7)

where x f
i , i = 1, . . . , q are the local features for an individual monitoring node.

The initial value of R is set using noise characteristics of the raw measurements,
linearly projected into the feature space as follows. Suppose yr is the raw measured
value of an individual monitoring node and the scalar vr is the corresponding mea-
surement noise, yr [k] = r [k] + vr [k], where r is the true value of the signal and vr is
a zero-mean Gaussian white noise with variance σ . The feature vector y correspond-
ing to this particular monitoring node is the projection of yr in the feature space.
Suppose that F : R → Rq is the mapping from the raw signal measurement to its
features. The raw data is projected into the feature space as

[
x f
1 [k] · · · x f

q [k]
]T = Cx[k] = F (r [k]). (4.8)

Then we have

y[k] = F (yr [k]) = F (y[k] + vr [k])
� F (r [k]) + ∂F

∂r |r=r [k]
vr [k] � Cx[k] + J (r [k])vr [k]

� Cx[k] + v[k], (4.9)

where v is the derived measurement noise in the feature space and J is the Jaco-
bian of F with respect to r . From (4.9), it is clear that the covariance of v is
σ J (r [k])T J (r [k]). Note that the scalar measurement noise of an individual mon-
itoring node in the signal space is projected into a multivariate noise in the feature
space. The linear approximation of noise maintains the noise zero-mean Gaussian
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white. This approximation is only used for the initial guess of the covariance, since
after the initialization it is adaptively estimated.

As mentioned before, the number of such state-space models for each monitoring
node equals the number of correspondingGMMclusters. The order of the state-space
models remains the same within the ensembles of one particular node, but may differ
from one node to another depending on the number of local features selected for
each node.

4.3.4 Dynamic Ensemble Forecast Averaging

Within our proposed framework, different type of the predictors may be used
to provide ensemble forecasts. This simplest predictor could be the model (4.4)
itself, repeatedly executed using previous predictions through the prediction hori-
zon. Although simple, this approach quickly leads to large prediction errors since
there is no control or adjustment over the error covariance. Another simple approach
is to use parametric predictionmethods such as exponential smoothing. They provide
certain level of parameter tuning capability but still suffer from proper error control.
As such, although both approaches are applicable within our proposed framework,
they are both limited to only very short prediction horizons.

In this chapter, an adaptive Kalman predictor (AKP) is applied to each ensemble
model to provide ensemble forecasts. The process noise covariance of the Kalman
predictor is readily available as Q as in (4.4). It is worthmentioning that for nonlinear
models, an adaptive EKF or UKF can be used still in a similar fashion within the
same framework. The covariance of themeasurement noise of eachAKP is estimated
adaptively using the method proposed in Ding et al. (2007); Rutan (1991) as follows.

v̂[k] = y[k] − CT x̂[k|k − 1], (4.10)

R[k] =

⎧⎪⎪⎨
⎪⎪⎩

σ J (r [k])T J (r [k]) k = 1, . . .m
1
m

[∑m
j=1 v̂[k − j]v̂[k − j]

]
. . .

−CT Pe[k|k − 1]C k > m,

(4.11)

where v̂ is the predictor innovation sequence,m is the width of an empirically chosen
rectangular smoothing window for the innovations sequence, and Pe is the predic-
tion error covariance matrix. The smoothing operation improves the statistical sig-
nificance of the estimator for R[k], as it now depends on many residuals. Figure4.7
shows the block diagram for dynamic ensemble forecast averaging, where N is the
number of ensembles corresponding to a monitoring node and P is the forecast-
ing horizon. It is worth mentioning that the ensemble modeling (GMM clustering
and state-space system identification) is performed using normal dataset only as the
models capture the normal operational behavior of the system, while the decision
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Fig. 4.7 Block diagram for dynamic ensemble forecast averaging. ©2018 IEEE. Reprinted, with
permission, from (Abbaszadeh et al. 2018)

boundaries are computed using both normal and abnormal datasets. Furthermore, to
emphasize the recent data, a forgetting factor is used in the covariance matrix update
of each of the Kalman predictors.

The forecasting horizon of the multi-step forecasts can be determined using simu-
lations, based on the prediction error and some threshold on the confidence interval.
As the forecasting horizon extends, the confidence interval expands and eventually
passes the threshold. Each AKP provides an ensemble forecast ŷM , M = 1, . . . , N .
The ensemble forecasts are dynamically averaged using weight w1, . . . ,wN . The
weights are time varying and computed as normalized probabilities using the multi-
variate Gaussian probability density functions with mean and covariances computed
during the GMMclustering. Suppose the real-time value of the feature vector is x[k],
and the mean and covariance of each Gaussian cluster are μi and Σi , respectively.
Then we have

dM [k] = Pr
{
x[k] | x[k] ∼ N (μi ,Σi )

}
, M = 1, . . . , N ,

wM [k] = dM [k]∑N
M=1 dM [k] ,

N∑
M=1

wM [k] = 1,

ŷ[k + i] =
N∑

M=1

wM [k]ŷM [k + i], i = 1, . . . , P.
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The ensemble averaged forecast ŷ[k + i] is returned back to the AKPs as the next
input, to provide the next-step forecast receding horizon fashion, up to the forecast-
ing horizon.

Remark 4.2 Alternatively, the ensemble forecast of each AKP, ŷM [k + i], could be
fed back for multi-step forecasting, but feeding back ŷ[k + i] to all AKPs is better,
since it is a better prediction of system’s true behavior.

4.3.5 Receding Horizon Anomaly Forecast

The forecasted features, ŷ, are compared to a decision boundary for anomaly fore-
casting in each node. At each sampling time, a P-step ahead forecast of the features
is computed using the dynamic ensemble averaging method. In the next sampling
time, the horizon moves forward (recedes) by one time step, and a new forecast is
computed through the new forecasting horizon.

k :
[
ŷ[k + 1],ŷ[k + 2], . . . , ŷ[k + P]

]
,

k + 1 :
[
ŷ[k + 2], ŷ[k + 3], . . . , ŷ[k + P + 1]

]
,

k + 2 :
[
ŷ[k + 3], ŷ[k + 4], . . . , ŷ[k + P + 2]

]
,

. . .

At each sampling time, the last forecast in the horizon ŷ[k + P] is compared to the
decision boundary. This is similar to the Model Predictive Control (MPC), except
that in MPC, at each sampling time, the first control action in the horizon is applied
to the system.

Each decision boundary is computed by training an Extreme Learning Machine
(ELM) as a binary classifier in a supervised training framework. ELM is a special
type of feed-forward neural networks recently introduced (Huang et al. 2012). ELM
was originally developed for the single hidden layer feed-forward neural networks
(SLFNs) and was later extended to the generalized SLFNs where the hidden layer
need not be neuron alike (Huang et al. 2013). Unlike in traditional feed-forward
neural networks where training the network involves finding all connection weights
and bias, in ELM, connections between input and hidden neurons are randomly
generated and fixed, that is, they do not need to be trained. Thus training an ELM
becomes finding connections between hidden and output neurons only, which is
simply a linear least squares problem whose solution can be directly generated by
the generalized inverse of the hidden layer output matrix (Huang et al. 2012).

Because of such special design of the network, ELM training becomes very fast.
The structure of a one-output ELM networks is depicted in Fig. 4.8. Assume the
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Fig. 4.8 An ELM network
with one output. ©2018
IEEE. Reprinted, with
permission, from
(Abbaszadeh et al. 2018)

x(d)

x(2)

x(1)

h1(x)

hL(x)

h2(x)

h3(x)

1
2

3

L

f (x)

number of hidden neurons is L. Then the output function of ELM for generalized
SLFNs is

f (x) =
L∑
j=1

β j h j (x) � h(x)βββ, (4.12)

where hi (x) = G(φi , bi , x) is the output of j th hidden neuron with respect to the
input x ;G(φ, b, x) is a nonlinear piecewise continuous function satisfying ELMuni-
versal approximation capability theorems (Huang et al. 2006); β j is the output weight
vector between j th hidden neuron to the output node; and h(x) = [h1(x), . . . , hL(x)]
is a random feature map, mapping the data from d-dimensional input space to the
L-dimension random feature space (ELM feature space).

The objective function of ELM is an equality-constraint optimization problem, to
minimize both the training errors and the output weights, which can be written as

Minimize: Lp = 1

2
‖βββ‖2 + 1

2
c

Nd∑
i=1

ξ 2
i (4.13)

s.t.: h(xi )βββ = li − ξi , i = 1, . . . , Nd , (4.14)

where ξi is the training error with respect to the training sample xi , li is the label of the
i th sample, and Nd is the number of training samples (in the normal and abnormal
datasets combined). The constant c controls the trade-off between the output weights
and the training error.

Based on the Karush–Kuhn–Tucker (KKT) condition, we can have the analytic
solutions for the ELM output function f for non-kernel and kernel cases, respec-
tively (see Huang (2014) for details). Since kernel two-class ELM learns a nonlinear
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hyperplane, it generally works better than non-kernel two-class ELM. Therefore, we
have used a kernel ELM using a Radial Basis Function (RBF) kernel.

The distance d of any point (a sample) to the hyperplane constructed by the
ELM can conveniently serve as an anomaly score, that is, the larger the distance,
the more likely the sample is abnormal. Here f is an anomaly score function whose
sign (compared to a threshold, normally, zero) determines the binary classification
decision on the system status. We have trained the ELM such that normal samples
generate negative scores.

4.3.6 Committed Horizon Anomaly Forecast

An extension to receding horizon prediction is committed horizon prediction (Chen
et al. 2019). It considers a so-called commitment level V < P , and instead of com-
mitting to only one estimate obtains the final predicted value at time k by combining
(e.g., via a weighted average) the estimates of the V receding horizon instances from
time k + 1 to k + V . Therefore, with a P-step look ahead, the effective prediction
horizon is P − V . In other words, at each time instance, there is a delay of V sam-
pling times to get the forecast of P steps ahead. Committed horizon prediction tends
to give better estimates because it accounts for both future and past information,
and also provides an additional mechanism to adjust the trade-off between delay and
prediction accuracy (Chen et al. 2019). However, it reduces the effective prediction
horizon, and hence its capability to generate rapid early warnings for anomaly detec-
tion applications. Nevertheless, the committed horizon prediction approach may still
be effectively used for short-term forecasting, especially if the sampling rate is much
faster than the system dynamics.

4.4 Predictive Situation Awareness

In general, predictive situation awareness has three main elements (Endsley 1995):

1. Perception: monitoring the environment.
2. Comprehension: understanding the current situation.
3. Projection: predicting the evolution of the situation.

Figure4.9 depicts the block diagram of situation awareness modules in this work.
Here, the perception element consists of collecting and pre-processing data from
the monitoring nodes including feature extraction and any dimensionality reduction.
Comprehension is provided by the anomaly detection module supplying the current
system status, and Projection is performed through anomaly forecasting.

As data is processed in stream or batch modes, anomaly detection provides an
instance decision on the current system status, which is either normal or abnormal
(attack or fault). Before an anomaly happens, the current system status is normal
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and it remains normal until an anomaly actually occurs. The anomaly detection
algorithm detects an anomaly once it happens based on an anomaly score calculated
at the current time instant passing a prescribed threshold (which could be fixed or
adaptive itself). In addition, the situation awareness provides a predictive decision
and generates early warnings. At each time instant, the forecasting algorithm projects
the current status into future using stochastic dynamic forecasting described in the
previous sections. The predictive status remains normal until the predicted anomaly
score passes the threshold. Once an early warning is generated, future forecasting
still continues, with a probabilistic decision on the predicted systems status based
on anomaly score. The anomaly score increases between the time an early warning
is generated and the time an anomaly actually happens, at which point the current
status also reflects the anomaly. The concept is depicted in Fig. 4.10.
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4.5 Simulation Results

To generate the early warning, the forecasted outputs of models (aka, future values
of the features) are compared to the corresponding decision boundaries for anomaly
detection. While comparing the feature vectors to the decision boundary, estimated
time to cross the decision boundary will provide information for future anomaly.
Figure4.11 shows the early warning generation for a DWATT (gas turbine-generated
power) sensor false data injection attack based on a short-term (10 s ahead) forecast.
It is worth mentioning that this attack case was not included in the training dataset
so this simulation represents an independent cross-validation of the algorithm. The
attack is injected at t = 129.Without forecasting, the detection algorithm detects it at
t = 150.With the 10-s ahead forecast, the forecasted features pass the local boundary
at t = 140, at which point an early warning is generated. As seen, the forecasting is
able to generate early warning 10 s ahead of the actual detection happening. With
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Fig. 4.11 Anomaly forecast and early warning generation for DWATT sensor. ©2018 IEEE.
Reprinted, with permission, from (Abbaszadeh et al. 2018)
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Fig. 4.12 Forecasted score for DWATT and confidence intervals for the whole simulation time and
one forecasting horizon. ©2018 IEEE. Reprinted, with permission, from (Abbaszadeh et al. 2018

this technology, we are able to compensate for the delay in detection and generate
early warning in the very early stage of an attack. Similarly, once the disturbance
rejection control of the gas turbine brings the system back into the normal region,
the forecasting algorithm is able to predict that before the actual system status goes
back to normal. Note that here we are forecasting the features directly, and the
anomaly score indirectly by passing the forecasted features through the decision
boundary. Hence, the confidence intervals of ensemble feature forecasts are readily
available from theAKPs, while those of the averaged forecasts and the anomaly score
are computed using interval arithmetic (Bland and Altman 1996). The forecasted
features are computed in a receding horizon with a forecasting horizon of 10 s (i.e.,
10-step ahead forecasts are used for anomaly decision). In every sampling time, a
10-s forecast is computed along with its confidence interval. In the next sampling
time, a new receding horizon forecast is computed, sliding the previous horizon by
1 s. Figure4.12 shows the forecasted score for DWATT and confidence intervals for
the whole simulation time and one forecasting horizon, respectively. The simulation
is performed for 250 s (thus, 240 s of 10-step ahead receding horizon forecasts).
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4.6 Conclusions

In this work, a framework for anomaly forecasting and early warning generation
in industrial control systems is proposed based on a new feature-based dynamic
ensemble forecasting method. The cyber-physical system anomalies addressed here
could be either of cyber-incident or of naturally occurring faults/failures nature. The
ensembles are selected via GMM clustering based on BIC criterion, each repre-
senting an operating point of the system. The cluster centroids are adjusted to the
nearest physical points in the training dataset, and the associated covariance matri-
ces are updated accordingly. Ensemble forecasts are provided by adaptive Kalman
predictors applied to dynamic VAR models in the feature space, and fused through
dynamic averaging, while the averaging weights are calculated using the Gaussian
clusters mean and covariance matrices. The forecasts are multi-step and performed
on different time scales in a receding horizon fashion. To predict the future status
of the system, the forecasts are compared to decision boundaries computed using
extreme learning machines. High-fidelity simulations on a GE gas turbine digital
twin platform show the efficacy of our approach.
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Chapter 5
Resilient Observer Design for
Cyber-Physical Systems with
Data-Driven Measurement Pruning

Yu Zheng and Olugbenga Moses Anubi

5.1 Notation

The following notation and definitions are used throughout the whole chapter:
R,Rn,Rn×m denote the space of real numbers, real vectors of length n, and real
matrices of n rows and m columns respectively. R+ denotes the space of positive
real numbers. Normal-face lower-case letters (e.g., x ∈ R) are used to represent real
scalars, bold-face lower-case letters (e.g., x ∈ R

n) represent vectors, while normal-
face upper-case letters (e.g., X ∈ R

n×m) represent matrices. X�
. denotes the trans-

pose of matrix X . 1n and In denote vector of ones and identity matrix of size n
respectively. Let T ⊆ {1, . . . , n}, then for a matrix X ∈ R

m×n , XT ∈ R
|T |×n is the

sub-matrix obtained by extracting the rows of X corresponding to the indices in
T . T c denotes the complement of a set T , and the universal set on which it is
defined will be clear from the context. The support of a vector x ∈ R

n , a set of the
indices of nonzero entries, is denoted by supp(x) � {i ⊆ {1, . . . , n} | xi �= 0}. If
|supp(x)| = k, we say x is a k-sparse vector. Moreover, Σk ⊂ R

n denotes the set of
all k-sparse vectors inRn . The operator argsort ↓ (x) denotes a function that returns
the sorted indices of vector x in descending order of the magnitude of xi . The symbol
& denotes logical “AND” operator. The symbol ∗ denotes the convolution opera-
tor for vectors. The symbol 	 denotes element-wise multiplication of two vectors,
z = x 	 y ⇒ zi = xiyi . The expression x ∼ B(1, p) means that random variable x
follows the Bernoulli distribution with Pr{x = 1} = p. The weighted 1-norm of a
vector z ∈ R

n with the weight vector w ∈ R
n is given by ‖z‖1,w �

∑n
i=1 wizi .
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5.2 Introduction

As the backbone of future critical infrastructures, Cyber-Physical Systems (CPS) are
complicated integration of computation, communication, and physical components.
Security, within the context of CPSs, poses more challenges compared to both tradi-
tional information technology (IT) security and operational technology (OT) security
due to the temporal dynamics brought by physical environment and the heteroge-
neous nature of operation of CPSs (Khaitan and McCalley 2014). In the context of
CPS, failures induced by malicious attacks are beyond random failures studied in
reliability engineering or well-defined uncertainty classes in robust control. More-
over, the coupling of computation and communication with distributed sensing and
actuation components increases the vulnerability to attacks (Zetter 2015; Lee et al.
2014; Slay and Miller 2007; Chen and Abu-Nimeh 2011).

The control design for CPSs usually consists of an observer to estimate the states
of the physical system and a controller to compute the control commands based on
the state estimation. Thus, the control system receives diverse information frommea-
surement substations and distributes the computed control commands to a number of
actuators through a communication network (Burg et al. 2017). Thus, an elaborate
attack on a CPS can be designed by considering the networked closed-loop interac-
tion between the cyber and physical agents. Furthermore, the dispersed geographical
distribution and abundance of unmanned facilities also provide malicious attackers
the opportunity to construct coordinated attacks. These attacks, studied extensively
in literature, either targets the system integrity (Bishop 2003), such as stealth attacks
(Sui et at. 2020), replay attacks (Fang et al. 2020), covert attacks (de Sá et al. 2017),
and FDIA (Zheng and Anubi 2020) or the availability (Bishop 2003), such as denial
of service (DoS) (Pelechrinis et al. 2010). The locations of those attacks are shown in
Fig. 5.1. It was shown in Liu et al. (2011), Guo et al. (2016), Mo and Sinopoli (2010),
that if FDIA is defined properly, it can exploit certain underlying vulnerabilities of
bad data detection (BDD) schemes in order to force an erroneous state estimation
using sparse measurement corruption. Consequently, in this chapter, we consider
the resiliency of a class of observers against FDIA. If the observer estimates, using
compromised measurements, are close to the true states, then control performance
can be guaranteed with any control design which is robust to estimation error.

Fig. 5.1 Locations of
attacks in CPS in the context
of security control (SA:
stealth attack, CA: covert
attack, RA: replay attack,
FDIA: false data injection
attack, DoS: denial of
service)
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One of the pioneering works on resilient observer was presented in Fawzi et al.
(2014), where an unconstrained �1 observer was proposed to achieve exact state
recovery. A necessary and sufficient condition for exact recovery is that less than
half of the system’s measurements be compromised. The authors in Shoukry and
Tabuada (2015) proved this condition from an interesting aspect of s-sparse observ-
ability and proposed an event-triggered Luenberger observer against FDIA. In Chong
et al. (2015), the authors presented a more systematical work on the observability of
the linear system under attacks and proposed aGramian-based estimator. The authors
in Pajic et al. (2015) and the authors in Lee et al. (2015) both considered resilient
estimation in the presence of noise and attacks at the same time and constructed
�1-�2 observers. The authors in Nakahira and Mo (2018) considered a robust esti-
mation scheme against FDIA, in which local robust estimators and global fusion are
combined to achieve resilient-robust estimation. Readers can also refer to Shoukry
et al. (2017) for feasible resilient estimation methods by Satisfiability Modulo The-
ory (SMT) solvers. However, all the above observers would not achieve successful
resilient estimationwhen 50%, ormore, of systemmeasurements are attacked. Equiv-
alently, the system is not 2k-detectable, where k is the number of attacks. This is a
significant limitation since it requires that there be twice as many as needed mea-
surement stations installed for a CPS, and the system has to be observable for every
combination of 50% of the total sensors. This is a property that is currently not
achieved by most critical cyber-physical critical infrastructures like the power grid.

In order to increase the corresponding percentage of attacked nodes forwhich state
recoveries can be guaranteed, researchers have begun to incorporate prior information
into the underlying resilient observer design framework. There aremainly three kinds
of prior information considered in literature: state prior (Shinohara et al. 2019), mea-
surement prior (Anubi and Konstantinou 2019; Anubi et al. 2020), and support prior
(Anubi et al. 2018; Zheng and Anubi 2020). In Shinohara et al. (2019), three types of
state prior were discussed: sparsity information of the estimated states, (α, n0) spar-
sity information, where the estimated states are assumed to have α instead of 0 in the
sparsity form, and side information, which is the knowledge of the initial states from
the physical attribution of the system and cannot bemanipulated bymalicious agents.
Although the resiliency of the observer can be improved with such knowledge of the
states of the system, it is very difficult to obtain such information in practice. This will
require a prior determination of the state distribution for all operating conditions of an
uncertain, large-scale nonlinear, and sometimes hybrid system.

Support prior is the estimated information of attack locations, which can be
given by some data-driven localization algorithm or learning-based anomaly detec-
tion methods, such as watermark-based methods (Liu et al. 2020), moving-target
based approach (Weerakkody and Sinopoli 2015), distributed support vectormachine
(Esmalifalak et al. 2014), deep learning neural network (He et al. 2017), and many
more (Ozay et al. 2015; Abbaszadeh et al. 2019, Deldjoo et al. 2021, Huang et al.
2014). Although the localization algorithms can be readily defined and are very use-
ful for monitoring purposes, using this kind of support prior to resilient estimation
has two main drawbacks; imprecise classification and high training price. This limits
their applicability for piratical purposes. In this chapter, we examine a class of prun-
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ingmethods to generate a feasible pruned support prior with predetermined precision
guarantees. Coupling the pruning algorithm with any localization algorithm can sig-
nificantly improve the resulting precision, which directly improves the resiliency of
the underlying resilient estimation process. This means a less precise localization
algorithm can be tolerated, thus slashing the required training price. The initial prun-
ing idea was introduced in Anubi et al. (2018), analyzed, and improved in Zheng and
Anubi (2021). In this chapter, a more detailed mathematical foundation is given, in
addition to improved implementation.

Measurement prior is a collection of additional auxiliary information about system
measurements that is unknown to the malicious attackers. A direct use of measure-
ment prior in resilient observer design was shown in Anubi et al. (2020), Anubi
and Konstantinou (2019), Anubi et al. (2019) to improve the limit of the percentage
of compromised measurement for which exact recovery is guaranteed from 50% to
80%. Also, the watermark-based detection approaches (Liu et al. 2020) and moving-
average detection approaches (Weerakkody and Sinopoli 2015) both use the addi-
tional information in an authentication layer in order to detect the attacks. Thus,
against measurement attacks, the measurement prior and support prior are related.
An advantage of measurement prior is its expansibility to the authentication layer.
Themoremeasurement priors that can be constructed usually provide better detection
precision. In this chapter, we will utilize a measurement prior constructed by using
a data-driven auxiliary model between auxiliary variables and the system measure-
ments. The attacked measurements will then be detected if they cannot be explained
by both the system dynamics and the measurement model prior with high likelihood,
thus reducing the resulting attack surface.

The remainder of this chapter is organized as follows: In Sect. 5.3, concurrent
models of CPS, including physical model, monitoring model, thread model, prior
model, and pruning algorithm are given; in Sect. 5.4, the resilient observer design
with data-driven measurement pruning is given; in Sect. 5.5, numerical simulation
and application examples are given to demonstrate the performance of the designed
observer compared to other resilient observers in the severe adversarial environment;
concluding remarks follow in Sect. 5.6.

5.3 Concurrent Models

To discuss the resilient observer design, relevant model developments are discussed
in this section. Since CPS is a seamless integration of computational components,
physical processes, and communication network systems, a single-layer model can-
not sufficiently describe the complex characteristics of CPS. Also, as a closed-loop
system, separately and independentlymodeling the separate layers cannot capture the
tight interaction between the cyber and physical layers (Lee 2010). Concurrent mod-
eling has been used as a good way to describe the complex operation on CPS (Derler
et al. 2011), where different models in different hierarchies work concurrently. As
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shown in Fig. 5.2, this small version of CPS has four concurrent loops; the physical
dynamical loop, prior generation loop, monitoring path, and attack injection.

The rest of the subsections are dedicated to discussing, in more detail, the mod-
eling aspects for each layer, the underlying assumptions, and connections with the
subsequent resilient observer design.

5.3.1 Physical Model and Monitor

A linear time invariant (LTI) model is considered to describe the physical behavior
of the CPS in Fig. 5.2.

xi+1 = Axi
yi = Cxi + ei ,

(5.1)

wherexi ∈ R
n is the internal state vector of physicalmodel at time i which is unknown

to other parts of the concurrent model, yi ∈ R
m is the measurement vector, ei ∈ R

m

is the time-varying attack-noise vector. The measurement attacks and noise terms
are modeled as additional error signals. Control inputs may be included in the model
above. However, since control inputs are generally irrelevant to state estimation
problems, we suppress it in the model considered here.

The following assumptions are used in subsequent developments:

1. The pair (A,C) is observable.
2. The measurements are redundant (m > n).
3. The attack signal is possibly unbounded and sparse, ei ∈ Σk for some k < m.
4. The attack-free part of ei is bounded,

∑

i∈T c

|ei | < ε, for some ε > 0.

Fig. 5.2 Concurrent model
on CPS (xa is an auxiliary
state used in the prior model)
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By iterating the systemmodel (5.1) T time steps backwards, the T -horizon obser-
vation model is given by

yT = Hxi−T+1 + eT , (5.2)

where yT = [y�
i , y�

i−1, . . . , y
�
i−T+1]� ∈ R

Tm is a sequence of observation in the
moving window [i − T + 1, i], xi−T+1 ∈ R

n is the state vector at time i − T + 1,
eT = [e�

i , e�
i−1, . . . , e

�
i−T+1]� is the sequence of attack-noise vectors in the same

moving window, H ∈ R
Tm×n is the observation matrix, H =

⎡

⎢
⎢
⎢
⎣

CAT−1

...

CA
C

⎤

⎥
⎥
⎥
⎦

.

The following definitions formalize the notions of a decoder and a detector, which
are used subsequently.

Definition 5.1 (Decoder) Given an observable pair (A,C) and a horizon parameter
T , a decoder D : RTm → R

n is an operator given by

x̂ = D(yT | H) = argmin
x∈Rn

‖yT − Hx‖1, (5.3)

where yT = {yi , yi−1, . . . , yi−T+1} is a moving-windowed measurement vector his-
tory and x̂ ∈ R

n is the resulting estimated initial state vector xi−T+1. When the
parameter is clear from context, they are dropped from the argument list for clarity.

Definition 5.2 (Detector) Given the measurements yT ∈ R
Tm taken in the moving

window [i − T + 1, i], a detector based on the �1 decoder is mapping of the form:

ΨT : {yT } → {Ψ1, Ψ2},

where Ψ1 ∈ {0, 1}1 is the first output argument indicating whether or not the mea-
surement yT is attacked,Ψ2 ∈ 2{1,2,··· ,m} is the second output argument indicating the
support of attack locations.

The decoder–detector pair constitutes a monitor scheme for the system (5.1), as
shown in the remark below.

Remark 5.1 (Residual-based monitor mechanism) Given a threshold value ε0 > 0,
the monitor returns Ψ1 = {0} in the first output argument for a given measurement
vector history yT = {yi , yi−1, . . . , yi−T+1} if there exists a corresponding state tra-
jectory X̂T = {x̂i , x̂i−1, . . . , x̂i−T } such that

‖x̂ j+1 − Ax̂ j‖ ≤ ε0, j = i − T, . . . , i − 1

‖y j − C x̂ j‖ ≤ ε0, j = i − T + 1, . . . , i.

1 0: safe, 1: unsafe.
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Otherwise, the monitor returns Ψ1 = {1} in the first output argument and also the
support of the sparsest attack trajectory eT = {ei , ei−1, . . . , ei−T+1} such that

‖x̂ j+1 − Ax̂ j‖ ≤ ε0, j = i − T, . . . , i − 1

‖y j − C x̂ j − e j‖ ≤ ε0, j = i − T + 1, . . . , i.

5.3.2 Threat Model

Following the setup above, we give a formal definition of successful FDIA and
prescribe conditions under which an FDIA will successfully corrupt a decoder while
evading detection by the residual-based monitor. To design a successful FDIA, the
following assumptions aremade, which arewidely used in literatureMo and Sinopoli
(2010), Mo and Sinopoli (2015):

1. The attacker has perfect knowledge of the system dynamics in (5.1).
2. The attacker can inject arbitrary bias at the compromised nodesT ⊂ {1, · · · ,m}.
3. The number of nodes the attacker can simultaneously compromise at any given

time is bounded. In other words, the attackers have limited resources.

Notice, the known information of system to attacker includes the system dynamics,
for example, the H matrix, and the decoder–detector scheme. All other information,
such as the true state variables, are unknown to the attacker.

Definition 5.3 (Successful FDIA Mo and Sinopoli (2010)) Consider the CPS in
(5.1) and the corresponding measurement model (5.2). Given a positive integer k <

m, the attack sequence eT ∈ ΣT k is said to be (ε, α)-successful against the decoder-
detection pair described above if

‖x� − D(yT )‖2 ≥ α, and ‖yT − HD(yT )‖2 ≤ ε, (5.4)

where yT = y�
T + eT with y∗

T ∈ R
Tm being the true measurement vector, and x� is

the true state vector.

In the above definition, k quantifies the attack sparsity level per time. Specifically, it
is the maximum number of attacks at each time index. Given the support sequence
T = {Ti Ti−1 · · ·Ti−T+1} with |Ti | ≤ k. Let xe be an optimal solution of the opti-
mization program

Maxmize : ‖HT x‖1,
Subject to : ‖HT cx‖1 ≤ ε.

(5.5)

Then a FDIA can be defined as

eT = HT xe, eT c = 0. (5.6)
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The following theorem shows the condition under which the defined FDIA above
is (ε, α)-successful for the given attack support T .

Proposition 5.1 (Zheng and Anubi (2021)) Suppose there exists a vector w ∈
range(H) such that

‖wT ‖1 > ‖wT c‖1, (5.7)

then the FDIA in (5.6) is (ε, α)-successful against the decoder-detector pair in

Definition 5.1 and Remark 5.1 for all α ≤ σ1−1√|T |σT −σT c
ε, with |T | >

σ 2
T c

σ 2
T
, where

σT and σT c are the largest and smallest non-zero singular values of HT and HT c

respectively, and

σ1 = max
v∈Rn\{0}

‖HT v‖1
‖HT cv‖1 .

Remark 5.2 If, in addition, null(HT c)\null(HT ) �= ∅, let vn ∈
null(HT c)\null(HT ), then ‖HT cvn‖1 = 0 but ‖HT vn‖1 > 0. Thus, σ1 ≥ ‖HT v‖1

‖HT c v‖1
is infinite, which implies that the FDIA in (5.6) is (ε, α)-successful for all ε, α ∈ R+.

5.3.3 Data-Driven Auxiliary Measurement Prior

In this subsection, we present a data-driven auxiliary measurement prior based on
a generative probabilistic regression model constructed using the Gaussian process
(GP). This prior model is a mapping from the chosen auxiliary variables to the
observed measurements, which plays the role of an additional authentication layer.

Given a dataset Z ,Y , where Z ∈ R
p×N is thematrix collecting the auxiliary states

columnwise, Y ∈ R
m×N is the matrix of the corresponding observed measurements,

the goal is to learn the underlying function f : Rp → R
m such that

yi = f (zi ) + ε, i = 1, · · · , N , (5.8)

where ε ∼ N (0, σ 2). To achieve this goal, certain restrictions have to be made on
the properties of the underlying function. Otherwise, all potential functions fitting the
training dataset would be equally valid. As a means of regularization, we assume that
the underlying function f is restricted to a class defined by a given Gaussian process.
A Gaussian process (GP) is a generalization of Gaussian probabilistic distribution
Rasmussen (2003). It is a collection of random variables, every finite subset of which
are jointly Gaussian (Urtasun and Darrell 2008). Gaussian process regression (GPR)
uses GPs to encode prior distribution over functions f . Thus, suppose f ∈ GP, then
it satisfies the following distribution point-wise:

f (z) ∼ N (m(z), k(z, z′)), (5.9)
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wherem(z) = E[ f (z)] is themean function and k(z, z′) = E[( f (z) − m(z))( f (z′) −
m(z′))�] is the covariance function encoded, apriori, by the kernel function k. The
model of GP contains two parts: a joint distribution model and a kernel function.
Kernel functions capture the similarity between the function’s (or model’s) outputs,
for given inputs. The design of the kernel function depends on the prior knowledge
of the process that generated the data in question. For example, suppose we know
that the output of the process changes slowly with respect to change in input, the
smoothness of prior knowledge can be modeled in the kernel function used by the
GP. One of the commonly used kernel functions is the square exponential covariance
function (also called RBF), given by Liu et al. (2018)

k
(
z, z′) = A exp

{

−‖z − z′‖2
2l

}

, (5.10)

where the hyperparameters A and l are amplitude coefficients and describe a single
scaling factor on the influence of nearby observations, respectively. For a compre-
hensive summary of kernel functions, the readers are directed to Liu et al. (2018).

Given a query point z� ∈ R
p for the auxiliary measurement, by applying Bayes’s

rule, the posterior distribution for j-th observed measurement y j = f j (z) is given
by

p(y j | z,D) = N (μ j (z),Σ j (z)), (5.11)

where

μ j (z) = k(z)�(K + σ 2
j I )

−1Y�
j

Σ j (z) = k(z�, z�) − k(z)�(K + σ 2
j I )

−1k(z), j = 1, 2, · · · ,m,
(5.12)

and K =
⎡

⎢
⎣

k(z1, z1) · · · k(z1, zN )
...

. . .
...

k(zN , z1) · · · k(zN , zN )

⎤

⎥
⎦ ∈ R

N×N , k(z) =
⎡

⎢
⎣

k(z1, z�)
...

k(zN , z�)

⎤

⎥
⎦ ∈ R

N are

covariance matrix on training dataset, and covariance vector between training
auxiliary states zi , i = 1, 2, · · · , N and the query point z� respectively.

The overall observed measurements’ posterior distribution is then given by

p(y | z,D) =
m∏

j=1

N
(
μ j (z),Σ j (z)

) = N (μ(z),Σ(z)), (5.13)

where μ(z) =
⎡

⎢
⎣

μ1(z)
...

μm(z)

⎤

⎥
⎦ , Σ(z) =

⎡

⎢
⎣

Σ1(z)
. . .

Σm(z)

⎤

⎥
⎦ . Next, the localization

algorithm based on the trained GPRs in (5.12), (5.13) is given in Algorithm 5.1.
Based on the localization algorithm, if a measurement cannot be explained by the
trained prior model, it will be recognized as being attacked. In other words, the prior
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model provides an additional layer of security by (1) requiring the attacker to have
knowledge of the auxiliary model and the parameters and (2) limiting the magnitude
of possible state corruption.

Algorithm 5.1 Localization Algorithm with Measurement Prior
I. Inputs: y ∈ R

m (real measurement), z ∈ R
p (auxiliary variables)

II. Parameters: m trained GPR models GP
III. Posterior distribution:

GP j (z) → {μ j ,Σ j } ∀ j = 1, 2, · · · ,m

IV. Calculate Z-score:

z j = y j − μ j

Σ j

V. Calculate probability:

pc j = 1 − PX (|x | ≤ |z j |) = 1 −
∫

|z j |
e− x2

2√
2π

∀ j = 1, 2, · · · ,m

VI. Attack support prior:

T = 0m; T j = 1 if pc j ≤ 0.5 ∀ j = 1, 2, · · · ,m

VII. Outputs: T ∈ R
m , (support prior), pc ∈ R

m (confidence)

5.3.4 Prior Pruning

As shown in the previous subsection, estimated support prior T̂ can be generated by
somemachine learning localization algorithms. However, there are major limitations
preventing their direct usage as the prior information in resilient observer design. One
is the huge amount of training often needed for high enough precision will prevent
such prior from being deployed for a dynamic observer, where the real-time update
is paramount. Another limitation is that the precision of data-driven results cannot
be guaranteed due to their inherent uncertainties. Consequently, several fundamental
questions emerge, which require significant research effort to address. For example,
what is the quantitative relation between the resulting resilient estimation error bound
and the auxiliary model uncertainty? In this subsection, a relationship is derived, or
such connection, and a prior pruningmethod is considered tomend some deficiencies
in order to improve the degradation due to the uncertainty of the prior model in the
final estimation error bound.

Let T = supp(e) be the unknown actual support of attacked channels. Let the
vector q ∈ {0 1}Tm be an indicator of T defined element-wise as:
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qi =
{
0 if i ∈ T
1 otherwise.

(5.14)

Thus, the output of the localization algorithm T̂ ⊆ {1, 2, · · · , Tm} is actually an
estimate of T , and its corresponding indicator q̂ ∈ {0 1}Tm is defined similarly to
(5.14). Consequently, the precision of the support prior is evaluated using positive
prediction value (Fawcett 2006) instead of true positive rate, F1 score, or other
evaluation metrics. This is because the only factor affecting the resilient estimation
performance is the error in the estimated prior support of safe nodes T̂ c, which is
directly used in the observer.

Definition 5.4 (Positive Prediction Value, Precision, PPV (Fawcett (2006))) Given
an estimate q̂ ∈ {0, 1}Tm of an unknown attack support indicator q ∈ {0, 1}Tm , PPV
is the proportion of q that is correctly identified in q̂. It is given by

PPV = ‖q 	 q̂‖�0

‖q̂‖�0

. (5.15)

Aswill be shown in subsequent sections, the precisionPPV is positively correlated
to the performance of resilient estimation.

The agreement between T̂ andT can be described using a Bernoulli uncertainty
model since T̂ can be seen as an output of binary classifier. Thus, the following
uncertainty model is considered:

qi = εi q̂i + (1 − εi )(1 − q̂i ), (5.16)

where εi ∼ B(1,pi ), with known pi ∈ R+ based on Receiver Operating Character-
istic (ROC). Here pi = E[εi ] = Pr {εi = 1}. Next, some initial results are given to
aid in the subsequent observer development.

Lemma 5.1 With respect to the uncertainty model in (5.16), the PPV defined in
(5.15) can be expressed as:

PPV = 1

|T̂ c|
∑

i∈ ˆT c

εi . (5.17)

Proof From (5.16), it follows that qi q̂i = εi q̂i . This implies that

PPV = ‖q 	 q̂‖�0

‖q̂‖�0

=
∑Tm

i=1 qi q̂i
∑Tm

i=1 q̂i
= 1

|T̂ c|
Tm∑

i=1

εi q̂i = 1

|T̂ c|
∑

i∈ ˆT c

εi .

�
Proposition 5.2 (Zheng and Anubi (2021)) The support estimate is better than
random flip of a fair coin if and only if
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Tm∑

i=1

pi > TmpA, (5.18)

where pA ∈ (0, 1) is the expected fraction of attacked nodes. Moreover, if pA is
the maximum fraction of attacked nodes, then the conclusion is sufficient, but not
necessary.

Lemma 5.2 (Fernández and Williams (2010)) Given mutually independent
Bernoulli random variables εi ∼ B(1,pi ), i = 1, · · · , N, the following holds:

Pr

{
N∑

i=1

εi = k − 1

}

= r(k), k = 1, · · · , N + 1, (5.19)

where r = β ·
[−s1

1

]

∗
[−s2

1

]

∗ · · · ∗
[−sm

1

]

, with β =
N∏

i=1

pi and si =

−1 − pi
pi

.

Now, we are ready to introduce the pruning method. The central idea is: if we
could identify the errors in the prior information, then the precision of prior can be
improved. In fact, the precision of prior will be improved by choosing an appropriate
subset. However, how to achieve the best pruning performance, quantify the precision
improvement, and improve resulting estimation resiliency are all essential but open
questions. Here, we will give a formal definition of pruning operation, then provide
some answers and give a simple algorithm to achieve sub-optimal pruning goal.

Definition 5.5 (Pruning, Pruning Operation, PPVη) Given a prior support estimate
T̂ , Pruning Operation, with parameter η, is any operation, or sequence of operations,
which returns an updated estimated support prior T̂η ⊂ {1, · · · , Tm} such that

T̂ c
η ⊆ T̂ c.

Also the precision of pruned support prior T̂η is given by

PPVη = 1

|T̂ c
η |
∑

i∈ ˆT c
η

εi . (5.20)

The following proposition quantifies the resulting precision improvement through
the defined pruning operation.

Proposition 5.3 Given an estimated attack support T̂ ⊆ {1, 2, · · · , Tm} with the
uncertainty characteristic described in (5.16). Let T̂η be a pruned support estimate

satisfying T̂ c
η ⊆ T̂ c, then, for any γ ∈ (0, 1),
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Fig. 5.3 A comparison
between random pruning
operation and ordered
pruning operation

Pr
{
PPVη − γPPV ≥ 0

} ≥
| ˆT c

η |+1
∑

j=1

⎛

⎝rη( j)
Φ j−1+1∑

i=1

r̃(i)

⎞

⎠ , (5.21)

where

rη =
⎛

⎜
⎝
∏

i∈T̂ c
η

pi

⎞

⎟
⎠

[−sη,1
1

]

∗
[−sη,2

1

]

∗ · · · ∗
[−s

η,|T̂ c
η |

1

]

, sη,i = −
1 − p

T̂ c
η ,i

p
T̂ c

η ,i

,

r̃ =
⎛

⎜
⎝

∏

i∈T̂ c\T̂ c
η

pi

⎞

⎟
⎠

[−s̃1
1

]

∗
[−s̃2

1

]

∗ · · · ∗
[−s̃|T̂ c\T̂ c

η |
1

]

, s̃i = −
1 − p

T̂ c\T̂ c
η ,i

p
T̂ c\T̂ c

η ,i

,

and Φk = min

{

�[
] |T̂ c|

γ |T̂ c
η | − 1�k, |T̂ c| − |T̂ c

η |
}

.

The lower bound given by Proposition 5.3 can be expressed as r�
η rΦ, where

rΦ ∈ [0, 1]| ˆT c
η | is a vector whose entries are functions of |T̂ c|, |T̂ c

η |, γ and r̃. Thus,

given pi , T̂ , γ and a fixed integer lη ≤ |T̂ c|, the pruned support T̂η can be chosen to
maximize r�

η rΦ . However, such optimization problem is challenging and potentially
NP-hard due to the index searching operation involved. But a simple heuristic of
returning the indices of the channels with largest pi in T̂ c

η can provide a very good
sub-optimal estimation. This idea is central to the pruning algorithm considered
in this chapter. Figure5.3 shows the comparison of the ordered pruning idea vs.
randomly selecting a subset of T̂ . This illustrative example clearly demonstrates
that ordered operation can offer some advantages. Next, one of the ordered pruning
algorithms is given in Algorithm 5.2.
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Algorithm 5.2 Support Prior Pruning Algorithm
I. Obtaining reliable trust parameter
Given reliability level η ∈ (0, 1), return the maximum size lη such that lη safe nodes are correctly
localized with a probability of at least η:

lη = max

⎧
⎨

⎩
k | Pr

⎧
⎨

⎩

∑

i∈ ˆT c

εi ≥ k

⎫
⎬

⎭
≥ η

⎫
⎬

⎭

= max

{

k |
k+1∑

i=1

r ˆT c (i) ≤ 1 − η

} (5.22)

where r ˆT c is given by (5.19), using the index set T̂ c. II. Pruning
A pruned support prior is obtained through a robust extraction:

T̂ c
η = {argsort ↓ (p 	 pc)

}lη
1 . (5.23)

where, {·}lη1 is an index extraction from the first elements to lη elements, pc is the confidence vector
outputted by Algorithm 5.1, p is the probability vector of agreement ε based on ROC.

For pragmatic reasons, it is important to ensure that lη > 0 in (5.21). This is
guaranteed if η is chosen such that at least one node is selected into the pruned set.
Formally, this condition is given by:

η ≤ max
i∈ ˆT c

(pi ). (5.24)

Definition 5.6 (η-successful pruning algorithm) A η-successful pruning algorithm
is any pruning operation, as defined in Definition 5.5, that achieves:

Pr
{
PPVη = 1

} ≥ η.

Proposition 5.4 (Zheng and Anubi (2021)) Given support prior estimate T̂ gener-
ated by an underlying localization algorithm with associated uncertainty model in
(5.16), the pruning algorithm in Algorithm 5.2 is η-successful.

5.4 Pruning-Based Resilient Estimation

In this section,wewill go through resilient observer designs using �0\�1 minimization
schemes. Firstly, the unconstrained �1 observer will be stated. Then, we will give a
weighted �1 observer design and state the condition for resilient estimation with the
pruned prior support. Furthermore, the quantified relationship between the precision
of prior support and the resilient estimation performance will be clarified.
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Researchers in compressed sensing have paid much attention to the recoverabil-
ity of �0\�1 minimization problem in the last decade. Most of the effort focused
on finding well-defined compressed matrix satisfying Null Space Property (NSP) or
Restricted Isometry Property (RIP) . Then, the complete information can be recon-
structed by �0\�1 minimization problem from the compressed measurements. From
a mathematical aspect, the decoding process is to solve an under-determined set of
equations, which does generally not have unique solutions. However, if the required
solution is sparse, it can be recovered completely via �0 minimization. The condition
on sparsity for exact unique recovery is also well known. However, the �0 mini-
mization problem is an NP-hard optimization problem. However, NSP or RIP pave
way for a convex relaxation via the �1 minimization problem. Interested readers are
directed to Donoho (2006), Candès et al. (2006), Candes and Tao (2005), Fornasier
and Rauhut (2015) for more comprehensive treatment of compressed sensing, and
Candes and Tao (2007), Friedlander et al. (2011) for several extension cases.

The basic motivation for using �1 minimization for attack-resilient estimation
is because the attack is possibly unbounded but is necessarily sparse. Consider the
measurementmodel in (5.2), if a codingmatrix F can be found that satisfies FH = 0,
then a new under-determined equation Fy = Fe is obtained. If the sparse attack
vector is recovered, the resilient estimation goal is easily achieved. In this section,
instead of finding a coding matrix F directly, we would formulate the problem
within the familiar framework of linear systems theory and prove results similarly
to compressed sensing literature.

5.4.1 Unconstrained �1 Observer

In this subsection, we discuss the uniqueness of resilient estimation solutions in
the presence of measurement attacks and introduce the concept of Column Space
Property (CSP). Furthermore, the estimation error bound is given using CSP.

Consider the system model in (5.1) and the unconstrained �1 decoder in (5.3), a
formal notion of attack recovery is given as following:

Definition 5.7 (Resilient Recovery) k sensor attacks are correctable after T steps
by D : (Rm)T → R

n if for any x0 ∈ R
n and any sequence of attack vectors

e0, e1, . . . , eT−1 ∈ R
m with supp(et ) ≤ k, we have D(y0, · · · , yT−1) = x0.

The following theorem states the uniqueness of resilient estimation solution:

Theorem 5.1 Given attack support T = {Ti ,Ti−1, . . . ,Ti−T+1} with |Ti | ≤ k.
Consider the noise-free version of the measurement model in (5.2). If, for any
h ∈ range(H), it is true that

‖hS ‖1 ≤ ‖hS c‖1, ∀S ⊂ {1, 2, · · · , Tm}, |S | ≤ T k, (5.25)

then, for each attacked measurement yT ∈ R
Tm, there exists an unique state vector

x̂ ∈ R
n and T k-sparse attack vector ê which satisfy (5.2).
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Proof Let (z1, e1), (z2, e2) ∈ R
n × ΣT k such that yT = Hz1 + e1 = Hz2 + e2,

then H(z1 − z2) = e2 − e1. Thus, the uniqueness condition holds iff range(H) ∩
Σ2T k = {0}. Now, given h ∈ range(H) which satisfies (5.25), it suffices to show
that ‖h‖0 > 2T k.

Suppose, for the sake of contradiction, that ‖h‖0 ≤ 2T k. Choose S ∈
{1, 2, · · · , Tm}, |S | = T k to be the indices of the largest components of h in abso-
lute value.

Then, it must be that

‖hS ‖0 > ‖hS c‖0 ⇒ ‖hS ‖1 > ‖hS c‖1,

which is a contradiction. Thus, (5.25) implies that ‖h‖0 > 2T k. �

Consequently, a formal definition of column space property is given as follows.

Definition 5.8 (Column Space Property (CSP)) A matrix H ∈ R
m×n has a Column

Space Property of order s < m (denoted as H � CSP(s)) if there exists β ∈ (0, 1)
such that, for every h ∈ range(H),

‖hS ‖1 ≤ β‖hS c‖1, ∀S ⊂ {1, 2, · · · ,m}, |S | ≤ s. (5.26)

The above definition is similar to the well-known Null Space Property but defined
on the range space instead. For dynamic system (5.1), the unconstrained �1 observer
is defined as a moving-horizon unconstrained �1 minimization problem:

Minimize
i∑

j=i−T+1

‖y j − Cx j‖1

Subject to x j+1 − Ax j = 0, j = i − T + 1, . . . , i − 1.

(5.27)

An equivalent optimization problem of (5.27) is given by

Minimize
x∈Rn

‖yT − Hx‖1. (5.28)

The following theorem gives the conditions for resilient recovery of the state
vector obtained by the above observer.

Theorem 5.2 (Resilient Recovery with CSP) Consider the measurement model in
(5.2), let T = {Ti ,Ti−1, . . . ,Ti−T+1}, with |Ti | ≤ k, be the unknown sequence of
the attack support. If H � CSP(T k), the estimation error due to the decoder in (5.28)
can be upper bounded as:

‖x̂ − x‖2 ≤ 2(1 + β)

σ(1 − β)
ε, (5.29)

for some β ∈ (0, 1), and σ is the smallest singular value of H.
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Proof Let x̂ be the optimal solution of (5.28), then its optimality yields

‖y − H x̂‖1 ≤ ‖y − Hx‖1 = ‖e‖1
‖y − Hx + H(x − x̂)‖1 ≤ ‖e‖1.

Let x̃ = x − x̂, and since 1-norm is decomposable for disjoint sets, then

‖e + H x̃‖1 ≤ ‖e‖1,
‖eT + HT x̃‖1 + ‖eT c + HT c x̃‖1 ≤ ‖eT ‖1 + ‖eT c‖1,

‖eT ‖1 − ‖HT x̃‖1 − ‖eT c‖1 + ‖HT c x̃‖1 ≤ ‖eT ‖1 + ‖eT c‖1.

And let h = H x̃, it follows

‖hT c‖1 ≤ ‖hT ‖1 + 2ε. (5.30)

Since H � CSP(T k), there exist β ∈ (0, 1) such that ‖hT ‖1 ≤ β‖hT c‖1.
Thus ‖hT ‖1 ≤ 2β

1−β
ε. Then, ‖h‖2 ≤ ‖hT ‖1 + ‖hT c‖1 ≤ 2‖hT ‖1 + 2ε ≤ 2(1+β)

1−β
ε.

Finally, combining with σ‖x̃‖2 ≤ ‖h‖2 yields the error bound in (5.29). �

Notice that the CSP condition with β ∈ (0, 1) is a violation of the condition stated
in (5.7), which is a guarantee of successful FDIA. TheCSP condition is relevant to the
sparsity of the attack vector. As shown in literature Fawzi et al. (2014), the number of
attacks is one of the most important factors deciding if successful resilient estimation
would be achieved.With the increasing power of FDIA, it is more likely that the CSP
condition would be violated. This is one of the motivations for finding an improved
resilient estimation method in the worst environment.

5.4.2 Resilient Pruning Observer

In this subsection, we incorporate prior information into the resilient observer design.
First, support prior T̂ is generated by the localization algorithm in Algorithm 5.1.
Then the pruning algorithm in Algorithm 5.2 is used to improve the precision of
the support prior. Finally, a weighted �1 observer scheme is proposed to utilize the
pruned support prior T̂η. This process is summarized in Fig. 5.4.

Fig. 5.4 Schematic
depiction of resilient
observer design with prior
pruning
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Consider a time horizon T and a set of attack support prior obtained by
Algorithm 5.1: T̂ = {T̂i , T̂i−1, . . . , T̂i−T+1}. The following weighted �1 observer
is considered:

Minimize
i∑

j=i−T+1

‖y j − Cx j‖1,w( ˆT j ,ω)

Subject to x j+1 − Ax j = 0, j = i − T + 1, . . . , i − 1,

(5.31)

where, for ω ∈ (0, 1), the weight vector w(T̂ j , ω) ∈ R
m is defined element-wise

as

w(T̂ j , ω)l =
{

ω if l ∈ T̂ j

1 otherwise.
(5.32)

The optimization problem in (5.31) is equivalent to

Minimize
z∈Rn

‖yT − Hz‖1,w( ˆT ,ω)
, (5.33)

where w(T̂ , ω) =
⎡

⎢
⎣

w(T̂i , ω)
...

w(T̂i−T+1, ω)

⎤

⎥
⎦ ∈ R

Tm .

Theorem 5.3 (Resilient Recovery with support prior T̂ ) Consider the measure-
ment model in (5.2), let T = {Ti ,Ti−1, . . . ,Ti−T+1}, with |Ti | ≤ k, be the
unknown support sequence of the attack vector such that

∑

i∈T c

|ei | < ε. Let T̂ =
{T̂i , T̂i−1, . . . , T̂i−T+1} be a support prior estimate satisfying

|T̂ | = ρ|T | and |T ∩ T̂ | = α|T̂ |. (5.34)

If H � CSP(κT k), where κ = ρ + 1 − 2αρ with ρ > 0, α ∈ (0, 1), then the esti-
mation error due to the decoder in (5.31) can be upper bounded as:

‖x̂ − x‖2 ≤ 2(1 + β)

σ(1 − β)
ε, (5.35)

for some β ∈ (0, 1), where σ is the smallest singular value of H.

Proof Let x̂ be the optimal solution of (5.33), and define x̃ = x − x̂,h = H x̃. Similar
to the proof of Theorem 5.2, the optimality of x̂ yields

‖e + h‖1,w( ˆT ,ω)
≤ ‖e‖1,w( ˆT ,ω)

. (5.36)
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By the definition of weighted 1-norm, it follows that ω‖e ˆT + h ˆT ‖1 + ‖e ˆT c +
h ˆT c‖1 ≤ ω‖e ˆT ‖1 + ‖e ˆT c‖1, then

ω‖e ˆT ∩T + h ˆT ∩T ‖1 + ω‖e ˆT ∩T c + h ˆT ∩T c‖1 + ‖e ˆT c∩T + h ˆT c∩T ‖1
+ ‖e ˆT c∩T c + hc

ˆT c∩T ‖1 ≤ ω‖e ˆT ∩T ‖1 + ‖e ˆT ∩T c‖1 + ‖e ˆT c∩T ‖1 + ‖e ˆT c∩T c‖1.

Using the reverse triangle inequality yields

ω‖h ˆT ∩T c‖1 + ‖h ˆT c∩T c‖1 ≤ ‖h ˆT c∩T ‖1 + ω‖h ˆT ∩T ‖1 + 2(‖e ˆT c∩T c‖1 + ‖e ˆT ∩T c‖1).

Adding and subtracting ω‖h ˆT c∩T c‖1 on the left, and ω‖h ˆT c∩T ‖1, ω‖e ˆT c∩T c‖1 on
the right yields:

ω‖hT c‖1 + (1 − ω)‖h ˆT c∩T c‖1 ≤ (1 − ω)‖h ˆT c∩T ‖1 + ω‖hT ‖1
+2(ω‖eT c‖1 + (1 − ω)‖e ˆT c∩T c‖1).

Again, adding and subtracting (1 − ω)‖h ˆT ∩T c‖1 on the left and substituting∑

i∈T c

|ei | < ε yields:

‖hT c‖1 ≤ ω‖hT ‖1 + (1 − ω)(‖h ˆT c∩T ‖1 + ‖h ˆT ∩T c‖1) + 2ε.

Let Tα � (T̂ c ∩ T ) ∪ (T̂ ∩ T c) = T̂ ∪ T \ T̂ ∩ T . It follows that |Tα| =
κ|T | ≤ κT k. Also, since T̂ c ∩ T and T̂ ∩ T c are disjoint, the inequality above
becomes

‖hT c‖1 ≤ ω‖hT ‖1 + (1 − ω)‖hTα
‖1 + 2ε. (5.37)

Since H � CSP(κT k), we have

‖hT ‖1 ≤ β‖hT c‖1 (5.38)

‖hTα
‖1 ≤ β‖hT c

α
‖1. (5.39)

Using (5.39) and property of 1-norm yields:

‖hTα
‖1 + ‖hT c

α
‖1 = ‖h‖1

‖hTα
‖1 ≤ β

1 + β
‖h‖1. (5.40)

Then, substituting (5.38) and (5.40) into (5.37) yields

(1 − βω)‖hT c‖1 ≤ β(1 − ω)

1 + β
‖h‖1 + 2ε. (5.41)

Next,
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‖h‖1 = ‖hT ‖1 + ‖hT c‖1 ≤ (1 + β)‖hT c‖1 ≤ β(1 − ω)

1 − βω
‖h‖1 + 2(1 + β)

1 − βω
ε,

then ‖h‖2 ≤ ‖h‖1 ≤ 2(1+β)

1−β
ε. Finally, combiningwith σ‖x̃‖2 ≤ ‖h‖2 yields the error

bound in (5.35). �

The estimation error bound in Theorem 5.3 is the same as the one in Theorem 5.2.
The only difference is that the upper bound of the number of attacks which can be
corrected by the underlying observer is governed by κ . If κ < 1, then the weighted
�1 observer with prior (5.31) has better attack-resiliency compared to the uncon-
strained �1 observer (5.27). Furthermore, the size of κ is actually the relative size of
the disagreement set Tα = T̂ ∪ T \ T̂ ∩ T between T and T̂ . Specifically, the
quantified relationship between the precision of support prior PPV and the disagree-
ment size κ is given by:

κ = ρ − 1 + 2(1 − PPV)(Tm − ρ|T |)
|T | ,

where ρ is given in (5.34). It is seen that the precision of support prior has a negative
correlation to the disagreement size κ . Thus, it has a positive correlation to the
attack-resiliency of the underlying observer. Another way to see this is to observe
that the condition in Theorem 5.3 can be stated as |Ti | ≤ Tk

κ
and H � CSP(T k),

from which it is clear that κ < 1 implies that more attacks can be accommodated by
the observer with prior. This is the main motivation for the pruning algorithm. Next,
the following corollary gives a better attack-resiliency of weighted �1 observer with
the pruned support T̂η.

Corollary 5.1 (Resilient Recovery with Pruned Prior T̂η) Given a support prior
T̂ = {T̂i , T̂i−1, · · · , T̂i−T+1} generated by the localization algorithm in Algo-
rithm 5.1. Let T̂η be the pruned support prior obtained from T̂ according to Algo-
rithm 5.2 with a parameter η ∈ (0, 1). Let the precision of T̂η be denoted by PPVη.

If H � CSP(κ1T k), where κ1 = |T c|+lη(1−2PPVη)

|T | , then the estimation error due to

(5.31) with T̂η can be upper bounded as

‖x̂ − x‖2 ≤ 2(1 + β)

σ(1 − β)
ε, (5.42)

for some β ∈ (0, 1), and σ is the smallest singular value of H.
Furthermore,with probability at leastη, the smallest disagreement size is obtained

as

κ1 = Tm − lη
|T | − 1. (5.43)

Proof (5.42) can be obtained by following the proof of Theorem 5.3 but usingPPVη

instead. To obtain (5.43), observe that with probability at least η, PPVη = 1. �
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5.5 Simulation Results

In this section, three application examples are given in power grid, wheeled mobile
robot, and water distributed system, respectively. These application examples are
used to demonstrate how to implement the developed observer in previous sections.
And the proposed pruning-based observer is compared to some well-known resilient
observers in literature, which shows the resilience of CPS is improved using the
pruning algorithm and concurrent learning prior.

5.5.1 Resilient Power Grid

Here, we implement the proposed pruning observer on an IEEE 14-bus system. The
simulation scenario is shown in Fig. 5.5. The bus system has nb = 14 buses and
ng = 5 generators. It is assumed that each bus in the network is equipped with IIoT
sensor devices, which provide the corresponding active power injection and flow
measurements.

A small signal model is constructed by linearizing the generator swing and power
flow equations around the operating point. The following linearizing assumptions
are made:

1. Voltage is tightly controlled at their nominal value.
2. Angular difference between each bus is small.
3. Conductance is negligible therefore the system is lossless.

By ordering the buses such that the generator nodes appear first, the admittance-

weightedLaplacianmatrix can be expressed as L =
[
Lgg Llg

Lgl Lll

]

∈ R
N×N , where N =

Fig. 5.5 Block diagram depiction of resilient power grid
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Fig. 5.6 Bad data detection result (the residual threshold is set as 0.05, 60% of measurement nodes
are attacked)

ng + nb. Thus, the dynamical linearized swing equations and algebraic DC power
flow equations are given by:

⎡

⎣
I 0 0
0 M 0
0 0 0

⎤

⎦ ẋ = −
⎡

⎣
0 −I 0
Lgg Dg Llg

Lgl 0 Lll

⎤

⎦ x +
⎡

⎣
0 0
I 0
0 I

⎤

⎦u, (5.44)

where x = [δ� ω� θ�]� ∈ R
2ng+nb is the state vector containing generator rotor

angle δ ∈ R
nb , generator frequency ω ∈ R

ng , and voltage bus angles θ ∈ R
nb . u =

[P�
g P�

d ]� ∈ R
ng+nb is the input vector consisting of mechanical input power from

each generator Pg ∈ R
ng and active power demand at each bus Pd ∈ R

nb , M is a
diagonal matrix of inertial constants for each generator, and Dg is a diagonal matrix
of damping coefficients.API regulator is included to regulate the generator frequency
in order to control the Pg . The system in (5.44) is then simplified as follows:

[
δ̇

ω̇

]

=
[

0 I
−M−1(Lgg − Lgl L

−1
ll Llg) −M−1Dg

] [
δ

ω

]

+
[

0 0
M−1 −M−1Lgl L

−1
ll

]

u,

[
ω

Pnet

]

=
[

0 I
−PnodeL

−1
ll Llg 0

] [
δ

ω

]

+
[

0 0
PnodeL

−1
ll 0

]

u,

θ = −L−1
ll (Llgδ − Pd ),

(5.45)
where Pnode is a function of the system incidence and susceptance matrices obtained
by linearizing the active power injections at the buses (Scholtz 2004), and Pnet is the
net power injected at each bus. As shown in Fig. 5.5, the FDIA designed using (5.5)
and (5.6) is injected into system through the sensor channels. The bad data detection
residual is then calculated after the FDIA is injected, as shown in Fig. 5.6. The figure
indicates the designed FDIA can bypass the bad data detector.

The prior model is a set of trained Gaussian process regression models mapping
from the real load data of New York (NY) state provided by the NY Independent
System Operator (NYISO) to IEEE 14-bus model (see Power System Test Case
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Fig. 5.7 GPRs’ prediction error metrics for all measurement nodes (The mean relative absolute
error is used to evaluate the prediction performance)

Fig. 5.8 The precision of support prior generated by the localization algorithm in Algorithm 5.1
for the power grid (The mean of precision is 0.655)

Archive 2022 for details of the model) measurements. Five-minute load data of
NYISO for 3months (between January and March) in 2017 and 2018 are used. The
IEEE 14-bus model is mapped onto the NYISO transmission grid (see New York
control area load zone map 2022 for details) as follows: A → 2, B → 3, C → 4,
D → 5, E → 6, F → 9, G → 10, H → 11, I → 12, J → 13, K → 14. Then,
the market variables downloaded from the respective nodes of NYISO transmission
grid are collected into the auxiliary vector variable z = [zlbmp zmcl zmcc], where
zlbmp is the locational bus marginal prices ($/MWh), zmcl is the marginal cost loses
($/MWh), and zmcc is the marginal cost congestion ($/MWh).

Using the load data downloaded at NY load zones for the same time period and
interval as output, GPR models were trained to map the auxiliary vector z to each
corresponding bus measurements y j containing active power and reactive power of
load buses. As shown in (5.12), the trained GPR models are executed to give the
mean μ(z) and the covariance Σ(z) of prior model for each of the measurements.
The prediction performance of those GPR models, measured by the mean relative
absolute errors (MRAE), is shown in Fig. 5.7. Finally, the localization algorithm in
Algorithm 5.1 is implemented on the system model in (5.45). The precision of the
generated support prior calculated at each time instance is shown in Fig. 5.8. The
mean of precision is 0.655, which indicates the localization algorithm at least works
better than random flip of fair coin.
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Furthermore, the developed resilient observer with support prior pruning is com-
pared with some well-known resilient observers in literature. Luenberger observer
(LO) is also included to serve as a reference and to show the effectiveness of the
designedFDIA.The unconstrained �1 observer (UL1O) (5.27), event-triggeredLuen-
berger observer (ETLO) (Shoukry and Tabuada 2015), and multi-model observer
(MMO) (Anubi et al. 2020) are all resilient observers included in the comparison.
MMO is a �1 observer with multiple constraints including system updating law and
themeasurement prior in (5.12). The core optimization problem solved for theMMO
is:

Minimize
k∑

i=k−T+1

‖yi − Cxi‖1

Subject to xi+1 − Axi − Bui = 0 j = i − T + 1, . . . , i − 1

‖Cxk − μ (zk)‖2Σ−1(z) ≤ χ2
m(τ ),

(5.46)

where χ2
m(τ ) is the quantile function for probability τ of the chi-squared distribution

with m degrees of freedom, and τ is the a pre-defined confidence threshold.
ETLO uses event-triggered projected gradient descent technique to achieve fast

and reliable solution to the batch optimization problem

Minimize: ‖Yt − [H I ]zt‖22
Subject to: zt ∈ R

n × ΣT k,

(5.47)

where the decision variable zt is an augmented states containing desired initial states
and all injected measurement error in T time horizon, Yt = [y1(t − T + 1)� y1(t −
T + 2)� · · · y1(t)� · · · · · · ym(t − T + 1)� ym(t − T + 2)� · · · ym(t)�]� ∈
RTm is the collection of measurements in T time horizon. A recursive solution to
(5.47) is then implemented as a Luenberger-like update

ẑ(m+1)
t = ẑ(m)

t + 2[H I ]�(Yt − [H I ]ẑ(m)
t ), (5.48)

alternated with a projection

ẑΠ = Π(ẑ), (5.49)

where Π : Rn × R
Tm → R

n × ΣT k is the associated projection operator.
Figure5.9 shows the comparison of the bus angles estimation errors for the dif-

ferent observers. it is seen that the RPO has the least error of all five observers.
The Luenberger observer is completely unstable as a result of the FDIA, which was
designed by compromising 19 sensor measurements. For the MMO, the value of
τ = 0.1 was used for the confidence value. For the ETLO, the value of v = −0.01
was used for the decreasing level of V . According to Theorem 5.3, it is proved that
the resiliency of observer can be improved by including support prior, thus, UL10
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Fig. 5.9 A comparison result of estimation error of bus angles by five observers on IEEE 14-bus
system (5.45) (LO: Luenberger observer, UL1O: unconstrained �1 observer, ETLO: event-triggered
Luenberger observer, MMO: multi-model observer, RPO: resilient pruning observer)

Fig. 5.10 Awater distribution tank coupling control system under false data injection attacks (black
solid lines are water pipelines, blue dotted lines are wireless data transmission lines for sensors data
and control commands, orange dotted lines are the attack injection paths)

works worse than MMO using the measurement prior directly and RPO using the
pruned support prior. Based on the Proposition 5.3, the pruning algorithm improves
the precision of the prior information, thereby the localization precision of the mea-
surement prior used in MMO is worse than the precision of the pruned support prior
used in RPO. Although there is no strict theoretical proof, it can be seen in Fig. 5.9
that RPO has better resiliency than MMO. Moreover, ETLO has the most smooth
estimation results since it used a projected gradient descent technique to solve the
optimization program in (5.47), which scarifies partial resilient performance during
recursive process.
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5.5.2 Resilient Water Distribution System

In this subsection,we introduce another application example on awater tank coupling
control system, shown in Fig. 5.10. The tank coupling system in Yang et al. 2020 is
extended to an 11-tank system, which contains 10 operatingwater tanks and a storage
tank. The goal is to regulate all operating tanks’ water levels around desired values.
The magnetic valves v at the entrance pipelines of operating tanks are controlled
to adjust the tank water levels. The magnetic valve at the entrance of the storage
tank is fixed at a constant opening value. It is assumed that there are water level
measurement sensors and pressure sensors in the pipelines. The pressure sensors can
measure the difference in water levels between adjoin tanks on each line. Thus, there
are 19 measurements total. The water level adjustment process can be approximated
by the LTI model:

ḣ = Ah + Bv

y = Ch,
(5.50)

where h, v ∈ R
10, y ∈ R19. The system dynamics is given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.5815 0 0 0 0 0 0 0 0 0
0.1870 −0.5906 0 0 0 0 0 0 0 0

0 0.1870 −0.5127 0 0 0 0 0 0 0
0 0 0.1870 −0.5913 0 0 0 0 0 0
0 0 0 0.1870 −0.5632 0 0 0 0 0
0 0 0 0 0.1870 −0.5098 0 0 0 0
0 0 0 0 0 0.1870 −0.5278 0 0 0
0 0 0 0 0 0 0.1870 −0.5547 0 0
0 0 0 0 0 0 0 0.1870 −0.5958 0
0 0 0 0 0 0 0 0 0.1870 −0.5965

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.8315 −0.8450 0 0 0 0 0 0 0 0
0 0.9941 −0.8450 0 0 0 0 0 0 0
0 0 0.9914 −0.8450 0 0 0 0 0 0
0 0 0 0.8971 −0.8450 0 0 0 0 0
0 0 0 0 0.9610 −0.8450 0 0 0 0
0 0 0 0 0 0.8284 −0.8450 0 0 0
0 0 0 0 0 0 0.8844 −0.8450 0 0
0 0 0 0 0 0 0 0.9831 −0.8450 0
0 0 0 0 0 0 0 0 0.9584 −0.8450
0 0 0 0 0 0 0 0 0 0.9919

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I10

1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The model in (5.50) was discretized using Euler discretization scheme with
sampling time 0.01s. A discrete LQR controller is designed using Q = 103 ×
diag{2, 1, 1, 2, 1, 1, 2, 1, 1, 2} and R = 0.2 × I10 to obtain the feedback control gain
K to regulate the water levels at hd = 0.01 ∗ 110, The control law is given by

v = −K (h − hd) − B−1Ahd + B−1hd .

The attack percentage is set as PA = 0.6, and by using the designed FDIA (5.6), it can
bypass the bad data detection threshold. Due to the lack of actual auxiliary data for
this case, sample support prior is created by generating uniformly distributed random
numbers in the interval [0, 1] for each measurement node. These numbers represent
the localization confidence values pi ’s used in Algorithm 5.2. The generated prior
information represents a localization algorithm whose performance is comparable
to the random flip of a fair coin. The reason for this is to show how the observers
perform using a relatively poor localization algorithm. The precision of the generated
support prior is shown in Fig. 5.11, the mean of precision is 0.5588. For a more
realistic situation, possible candidate auxiliary variables include atmospheric data
like temperature, humidity, atmospheric pressure, or any other values that can affect
the flow of water in a long pipe. Market data and time of day are also great candidates
for auxiliary variables.

Then the resilient estimation schemes described in the last subsection are also
implemented for this system. The comparison of the resulting estimation errors is
presented in Table5.1, in which relative mean square error and maximum absolute
error are given. Again, as seen in the table, the RPO outperforms the other observers
in terms of the given error metrics.

5.5.3 Resilient Wheeled Mobile Robot

For this example, a nonlinear observer scheme based on prior information is given
for the resilient motion control of wheeled mobile robot. Non-holonomic wheeled
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Fig. 5.11 The precision of support prior generated by the localization algorithm in Algorithm 5.1
for water tank coupling system (The mean of precision is 0.5588)

Table 5.1 Error metric values for four resilient observers on water tank coupling system (RMS
Metric: relative mean square error, Max. Ans. Metric: maximum absolute error)

RMS Metric Max. Ans. Metric

LO UL1O MMO RPO LO UL1O MMO RPO

e1 1.4434 2.5657e-6 2.0794e-6 3.5704e-10 21.8421 4.6746e-5 4.6655e-5 5.7127e-9

e2 1.5088 5.8117e-6 2.1444e-8 4.3079e-10 23.0772 1.5826e-4 5.1996e-7 5.7700e-9

e3 0.8018 4.1172e-8 2.1381e-10 4.3901e-10 13.9374 1.1886e-6 3.4310e-9 9.6873e-9

e4 0.7350 4.5476e-6 4.5476e-6 3.2479e-10 14.4943 1.4388e-4 1.4388e-4 4.4373e-9

e5 0.5645 2.2444e-5 1.7216e-5 3.5302e-10 9.8116 4.7845e-4 3.7122e-4 4.8049e-9

e6 1.0332 3.3578e-5 1.7473e-5 4.1156e-10 15.5191 5.5419e-4 3.7748e-4 8.1021e-9

e7 1.1802 2.2776e-5 1.6834e-5 3.8149e-10 17.1720 4.1583e-4 3.7724e-4 5.5387e-9

e8 1.2172 3.8198e-5 2.2591e-6 1.1470e-6 20.5512 0.0010 6.1343e-5 3.6289e-5

e9 0.9802 2.2720e-5 2.2118e-5 2.0543e-6 18.1152 3.4706e-4 3.4706e-4 6.2776e-5

e10 2.6151 1.0291e-4 2.0641e-6 2.3344e-7 28.5826 0.0030 6.1424e-5 7.3509e-6

mobile robot is considered with IIoT sensors, its dynamical and kinematic model
can be described as Dhaouadi and Hatab (2013)

q̇ = M−1(−Dq + Bτ ) + w � g(x, u) + w
⎡

⎣
θ̇

· · ·
ż

⎤

⎦ =
⎡

⎣
0 1
· · ·
C(θ)

⎤

⎦q � C̄(θ)q,
(5.51)

where q = [v ω]� is the generalized body velocities vector, u � τ = [τR τL ]� is
a vector of the wheels torques, and z = [x y]� is the task-space position vector,
x = [θ v ω]� is defined as a state vector, w ∼ N (0, R) is the process noise in
dynamics. The kinematic and dynamical parameters are given by:

M =
[
m 0
0 md2 + J

]

, D =
[

0 −mdω

mdω 0

]

, B = 1

r

[
1 1
L −L

]

,C(θ) =
[
cos(θ) −d sin(θ)

sin(θ) d cos(θ)

]

.
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Fig. 5.12 Block diagram depiction of the resilient motion control of wheeled mobile robot

The corresponding measurement system is given by

y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1

1/4r L/4r
1/4r −L/4r
cos(θ) −d sin(θ)

sin(θ) d cos(θ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

· q + v � f (x) + v + e, (5.52)

where v denotes measurement noise terms, e denotes the attack vector.
Given a desired 2D “Fig. 5.8” path described by the continuous function:

zd =
[
xd(t)
yd(t)

]

=
[

a cos(t)
1+sin2(t)

a sin(t) cos(t)
1+sin2(t)

]

, θd(t) = arctan

(
yd(t)

xd(t)

)

,

a stable path-tracking controller was given in Zheng and Anubi (2020) as

τ = B−1(Mu + Dq), (5.53)

where u = −kq(q − qd) + q̇d − C̄(θ)�̃e, with

qd = C−1(θ)(żd − keez),

q̇d = −ke(Ċ
−1(θ)ez + q) + C−1(θ)[z̈d + (ke + C(θ)Ċ−1(θ))żd ],

and kq , ke are positive scalar control gains.
The next task is to design a nonlinear observer to recover the real state x under the

compromised measurements y, shown in Fig. 5.12. According to Theorem 5.4, the
precision of T̂ c

η can achieve 100% with a probability lower bound. Thus, Unscented

Kalman Filter (UKF) can be used on the safe subset ofmeasurements denoted by T̂ c
η .

The control system with resilient Kalman filter is shown schematically in Fig. 5.12.
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Fig. 5.13 Path tracking performance (UKF: unscented Kalman filter, UKF with prior: unscented
Kalman filter with the prior generated by localization algorithm in Algorithm 5.1, UKF with prior
pruning: unscented Kalman filter with pruned prior generated by Algorithm 5.2)

Fig. 5.14 Estimations of robot’s forward velocity v and angular velocity ω by three observers
(Black line is the nominal state estimation, blue line is the estimation by those three observers in
presence of FDIA)
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Figures5.13 and 5.14 show the comparisons of the tracking performances between
UKF, UKF with the prior, and UKF with prior and pruning. It is well known in the
literature that KF cannot recover exact states in the presence of FDIA. Figures5.13
and 5.14 confirm this fact. Specifically, it is seen that the path-tracking task and state
estimation totally fail with only UKF. By adding prior information obtained by the
localization algorithm whose mean of precision is around 0.6, the motion control
performance is improved but has big oscillatory due to the imperfect precision.
However, with the developed pruning algorithm, the robot was able to track the
reference path very closely and smoothly.

5.6 Conclusion

In this chapter, a resilient observer design with prior pruning was described. First,
it was shown that good support prior (better than the random flip of a fair coin)
can result in significant improvement over well-known resiliency limits in literature.
Next, a pruning algorithm was given to improve the resulting localization precision
without additional training effort. This makes the support information more useful
for estimation purposes. Finally, a pruning-based observer scheme was given and
analyzed. It was shown that the resulting observer outperforms well-known resilient
observers in literature. Moreover, other minor contributions of this chapter include
a formal definition of successful FDIA and associated optimization-based FDIA
design.
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Chapter 6
Framework for Detecting APTs Based
on Steps Analysis and Correlation

Hope Nkiruka Eke, Andrei Petrovski, Hatem Ahriz, and M. Omar Al-Kadri

6.1 Introduction

Safety and security measures in place in terms of maintaining resource availability,
integrity, and confidentiality of the operational CPS state against cyber-threat such
as APT remain one of the biggest challenges facing organizations and industries at
various levels of operation (Eke et al. 2020).

The CPS systems are composed of computer and subsystems that are intercon-
nected based on the context within which an exchange of vital information through
computer network takes place (Monostori et al. 2016; Cardenas et al. 2009; Jazdi
2014; Petrovski et al. 2015). CPS such as distributed control system (DCS) and
SCADA contain control systems that are used in critical infrastructures such as
nuclear power plants (Eke et al. 2020; Kim et al. 2000), water, sewage, and irriga-
tion systems (Humayed et al. 2017).

An APT, presented in Fig. 6.1, is an attack that navigates around defences, breach
networks, and evades detection, due to APTs stealthy characteristics and sophisti-
cated levels of expertise and significant resources of contemporary attackers (Eke
et al. 2019). While APTs have been attracting an increasing attention from the indus-
trial security community, the current APTs best practices require a wide range of
security countermeasures, resulting in a multi-layered defence approach that opens
new research directions (Majdani et al. 2020). This type of attacks has drawn special
attention to the possibilities of APT attacks on CPS devices, such as SCADA-based
system. There have been few cases of successful attacks on ICS as recorded in NJC-
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CIC (2017) and Slowik (2019), these led to several attempts in developing methods
to detect intrusions within network and isolated devices.

Most of these approaches focus on detection of APT attack with respect to a
specific domain. Work by authors in Nissim et al. (2015) detects malicious PDFs
based onwhitelists and their compatibility as viable PDF files while study in Chandra
et al. (2016) that focus on “Tokens” and utilizes mathematical and computational
analysis to filter spam emails focus on detection of only one step of APT lifecycle.

The computer systems used to control physical functions of the operating sys-
tems are not immune to the threat of today’s sophisticated cyber-attacks and can be
potentially vulnerable (Linda et al. 2009). Potential threats can affect ICS devices
at different level. Hence, security of each component within each level is extremely
important to avoid compromise on any level (Harris and Hunt 1999).

APT attacks on a control system can be considered as stealthy disturbances,
carefully designed with highly sophisticated combination of different techniques
to achieve a specifically targeted and highly valuable goal by attackers (Eke et al.
2020). These attackers are known to possess sophisticated levels of expertise and sig-
nificant resourceswhich allow them to create opportunities to achieve their objectives
by using multiple attack vectors such as cyber, physical, and deception. However, a
well-designed control systemmay repel against external disturbances such as Recon-
naissance. The unknown and dynamic nature of designed disturbance rules poses a
security threat to CPS, which can be vulnerable to various types of cyber-attacks
without any sign of system component failure (Wu et al. 2016). Examples of these
could be noticeable time delays and serious control system degradation as a result
of control systems been vulnerable to a denial-of-service (DoS) attack.

Fig. 6.1 Advanced Persistent Threats (APTs)
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The successful removal or mitigating existing vulnerabilities, assessing whether
a control system is experiencing any form of attack, and maintaining a secure and
stable system state are the main CPS security.

6.1.1 Targeted APT Attack on CPSs

APT attacks have affected many organizations as far back as 1998, with the first
public recorded targeted attack named Moonlight Maze (Thakur et al. 2016). This
Moonlight Maze attack targeted Pentagon, National Aeronautics and Space Admin-
istration (NASA), the US Energy Department, research laboratories, and private uni-
versities by successfully compromised Pentagon computer networks, and accessed
tens of thousands of file (Smiraus and Jasek 2011). Past years have seen an increase
in the number of organizations coming forward, admitting they have been targeted.
Unfortunately, in the bid to protect organization’s image and to avoid providing hack-
ers with feedback, majority of those organization are not willing to share the attack
details.

However, the four main recorded targeted attacks malware tailored against ICSs
are STUXNET, BLACKENERGY 2, HAVEX, and CRASHOVERRIDE (Lee et al.
2017; Domović 2017). STUXNET is the first ever recorded attack aimed at disrupt-
ing physical industrial processes resulting in violation of system availability, while
CRASHOVERRIDE is the second and also the first known to specifically target the
electric grid (NJCCIC 2017; Slowik 2019). CRASHOVERRIDE is not unique to any
vendor or configuration but utilizes the knowledge of grid operations and network
communications to cause disruptions resulting in electric outages (Lee et al. 2017;
Hemsley and Fisher 2018).

6.1.2 Safety of Cyber-Physical Systems (CPSs)

CPS utilizes diverse communication platforms and protocols to increase efficiency
and productivity. This is to reduce operational costs and further improve organiza-
tion’s support model (Odewale 2018). The complexity of the ICS architecture and
the increased efforts of controlling physical functions in processing and analyzing
data has led to an intensified interaction between control and business networks
(Odewale 2018; Nazarenko and Safdar 2019). The possibility of deliberate targeted
attacks as examined in Pasqualetti et al. (2015) on control systems and the daily
operational challenges due to this increased cyber-physical interaction are on the
high side (Humayed et al. 2017; Nazarenko and Safdar 2019).

Ensuring the security of these systems is critical in order to avoid any operational
disruption. However, this requires a complex approach to identify and mitigate secu-
rity vulnerabilities or compromise at all levels within the ICS to maintain resource
availability, safety, integrity, and confidentiality, as well as becoming resilient against
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attacks (Cazorla et al. 2016). We have suggested and implemented a multi-layered
security model based on ensemble deep neural networks approach to secure ICSs.

The contribution of this chapter can be summarized as follows:

• WediscussAPTcharacteristics, lifecycle, andgive examples of themost significant
confirmed cases of attack on CPS devices.

• We propose a novel approach using ensemble deep neural networks for realizing
multi-layered security detection for ICS devices. This approach takes RNNs vari-
ants to learn features from raw data in order to capture the malicious sequence
patterns which reduce the cost of artificial feature engineering.

• We designed and implemented Deep APT Steps Analysis and Correlation (APT-
DASAC)—a multi-layered security detection approach, that takes into considera-
tion the distributed and multi-level nature of ICS architecture and reflects on the
four main SCADA-based cyber-attacks. We further used stacked ensemble for
APT-DASAC to combine networks’ results for optimizing detection accuracy.

• A series of evaluation experiment, including individual APT step detection and
attack-type classification, were carried out. The achieved results suggest that the
proposed approach has got the attack detection capability and demonstrated that
performance of attack detection techniques applied can be influenced by the nature
of network transactions with respect to the domain of application.

6.1.3 Organization of Book Chapter

The remainder of this book chapter is organized as follows. Section 6.2 contains an
overview of APT and APT lifecycle, brief discussion of related work directed toward
the security of CPS. In Sect. 6.3, a detailed description of our proposed approach
“architectural design ofAPT-DASAC” is discussed. The implementation of ourAPT-
DASAC approach and the datasets used are discussed in Sect. 6.4. Experimental
results are discussed in Sect. 6.5. Section 6.6 presents the conclusion of this book
chapter.

6.2 Advanced Persistent Threats (APTs)

APTs and the actors behind them constitute a serious global threat. This type of
attacks differs from common threats that seek to gain immediate advantage. APTs
are broad in their targeting and processing. An APT is also very

• resourceful;
• with well-defined objectives and purpose;
• uses sophisticated methods and technology; and
• substantially funded.



6 Framework for Detecting APTs Based on Steps Analysis and Correlation 123

6.2.1 Characteristics of APTs

An APT threat process follows a staged approach to target, penetrate, and exploit its
target. Understanding the advanced, sophisticated, and persistent nature of APT is
unavoidable in defending against such attacks.

• Advanced - The advanced nature of APT provides the attackers with the capability
of maintaining prolonged existence through stealthy approach inside an organiza-
tion once they successfully breach security controls. Attackers use sophisticated
tools and techniques such as malware, if the malware is detected and removed,
they change their tactics to secondary attack strategies as necessary (Giura and
Wang 2012).

• Persistent - The meaning of “Persistent” is expanded to persistently launching
spear-phishing attacks against the targets by navigating a victim’s network from
system to system, obtaining confidential information, monitoring network activity,
and adapting to be resilient against new security measures while maintaining a
stealthy approach to reach its target (Siddiqi and Ghani 2016). The mode of attack
indicates the main functions of the APT-type malware, which usually placed more
focus on spying instead of financial gain.

• Threat - The actors also have the capability of gaining access to electronically
stored sensitive information other than the purpose of collecting national secrets
or political espionage, based on the functions discovered, it is believed that this type
of threats can also be applied to the cases in business or industrial espionage, spying
acts, or even unethical detective investigations (Brand et al. 2010; Shashidhar and
Chen 2011).

Examining the APTmethods used to breach today’s ICS security, it boils down to
a basic understanding that attackers, especially those who have significant financial
motivation, have devised an effective attack strategies centered on penetrating some
of the most commonly deployed security controls. Most often it uses custom or
dynamically generated malware for the initial breach and data-gathering step. The
“Advanced” and “Persistent” are major features that differentiate APT from other
cyber-attacks.

6.2.2 Life Cycle of APTs Attack

APT attacks are generally known to utilize a zero-day exploits of unpublished vul-
nerabilities in computer programs or operating systems in combination with social
engineering techniques. This is to maximize the effectiveness of the exploits that
target unpatched vulnerabilities. Launching an APT attack involves numerous hack-
ing tools, a sophisticated pattern, high-level knowledge, and varieties of resources
and processes. APTs proved extremely effective at infiltrating their targets and going
undetected for extended periods of time, increasing their appeal to hackers who tar-
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get businesses as highlighted in several large-scale security breaches (McClure et al.
2010; Alperovitch 2011; Villeneuve et al. 2013).

Although each attack is customized with respect to attacker’s target and aims
at various stages of the kill chain, the patterns of APT attacks are similar in most
cases but differ in the techniques used at each stage. For this study, we will describe
six basic APT attack phases as used in our study, based on the literature review in
combination with the “Intrusion Kill Chain (IKC)” model, described in Giura and
Wang (2012), Singh et al. (2019), Hutchins et al. (2011).

1. Reconnaissance and Weaponization - This stage involves information gathering
about the target. This could be, but not limited to, about organizational environ-
ment, employees’ personal details, the type of network, and defence target in use.
The information gathering can be done through social engineering techniques,
port scanning, and open-source intelligence (OSINT) tools.

2. Delivery -At this stage, attackers utilize the information gathered from reconnais-
sance stage to execute their exploits either directly or indirectly to the targets. In
direct delivery, the attackers apply social engineering such as spear phishing by
sending phishing email to target. While in indirect delivery, attacker will compro-
mise a trusted third party, which could be a vendor or frequently visited website
by the target and uses these to deliver an exploit.

3. Initial Intrusion and Exploitation -At this stage, attacker gains access to target’s
network by utilizing the credential information gathered through social engineer-
ing. Themalware code delivered at this stage is downloaded, installed, and activate
backdoor malware, creating a command and control (C&C) connection between
the target machine and a remote attacker’s machine. Once a connection to the
target machine has been secured, the attacker continues to gather more relevant
information such as security configuration, user names, and sniff passwords from
target networkwhilemaintaining a stealthy behavior in preparation for next attack.

4. Lateral Movement and Operation - At this stage, once the attacker estab-
lishes communication between the target’s compromised systems and servers,
the attacker moves horizontally within the target network, identify the servers
storing the sensitive information on users with high access privileges. This is to
elevate their privileges to access sensitive data. This makes their activities unde-
tectable or even untraceable due to the level of access they have. Attackers also
create strategy to collect and export the obtained information.

5. Data Collection - This stage involves utilizing the privileged users credentials
captured during the previous stage to gain access to the targeted sensitive data.
With the attackers having a privileged access, they will now create redundant
copies of C&C channels should there be any change in security configuration.
Once the target information has been accessed, redundant copies are created at
several staging points where the gathered information is packaged and encrypted
before exfiltration.

6. Exfiltration - At this stage, once an attacker has gained full control of target
systems, they proceed with the theft of intellectual property or other confidential
data. The stolen information is transferred to attackers’ external servers in the
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form of encrypted package, password-protected zip files, or through clear web
mail. The idea of transferring information to multiple servers is an obfuscation
strategy to stop any investigation from discovering the final destination of the
stolen data.

6.2.3 Related Work

Diverse approaches have been proposed and successfully implemented to address
different types of attacks. These proposed methods have led to a significant pool of
solutions geared toward addressing security and resilience of CPS devices. Most of
these approaches focus on detection of attack with respect to a specific domain.

6.2.3.1 Attack Detection

One of this detection model is intrusion cyber-kill chain (IKC). This was created
by Lockheed Martin analysts in 2011 to support a better detection and response
to attacker’s intrusions by applying the IKC model to describe different stages of
intrusion (Hutchins et al. 2011; Assante and Lee 2015). Although this model is not
directly applicable to the ICS-custom cyber-attacks, it serves as a great building
foundation and concept to start with (Hutchins et al. 2011). Few other approaches in
the literature include, but not limited to, the attack detection based on communication
channels, a notion of stealthiness, false data injection attacks (FDI), and network
information flow analysis.

Work in Carvalho et al. (2018) made use of the possibility of unprotected commu-
nication channels for sensor and actuator signals in plant, which may allow attackers
to potentially inject false signals into the system. The authors model an approach
to capture the vulnerabilities and the consequences of an attack on the ICSs, being
focused on “The closed-loop control system architecture”, where the plant is con-
trolled by the supervisor through sensors and actuators in a traditional feedback loop.
Their approach aims at detecting an active online attack and disables all controllable
events after detecting the attack, preventing thereby the system from reaching a pre-
defined set of unsafe states. This work is a complementary study to another work in
Paoli et al. (2011), where the authors investigated an online active approach using
a multiple-supervisor architecture that actively counteracts the effect of faults and
introduces the idea of safe controllability in active fault-tolerant systems to char-
acterize the conditions that must be satisfied when dealing with the issue of fault
tolerance.

Other proposed approaches that mainly focus on APT detection based on network
information flow analysis that is not specific for CPS as reviewed for this work
include an APT attack detection method based on deep learning using information
flows to analyze network traffic into IP-based network flows, reconstruct the IP
information flow, and use deep learning models to extract features for detecting
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APT attack IPs from other IPs (Do Xuan et al. 2022). The authors in Shang et al.
(2021) propose an approach to detect the hidden C&C channel of unknown APT
attacks using network flow-based C&C detection method as inspired from the belief
that: (i) different APT attacks share the same intrusion techniques and services,
(ii) unknown malware evolves from existing malware, and (iii) different malware
groups share the same attributes resulting to hidden shared features in the network
flows between themalware and theC&C serverwithin different attacks. They applied
deep learning techniques to dealwith unknownmalicious networkflows and achieved
an f 1− score of 96.80%.

6.2.3.2 Attack Mitigation

Authors in Bai et al. (2017) considered a notion of stealthiness for stochastic CPS
that is independent of the attack detection algorithm to quantify the difficulty of
detecting an attack from the measurements. With the belief that the attacker knows
the system parameters and noise statistics and can hijack and replace the nominal
control input by characterizing the largest degradation ofKalman filtering induced by
stealthy attacks. The study reveals that the nominal control input is the only critical
piece of information to induce the largest performance degradation for right-inverting
systems, while providing an achievability result that lower bounds of performance
degradation that an optimal stealthy attack can achieve within non-right-inverting
systems. While Miloševič et al in (2017) examined the presence of bias injection
attacks for state estimation problem for stochastic linear dynamical systemagainst the
Kalman filter as an estimator equipped with the chi-squared been used as a detector
of anomalies. This work suggests that the issue of finding a worst-case bias injection
attack can be controlled to a certain degree.

Also, Xu et al. (2020) focus on a stealthy estimation attack that can modify the
state estimation result of the CPS to evade detection. In their study, the chi-square
statistic was used as a detector. A signaling game with evidence (SGE) was used
to find the optimal attack and defense strategies that can mitigate the impact of the
attack on the physical estimation, guaranteeing thereby CPS stability.

Furthermore, study on industrial fault diagnosis using deep Boltzmann machine
and multi-grained scanning forest ensemble was done by Hu et al. (2018) and
FDI (Eke et al. 2020). Also, the possibility of accurately reconstructing adversarial
attacks using estimation and control of linear systems when sensors or actuators are
corrupted (Fawzi et al. 2014) is studied in the quest for CPS security and more
resilience against targeted attacks. The authors in Shi et al. (2021) considered the
case of the FDI attack detection issue as a binary classification case and propose a
statistical FDI attack detection approach based on a new dimensionality reduction
method using a Gaussian mixture model and a semi-supervised learning algorithm
to examine the coordinates of the data under the newly orthogonal axes obtained
to establish FDI attacks if the outputs of the Gaussian mixture model exceed the
pre-determined threshold.
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6.3 APT Detection Framework

In this section, we present the description of our proposed APT-DASAC framework
architectural design for APT intrusion detection. APT attack purposefully launched
to target critical infrastructures, such as SCADA network as highlighted in Eke et al.
(2019), is a multi-step attack. The detection of a single step of an APT itself does
not imply detecting an APT attack (Eke et al. 2020). Hence, APT detection systems
should be able to detect every single possible step applied by an APT attacker during
the attack process.

6.3.1 Architectural Design of APT-DASAC

The design of our proposed model for APT intrusion detection system (IDS) is built
to run through three stages. This involves implementing a multi-layered security
detection approach based on Deep Leaning (DL) that takes into consideration the
distributed and multi-level nature of the ICS architecture and reflect on the APT
lifecycle for the four main SCADA cyber-attacks as suggested in Eke et al. (2020).

The implementation of our designmodel shown in Fig. 6.2 consists of three stages:

Stage 1: Data input and probing layer.
Stage 2: Data analysis layer.
Stage 3: Decision layer.

6.3.2 Three Layers of APT-DASAC

The processes taken to implement our proposed model “APT-DASAC” are discussed
as follows.

For the purpose of this model explanation and illustration, the New Gas Pipeline
(NGP) and University of New South Wales (UNSW-NB15) datasets were used. The
specific step-by-step pseudocode for APT-DASAC and the detection process are
described in the following subsection.

The first stage of this approach “Data input and probing layer” involves data
gathering andpre-processing sample data by transforming the data into an appropriate
data format ready to be used in the second stage “Data analysis Layer”. This second
stage applies the core process of APT-DASAC, which takes stacked recurrent neural
network (RNN) variant to learn the behavior of APT steps from the sequence data.
These steps reflect the pattern of APT attack steps. In the final stage “Decision
Layer”, we use ensemble RNN variants to integrate the output and make a final
prediction result.
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6.3.2.1 Step-by-Step Pseudocode for APT-DASAC Layers

The experimental implementation pseudocode of our proposed framework in Fig.
6.2 is represented by Algorithm 6.2–6.3 as used to build the proposed model:

• Pseudocode for data pre-processing.
• Pseudocode for data analysis.
• Pseudocode for detection and prediction process.

The pre-processing data stage takes raw network traffic data as an input from a
specific problem domain, processes, and transforms the data into a meaningful
data format that the algorithm requires by converting any symbolic attributes
into usable features and deals with null values using Step 1 to Step 7c in Algo-
rithm 6.2. The output from this stage is a new transformed data containing
valuable information that the analyses stage will utilize.

6.3.2.2 Data Input and Probing Layer

This layer consists of two modules: (i) Data Input and (ii) Probing Module. Algo-
rithm 6.2 shows the steps for this module process.

Fig. 6.2 Detection framework based on deep APT steps analysis and correlation (APT-DASAC)
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1. Data Input involves data gathering, raw sample/simulated synthetic data been
introduced into the system and transfer the collected data to probing module.

2. Probing Module involves data pre-processing and feature transformation which
runs through four stages. Here all the data that has been collected and introduced
into the module are encoded into numerical vector by the pre-processor ready to
go through the neural network.

a. Feature Transformation: UNSW-NB15 dataset consists of 42 features with
three of these features been categorical (proto, service, and state) data. These
three features need to be encoded into numeric feature vector as it goes to the
neural network for analysis, classification, detection, and prediction. For this
reason, Pandas getdummies() function was used, this function creates new
dummy columns for each individual categorical feature. This leads to increase
in the number of columns from42 to 196 features available for onward analysis.

b. Balancing Training and Testing Data Features: Both training and test-
ing data contain different number of categorical features, this implies that
getdummies() function will generate different number of columns for train-
ing and testing data. However, the number of features in both sets need to
be the same. In this case, we deployed set ().union() function to balance the
training and testing datasets.

c. Normalization: At this stage, the ZScore method of standardization is used
to normalize all numerical features to preserve the data range, to introduce
the dispersion of the series, and to improve model convergence speed during
training.

6.3.2.3 Analysis Layer

The rate of attack detection is affected by the parameters used as these parameters
have direct impact on attack detection. Based on this, several experiments with dif-
ferent network configuration were implemented to find the best optimal values for
parameters such as learning rate and network structure.

Also, to achieve a good detection rate for rare attack steps while maintaining
overall good model performance, two issues need to be considered—the rare attack
class distribution and the difficulty of correctly classifying the rare class. When
considering the class distribution, more emphasis should be placed on the classes
with fewer examples. Secondly, more emphasis should be given to examples that are
difficult to be correctly classified.

At this layer, the processed data are used to build a model that analyzes and
distinguishes attack(s) from normal activities, taken note of the identified issues
with class distribution and classification of rare attacks. The result of this layer is
passed to Decision Engine layer.
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Algorithm 6.1 Data Input and Probing Layer Pseudocode

- Pseudocode for Data Pre-processing

Step 1: Input the sample dataset

Step 2: Convert the symbolic attributes features

Step 3: Return new set of data

Step 4: Separate the instances of dataset into classes

(y)

Step 5: Scale & normalize data (x_(t)) into values from

[0 to 1]

Step 6: Split dataset into training and testing data

Step 7: Prepare and store transformed training and testing data

Step 7a: Balance & reshape the training & testing

data features

Step 7b: Return balanced & reshaped training &

testing data

Step 7c: Pickle transformed data into a byte stream

and store it in a file/database (.pki)

Algorithm 6.2 Analysis Layer Pseudocode

- Pseudocode for Sequence Data Training and Testing

During the training and testing stage, steps 8a-8e

are followed in each iteration.

Step 8: Train the model with this new training dataset

Step8a: Sequentially fetch a sample data (x_(t))

from the training set

Step8b: Estimate the probability (p) that the

example should be used for training

Step8c: Generate a uniform random real number Âμ

between 0 and 1

Step8d: If Âμ < p, then use x_(t)to update the RNN by

(5) for any training sample (x_(i), y_(i))

Step8e: Repeat steps 1-4 (Algorithm 6.1) until there is no

sample left in the training set

Step 9: Test model with testing data from Step 7b

Step10: Compute and evaluate the model performance

accuracy output - classification, detection

and prediction
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6.3.2.4 Decision Layer

This layer operates using three approaches: firstly, it receives information from the
analysis layer and extract the attack step present. Secondly, it processes this infor-
mation and links it to the related attack steps. Lastly, it uses voting and probability
confidence to establish if the attack is a potential chain of attack campaign is found,
and if it is consistent with other attack campaigns.

Algorithm 6.3 Decision Layer Pseudocode

- Pseudocode for Analysis, Detection and Prediction

In analysis detection and prediction stage, steps

11-16 are followed in each iteration.

Step11: Set ip_units, lstm_units, op_units and

optimizer to define LST Network (DL)

Step12: Fetch the processed data (x_(i))

#pre-processed data through steps 1-7 (Algorithm 6.1)

Step13: Select specified training window size (tws)

and arrange x_(i) accordingly

Step14a: for n_epochs and batch_size do #each iteration

Step14b: Take the input vector within specified

training window size (x_(tws)) at time (t)

together with previous information,

initially set to 0

Step14c: Train the Network L with x_(tws+1))

Step14d: end for

Step15: Run Predictions using L

Step16: Calculate the categorical_loss_function L(o,y)

Step17: Output result

Step17a: Percentage detection rate of individual

attacks detected

Step17b: Overall detection rate

Step17c: Confirmation if there is any existence

or complete APT steps (full APT scenario)

6.3.2.5 Attack Step Impacts

The attack impact is determined at this stage through the decision engine by corre-
lating the output from the analysis layer using probability confidence to check for
any presence of security risks. If an attack or security risk is present, it requests the
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defence response module to raise a security alert. This is checked with the previ-
ously detected step to see if this could be related to the newly discovered security
risk alert. This is to reconstruct APT attack campaign steps, and hence highlights an
APT campaign scenario so that an appropriate action can be taken.

The impact of an attack can be considered as low depending on the attack activity
stage. However, if this stage can be linked with other attack steps to show that it
is part of that attack campaign, forming a full APT step cycle, then the impact at
this stage can be considered as high. With this information in mind an appropriate
response can be taken.

6.4 Implementation of APT-DASAC Approach

In this section, we describe the platform and the approach taken to implement the
APT-DASAC. These include the implementation setup, the hyperparameter settings
used, and the datasets used.

6.4.1 Implementation Setup

The ensemble RNN-based attack detection models as explained in Eke et al. (2020)
were implemented. The network topology and payload information values of the
NGP dataset containing 214,580 Modbus network packets with 60,048 packets that
are associated with cyber-attacks were used. These attacks are placed into 7 different
categories with 35 different specific attack types as explained in Turnipseed (2020),
Morris andGao (2014). These attack categories align with APT lifecycle. Figures 6.3
and 6.4 show the number of records in each of the categories and the main four
types of attacks as contained in the NGP data. During the experimental setup, the
first taskwas focused on deriving hyperparameter values for best performancemodel.
Secondly, the best hyperparameter values were implemented in measuring the model
performance.

The standard data mining processes such as data cleaning and pre-processing,
normalization, visualization, and classification were implemented in Python. The
batch size of 124–300 epochs is run with a learning rate set in the range of 0.01–0.5
on a GPU-enabled TensorFlow network architecture. All the 17 features were used
as input vector with 70% as training set and 30% as validation set for the multi-attack
classification. The training dataset was normalized from0 to 1. Thiswas trained using
sigmoid activation function through time with ADAM optimizer, sigmoid function
was used on all the three gates and categorical cross-entropy as loss function for
error rate. Also, these tasks were carried out with traditional machine learning (ML)
classification algorithms—Decision Tree (DT). The ML classification result was
compared to stacked Deep ensemble RNNs-LSTM result in order to further evaluate



6 Framework for Detecting APTs Based on Steps Analysis and Correlation 133

the APT steps detection capability of the experimental approach. Result evaluation
is discussed in Sect. 6.5.

6.4.1.1 Hyperparameters Settings

• Batch sizes: 64 and 128.
• Learning rate: 0.0002–0.00005 with polynomial decay over all the epochs.
• Epochs: 100–300 epochs.
• Neural network: Four layers were used.
• Each of the hidden layers has a sigmoid/ReLU activation function applied
to it to produce nonlinearity. This transforms the input into values usable by
the output layer.

Fig. 6.3 NGP dataset records

Fig. 6.4 Four main attack group and normal classes
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• The softmax function is applied to the output layer to get probabilities of
categories. This also helps in learning with cross-entropy loss function.

• Adaptive Moment Estimation, (ADAM) optimizer is used for the backprop-
agation to minimize the loss of categorical cross-entropy.

• The dropout is used to alleviate the over-fitting (used as regularization tech-
nique used to prevent over-fitting in neural networks. This randomly removes
the units along with connections.

6.4.2 Implementation Dataset

Due to the specific dynamic nature of APT attack that does not follow a unique
pattern, availability and accessibility of dataset containing realistic APT scenario
have become a challenging issue when testing and comparing APT detectionmodels.
For the implementation of our approach, the NGP1 and UNSW-NB152 datasets were
used. Both datasets are available for research purposes.

6.4.2.1 New Gas Pipeline Dataset (NGP) Explained

The NGP data is generated through network transactions between a RTU and aMTU
within a SCADA-based gas pipeline at Mississippi State University. This data was
collected by simulating real attacks and operator activity on a gas pipeline using
a novel framework for attack simulation as described in Turnipseed (2020) and
Morris et al. (2015). The data contains three separate main categories of features—
the network information, payload information, and labels.

The network topologies and the payload information values of SCADA systems
are very important to understand the SCADA system performance and detecting if
the system is in an out-of-bounds or critical state.3

6.4.2.2 Three Main Features of NGP dataset

• Network Information -This category provides a communication pattern for an IDS
to train against. In SCADA systems, network topologies are fixed with repetitive
and regular transactions between the nodes. This static behavior favors IDS in
anomalous activities detection.

1 https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets.
2 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/.
3 http://www.simplymodbus.ca/TCP.htm.Accessedon10/03/2021.

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
http://www.simplymodbus.ca/TCP.htm. Accessed on 10/03/2021
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• Payload Information - This provides an important information about the gas
pipeline’s state, settings, and parameters, which helps to understand the system
performance and detecting if the system is in a critical or out-of-bounds state.

• Labels - It is attached to each line in data to indicate if the transaction within the
system activity is normal or malicious activities.

6.4.2.3 Identified Cyber-Threats in NGP dataset

The original gas pipeline data as in Morris and Gao (2014) was improved to create
a new NGP data by

• parameterizing and randomizing the order in which the attacks were executed;
• executing all the attacks as contained in the original data created by Gao Morris
and Gao (2014);

• implementing all the attacks in a man-in-the-middle fashion;
• to include all the four types of attacks as shown below:

– Interception - In this type of attack, attacks are sent to both the attacker and to
the initial receiver. These types of attacks enable gaining system information
such as normal system operation, each protocol node, the brand and model of
the RTUs that the system is using.

– Interruption - This type of attack is used to block all communication between
two nodes in a system—e.g., DoS between the MTU and an RTU slave device
in the gas pipeline.

– Modification - This type of attacks allows an attacker to modify parameters (set
point parameter exclusively and leave all other parameters untouched) or states
in a system, such as the gas pipeline.

– Fabrication - Attackers execute this type of attack creating a new packet to be
sent between the MTU and RTU.

Fig. 6.5 The instances within NGP raw dataset
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6.4.2.4 Raw Dataset

In this subsection, we will use Fig. 6.5 to describe and illustrate the instance features
as contained within the NGP dataset.

• The first feature represents the Modbus frame as received either by the master or
slave device. All valuable information from the network, state, and parameters of
the gas pipeline are also contained in this Modbus frame.

• The second and third feature represent the attack category and specific attack that
were executed. In case of Modbus frame normal operation, both of these features
will report a zero. Both are useful to train a supervised learning algorithm, as they
allow the algorithm to learn the behavior of these attack patterns.

• The fourth and fifth features represent the source and destination of the frame.
There are only three possible values for the source and destination feature. The
value can be a “1” indicates that the master device sent the packet, “2”, meaning
the man-in-the-middle computer sent the packet, or “3” indicates that the slave
device sent the packet.

• The last feature (6th) in the raw data contains a time stamp which can be used
to calculate the time interval between change. In system normal operation, slight
change may be observed between time intervals, however any modification or
malicious activity such as malicious command injection may lead to noticeable
time interval change.

6.4.2.5 Cyber-Attacks as Contained in the NGP Dataset Record

The NGP data contains 214,580 Modbus network packets with 60,048 packets asso-
ciated with cyber-attacks. Each record contains 17 features in each network packet.
These attacks are placed into 7 different attack categories with 35 different spe-
cific type of attacks. These attack categories and the individual specific attack as
represented in Fig. 6.3 and Table 6.1 will be used to demonstrate an APTs steps
detection with our proposed APTs detection framework in line with APTs lifecycle
as described in Eke et al. (2019).

These seven attack categories are further grouped into four overall categories to
align with APT lifecycle and the four identified types of cyber-attacks as described
below.

• Response injection attacks contains two types of attacks, naïvemalicious response
injection (NMRI) (which occurs when themalicious attacker do not have sufficient
information about the physical system process) and complex malicious response
injection (CMRI) (these type of attack designs attacks that mimic certain normal
behaviors using physical process information making it more difficult to detect).

• Command injectionattacks contains three attacks,malicious state command injec-
tion (MSCI), malicious parameter command injection (MPCI), and malicious
function code injection attacks (MFCI). These attacks inject control configuration
commands to modify the system state and behavior, resulting to (a) loss of process
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Table 6.1 Attack categories with normal records type

Attack categories Abbreviation Values APTs step

Normal Normal 0 Not applicable

Naïve malicious
response injection

NMRI 1 Delivery

Complex malicious
response injection

CMRI 2 Exploitation,
Exfiltration

Malicious state
command injection

MSCI 3 Data collection,
Exploitation

Malicious parameter
command injection

MPCI 4 Data collection,
Exploitation

Malicious function
code injection

MFCI 5 Data collection,
exploitation,
exfiltration

Denial of service Dos 6 Data collection,
exploitation,
exfiltration

Reconnaissance Recon 7 Reconnaissance

control, (b) device communication interruption, unauthorized modification of (c)
process set points, and (d) device control.

• DoS attacks disrupt communications between the control and the process through
interruption of wireless networks or network protocol exploits.

• Reconnaissance collects network and system information through passive gath-
ering or by forcing information from a device.

6.4.2.6 UNSW-NB15 Dataset

UNSW-NB15 dataset as represented in Figs. 6.6 and 6.7 was created by Australian
Centre for Cyber-Security (ACCS)4 in their Cyber-Security Lab. A hybrid of the
modern normal and abnormal network traffic features of UNSW-NB15 data was cre-
ated using the IXIA PerfectStorm tools5 to simulate nine families of attack categories
as follows: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode, andWorms. In other to identify an attack on a network system, a compre-
hensive dataset that contains normal and abnormal behaviors are required to carry
out a proper evaluation of network IDS effectiveness and performance (Gogoi et al.
2012). Hence, the UNSW-NB15 dataset (Moustafa and Slay 2015) was chosen
for this study as the IXIA PerfectStorm tool used to generate the data contains all

4 https://www.unsw.adfa.edu.au/unsw-canberra-cyber.
5 https://www.ixiacom.com/products/perfectstorm.

https://www.unsw.adfa.edu.au/unsw-canberra-cyber
https://www.ixiacom.com/products/perfectstorm
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Fig. 6.6 UNSW-NB15 train dataset

Fig. 6.7 UNSW-NB15 test dataset

information about new attacks on CVE website,6 which is the dictionary of publicly
known information security vulnerability and exposure and is updated continuously
as stated in Moustafa and Slay (2015).

6.5 Experimental Evaluation of APT-DASAC Approach

Generally, accuracy is used as a traditional way of measuring classification perfor-
mance. This metric measure is no longer appropriate when dealing with multi-class
imbalance data since the minority class has little or no contribution when compared
to majority classes toward accuracy (Sun et al. 2009). For these reasons, we applied
synthetic minority oversampling technique (SMOTE) for handling data imbalance
as explained in Eke et al. (2020).

6 https://cve.mitre.org/.

https://cve.mitre.org/
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Evaluation Metrics: We used precision, recall, f1-score, overall accuracy,
area under the curve (AUC) receiver operating characteristic (ROC), and
confusion matrix to validate the performance of implementing APT-DASAC
for attack detection and clearer understanding of the output.

6.5.1 Result and Discussion

In our previous study (Eke et al. 2020), we implemented a DLmulti-layered security
detection approachwhich focused on detecting command injection (CI) and response
injection (RI) attacks. We noticed a higher detection rate of CI to RI, although CI
has more connection records and obtained a significant detection rate with 0% False
Positive Rate (FPR) and True Positive Rate (TPR) of 96.50%. Based on the outcome
of our analysis, we arrived on the conclusion that performance of attack detection
techniques applied can be influenced by the nature of the network transactions with
respect to the domain of application and made suggestion for further investigation
in different domain.

We acknowledge the need to investigate this further in other to ascertain this
claim.We implemented the application of stacked ensemble-LSTMvariants forAPT-
DASAC. This approach combines networks’ results as to optimize attack detection
rate. To validate this approach for detecting APT step attacks, statistical metrics such
as precision, recall, f1-score, AUC-ROC , and overall accuracy are calculated (i)
to evaluate the ability of this approach to accurately detect and classify an abnormal
network as an attack, (ii) to check the ability of this model to detect different type of
attacks accurately, and (iii) to get a clearer understanding of the output.

Figures 6.8 and6.9 contain the statistical classification report obtained from imple-
menting deep ensemble-LSTM variants and ML-DT on NGP dataset, respectively.
These reports show that our approach achieved an average P , R, and f 1 of 88%,
86%, and 82%, respectively, with overall detection accuracy of 85% and macro-f1
of 62%, while the implemented ML-DT obtains 95% for P , R, and f 1 with overall
detection accuracy of 94% in detecting attacks.

Considering the fact that the proposed approach detects APT step activities in
different stages, we generated ROC curves score for the stages as shown in Fig. 6.10.

Fig. 6.8 Classification—
report for ensemble-LSTM
variants on NGP dataset
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The average of the five-step curves is evaluated and consolidated into a single graph
representing their respective AUCcurve and obtain micro-average ROC curve area
of 91% and macro-average ROC curve area of 72%. It is evident from Fig. 6.10 that
the classification of APT attack detection in class 3 stage has the ROC curve area of
93% , this is largely attributed to the number of connection record exhibited in this
stage, while the class 4 stage has the lowest ROC curve area of 51%. Our proposed
approach seems to achieve a good performance since the weighted average of the
ROC curve area is closer to 1. A high area under the curve represents both high recall
and high precision, an ideal model with high precision and high recall will return
many results, with all results labeled correctly.

The results shown in Figs. 6.11 and 6.12 are the visual representation of each
algorithm’s validation accuracy and loss rate on each epochs. There are some spikes
in the validation accuracy and loss, following the individual model accuracy and
loss per epoch, achieving training and validation accuracy of 85.59%, 85.88% with
validation loss of 33% for LSTM; 85.97%, 85.16% with validation loss of 35%
for RNN; and 86.13%, 85.71% with validation loss of 34% for GRU. It is worth
noting that the value of training and validation accuracy are quite close to each other,
indicating that the model is not over-fitting with overall average mean detection
accuracy and validation average accuracy of 85%.

We also implemented the same approach with UNSW-NB15 data, the average
detection accuracy of 93.67% as recorded in Table 6.2, which is slightly higher than
85% obtained when NGP data was implemented.

6.5.1.1 The Proposed Approach and Other Works on APTs Detection

Few proposed APT detection approach recorded in Table 6.3 as reviewed for this
chapter includes, work in Do Xuan et al. (2022), an APT attack detection method
based on Bidirectional Long Short-Term Memory (BiLSTM) and Graph Convolu-

Fig. 6.9 Classification—
report for ML-DT on NGP
dataset

Fig. 6.10 AUC-ROC—
vreport for ensemble-LSTM
variants on NGP dataset
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tional Networks (GCN) to analyze network traffic into IP-based network flows. This
approach achieved 98.24% of normal IPs and 68.89% of APT attack IPs using Mal-
ware Capture CTU-13 data warehouse dataset. The authors in Shang et al. (2021),
tackled APT attack detection using network flow-based C&C detection method to
detect the hiddenC&Cchannel of unknownAPTattacks and achieved an f 1− score
of 96.80% but did not provide the actual detection rate for their approach. Also, the
author in Zimba et al. (2020) proposed a detection framework based on an enhanced
SNN algorithm using semi-supervised learning approach on LANL dataset to scores
suspicious APTs-related activities at three different stages of APT attack lifecycle
given a high weight rank to hosts depicting characteristics of data exfiltration with
the believe that main APT attack is data exfiltration. This study faced a higher com-
putational overhead cost.

In our previous work in Eke et al. (2019), we proposed an approach using deep
neural networks for APT multi-step detection which takes stacked LSTM-RNNs
networks to automatically learn features from the raw data to capture the malicious
patterns of APT activities usingKDDCup99 dataset. This approach achieved a detec-
tion rate of 99.90%, see Table 6.3. The current chapter proposes a framework named
APT-DASAC based on stacked ensemble-LSTM variants, taken into consideration
the distributed and multi-level nature of ICS architecture and reflect on the four
main SCADA cyber-attacks which are interception, interruption, modification and

Fig. 6.11 Validation accuracy against epochs on NGP dataset
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Fig. 6.12 Validation loss against epochs on NGP dataset

Table 6.2 Performance report for ensemble-LSTM variants on UNSW-NB15 dataset

Algorithm Average accuracy (%) Validation accuracy
(%)

Validation loss (%)

LSTM 93.74 82.29 21.82

RNN 92.88 81.43 20.50

GRU 94.41 82.11 20.46

Ensemble-LSTM
variants

93.67 84.94 20.47

fabrication as recorded in Turnipseed (2020) to demonstration the ability of this
approach in detecting different stages of APT activities. This approach achieved an
overall detection rate of 85% for NGP dataset and 93.67% for UNSW-NB15 dataset.
Also, when ML-DT were implemented within our approach, we obtained 95% on
both NGP and UNSW-NB15 datasets.

All the reviewed approach on this study have demonstrated a significant APT
attack detection capability, however, none of these approach used the same dataset
(see Table 6.3), making it difficult to rank the performance of these approaches. Also,
the unavailability of a standard dataset or suitable public accessible dataset is a huge
challenge in the field of cyber-security, making it unfavorable to compare an APT
detection system performance so as to choose an appropriate model for any given
domain.
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6.6 Conclusion

In this study, to overcome the issue of detecting APT dynamics attack lifecycle,
we have used supervised learning approach and a multi-layered attack detection
framework that takes into consideration the distributed and multi-level nature of ICS
architecture and reflects on the four main SCADA-based cyber-attacks. Therefore, a
detection framework based on stacked ensemble-LSTM variants algorithm has been
proposed and evaluated. This accounts as one of the contributions of this chapter. Due
to the dynamic nature of APT lifecycle, APT attack cannot be detected automatically,
and hence this model serves as a supplement to automated IDS. The implemented
algorithms achieved a competitive overall detection rate of 85%, 93.67%, and 95%
with micro-average ROC curve area of 91%. These results suggest that both stacked
ensemble-LSTMvariants andML-DT approach are good candidates to be considered
for developing an APT detection system.

From Fig. 6.8, the value of recall achieved also illustrates that when DL is used
within the proposed approach, it did struggle to identify the relevant cases of com-
mand injection attack, DoS, and Response Injection attacks within the NGP dataset.
The class with more connection records seems to be learnt properly without con-
fusing their identity while those with fewer connection records during training did
not show good true positive rate as it was had to identify them. This indicates a data
imbalance problem. However, this was not the case when ML was used in place of
DL as the system achieved good precision and recall as evidenced in Table 6.3.
Also, if the output from this study is compared to our previous work in Eke et al.
(2019), where we have implemented the same procedure with KDDCup99 dataset,
the average detection rate achieved is 99.9% (see Table 6.3).

Table 6.3 Our proposed approach and other works on APTs detection

Proposed method Approach Dataset Outcome Reference

Enhanced
SNNalgori thm

Semi-supervised
learning approach

LANL 90.50% Zimba et al.
(2020)

BiLSTM&GCN Network flow
analysis

Malware capture
CTU-13 data
warehouse

68.89% (APT IPs
attack)

Do Xuan et al.
(2022)

Network flow
based on C&C
detection method

DL techniques Contagio blog
malware

96.80% (f-score) Shang et al.
(2021)

Stacked
RNN variants

DL techniques KDDCup99 99.90% Eke et al. (2019)

APT-DASAC ML–DT NGP &
UNSW-NB15

95% This chapter

APT-DASAC Ensemble
LST Mvariants

NGP &
UNSW-NB15

85% This chapter
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We can see that this approach performed very well on KDDCup99 dataset as the
feature set contained within this data is highly distinguishable in nature. The result is
slightly higher when both NGP and UNSW-NB15 dataset were used. This account
as an identified issue from this study when it comes to comparing performance of
various proposed detection framework with regard to accessibility and availability of
suitable data/network flow information in security industries with respect to domain
of interest.

Considering the different results obtained with three different datasets from
diverse domains, our implemented approach showed a significant attack detection
capability. This has also demonstrated that performance of attack detection approach
applied can be influenced by the nature of network connections with respect to the
domain of application. This suggests that the ability and resilience of operational
CPS state to withstand attack and maintain system performance are regulated by the
safety and security measures in place, which is specific to that CPS devices or appli-
cation domain. Hence, there is every need to investigation the nature of the network
flow information within any system in mind to determine the security measures that
will be suitable for that system.
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Chapter 7
Resilient State Estimation and Attack
Mitigation in Cyber-Physical Systems

Mohammad Khajenejad and Sze Zheng Yong

7.1 Introduction

Cyber-Physical Systems (CPS), e.g., power grids, autonomous vehicles, medical
devices, etc., are systems in which computational and communication components
are deeply intertwined and interactingwith each other in severalways to control phys-
ical entities. While the cyber-physical coupling introduces new functions to control
systems and improves their performance, these systems also become exposed to new
cyber-vulnerabilities. Such safety-critical systems, if jeopardized or malfunctioning,
can cause serious detriment to their operators andusers, aswell as the controlled phys-
ical components. A need for CPS security and for new designs of resilient estimation,
attack mitigation and control has been accentuated by recent incidents of attacks on
CPS, e.g., the Iranian nuclear plant, the Ukrainian power grid, and the Maroochy
water service (Cárdenas et al. 2008; Farwell and Rohozinski 2011; Richards 2008;
Slay andMiller 2007; Zetter 2016). Specifically,mode and false data injection attacks
are among themost serious types of attacks on CPS, wheremalicious and/or strategic
attackers compromise the true mode (i.e., discrete state) of the system and/or inject
counterfeit data signals into the sensor measurements and actuator signals to cause
damage, steal energy, etc. Hence, reliable estimates of modes, (continuous) states,
and unknown inputs (attacks) are indispensable and useful for the sake of attack
identification and mitigation and resilient control. Similar state and input estimation
problems can be found across a wide range of disciplines, from input estimation
in physiological systems (De Nicolao et al. 1997), to fault detection and diagnosis
(Patton et al. 1989), to the estimation of mean areal precipitation (Kitanidis 1987).
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7.1.1 Literature Review

Characterization of undetectable attacks as well as attack detection and identification
techniques have been extensively studied in the literature, which range from data-
driven approaches (e.g., the use of data time-stamps in Zhu and Martínez (2013),
Wasserstein metric in Li and Martínez (2020) or higher-order moments in Ren-
ganathan et al. 2021) to the works seeking closed-form solutions for selecting various
types of detector thresholds (e.g., Murguia and Ruths 2016; Milošević et al. 2018)
to anomaly detection methods using residuals (e.g., Mo and Sinopoli 2010; Weimer
et al. 2012;Kwon et al. 2013)with empirically chosen thresholds to trade-off between
false alarms and probability of anomaly/attack detection. On the other hand, attack
mitigation can be preventive and/or reactive (Cómbita et al. 2015). Preventive attack
mitigation identifies and removes system vulnerabilities to prevent exploitation (e.g.,
Dan and Sandberg 2010), while reactive attack mitigation, which is mainly studied
using either game theory (e.g., Ma et al. 2013; Zhu and Martínez 2011; Zhu and
Basar 2015) or adaptive learning and control architectures for mitigating sensor and
actuator attacks (e.g., Jin et al. 2017; Yadegar et al. 2019; Jin and Haddad 2019,
2020), initiates countermeasures after detecting an attack.

The ability to reliably estimate the true system states despite attacks (i.e., resilient
estimates) is also desirable in addition to attack detection or the resulting attack
mitigation, because the availability of resilient state estimates would allow for con-
tinued operation with the same controllers as in the case without attacks or for
pricing/prediction based on the real unbiased/compatible state information despite
attacks. This problem has been addressed for both static systems (e.g., Liu et al. 2011;
Kosut et al. 2011; Liang et al. 2017 and references therein) and dynamic systems
(e.g., Mishra et al. 2015; Cárdenas et al. 2008; Mo and Sinopoli 2010; Pasqualetti
et al. 2013; Fawzi et al. 2014; Pajic et al. 2014, 2015; Yong et al. 2016a; Dahleh and
Diaz-Bobillo 1994; Shamma and Tu 1999; Blanchini and Sznaier 2012; Yong 2018;
Yong et al. 2018).

In particular, resilient state estimators for deterministic linear dynamic systems
under actuator and sensor signal attacks (e.g., via false data injection Cárdenas et al.
2008;Mo and Sinopoli 2010; Pasqualetti et al. 2013), have been proposed as a relaxed
�0 optimization problem in Fawzi et al. (2014), and extensions in Pajic et al. (2014),
Pajic et al. (2015) compute the worst-case bound on the state estimate errors in the
presence of additive noise errors with known bounds, while Yong et al. (2016a)
propose the resilient state estimators that are robust to bounded multiplicative and
additive modeling and noise errors. On the other hand, our previous work Yong et al.
(2015), Yong (2018) proposed to use a simultaneous input and state estimation (see,
e.g., Yong 2018; Gillijns and De Moor 2007a, b; Yong et al. 2016b, 2017) approach
for resilient state estimation ,wherewemodeled the data injection attacks as unknown
inputs of dynamical systems and derived stability and optimality properties for our
estimators, as well as their relationship to strong detectability (Yong et al. 2016b).

In addition, a serious CPS security concern has emerged more recently from the
attacks that alter the CPS network topology or exploit the switching vulnerability
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of CPS, e.g., attacks on the power system network topology (Weimer et al. 2012),
or on the circuit breakers of a smart grid (Liu et al. 2013), on the meter/sensor data
network topology (Kim andTong 2013) or on the logicmode (e.g., failsafemode) of a
traffic infrastructure (Ghena et al. 2014). To address this concern, our previous works
(Yong et al. 2021, 2018; Khajenejad and Yong 2019) proposed inference algorithms
that estimate hidden modes, unknown inputs (attacks) and states simultaneously as a
means to obtain resilient state estimation despite switching (mode/topology) attacks
as well as attacks on actuator and sensor signals. This framework is inspired by
the multiple-model approach (see e.g., Bar-Shalom et al. 2004; Mazor et al. 1998
and references therein) and can be viewed as a generalization of the robust control-
inspired approach in Nakahira andMo (2018) that considers resilient state estimation
against sparse data injection attacks on only the sensors.

In the context of reactive attack mitigation, the work in Ma et al. (2013) uti-
lized a Markov game analysis for attack-defense in power systems, while a leader–
follower (Stackelberg) game formulation was developed in Zhu andMartínez (2011)
to model the interdependency between the operator and adversaries and solved using
a receding-horizon Stackelberg control law tomaintain the closed-loop system stabil-
ity and some performance specifications. Further, a cross-layer coupled design was
presented in a hybrid game-theoretic framework in Zhu and Basar (2015), where
the occurrence of unanticipated events was modeled by stochastic switching , and
deterministic uncertainties were represented by disturbances with a known range,
and a robust controller was then designed at the physical layer to take into account
risks of failures due to the cyber-system.

In this chapter, assuming different models for uncertainties/noise signals, we pro-
pose resilient state estimation algorithms that output reliable estimates of the true
system states despite false data injection attacks and switching attacks. Our resilient
estimation algorithms address switching attacks aswell as actuator and sensor attacks
in the presence of stochastic and/or set-valued noise signals. Our approach is built
upon a general purpose inference algorithm developed and applied in our previous
works (Yong et al. 2021, 2018;Khajenejad andYong 2019) for hidden-mode stochas-
tic/bounded error switched linear systems with unknown inputs (attacks). We model
switching and false data injection attacks on Cyber-Physical Systems (CPS) in the
presence of stochastic/distribution-free noise signals as an instance of this system
class. By doing so,we show that unbiased and set-valued state estimates (i.e., resilient
state estimates) can be (asymptotically) recovered with the algorithms in Yong et al.
(2021), Khajenejad and Yong (2019). Secondly, we characterize fundamental limi-
tations to resilient estimation that is useful for preventative mitigation, such as the
upper bound on the number of correctable/tolerable attacks, and consider the sub-
ject of attack detection. In addition, we provide sufficient conditions for designing
unidentifiable attacks (from the attacker’s perspective) and also sufficient conditions
to obtain resilient state estimates even when the attacks are not identified (from the
system operator/defender’s perspective). Finally, we design an attack-mitigating and
stabilizing dynamic H∞-controller that contributes to the literature on non-game-
theoretic reactive attack mitigation.
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An earlier manuscript appeared in Yong et al. (2018), where we addressed the
resilient state estimation problem under switching and false data injection attacks
for stochastic hidden-mode CPS only, while in this chapter, we also consider the
uncertainties that are set-valued and further present a novel dynamic H∞-optimal
controller design for attack mitigation. Further, we provide necessary conditions
for the attack signal to be unidentifiable to add to the previously derived sufficient
conditions in Yong et al. (2018).

Notation:Rn denotes the n-dimensional Euclidean space andN nonnegative inte-
gers. For a vector v ∈ R

n and a matrix M ∈ R
p×q , ‖v‖2 �

√
v�v, ‖v‖∞ � max

1≤i≤n
|

vi | and ‖M‖2, and σmin(M) denote their induced 2-norm and non-trivial least sin-
gular value, respectively.

7.2 Problem Formulation

7.2.1 Attack Modeling

Similar to Yong et al. (2018), two different classes of possibly time-varying attacks
on Cyber-Physical Systems (CPS) are considered:

Data Injection Attacks: Attacks on actuator and sensor signals via manipulation
or injection with “false” signals of unknown magnitude and location (i.e., subset
of attacked actuators or sensors). In other words, signal attacks consist of both sig-
nal magnitude attacks and signal location attacks. Examples: Denial-of-service,
deceptive attacks via data injection (Cárdenas et al. 2008; Pasqualetti et al. 2013).

Switching Attacks: Attacks on the switching mechanisms that change the sys-
tem’s mode of operation, or on the sensor data or interconnection network topol-
ogy, which we will also refer to as mode attacks. Examples: Attack on circuit
breakers (Liu et al. 2013), power network topology (Weimer et al. 2012), sensor
data network (Kim and Tong 2013) and logic switch of a traffic infrastructure
(Ghena et al. 2014).

7.2.1.1 Data Injection Attacks

For clarity, we assume for the moment that there is only one mode of operation, and
that the linear system dynamics is not perturbed by any noise signals:

xk+1 = Akxk + Bk(uk + da
k ), yk = Ckxk + Dk(uk + da

k ) + ds
k ,

where xk ∈ R
n is the continuous state, yk ∈ R

� is the sensor output, uk ∈ R
m is

the known input, da
k ∈ R

m and ds
k ∈ R

� are attack signals that are injected into the
actuators and sensors, respectively. The attack signals are sparse, i.e., if sensor i ∈
{1, . . . , �} is not attacked then necessarily ds,(i)

k = 0 for all time steps k; otherwise
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ds,(i)
k can take any value. Since we do not know which sensor is attacked, we refer to
this uncertainty as the signal location attack, and the arbitrary values that ds,(i)

k can
take as the signal magnitude attack. This holds similarly for attacks on actuators da

k .
If we have additional knowledge of which of the actuators and sensors are vulner-

able to data injection attacks, we will use Gk and Hk to incorporate this information,
resulting in the following system dynamics

xk+1 = Akxk + Bkuk + Gkda
k , yk = Ckxk + Dkuk + Dkda

k + Hkds
k .

If no such information is available,Gk = Bk , Dk = Dk , and Hk = I . Further, in some
cases, the actuator and sensor attack signals are coupled and cannot be separated.
In order to take this into consideration, we represent the potentially coupled attack
signals with dk and introduce corresponding Gk and Hk matrices to obtain

xk+1 = Akxk + Bkuk + Gkdk, yk = Ckxk + Dkuk + Hkdk .

The special case where the actuator and sensor attack signals are independent can be
obtained with dk = [

(da
k )� (ds

k )
�]�

, Gk = [
Gk 0

]
and Hk = [

Dk Hk

]
, which will

be made more precise in Sect. 7.2.2.

7.2.1.2 Switching Attacks

A system may have multiple modes of operation, denoted by the set Qm of cardi-
nality tm � |Qm |, due to the presence of switching mechanisms or different config-
urations/topologies of the sensor data or interconnection network, where each mode
q ∈ Qm has its corresponding set of system matrices, {Aq

k , B
q
k ,Cq

k , Dq
k ,G

q
k , H

q
k }. A

switching attack or mode attack then refers to the change of the mode of operation
q by an adversary without the knowledge of the system operator/defender.

7.2.1.3 Attacker Model Assumptions

The malicious signal magnitude attack may be a signal of any type (random or
strategic) or model, and we assume that no ‘useful’ knowledge of the dynamics of
dk is available (uncorrelated with {d�} for all k �= �, {w�} and {v�} for all �).

7.2.2 System Description

Our role as a system operator/defender is to obtain resilient/reliable state estimates.
Thus, we model the system in a way that facilitates this. In other words, we model
the switching and false data injection attacks on a “noisy” dynamic system using
a hidden-mode switched linear discrete-time system with unknown inputs (i.e., a
dynamical system with multiple modes of operation where the system dynam-
ics in each mode is linear and uncertain, and the mode and some inputs are not
known/measured):
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(xk+1, qk) = (Aq
k xk + Bq

k u
q
k + Gq

kd
q
k + w

q
k , q), xk ∈ Cq ,

(xk, q)+ = (xk, δ
q(xk)), xk ∈ Dq , (7.1)

yk = Cq
k xk +Dq

k u
q
k + Hq

k d
q
k + v

q
k ,

where xk ∈ R
n is the continuous system state and q ∈ Q = {1, 2, . . . ,N} is the

hidden discrete state or mode, which a malicious attacker can influence, while Cq

and Dq are flow and jump sets, and δq(xk) is the mode transition function. More
details on the hybrid systems formalism can be found in Goebel et al. (2009). For
eachmodeq,uqk ∈ Uq ⊂ R

m is the known input,dq
k ∈ R

p the unknown input orattack
signal1 and yk ∈ R

l the output, whereas the corresponding process noise w
q
k ∈ R

n

and measurement noise v
q
k ∈ R

l satisfy one of the following sets of assumptions for
the system uncertainties:

Assumption 7.1 (Aleatoric Uncertainty) The system is perturbed by random
(unbounded) process and measurement noise signals with process noise w

q
k and

measurement noise v
q
k that are mutually uncorrelated, zero-mean Gaussian white

random signals with known covariance matrices, Qq
k = E[wq

kw
q�
k ] 
 0 and Rq

k =
E[vq

k v
q�
k ] � 0, respectively. Moreover, x0 is independent of v

q
k and w

q
k for all k.

Assumption 7.2 (Epistemic Uncertainty) The system is perturbed by uncertain,
bounded process and measurement noise signals, where the corresponding process
noise w

q
k and measurement noise v

q
k are distribution-free uncertain bounded signals

with known bounds, i.e., ‖wq
k ‖ ≤ ηw and ‖vq

k ‖ ≤ ηv , respectively (thus, they are �∞
sequences), where η

q
w and η

q
v are known parameters. We also assume an estimate x̂0

of the initial state x0 is available, where ‖x̂0 − x0‖ ≤ δ
q,x
0 with known δ

q,x
0 .

Assumption 7.3 (Aleatoric + Epistemic Uncertainty) The system is perturbed
by random and bounded process and measurement noise signals, where the cor-
responding process noise w

q
k and measurement noise v

q
k are mutually uncorre-

lated, zero-mean “truncated" Gaussian white random signals with known covariance
matrices, Qq

k = E[wq
kw

q�
k ] 
 0 and Rq

k = E[vq
k v

q�
k ] � 0, and bounded norms, i.e.,

‖wq
k ‖ ≤ η

q
w and ‖vq

k ‖ ≤ η
q
v , respectively, where η

q
w and η

q
v are known. Moreover, x0

is independent of v
q
k and w

q
k for all k, and an estimate x̂0 of the initial state x0 is

available, where ‖x̂0 − x0‖ ≤ δ
q,x
0 with known δ

q,x
0 .

In the case of the stochastic/aleatoric uncertainty (i.e., if Assumption 7.1 holds and
consequently, the uncertainty is characterized using probability distributions), the
emphasis is on expected/average performance of the resilient state estimator. In this
case, CPS safety/resilience is guaranteed based on probability of violation/chance
constraints. On the other hand, in the case of set-valued/epistemic uncertainty (i.e., if
Assumption 7.2 holds and hence the uncertainty is characterized by sets), the empha-
sis would be on the best worst-case performance and the CPS safety/resilience is

1 Note that while the unknown inputs may also be used to represent uncertainties or noise that are
unbounded or have unknown bounds, we primarily use this term to represent attack signals in this
chapter and thus, we often use the terms unknown inputs and attacks interchangeably.
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Fig. 7.1 Different
assumptions on the
considered uncertainty in
System (7.1)

guaranteed in the worst case, including rare events/corner cases. Finally, if Assump-
tion 7.3 holds, we can combine the information of the stochastic uncertainties and
the set-membership uncertainties from Assumptions 7.1 and 7.2 to benefit from
the advantages of both. Figure7.1 illustrates the aforementioned system uncertainty
models/assumptions.

Both categorical and continuous natures of the uncertainties introduced by the
switching and data injection attacks to the system of interest can be captured by the
Cyber-Physical System (CPS)model in (7.1). The categorical nature of the switching
and data injection attacks (mode attack and signal location attack) is modeled using
the hidden mode, whereas the unknown input captures the continuous nature of the
signal magnitude attacks. At any particular time k, the stochastic/bounded-error CPS
is in precisely one of its modes, which is not measured, hence hidden.

Similar to Yong et al. (2018), we consider the model set Q � Qm × Qd (whose
cardinality will be characterized in Theorem 7.2 in Sect. 7.3.3.2) that include

(i) themodes of operation,Qm (representing attacked switchingmechanisms (e.g.,
circuit breakers, relays) via access to the jump set Dq and the mode transition
function δq(·), or the possible interconnection network topologies that affect
the system matrices, Aq

k and Bq
k , and the sensor data network topologies, Cq

k
and Dq

k ) that an attacker can choose (mode attack), as well as
(ii) the different hypotheses for each mode, Qd , about which actuators and sen-

sors are attacked or not attacked, represented by Gq
k and Hq

k , where our
approach specifies which actuators and sensors are not attacked, in contrast
to the approach in Mishra et al. (2015), which removes attacked sensor mea-
surements and is not applicable for actuator attacks. (signal location attack).

More precisely, for sparse false data injection attacks, we let Gq
k � GkI

q
G and

Hq
k � HkI

q
H for some input matrices Gk ∈ R

n×ta and Hk ∈ R
�×ts , where ta and

ts are the number of actuator and sensor signals that are vulnerable, respectively
and encode the sparsity using I q

G ∈ R
ta×p and I q

H ∈ R
ts×p as index matrices such

that da,q
k � I q

Gdk and ds,q
k � I q

Hdk are subvectors of dk ∈ R
p representing signal

magnitude attacks on the actuators and sensors, respectively. These matrices provide
ameans to incorporate information about how the attacks affect the system, e.g., if the
same attack is injected to an actuator and a sensor, or if some signals are not attacked,
according to a particular hypothesis/mode q about the signal attack location.
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The following are some examples from Yong et al. (2018) for choosing Gk , Hk ,
I q

G , and I q
H to encode additional information about the nature/structure of data

injection attacks.

Example 7.1 For a two-state system with two vulnerable actuators and one vulner-
able sensor, if the same attack signal is injected into the first actuator and the sensor
under the hypothesis corresponding to mode q, then Gk = I2,Hk = 1,I q

G = I2 and
I q

H = [
1 0

]
. In this case, we obtain Gq

k = I2 and Hq
k = [

1 0
]
.

Example 7.2 For a three-state system with three actuators and two sensors, if the
first actuator and the second sensor are not vulnerable and there are three attacks

according to the hypothesis corresponding to mode q, then Gk =
⎡

⎣
0 0
1 0
0 1

⎤

⎦, Hk =
[
1
0

]
, I q

G =
[
1 0 0
0 1 0

]
and I q

H = [
0 0 1

]
. In this case, we have Gq

k =
⎡

⎣
0 0 0
1 0 0
0 1 0

⎤

⎦ and

Hq
k =

[
0 0 1
0 0 0

]
.

Note that we assume that pqa ≤ ta ≤ m (i.e., the number of attacked actuator signals
pqa under mode/hypothesis q cannot exceed the number of vulnerable actuators and
in turn cannot exceed the total number of actuators ma) and pqs ≤ ts ≤ � (with pqs
attacked sensors from ts vulnerable sensors out of � measurements). Moreover, we
assume that the maximum total number of attacks is p � pqa + pqs ≤ p∗, where p∗
is the maximum number of asymptotically correctable signal attacks (cf. Theorem
7.1 for its characterization).

7.2.2.1 System Assumptions

We require that the system is strongly detectable2 in each mode. In fact, strong
detectability is necessary for each mode in order to asymptotically correct the
unknown attack signals, as shown in Yong et al. (2018) [Theorem 4.3] and is also
necessary for deterministic systems [Sundaram and Hadjicostis (2007), Theorem
6]. Note that similar to the detectability property, strongly detectable systems need
not be stable (cf. example in the proof of Theorem 7.1), but rather that the strongly
undetectable modes of such systems are stable.

7.2.2.2 Knowledge of the System Operator/Defender

The matrices Aq
k , B

q
k , G

q
k , C

q
k , D

q
k , and Hq

k are known and the system (Aq
k ,G

q
k ,C

q
k ,

Hq
k ) is strongly detectable in each mode. Further, the defender only knows (i) the

2 A linear system is strongly detectable if yk = 0 ∀k ≥ 0 implies xk → 0 as k → ∞ for all initial
states x0 and input sequences {di }i∈N (see [Yong et al. (2016b), Sect. 3.2] for necessary and sufficient
conditions for this property).
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upper bound on the number of actuators/sensors that can be attacked, p, and (ii)
the switching mechanisms/topologies that may be compromised. The upper bound
p allows the defender, in the worst case, to enumerate all possible combinations of
Gq

k and Hq
k , while the latter assumption allows the defender to consider all possible

topologies/modes of operations, representing Aq
k , B

q
k , C

q
k and Dq

k .
In addition, note that the above assumption of strong detectability can be viewed

as recommendations or guidelines for system designers/operators to secure their sys-
tems as a preventative attack mitigation measure, since without strong detectability,
resilient (i.e., unbiased or bounded) state estimates cannot be guaranteed. In other
words, the requirement of strong detectability allows system designers to determine
which actuators or sensors need to be safeguarded to guarantee resilient estimation.

7.2.3 Security Problem Statement

With the above modeling framework, the resilient state estimation problem can be
posed as a problem of mode, state and input estimation, where the unknown inputs
represent the unknown signal magnitude attacks and each mode/model represents an
attack mode (resulting from the unknown mode attacks and unknown signal attack
locations). The objective of this chapter is:

Problem 7.1 Given an uncertain Cyber-Physical System (CPS) described by (7.1),

1. Design a resilient estimator that asymptotically recovers unbiased estimates of
the system state and attack signal in the presence of aleatoric/stochastic uncer-
tainty (i.e., if Assumption 7.1 holds), or finds the set-valued estimates of compat-
ible states and unknown inputs in the presence of epistemic uncertainty (i.e., if
Assumption 7.2 holds), irrespective of the location or magnitude of attacks on its
actuators and sensors as well as switching mechanism/topology (mode) attacks.

2. Investigate the fundamental limitations of the estimation algorithms, specifically
the maximum number of asymptotically correctable signal attacks and the maxi-
mum number of required models with our multiple-model approach.

3. Find the conditions under which attacks can be detected and under which the
attack strategy can be identified.

4. Design attack mitigation tools via H∞-control with attack rejection.

7.3 Resilient State Estimation

Similar to a previous approach for stochastic systems in Yong et al. (2021), we
propose the use of a multiple-model estimation approach to solve Problem 7.1.1.
Then, we will consider Problem 7.1.2 and characterize some fundamental limitations
to resilient estimation in Sect. 7.3.3.
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7.3.1 Multiple-Model State and Input Filtering/Estimation
Algorithm

Inspired by the multiple-model filtering algorithms for hidden-mode hybrid systems
with known inputs (e.g., Bar-Shalom et al. (2004); Mazor et al. (1998) and refer-
ences therein), our multiple-model (MM) framework (see Fig. 7.2) consists of three
components: (i) a bank of mode-matched filters/observers, (ii) a mode estimator that
finds the most likely or compatible modes, and (iii) a global fusion estimator that
combines/fuses states and unknown input (attack) estimates from (i) based on the
estimated modes in (ii), which are described in greater detail below.

7.3.1.1 Mode-Matched Filters/Observers

The bank of filters/observers is comprised of N simultaneous state and input fil-
ters/observers, one for each mode, that differ based on the assumptions on system
uncertainties and noise signals. If Assumption 7.1 (the aleatoric/stochastic uncer-
tainty model) holds, the optimal recursive filter developed in Yong et al. (2016b) can
be applied, while if Assumption 7.2 (the epistemic/set-valued uncertainty model)
holds, the recursive set-valued observer developed in Yong (2018) can be utilized.
Both variants are recursive and involve the same three-step structure as follows:

Fig. 7.2 Multiple-model framework for hidden mode, input and state estimation, which consists of
a (i) bank of mode-matched filters/observers, (ii) a mode estimator and (iii) a global fusion estimator
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Unknown Input Estimation:

d̂q
1,k = Mq

1,k(z
q
1,k − Cq

1,k x̂
q
k|k − Dq

1,ku
q
k ),

d̂q
2,k−1 = Mq

2,k(z
q
2,k − Cq

2,k x̂
q
k|k−1 − Dq

2,ku
q
k ),

d̂q
k−1 = V q

1,k−1d̂
q
1,k−1 + V q

2,k−1d̂
q
2,k−1.

(7.2)

Time Update:

x̂qk|k−1 = Aq
k−1 x̂

q
k−1|k−1 + Bq

k−1u
q
k−1 + Gq

1,k−1d̂
q
1,k−1,

x̂�,q
k|k = x̂qk|k−1 + Gq

2,k−1d̂
q
2,k−1.

(7.3)

Measurement Update:

x̂qk|k = x̂�,q
k|k + L̃q

k (z
q
2,k − Cq

2,k x̂
�,q
k|k − Dq

2,ku
q
k ), (7.4)

where x̂qk−1|k−1, d̂
q
1,k−1, d̂

q
2,k−1 and d̂q

k−1 denote the optimal point estimates of xqk−1,
dq
1,k−1, d

q
2,k−1 and d

q
k−1, respectively, if Assumption 7.1 holds (cf. Algorithm 7.1 that

summarizes the optimal filter for mode q in the presence of stochastic (aleatoric)
uncertainty) and denote the centroids of the hyperball-valued estimates of xqk−1,
dq
1,k−1, d

q
2,k−1 and d

q
k−1, respectively, if Assumption 7.2 holds (cf. Algorithm 7.3 that

finds theH∞-optimal set-valued state and input estimates for mode q in the presence
of distribution-free (epistemic) uncertainty).

The rest of the notations are clarified in the context of the system transformation
described in Appendix7.1.1. For details of the filter/observer derivation of both vari-
ants, as well as necessary and sufficient conditions for filter stability and optimality
of the mode-matched filters/observers, the reader is referred to Yong et al. (2016b)
and Yong (2018) for the aleatoric and epistemic uncertainty models, respectively.

It is worth mentioning that in the case that Assumption 7.3 holds (i.e., with a
combination of aleatoric and epistemic uncertainties), we can compute (in parallel)
both the point estimates corresponding to aleatoric/stochastic uncertainty and the
set-valued estimates corresponding to the epistemic/bounded-error uncertainty, and
utilize their combination as described in the following subsections.

7.3.1.2 Mode Estimator

Themode estimator seeks to determine themost likely or all compatiblemodes based
on the observations. For this purpose, we consider three cases:

(a) Aleatoric Uncertainty. In this case, Assumption 7.1 holds and consequently, a
mode probability computation is performed for all modes as described in Yong
et al. (2018). The multiple-model approach computes the probability of each
mode by exploiting the whiteness property [Yong et al. (2021), Theorem 1] of
the generalized innovation sequence, νq

k , defined as

ν
q
k � Γ̃

q
k (zqa,2,k − Cq

a,2,k x̂
�,q
a,k|k − Dq

a,2,ku
q
k ), (7.5)
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i.e., νq
k ∼ N (0, Sqk ) (a multivariate normal distribution) with covariance Sqk �

E[νq
k ν

q�
k ] = Γ̃

q
k R̃�,q

2,k Γ̃
q�
k and where Γ̃

q
k is chosen such that Sqk is invertible and

R̃�,q
2,k is given in Algorithm 7.1. This generalized innovation represents a residual

signalwith false data injection attacks removed that can be used to define the like-
lihood function for each mode q at time k conditioned on all prior measurements
Zk−1:

L (q|z2,k) � N (ν
q
k ; 0, Sqk ) = exp(− 1

2ν
q �
k (Sqk )−1ν

q
k )

√
|2π Sqk |

. (7.6)

Then, the posterior probabilityμ
j
k for each mode j is recursively computed from

the prior probability μ
j
k−1 using Bayes’ rule as follows:

μ
j
k = P(q = j |z1,k, z2,k, Zk−1) = N (ν

j
k ; 0, S j

k )μ
j
k−1

∑N
i=1 N (νi

k; 0, Sik)μ j
k−1

. (7.7)

Furthermore, to keep the modes “alive” in case of a switch in the attacker’s
strategy, a heuristic lower bound on all mode probabilities is imposed.

(b) Epistemic Uncertainty. In the presence of distribution-free and bounded norm
noise signals, i.e., when Assumption 7.2 holds, a mode elimination process is
performed to eliminate themodes that are incompatiblewith observations, which
results in a set of compatible modes. The mode elimination approach relies on
the checking of some residual signals against some thresholds. We first define
the residual signal rqk for each mode q at time step k as:

rqk � zqe,2,k − Cq
e,2,k x̂

�,q
a,k|k − Dq

e,2,ku
q
k . (7.8)

Then, leveraging an approach in Khajenejad and Yong (2019), if the residual
signal of a particular mode exceeds its upper bound conditioned on this mode
being true, we can conclusively rule it out as incompatible. To do so, for each
mode q, we compute a tractable upper bound (δ̂qr,k ; cf. Proposition 7.2) for the
2-norm of its corresponding residual at time k, conditioned on q being the true
mode. Then, comparing the 2-norm of residual signal in (7.8) with δ̂

q
r,k , we can

eliminatemode q if the residual’s 2-norm is strictly greater than the upper bound,
i.e., if ‖rqk ‖2 > δ̂

q
r,k . This can be formalized using the following proposition (cf.

[Khajenejad and Yong (2019), Proposition 1 and Theorem 2] for more details
and a formal proof of this result).

Proposition 7.1 Consider mode q and its residual signal rqk at time step k. Assume
that δ

q,∗
r,k is any signal that satisfies ‖rq|∗

k ‖2 ≤ δ
q,∗
r,k , where rq|∗

k is the true mode’s
residual signal (i.e., q = q∗, where q∗ denotes the true mode), defined as follows:

rq|∗
k � zq∗

e,2,k − Cq
e,k,2 x̂

�,q
e,k|k − Dq

e,k,2u
q
k = T q∗

e,k,2yk − Cq
e,k,2 x̂

�,q
e,k|k − Dq

e,k,2u
q
k . (7.9)
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Then, mode q is not the true mode, i.e., can be eliminated at time k, if

‖rqk ‖2 > δ
q,∗
r,k . (7.10)

Note that by [Khajenejad and Yong (2019), Lemmas 1 and 2], the sequence {δq,∗
r,k }∞k=0

is uniformly bounded and admits a finite valued upper sequence. Although comput-
ing the tightest possible residual norm’s upper sequence potentially can eliminate
the most possible number of modes, it requires to the solution a norm maximiza-
tion problem over the intersection of level sets of lower dimensional norm functions
that is NP-hard [Bodlaender et al. (1990)]. Thus, by applying [Khajenejad and Yong
(2019), Theorem 3], we instead compute a tractable over-approximation of the resid-
ual norm’s upper bound sequence, denoted by {δ̂qr,k}∞k=0, i.e.,∀k ∈ {0, . . . ,∞}, δq,∗

r,k ≤
δ̂
q
r,k , and use this upper bound sequence as a tractable mode elimination criterion as
follows (cf. [Khajenejad and Yong (2019), Theorem 3] for more details):

Proposition 7.2 Mode q is not the true mode, i.e., can be eliminated at time k, if

‖rqk ‖2 > δ̂
q
r,k � min{δq,in f

r,k , δ
q,tr i
r,k }, (7.11)

where δ
q,in f
r,k and δ

q,tr i
r,k are two tractable computed upper bounds for the residual

norm and are given in Appendix7.1.2.

(c) Combined Uncertainty. In the presence of truncated Gaussian noise signals,
i.e., if Assumption 7.3 holds, both mode probability computation procedure
(described in (7.3.1.2)) and mode elimination approach (described in (7.3.1.2))
are applicable and can be combined. Specifically, we first apply the mode elim-
ination algorithm from Khajenejad and Yong (2019) to obtain a set of compati-
ble modes, and then compute mode probabilities for only the “non-eliminated"
modes using (7.7).

7.3.1.3 Global Fusion Estimator

Finally, the global fusion estimator combines the estimates from the bank of mode-
matched state and input estimators and mode observer, under the three different
system uncertainty models, as follows:

(a) Aleatoric Uncertainty. Based on the posterior mode probabilities in (7.7), the
most likely mode at each time k, q̂k , and the associated state and input estimates
and covariances, x̂a,k|k , d̂a,k , Px

k|k and Pd
k , can be determined:

q̂k = j∗ = argmax j∈{1,...,N} μ
j
k ,

x̂a,k|k = x̂ j∗
a,k|k, d̂a,k = d̂ j∗

a,k,

Px
k|k = Px, j∗

k|k , Pd
k = Pd, j∗

k .

(7.12)
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(b) Epistemic Uncertainty. Using the computed residuals (7.9) and their upper
bound sequences (7.11), our proposed global fusion observer finds all modes
that are not eliminated and computes the input and state set-valued estimates,
D̂k−1 and X̂k , by taking the union of the mode-matched state and unknown input
(attack) set estimates over the compatible modes:

Q̂k = {q ∈ Q | ‖rq‖2 ≤ δ̂
q
r,k},

D̂k−1 = ∪q∈Q̂ k
Dq

k−1,

X̂k = ∪q∈Q̂ k
Xq
k .

(7.13)

(c) Combined Uncertainty. In this case, after eliminating all modes that satisfy
(7.11), the most likely mode and its associated state and input estimates and
covariances at each time can be determined using only the set of non-eliminated
modes (instead of all modes as in the case of aleatoric uncertainty), i.e.,

ˆ̂qk = j∗∗ = argmax j∈Q̂ μ
j
k ,

x̂c,k|k = x̂ j∗∗
c,k|k, d̂c,k = d̂ j∗∗

c,k ,

Px
c,k|k = Px, j∗∗

k|k , Pd
c,k = Pd, j∗∗

k .

(7.14)

The multiple-model approach is summarized in Algorithms 7.1–7.4 for the aleatoric/
stochastic and epistemic/set-valued uncertainties, respectively.

7.3.2 Properties of the Resilient State Estimator

Our previous results in Yong et al. (2021); Khajenejad andYong (2019); Yong (2018)
show that the resilient state estimator has nice properties, which can be summarized
as follows.

7.3.2.1 Optimality

Given the attacked switched linear systemwith hiddenmodes in (7.1), if Assumption
7.1 holds (aleatoric uncertainty), the resilient state estimator (i.e., Algorithms 7.1 and
7.2) is asymptotically optimal, i.e., the state and input estimates in (7.12) converge
on average to optimal state and input estimates in the minimum variance unbiased
sense [Yong et al. (2021), Corollary 13]. On the other hand, if Assumption 7.2 holds
(epistemic uncertainty), the resulting set-valued estimates in (7.13) are uniformly
bounded [Yong (2018), Lemma 1] and the resilient state and input observer is stable
and optimal in the H∞-norm sense [Yong (2018) [Theorem 2]]. Further, in the
presence of truncated Gaussian noise signals, i.e., if Assumption 7.3 is satisfied, it
can be shown that the set-valued estimates are uniformly bounded, but the resilient
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state estimates obtained from Algorithms 7.3 and 7.4, may not be asymptotically
optimal.

7.3.2.2 Mode Detectability

Given the attacked switched linear system with hidden modes in (7.1), in the pres-
ence of aleatoric/stochastic uncertainty, i.e., if Assumption 7.1 holds, the resilient
state estimator is mean consistent, i.e., the geometric mean of the mode probability
for the true model q∗ ∈ Q asymptotically converges to one for all initial mode prob-

Algorithm 7.1 Opt- Filter finds the optimal state and input estimates for mode q
in the presence of stochastic (aleatoric) uncertainty

Input: q, x̂qk−1|k−1, d̂
q
1,k−1, P

x,q
k−1|k−1, P

xd,q
1,k−1, P

d,q
1,k−1

[superscript “q" and subscript “a" (referring to aleatoric uncertainty) omitted in the following]
� Estimation of d2,k−1 and dk−1

Âk−1 = Ak−1 − G1,k−1M1,k−1C1,k−1;
Q̂k−1 = G1,k−1M1,k−1R1,k−1M�

1,k−1G
�
1,k−1 + Qk−1;

P̃k = Âk−1Px
k−1|k−1 Â

�
k−1 + Q̂k−1;

R̃2,k = C2,k P̃kC�
2,k + R2,k ;

Pd
2,k−1 = (G�

2,k−1C
�
2,k R̃

−1
2,kC2,kG2,k−1)

−1;

M2,k = Pd
2,k−1G

�
2,k−1C

�
2,k R̃

−1
2,k ;

x̂k|k−1 = Ak−1 x̂k−1|k−1 + Bk−1uk−1 + G1,k−1d̂1,k−1;
d̂2,k−1 = M2,k(z2,k − C2,k x̂k|k−1 − D2,kuk);
d̂k−1 = V1,k−1d̂1,k−1 + V2,k−1d̂2,k−1;
Pd
12,k−1 = M1,k−1C1,k−1Px

k−1|k−1A
�
k−1C

�
2,kM

�
2,k − Pd

1,k−1G
�
1,k−1C

�
2,kM

�
2,k ;

Pd
k−1 = Vk−1

[
Pd
1,k−1 Pd

12,k−1
Pd�
12,k−1 Pd

2,k−1

]
V�
k−1;

� Time update
x̂�
k|k = x̂k|k−1 + G2,k−1d̂2,k−1;

P�x
k|k = G2,k−1M2,k R2,kM�

2,kG
�
2,k + (I − G2,k−1M2,kC2,k)P̃k(I − G2,k−1M2,kC2,k)

�;
R̃�
2,k = C2,k P�x

k|kC�
2,k + R2,k − C2,kG2,k−1M2,k R2,k − R2,kM�

2,kG
�
2,k−1C2,k ;

� Measurement update
P̆k = P�x

k|kC�
2,k − G2,k−1M2,k R2,k ;

L̃k = P̆k R̃
�†
2,k ;

x̂k|k = x̂�
k|k + L̃k(z2,k − C2,k x̂�

k|k − D2,kuk);

Px
k|k = L̃k R�

2,k L̃
�
k − L̃k P̆�

k − P̆k L̃�
k ;� Estimation of d1,k

R̃1,k = C1,k Px
k|kC�

1,k + R1,k ;

M1,k = 
−1
k ;

Pd
1,k = M1,k R̃1,kM1,k ;

d̂1,k = M1,k(z1,k − C1,k x̂k|k − D1,kuk);
return R̃�,q

2,k , x̂
�,q
k|k
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Algorithm 7.2 Resilient State Estimator (Static- MM- Estimator) finds
resilient state estimates corresponding tomost likelymode in the presence of stochas-
tic (aleatoric) uncertainty

Input: ∀ j ∈ {1, 2, . . . ,N}: x̂ j
0|0; μ

j
0;

[subscript “a" (referring to aleatoric uncertainty) omitted in the following]
d̂ j
1,0 = (


j
0 )−1(z j1,0 − C j

1,0 x̂
j
0|0 − D j

1,0u0);

Pd, j
1,0 = (


j
0 )−1(C j

1,0P
x, j
0|0 C

j�
1,0 + R j

1,0)(

j
0 )−1;

for k = 1 to N do
for j = 1 toN do

� Mode-Matched Filtering Run Opt- Filter( j ,x̂ j
k−1|k−1, d̂

j
1,k−1, P

x, j
k−1|k−1, P

d, j
1,k−1);

ν
j
k � z j2,k − C j

2,k x̂
�, j
k|k − D j

2,kuk ;

L ( j |z j2,k) = 1

(2π)
p
j
R̃

/2|R̃ j,�
2,k |1/2+

exp

(
− ν

j�
k R̃ j,�†

2,k ν
j
k

2

)
;

for j = 1 toN do
� Mode Probability Update (small ε > 0)
μ

j
k = max{L ( j |z j2,k)μ j

k−1, ε};
for j = 1 toN do

� Mode Probability Update (normalization)

μ
j
k = μ

j
k∑N

�=1 μ�
k

;

� Output
Compute (7.12);

return x̂k|k , Px
k|k

abilities [Yong et al. (2021), Theorem 8]. Furthermore, in the case of epistemic/set-
valued uncertainty, i.e., if Assumption 7.2 holds, the resilient state estimator ismode
detectable by [Khajenejad and Yong (2019), Theorem 4], i.e., there exists a natural
number K > 0, such that for all time steps k ≥ K , all false modes are eliminated,
if either the whole observation/measurement and state spaces are bounded or the
unknown input/attack signal has an unlimited energy, as well as some additional
mild conditions hold (cf. [Khajenejad and Yong (2019), Assumptions 1&2, Lemmas
3–5 and Theorem 4] for more details). Similarly, if Assumption 7.3 holds, all false
modes (except for the true mode) will be eliminated after some large enough finite
time under the same assumption of bounded state spaces or unlimited energy, and
the unique true mode will have probability one.

7.3.3 Fundamental Limitations of Attack-Resilient
Estimation

Next, to address Problem 1.2, we characterize fundamental limitations of the attack-
resilient estimation problem and of our multiple mode filtering/estimation approach.
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Algorithm 7.3 Opt- Observer finds the H∞-optimal set-valued state and input
estimates for mode q in the presence of distribution-free (epistemic) uncertainty

Input: q, x̂qk−1|k−1, d̂
q
k−1

[superscript “q" and subscript “e" (referring to the epistemic (set-valued) uncertainty) omitted in
the following]
� Estimation of d2,k−1 and dk−1

M1,k = 
−1
k ,

M2,k = (C2,kG2,k)
†,

Âk−1 = Ak−1 − G1,k−1M1,k−1C1,k−1;
Φk = I − G2,kM2,kC2,k ;
Ak = Φk Âk ;
Ve,k = V1,kM1,kC1,k + V2,kM2,kC2,k Âk ;
Ae,k = (I − L̃kC2,k)Ak ;
Be,w,k = (I − L̃kC2,k)Φk ;
Be,v1,k = −(I − L̃kC2,k)ΦkG1,kM1,kT1,k ;
Be,v2,k = −((I − L̃kC2,k)G2,kM2,k + L̃k)T2,k ;
x̂k|k−1 = Ak−1 x̂k−1|k−1 + Bk−1uk−1 + G1,k−1d̂1,k−1;
d̂2,k−1 = M2,k(z2,k − C2,k x̂k|k−1 − D2,kuk);
d̂k−1 = V1,k−1d̂1,k−1 + V2,k−1d̂2,k−1;
δdk−1 = δx0‖Ve,k Ak−1

e,k ‖ + ηw(
∑k−2

i=0 ‖Ve,k Ak−2−i
e,k Be,w,k‖ + ‖V2,kM2,kC2,k‖) +

ηv(‖V2,kM2,kT2,k‖ + ‖Ve,k Ak−2
e,k Be,v1,k‖ + ‖Ve,k Be,v2,k + (V1,k − V2,kM2,kC2,kG1,k)M1,kT1,k‖ +

∑k−2
i=1 ‖Ve,k Ak−2−i

e,k (Be,v1,k + Ae,k Be,v2,k)‖);
D̂k−1 = {d ∈ R

l : ‖d − d̂k−1‖ ≤ δdk−1};� Time update
x̂�
k|k = x̂k|k−1 + G2,k−1d̂2,k−1;

� Measurement update
x̂k|k = x̂�

k|k + L̃k(z2,k − C2,k x̂�
k|k − D2,kuk);

δxk = δx0‖Ak
e,k‖ + ηw

∑k−1
i=0 ‖Ai

e,i Be,w,i‖ + ηv(‖Be,v2,k‖ + ‖Ak−1
e,k Be,v1,k‖ +

∑k−2
i=0 ‖Ai

e,i (Be,v1,i + Ae,k Be,v2,i )‖);
X̂k = {x ∈ R

n : ‖x − x̂k|k‖ ≤ δxk };
� Estimation of d1,k
d̂1,k = M1,k(z1,k − C1,k x̂k|k − D1,kuk);
return X̂q

k , D̂
q
k−1

Note that these fundamental limitations apply to all hidden-mode switched linear
systems with unknown inputs (attacks) (7.1), regardless of the assumptions about
the system uncertainties. First, under the assumption that there is only false data
injection attacks (no switching attacks), we find an upper bound on the number of
correctable signal attacks/errors (i.e., signal attacks whose effects can be negated or
cancelled). Then, we characterize the maximum number of models that is required
by our multiple-model approach to obtain resilient estimates despite attacks.
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Algorithm 7.4 Resilient Mode, State and Input Estimator simultaneously
finds compatible sets of modes, unknown inputs (attacks) and states in the presence
of distribution-free (epistemic) uncertainties

Input: Q � {1, 2, . . . ,N}, ∀ j ∈ {1, 2, . . . ,N}: x̂ j
0|0;

[subscript “e" (referring to the epistemic (set-valued) uncertainty) omitted in the following]
Q̂0 = Q;
for k = 1 to N do

for q ∈ Q̂k−1 do�Mode-Matched State and Input Set-Valued Estimates
Run Opt- Observer(q,x̂qk−1|k−1, d̂

q
k−1);

zq2,k = T q
2 yk ;

�Mode Observer via Elimination
Q̂k = Q̂k−1;
Compute rq via (7.8)
and δ̂

q
r,k via Proposition 7.2;

if ‖rq‖2 > δ̂
q
r,k then

Q̂k = Q̂k\{q};
�State and Input Estimates
X̂k = ∪q∈ ˆQ k

X̂q
k ;

D̂k−1 = ∪q∈ ˆQ k
D̂q
k−1;

return Q̂k , D̂k−1, X̂k

7.3.3.1 Number of Asymptotically Correctable Signal Attacks

We begin by defining the notion of correctable signal attacks in the setting with only
data injection attacks, which is itself an interesting CPS security research problem.

Definition 7.1 (Correctable Signal Attacks)We say that p actuators and sensors sig-
nal attacks are correctable, if for any initial state x0 ∈ R

n and signal attack sequence
{d j } j∈N in R

p, we have an estimator/observer such that the estimate bias asymptot-
ically/exponentially tends to zero (under aleatoric uncerainty, cf. Assumption 7.1),
i.e., E[x̂a,k|k − xk] → 0 (and E[d̂a,k−1 − dk−1] → 0) as k → ∞ or if the set estima-
tion errors are ultimately uniformly bounded sequences (under epistemic uncertainty,
cf. Assumption 7.2).

To derive an estimation-theoretic upper bound on the maximum number of signal
attacks that can be asymptotically corrected, we assume that the true model or mode
(q = q∗) is known. Thus, depending on the type of uncertainty, the resilient state
estimation problem is identical to the state and input estimation problem in Yong
et al. (2016b) or Yong (2018), where the unknown inputs represent the attacks on
the actuator and sensor signals. It has been shown in Yong et al. (2016b) and Yong
(2018) that the system property of strong detectability is a necessary condition for
obtaining uniformly bounded estimates (cf. Yong et al. (2016b); Yong (2018) for
more details, e.g., regarding filter/observer stability and existence). Thus, we will
use this necessary system property to find an upper bound on the maximum number
of signal attacks that can be corrected, similar to Yong et al. (2018), as follows:
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Theorem 7.1 (Maximum Correctable Data Injection Attacks) The maximum num-
ber of correctable actuators and sensors signal attacks, p∗, for system (7.1) is equal
to the number of sensors, l, i.e., p∗ ≤ l and the upper bound is achievable.

Proof A necessary and sufficient condition for strong detectability (with the true
model q = q∗) is given in Yong et al. (2016b); Yong (2018) as

rk

[
z I − A∗ −G∗

C∗ H∗

]
= n + p∗, ∀z ∈ C, |z| ≥ 1. (7.15)

Since the above system matrix has only n + l rows, it follows that its rank is at
most n + l. Thus, from the necessary condition for (7.15), we obtain n + p∗ ≤ n +
l ⇒ p∗ ≤ l. The upper bound is achievable using the example of the discrete-time
equivalent model (with time stepΔt = 0.1s) of the smart grid case study in Liu et al.
(2013), as shown in Yong et al. (2018) [Theorem 4.3]. �

The above result means that for each mode, the total number of vulnerable actu-
ators and sensors must not exceed the number of measurements, which can serve as
a guide for preventative attack mitigation, where the actuators or sensors that need
to be safeguarded to guarantee resilient estimation can be determined. Note that the
result in Theorem 7.1 is stronger than the standard and well-known result in the
literature (e.g., in Fawzi et al. 2014, Proposition 3), where the maximum number
of correctable attacks is at most equal to half of the number of sensors, presumably
since we only require strong detectability instead of strong observability.

7.3.3.2 Number of Required Models for Estimation Resilience

Next, returning to the more general case with false date injection as well as switching
attacks, i.e., the hidden-mode switched linear system in (7.1), we characterize the
maximum number of models N∗ that are needed with the multiple-model approach
in Sect. 7.3.1, which is independent of the size of the system, e.g., the number of
buses in a power system, as well as the type/model of system uncertainty:

Theorem 7.2 (MaximumNumber ofModels/Modes) Suppose there are ta actuators
and ts sensors, and at most p ≤ l of these signals are attacked. Suppose also that
there are tm possible attack modes (mode attack). Then, the combinatorial number
of all possible models, and hence the maximum number of models that need to be
considered with the multiple-model approach, is

N∗ = tm

(
ta + ts

p

)
= tm

(
ta + ts

ta + ts − p

)
.

Proof It is sufficient to consider onlymodels corresponding to themaximumnumber
of attacks p. All models with strictly less than p attacks are contained in this set of
models with the attack vectors having some identically zero elements for which our
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estimation algorithm is still applicable. Thus, we only need to consider combinations
of p attacks among ta + ts sensors and actuators for each of the tm attack modes of
operation/topologies. Note that this number is the maximum because resilience may
be achievable with less models: For instance, when tm = 1, ta = 0 and ts = 2 = l,

p = 1, A =
[
0.1 1
0 0.2

]
and C = I2, we haveN∗ = 2, but it can be verified that with

G = 02×2 and H = I2 (only one model, i.e., 1 = N < N∗), the system is strongly
detectable. �

Note that the number of required models may change if additional knowledge
about the data injection attack strategies is available. For instance, if we know that
there are atmostna ≤ ta andns ≤ ts attacks on the actuators and sensors, respectively,
with a total of p attacks (where p ≤ l and p ≤ na + ns), then the maximum number
of models that are required,

N∗ = tm

min{na ,p}∑

i=0

(
ta
i

)(
ts

min{p − i, ns}
)

is less than the number required in combinatorial case in Theorem 7.2.
On the other hand, the number of models may actually increase with less vul-

nerable actuators or sensors, as shown in the following example with tm = 1 (one

mode of operation), na = 0 (no attacks on actuators), A =
[
0.1 1
0 1.2

]
and C = I .

If only one of the two sensors is vulnerable (ns = p = 1 < l = 2), we have two

models with G =
[
0
0

]
, H1 =

[
1
0

]
and H2 =

[
0
1

]
, but if both sensors are vulnerable

(ns = p = 2), only one model is required with G = 0 and H = I . Note that the
latter case is not strongly detectable with zeros at {0.1, 1.2}, thus this system violates
the necessary condition in Yong et al. (2016b); Yong (2018) for obtaining resilient
estimates. However, both systems in the former case can be verified to be strongly
detectable, thus, resilient estimates can be obtained in this case with less vulnerable
sensors, as one may expect.

7.4 Attack Detection and Identification

Next, we address Problem 1.3 by investigating how the properties of the resilient
state estimation algorithm in Sect. 7.3.2 affect attack detection and identification.

To begin, it is worth recalling that the resilient state estimation algorithms in the
previous section are indifferent about whether the switching and false data injection
attacks on the system are strategic. Nonetheless, it is critical to understand how
our algorithms can detect or identify strategic attacks. In particular, we consider
strategic attackers who aim to deceive the system operator/defender into believing
that the mode of operation is q ∈ Q, q �= q∗, by means of selecting data injection
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signals dk and the true mode q∗ ∈ Q. We call an attack unidentifiable, if the system
operathor is not able to reconstruct/identify it. Moreover, the attack is undetectable,
if it is unidentifiable and is unnoticeable. Below, we formally define the concepts of
attack detection and attack identification, which are extensions of their counterparts
in Yong et al. (2018) [Definitions 5.1 & 5.2].

Definition 7.2 (Switching and Data Injection Attack Detection) A switching and
data injection attack is detected if the true mode q∗ ∈ Q (chosen by attacker) has the
maximum mean probability when using the resilient state estimation algorithm in
Algorithm 7.2 or is not distinguishable from another mode q ∈ Q, q �= q∗ (chosen
by defender) on average, in the presence of the stochastic/aleatoric uncertainty (i.e.,
if Assumption 7.1 holds), or if it is not eliminated by applying Algorithm 7.4 in the
presence of the set-valued/epistemic uncertainty (i.e., if Assumption 7.2 holds).

Definition 7.3 (Switching andData InjectionAttack Identification)A switching and
data injection attack strategy is identified if the attack is detected and in addition,
the true mode q∗ ∈ Q is uniquely determined on average (under aleatoric/stochastic
uncertainty) or all false modes are eliminated (under epistemic/set-valued uncer-
tainty), which reveals that themode attack and signal attack location, and asymptot-
ically unbiased estimates and/or uniformly bounded set-valued estimates of attack
signals dk can be obtained, i.e., the signal magnitude attack is reliably estimated.

It is obvious from the definitions above that if an attack is undetectable, it is
also unidentifiable. Equivalently, if an attack is identifiable, then it is detectable. It
is worth noting however that attack detection or identification is not required for
calculating resilient state estimates. For example, in the simple case where there are
no attacks, i.e., dk = 0 for all k, the performance of state estimates of all models will
be equally good, meaning that the attacks need not be detected or identified in order
to obtain resilient state estimates.

7.4.1 Attack Detection

Our resilient state estimation approach (i.e., Algorithms 7.2 and 7.4) guarantees that
an attack will always be detected by Definition 7.2 for all three uncertainty models.
This is formally stated through the following theorem, which is a generalization of
[Yong et al. (2018), Theorem 5.3].

Theorem 7.3 (Attack Detection) The resilient state estimation algorithms in Algo-
rithms 7.2 (with ratios of prior being identically 1) and 4 guarantee that switching
and data injection attacks are always detectable, for all three uncertainty models.

Proof First, note that if Assumption 7.2 holds, i.e., in the presence of distribution-
free and norm-bounded noise signals, by (7.9), (7.10) and Proposition 7.1, ‖rq∗

k ‖2 ≤
δ
q,∗
r,k ≤ δ̂

q∗
r,k , i.e., (7.11) never holds for q = q∗ and hence, q∗ is never eliminated. On



170 M. Khajenejad and S. Z. Yong

the other hand, ifAssumption 7.1 holds, i.e., in the presence ofGaussian noise signals,
since the Kullback Leibler divergence D( f ∗

� ‖ f q� ) is greater than or equal to zero with
equality if and only if f ∗

� = f q� ( [Kullback and Leibler (1951), Lemma 3.1]), with
j = q∗ ∈ Q as the true model and i ∈ Q, i �= q∗, the summand in the exponent of
the ratio of geometric means whose expression is given in Yong et al. (2021)[Lemma
14] is always non-negative, i.e., D( f ∗

� ‖ f i� ) − D( f ∗
� ‖ f ∗

� ) = D( f ∗
� ‖ f i� ) ≥ 0. In other

words, the ratio of the true model mean probability to the model mean probabilities
of any other mode (i ∈ Q, i �= q∗) cannot decrease and can at best remain the same
as the ratio of their priors being one by assumption. Thus, either the true model is
identified or both modes are indistinguishable and a flag can be raised for attack
detection. �

7.4.2 Attack Identification

A combination of switching and false data injection attacks may not be identifi-
able, even if it is detectable. On the other hand, it directly follows from Definition
7.3 that the mode detectability/mean consistency is sufficient to identify an attack
strategy/action. This is formalized via the following theorem.

Theorem 7.4 (Attack Identification) Suppose mode detectability and/or mean con-
sistency, i.e., Yong et al. (2021), Theorem 8 and/or Khajenejad and Yong (2019),
Theorem 4 hold (and hence Yong et al. 2021, Corollary 13 also holds). Then, the
switching and data injection attack strategy can be identified using the resilient state
estimation algorithms in Algorithms 7.1–7.4.

7.4.2.1 Sufficient or Necessary Condition for Unidentifiable Attacks

Under the stochastic uncertainty model (cf. Assumption 7.1), if the true mode is
in the set of models and even if the estimator is not mean consistent, a sufficient
condition for an attack signal to be unidentifiable was derived in our previous work
(Yong et al. (2018)), which we recap here for the sake of completeness (for more
details, see [Yong et al. (2018), Sect. 5.2]).

Theorem 7.5 (Unidentifiable Attack) [Yong et al. (2018), Theorem 5.5] If Assump-
tion 7.1 or 7.3 hold, Γ̃

q
k T

q
a,2,k H

∗
k has linearly independent rows and there exists

q �= q∗ ∈ Q such that

D s
k � (Γ̃

q
k T

q
a,2,k H

∗
k )†(S∗

k − Γ̃
q
k T

q
a,2,k(E[μq|∗

k μ
q|∗�
k ] + Rk)(Γ̃

q
k T

q
a,2,k)

�))(Γ̃
q
k T

q
a,2,k H

∗
k )†�

(7.16)

is positive definite (
 0) for all k. Moreover, we assume that μ∗
0 = μ

q
0 . Then, the

attack is unidentifiable if the attacker chooses this mode q∗ �= q as well as the attack
signal dk as a Gaussian sequence
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dk ∼ N (dd
k ,D s

k ), ∀k (7.17)

with D s
k defined in (7.16) and dd

k is given by

ddk � E[dk ] = −(Γ̃
q
k T

q
a,2,k H

∗
k )†Γ̃

q
k T

q
a,2,k(C

q∗
k E[xk ] − Cq

k x̂
�,q
a,k|k + (Dq∗

k − Dq
k )E[uk ])

= −(Γ̃
q
k T

q
a,2,k H

∗
k )†Γ̃

q
k T

q
a,2,k(C

q∗
k x̂q

∗
a,k|k − Cq

k x̂
�,q
a,k|k + (Dq∗

k − Dq
k )E[uk ]), ∀k.

(7.18)

The above theorem highlights that an unidentifiable attack strategy oftenmust rely
on the existence of system “vulnerabilities” as well as the computational capability
and system knowledge that are comparable to that of the system operator/defender.
For the former factor, a system designer can consider these conditions as preventative
mitigation guides for securing the system.

On the other hand, if Assumption 7.2 or 7.3 hold (i.e., epistemic/set-valued uncer-
tainty is present), we provide a necessary condition for the attack signals to be uniden-
tifiable, i.e., a condition that the attacker must ensure in order to guarantee that the
attack signals are not identifiable.

Theorem 7.6 (ANecessaryCondition forUnidentifiableAttacks) SupposeAssump-
tion 7.2 or 7.3 holds and T q

e,2,k �= T q ′
a,2,k,∀k ≥ 0,∀q, q ′ ∈ Q, q �= q ′. Then, a neces-

sary condition for the attack signal to be unidentifiable is that it has limited energy

when q = q∗, i.e., lim
k→∞ ‖dq∗

0:k‖2 < ∞, where dq∗
0:k �

[
dq∗�
k dq∗�

k−1 . . . dq∗�
0

]�
.

Proof Using contraposition, suppose the attack signal has unlimited energy. Then,
by [Khajenejad and Yong (2019), Theorem 4], all false modes will be eliminated
after some large enough time step K and hence, the system is mode detectable (cf.
Sect. 7.3.2.2). Thus, by Theorem 7.4, the attack strategy can be identified using the
resilient state estimation algorithm and consequently, the attack signal cannot be
unidentifiable. �

This result has the important implication that attack signals must have limited
energy to remain unidentifiable, and in this case, the harm that an attacker can inflict
on a Cyber-Physical Systems (CPS) may also be limited. Note that the attack impact
could still be catastrophic in this case, which incentives us to design attackmitigation
approach in Sect. 7.5.

7.4.2.2 A Sufficient Condition for Resilient State Estimation

Finally, under the assumption of stochastic/aleatoric uncertainty (cf. Assumption
7.1), a sufficient condition can be found in Yong et al. (2018) to ensure that the state
estimates are unbiased, even when the true mode is not uniquely determined and the
attack signal cannot be estimated/identified, which is restated below.
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Theorem 7.7 (Resilience Guarantee) [Yong et al. (2018), Theorem 5.7] Suppose
Hq

k = Hk and Dq
k = Dk for all q ∈ Q. Moreover, for all q, q ′ ∈ Q, if there exists T

such that for all k ≥ T and the following hold

(i) rank
[
Γ̃

q
k T

q
a,2,kC

q ′
k Γ̃

q
k T

q
a,2,kC

q
k

]
= 2n, if Cq

k �= Cq ′
k ,

(ii) rank(Γ̃ q
k T

q
a,2,kC

q ′
k ) = rank(Γ̃ q

k T
q
a,2,kC

q
k ) = n, if Cq

k = Cq ′
k ,

then the state estimates obtained using Algorithm 7.2 are guaranteed to be resilient
(i.e., asymptotically unbiased).

7.5 Attack Mitigation

We now move on to the challenge of minimizing the impact of attacks, i.e., attack
mitigation (Problem 1.4), which is a step beyond attack detection and identification.
In particular, we investigate the problem of rejecting/canceling data injection attacks
assuming that the attack mode can be detected (thus, the superscript q is omitted
throughout this section), while using the resilient state estimates for H∞ controller
synthesis, in the sense of guaranteeing the boundedness of the expected/worst case
states and minimizing the effect of the attack signals. To this end, we consider a
linear dynamic controller with attack/disturbance rejection terms in the following
form, where x̂k|k, d̂1,k, d̂2,k−1 are obtained from Algorithms 7.1 or 7.3:

xck+1 = Ac
kx

c
k + Bc

k ỹk,
uk = Cc

k x
c
k + Dc

k ỹk,
(7.19)

with Kc
k �

[
Ac
k Bc

k
Cc
k Dc

k

]
being the dynamic controller gain that will be designed, ỹk �

[
x̂�
k|k d̂

�
1,k d̂

�
2,k−1

]�
, Bc

k �
[
Bc
x,k Bc

d1,k
Bc
d2,k

]
and Dc

k �
[
Dc

x,k Dc
d1,k

Dc
d2,k

]
. Note that

we have used a delayed estimate of d2,k−1 given in (7.2), which is the only estimate
we can obtain in light of [Yong et al. (2016b), Eq. (6)]. Before designing Kc

k for
the purpose of attack mitigation and stabilization, we first show that there exists a
separation principle for linear discrete-time systems with unknown inputs (attacks),
i.e., when the true mode is known, which allows us to design the controller gain Kc

k

independently of the observer gain L̃k .

Lemma 7.1 (Separation Principle) The state feedback controller gain K c
k in (7.19)

can be designed independently of the state and input estimator gains L̃k , M1,k and
M2,k in Algorithms 7.1 and 7.3.

Proof Using the dynamic controller (7.19) and the filter/observer equations in (7.2),
(7.3) and (7.4), it can be verified that the system and controller states and the estimator
error dynamics are given by
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⎡

⎣
xck+1
xk+1

x̃k+1|k+1

⎤

⎦ =
⎡

⎣
Ac
k Bc

x,k −Bc
x,k

BkCc
k Ak + BkDc

k,x −BDc
k,x

0 0 (I − L̃k+1C2,k)Ak

⎤

⎦

⎡

⎣
xck
xk
x̃k|k

⎤

⎦

+
⎡

⎣
Bc
d1,k

Bc
d2,k

G1,k + BkDc
d1,k

G2,k + BkDc
d2,k

0 0

⎤

⎦
[
d1,k
d2,k

]
+

⎡

⎣
−Bc

d1,k
−Bc

d1,k−BkDc
d1,k

−Bk Dc
d2,k

0 0

⎤

⎦
[

d1,k − d̂1,k
d2,k − d̂2,k−1

]

(7.20)

+

⎡

⎢
⎢⎢
⎢
⎣

0 0 0
I 0 0

(I − L̃k+1C2,k+1)

(I − G2,kM2,k+1

C2,k+1)

−(I − L̃k+1C2,k+1)

(I − G2,kM2,k+1C2,k+1)

G1,kM1,k

−(I − L̃k+1C2,k+1)

G2,kM2,k+1 − L̃k+1

⎤

⎥
⎥⎥
⎥
⎦
wk ,

where wk �
[
w�

k v�
1,k v�

2,k+1

]�
and Ak � (I − G2,k−1M2,kC2,k)(Ak − G1,kM1,k

C1,k). Since the state matrix has a block upper triangular structure, the eigenval-
ues of the controller and estimator are independent of each other, thus Kc

k and L̃k

can be designed separately. �

Armedwith the above lemma,wepresent anH∞ controller design for determining
the controller gain matrix Kc

k that stabilizes the closed-loop system and mitigates the
effects of attack signals.

Theorem 7.8 (Attack-Mitigating and Stabilizing H∞Controller) Suppose the sys-
tem (7.1) is controllable in the true mode q ∈ Q (known or detected). Then, the
dynamic controller in (7.19) mitigates the effects of data injection attacks and mini-
mizes theH∞-gain from the augmented noise signal w̃k to the state as the desired out-

put, i.e., z̃k = xk, using feedback based on estimates ỹk �
[
x̂�
k d̂�

1,k d̂
�
2,k−1

]�
, where

the gain matrix K c
k is the H∞-controller gain matrix that can be synthesized (e.g.,

using hinfsyn in MATLAB) for the following augmented system:

ξk+1 = Ãkξk + B̃1,kw̃k + B̃2,kuk,
z̃k = C̃1,kξk + D̃11,kw̃k + D̃12,kuk,
ỹk = C̃2,kξk + D̃21,kw̃k + D̃22,kuk,

(7.21)

where Ãk �

⎡

⎣
Ak G1,k G2,k

0 0 0
0 0 0

⎤

⎦, B̃1,k �

⎡

⎣
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0

⎤

⎦, B̃2,k �

⎡

⎣
Bk

0
0

⎤

⎦, C̃1,k �
[
I 0 0

]
,

C̃2,k �

⎡

⎣
I 0 0
0 I 0
0 0 I

⎤

⎦, D̃11,k �
[
0 0 0 0 0 0 0

]
, D̃12,k � 0, D̃21,k �

⎡

⎣
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

⎤

⎦ and

D̃22,k �
[
0 0 0

]�
.

Proof By Lemma 7.1, the state feedback gain, Kc
k , can be independently designed

with no effect on the stability of the resilient state estimator/observer. In other words,
Kc

k can be chosen optimally, in the sense of anH∞-controller such that the augmented
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closed-loop system is stable, and that the effects of the augmented noise w̃k on the
desired controlled output z̃k � xk are minimized. To achieve this, we consider the
following augmented system:

xk+1 = Akxk + Bkuk + G1,kd1,k + G2,kd2,k + wk,

d1,k+1 = w̃1,k,

d2,k+1 = w̃2,k,

(7.22)

with the augmented state ξk �
[
x�
k d�

1,k d
�
2,k

]�
, where the goal is to use the dynamic

controller (7.19) with estimates/“observations" ỹk �
[
x̂�
k d̂�

1,k d̂
�
2,k−1

]�
to stabilize

the desired output/state z̃k � xk , while minimizing the effect of the augmented noise

signal w̃k �
[
w�

k w̃�
1,k w̃�

2,k x̃k|k d̃�
1,k d̃

�
2,k

]�
. Then, by plugging the control input uk

from (7.19) into (7.22), we obtain (7.21), where anH∞-controller can be synthesized
to achieve theminimumH∞ performance. It is worth re-emphasizing that the control
synthesis process is completely independent of the observer gains L̃k, M1,k, M2,k . �

Remark 7.1 The dynamic feedback gain Kc
k can be synthesized using the command

[Kc
k ,CLk, γk] = hinfsyn(P, size(D22,k, 1), size(D22,k, 2))

in MATLAB, where P �

⎡

⎣
Ãk B̃1,k B̃2,k

C̃1,k D̃11,k D̃12,k

C̃2,k D̃21,k D̃22,k

⎤

⎦.

7.6 Simulation Examples

7.6.1 Benchmark System (Signal Magnitude Location
Attacks)

The resilient state estimation problem for a system (modified fromYong et al. (2016b)
and has been used as a benchmark for several state and input filters/observers) is
considered in this example, where there exists only one mode of operation (tm = 1)
as well as possible attacks on the actuator and four of the five sensors (ta = 1, ts = 4):
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A=

⎡

⎢⎢⎢⎢
⎣

0.5 2 0 0 0
0 0.2 1 0 1
0 0 0.3 0 1
0 0 0 0.7 1
0 0 0 0 0.1

⎤

⎥⎥⎥⎥
⎦
; B=G=

⎡

⎢⎢⎢⎢
⎣

1
0.1
0.1
1
0

⎤

⎥⎥⎥⎥
⎦
; C =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 1 −0.1 0 0
0 0 1 −0.5 0.2
0 0 0 1 0
0 0.25 0 0 1

⎤

⎥⎥⎥⎥
⎦
;

H =

⎡

⎢⎢
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥⎥
⎥⎥
⎦
; Q=10−4

⎡

⎢⎢
⎢⎢
⎣

1 0 0 0 0
0 1 0.5 0 0
0 0.5 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥
⎥⎥
⎦
; R=10−4

⎡

⎢⎢
⎢⎢
⎣

1 0 0 0.5 0
0 1 0 0 0.3
0 0 1 0 0
0.5 0 0 1 0
0 0.3 0 0 1

⎤

⎥⎥
⎥⎥
⎦
.

We consider the known input uk =

⎧
⎪⎨

⎪⎩

2, 100 ≤ k ≤ 300

−2, 500 ≤ k ≤ 700

0, otherwise

, whereas the

unknown inputs (attacks) are as depicted in Fig. 7.4. Moreover, we assume that there
are at most p = 4 attacks with no constraints on na and ns , and consequently, there
are N = 1 · (5

4

) = 5 models. The signal attack locations alternate between q = 3
(attack on actuator and sensors 1, 3, 4) and q = 2 (attack on actuator and sensors 1,
2, 4) every 350s, i.e., the dwell time is 350s.

From the top plot in Fig. 7.3 that depicts the computed mode probabilities (under
aleatoric Gaussian uncertainties), we observe that except during the short transients
after t = 350s and t = 700s due to switching, the mode probabilities converge to
their true values (q∗ = 3 → q∗ = 2 → q∗ = 3). On the other hand, Fig. 7.3 (bottom)
depicts the values ofmode indicator index, q × iq for eachmode, over time, assuming
epistemic bounded-norm distribution-free uncertainties, with iq defined as

iq �
{
0, if q is eliminated,

1, otherwise,
∀q ∈ Q.

Hence, q × iq equals q if the mode q is not eliminated and is zero otherwise. As
expected, it can be observed from Fig. 7.3 (bottom) that except for q = 3 and q = 2,
the other modes are eliminated after some time steps.

Figure7.4 shows computed state and unknown attack point estimates for the case
of aleatoric (stochastic) uncertaintymodel, aswell set-valued sate and unknown input
(attack) estimates, when epistemic (distribution-free and norm-bounded) uncertainty
model is assumed. The point estimates are seen to be close to the true values, even
before the mode probabilities converge, and both the point estimates and the actual
values of the states and unknown inputs (attacks) are within the set estimates, which
are uniformly bounded and convergent set sequences, as expected. Similar results
(not shown for brevity) are obtained for all other attack modes, q = 1 (attack on
actuator and sensors 1, 2, 3), q = 4 (attack on actuator and sensors 2, 3, 4) and q = 5
(attack on sensors 1, 2, 3, 4). Thus, this example illustrates that when switching
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Fig. 7.3 Mode probabilities (top) assuming aleatoric/stochastic uncertainty model, as well as mode
indicators (bottom) assuming epistemic/set-valued uncertainty model for the system in Sect. 7.6.1
with alternating switchings between q = 3 and q = 2 every 350s

Fig. 7.4 State and attack magnitude estimates in Sect. 7.6.1 with switching between q = 3 and
q = 2 with the dwell time 350 s
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attacks and signal location attacks do not change quickly/frequently, i.e., the dwell
time is large enough, our proposed methods work well.

7.6.2 IEEE 68-Bus Test System (Mode and Signal Magnitude
Attacks)

The proposed algorithms are also applied to the IEEE 68-bus test system shown in
[Yong et al. (2018), Fig. 7] to demonstrate their scalability to large systems, as well
as to apply our attack mitigation approach.

An undirected graph (V ,E ) with the set of nodes (buses), V � {1, . . . , N } and
the set of edges (transmission/tie lines) E ⊆ V × V is often used to describe a
power network, where the busses may represent generator buses i ∈ G , or load buses
i ∈ L . Si � { j ∈ V \ {i}|(i, j) ∈ E } denotes the set of neighboring buses of i ∈
V . In particular, there are 16 generator buses and 52 load buses for the IEEE 68-
bus test system, i.e., |G | = 16, |L | = 52 and |V | = 68. Similar to [Wood et al.
(2013), Chap. 10], the dynamics of each bus, i ∈ V , can be described by the following
dynamical system:

θ̇i (t) = ωi (t),
ω̇i (t) = − 1

mi
[Diωi (t) + ∑

j∈S i
Pi j
tie(t) − (PMi (t) + da,i (t)) + PLi (t) + wi (t)],

(7.23)

with the system states being the phase angle θi (t) and angular frequency ωi (t)
(hence, the state space dimension is n = 136) and an actuator attack signal da,i (t).
The power flow between neighboring buses i, j , such that (i, j) ∈ E , is given by
Pi j
tie(t) = −P ji

tie(t) = ti j (θi (t) − θ j (t)), while PMi (t) and PLi (t) denote themechan-
ical power and power demand, respectively. The mechanical power PMi (t) is the
control input for the generator bus i ∈ G and is zero at load bus i ∈ L . On the other
hand, power demand PLi (t) is taken as a known input since it can be calculated using
load forecasting methods (e.g., Alfares and Nazeeruddin 2002). We assume that the
noise wi (t) is a zero-mean truncated Gaussian signal (satisfying Assumption 7.3)
with covariance matrix Qi (t) = 0.01, ηw = 0.03 and the system parameters being
adopted from Kundur et al. (1994) [p. 598]: Di = 1, ti j = 1.5 for all i ∈ V , j ∈ Si

and ti j = 0 otherwise. Angular momentums aremi = 10 for i ∈ G and a larger value
mi = 100 for load buses i ∈ L .

Themeasurements are sampled at discrete times (with sampling timeΔt = 0.01s),
satisfying the following output equation:

yi,k = [
Pelec,i,k θi,k ωi,k

]� + vi,k, (7.24)

where Pelec,i,k = Diωi,k + PLi ,k is the electrical power output and vi,k is a truncated
zero-mean Gaussian noise signal with covariance matrix Ri (t) = 0.014 I3 and ηv =
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0.03. The continuous system dynamics (7.23) is also discretizedwith a sampling time
ofΔt = 0.01s. Furthermore, in this example, we choose the control inputs PMi ,k and
PLi ,k through synthesizing anH∞-optimal dynamic controller in the form of (7.19),
as described in Theorem 7.8, to regulate the phase angles to θi = 10 rad and mitigate
the effect of the unknown attack signal.

As shown in Yong et al. (2018) [Fig. 7], the attacker could inject false data into the
actuators and attack the transmission lines. Eight potential attack modes (|Q| = 8)
are considered:

Mode q = 1: Lines {27,53},{53,54},{60,61} & actuator G1.
Mode q = 2: Lines {18,49},{18,50} & actuator G2.
Mode q = 3: Line {40,41} & actuator G3.
Mode q = 4: Lines {18,49},{18,50},{27,53},{53,54},{60,61} & actuator G4.
Mode q = 5: Lines {27,53},{40,41},{53,54},{60,61} & actuator G5.
Mode q = 6: Lines {18,49},{18,50},{40,41} & actuator G6.
Mode q = 7: Lines {18,49},{18,50},{27,53},{40,41},{53,54},{60,61} &

actuator G7.
Mode q = 8: Actuator G8.

We study a time-varying attack scenario where the attack mode is q = 2 for
t = [0, 2.5)s followed by q = 5 for t = [2.5, 5)s, while the actuator attack signal is
given in Fig. 7.6. Our goal is to demonstrate that attack signals can be detected, iden-
tified, and mitigated by our proposed approach. To synthesize the attack-mitigating
dynamic controller in the form of (7.19), we consider three cases, depending on the
three different assumptions on possible uncertainty models: (i) aleatoric/stochastic
uncertainty (cf. Assumption 7.1), where we use x̂a,k|k and d̂a,k−1 (i.e., the most likely
estimates among all mode-matched estimates) returned by Algorithm 7.2 in (7.19),
(ii) epistemic/bounded norm uncertainty (cf. Assumption 7.2), where we plug x̂e,k|k
and d̂e,k−1 (i.e., the centroids of the union of all the set-estimates that correspond
to non-eliminated modes) returned by Algorithm 7.4 in (7.19), and (iii) combined
uncertainty (cf. Assumption 7.3), wherewe use themost likely point (stochastic) esti-
mates among all the ones that correspond to the non-eliminated modes, as described
in Sect. 7.3.1.

Figure7.5 demonstrates that attacks are detected almost instantaneously, and the
attack modes are quickly identified. Further, Fig. 7.6 depicts the successful identifi-
cation of the actuator attack signal and estimation of all system states (not depicted
for brevity). Finally, the proposed attack mitigation is shown to be effective in reg-
ulating the phase angles at 10 rad/s despite attacks, while without attack mitigation,
attackers can drastically influence the phase angles as shown in Fig. 7.6.

7.7 Conclusion

Weaddressed the problem of resilient state estimation for switching (mode/topology)
attacks and attacks on actuator and sensor signals of Cyber-Physical Systems



7 Resilient State Estimation and Attack Mitigation … 179

Fig. 7.5 Estimates ofmode probabilitieswhen the attackmode switches fromq = 2 toq = 5 at 2.5s
assuming stochastic uncertainties, as well as mode indicators assuming bounded norm uncertainties
in Sect. 7.6.2

Fig. 7.6 A comparison of system states with and without the proposed attack mitigation, as well
as the attack signal and its point-valued (stochastic) and set-valued (bounded-error) estimates
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(CPS). We modeled the problem as a hidden-mode switched linear system with
unknown inputs, where we considered three uncertainty models for the noise signals:
(a) aleatoric/stochastic, (b) epistemic/set-valued and distribution-free, (c) truncated
Gaussian uncertainties. We showed that the multiple-model inference algorithm in
Yong et al. (2021); Khajenejad and Yong (2019) is a good solution to these problems.
Furthermore, for the multiple-model approach, we presented an achievable upper
bound on the maximum number of correctable signal attacks, as well as the max-
imum number of required models. We also derived sufficient conditions for attack
(un-)detectability and identification and necessary conditions for the attack signal
to be unidentifiable. Moreover, we designed an attack-mitigating H∞-controller to
minimize the effects of the attack signals. The effectiveness of our methods for
resilient estimation, attack detection, and mitigation was demonstrated in simula-
tions, including using an IEEE 68-bus test system.

Appendix

System Transformation

To obtain the mode-matched input and state estimator (7.2)–(7.4), we will consider
a system transformation for the continuous system dynamics and output equation in
(7.1) for each mode q (Yong et al. 2016b). First, we rewrite the direct feedthrough

matrix Hk using singular value decomposition as Hk = [
U1,k U2,k

] [

k 0
0 0

] [
V �
1,k

V �
2,k

]
,

where 
k ∈ R
pHk ×pHk is a diagonal matrix of full rank, U1,k ∈ R

l×pHk , U2,k ∈
R

l×(l−pHk ), V1,k ∈ R
p×pHk and V2,k ∈ R

p×(p−pHk ) with pHk := rk(Hk), while Uk :=[
U1,k U2,k

]
and Vk := [

V1,k V2,k
]
are unitary matrices. When there is no direct

feedthrough, 
k , U1,k and V1,k are empty matrices,3 and U2,k and V2,k are arbitrary
unitary matrices.

Further, we define two orthogonal components of the unknown input dk given by

d1,k � V�
1,kdk, d2,k � V�

2,kdk . (7.25)

Since Vk is unitary, dk = V1,kd1,k + V2,kd2,k . Thus, the continuous system dynamics
and output equation in (7.1) for each mode q can be rewritten as

xk+1 = Akxk + Bkuk + G1,kd1,k + G2,kd2,k + wk, (7.26)

yk = Ckxk + Dkuk + H1,kd1,k + vk, (7.27)

3 We adopt the convention that the inverse of an empty matrix is also an empty matrix and assume
that operations with empty matrices are possible.
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where G1,k := GkV1,k , G2,k := GkV2,k , and H1,k := HkV1,k = U1,k
k . Next, we

decouple the output yk using a nonsingular transformation Ta,k = [
T�
a,1,k T�

a,2,k

]� =[
IpHk −U�

1,k RkU2,k(U�
2,k RkU2,k)

−1

0 I(l−pHk )

] [
U�

1,k
U�

2,k

]
in the presence of aleatoric uncertainty,

i.e., if Assumption 7.1 holds, Te,k = [
T�
e,1,k T�

e,2,k

]� = [
U1,k U2,k

]�
in the presence

of epistemic uncertainty, i.e., if Assumption 7.2 holds, and both in the presence
of truncated Gaussian uncertainty, i.e., if Assumption 7.3 holds. Consequently, we
obtain zt,1,k ∈ R

pHk and zt,2,k ∈ R
l−pHk , ∀t ∈ {a, e}, as

zt,1,k � Tt,1,k yk = Ct,1,k xk + Dt,1,kuk + 
kd1,k + vt,1,k,

zt,2,k � Tt,2,k yk = Ct,2,k xk + Dt,2,kuk + vt,2,k,
(7.28)

where Ct,1,k � Tt,1,kCk , Ct,2,k � Tt,2,kCk = U�
2,kCk , Dt,1,k � Tt,1,k

Dk ,Dt,2,k � Tt,2,k Dk = U�
2,k Dk ,vt,1,k � Tt,1,kvk , andvt,2,k � Tt,2,kvk = U�

2,kvk . This
system transformation essentially decouples the output equation involving yk into
two components, one with a full rank direct feedthrough matrix and the other with-
out direct feedthrough. The transformation is also chosen such that in the case of
aleatoric uncertainty, the measurement noise terms for the decoupled outputs are
uncorrelated. The covariances of v1,k and v2,k are

R1,k � E[v1,kv�
1,k] = Ta,1,k RkT�

a,1,k � 0,
R2,k � E[v2,kv�

2,k] = Ta,2,k RkT�
a,2,k = U�

2,k RkU2,k � 0,
R12,k � E[v1,kv�

2,k] = Ta,1,k RkT�
a,2,k = 0,

R12,(k,i) � E[v1,kv�
2,i ] = Ta,1,kE[vkv�

i ]T�
a,2,i = 0, ∀k �= i.

(7.29)

Moreover, v1,k and v2,k are uncorrelated with the initial state x0 and process noise
wk . Further, in the case of bounded-norm uncertainty, the transform is also chosen
such that ‖ [

v�
1,k v�

2,k

]� ‖ = ‖ [
U1,k U2,k

]�
vk‖ = ‖vk‖.

Residual Upper Bounds

The upper bounds on the residual signal in Proposition 7.2 can be found as in Kha-
jenejad and Yong (2019) [Theorem 3]:

δ
q,in f
r,k � ‖Aq

k t
�
k ‖2,

δ
q,tr i
r,k � δ

x,q
0 ‖Cq

e,2,k A
q
k A

q
e,k

k−1‖2 + ηw(‖Cq
e,2,k A

q
k A

q
e,k

k−2‖2 + ‖Cq
e,2,k B

�,q
e,w,k‖2)

+ ∑k−2
i=1 [ηw‖Cq

e,2,i A
q
i A

q
e,i

i
Bq
e,w,i‖2 + ηv‖Cq

e,2,i A
q
i A

q
e,i

i
(Bq

e,v1,i
+ Aqe,i B

q
e,v2,i

)‖2]
+ ηv(‖Cq

e,2,k A
q
k A

q
e,k

k−2
Bq
e,v1,k

‖2 + ‖Cq
e,2,k (B

q,�
e,v1,k

+ A
q
k B

q
e,v2,k

)‖2
+ ‖Cq

e,2,k B
q,�
e,v2,k

+ Tq
e,2,k‖2), (7.30)
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where t�k is a vertex of the following hypercube:

X q
k �

{
x ∈ R

(n+l)(k+1) : |x(i)| ≤

⎧
⎪⎨

⎪⎩

δx0 , 1 ≤ i ≤ n

ηw, n + 1 ≤ i ≤ n(k + 1)

ηv, n(k + 1) + 1 ≤ i ≤ (n + l)(k + 1)

}
,

i.e.,

t�k (i) ∈

⎧
⎪⎨

⎪⎩

{−δx0 , δ
x
0 }, 1 ≤ i ≤ n,

{−ηw, ηw}, n + 1 ≤ i ≤ n(k + 1),

{−ηv, ηv}, n(k + 1) + 1 ≤ i ≤ (n + l)(k + 1)

and

Ak � Φk Âk, Ve,k � V1,kM1,kC1,k + V2,kM2,kC2,k Âk, Ae,k � (I − L̃kC2,k)Ak,

Be,w,k � (I − L̃kC2,k)Φk, Be,v1,k � −(I − L̃kC2,k)ΦkG1,kM1,kT1,k,

Be,v2,k � −((I − L̃kC2,k)G2,kM2,k + L̃k)T2,k .
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Chapter 8
State and Attacks Estimation
for Nonlinear Takagi–Sugeno Multiple
Model Systems with Delayed
Measurements

Souad Bezzaoucha Rebai, Holger Voos, and Mohamed Darouach

8.1 Introduction

The present work deals with state and cyber-attacks estimation for nonlinear Takagi–
Sugeno systems with variable time-delay measurements. The use of the sector non-
linearity approach with the nonlinear Takagi–Sugeno systems allows us to extend the
results to a wide variety of control process. Indeed, fuzzy control systems have been
presented as an important tool to represent and implement human heuristic knowl-
edge to control a system. This theory is based on a class of fuzzy models presented
by the authors in Takagi and Sugeno (1985), which were designed to describe nonlin-
ear systems as a collection of Linear Time-Invariant (LTI) models blended together
with nonlinear functions, known as weighting functions. The Takagi–Sugeno (T–S)
fuzzy structure, also called quasi-LPV (linear parameter variable) systems, offers
an efficient representation of nonlinear behavior while relatively simple compared
to general nonlinear models (Benzaouia and Hajaji 2014). In this contribution, we
propose to represent the nonlinear system described by T–S models by an equivalent
form extending the result presented in Bezzaoucha and Voos (2019) and Bezzaoucha
Rebai and Voos (2019) for state and attacks estimation with delayed measurement.
The objective is to obtain sufficient conditions in terms of LM Is formulation for
the observer design in order to ensure the asymptotic convergence of the estimation
errors with an L2 attenuation constraint.
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The aim of this chapter is to tackle the state estimation of a nonlinear system
subject to data deception attacks and variable time-delay measurements. Based on
the same principle of own previous contributions (Gerard et al. 2018; Bezzaoucha
Rebaiı et al. 2018) the malicious attacks can be modeled as adversary signals (i.e.,
like disturbances, unknown inputs, faults,...) introduced via the internal network by
hackers and affecting the sensors and/or actuators data (Pajic et al. 2017; Teixeira
et al. 2012). The isolation and reconstruction of these cyber-attacks can be seen from
a control point of view as uncertain parameter problem.

Indeed, based on Bezzaoucha et al. (2013), we propose to use previously devel-
oped approach, applied for joint state and time-varying parameters estimation of
Takagi–Sugeno models in order to reconstruct the state and cyber-attack signals for
nonlinear LPV systems. In this book chapter, wewill consider in addition the delayed
measurement constraints.

The considered actuator/sensor attacks are modeled as time-varying parameters
withmultiplicative effect on the actuator input signal and sensor output signal, respec-
tively. Based on the sector nonlinearity description, and using the convex property,
the nonlinear model will be presented in a Linear Parameter-Varying (LPV) form,
then an observer allowing both state and attack reconstruction is designed by solving
an LM I optimization problem, exactly as detailed in Bezzaoucha and Voos (2019).

So far, to the best of our knowledge, there has been no delay-dependent method
reported to study the observer-based H∞ control for T–S fuzzy systems dealing with
the state and attack reconstruction problem. Indeed, in general, practical problems,
especially in Networked Control Systems (NCS) , the delayed measurement such
as traffic flow in communication networks have to be considered, especially for
stability reasons and measurement-based observer design. As it was developed in
Orjuela et al. (2007) and Bezzaoucha et al. (2017), the considered approach provides
an alternative and attractive path to dealwith complex nonlinear systems and to obtain
an equivalent representation by bounding the parameters and using the well-known
sector nonlinearity transformation (SNT).

8.1.1 Contributions and Outline

Robust control and quadratic stabilization for linear systems with uncertain parame-
ters have been considered in Shaked (2001). For fuzzy systemswithout uncertainties,
Liu and Zhang in Liu and Zhang (2003) have proposed a new design method based
on the H∞ norm. However, their technique is based on a two-step approach which
appears to be a drawback. Like in Bezzaoucha and Voos (2019), we proposed a
method to simplify and to improve the existing design methods of robust fuzzy state
observer design with disturbance attenuation for uncertain T–S fuzzy systems. The
developed method gives not only the observer gains (for the state and the attacks) on
a single-step analysis.

In practice, time delay often occurs in the transmission of information or material
between different parts of a system.Transportation systems, communication systems,
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chemical systems, and power systems are example of time-delay systems. Also, it has
been shown that the existence of time delay usually becomes the source of instability
and deteriorates the performances of systems. Therefore, T–S fuzzy systems have
been extended to deal with nonlinear systems with time-delay (Benzaouia and Hajaji
2014). The existing results of stabilization and stability criteria for this class of T–S
fuzzy systems can be classified into two types: delay independent, which is applicable
to delays of arbitrary sizes, and delay dependent, which includes information on the
size of delays.

Although it is well known that delay-dependent results are less conservative than
delay-independent ones, there are few delay-dependent results which study the prob-
lem of observer-based H∞ control for T–S fuzzy systems with varying time delay.
This motivates the research in this work to study this problem, i.e., the state and
attacks reconstruction problem for nonlinear Takagi–Sugeno systems with delayed
measurements. In this chapter, the asymptotic stabilization of uncertain (attacked)
T–S observer systems with variable time-delay measurement is studied. Different
from the methods currently found in the literature (Yue and Han 2005; Tian and
Peng 2003), the proposed method does not need any transformation in the LKF
(Lyapunov–Krasovskii functional), and thus avoids the restriction resulting from
any used transformation. It improves the presented results in Bezzaoucha and Voos
(2019) and Bezzaoucha et al. (2013) for two main aspects. The first one concerns the
polytopic rewriting of the time-varying data deception attacks, and the second one
is the time-delay measurement consideration and the delay-dependent stabilization
conditions. Based on previous results, published in Bezzaoucha and Voos (2019),
and on the sector nonlinearity approach, sufficient conditions in term of LM Is for-
mulation are given for the observer design. We will show that, despite the presence
of cyber-attack (i.e., data deception attacks on both actuators and sensors) and the
delayed measurements, the proposed observer is efficient and ensures the asymptotic
convergence of the estimation errors with an L2 attenuation constraint.

8.1.2 Chapter Organization

The present contribution is organized as follows.After a brief introduction and a short
overview of related works in Sect. 8.1, the problem statement is detailed in Sect. 8.2
by the presentation of the polytopic modeling of time-varying nonlinear systems and
time-varying parameters (malicious attacks) with an LPV model of physical plant
under data deception attacks. In Sect. 8.3, the main result/contribution of this work is
given in terms of a general theorem for the observer design strategy and time-delay-
dependent stability conditions. In Sect. 8.5, an illustrative example is given. From
a basic nonlinear model of a biological wastewater treatment plant, the proposed
approach is applied and illustrated with simulations. Conclusion will be given in the
last section.
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8.2 Problem Statement

The problem of state reconstruction in the presence of faults and attacks, also denoted
as secure state estimation, has recently attracted considerable attention from the con-
trol community. The problemof reconstructing the state under actuator/sensor attacks
is closely related to fault-detection and fault-tolerant state reconstruction. Based on
the approach presented in previous works Bezzaoucha et al. (2013), Bezzaoucha
et al. (2013) and adapted to the cyber-security problem, as presented in Bezzaoucha
and Voos (2019) we address the design of observers that can accurately reconstruct
the state and attacks of a cyber-physical system under actuator/sensor attacks with
delayed measurements.

For that, we propose a simultaneous state and time-varying (attacks) observers
for nonlinear systems in the presence of corrupted inputs and measurements, more
specifically, the so-called false data injection attacks. In the spirit of a Luenberger
observer, a state and attacks reconstruction algorithm is proposed based on the LM I
approach and convex optimization problem. The second point of the problem state-
ment will be about the variable time-delay measurements, which will be considered
in the observer analysis, as shown in Orjuela et al. (2007).

8.2.1 False Data Injection Attacks on Actuators/Sensors

Based on results presented in Bezzaoucha and Voos (2019) and Orjuela et al. (2007),
we assume that the attacker modifies the gain/s of the sensor and/or the actuator of
the control system, which represent the injection of false information from sensors
or controllers. This chapter is also dealing with a problem characterizing dynamical
systems, which is the variable time-delay measurements. Mathematically speaking,
explicit equations of both sensor and actuator signal attacks are derived and repre-
sented as time-varying multiplicative actuator/sensor faults/attacks. The Polytopic
T–S approach is then used to reconstruct these signals in real time.

In this section, we assume that a malicious third party wants to compromise the
integrity of the system. The attacker is assumed to have the following capabilities:

• He/she knows the system model, i.e., we assume that the hacker knows the system
model and matrices.

• He/she can control the readings of the sensors and the actuators, i.e., modifies their
values.

• The intrusions are represented as time-varying multiplicative actuator—sensor
faults—attacks. The attacks signals are, of course, unknown, but bounded. Their
min and max values are supposed to be known. Indeed, this assumption is not
conservative sincewe suppose that if the boundaries are exceeded the attacks effect
will be too obvious and easily detectable. Meaning, the hacker should respect the
min and max values to a certain extent if he/she wants to remain undetectable.
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• The nonlinear system is subject to time-variable delayed measurements. The time
delay τ(t) is assumed perfectly known and satisfies the following conditions:

{
0 ≤ τ(t) ≤ τ

τ̇ (t) ≤ γ < 1.
(8.1)

8.2.2 Polytopic Modeling of Time-Varying Nonlinear Systems
with Delayed Measurements

Let us consider the nonlinear system represented by the following equations:

⎧⎪⎨
⎪⎩
ẋ(t) =

r∑
i=1

μi (x(t))(Ai x(t) + Bi (t)u(t))

y(t) = C(t)x(t),

(8.2)

s.t. Ai , Bi , and C(t) are constant matrices with appropriate dimensions.
With the time-varying matrices Bi (t) and C(t) defined by the following:

⎧⎪⎨
⎪⎩

Bi (t) = Bi +
nθu∑
j=1

θu
j (t)Bi j

C(t) = (Im + F(t))C,

(8.3)

s.t. Bi , Bi j are constant matrices with appropriate dimensions and θu
j (t) time-varying

unknown parameters and correspond to the multiplicative actuator attacks.
The matrix F(t) ∈ R

m×m is defined by

F(t) = diag(θ y(t)), (8.4)

s.t. diag(θ y(t)) corresponds to a diagonal matrix with the terms θ
y
j (t) (sensor attacks)

on its diagonal.

The time-varying parameter vector θ(t), θ(t) ∈ R
n is defined by θ(t) =

(
θu(t)
θ y(t)

)

with θu(t) ∈ R
nθu and θ y(t) ∈ R

nθy correspond, respectively, to the actuator and
sensor attacks (n = nθu + nθy ). x(t) ∈ R

nx , y(t) ∈ R
m and u(t) ∈ R

nu correspond,
respectively, to the system state, output, and control. The nonlinear system ismodeled
thanks to a polytopic representation with r sub-models. This representation may be
obtained in a straightforward way by applying the Sector Nonlinearity Transforma-
tion (SNT). The interested readers can refer to Bezzaoucha et al. (2013) and Tanaka
and Wang (2001) for more development details.

F(t) may be expressed as
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F(t) =
nθy∑
j=1

θ
y
j (t)Fj , (8.5)

with nθy = m, Fj are matrices of dimension Rm×m and where the element of coordi-
nate ( j, j) is equal to 1 and 0 elsewhere. The coordinate j corresponds to the number
of the attacked sensor. The terms θ

y
j (t) are time-varying unknown parameters and

represent the multiplicative sensor attacks.

8.2.3 Polytopic Modeling of Time-Varying Parameters
(Malicious Attacks)

Aspresented inBezzaoucha andVoos (2019), the actuator data deception or false data
injection is modeled thanks to the time-varying parameters θu

j (t). These attacks are

of course unknown but bounded θu
j (t) ∈ [θ2

j
u
, θ1

j
u], with known bounds. Applying

the SNT transformation, each parameter θu
j (t) can always be expressed as

θu
j (t) = μ̃1

j (θ
u
j (t))θ

1
j
u + μ̃2

j (θ
u
j (t))θ

2
j
u
, (8.6)

with

μ̃1
j (θ

u
j (t)) = θu

j (t) − θ2
j
u

θ1
j
u − θ2

j
u , μ̃2

j (θ
u
j (t)) = θ1

j
u − θ j (t)

θ1
j
u − θ2

j
u (8.7)

μ̃1
j (θ

u
j (t)) + μ̃2

j (θ
u
j (t)) = 1, ∀t.

Based on the same way, the sensor data deception or false data injection is modeled
thanks to the time-varying parameters θ

y
j (t), such that

θ
y
j (t) = μ1

j (θ
y
j (t))θ

1
j
y + μ2

j (θ
y
j (t))θ

2
j
y

(8.8)

with

μ1
j (θ

y
j (t)) = θ

y
j (t) − θ2

j
y

θ1
j
y − θ2

j
y , μ2

j (θ
y
j (t)) = θ1

j
y − θ j (t)

θ1
j
y − θ2

j
y (8.9)

μ1
j (θ

y
j (t)) + μ2

j (θ
y
j (t)) = 1, ∀t.

Replacing (8.6) and (8.8) into (8.3), we obtain



8 State and Attacks Estimation for Nonlinear Takagi–Sugeno Multiple … 193

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Bi (t) = Bi +
nθu∑
j=1

2∑
k=1

μ̃k
j (θ j (t))θ

k
j
u
Bi j

C(t) =
⎛
⎝I +

nθy∑
j=1

2∑
k=1

μk
j (θ

y
j (t))θ

k
j
y
Fj

⎞
⎠C.

(8.10)

8.2.4 LPV Model of Physical Plant Under Data Deception
Attacks and Delayed Measurements

In order to have the same weighting functions for all the time-varying matrices Bi (t)
and write C(t) as a simple polytopic matrix, exploiting the convex sum property of
the weighting functions μ̃ j (θ

u
j (t)) and μ j (θ

y
j (t)) of each parameter θu

j (t) and θ
y
j (t)

(see Bezzaoucha et al. 2013 for computation details), (8.10) is written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bi (t) =
nθu∑
j=1

[[
(μ̃1

j (θ
u
j (t))θ

1
j
u + μ̃2

j (θ
u
j (t))θ

2
j
u
)Bi j

]]
×

⎡
⎢⎣

nθu∏
k=1
k �= j

2∑
m=1

μ̃m
k (θu

k (t))

⎤
⎥⎦ + Bi

= Bi +
2nθu∑
j=1

μ̃ j (θ
u(t))Bi j

C(t) =
⎛
⎝I +

2
nθy∑
j=1

μ j (θ
y(t))F j

⎞
⎠C

(8.11)

with

μ̃ j (θ
u(t)) =

nθu∏
k=1

μ̃
σ k
j

k (θu
k (t)),Bi j =

nθu∑
k=1

θu
k

σ k
j Bik (8.12)

and

μ j (θ
y(t)) =

nθy∏
k=1

μ
σ k
j

k (θ
y
k (t)), F j =

nθy∑
k=1

θ
y
k

σ k
j Fj , (8.13)

where the global weighting functions μ̃ j (θ
u(t)) and μ j (θ

y(t)) satisfy the convex
sum property. The index σ k

j is either equal to 1 or 2 and indicates which partition
of the kth parameter (μ̃k

1 or μ̃k
2, i.e., μk

1 or μk
2) is involved in the j th sub-model.

The relation between the sub-model number j and the σ k
j indices is given by the

following equation:



194 S. Bezzaoucha Rebai et al.

j = 2nθu −1σ 1
j + 2nθu −2σ 2

j + · · · + 20σ nθu
j − (21 + 22 + · · · + 2nθu −1) (8.14)

for the actuator, and in the same way for the sensor:

j = 2nθy −1σ 1
j + 2nθy −2σ 2

j + · · · + 20σ
nθy

j − (21 + 22 + · · · + 2nθy −1). (8.15)

Finally, using Eq. (8.11), the nonlinear LPV system (8.2) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) =
r∑

i=1

2nθu∑
j=1

μi (x(t))μ̃ j (θ
u(t))(Ai x(t) + Bi j u(t))

y(t) =
2
nθy∑
k=1

μk(θ
y(t))C̃k x(t),

(8.16)

Bi j = Bi + Bi j , C̃k = C + FkC. (8.17)

Now, if we consider some time-varying delay τ(t) in the output measurements, the
nonlinear LPV system (8.16) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) =
r∑

i=1

2nθu∑
j=1

μi (x(t))μ̃ j (θ
u(t))(Ai x(t) + Bi j u(t))

y(t) =
2
nθy∑
k=1

μk(θ
y(t − τ(t)))C̃k x(t − τ(t)).

(8.18)

8.3 Main Result: Observer Design

From the system equations (8.18), the aim of this chapter is to tackle the state and
actuator/sensor data deception estimation of a nonlinear system subject to delayed
measurements, and represented in a polytopic form. An L2 attenuation approach
is applied in order to minimize the attacks effect on the state and malicious input
estimation error.

The state and actuator/sensor data deception observer is given by the following
equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) =
r∑

i=1

2nθu∑
j=1

μi (x̂(t))μ̃ j (θ̂u(t))

(
Ai x(t) + Bi j u(t) + Li j (y(t) − ŷ(t))

)
˙̂
θu(t) =

r∑
i=1

2nθu∑
j=1

μi (x̂(t))μ̃ j (θ̂u(t))

(Ku
i j (y(t) − ŷ(t)) − αu

i j θ̂
u(t))

˙̂
θ y(t) =

r∑
i=1

2
nθy∑
k=1

μi (x̂(t))μk(θ̂ y(t − τ(t)))

(K y
ik(y(t) − ŷ(t)) − α

y
ik θ̂

y(t))

ŷ(t) =
2
nθy∑
k=1

μk(θ̂ y(t − τ(t)))C̃k x̂(t − τ(t)),

(8.19)

where Li j ∈ R
nx×m , Ku

i j ∈ R
n×m , αu

i j ∈ R
n×n , K y

ik ∈ R
m×m , and α

y
ik ∈ R

m×m are
parameter matrices to be determined s.t. the estimated state and malicious input
parameters converge to the real system state and attacks (i.e., the estimation errors
for both state and malicious input parameters converge to zero).

Let us define the state and data deception estimation errors ex (t), eθu (t) and eθ y (t)
as

ex (t) = x(t) − x̂(t)
eθu (t) = θu(t) − θ̂u(t)
eθ y (t) = θ y(t) − θ̂ y(t).

(8.20)

Based on the convex sum property of the weighting functions, from the results pre-
sented in Bezzaoucha et al. (2013) and in order to be able to calculate the estimation
error dynamics, the system equations (8.16) are rewritten as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
r∑

i=1

2nθu∑
j=1

[μi (x̂(t))μ̃ j (θ̂u(t))(Ai x(t) + Bi j u(t))+
δi j (t)(Ai x(t) + Bi j u(t))]

y(t) =
2
nθy∑
k=1

[
μk(θ̂ y(t − τ(t)))C̃k x(t − τ(t))

+δk(t − τ(t))C̃k x(t − τ(t))
]
,

(8.21)

where δi j (t) and δk(t) are defined by the following equations:

δi j (t) = μi (x(t))μ̃ j (θ
u(t)) − μi (x̂(t))μ̃ j (θ̂u(t)) (8.22)

δk(t − τ(t)) = μk(θ
y(t − τ(t))) − μk(θ̂ y(t − τ(t))) (8.23)
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and satisfy the inequalities:

− 1 ≤ δi j (t) ≤ 1,−1 ≤ δk(t) ≤ 1. (8.24)

Equation (8.21) allows to deduce the state and data deception estimation error dynam-
ics in a straightforwardway, since the state and output arewritten nowonly depending
on the weighting functions of the estimate μi (x̂(t)), μ̃ j (θ̂u(t)), and μk(θ̂ y(t)).

Now, let us define the following matrices:

ΔA(t) =
r∑

i=1

2nθu∑
j=1

δi j(t)Ai = A 	(t)EA (8.25)

ΔB(t) =
r∑

i=1

2nθu∑
j=1

δi j (t)Bi j = B	(t)EB (8.26)

C̃(∇) = [
δ1(∇)C̃1 . . . δ2nθy (∇)C̃2

nθy

]
(8.27)

with

A =
[

A1 . . . A1︸ ︷︷ ︸
2nθu times

. . . Ar . . . Ar︸ ︷︷ ︸
2nθu times

]
(8.28)

B = [
B11 . . . Br2n

]
(8.29)

	(t) = diag(δ11(t), . . . , δr2n (t)) (8.30)

EA = [
Inx . . . Inx

]T
, EB = [

Inu . . . Inu
]T

. (8.31)

From (8.24) to (8.30), we have

	T (t)	(t) ≤ I. (8.32)

By using (8.25)–(8.31) and the notation ∇ = t − τ(t), system (8.21) can be written
as an uncertain system given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
r∑

i=1

2nθu∑
j=1

μi (x̂(t))μ̃ j (θ̂u(t))

((Ai + ΔA(t))x(t) + (Bi j + ΔB(t))u(t))

y(t) =
2
nθy∑
k=1

μk(θ̂ y(∇))(C̃k + C̃(∇))x(∇).

(8.33)

From Eqs. (8.33) and (8.20), the estimation error dynamics are then given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėx (t) =
r∑

i=1

2nθu∑
j=1

2
nθy∑
k=1

μi (x̂(t))μ̃ j (θ̂u(t))μk(θ̂ y(∇))

(Aiex (t) − Li j C̃kex (∇)

+ΔA(t)x(t) − Li j C̃(∇)x(∇) + ΔB(t)u(t))

ėθu (t) =
r∑

i=1

2nθu∑
j=1

2
nθy∑
k=1

μi (x̂(t))μ̃ j (θ̂u(t))μk(θ̂ y(∇))

(−Ku
i j C̃kex (∇) − αu

i j eθu (t)
−Ku

i j C̃(∇)x(∇) + αu
i jθ

u(t) + θ̇u(t))

ėθ y (t) =
r∑

i=1

2
nθy∑
k=1

μi (x̂(t))μk(θ̂ y(∇))

(−K y
ikC̃kex (∇) − α

y
ikeθ y (t)

−K y
ikC̃(∇)x(∇) + α

y
ikθ

y(t) + θ̇ y(t)).

(8.34)

Let us now consider the augmented vectors ea(t) and ω(t), such that

ea(t) =

⎛
⎜⎜⎝

x(t)
ex (t)
euθ (t)
eyθ (t)

⎞
⎟⎟⎠ , ω(t) =

⎛
⎜⎜⎜⎜⎝

θu(t)
θ y(t)
θ̇u(t)
θ̇ y(t)
u(t)

⎞
⎟⎟⎟⎟⎠ . (8.35)

From (8.34) and (8.35), it follows that

ėa(t) =
r∑

i=1

2nθu∑
j=1

2
nθy∑
k=1

μi (x̂(t))μ̃ j (θ̂u(t))μk(θ̂ y(∇))

(
Φi jk(t)ea(t) + Ψi jk(t)ω(t) − Ri jk(∇)ea(∇)

) (8.36)

with

Φi jk(t) =

⎛
⎜⎜⎝

Ai 0 0 0
ΔA(t) Ai 0 0

0 0 −αu
i j 0

0 0 0 −α
y
ik

⎞
⎟⎟⎠ (8.37)

Ψi jk(t) =

⎛
⎜⎜⎝

0 0 0 0 Bi j + ΔB(t)
0 0 0 0 ΔB(t)

αu
i j 0 I 0 0
0 α

y
ik 0 I 0

⎞
⎟⎟⎠ (8.38)
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Ri jk(∇) =

⎛
⎜⎜⎝

0 0 0 0
Li j C̃(∇) Li j C̃ 0 0
Ku

i j C̃(∇) Ku
i j C̃ 0 0

K y
ikC̃(∇) K y

ikC̃ 0 0.

⎞
⎟⎟⎠ . (8.39)

Now, the objective is to find the observer parameter matrices such that the transfer
from ω(t) to ea(t) is minimized. This approach assumes that the disturbance, i.e.,
the external input ω(t) belongs to a set of norm bounded functions, i.e., is of finite
energy. For the considered problem, knowing that the attacks do not appear all time
(stealthy attacks), the assumption is realized.

Let us define the following Lyapunov–Krasovskii functional candidate Mondié
and Kharitonov (2005):

V (t) = eTa (t)Pea(t) +
∫ 0

−τ(t)
eTa (t + θ)e2αθ Qea(t + θ)dθ, (8.40)

where P and Q are symmetric, positive definite matrices. The convergence with L2

attenuation is then guaranteed if the following conditions are satisfied:

V (t) > 0 (8.41)

V̇ (t) + eTa (t)ea(t) − ωT (t)Γ ω(t) < −2αV (t) (8.42)

with
Γ = diag(Γl), Γl < β I, for l = 1, . . . , 6. (8.43)

An appropriate choice of Γ enables to attenuate the transfer from ω(t) to ea(t).
The time derivative of V (t) along the trajectory of (8.36) is given by

V̇ (t) = ėaT (t)Pea(t) + ea(t)PėaT (t) + eTa (t)Qeat (t)
−(1 − τ̇ (t))e−2ατ(t)eTa (∇)Qea(∇)

−2α
∫ 0
−τ(t) e

T
a (t + θ)e2αθ Qea(t + θ)dθ,

(8.44)

which is upper bounded thanks to the time-delay condition (8.1) by

V̇ (t) ≤ ėaT (t)Pea(t) + ea(t)PėaT (t) + eTa (t)Qeat (t)
−(1 − γ )e−2ατ eTa (∇)Qea(∇)

−2α
∫ 0
−τ(t) e

T
a (t + θ)e2αθ Qea(t + θ)dθ.

(8.45)

By considering (8.36), we also have
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V̇ (t) + eTa (t)ea(t) − ωT (t)Γ ω(t) =
r∑

i=1

2nθu∑
j=1

2
nθy∑
k=1

μi (x̂(t))μ̃ j (θ̂u(t))μk(θ̂ y(∇))

⎛
⎝ ea(t)

ω(t)
ea(∇)

⎞
⎠

T ⎛
⎝ΦT

i j (t)P + PΦi j (t) + I PΨi (t) −PRi jk(∇)

Ψ T
i (t)P −Γ 0

∗ ∗ −(1 − γ )e2ατ Q

⎞
⎠

⎛
⎝ ea(t)

ω(t)
ea(∇)

⎞
⎠

−2α
∫ 0
−τ(t) e

T
a (t + θ)e2αθ Qea(t + θ)dθ

(8.46)
and

V̇ (t) + eTa (t)ea(t) − ωT (t)Γ ω(t) + 2αV (t) ≤
r∑

i=1

2nθu∑
j=1

2
nθy∑
k=1

μi (x̂(t))μ̃ j (θ̂u(t))μk(θ̂ y(∇))

⎛
⎝ ea(t)

ω(t)
ea(∇)

⎞
⎠

T

⎡
⎣
⎛
⎝ΦT

i j (t)P + PΦi j (t) + I PΨi (t) −PRi jk(∇)

Ψ T
i (t)P −Γ 0

∗ ∗ −(1 − γ )e2ατ Q

⎞
⎠

+2α

⎛
⎝ P 0 0)

0 0 0
0 0 0

⎞
⎠
⎤
⎦
⎛
⎝ ea(t)

ω(t)
ea(∇)

⎞
⎠ .

(8.47)

The negativity of condition (8.47) due to the convex sum property of the weighting

functions and the quadratic form of the vector

⎛
⎝ ea(t)

ω(t)
ea(∇)

⎞
⎠

T

is therefore guaranteed

if: ⎛
⎝ C1 PΨi (t) −PRi jk(∇)

Ψ T
i (t)P −Γ 0

∗ ∗ −(1 − γ )e2ατ Q

⎞
⎠ < 0, (8.48)

where C1 = (Φi j + α I )T (t)P + P(Φi j (t) + α I ) + I . It is also important to high-
light that the matrices C̃(∇) can be written as

C̃(∇) =
2
nθy∑
l=1

δl(∇)C̃l . (8.49)

From (8.49), and based on the convex sum property of δl(t), the matrix inequalities
(8.48) become

∑2
nθy

l=1 δl(∇)

⎛
⎝ C1 PΨi (t) −PRi jk

Ψ T
i (t)P −Γ 0

∗ ∗ −(1 − γ )e2ατ Q

⎞
⎠ < 0, (8.50)
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where

Ri jk =

⎛
⎜⎜⎝

0 0 0 0
Li j C̃ Li j C̃ 0 0
Ku

i j C̃ K u
i j C̃ 0 0

K y
ikC̃ K y

ikC̃ 0 0

⎞
⎟⎟⎠ , (8.51)

which is equivalent to solve

⎛
⎝ C1 PΨi (t) −PRi jk

Ψ T
i (t)P −Γ 0

∗ ∗ −(1 − γ )e2ατ Q

⎞
⎠ < 0. (8.52)

The observer gains are then obtained by solving the above constraints with the suffi-
cient condition inequality (8.52) for i = 1, . . . , r , j = 1, . . . , 2nθu , k = 1, . . . , 2nθy ,
and l = 1, . . . , 2nθy .

The results may be summarized by the following theorem:

Theorem 8.1 There exists a state andactuator/sensor date deceptionattackobserver
(8.19) for a nonlinear system (8.2) with delayed measurements and an L2 gain
from ω(t) to ea(t) bounded by β (β > 0) if there exist positive symmetric matri-
ces P1 = PT

1 > 0, P2 = PT
2 > 0, P3 = PT

3 > 0, P4 = PT
4 > 0 and Q1 = QT

1 > 0,
Q2 = QT

2 > 0, Q3 = QT
3 > 0, Q4 = QT

4 > 0; positive matrices Γl , l = 1, . . . , 5;
matrices αu

i j , α
y
ik , F

u
i j , F

y
ik , Ri j ; and scalars positive β, λA λ1B, λ2B, and α solution

of the following optimization problem under LMI constraints (8.54) and (8.57) (see
next page)

min
{P1,P2,P3,Ri j ,Fu

i j ,F
y
ik ,α

u
i j ,α

y
ik ,Γl ,λA,λ1B ,λ2B ,}

β, (8.53)

for i = 1, . . . , r , j = 1, . . . , 2nθu , k = 1, . . . , 2nθy , and l = 1, . . . , 2nθy , where the
scalar α is called the delay rate.

Γl < β I for l = 1, . . . , 5 (8.54)

with
Q11

i = P1(Ai + α I ) + (Ai + α I )T P1 + Inx
Q5 = −Γ1 + λAET

A EA

Q8 = −Γ4 + λ1B ET
B EB

Q9 = −Γ5 + λ2B ET
B EB

Q10 = −(1 − γ )e2ατ Q1

Q11 = −(1 − γ )e2ατ Q2

Q12 = −(1 − γ )e2ατ Q3

Q13 = −(1 − γ )e2ατ Q4,

(8.55)

where the observer gains are given by
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Li j = P−1
2 Ri j

K u
i j = P−1

3 Fu
i j

K y
ik = P−1

4 Fy
ik

αu
i j = P−1

3 αu
i j

α
y
ik = P−1

4 α
y
ik .

(8.56)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q11
i 0 0 0 0 0 0 0 P1B i j 0 0 0 0 0 P1B 0
∗ P2Ai 0 0 0 0 0 0 0 −Ri j C̃ −Ri j C̃ 0 0 P2A 0 P2B
∗ ∗ −αui j 0 αui j 0 P3 0 0 Fu

i j C̃ Fu
i j C̃ 0 0 0 0 0

∗ ∗ ∗ −α
y
ik 0 α

y
ik 0 P4 0 Fy

ik C̃ F y
ik C̃ 0 0 0 0 0

∗ ∗ ∗ ∗ Q5 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Γ2 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Γ3 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Q8 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Q9 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q10 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q11 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q12 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q13 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λA I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ1B I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2B I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0.

(8.57)

Proof Based on condition (8.52), with (8.37) and the variable change (8.56), with
the decomposition (8.25) and (8.26), properties (8.32), Schur’s complement, and the
following lemma:

Lemma 8.1 Consider (Zhou and Khargonekar 1988) two matrices X and Y with
appropriate dimensions, a time-varying matrix Δ(t) and a positive scalar ε. The
following property is verified

XTΔT (t)Y + Y TΔ(t)X ≤ εXT X + ε−1Y T Y, (8.58)

for ΔT (t)Δ(t) ≤ I

following the same development as the work presented in Bezzaoucha et al. (2013),
Bezzaoucha et al. (2013), the Lyapunov stability with an L2 transfer from ω(t)
to ea(t) is obtained by solving the optimization problem (8.53) under the LM I
constraints (8.54) and (8.57), which ends the proof. �

8.4 Numerical Simulation

In the following, the proposed approach for state and attacks estimation is applied to
a basic model of a biological wastewater treatment plant (Bezzaoucha et al. 2013).
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The mathematical model is represented thanks to two state variables x1(t) and x2(t),
corresponding to the biomass and substrate concentration, respectively, the input
u(t), which represents the dwell time in the treatment plant and the measured output
which is the biomass concentration (y(t) = x1(t)). The time delay that appears in
the output of the system has the form τ(t) = 0.5 + 0.45 sin(0.5t). The upper bound
of its derivative is then equal to γ = 0.225.

8.4.1 LPV Representation of The Process

First step, let us write the nonlinear system equations (8.59) in a polytopic form. As
it was developed in Bezzaoucha et al. (2013), and under specific assumptions, some
simplifications can be made and the nonlinear model may be given by

⎧⎪⎨
⎪⎩
ẋ1(t) = ax1(t)x2(t)

x2(t)+b − x1(t)u(t)

ẋ2(t) = − cax1(t)x2(t)
x2(t)+b + (d − x2(t))u(t),

(8.59)

where a, b, c, and d are known parameters.
From the system nonlinearities, applying the sector nonlinearity approach with

the premise variables ρ1(t) and ρ2(t) chosen as follows:

ρ1(t) = −u(t), ρ2(t) = ax1(t)

x2(t) + b
. (8.60)

From (8.59) to (8.60), the quasi-LPV system (8.61) is deduced as

ẋ(t) =
(

ρ1(t) ρ2(t)
0 −cρ2(t) + ρ1(t)

)
x(t) +

(
0
d

)
u(t). (8.61)

Since an LPV representation is deduced in a compact set of the state space, the max
and min values of the terms ρ1(t) and ρ2(t) may be calculated using the knowledge
of the domain of variation of u(t), i.e., ρ1(t) ∈ [−1,−0.2] and ρ2(t) ∈ [0.004, 15].

Applying the convex polytopic transformation, two partitions for each premise
variable are defined as

{
ρ1(t) = �11(ρ1)ρ

2
1 + �12(ρ1)ρ

1
1

ρ2(t) = �21(ρ2)ρ
2
2 + �22(ρ2)ρ

1
2

(8.62)

with �11(ρ1) = ρ1(t) − ρ2
1

ρ1
1 − ρ2

1

, �12(ρ1) = ρ1
1 − ρ1(t)

ρ1
1 − ρ2

1

�21(ρ2) = ρ2(t) − ρ2
2

ρ1
2 − ρ2

2

, �22(ρ2) = ρ1
2 − ρ2(t)

ρ1
2 − ρ2

2

,

(8.63)
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where the scalars ρ1
1 , ρ

2
1 , ρ

1
2 , and ρ2

2 are defined as

ρ1
1 = max

u
ρ1(t), ρ2

1 = min
u

ρ1(t)

ρ1
2 = max

x
ρ2(t), ρ2

2 = min
x

ρ2(t).
(8.64)

The sub-models are defined by the sets (Ai , Bi ,C) with i = 1, 2, 3, 4. Based on ρ1

and ρ2 definitions, all the Bi matrices are set to B = [
0 d

]T
. The output matrix

C = [
1 0

]
and the matrices Ai are given by

A1 =
(

ρ1
1 ρ1

2
0 −cρ1

2 + ρ1
1

)
, A2 =

(
ρ1
1 ρ2

2
0 −cρ2

2 + ρ1
1

)

A3 =
(

ρ2
1 ρ1

2
0 −cρ1

2 + ρ2
1

)
, A4 =

(
ρ2
1 ρ2

2
0 −cρ2

2 + ρ2
1 .

)
.

The weighting functions μi (t) are defined by the following equations:

μ1(t) = ρ11(ρ1(t))ρ21(ρ2(t)), μ2(t) = ρ11(ρ1(t))ρ22(ρ2(t))

μ3(t) = ρ12(ρ1(t))ρ21(ρ2(t)), μ4(t) = ρ12(ρ1(t))ρ22(ρ2(t)).
(8.65)

Since the polytopic representation is obtained in a compact set of the state space,
maximum and minimum values that occur in ρ1(t) and ρ2(t) may be calculated
using the knowledge of the domain of variation of u(t): ρ1(t) ∈ [−1,−0.2] and
ρ2(t) ∈ [0.004, 15].

8.4.2 Date Deception Attacks Representation
on The Actuator/Sensor

Two types of data deception attacks are considered, i.e., attacks on actuators and
sensors. It is assumed that, mathematically speaking, these attacks are modeled as
bounded multiplicative actuator and sensor time-varying faults.

For the considered example, it is assumed that parameter d may be hacked. This
actuator attack is represented by d(t), such that

d(t) = d + Δd(t). (8.66)

It can also be written as

d(t) = d + θu(t)d, θu(t) ∈ [θu2, θu1] (8.67)
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with d = 2.5, d = 2.1 and θu2 = −0.1958, θu1 = 0.1979. Parameters a, b, and c
have been identified and set to a = 0.5, b = 0.07, and c = 0.7.

Considering the attack on the actuator, the polytopic representation of the input
matrix B is then given by two sub-models, such that

B1 = B + θu1B, B2 = B + θu2B, (8.68)

where it is defined by B := [
0 d

]T
. The weighting functions μ̃ j (θ

u(t)) are defined
as given in (8.7) and (8.12).

Now, for the sensor attack, it is assumed that a bounded multiplicative sensor fault
θ y(t) affects the output y(t) such that

y(t) = (1 + θ y(t − τ))x1(t − τ). (8.69)

As previously explained, θ y(t) can also be written as

θ y(t) = μ1
1(θ y(t))θ y1 + μ2

1(θ
y(t))θ y2, θ y(t) ∈ [θ y2, θ y1] (8.70)

with θ y2 = 0.125, θ y1 = 0.625, μ1
1(θ y(t)), and μ2

1(θ
y(t)) are defined by (8.9) and

(8.13).
The polytopic form of the output is then given by

y(t) =
2∑

k=1

μk(θ
y(t − τ(t)))C̃k x(t − τ(t)) (8.71)

with C̃1 = (
1 + θ y2 0

)
, C̃2 = (

1 + θ y1 0
)
.

8.4.3 Simulation Results

From the considered example, with both attacks on the actuator/sensor, applying the
proposed approach by solvingTheorem8.1, a simultaneous state and attacks observer
is designed such that the system initial conditions are taken as x(0) = (

0.1 1.5
)
and

x̂(0) = (
0.09 2.3

)
for its observer. For both attacks, the initial conditions are set to

zero, i.e., θ̂u(0) = 0 and θ̂ y(0) = 0.
The state vector, its estimate as well as the data deception attacks with their

estimates are depicted in Figs. 8.1, and 8.2, respectively. From the obtained plots, the
efficiency of the proposed observer is highlighted; indeed, both system states and the
time-varying multiplicative actuator/sensor attacks are well estimated.
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Fig. 8.1 System states and their estimates
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Fig. 8.2 Data deception attacks and their estimates

8.5 Conclusions

In the present book chapter, a polytopic approach was applied to cope with the sys-
tem state and data deception attacks estimation and delayed measurements. Based
on previous work, both attacks on actuator and sensor are modeled as multiplicative
time-varying faults and written in a convex set, based only on their min and max
bound. A simultaneous state and attack observer is designed by minimizing the L2
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gain from the augmented input to the different estimation errors. The chosen appli-
cation example is an activated sludge reactor with attacks represented by unknown
time-varying parameters on the parameter d and the output. From the nonlinear equa-
tions of the system, an LPV model is derived. The proposed observer is designed
and the obtained results illustrate its performance.
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Chapter 9
Secure Estimation Under Model
Uncertainty

Saurabh Sihag and Ali Tajer

9.1 Introduction

Cyber-physical systems are deployed in a variety of technical domains such as critical
infrastructure, healthcare devices, and transportation. The rapid rise in their appli-
cations has exposed them to different vulnerabilities, threats, and attacks (Humayed
et al. 2017). An abstract representation consisting of three main components: mon-
itoring, communications, and computation and control, captures the fundamental
aspects of cyber-physical systems. The monitoring component observes the environ-
ment and communicates with the computation and control component, which in turn
processes the observations to form and communicate decisions. Each of these compo-
nents could potentially be exploited or compromised, causing unexpected behaviors
and compromised integrity and performance for the system.

The source of security threats to a cyber-physical system can broadly be cat-
egorized into three groups: an attacker with a malicious intent, functional failure
of components in the system, and environmental threats such as natural disasters.
While the impacts of operational failures of the system due to environmental threats
or internal failures can be minimized by robust strategies (Hu et al. 2016), mali-
cious attacks on cyber-physical systems intend to deceive the controller into making
highly damaging decisions via well-crafted adversarial strategies. Therefore, spe-
cialized security measures are required to mitigate such attacks (Li et al. 2020).

Adversarial attacks that exploit the vulnerabilities of the inference and control
algorithms deployed in the cyber-physical systems and potential defense strategies
against them have been subjects of active research (Li et al. 2020; Fawzi et al. 2014;
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Ahmed et al. 2021). The taxonomy of the adversarial attacks on cyber-physical
systems can be specified along three axes. The first axis pertains to the influence of
the attack, where the attacker is capable of probing the algorithms for vulnerabilities.
The attacker can further leverage these vulnerabilities to impose false decisions or
outcomes in the system. The second axis pertains to the specificity of the attack, i.e.,
the attack can be either indiscriminate and affect all decisions made by the system, or
targeted to impose false decisions only in specific scenarios. The third axis is related
to the violation induced by the attack, where the attack can distort the integrity of the
decisions made by the system in specific scenarios or overwhelm the system with
malicious inputs, thus rendering it incapable of making any decision (for instance,
through denial of service attacks).

In this chapter, we design a statistical inference framework for systems vulnerable
to adversarial attacks. Statistical inference leverages the data sampled from a popu-
lation to deduce its statistical properties. The commonly studied modes of statistical
inference are broadly focused on discerning the statistical model of the population
or estimating unknown, underlying parameters that characterize the statistical model
of the population. Vulnerability to an attack induces uncertainties in the inference
decisions, and therefore, must be accounted for in the design of inference algorithms
that are resilient to adversarial attacks.

9.1.1 Overview and Contributions

Westart by laying the context for the problem studied in this chapter. For this purpose,
we consider the canonical parameter estimation problem in which the objective is
to estimate a stochastic parameter X , which lies in a known set X ⊆ R

p, from the
data samples Y � [Y1, . . . ,Yn], where the sample Yr is distributed according to a
statistical model with probability density function (pdf) PX and lies in a known set
Y ⊆ R

m . In practice, the dimension of the data points m could correspond to the
number of data collecting entities in the system. Furthermore, the statistician assumes
a prior data model for X and Yr , determined through historical data. We denote the
assumed underlying pdfs for X and Y by π and f (· | X), respectively, i.e.,

Y ∼ f (· | X) , with X ∼ π. (9.1)

For our analysis, we assume that the pdfs do not have any non-zero probabilitymasses
over lower-dimensional manifolds. The objective of the statistician is to formalize a
reliable estimator

X̂(Y) : Y n �→ X . (9.2)

For elaborate discussions on the design of statistical estimators, we refer the readers
to Poor (1998). In an adversarial environment, the attacker may launch an attack on
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different components of the data model defined in (9.1) to degrade the quality of
X̂(Y). Next, we discuss two specific adversarial attack scenarios.

False data injection attacks: The purpose of false data injection attacks is to distort
the data samples Y such that the data model deviates from (9.1) for at least a subset
of coordinates in Y.

Causative attacks: The purpose of a causative attack is to compromise the process
that underlies acquiring the statistical models in (9.1). We emphasize that such an
attack is different from false data injection attack because the effect of a causative
attack ismisleading the statistician about the truemodel f (· | X) that it assumes about
the data. Such attacks are possible by compromising the historical (or training) data
that is used for specifying a model for the data.

We remark that the nature of security vulnerabilities that inference algorithms
are exposed to in causative attacks is fundamentally distinct from that of the data
that faces false data injection attacks. Specifically, in the case of a false data injection
attack, the information of the decision algorithm about the data model remains intact,
while the data fed to the algorithm is anomalous. Therefore, when the sampled data is
compromised, an inference algorithm produces decisions based on the truemodel for
the data in the attack-free scenario, while the data that it receives and processes are
compromised.On the other hand,when the historical data leveraged by the statistician
to determine the truemodel are compromised, an inference algorithm functions based
on an incorrect model for the data, in which case even un-compromised sampled
data produces unreliable decisions. Both attack scenarios mentioned above force the
inference algorithm to deviate from its optimal structure and, if not mitigated, may
produce decisions that serve the adversary’s purposes.

Depending on the specificity and the extent of an adversarial attack, e.g., the
fraction of the observed data or training data that is compromised, the true model
f (· | X) can be assumed to deviate to the space of alternative data models, which
we denote by F . The attack can be characterized by alterations in the statistical
distributions of any number of the m coordinates of Y. There are two major aspects
of selecting F as a viable model space.

• An attack is effective in degrading the quality of estimation if the compromised
model is sufficiently distinct from themodel assumed by the statistician for design-
ing the estimator. Hence, even though, in general, F can be thought of as any
representation of possible kernels f (· | X) mapping Y to R

m , only a subset of
such mappings pertain to the set of effective attacks.

• There exists a tradeoff between the complexity of the model space and its expres-
siveness. Specifically, an overly expressive space can represent the possible com-
promised models with a more refined accuracy, albeit at the expense of more
complex statistical inference rules.

We will discuss the specifics of the attack model in Sect. 9.2. Note that the potential
adversarial presence induces a new dimension to the estimation problem in (9.2).
Specifically, the optimal estimator design hinges on the knowledge of the true statis-
tical model of the measurements Y. However, detecting whether the data model has
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been compromised and discerning the true model, itself being an inference task, is
never perfect. These observations imply an inherent coupling between the original
estimation problem of interest and the introduced auxiliary problem due to potential
adversarial behavior (i.e., detecting the presence of an attacker and isolating the true
model). Therefore, the quality of the estimator is expected to degrade with respect to
an attack-free setting due to uncertainties in the true model in the adversarial setting.
Our objective is to characterize the fundamental interplay between the quality of
discerning the true model and the degradation in the estimation quality.

9.1.2 Related Studies

The problem of secure inference is studied primarily in the context of sensor net-
works, where a subset of sensors may be corrupted by an attacker. The study in
Wilson and Veeravalli (2016), in particular, considers the problem of secure esti-
mation in a two-sensor network, in which one sensor is assumed to be secured ,
and the other sensor is vulnerable to attacks. According to the heuristic estimation
design in this context, first, a decision is formed on the attacker’s activity on the
unsecured sensor . If it is deemed to be attacked, then the estimation design relies
only on the secured sensor , and otherwise, it uses the data collected at both sensors.
In contrast to Wilson and Veeravalli (2016), we consider a model with an arbitrary
dimension of data, assume that all data coordinates are vulnerable to the attack, and
characterize the optimal secure inference structure, which is distinct from being a
detection -driven design studied in Wilson and Veeravalli (2016).

The adversarial setting considered in this chapter has similarities with the widely-
investigated Byzantine attack models in sensor networks. In Byzantine attack mod-
els, the data corresponding to the compromised sensors is modified arbitrarily by the
adversaries with an aim to degrade the inference quality. The impact of Byzantine
attacks on the quality of inference and relevant mitigation strategies in sensor net-
works are discussed in Vempaty et al. (2013). Various detection-driven estimation
strategies (i.e., when attack detection precedes and guides the estimation routine)
for scenarios where the impacts of the Byzantine attacks on data are characterized by
randomly flipped information bits, are discussed in Vempaty et al. (2013), Ebinger
and Wolthusen (2009), Zhang et al. (2015), Zhang and Blum (2014). Furthermore,
attack-resilient target localization strategies are studied in Vempaty et al. (2013,
2014), where the assumption is that the attacker adopts a fixed strategy that leads
to maximum disruption in the inference. In these studies, however, an attacker can
deviate from the worst-case attack strategy of incurring the maximum damage, and
launch a less impactful but sustained attack, which may remain undetected. Finally,
various strategies for isolating the compromised sensors in sensor networks are stud-
ied inRawat et al. (2010), Soltanmohammadi et al. (2013), Vempaty et al. (2011). The
emphasis of these studies is primarily detection of attacks or isolating the attacked
sensors, whereas this chapter focuses on parameter estimation.
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Secure estimation in linear dynamical systems that characterize cyber-physical
systems has been actively studied in recent years (Fawzi et al. 2011, 2014; Yong
et al. 2015; Pajic et al. 2014, 2015; Shoukry et al. 2017; Mishra et al. 2015). The
studies with more relevance to the scope of this chapter include Fawzi et al. (2014),
Mishra et al. (2015), and Pajic et al. (2014), which investigate robust estimation in
dynamic systems. Specifically, a coding-theoretic interplay between the number of
sensors compromised by an adversary and the guarantees on perfect system state
recovery are characterized in Fawzi et al. (2014), a Kalman filter-based approach for
identifying the most reliable set of sensors for inference is investigated in Mishra
et al. (2015), and the design of estimators that is robust in the presence of dynamical
model uncertainty is studied in Pajic et al. (2014). Furthermore, the degradation
impact on estimation performance in a dynamical system consisting of a single
sensor network is investigated from the adversary’s perspective in Bai and Gupta
(2014), where bounds on the degradation in estimation quality with the stealthiness
of the attacker are characterized.

Secure estimation is also linked to robust estimation (Shen et al. 2014; Sayed
2001; Al-Sayed et al. 2017; Chen et al. 2017; Lin and Abur 2020; Zhao et al. 2016).
These two problems share some aspects (e.g., datamodel uncertainty), but their infer-
ence tasks are distinct. Specifically, besides the estimation objective, both problems
also face the problem of resolving uncertainties about the data model. The main
distinction between secure estimation and robust estimation lies in their resolution
of the model uncertainties, which results in significant differences in the formula-
tion of the problems and the designs of the optimal decision rules. Specifically, in
robust estimation , the emphasis is laid on forming the most reliable estimates, and
as an intermediate step, the model uncertainty must also be resolved as a second
inference task. Resolution of model uncertainties can be executed by a wide range
of approaches, which include averaging out the effect of the model or forming an
estimate of the model. The ultimate objective of robust estimation is optimizing the
estimation quality, and it generally does not account for the quality of the decisions
involved in resolving model uncertainty, i.e., model uncertainty resolution will be
dictated by the decision rules optimized for producing the best estimates.

The aforementioned studies that study secure estimation, despite their discrep-
ancies, conform to an underlying design principle, which decouples the estimation
design from all other decisions involved (e.g., attack detection or attacked sen-
sor isolation), and leads to either detection -driven estimators or estimation -driven
detection routines. The sub-optimality of decoupling such intertwined estimation
and detection problems into independent estimation and detection routines is
well-investigated (Middleton and Esposito 1968; Zeitouni et al. 1992; Moustakides
et al. 2012; Jajamovich et al. 2012). In contrast, in secure estimation, our focus is
on the qualities of both decisions: estimating the desired parameter and detecting
the unknown model. Hence, unlike robust estimation, we face combined estimation
and detection decisions. The problem formulation is motivated by our recent work
in Sihag and Tajer (2020), which emphasizes the natural coupling between the two
inference tasks and requires that the optimal decisions are determined jointly.
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9.2 Data Model and Definitions

Our focus is on the estimation problem in (9.2) and in this context, we discuss the
data models under the attack-free and adversarial scenarios.

9.2.1 Attack Model

The objective is to form an optimal estimate X̂(Y) (under the general cost functions
specified in Sect. 9.2.2) in the potential presence of an adversary. In the attack-free
setting, the data is assumed to be generated according to a known model specified
in (9.1). In an adversarial setting, an adversary, depending on its strength and desired
impact, can launch an attack with the ultimate purpose of degrading the quality of
the estimate of X . We assume that the adversary can corrupt the data model of up to
K ∈ {1, . . . ,m} coordinates of Y. Hence, for a given K , there exist T = ∑K

i=1

(m
i

)

number of attack scenarios, each of which is associated with a distinct data model. To
formalize this, we defineS � {S1, . . . , ST } as the set of all possible attack scenarios,
where Si ⊆ {1, . . . ,m} describes the set of coordinates ofY the models of which are
compromised under attack scenario i ∈ {1, . . . , T }.

Under the attack scenario i ∈ {1, . . . , T }, if r ∈ Si , the data model deviates from
f to a model in the space Fi . Clearly, the attack can be effective if it encompasses
sufficiently distinct models. For our analysis, we assume thatFi � { fi (· | X)}, i.e.,
Fi consists of one alternative distribution. Based on thismodel, when the datamodels
in the coordinates contained in Si are compromised, the joint distribution changes
from f (· | X) to fi (· | X).

In practice, the resources and preferences of the attacker may determine the like-
lihood of an attack scenario. For instance, attacking one coordinate may be easier or
more desirable as compared to others. To account for such likelihoods, we adopt a
Bayesian framework in which we define ε0 as the prior probability of an attack-free
scenario and define εi as the prior probability of the event that the attacker compro-
mises the data at coordinates specified by Si . A block diagram of the attack model
and the inferential goals is depicted in Fig. 9.1.

9.2.2 Decision Cost Functions

In the adversarial setting, the estimation decision is intertwined with the decision
on the true model, and therefore, it constantly faces the uncertainty induced by the
action or inaction of the adversary. A decoupled strategy of decisions for isolating
the model and estimating the parameter under the isolated model does not generally
guarantee optimal performance. In fact, there exist extensive studies on formaliz-
ing and analyzing such compound decisions, which generally aim to decouple the
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Fig. 9.1 The effect of the adversary on the data model, and the inferential decisions involved.
Depending on the adversarial action, the data model may either deviate from f to one among the
alternative data models ({ fi : i ∈ {0, . . . , T }}) or retain the original data model (given by f0)

inferential decisions. For instance, in Zeitouni et al. (1992), it is shown that the gen-
eralized likelihood ratio test (GLRT), which uses maximum likelihood estimates of
unknown parameters in its decision rule, is not always optimal. In Moustakides et al.
(2012) and Jajamovich et al. (2012), non-asymptotic frameworks for optimal joint
detection and estimation are provided. Specifically, in Moustakides et al. (2012),
a binary hypothesis testing problem is studied in a setting where one hypothesis is
composite and consists of an unknown parameter to be estimated. In Jajamovich
et al. (2012), the principles in Moustakides et al. (2012) are extended to a composite
binary hypothesis testing problem in which both hypotheses correspond to compos-
ite models. We used similar principles as established in Moustakides et al. (2012)
and Jajamovich et al. (2012) in our recent study on secure estimation in Sihag and
Tajer (2020). We borrow the principles adopted in Sihag and Tajer (2020) to discuss
secure estimation in the context of cyber-physical systems in this chapter. We next
discuss the cost functions for true model detection and estimation quality.

9.2.2.1 Attack Detection Costs

Due to the existence of multiple attack scenarios, the true model detection problem
can be formulated as the following (T + 1)-composite hypothesis testing problem.

H0 : Y ∼ f (Y | X), with X ∼ π(X)

Hi : Y ∼ fi (Y | X), with X ∼ π(X) , for i ∈ {1, . . . , T },
(9.3)

where H0 is the hypothesis that represents the attack-free setting, and Hi is the
hypothesis corresponding to an attack scenario where the attack is launched at the
coordinates in Si ∈ S . For the convenience in notation, we denote the attack-free
datamodel by f0(· | X), i.e., f0(· | X) = f (· | X). To formalize relevant costs for the
detection decisions, we define D ∈ {H0, . . . ,HT } as the decision on the hypothesis
testing problem in (9.3), and T ∈ {H0, . . . ,HT } as the true hypothesis. The true
hypothesis is discerned via a general randomized test δ(Y) � [δ0(Y), . . . , δT (Y)],
where δi (Y) ∈ [0, 1] denotes the probability of deciding in favor of Hi . Clearly
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T∑

i=0

δi (Y) = 1. (9.4)

Hence, the probability of forming a decision in favor of H j while the true model is
Hi is given by

P(D=H j |T=Hi ) =
∫

Y
δ j (Y) fi (Y) dY. (9.5)

We define Pmd as the aggregate probability of error in identifying the true model
when there exist compromised data coordinates due to attacker’s activity, i.e.,

Pmd(δ) � P(D �= T | T �= H0)

= 1

P(T �= H0)

T∑

i=1

P(D �= Hi | T = Hi )P(T = Hi ) (9.6)

=
T∑

i=1

εi

1 − ε0
· P(D �= Hi | T = Hi ). (9.7)

Furthermore, we define Pfa as the aggregate probability of erroneously deciding that
a set of coordinates is compromised while operating in an attack-free scenario. In
this context, we have

Pfa(δ) � P(D �= H0 | T = H0) =
T∑

i=1

P(D=Hi |T=H0). (9.8)

9.2.2.2 Secure Estimation Costs

In this subsection, we discuss the estimation cost functions that capture the quality
of the estimate X̂(Y). For this purpose, we adopt a generic and non-negative cost
functionC(X,U (Y)) that quantifies the discrepancy between the ground truth X and
a generic estimatorU (Y). Since the data models under different attack scenarios are
distinct, we consider having possibly distinct estimators under each attack scenario.
Therefore, we denote the estimate of X under model Hi by X̂i (Y), and accordingly,
we define

X̂(Y) � [X̂0(Y), . . . , X̂T (Y)]. (9.9)

Therefore, the estimation cost C(X, X̂i (Y)) is relevant only if the decision is Hi .
Hence, for a generic estimator Ui (Y) of X under model Hi , we define the decision-
specific average cost function as
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Ji (δi ,Ui (Y)) � Ei [C(X,Ui (Y)) | D = Hi ] , ∀i ∈ {0, . . . , T } (9.10)

where the conditional expectation is with respect to X and Y. Accordingly, we
leverage (9.10) to define an aggregate average estimation cost according to

J (δ,U) � max
i∈{0,...,T } Ji (δi ,Ui (Y)), (9.11)

where we haveU � [U0(Y), . . . ,UT (Y)]. Finally, in the attack-free scenario, corre-
sponding to any generic estimator V (Y), we define the average estimation according
to

J0(V ) = E[C(X, V (Y))], (9.12)

where the expectation is with respect to X andY under model f . Note that J0 defined
in (9.12) corresponds to the scenario in which the attack-free model f is the only
possibility for the data model and is, therefore, fundamentally different from J (δ,U)

defined in (9.11). In the analysis, J0 furnishes a baseline to assess the impact of
potential adversarial action on the estimation quality.

9.3 Secure Parameter Estimation

In this section, we formalize the problem of secure estimation. There exists an inher-
ent interplay between the quality of estimating X and the quality of isolation deci-
sion to identify the true model governing the data. On the one hand, detecting the
adversary’s attack model perfectly is not possible. At the same time, the estimation
quality critically hinges on the successful isolation of the true data model. There-
fore, an imperfection in the decision about the data model is expected to degrade the
estimation quality with respect to the attack-free scenario. To quantify such an inter-
play as well as the degradation in estimation quality with respect to the attack-free
scenario, we provide the following definition.

Definition 9.1 (Estimation Degradation Factor) For a given estimator V in the
attack-free scenario, and a secure estimation framework specified by the rules (δ,U)

in the adversarial scenario, we define the estimation degradation factor (EDF) as

q(δ,U, V ) � J (δ,U)

J0(V )
. (9.13)

Based on Definition 9.1, we define the performance region for secure estimation
that encompasses all the pairs of estimation quality q(δ,U, V ) and detection perfor-
mance Pmd(δ) over the space characterized by all possible decision rules (δ,U, V ).



218 S. Sihag and A. Tajer

Definition 9.2 (Performance Region) We define the performance region as the
region of all simultaneously achievable estimation quality q(δ,U, V ) and detec-
tion performance Pmd(δ).

Next, we leverage the definition of performance region to define the notion of (q, β)-
security , which is instrumental for formalizing the secure estimation problem. For
this purpose, we first note that the two estimation cost functions involved in the EDF
q(δ,U, V ) can be computed independently, and as a result, their attendant decision
rules can be determined independently. For this purpose, we define V ∗ as the optimal
estimator under the attack-free scenario, and J ∗

0 as the corresponding estimation cost,
i.e.,

V ∗ � argmin
V

J0(V ), and J ∗
0 � min

V
J0(V ). (9.14)

Definition 9.3 ((q, β)-security) In the adversarial scenario, an estimation procedure
specified by (δ,U, V ∗) is called (q, β)-secure if the decision rules (δ,U) yield the
minimal EDF among all the decision rules corresponding to which the average rate
of missing the attacks does not exceed β ∈ (0, 1], i.e.,

q � min
δ,U

q(δ,U, V ∗), s.t. Pmd(δ) ≤ β. (9.15)

The performance region, and its boundary that specifies the interplay between q and
β are illustrated figuratively in Fig. 9.2. Based on the definitions in this subsection, we
aim to characterize the region of all simultaneously achievable values of q(δ,U, V ∗)
and Pmd(δ) (represented by the dashed region in Fig. 9.2) and the (q, β)-secure
decision rules that solve (9.15), and specify the boundary of the performance region
(illustrated by a solid line as the boundary of the performance region in Fig. 9.2).

By noting that q(δ,U, V ∗) = J (δ,U)

J ∗
0

, where J ∗
0 is a constant, we formalize the

problem of determining the performance region and the (q, β)-secure decision rules
as

Q(β) �
{
minδ,U J (δ,U)

s.t. Pmd(δ) ≤ β
. (9.16)

Fig. 9.2 Performance region
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We note that although Q(β) ensures that the likelihood of missing an attack is
confined below β, it is insensitive to the rate of the false alarms, that is, the rate
of erroneously declaring an attack when there is no attack. If it is also desirable to
control the rate of false alarms, we can further extend the notion of (q, β)-security
as follows.

Definition 9.4 An estimation procedure is (q, α, β)-secure if it is (q, β)-secure
and the likelihood of false alarms does not exceed α ∈ (0, 1].
The (q, α, β)-secure decisions are determined by the optimal decision rules that
form the solution to

P(α, β) =

⎧
⎪⎨

⎪⎩

minδ,U J (δ,U)

s.t. Pmd(δ) ≤ β

Pfa(δ) ≤ α

. (9.17)

Remark 9.1 It is straightforward to verify that Q(β) = P(1, β).

Remark 9.2 (Feasibility) The Neyman–Pearson theory (Poor 1998) dictates that
the probabilities Pmd(δ) and Pfa(δ) cannot be made arbitrarily small simultaneously.
Specifically, for any given α, there exists a smallest feasible value for β, denoted by
β∗(α).

We provide the optimal solution to problemsP(α, β) andQ(β) in closed-forms in
Sect. 9.4.

9.4 Secure Parameter Estimation: Optimal Decision Rules

In this section, we characterize an optimal solution to the general problemP(α, β) to
determine the designs for the estimators {X̂i (Y) : i ∈ {0, . . . , T }} and the detectors
{δi (Y) : i ∈ {0, . . . , T }}. We first leverage the expansions of the error probability
terms Pmd(δ) and Pfa(δ) in terms of the data models and decision rules. Based on
(9.5) and (9.6), we have

Pmd(δ) =
T∑

i=1

εi

1 − ε0

T∑

j=0
j �=i

∫

Y
δ j (Y) fi (Y) dY. (9.18)

Similarly, by noting (9.5) and based on (9.8), we have

Pfa(δ) =
T∑

i=1

∫

Y
δi (Y) f0(Y) dY. (9.19)
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By using the expansions in (9.18) and (9.19), the equivalent problem to (9.17) is
given by

P(α, β) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min(δ,U) J (δ,U)

s.t.
T∑

i=1

εi
1−ε0

T∑

j=0
j �=i

∫

Y
δ j (Y) fi (Y) dY ≤ β

T∑

i=1

∫

Y
δi (Y) f0(Y) dY ≤ α

. (9.20)

Note that the estimators {Ui (Y) : i ∈ {0, . . . , T }} are restricted to the utility function
J (δ,U), which allows us to decouple the problem P(α, β) into two sub-problems,
formalized next.

Theorem 9.1 The optimal secure estimators of X under different models, i.e., X̂ =
[X̂0, . . . , X̂T ] are the solutions to

X̂ = argmin
U

J (δ,U). (9.21)

Furthermore, the solution of P(α, β), and subsequently the design of the attack
detectors, can be found by equivalently solving

P(α, β) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minδ J (δ, X̂)

s.t.
T∑

i=1

εi
1−ε0

T∑

j=0
j �=i

∫

Y
δ j (Y) fi (Y) dY ≤ β

T∑

i=1

∫

Y
δi (Y) f0(Y) dY ≤ α

. (9.22)

By leveraging the design in (9.21) and the decoupled structure of the problem
P(α, β) in (9.22), in the following theorem, we discuss optimal designs for the
estimators in the secure estimation problem.

Theorem 9.2 ((q, α, β)-secure Estimators) For the optimal secure estimators X̂,
we have:

1. The minimizer of the estimation cost Ji (δi ,Ui (Y)), i.e., the estimation cost
function under model Hi , is given by

U ∗
i (Y) � arg inf

Ui (Y)
Cp,i (Ui (Y) | Y), (9.23)

where Cp,i (U (Y) | Y) is the average posterior cost function denoted by

Cp,i (U (Y) | Y) � Ei
[
C(X,U (Y)) | Y]

, (9.24)

where the conditional expectation in (9.24) is with respect to X under modelHi .
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2. The optimal estimator X̂ = [X̂0, . . . , X̂T ], specified in (9.21), is given by

X̂i (Y) = U ∗
i (Y). (9.25)

3. The cost function J (δ, X̂) is given by

J (δ, X̂) = max
i∈{0,...,T }

⎧
⎪⎪⎨

⎪⎪⎩

∫

Y
δi (Y)C∗

p,i (Y) fi (Y)dY
∫

Y
δi (Y) fi (Y)dY

⎫
⎪⎪⎬

⎪⎪⎭

, (9.26)

where we have defined

C∗
p,i (Y) � inf

Ui (Y)
Cp,i (Ui (Y) | Y). (9.27)

Proof See Appendix 1. �

Wenext discuss the application of decision rules inTheorem9.2 in a specific example.
Specifically, in the next corollary, we discuss the closed-forms of these decision rules
when the distributions { fi (· | X) : i ∈ {0, . . . , T }} are Gaussian.
Corollary 9.1 ((q, α, β)-secure Estimators in Gaussian Models) When the data
models are Gaussian, i.e.,

fi (· | X) ∼ N (θi , X), for θi ∈ R (9.28)

such that the mean values are distinct, and

X ∼ X −1(ζ, φ), (9.29)

where X −1(ζ, φ) denotes the inverse chi-squared distribution with parameters ζ

and φ, such that ζ + n > 4, and the cost C(X,U (Y)) is the mean squared error,
given by

C(X,U (Y)) = ‖X −U (Y )‖2, (9.30)

for the optimal secure estimators X̂, we have:

1. The minimizer of the estimation cost J (δi ,Ui (Y)), i.e., the estimation cost
function under model Hi , is given by

U ∗
i (Y) =

ζφ +
n∑

r=1
‖Yr − θi‖22

ζ + n − 2
. (9.31)
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2. The optimal estimator X̂ = [X̂0, . . . , X̂T ], specified in (9.21), is given by

X̂i (Y) = U ∗
i (Y). (9.32)

3. The cost function J (δ, X̂) is given by

J (δ, X̂) = max
i∈{0,...,T }

⎧
⎪⎪⎨

⎪⎪⎩

∫

Y
δi (Y)C∗

p,i (Y) fi (Y)dY
∫

Y
δi (Y) fi (Y)dY

⎫
⎪⎪⎬

⎪⎪⎭

, (9.33)

where we have

C∗
p,i (Y) =

2(ζφ +
n∑

r=1
‖Yr − θ1‖2)2

(ζi + n − 2)2(ζ + n − 4)
. (9.34)

Next, given the optimal estimators X̂, we provide the optimal detection rules in
the next theorem. We note that the decision rules depend on the metrics computed
based on the optimal estimation costs, establishing the coupling of estimation and
true model detection decisions. We show that by using the solution of the specific
auxiliary convex problem in a variational form in the next theorem, we can solve
P(α, β) in (9.22).

Theorem 9.3 For any arbitrary u ∈ R+, we have P(α, β) ≤ u if and only if
R(α, β, u) ≤ 0, where we have defined

R(α, β, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minδ η

s.t.
∫

Y
δi (Y) fi (Y)[C∗

p,i (Y) − u] dY ≤ η, ∀ i ∈ {0, . . . , T }
T∑

i=1

εi

1 − ε0

T∑

j=0
j �=i

∫

Y
δ j (Y) fi (Y) dY ≤ β + η

T∑

i=1

∫

Y
δi (Y) f0(Y) dY ≤ α + η

.

(9.35)

Furthermore, R(α, β, u) is convex, and R(α, β, u) = 0 has a unique solution in u,
which we denote by u∗.

Proof See Appendix 2. �

The point u∗ plays a pivotal role in the structure of optimal detection decision
rules. We define the constants {�i : i ∈ {0, . . . , T + 2}} as the dual variables in
the Lagrange function for the convex problem R(α, β, u∗). Given u∗ and {�i : i ∈
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{0, . . . , T + 2}}, we can characterize the optimal detection rules in closed-forms, as
specified in the following theorem.

Theorem 9.4 ((q, α, β)-secure Detection Rules) The optimal decision rules for iso-
lating the compromised coordinates are given by

δi (Y) =
{

1, if i = i∗

0, if i �= i∗
, (9.36)

where we have defined

i∗ � argmin
i∈{0,...,T }

Ai . (9.37)

Constants {A0, . . . , AT } are specified by the data models, u∗, and its associated
Langrangian multipliers {�i : i ∈ {0, . . . , T + 2}}. Specifically, we have

A0 � �0 f0(Y)[C∗
p,0(Y) − u∗] + �T+1

T∑

i=1

εi

1 − ε0
fi (Y), (9.38)

and for i ∈ {1, . . . , T }, we have

Ai � �i fi (Y)[C∗
p,i (Y) − u∗] + �T+1

T∑

j=1, j �=i

ε j

1 − ε0
f j (Y) + �T+2 f0(Y). (9.39)

Proof See Appendix 3. �

In the next corollary, we discuss the application of these decision rules when the
distributions { fi (· | X) : i ∈ {0, . . . , T }} are all Gaussian.
Corollary 9.2 ((q, α, β)-secure Detection Rules in Gaussian Models) When the
data models { fi (· | X) : i ∈ {0, . . . , T }} have the following Gaussian distributions

fi (· | X) ∼ N (θi , X) , for θi ∈ R (9.40)

where the mean values are distinct, and

X ∼ X −1(ζ, φ), (9.41)

the optimal decision rules for isolating the compromised coordinates are given by

δi (Y) =
{

1, if i = i∗

0, if i �= i∗
, (9.42)
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where we have defined

i∗ � argmin
i∈{0,...,T }

Ai . (9.43)

Constants {A0, . . . , AT } are specified by the data models, u∗, and its associated
Langrangian multipliers {�i : i ∈ {0, . . . , T + 2}}. Specifically, we have

A0 � �0 f0(Y)(C∗
p,0(Y) − u∗) + �T+1

T∑

i=1

εi

1 − ε0
fi (Y), (9.44)

and for i ∈ {1, . . . , T }, we have

Ai � �i fi (Y)(C∗
p,i (Y) − u∗) + �T+1

T∑

j=1
j �=i

ε j

1 − ε0
f j (Y) + �T+2 f0(Y). (9.45)

When the cost function C(X,U (Y)) is the mean squared error cost, and C∗
p,i (Y) is

evaluated using (9.34), we obtain

fi (Y) = (ζφ)
ζ

2

π
n
2 Γ (ζ/2)

· Γ (ζ + n)/2

(ζφ +
n∑

r=1
‖Yr − θi‖2) ζ+n

2

. (9.46)

Figure9.3 illustrates the performance region and the corresponding (q, β)-security
curve for the case T = 1, n = 1, θ0 = 0, θ1 = 2, ζ = 4, and φ = 1. The (q, β)-
security curve in Fig. 9.3 depicts the tradeoff between the quality of the true model
detection and the degradation in the estimation quality. Note that this tradeoff is
inherently due to secure estimation problem formulation. Essentially, the design
of the problem P(α, β) as specified in (9.17) enables the trade of the quality of
detection in favor of improving the estimation cost.

Fig. 9.3 Performance region
for the Gaussian data model
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We provide Algorithm 9.1, which summarizes all the steps for solving P(α, β)

for any feasible pair of α and β, and it encapsulates the decision rules specified by the
theorems in this section and the detailed steps of specifying the parameters involved
in characterizing the decision rules.

Algorithm 9.1 – Solving P(α, β)

Input: α and β and evaluate β∗(α)

if β < β∗(α) then
P(α, β) not feasible for given choice of α and β;
break;

else
Initialize u0 = 0, u1;
Evaluate optimal posterior estimation costs in (9.27);
repeat

û ← (u0 + u1)/2;
for every �̂ � 0 in the discretized space ‖�̂‖1 = 1 do

Compute δ from Theorem 9.4;
Compute M(�̂) � R(α, β, û) ;
if min

�̂
M(�̂) ≤ 0 then

u1 ← û, � ← �̂;

else
u0 ← û;

until u1 − u0 ≤ ε, for ε sufficiently small;
P(α, β) ← u∗ = u1;
Output: Decision rules δ

9.5 Case Studies: Secure Estimation in Sensor Networks

We evaluate the secure estimation framework using the example of a two-sensor
network with a fusion center (FC). Each sensor collects a stream of data consisting of
n samples. Sensor i ∈ {1, 2} collects nmeasurements, denoted byYi = [Y i

1, . . . ,Y
i
n],

where each sample Y i
j ∈ R in an attack-free scenario follows the model

Y i
j = hi X + Ni

j , (9.47)

where hi models the channel connecting sensor i to the FC and Ni
j accounts for

the additive channel noise. Different noise terms are assumed to be independent and
identically distributed (i.i.d.) generated according to a known distribution. We will
consider two adversarial scenarios that impact the data model in (9.47) and evaluate
the optimal performance.
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9.5.1 Case 1: One Sensor Vulnerable to Causative Attacks

We first consider an adversarial setting in which the data model from only one sensor
(sensor 1) is vulnerable to an adversarial attack while the other sensor (sensor 2) is
secured. Under this setting, we clearly have only one attack scenario, i.e., T = 1
and S1 = {1}. Accordingly, we have ε0 + ε1 = 1. Under the attack-free scenario, the
noise terms Ni

j are distributed according toN (0, σ 2
n ), i.e.,

Y i
j | X ∼ N (hi X, σ 2

n ). (9.48)

When sensor 1 is compromised, the actual conditional distribution of Y 1
j |X is distinct

from the above distribution. The inference objective under such a setting, in prin-
ciple, becomes similar to the adversarial setting of Wilson and Veeravalli (2016),
which focuses on data injection attack. Hence, for comparison with the performance
of the secure estimation framework with that of Wilson and Veeravalli (2016), we
assume that the conditional distribution of Y 1

j |X when sensor 1 is under attack is
N (hi X, σ 2

n ) ∗ Unif[a, b], where a, b ∈ R are fixed constants and ∗ denotes convo-
lution. Therefore, the composite hypothesis test for estimating X and discerning the
model in (9.3) simplifies to a binary test with the prior probabilities ε0 and ε1.

H0 : Y ∼ f0(Y | X), with X ∼ N (0, σ 2)

H1 : Y ∼ f1(Y | X), with X ∼ N (0, σ 2).
(9.49)

Figure9.4 shows the variations of the estimation quality, captured by q, versus the
miss-detection rate β, where it is observed that the estimation quality improves
monotonically with an increase in β, and it reaches its maximum quality as β

approaches 1. This observation is in line with the analytic implications of the formu-
lations of the secure parameter estimation problem in (9.16) and (9.17). A similar
setting is studied in Wilson and Veeravalli (2016), where the attack is induced addi-
tively into the data of sensor 1 and can be any real number. This setting can be
studied in the context of adversarial attacks where the attacker compromises the data
by adding a uniformly distributed disturbance. Figure9.4 also shows the comparison
of the estimation quality of the secure estimation framework in this chapter, with
that from themethodology inWilson and Veeravalli (2016). InWilson and Veeravalli
(2016), the estimator is designed to obtain the most robust estimate corresponding
to an optimal false alarm probability α∗, which, in turn, fixes the miss-detection
error probability. Therefore, the framework inWilson and Veeravalli (2016) does not
provide the flexibility to change the miss-detection rate β.

The results presented in Fig. 9.4 correspond to σ = 3, σn = 1, h1 = 1, h2 = 4,
a = −40, b = 40. The upper bound on Pfa is set to α∗ = 0.1, where α∗ is obtained
using the methodology in Wilson and Veeravalli (2016).
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Fig. 9.4 q versus β for fixed
α∗ = 0.1
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9.5.2 Case 2: Both Sensors Vulnerable to Adversarial Attacks

We consider the same model for X , and in this setting, we assume that both sen-
sors are vulnerable to attack. The attacker can compromise the data of at most one
sensor. Under this setting, we have T = 2, S1 = {1}, and S2 = {2}. Therefore, in the
adversarial setting, the following hypothesis model forms the basis of the secure
estimation problem

H0 : Y ∼ f0(Y | X), with X ∼ π(X)

H1 : Y ∼ f1(Y | X), with X ∼ π(X)

H2 : Y ∼ f2(Y | X), with X ∼ π(X),

(9.50)

where H0 is the attack-free setting and Hi corresponds to sensor i being compro-
mised. Since the sensor with higher gain hi is expected to provide a better estimate,
we explore a scenario in which the sensor with the higher gain is more likely to be
attacked. Hence, we select the parameters h1 = 1, and h2 = 2, and set the probabili-
ties (ε0, ε1, ε2) = (0.2, 0.2, 0.6). We assume the distribution of X to beUnif[−2, 2].
We assume that Y i

j , for i ∈ {1, 2}, given X , is distributed according to N (hi X, 1)
in the attack-free setting. When sensor i is compromised, we assume that Y i

j , for
i ∈ {1, 2}, given X , follows the distribution N (hi X, 5).

Figure9.5 shows the performance region illustrated in Fig. 9.2, which corresponds
to the variations of q with β for three different values of α. The region spanned by the
plots between q and β for different values of α is the feasible region of operation and
allows the FC to adjust the emphasis on either the estimation or detection decisions.
As expected, the estimation quality improves monotonically as α and β increase.
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Fig. 9.5 q versus β for
different values of α
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9.6 Conclusions

Wehave formalized and analyzed the problemof secure estimation under adversarial
attacks on the data model. The possible presence of adversaries results in uncertainty
in the statistical model of the data. This further leads the estimation algorithm to
exhibit degraded performance compared to the attack-free setting.Wehave character-
ized closed-form optimal decision rules that provide the optimal estimation quality
(minimum estimation cost) while controlling for the error in detecting the attack and
isolating the truemodel of the data. Our analysis has shown that the design of optimal
estimators is intertwined with that of the detection rules to determine the true model
of the data. Based on this, we have provided the optimal decision rules that combine
the estimation quality with detection power. This allows the decision-maker to place
any desired emphasis on the estimation and detection routines involved to study the
tradeoff between the two.

Appendix 1

We start the proof of Theorem 9.2 by defining the cost function Ji (δi ,Ui ) and analyz-
ing a lower bound on it. Our analysis will show that the lower bound on the Ji (δi ,Ui )

is achieved for the choice of estimator in (9.53). From (9.10), we have
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Ji (δi ,Ui ) = E
[
C(X,Ui (Y)) |D=Hi

]

=

∫

Y

∫

X
δi (Y)C(X,Ui (Y)) fi (Y | X)π(X)dXdY

∫

Y
δi (Y) fi (Y)dY

.

By leveraging the definition of Cp,i (Ui (Y) | Y) from (9.24), we have

Ji (δi ,Ui ) =

∫

Y
δi (Y)Cp,i (Ui (Y) | Y) fi (Y)dY

∫

Y
δi (Y) fi (Y)dY

≥

∫

Y
δi (Y) inf

Ui (Y)
Cp,i (Ui (Y) | Y) fi (Y)dY

∫

Y
δi (Y) fi (Y)dY

, (9.51)

which implies that

Ji (δi ,Ui ) ≥

∫

Y
δi (Y)C∗

p,i (Y) fi (Y)dY
∫

Y
δi (Y) fi (Y)dY

. (9.52)

Using the definition of X̂i (Y) in (9.23), the above lower bound is achieved when the
estimator Ui (Y) is selected to be

X̂i (Y) = arg inf
Ui (Y)

Cp,i (Ui (Y) | Y), (9.53)

which proves that the estimator in (9.23) is the optimal estimator for minimizing the
cost Ji (δi ,Ui ). The corresponding minimum average estimation cost is

Ji (δi , X̂i ) =

∫

Y
δi (Y)C∗

p,i (Y) fi (Y)dY
∫

Y
δi (Y) fi (Y)dY

. (9.54)

Next, we prove that

max
i

min
U

{Ji (δi ,Ui )} ≡ min
U

max
i

{Ji (δi ,Ui )} . (9.55)

Recall from (9.11), the estimation cost J (δ,U) is defined as
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J (δ,U) = max
i

{Ji (δi ,Ui )} . (9.56)

We define C (Ω, δ,U) as a convex function of Ji (δi ,Ui ), i ∈ {0, . . . , T }, given by

C (Ω, δ,U) �
T∑

i=0

Ωi Ji (δi ,Ui ), (9.57)

where Ω = [Ω0, . . . ,ΩT ], and Ωi satisfy

T∑

i=0

Ωi = 1 , and Ωi ∈ [0, 1]. (9.58)

J (δ,U) can be represented as a function of C (Ω, δ,U) in the following form

J (δ,U) = max
Ω

C (Ω, δ,U).

Let Ω∗ = {Ω∗
j : j = 0, . . . , T } be defined as

Ω∗ � argmax
Ω

C (Ω, δ,U),

where Ω∗
j = 1 if

j = argmax
i

{Ji (δi ,Ui )} . (9.59)

From (9.53) and (9.54), we observe that

max
Ω

min
U

C (Ω, δ,U) = max
Ω

C (Ω, δ, X̂)

≥ min
U

max
Ω

C (Ω, δ,U). (9.60)

Also, we have

max
Ω

C (Ω, δ,U) ≥ max
Ω

min
U

C (Ω, δ,U), (9.61)

which implies that

min
U

max
Ω

C (Ω, δ,U) ≥ max
Ω

min
U

C (Ω, δ,U). (9.62)

From (9.60) and (9.62), it is easily concluded that

max
Ω

min
U

C (Ω, δ,U) = min
U

max
Ω

C (Ω, δ,U), (9.63)
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which completes the proof for (9.55). Using the results in (9.55) and (9.54), the cost
function J (δ, X̂) is given by

J (δ, X̂) = min
U

max
i

{Ji (δi ,Ui )}
= max

i
min
U

{Ji (δi ,Ui )}

= max
i

{
Ji (δi , X̂i )

}
(9.64)

= max
i

⎧
⎪⎪⎨

⎪⎪⎩

∫

Y
δi (Y)C∗

p,i (Y) fi (Y)dY
∫

Y
δi (Y) fi (Y)dY

⎫
⎪⎪⎬

⎪⎪⎭
. (9.65)

Appendix 2

The function Ji (δi ,Ui ) is a quasi-convex function. The weighted maximum function
preserves the quasi-convexity and therefore, Ji (δi , X̂i ) is a quasi-convex function
from its definition in (9.26). This allows us to find the solution by solving an equiv-
alent feasibility problem given below (Boyd and Vandenberghe 2004). Specifically,
for u ∈ R+, it is observed that

J (δ, X̂) ≤ u ≡
∫

Y
δi (Y) fi (Y)(C∗

p,i (Y) − u)dY ≤ 0, for i ∈ {0, . . . , T } . (9.66)

Hence, the feasibility problem equivalent to (9.22) is given by

P(α, β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minδ u

s.t.
∫

Y
δi (Y) fi (Y)(C∗

p,i (Y) − u)dY ≤ 0, ∀i ∈ {0, . . . , T }
T∑

j=1

T∑

i=0,i �= j

ε j

1−ε0

∫

Y
δi (Y) f j (Y)dY ≤ β

T∑

i=1

∫

Y
δi (Y) f0(Y)dY ≤ α

.

(9.67)

The above problem is feasible if P(α, β) ≤ u, where P(α, β) is the lowest value
of u for which the problem is feasible and all constraints are satisfied. Given an
interval [u0, u1] containing P(α, β), the detection rule δ and the estimation cost
P(α, β) are determined by a bi-section search between u0 and u1 iteratively, solving
the feasibility problem in each iteration. We define an auxiliary convex optimization
problem that allows us to solve the feasibility problem



232 S. Sihag and A. Tajer

R(α, β, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minδ η

s.t.
∫

Y
δi (Y) fi (Y)(C∗

p,i (Y) − u)dY ≤ η, ∀i ∈ {0, . . . , T }
T∑

j=1

T∑

i=0,i �= j

ε j

1−ε0

∫

Y
δi (Y) f j (Y)dY ≤ β + η

T∑

i=1

∫

Y
δi (Y) f0(Y)dY ≤ α + η

.

(9.68)

Algorithm 9.2 summarizes the steps for determining P(α, β).

Algorithm 9.2 Bi-section Search
Input: Initialize u0, u1
repeat

û ← (u0 + u1)/2;
Solve R(α, β, û);
if J (α, β, û) ≤ 0 then

u1 ← û;

else
u0 ← û;

until u1 − u0 ≤ ε, for ε sufficiently small;
Output: P(α, β) ← u1

Appendix 3

To solve the problem in (9.68), a Lagrangian function is constructed according to

Q(δ, η, �) �
(

1 −
T+2∑

i=0

�i

)

η

+
T∑

i=0

�i

∫

Y
δi (Y) fi (Y)(C∗

p,i (Y) − u)dY

+ �T+1

T∑

j=1

T∑

i=0,i �= j

ε j

1 − ε0

∫

Y
δi (Y) f j (Y)dY − �T+1β

+ �T+2

T∑

i=1

∫

Y
δi (Y) f0(Y)dY − �T+2α,
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where � �
[
�0, . . . , �T+2

]
are the non-negative Lagrangian multipliers selected to

satisfy the constraints in (9.22), such that

T+2∑

i=0

�i = 1. (9.69)

The Lagrangian dual function is given by

d(�) � min
δ,η

Q(δ, η, �)

= min
δ

(
T∑

i=0

∫

Y
δi (Y)AidY

)

− �T+1β − �T+2α, (9.70)

where

A0 � �0 f0(Y)[C∗
p,0(Y) − u] + �T+1

T∑

i=1

εi

1 − ε0
fi (Y), (9.71)

and for i ∈ {1, . . . , T }

Ai � �i fi (Y)[C∗
p,i (Y) − u] + �T+1

T∑

j=1, j �=i

ε j

1 − ε0
f j (Y) + �T+2 f0(Y). (9.72)

Therefore, the optimum detection rules that minimize d(�) are given by:

δi (Y) =
{

1, if i = i∗

0, if i �= i∗
, (9.73)

where i∗ = argmini∈{0,...,T } Ai . Hence, the proof is concluded.
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Chapter 10
Resilient Control of Nonlinear
Cyber-Physical Systems: Higher-Order
Sliding Mode Differentiation and Sparse
Recovery-Based Approaches

Shamila Nateghi, Yuri Shtessel, Christopher Edwards,
and Jean-Pierre Barbot

10.1 Introduction

Cyber-physical system security including information security, protection of CPS
from being attacked and detection in adversarial environments have been considered
in the literature (Pasqualetti et al. 2013; Jafarnia-Jahromi et al. 2012; Antsaklis 2014;
Nekouei et al. 2018; Cardenas et al. 2008). Cryptography and Randomization are the
two main approaches to protect a CPS against disclosure attacks: Cryptography is
an approach to prevent third parties or the public from reading private messages by
defining some protocols (Chen et al. 2016; Diffie andHellman 1976). Randomization
is a defensive strategy to confuse the potential attacker about deterministic rules and
information of the system (Farokhi et al. 2017).

However, another challenge is to ensure that the CPS can continue functioning
properly if a cyber-attack has happened. If the defense strategy just relies on detection,
then the system’s performance still degrades, and the threat of the same attack recur-
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ring is not diminished. In addition, in the interval between the onset of the attack and
detection, the system could experience significant damage (Jafarnia-Jahromi et al.
2012). A good example of such a scenario is the Stuxnet (Chen 2010). TheMaroochy
attack happened because of the lack of detection and resilience mechanisms as well
(Slay and Miller 2007). In RQ-170, the absence of resilience control caused the sys-
tem to be unable to defend itself against the spoofing attack (Hartmann and Steup
2013).

It is suggested in Dibaji et al. 2019 that information security mechanisms must
be complemented by specially designed resilient control systems until the system is
restored to normal operation. The focus of this chapter is on the reconstruction of
the cyber-attack as a step to provide resilient control for a CPS.

The control/estimation algorithms are proposed in the literature for recovering
CPS performance online if an attacker penetrates the information security mech-
anisms. A game-theoretic approach that provides resilience consists of trying to
minimize the damage that an attacker can apply to the system or maximize the price
of attacking a system. For example, a zero-sum stochastic differential game between
a defender and an attacker is used to find an optimal control design to provide sys-
tem security in Zhu and Başar (2011). Event-triggered control schemes instead of
time-triggered schemes, which are based on how frequent the attacks occur, are
an appropriate strategy to increase the resilience of CPS (Heemels et al. 2012).
Event-triggered control is especially used to mitigate the effect of a disruption attack
(Cetinkaya et al. 2016). Mean Subsequence Reduced as a resilient control approach
ignores suspicious values and computes the control input at every moment (LeBlanc
et al. 2013; Dibaji et al. 2017). In trust-based approaches, a function of trust value
between the nodes of the system is defined since some of the nodes of the systemmay
be untrustworthy (Ahmed et al. 2015). In Fawzi et al. (2014), authors found the num-
ber of attacks that can be tolerated so that the state of the system can still be exactly
recovered. They designed a secure local control loop to improve the resilience of the
system. In Jin et al. (2017), new adaptive control architectures that can foil malicious
sensors and actuator attacks are developed for linear CPS without reconstructing the
attacks, by means of feedback control only.

The mentioned approaches suffer some limitations including: I. It is assumed that
the maximum number of malicious sensors in the network is known and bounded.
Once the number of attacked sensors exceeds the upper bound, the proposed secure
estimation or resilient control schemes fail to work. II. Only specific types of mali-
cious actions acting on the cyber layer are considered. III. Only special structures of
the cyber-physical system are considered.

On the other hand, the Sliding Mode Control and Higher-Order Sliding Mode
Control (SMC/HOSM) and observation/differentiation techniques can handle sys-
tems of arbitrary relative degree perturbed by bounded attacks of arbitrary shape.
The Sliding Mode Observers/differentiators (SMO/D) are capable of estimating the
system states and reconstruct the bounded attacks asymptotically or in finite time
(Fridman et al. 2007; Utkin 1992; Shtessel et al. 2014; Fridman et al. 2008; Levant
2003; Nateghi and Shtessel 2018; Nateghi et al. 2020a, 2018a, b) while addressing
the outlined challenges.
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Detection and observation of a scalar attack by a SMO has been accomplished
for a linearized differential-algebraic model of an electric power network when
plant and sensor attacks do not occur simultaneously (Wu et al. 2018). An adap-
tive SMO is designed coupled with a parameter estimator and a robust differentia-
tor for detection and reconstruction of attacks in linear cyber-physical systems in
Huang et al. (2018) when state and sensor attacks do not happen simultaneously. In
Nateghi et al. (2020b, 2021), fixed-gain and adaptive-gain SMO are proposed for
the online reconstruction of sensor attacks. Especially, dynamic filters that address
the attack propagation dynamics are employed for attack reconstruction. A prob-
abilistic risk mitigation model for cyber-attacks against Phasor Measurement Unit
(PMU) networks is presented in Mousavian et al. (2014), where a risk mitigation
technique determines whether a certain PMU should be kept connected to the net-
work or removed while minimizing the maximum threat level for all connected
PMUs. In Taha et al. (2016), the sliding mode-based observation algorithm is used
to reconstruct the attacks asymptotically. This reconstruction is approximate only
since pseudo-inverse techniques are used. In the above mentioned studies, which use
a Sliding Mode approach for resilient control of CPSs, they all consider linear CPS
and have their specific limitations.

In this chapter, online cyber-attack reconstruction for nonlinear CPSs is investi-
gated. Two complement cases are considered: (I) When the number of sensors is less
than the number of potential sparse attacks. A sparse signal recovery (SR) algorithm
with a finite time convergence property (Yu et al. 2017) is used to reconstruct the
attacks and presented in Sect. 10.3. (II) when the number of sensors is equal or greater
than the number of potential attacks. A certain number of sensors are assumed to be
protected from cyber-attacks. A higher-order sliding mode observer/differentiator
(Fridman et al. 2008) is applied to estimate the states and reconstruct the attacks
provided in Sect. 10.4. The proposed algorithm ensures finite-time state estimation
of observable variables and asymptotic estimation of the unobservable variables for
the case when the system has asymptotically stable internal dynamics. In order to
maintain the CPS closed-loop dynamics to be the same as those prior to the attacks,
it is proposed to clean the corrupted measurements, as soon as the attacks are recon-
structed, thus preventing the attack propagation to the CPS through feedback control.
Actuator attacks are also cleaned from the reconstructed actuator attacks. The effec-
tiveness of the proposed algorithms in Sects. 10.3 and 10.4 to estimate the states and
reconstruct the attacks are tested on the attacked US WECC power network system.

10.2 Mathematical Modeling

Consider the following nonlinear CPS which is completely observable and asymp-
totically stable affected by attack

ẋ = f1(t) + B1(x)(u + du(t)), (10.1)
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where x ∈ Rn presents the state vector of CPS, f1(x) ∈ Rn is a smooth vector field,
y ∈ Rp denotes the sensormeasurement vector, and u ∈ Rq1 is the control signal. The
du ∈ Rq1 and dy ∈ Rq2 are the actuator and sensor attack, respectively. The vector
Cx ∈ Rp is the output smooth vector field, B1(x) ∈ Rn×q1 and D1 ∈ Rp×q2 denote
the attack/fault distribution matrices.

The output feedback control signal u is a function of sensor measurement y which
can be corrupted by the sensor attacks. This is

u(y) = γ (C(x) + dy) = γ (x + D1dy). (10.2)

Replacing control signal u in CPS (10.1) to find the closed-loop CPS model gives

ẋ = f1(t) + B1(x)(γ (x, dy), du(t)) = f1(t) + B1(x)(γ (x, dy) + B1(x)du(t)

y = C(x) + D1dy(t).
(10.3)

Assume that u can be written as

γ (x, dy) = γ1(x) + γ2(dy), (10.4)

then, the closed-loop CPS (10.3) is given as

ẋ = f1(t) + B1(x)(γ (x, dy), du(t))

= f1(t) + B1(x)γ1(x) + B1(x)γ2(dy) + B1(x)du(t)

y = C(x) + D1dy(t).

(10.5)

Therefore, the CPS (10.1) after applying control signal u is presented as

ẋ = f (t) + B1(x)dx (t)

y = C(x) + D1dy(t),
(10.6)

where
f (x) = f1(x) + B1(x)γ1(x)

dx (t) = γ2(dy) + du(t),
(10.7)

where dx (t) represents the plant/state attack.
Define the attack signal d(t) ∈ Rq where q = q1 + q2 as

d =
[
dx
dy

]
, (10.8)
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where dx ∈ Rq1 and dy ∈ Rq2 , and

B(x) = [
B1(x) 01

]
D = [

02 D1
]
,

(10.9)

where B1(x) ∈ Rn×q1 , D1 ∈ Rp×(q−q1), 01 ∈ Rn×(q−q1), 02 ∈ Rp×q1 . Then, the
closed-loop CPS (10.6) is rewritten as

ẋ = f (x) + B(x)d(t)

y = C(x) + Dd(t).
(10.10)

10.2.1 Problem Statement

The problem is two-fold
1. Develop an observation algorithm that reconstructs online the state x ∈ Rn and
attack signal d(t) ∈ Rq in CPS (10.10) so that

x̂(t) → x(t)

d̂(t) → d(t).
(10.11)

2. Develop an observation algorithm that reconstructs online the state x ∈ Rn , the
plant attack signal dx (t) ∈ Rq1 , and sensor attack signal dy(t) ∈ Rq2 in CPS (10.6)
as shown in the table below so that

x̂(t) → x(t)

d̂x (t) → dx (t)

d̂y(t) → dy(t)

(10.12)

as time increases.

Attack plan du (t) �= 0 dy (t) �= 0 Access to all sensors Need to know the system model

Stealth attack
√

Deception attack
√

Replay attack
√ √ √

Covert attack
√ √ √

False data injection attack
√ √

Remark 10.1 As soon as the sensor attack dy(t) and the state attack dx (t) are esti-
mated/reconstructed the measurement y = C(x) + D1dy(t) could be cleaned as

yclean = y − D1d̂y(t) = C(x̂) + D1(dy(t) − d̂y(t)) → yclean = C(x̂). (10.13)
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Next, the clean measurement yclean can be used in the feedback control of CPS. This
allows blocking the propagation of the sensor attack to the dynamics of CPS through
the feedback control. The modified actuator commands are also cleaned from esti-
mated actuator attacks, i.e., the actuator attack du(t) can be estimated/reconstructed
from (10.7) as d̂u(t) = d̂y(t) − γ2(d̂y), and the system (10.5) dynamics converge to

ẋ = f1(x) + B1(x)(u + du(t) − d̂u(t)) → ẋ = f1(t) + B1(x)u (10.14)

as time increases.
In this chapter, attack reconstruction is divided to two cases: when the number of

potential attacks is (I) greater or equal, and (II) less than the number of sensors. In
the following two sections, the mentioned cases are investigated.

10.3 Preliminary: Sparse Recovering Algorithm

The problem of recovering an unknown input signal from measurements is well
known, as a left invertibility problem, as seen in Sain and Massey (1969), Barbot
et al. (2009), but this problem was only treated in the case where the number of mea-
surements is equal or greater than the number of unknown inputs. The left invertibility
problem in the case of fewer measurements than unknown inputs has no solution or
more exactly has an infinity of solutions.

Note that the input signals can be considered sparse or compressive for trans-
mission. The compressive sensing theory could be a proper candidate to deal with
these constraints. Sparse recovery algorithm is used to address this problem. The
problem is to find the exact recovery under sparse assumption denoted for the sake
of simplicity as “Sparse Recovery”, i.e., finding a concise representation of a signal
which is described as

κ = Θ(s + ε), (10.15)

where s ∈ RN are the unknown inputs with nomore than j non-zero entries, κ ∈ RM

are the measurements, ε is a measurement noise, andΘ ∈ RM × N is a matrix where
M < N .

Assumption 10.1 The matrix Θ satisfies the Restricted Isometry Property (RIP)
condition of j-order with constant ζ j ∈ (0, 1) (ζ j is as small as possible for compu-
tational reasons).

Note that the condition of RIP in compressive sensing is an essential requirement
that ensures the recovery of sparse signal vectors. RIP property provides the necessary
and sufficient requirements for the compressive sensing matrix; however, it is not
robust enough for consideration under the noise.
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Assumption 10.1 implies that for any j sparse of signal s, i.e., vectors with at
most j non-zero elements, the following condition is verified

(1 − ζs)‖s‖22 ≤ ‖Θs‖22 ≤ (1 + ζs)‖s‖22. (10.16)

Consider Γ as the index set of non-zero elements of Θ , then (10.16) is equivalent to
Yu et al. (2017), Candes and Tao (2005)

1 − ζs ≤ eig(ΘT
Γ ΘΓ ) ≤ 1 + ζs, (10.17)

where ΘΓ is the sub-matrix of Θ with active nodes. The problem of SR is often cast
as an optimization problem that minimizes a cost function constructed by leveraging
the observation error term and the sparsity inducing term (Yu et al. 2017), i.e.,

s∗ = arg min
s∈RN

1

2
‖κ − Θs‖21 + λ	(s), (10.18)

where the sparsity term 	(s) can be replaced by 	(s) = ‖s‖1 ≡ ∑
i |si | as long as

the RIP conditions hold. The λ > 0 in (10.18) is the balancing parameter and s∗ is
the critical point, i.e., the solution of (10.15).

For sparse vectors s with j-sparsity, where j must be equal or smaller than M−1
2 ,

solution to the SR problem is unique and coincides with the critical point of (10.15)
when the RIP condition for Θ with order 2 j is verified (Yu et al. 2017). Under the
sparse Assumption 10.1 of s and fulfilling j-RIP condition of matrix, the estimate of
the sparse signal s as proposed in Yu et al. (2017) is

μν̇(t) = −
ν(t) + (ΘTΘ − IN×N )a(t) − ΘT κ�β

ŝ = a(t),
(10.19)

where ν ∈ RN is the state vector, ŝ(t) represents the estimate of the sparse signal s
of (10.15), andμ > 0 is a time-constant determined by the physical properties of the
implementing system. Note that 
.� = |.|βsign(.) and a(t) = Hλ(ν), where Hλ(.) is
a continuous soft thresholding function and is defined as

Hλ(ν) = max(|ν| − λ, 0)sgn(ν), (10.20)

where λ > 0 is chosen with respect to the noise and the minimum absolute value of
the non-zero terms.

Under Assumption 10.1 the state ν of (10.19) converges in finite time to its equi-
librium point ν∗, and ŝ(t) in (10.19) converges in finite time to s∗ of (10.18).
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10.4 Attack Reconstruction When the Number of Potential
Attacks is Greater Than the Number of Sensors

The nonlinear CPS in (10.10) is considered when the number of potential attacks is
greater than the number of sensors, i.e.,

ẋ = f (x) + B(x)d(t)

y = C(x) + Dd(t) where q > p.
(10.21)

Assumption 10.2 Itisassumedthattheattackvectorissparse,meaningthatnumerous
attacks are possible, but the attacks are not coordinated, and only fewnon-zero attacks
happen at the same time, i.e., the index set of non-zero attacks is presented as

ΦΓ = {k1, k2, . . . , k j }, j < q where

2 j + 1 ≤ p.
(10.22)

The objective is to reconstruct online the time-varying attack sparse vector based on
the sensor measurement in CPS (10.21).

10.4.1 System Transformation

Feeding the sensor measurements under attack, y, of the CPS (10.21) to the input of
the low-pass filter that facilitates filtering out the possible measurement noise gives
Nateghi et al. (2018b)

ż = 1

τ
(−z + C(x) + D(x)d(t)), (10.23)

whose output z ∈ Rp, is available. Then, the CPS in (10.21) is rewritten as

ξ̇ = η(ξ) + Ωd(t)

ψ = Cξ,
(10.24)

where ψ ∈ Rp, and

ξ =
[
z
x

]
(p+n)×1

, η(ξ) =
[− 1

τ I 0
0 0

] [
z
x

]
+

[ 1
τ C(x)
f (x)

]

Ω =
[ 1

τ B(x)
B(x)

]
= [

Ω1, Ω2, . . . , Ωq
]
(p+n)×q

C = [
C1,C2, . . . ,Cp+n

] = [
Ip×p 0p×n

]
.

(10.25)



10 Resilient Control of Nonlinear Cyber-Physical Systems … 245

Assumption 10.3 The transformed CPS (10.25) is assumed to have a vector relative
degree r = {r1, r2, . . . , rp}, i.e.,

ΓΩ j Γ
λ
η ψi (ξ) = 0 ∀ j = 1, . . . , q ∀λ < ri − 1 ∀i = 1, . . . , p

ΓΩ j Γ
ri−1
η ψi (ξ) �= 0 f or at least one 1 ≤ j ≤ q.

(10.26)

Assumption 10.4 The distribution Γ = span{b1, b2, . . . , bq} is involutive, where
bi is the i th column of matrix B in (10.21). This means that no new direction is
generated by the Lie bracket of the distribution vector fields. This ensures that the
zero dynamics (when exist) can be rewritten independently of the unknown input.

Assumption 10.5 Here it is assumed that there are no zero dynamics in system
(10.24), i.e., total relative degree equal to the system’s (10.10) order: n = r1 + r2 +
· · · + rp.
Assuming that the Assumptions (10.4) and (10.5) are satisfied, then input–output
dynamics of system (10.24) are presented as Fridman et al. (2008)

Υ̇i =

⎡
⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...

0 0 0 0 0

⎤
⎥⎥⎥⎦Υi +

⎡
⎢⎢⎢⎣

0
0
...

Lri
f ψi (ξ)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
0
...∑q

j=1 LΩ j L
ri−1
f ψi (ξ)di

⎤
⎥⎥⎥⎦ , (10.27)

where

Υi =

⎡
⎢⎢⎢⎣

Υ i
1 (ξ)

Υ i
2 (ξ)
...

Υ i
ri (ξ)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ψi (ξ)

Lψi (ξ)
...

Lri−1
f ψi (ξ)

⎤
⎥⎥⎥⎦ f or i = 1, . . . , p, (10.28)

where ψi (ξ) is the i th entry of vector ψ(ξ). Each of system output ψi at its own
relative degree ri , satisfies following equation (Fridman et al. 2008)

Υ̇ i
ri (ξ) = Lri

f ψi (ξ) +
α∑
j=1

LΩ j L
ri−1
f ψi di i = 1, . . . , p. (10.29)

Therefore, system (10.24) can be rewritten as the following algebraic equation

Z p = F(ξ)d(t), (10.30)

where

Z p =
⎡
⎢⎣

Υ̇ 1
r1
...

Υ̇
p
rp

⎤
⎥⎦ −

⎡
⎢⎣
Lr1

f ψ1(ξ)

...

L
rp
f ψp(ξ)

⎤
⎥⎦ , (10.31)



246 S. Nateghi et al.

where Z p ∈ Rp, F(ξ) ∈ Rp×q , and

F(ξ) =

⎡
⎢⎢⎢⎢⎣

LΩ1L
r1−1
f ψ1 LΩ2L

r1−1
f ψ1 . . . LΩq L

r1−1
f ψ1

LΩ1L
r2−1
f ψ2 LΩ2L

r2−1
f ψ2 . . . LΩq L

r2−1
f ψ2

...
...

LΩ1L
rP−1
f ψP LΩ2L

rp−1
f ψp . . . LΩq L

rP−1
f ψp

⎤
⎥⎥⎥⎥⎦ . (10.32)

Remark 10.2 The derivative Υ̇ 1
r1 , . . . , Υ̇

p
rp are computed exactly in finite time using

higher-order sliding mode differentiators (Fridman et al. 2008; Levant 2003). The
details about the HOSMC differentiation algorithms and their parametric tuning can
be found in Fridman et al. (2008), Levant (2003).

10.4.2 Attack Reconstruction

Assumption 10.6 The matrix F(ξ) in (10.30)–(10.32) is assumed to satisfy the RIP
condition as in Assumption 10.1.

The attack in (10.30) is reconstructed using the SR Algorithm as

μν̇(t) = −
ν(t) + (F(ξ)T F(ξ) − IN×N )a(t) − F(ξ)T Z p�β

d̂ = a(t),
(10.33)

where d̂(t) represents the estimate of the sparse signal d(t) of (10.30).
Under Assumption 10.6, the d̂(t) in (10.33) converges in finite time to d(t) of

(10.30) (Yu et al. 2017).

10.5 Attack Reconstruction When the Number of Sensors is
Greater Than the Number of Potential Sensor Attacks

Consider the nonlinear CPS model under the state and sensor attack in (10.10) when
the number of sensors is greater than the number of sensor attacks, that is

ẋ = f (x) + B1(x)dx (t)

y = C(x) + D1dy(t) where p > q − q1,
(10.34)

where y ∈ Rp, dx (t) ∈ Rq1 and dy(t) ∈ Rq−q1 . Since there are more sensors than
potential sensor attacks in CPS (10.34), there exists a nonsingular output transfor-
mation M ∈ RR×R so that
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ȳ = M−1y = M−1C(x) + M−1D1dy, (10.35)

where the matrix M is selected to satisfy the condition

M−1D =
[
03
D2

]
, (10.36)

where 03 ∈ Rp1×(q−q1), D2 ∈ R(p−p1)×(q−q1), and p − p1 ≤ q − q1. The transformed
sensor measurement vector in (10.35) is partitioned as

ȳ =
[
ȳ1
ȳ2

]
, (10.37)

where ȳ1 ∈ Rp
1 and ȳ2 ∈ Rp−p1 .

Next, CPS (10.34) is presented in a partitioned format in accordance with (10.37)
as

ẋ = f (x) + B1(x)dx (t)

ȳ1 = C1(x)

ȳ2 = C2(x) + D2dy(t).

(10.38)

C1 ∈ Rp1 and C2 ∈ Rp−p1 .

Remark 10.3 The virtual measurement ȳ1 in (10.38) is not affected by the attack
corruption signal and can be classified as a protected measurement.

Assumption 10.7 The number of protected measurements is equal or greater than
the number of plant attacks, i.e.,

q1 ≤ p1. (10.39)

Remark 10.4 Equation (10.39) gives that the number of unprotected measurements
is equal or less than the number of attacks that may corrupt the measurements, i.e.,

p − p1 ≤ q − q1. (10.40)

The considered problem is: given the nonlinear CPS dynamics in Eq. (10.38) with
virtual protected ȳ1 ∈ Rp

1 and ȳ2 ∈ Rp−p1 unprotected sensors, and attack signals
dx ∈ Rq1 on the plant and dy ∈ Rq−q1 on the sensors (sensor corruption signals),
reconstruct the attack signals. The attack reconstruction is to be accomplished in two
steps:

Step 1:The plant state x(t) and the attack dx (t) vectors are estimated by applying the
HOSM observer, described in the next section, with respect to the protected output
ȳ1 only, so that

x̂(t) → x(t), d̂x (t) → dx (t) (10.41)



248 S. Nateghi et al.

in finite time, where x̂(t) and d̂x (t) are the estimation of CPS states and the recon-
struction of plant attack, respectively.

Step 2: Given the state x̂(t), which is estimated online, the unprotected sensor
attack dy is then estimated by applying the SR algorithm described in Sect. 10.3.

10.5.1 State Attack Reconstruction

Consider the part of CPS (10.38) associated with the virtual measurements protected
from the attacks

ẋ = f (x) + B1(x)dx (t)

ȳ1 = C1(x).
(10.42)

Note that only q1 out of p1 virtual protectedmeasurements are employed, and that the
other p1 − q1 virtual protected measurements can be used at the second step of the
proposed algorithm. The aforementioned modifications are addressed by defining ȳ1
and B1 in (10.42) as ȳ1 = [ȳ11, . . . , ȳ1q1 ]T , B1 = [b1, b2, . . . , bq1 ] ∈ Rn×q1 , where
bi ∈ Rn,∀i = 1, 2, . . . , q1 are smooth vector fields defined on an openΩ ⊂ Rn . The
problem is to estimate the states of nonlinear CPS (10.42) with unknown input, and
reconstruct the state attack vector dx (t).

Assume that the CPS in (10.42) has the vector relative degree r = {r1, r2, . . . , rq1}
as it is defined in Assumption 10.3.

Assumption 10.8 The matrix

L(x) =

⎡
⎢⎢⎢⎢⎣

Lb1(L
r1−1
f ȳ1) Lb2(L

r1−1
f ȳ1) . . . Lbq1

(Lr1−1
f ȳ1)

Lb1(L
r2−1
f ȳ2) Lb2(L

r2−1
f ȳ2) . . . Lbq1

(Lr2−1
f ȳ2)

...
...

Lb1(L
rq1−1
f ȳq1) Lb2(L

rq1−1
f ȳq1) . . . Lbq1

(L
rq1−1
f ȳq1)

⎤
⎥⎥⎥⎥⎦ (10.43)

is full rank.

If the CPS in (10.42) satisfies Assumptions (10.4) and (10.8), then the CPS given by
Eq. (41) with the involutive distribution Γ = span{b1, b2, . . . , bq1} and total relative
degree r = ∑q1

i=1 ri ≤ n can be rewritten as Fridman et al. (2008)

δ̇i =

⎡
⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...

0 0 0 0 0

⎤
⎥⎥⎥⎦ δi +

⎡
⎢⎢⎢⎣

0
0
...

Lri
f ȳ1i (x)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
0
...∑m

j=1 Lbj L
ri−1
f ȳ1i (x)dx (t)

⎤
⎥⎥⎥⎦

∀i = 1, . . . , q1
γ̇ = g(δ, γ ),

(10.44)
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where

δ =

⎡
⎢⎢⎢⎣

δ1
δ2
...

δq1

⎤
⎥⎥⎥⎦ , δi =

⎡
⎢⎢⎢⎣

δi1
δi2
...

δir1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ηi1(x)
ηi2(x)

...

ηir1 (x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ȳ1i (x)
L f ȳ1i (x)

...

Lri−1
f ȳ1i (x)

⎤
⎥⎥⎥⎦ ∈ Rri ∀i = 1, . . . , q1

γ =

⎡
⎢⎢⎢⎣

γ1
γ2
...

γn−r

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ηr+1(x)
ηr+2(x)

...

ηn(x)

⎤
⎥⎥⎥⎦ .

(10.45)

Assumption 10.9 The norm-bounded solution of the internal dynamics (10.44) γ̇ =
g(δ, γ ) is assumed to be locally asymptotically stable (Fridman et al. 2008) as it is
mentioned in (A3).
The variables ηr+1(x), ηr+2(x), . . . , ηn(x) are defined to satisfy

Lbj ηi (x) = 0 ∀i = r + 1, . . . , n, ∀ j = 1, . . . , q1, (10.46)

if Assumption 10.4 is satisfied, then it is always possible to find n − r functions
ηr+1(x), ηr+2(x), . . . , ηn(x) such that

Ψ (x) = col{η11(x), . . . , η1r1(x), ηq11(x), . . . , ηq1rq1 (x), ηr+1(x), . . . , ηn(x)} ∈ Rn.

(10.47)

is a local diffeomorphism in a neighborhood of any point x ∈ Ω̄ ⊂ Ω ⊂ Rn , which
means that

x = Ψ −1(x)(δ, γ ). (10.48)

To estimate the derivatives δi j ,∀i = 1, . . . , q1,∀ j = 1, . . . , ri of the outputs yi in
finite time, higher-order sliding mode differentiators (Levant 2003) are used

żi0 = νi
0, νi

0 = −λi
0|zi0 − yi (t)|(ri/(ri+1))sign(zi0 − yi (t)) + zi1

żi1 = νi
1, νi

1 = −λi
1|zi1 − νi

0|((ri−1)/ri )sign(zi1 − νi
0) + zi2

...

żiri−1 = νi
ri−1, νi

ri−1 = −λi
ri−1|ziri−1 − νi

ri−2|(1/2)sign(ziri−1 − νi
ri−2) + ziri

żiri = −λi
ri sign(ziri − νi

ri−1),

(10.49)
for i = 1, . . . , q1.
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By construction

δ̂11 = η̂11(x) = z10, . . . , δ̂1r1 = η̂1r1(x) = z1r1−1,
ˆ̇δ11 = ˆ̇η1r1(x) = z1r1

...

δ̂
q1
1 = η̂

q1
1 = zq10 , . . . , δ̂

q1
rq1

= η̂
q1
rq1

= zq1rq1−1,
ˆ̇δq1rq1 = ˆ̇ηq1rq1 = z1rq1

.

(10.50)

Therefore, the following exact estimates are available in finite time

δ̂i =

⎡
⎢⎢⎢⎢⎣

δ̂i1
δ̂i2
...

δ̂ir1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

η̂i1(x̂)
η̂i2(x̂)

...

η̂ir1(x̂)

⎤
⎥⎥⎥⎦ ∈ Rri ∀i = 1, . . . , q1 δ̂ =

⎡
⎢⎢⎢⎢⎣

δ̂1

δ̂2

...

δ̂q1

⎤
⎥⎥⎥⎥⎦ ∈ Rrt . (10.51)

Integrating the second equation in (10.44) and replacing δ by δ̂, the internal dynamics
is given as ˙̂γ = g(γ̂ , δ̂), (10.52)

and with some initial condition from the stability domain of the internal dynamics,
a asymptotic estimate γ̂ can be obtained locally as

γ̂ =

⎡
⎢⎢⎢⎣

γ̂1
γ̂2
...

γ̂n−r

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

η̂r+1(x)
η̂r+2(x)

...

η̂n(x)

⎤
⎥⎥⎥⎦ . (10.53)

Therefore, the asymptotic estimate for the mapping (10.49) is identified as

Ψ (x̂) = col{η̂11(x̂), . . . , η1r1(x̂), . . . , ηq1rq1 (x̂), η̂r+1(x̂), η̂n(x̂)}. (10.54)

The asymptotic estimate x̂ of the state vector x of CPS (10.42) can be easily identified
via (10.51) and (10.53) as

x̂ = Ψ −1(δ̂, γ̂ ). (10.55)

An asymptotic estimate d̂x (t) of the cyber state attack dx (t) in (10.42) can be iden-
tified as Nateghi et al. (2018a)

d̂x (t) = L−1(Ψ −1(δ̂, γ̂ ))

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

ˆ̇δ1r1ˆ̇δ2r2
...

ˆ̇δqrq

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

Lr1
f y1(Ψ

−1(δ̂, γ̂ ))

Lr2
f y2(Ψ

−1(δ̂, γ̂ ))

...

L
rq
f yq(Ψ

−1(δ̂, γ̂ ))

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ , (10.56)

where L−1(Ψ −1(δ̂, γ̂ )) = ∑q
j=1 Lbj L

ri−1
f ȳ1i (x).
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10.5.2 Sensor Attacks Reconstruction

After the state vector x(t) and the plant attack dx (t) of CPS (10.34) are reconstructed
in (10.55) and (10.56), then the sensor attacks dy(t) can be reconstructed as the
following discussion: Consider the attacked part of system (10.38) as

ẋ = f (x) + B1(x)dx (t)

ȳ2 = C2(x) + D2dy(t),
(10.57)

where y2 ∈ Rp−q1 , D2 ∈ R(p−q1)×(q−q1), dy(t) ∈ Rq−q1 .
Two cases that cover all possible situations are considered to reconstruct the sensor

attack dy(t).
Case 1: If the number of sensor attacks and the number of corrupted sensors is the
same, i.e., p − q1 = q − q1, and D2 is invertible, then using x̂ estimated by the SMO
in (10.55), there is a unique solution for estimation of sensor attack as Nateghi et al.
(2018a)

d̂y(t) = D−1
2 (y2 − C2(x̂)). (10.58)

Case 2: If the number of sensor attacks is greater than the number of corrupted
sensors, i.e., p − q1 < q − q1 and the following assumption is verified for sensor
attack dy .

Assumption 10.10 It is assumed that the sensor attack vector dy ∈ Rq−q1 is sparse,
meaning that there is only a small number of non-zero sensor attacks at any point in
time.

Assumption 10.11 Matrix D2 satisfies the RIP condition in Assumption 10.1.

Under Assumptions (10.10) and (10.11), then the attack vector d(t) in (10.57) is
reconstructed using the SR algorithm presented in Sect. 10.3 as

d̂y(t) = a(t), (10.59)

where v ∈ Rq is the state vector, d̂y(t) represents the estimate of the sparse signal
dy(t), and μ > 0 is a time-constant determined by the physical properties of the
implementing system. The sensor attack estimation in (10.59) converges in finite
time to sensor attack dy(t) in CPS (10.34) (Yu et al. 2017).
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10.6 Case Study: Cyber Attack Reconstruction in the US
Western Electricity Coordinating Council Power
System

In a real-world electrical power network, only small groups of generator rotor angles
and rates are directly measured, and typical attacks aim at injecting disturbance
signals that mainly affect the sensor-less generators (Wu et al. 2018). The CPS that
motivates the results presented in this section is theUSWECCpower system (Scholtz
2004; Pasqualetti et al. 2015) under attack with three generators and six buses. The
proposed approaches in Sects. 10.4 and 10.5 are applied to the linearizedmodel of the
USWECC, to estimate the states and reconstruct the attacks affected the considered
WECC.

10.6.1 Mathematical Model of Electrical Power Network

The descriptor (Differential Algebraic Equations (DAE)) swing mathematical model
is adopted to describe the electromechanical behavior of the considered electrical
power networks (Taha et al. 2016; Yu et al. 2017). The DAE swing mathematical
model for a power network stabilized by a linear output feedback controller is given
by Yu et al. (2017):

⎡
⎣I 0 0
0 Mg 0
0 0 0

⎤
⎦

⎡
⎣ δ̇

ω̇

θ̇

⎤
⎦ = −

⎡
⎣ 0 −I 0
Lθ
g,g Eg Lθ

g,l

Lθ
l,g 0 Lθ

l,l

⎤
⎦

⎡
⎣δ

ω

θ

⎤
⎦ +

⎡
⎣ 0
Bω

Bθ

⎤
⎦ d(t) +

⎡
⎣ 0
Pω

Pθ

⎤
⎦

y = Cx + Dd(t),

(10.60)

where x = [
δT ωT θT

]
ᵀT is the vector of states of the system, δ ∈ Ra , ω ∈ Ra

and θ ∈ Rb are vectors of the phase angles of the source measured in rad, generator
speed deviations from synchronous measured in rad/s, and the bus angles measured
in rad, respectively. The index a is the number of generators, and b is the number of
buses in the electrical system. The vector y ∈ Rp is the sensor measurement vector,
the vector d ∈ Rq is the attack vector, and B ∈ R(2a+b)×q , D ∈ Rp×q are the attack
distribution matrices; Pω, Pθ are known changes in the mechanical input power to
the generators or real power demand at the loads. The matrices Eg , Mg ∈ Ra×a are
diagonal matrices whose non-zero entries consist of the damping coefficients and the
normalized inertias of the generators, respectively. Finally, the matrices Lθ

g,g , L
θ
g,l ,

Lθ
l,g Lθ

l,l form the following symmetric susceptance matrix

Lθ =
[
Lθ
g,g Lθ

g,l

Lθ
l,g Lθ

l,l

]
(10.61)
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that is the Laplacian associated with the susceptance-weighted graph.

Assumption 10.12 Thematrix Lθ
l,l is nonsingular (such an assumption usually holds

in practical electric power systems).

Note that the following terms that appear in the electric power network model (59)

⎡
⎣ 0
Bω

Bθ

⎤
⎦ d(t) +

⎡
⎣ 0
Pω

Pθ

⎤
⎦ (10.62)

are due to the output feedback control that processes the output corrupted by the
attack signal.

10.6.2 Transformation of DAE to ODE

Assuming (A10) holds, then the variable θ can be expressed as

θ = (Rθ
l,l)

−1(−Rθ
l,gδ + Pθ + Bθd) (10.63)

substituting (10.63) into (10.60) gives

[
δ̇

ω̇

]
=

[
φδ(δ, ω)

φω(δ, ω)

]
+

[
0
Pθω

]
+

[
0
Bθω

]
d(t)

y = C

[
δ

ω

]
+ Dd(t),

(10.64)

where
[
φδ(δ, ω)

φω(δ, ω)

]
=

[
0 Ip×p

M−1
g (−Rθ

g,g + Rθ
g,l(R

θ
l,l)

−1Rθ
l,g) −M−1

g Eg

] [
δ

ω

]

Pθω = M−1
g (Pω − Rθ

g,l(R
θ
l,l)

−1Pθ ), Bθω = M−1
g (Bω − Rθ

g,l(R
θ
l,l)

−1Bθ ).

(10.65)

10.6.3 Parameterization of Mathematical Model of Western
Electricity Coordinating Council Power System

The electrical power network considered here is a classical nine-bus configuration
adopted from Scholtz (2004), Pasqualetti et al. (2015). It consists of 3 generators
{g1, g2, g3} and 6 load buses {b1, . . . , b6}. Therefore, we have ω = [

ω1 ω2 ω3
]
ᵀT ∈

R3 , δ = [
δ1 δ2 δ3

]
ᵀT ∈ R3, and θ ∈ R6.

The matrices Eg, Mg ∈ Ra×a are given as
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Mg =
⎡
⎣0.125 0 0

0 0.034 0
0 0 0.016

⎤
⎦ , Eg =

⎡
⎣0.125 0 0

0 0.068 0
0 0 0.048

⎤
⎦ . (10.66)

The symmetric susceptance matrix Lθ including Lθ
g,g ∈ R3×3, Lθ

g,l ∈ R3×6, Lθ
l,g ∈

R6×3, Lθ
l,l ∈ R6×6 is equal to

Lθ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.058 0 0 −0.058 0 0 0 0 0
0 0.063 0 0 −0.063 0 0 0 0
0 0 0.059 0 0 0.059 0 0 0

−0.058 0 0 0.0265 0 0 −0.085 −0.092 0
0 −0.063 0 0 0.296 0 −0.161 0 −0.072
0 0 −0.059 0 0 0.330 0 −0.170 −0.101
0 0 0 −0.085 −0.161 0 0.246 0 0
0 0 0 −0.092 0 −0.170 0 0.262 0
0 0 0 0 −0.072 −0.101 0 0 0.173

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10.67)
The inputs Pω and Pθ are defined as

Pω = [
0.716 1.62 0.85

]
ᵀT , Pθ = [

0 −1.25 0.94 0 −1 0
]
ᵀT . (10.68)

10.6.4 Reconstruction of Attacks via Sparse Recovery
Algorithm: The Number of Potential Attacks
is Greater Than the Number of Sensors

Consider theWECC power system (10.60) under attack signal d = [
dT
x dT

y

]T ∈ R18

where dx ∈ R12, and dy ∈ R6 are the attacks of the plant and sensors, respectively.
The attacks dx ,dy are further decoupled as follows:

d1 =
⎡
⎣dδ

x(3×1)

dω
x(3×1)

dθ
x(6×1)

⎤
⎦ , d2 =

[
dδ
y(3×1)

dω
y(3×1)

]
, (10.69)

where dδ
x , d

ω
x , dθ

x are attacks on δ, ω, θ , and dδ
y, d

ω
y are attacks on measurements of

δ and ω, respectively. It is considered that
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Bδ ∈ R3×18 = [
I3×3 03×15

]
Bω ∈ R3×18 = [

03×3 I3×3 03×12
]

Bθ ∈ R6×18 = [
06×6 I6×6 06×6

]
Dδ ∈ R3×18 = [

03×12 I3×3 03×3
]

Dω ∈ R3×18 = [
03×15 I3×3

]
.

(10.70)

The corrupted sensor measurements y =
[
δ

ω

]
∈ R6 are fed to the low-pass filter

(10.23) and the new variable ξ is defined as

ξ =
[
z
y

]
∈ R12, (10.71)

where z =
[
z13×1

z23×1

]
∈ R6 is the output of LPF.

Then, the WECC (10.60) with the LPF (10.23)–(10.25) is presented as

ξ̇ =

⎡
⎢⎢⎢⎢⎢⎣

−1

τ
0

1

τ
0

0
−1

τ
0

1

τ
0 0 0 1
0 0 M−1

g (−Pθ
g,g + Pθ

g,l(R
θ
l,l)

−1Rθ
l,g) −M−1

g Eg

⎤
⎥⎥⎥⎥⎥⎦

× ξ +

⎡
⎢⎢⎢⎢⎢⎣

1

τ
Dδ

1

τ
Dω

Bδ

Bδω

⎤
⎥⎥⎥⎥⎥⎦
d+

⎡
⎢⎢⎣

0
0
0

−M−1
g Pθ

g,l + Pθ−1
l,l Pθ + M−1

g Pω)

⎤
⎥⎥⎦

ψ = [
I6,6 06,6

]
ξ.

(10.72)
Considering ψ = [

ψ1 ψ2
]T

where ψ1(3×1) = z1(3×1) , ψ2(3×1) = z2(3×1) , then

ż1 = 1

τ
(−z1 + δ + dδ

2), ż2 = 1

τ
(−z2 + ω + dω

2 ). (10.73)

To verify if the (10.73) satisfies the RIP condition in Assumption 10.1, (10.17), the
Eq. (10.73) is rewritten in a format of (10.15) as Nateghi et al. (2018b)

⎡
⎢⎣ ż1 + 1

τ
z1 − 1

τ
δ

ż2 + 1

τ
z2 − 1

τ
ω

⎤
⎥⎦ =

⎡
⎢⎣03×3 03×3 03×6 (

1

τ
)I3×3 03×3

03×3 03×3 03×6 03×3 (
1

τ
)I3×3

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

dδ
1

dω
1
dθ
1
dδ
2

dω
2

⎤
⎥⎥⎥⎥⎦ . (10.74)
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Apparently, F(ξ) in (10.74) doesn’t satisfy the RIP condition (10.17), therefore,
another differentiation of ż1, ż2 is required:

z̈1 = 1

τ
(−ż1 + δ̇ + ḋδ

2), z̈2 = 1

τ
(−ż2 + ω̇ + ḋω

2 ). (10.75)

Taking into account the output filter dynamics (10.23), and bearing in mind that

δ̇ = ω + Bδd = (τ ż2 + z2 − dω
2 ) + Bδd (10.76)

and

ω̇ = φ21δ + φ22ω + Pθω + Bθωd(t)

= φ21(τ ż1 + z1 − dδ
2) + φ22(τ ż2 + z2 − dω

2 ) + Pθω + Bθωd(t),
(10.77)

where Bθωd(t) = M−1
g dω

g,l − M−1
g pθ

g,l(p
θ
l,l)

−1
dθ
1

then (10.75) is rewritten as
Z̃ = F̃ d̃ (10.78)

where

Z̃m =
⎡
⎢⎣ z̈1 + 1

τ
ż1 − ż2 − 1

τ
z2

z̈2 + 1

τ
ż2 − φ21 ż1 − 1

τ
φ21z1 − φ22 ż2 − 1

τ
φ22z2 − 1

τ
Pθω

⎤
⎥⎦ (10.79)

F̃ =

⎡
⎢⎢⎣
1

τ
0 0 0 −1

τ

1

τ
0

0
M−1

g

τ

M−1
g Pθ

g,l(P
θ
l,l)

−1

τ

−φ21

τ

−φ22

τ
0

1

τ

⎤
⎥⎥⎦ (10.80)

d̃24×1 =
[
(dδ

1)
T

(dω
1 )T (dθ

1 )
T

(dδ
2)

T
(dω

2 )T (ḋδ
2)

T
(ḋω

2 )
T
]T

. (10.81)

Now, F̃ in (10.80) satisfies the RIP condition (10.17), therefore, the SR algorithm
can be applied to (10.78).

Remark 10.5 The derivatives z̈1, z̈2, ż1 and ż2 that appear in the entries of the virtual
measurement vector Z̃m are obtained using HOSM differentiators (Fridman et al.
2008).

Assumption 10.13 The sensor attack signals dδ
2 and d

ω
2 are assumed to be slowwith

respect to system (10.17) dynamics. In other words, it is assumed ḋδ
s ≈ 0 and dω

s ≈ 0
(Nateghi et al. 2018b).

Assumption 10.14 The attacks are assumed to be not coordinated, and only two out
of possible 18 attacks of following attack signal
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d18×1 =
[
(dδ

1)
T

(dω
1 )T (dθ

1 )
T

(dδ
2)

T
(dω

2 )T
]T

, (10.82)

are assumed to happen (it is not known which ones), the other 16 unknown attacks
are assumed non-existent. These two attacks are recovered using the SR algorithm
described in Sect. 3 applied to filtered WECC power system (10.72).

10.6.4.1 Simulation Results

The simulation results have been obtained via MATLAB.

Simulation Experiment 1 Two constant attacks (dω
1 )2 = −1 which is the second

entry of dω
1 , and (dω

2 )1 = 1 affect the filtered WECC power system (10.72) at the
time t = 0.4 s, and τ = 0.01. The SR algorithm was used to recover the attacks. The
results of the simulations are shown in Fig.10.1. The simulated two non-zero attacks,
which are shown by dash line and dot line, are accurately recovered in finite time,
while the estimated values of other zero attacks, which are shown by solid lines,
converge to zero in finite time. In Figs.10.1, 10.2 and 10.3, Attack1 and Attack2 are
used to describe the real attack signals and d1 − d18 display the reconstructed plant
and sensor attacks.

Simulation Experiment 2 Two time-varying attacks, (dω
1 )1 = sin(π t) and

(dω
1 )2 = sin(π t) affect the filtered WECC power system (10.60) at the time

t = 0.4 s. The simulated two time-varying non-zero attacks are accurately recov-
ered in finite time, which are illustrated by dash line and dot line, while the estimated
values of other 16 zero attacks appear to converge to zero in finite time. The solid
lines illustrate them.

Simulation Experiment 3 Two non-zero attacks are generated and affected the
filtered WECC power system (10.60) at the time t = 0.4 s, the plant attack is time
varying (dω

1 )2 = sin(π t), and sensor attack is constant (dω
2 )1 = −1. The simulation

result in Fig.10.3 shows 2 non-zero and 16 zero attacks were accurately recovered
in finite time.

The Simulation results in Figs. 10.1, 10.2 and 10.3 show that SR algorithm can
reconstruct the time-varying sparse attack signal in finite time.

10.6.5 Reconstruction of Attacks and Estimation of States:
The Number of Sensors is Greater Than the Number
of Potential Sensor Attacks

In this section, we investigate theWECC power system (10.60) as a nonlinear system
whenwe havemore sensors rather than potential sensor attacks, i.e., there are 6 sensor
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Fig. 10.1 Reconstruction of Two Constant Plant Attack and Sensor Attack in a Sparse Attack
Signal, ©2018 IEEE. Reprinted, with permission, from Nateghi et al. (2018b)

Fig. 10.2 Reconstruction of Two Time Varying Plant Attack in a Sparse Attack Signal, ©2018
IEEE. Reprinted, with permission, from Nateghi et al. (2018b)
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Fig. 10.3 Reconstruction of Time Varying Plant Attack and Constant Sensor Attack in a Sparse
Attack Signal, ©2018 IEEE. Reprinted, with permission, from Nateghi et al. (2018b)

measurements and 3 plant attacks. The matrices B and D in (10.60) are defined in
such a way that plant attack dx and sensor attack dy can be written separately as
follows:

⎡
⎣I 0 0
0 Mg 0
0 0 0

⎤
⎦

⎡
⎣ δ̇

ω̇

θ̇

⎤
⎦ = −

⎡
⎣ 0 −I 0
Rθ
g,g Eg Rθ

g,l

Rθ
l,g 0 Rθ

l,l

⎤
⎦

⎡
⎣δ

ω

θ

⎤
⎦ +

⎡
⎣0
I
0

⎤
⎦ dx (t) +

⎡
⎣ 0
Pω

Pθ

⎤
⎦

y =
[
Cδ 0
0 Cω

] [
δ

ω

]
+

[
Dδ

Dω

]
dy(t),

(10.83)

where

Cδ = I3 ,Cω = I3 , Dδ = 03×6 , Dω ∈ R3×6 =
⎡
⎣0 1 2 0 1 1
1 0 0 2 1 0
0 0 1 0 1 0

⎤
⎦ . (10.84)

The WECC power system (10.84) can be rewritten as

[
δ̇

ω̇

]
=

[
ω

M−1
g (−Rθ

g,g + Rθ
g,l(R

θ
l,l)

−1
Rθ
l,g)δ − M−1

g Egω + Pθω

]
+ B̄dx (t)

[
y1
y2

]
=

[
C̄δ

C̄ω

] [
δ

ω

]
+

[
0
Dω

]
dy(t)

(10.85)
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where
Pθω = M−1

g (Pω − Lθ
g,l(L

θ
l,l)

−1
Pθ )

Bθω = M−1
g (Bω − Lθ

g,l(L
θ
l,l)

−1
Bθ )

C̄δ = [
I3 03

]
, C̄ω = [

03 I3
]
, B̄ =

[
03
M−1

g

]
.

(10.86)

Remark 10.6 It can be verified that Dω satisfies theRIP condition defined in (10.16).

Suppose that the following three plant attacks (Nateghi et al. 2018a)

dx =
⎡
⎣dx1
dx2
dx3

⎤
⎦ = (t − 10)

⎡
⎣ sin(0.5t)

0.5cos(0.5t)
0.5sin(0.5t) + 0.5cos(0.5t)

⎤
⎦ (10.87)

and the time-varying sensor attack

dy = 1(t − 10).
[
0 0 0 0.5cos(0.5t) 0 0

]
(10.88)

affect system (10.83) at t = 10 s.
The states δ̂, ω̂ and plant attacks dx (t) in (10.83) are reconstructed by usingHOSM

observer. Then, the estimated ω̂ is used in to give

y2 − ω̂ = Dωdy(t). (10.89)

The SR algorithm described in Sect. 10.3 can be applied to reconstruct the sparse
dy(t) in WECC power system (10.89), where only one out of six potential attacks
dy1 . . . dy6 is non-zero.

10.6.5.1 Simulation Results

The MATLAB software is used to simulate the system. The simulated plant attacks
dx1, dx2, dx3 and sensor attack dy1 . . . dy6 are accurately recovered in finite time and
are shown in Figs. 10.4 and 10.5, respectively. Reconstructed attacks are used for
cleaning the corrupted plant input andmeasurements. Figures10.6 and 10.7 compare
the corrupted measurements with the measurements when the system is not under
attack, and with the compensated measurements after being attacked.

Therefore, simulation results illustrate that compensated measurements converge
to the measurements without attack in finite time. As a result, actual measurements
are recovered from corrupted ones in finite time by using the HOSM observer and
SR algorithm.
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Fig. 10.4 Plant Attack dx1 , dx2 , dx3 Compare with its Reconstruction d̂x1 , d̂x2 , d̂x3 , ©2018 IEEE.
Reprinted, with permission, from Nateghi et al. (2018a)

Fig. 10.5 Sensor Attack dy Reconstruction, ©2018 IEEE. Reprinted, with permission, from
Nateghi et al. (2018a)
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Fig. 10.6 Corrupted WECC Power System Sensor Measurements y1, y2, y3 Compared with the
Compensated Measurements and to the Measurements without Attacks, ©2018 IEEE. Reprinted,
with permission, from Nateghi et al. (2018a)

Fig. 10.7 Corrupted WECC Power System Sensor Measurements y4, y5, y6 Compared with the
Compensated Measurements and to the Measurements without Attacks (Nateghi et al. 2018a)
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10.7 Conclusions

In this chapter, considering the nonlinear cyber-physical systems under deception
attacks and sparse sensor attacks, two complimentary cases are investigated. In the
first case, when the number of potential attacks is greater than the number of sensor
measurements, attacks are reconstructed using higher-order sliding mode differen-
tiation techniques in concert with the SR algorithm, when only several unknown
attacks out of all possible attacks are non-zero. In the second case, when the num-
ber of sensor measurements is equal or greater than the number of potential sensor
attacks, the states of the system and the state attacks are reconstructed online using
a HOSM observer. A SR algorithm is used to reconstruct the stealth sensor attacks
to the unprotected sensors. The effectiveness of the proposed algorithms to estimate
the states and reconstruct the attacks are tested on the US WECC power network
system. The simulation results confirm that the attacks degrade the performance of
CPS under attack and imply that cleaning the measurements from the reconstructed
attacks before using them in the feedback control can elevate CPS performance close
to the one without attack.
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Chapter 11
Resilient Cooperative Control of Input
Constrained Networked Cyber-Physical
Systems

Junjie Fu, Guanghui Wen, Yongjun Xu, Ali Zemouche, and Fan Zhang

11.1 Introduction

With the rapid development of sensing, communication, and computing technology,
intensive research attention has been devoted to the coordination control of NCPS in
recent years. NCPS can be used to model a large class of complex networked infras-
tructures where the network layer is closely intertwined with the physical layer.
Different Cyber-Physical systems in the network communicate with each other and
the interaction has a direct impact on the operation of the physical plants in the
local system. Therefore, they are more complex than the traditional networked sys-
tems as constraints from the physical processes have to be taken into consideration
when designing cooperative control strategies. Potential applications range across
wide areas such as mobile sensor networks, unmanned aerial vehicles, and small
satellite groups (Olfati-Saber and Murray 2004; Beard et al. 2001). In distributed
control of NCPS, the objective is to design distributed control laws that use only
local information such that some global control tasks can be completed. Common
coordination tasks include consensus, coordinated tracking, flocking, swarming, and
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so forth (Murray 2007; Cao et al. 2013). In the coordinated tracking problem, there
generally exists a leader agent which determines the final desired trajectory of the
network and the follower agents need to track such a trajectory asymptotically. This
control paradigm is especially suitable for the distributed control of systems such
as smart grids and mobile vehicle networks (Bidram et al. 2013; Sheikholeslam and
Desoer 1992). Various results have been obtained for this problem regarding different
agent dynamics and communication topologies (Hong et al. 2006; Chen and Song
2014; Wen et al. 2014; Li et al. 2014; Zhang et al. 2017; Vanli et al. 2017).

When implementing the coordination controllers on real systems, practical limi-
tations of the agent dynamics have to be considered. One common limitation is the
input saturation effect resulted from the finite actuation power of physical systems.
It may lead to serious performance degradation or even instability if not properly
handled (Hu and Lin 2001; Zaccarian and Teel 2011). Therefore, designing coor-
dination controllers for NCPS subject to input saturation has great importance. In
Li et al. (2011) and Du et al. (2013), input saturated consensus for first-order inte-
grators was studied under directed communication graphs. In Ren (2008), global
bounded consensus algorithms for double-integrator dynamics were designed. In
Abdessameud and Tayebi (2010), consensus strategies accounting for actuator satu-
rations and the lack of velocity measurements were designed for a group of agents
with double-integrator dynamics based on auxiliary systems. In Meng et al. (2013),
input saturated global coordinated tracking problem was investigated for NCPS
with, respectively, neutrally stable dynamics and double-integrator dynamics sub-
ject to detail-balanced directed graphs. Global input saturated consensus problem for
discrete-time neutrally stable and double-integrator NCPS was studied in Yang et al.
(2014). A multi-hop relay-based distributed controller was proposed in Zhao and
Lin (2016) to achieve global consensus tracking for asymptotically null controllable
with bounded control (ANCBC) linear NCPS under detail-balanced directed graphs.
Bounded observer-based control strategies were proposed in Meng and Lin (2013)
and Fu andWang (2014) to ensure finite-time coordinated tracking for both low- and
high-order uncertain integrator NCPS under general directed communication graphs.
Apart from these results on global coordinated tracking, semi-global coordination
of ANCBC linear NCPS with input saturation has been investigated in Song et al.
(2016), Su et al. (2013), Zhao and Lin (2015), andWang et al. (2018) using low-gain
control approach. Specifically, semi-global consensus of ANCBC linear NCPS with
input saturation using relative output feedback was investigated in Fan et al. (2015).
Low- and high-gain control approaches were employed in Wang et al. (2017a) to
achieve global consensus tracking for ANCBC linear NCPS with input saturation
under directed switching graphs. Robust global coordinated tracking for ANCBC
linear NCPS with input saturation and input-additive uncertainties was achieved in
Wang et al. (2017b) where the communication graphs among the followers were
assumed to be undirected.

Note that for the global consensus of second- or high-order NCPS with input
saturation, a common assumption in the existing results is that the communica-
tion graphs are undirected or special directed graphs (e.g., detail-balanced directed
graphs) (Ren 2008; Abdessameud and Tayebi 2010; Meng et al. 2013; Yang et al.
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2014; Zhao and Lin 2016; Wang et al. 2017b). Furthermore, uncertain dynamics and
input disturbances are usually not well dealt with in existing works (Zhao and Lin
2016; Wang et al. 2017a). The observer-based controllers in Meng and Lin (2013)
and Fu and Wang (2014) can be applied to high-order NCPS with uncertain dynam-
ics under general directed graphs. However, to implement the control strategies,
both the relative state measurements and transmission of internal observer states are
needed. In this work, we aim to design distributed coordinated tracking controllers
for input saturated high-order NCPS under general directed communication graphs
with reduced communication. New kinds of nonlinear distributed controllers using
only local measurement information are proposed to achieve coordinated tracking.
Sending internal states using digital communication between neighboring agents is
avoided which may both simplify the agent design and reduce the energy consump-
tion of the network. Application to the platoon control of autonomous vehicles is
used to illustrate the effectiveness of the proposed control strategies.

Most of the existing consensus results are asymptotic algorithms which means
the coordination objective can be achieved as time goes to infinity. In many cases,
finite-time convergence is preferable due to the mission requirement. Furthermore,
finite-time controller also enjoys the benefits of faster convergence speed and more
robustness to uncertainties and disturbances (Bhat and Bernstein 2000). The finite-
time consensus problem for first-order integrator systems was studied in Cortés
(2006) and Xiao et al. (2009). Homogeneous system theory was employed in Wang
andHong (2008) to develop a class of continuousfinite-time consensus controllers for
second-order systems under undirected communication graphs. A robust finite-time
consensus tracking controller was developed in Khoo et al. (2009) using terminal
sliding mode control techniques. In Cao et al. (2010) and Meng and Lin (2013),
finite-time formation tracking problems for first-order and second-order integrator
systems with directed switching communication graphs were solved by designing
decentralized finite-time sliding mode estimators. In Meng et al. (2010) and Du
et al. (2011), finite-time attitude consensus algorithms were proposed for nonlinear
spacecraft models. Observer-based finite-time consensus tracking problem for high-
order integrator systems with bounded external disturbances was studied in Fu and
Wang (2014).

However, existing finite-time consensus control designs have rarely considered
input saturation. In Wang and Hong (2008) and Fu et al. (2018), bounded finite-time
consensus controllers were proposed for second-order integrator systems under undi-
rected communication graphs. Slidingmode control-based controllerswere proposed
in Fu et al. (2019) for input constrained second-order NCPS with directed commu-
nication graphs. Considering that many practical NCPS have high-order dynamics
and the directed communication graphs are more general due to the presence of link
failures or communication constraints, designing finite-time consensus controller for
high-order NCPSwith general directed communication graphs has great importance.
Notably, the observer-based controllers proposed in Fu and Wang (2014) were able
to achieve finite-time consensus tracking of high-order integrator systems subject to
input saturation. However, explicit communication of observer states was required
to implement the controller. In this chapter, a switching control strategy is proposed
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which achieves robust finite-time consensus control of high-order NCPS with input
saturation under general directed communication graphs using only local relative
measurement information.

The main contribution of this chapter is on the design of input constrained dis-
tributed consensus tracking strategies for high-order triangular formNCPS subject to
general directed communication graphs. Both asymptotic and finite-time consensus
problems have been studied. The controllers have the feature that sliding mode con-
trol techniques have been employed and only relative state or output measurement is
needed to implement the control strategies. As a result, they are resilient to both the
control input constraints, the unknown external disturbances and the possible digital
communication restraints.

Organization: The contents of this chapter can be concluded and summarized as
follows. The notations and some preliminaries will be given next. In Sect. 11.2, new
classes of input constrained consensus tracking controllers for high-order NCPS are
proposed. In Sect. 11.3, the finite-time input constrained consensus tracking problem
for high-order NCPS is studied. In Sect. 11.4, Simulation examples are provided.
Finally, conclusions are provided in Sect. 11.5.

11.1.1 Notation

Here, we introduce the notations that will be used throughout this chapter. 1N is a
vector of all 1s. ‖x‖1 and ‖x‖∞ represent the 1-norm and infinity-norm of a vector
x = [x1, . . . , xn]T , respectively. diag{x1, . . . , xn} is a diagonal matrix composed of
the elements x1, . . . , xn . sgn(x) = [sgn(x1), . . . , sgn(xn)]T denotes the signum func-
tion. sig(x)α = sgn(x)|x |α . ‖A‖∞ is the induced infinity-norm of a square matrix A.
λmin(A) denotes the smallest eigenvalue when all the eigenvalues of A are real.

11.1.2 Preliminaries on Algebraic Graph Theory

A directed graph G = (V (G ),E (G )) can be used to represent the communica-
tion relation among the agents where V (G ) = {e0, e1, . . . , eN } is the vertex set and
E (G ) ⊂ V (G ) × V (G ) is the edge set. Agent i is represented by vertex ei in V (G )

and an edge (ei , e j ) represents the information flow from agent j to agent i . The
set of neighbors of node ei is denoted by Ni = { j : (ei , e j ) ∈ E (G )}. A directed
path P in G from ei0 to eik is a sequence of distinct vertices {ei0 , . . . , eik } where
(ei j−1 , ei j ) ∈ E (G ) for j = 1, . . . , k. Node e j is reachable from ei if there exists a
path from ei to e j .GraphG is strongly connected if there exists a path between any two
ordered vertices and contains a spanning tree if there exists a vertex, named as root,
which is reachable from all the other vertices in the graph. An induced subgraphGs of
G is a graph such that V (Gs) ⊂ V (G ) and for any ei , e j ∈ V (Gs), (ei , e j ) ∈ E (Gs)

if and only if (ei , e j ) ∈ E (G ). In this chapter, the vertex set V (Gs) = {e1, . . . , eN }
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of the subgraph Gs is used to represent the follower agents. The adjacency matrix
A = [ai j ] associated with G is defined as aii = 0 and ai j > 0 if (ei , e j ) ∈ E (G )

where i �= j . The Laplacianmatrix ofG is defined asL = [li j ]where lii = ∑
j �=i ai j

and li j = −ai j where i �= j . The follower agents have no influence over the leader;
therefore, a0i = 0, i = 1, . . . , N . Moreover, the communication relation between
the leader and the followers is indicated by ai0, i = 1, . . . , N where ai0 > 0 means
that follower i directly has access to the information of the leader and ai0 = 0 other-
wise. Let Ls ∈ R

N×N denote the Laplacian matrix associated with the subgraph Gs

and A0 = diag{a10, . . . , aN0} ∈ R
N×N . A matrix H = [hi j ] := Ls + A0 ∈ R

N×N

is defined for further analysis.

Lemma 11.1 (Zhang et al. 2015) Suppose that the graph G contains a directed
spanning tree with the leader as the root, then H is invertible. Moreover, let

r = [r1, . . . , rN ]T = (H−1)T 1N ,

R = diag{r1, . . . , rN },
W = RH + HT R,

(11.1)

then both the diagonal matrix R and the symmetric matrix W are positive definite.

11.1.3 Preliminaries on Finite-Time Stability

Consider the system

ẋ = f (t, x), f (t, 0) = 0, x(0) = x0, x ∈ R
n, (11.2)

where f : R≥0 ×U0 → R
n is piecewise continuous on an open neighborhoodU0 of

the origin.

Definition 11.1 (Hong et al. 2002) The equilibrium point x = 0 of (11.2) is locally
finite-time stable if it is Lyapunov stable and locally finite-time convergent in U0. If
U0 = R

n , then the origin is globally finite-time stable.

Definition 11.2 (Hong et al. 2002) Let f (x) = [ f1(x), . . . , fn(x)]T be a contin-
uous vector field. f (x) is said to be homogeneous of degree k with respect to
(r1, r2, . . . , rn) ∈ R

n+ if for any given α > 0 it holds fi (αr1x1, αr2x2, . . . , αrn xn) =
αk+ri fi (x), i = 1, . . . , n.

Lemma 11.2 (Hong et al. 2002) Consider the system

ẋ = f (x), f (0) = 0, x ∈ R
n, (11.3)

where f (x) is a continuous homogeneous vector field of degree k < 0with respect to
(r1, r2, . . . , rn). Assume x = 0 is an asymptotically stable equilibrium of the system.
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Then, x = 0 is a locally finite-time stable equilibrium of the system (11.3). Moreover,
if the stable equilibrium x = 0 is globally asymptotically stable, then x = 0 is a
globally finite-time stable equilibrium of (11.3).

The following lemma is useful which is based on the finite-time robust exact
differentiators proposed in Levant (2003).

Lemma 11.3 For any integer n ≥ 1, L > 0, let

ż1(t) = w1(t),

w1(t) = −λn L
1/n |z1(t)|(n−1)/n sgn(z1(t)) + z2(t),

żk(t) = wk(t),

wk(t) = −λn−k L
1/(n−k) |zk(t) − wk−1(t)|(n−k−1)/(n−k) .

sgn(zk(t) − wk−1(t)) + zk+1(t), k = 2, . . . , n − 1,

żn(t) = v(t) − λ1L sgn(zn(t) − wn−1(t)),

(11.4)

where v(t) is any bounded signal satisfying |v(t)| ≤ L. Then, there exist positive
parameters λi , i = 1, . . . , n such that zi (t), i = 1, . . . , n converge to zero after a
finite time.

Remark 11.1 Thepositive parametersλi , i = 1, . . . , n canbedetermined in advance
for given n. For n ≤ 6, a possible set of choice is given in Levant (2005) as λ1 = 1.1,
λ2 = 1.5, λ3 = 2, λ4 = 3, λ5 = 5, and λ6 = 8. The convergence speed generally
increases with increasing design parameters.

For a signal σ(t) ∈ R which satisfies the condition
∣
∣σ (n)

∣
∣ ≤ L , a uniform finite-

time exact differentiator is proposed in Angulo et al. (2013).

Lemma 11.4 The (n − 1)-th-order differentiator

żi = −λiθsig(z1 − σ)
n−i
n − ηi (1 − θ)sig(z1 − σ)

n+βi
n + z2, zi+1

i = 1, . . . , n − 1,
żn = −λnθsgn(z1 − σ) − ηn(1 − θ)sig(z1 − σ)1+β

is uniformly finite-time exact when its parameters are selected as follows:

• {λi , i = 1, . . . , n} are selected based on the bound of the perturbation L using the
formulas for the HOSM differentiator (Levant 2003);

• β > 0 is chosen small enough and {ηi , i = 1, . . . , n} are selected such that the
polynomial pn + ηn pn−1 + · · · + η2 p + η1 is Hurwitz;

• the function θ : [0,∞) → {0, 1} is selected as

θ(t) =
{
0 if t ≤ Tl ,
1 otherwise,

with some arbitrarily chosen Tl > 0.
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Furthermore, there exists a Tu > Tl such that for any initial estimation zi , it holds
zi = σ (i−1) where i = 2, . . . , n.

11.2 Input Constrained Robust Consensus Tracking for
High-Order NCPS

In this section, we propose new classes of consensus tracking controllers for high-
order NCPS with input saturation constraints. Note that it is a non-trivial control task
as simple control strategies generally cannot achieve global convergence of high-
order NCPS with a globally bounded control input. First, the case of a static leader
is considered. Then, the case of a dynamic leader with an unknown control input
is studied. By using high-order finite-time convergent observers, consensus track-
ing controllers using only relative output information are also designed to further
reduce the sensing requirement of the system. Different from the results in Meng
and Lin (2013) and Fu and Wang (2014) where observer states must be transmitted
among neighboring agents, the proposed controllers only need relative measurement
information and avoid additional information transmission. Considering that com-
munication usually takes a large part of the overall energy consumption of the agents,
this is an advantage of the proposed controllers.

11.2.1 Problem Formulation

Consider a leader–follower network where the followers have the following high-
order dynamics

ẋi j = xi( j+1), j = 1, . . . , n − 1,

ẋin = ui + di , i = 1, . . . , N ,
(11.5)

and the leader agent is modeled by

ẋ0 j = x0( j+1), j = 1, . . . , n − 1,

ẋ0n = u0,
(11.6)

where xi = [xi1, . . . , xin]T ∈ R
n , i = 0, . . . , N are the state vectors of the agents,

di are the external disturbances which satisfy |di | ≤ δ, and ui ∈ R, i = 1, . . . , N
are the control inputs of the followers. Suppose that the input saturation constraint
requires that |ui | ≤ um where um > 0 is a positive constant. The leader’s input sat-
isfies |u0(t)| ≤ ρ where ρ is a positive constant.

Remark 11.2 The considered systems (11.5) and (11.6) include first-order and
second-order dynamical systems studied in Li et al. (2011), Du et al. (2013), Ren
(2008), Abdessameud and Tayebi (2010), Meng et al. (2013), and Yang et al. (2014)
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as special cases. Furthermore, they can represent many practical high-order NCPS
that can be put into their form after performing feedback linearization as shown in
Khoo et al. (2014). An example is the platoon control of autonomous vehicles which
is presented in the simulation section.

The following general communication graph is considered.

Assumption 11.1 The communication graph G of the leader–follower network is a
general directed graph that contains a spanning tree with the leader as the root.

Note that, in order to track the trajectory of the leader precisely as the time
approaches infinity, the followers’ control inputs ui have to dominate the effects of
u0 and di as the tracking errors approach zero. Therefore, the following assumption
is necessary to achieve robust coordinated tracking with a dynamic leader.

Assumption 11.2 The input saturation level of the follower agents um , the upper
bound of the leader’s control inputρ, and the upper bound of the external disturbances
δ satisfy the relation um > δ + ρ.

In this work, we want to design input saturated distributed controllers which
achieve robust global coordinated tracking for the high-order multi-agent system
(11.5) and (11.6) using only local measurement information. The control objective
is formally defined as follows:

Definition 11.3 (Input saturated coordinated tracking) Design a distributed con-
troller for each follower i = 1, . . . , N in (11.5) which uses only local measure-
ment information and satisfies |ui | ≤ um such that for any initial condition, it holds
xi (t) − x0(t) → 0 as t → ∞.

11.2.2 Input Constrained Robust Consensus Tracking with a
Static Leader

First, we study the case when x01 = const, that is, the leader’s position is fixed.
Then, it holds that x0 j = 0, j = 2, . . . , n and u0 = 0. A distributed controller which
uses only local state measurement and relative state measurement is proposed. Since
there exists external disturbance in (11.5), we design the controller based on integral
slidingmode control method by considering first the undisturbed case, that is, di = 0.
Then, the leader–follower system becomes

ẋi j = xi( j+1), j = 1, . . . , n − 1,

ẋin = ūi , i = 1, . . . , N .
(11.7)

Definition 11.4 Given two positive constants L , M with L ≤ M , a function σ :
R → R is said to be a linear saturation for (L , M) if it is a continuous, nondecreasing
function satisfying
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• sσ(s) > 0 for all s �= 0;
• σ(s) = s when |s| ≤ L;
• |σ(s)| ≤ M for all s ∈ R.

A simple linear saturation function example isσ(s) = swhen |s| ≤ M andσ(s) =
Msgn(s)when |s| > M . Using the linear coordinate transformation yi = T xi where

yi(n− j) =
∑ j

k=0

(
j
k

)

xi(n−k),

(
j
k

)

= j !
k!( j − k)! ,

one can transform (11.7) and (11.6) into

ẏi j = yi( j+1) + · · · + yin + ūi , j = 1, . . . , n − 1, ẏin = ūi ,

where i = 0, 1, . . . , N and ū0 = u0.
For each follower i = 1, . . . , N , consider the following distributed controller:

ūi = − σn

(
yin + σn−1

(
yi(n−1) + · · · + σ2

(
yi2 + σ1

( ∑N

j=0
ai j

(
yi1 − y j1

)))
· · ·

))
,

(11.8)
where {σ j } are linear saturations for (L j , Mj ), j = 1, . . . , n. Note that only local
state measurement and relative state measurement are needed in (11.8).

Theorem 11.1 Suppose that Assumptions 11.1 and 11.2 hold. Global coordinated
tracking for (11.7) and (11.6) is achieved with (11.8) if

M j <
1

2
L j+1, j = 1, . . . , n − 1. (11.9)

Furthermore, it holds |ūi | ≤ Mn.

Proof For state yin of follower i , consider the Lyapunov function Vin = y2in . The
derivative of Vin is given by

V̇in = −2yinσn

(
yin + σn−1

(
yi(n−1) + · · · + σ1

( ∑N

j=0
ai j

(
yi1 − y j1

))
· · ·

))
.

(11.10)
Since Mn−1 < 1

2 Ln , we see that V̇in < 0 for all yin > 1
2 Ln . Therefore, it will hold

yin ≤ 1
2 Ln in finite time. Now consider the evolution of the state yi(n−1). Note that

when yin ≤ 1
2 Ln we have

∣
∣
∣yin + σn−1

(
yi(n−1) + · · · + σ1

(∑N

j=0
ai j

(
yi1 − y j1

))
· · ·

)∣
∣
∣ ≤ 1

2
Ln + Mn−1 ≤ Ln .

Consequently, σn operates in its linear region. Then the evolution of yi(n−1) is given
by

ẏi(n−1) = −σn−1

(
yi(n−1) + · · · + σ1

(∑N

j=0
ai j

(
yi1 − y j1

)) · · ·
)
.
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Following the same argument as for yin , we can show that yi(n−1) satisfies |yi(n−1)| ≤
1
2 Ln−1 in finite time. Continuing this procedure, it can be shown that after some
finite time the argument of every function σi , i = 2, . . . , n has entered the region
where the function is linear. Therefore, after this finite time, we have ẏi1 =
−σ1

(∑N
j=0 ai j

(
yi1 − y j1

))
, where i = 1, . . . , N . Let ỹi1 = yi1 − y01, then we have

˙̃yi1 = −σ1

(∑N
j=0 ai j

(
ỹi1 − ỹ j1

))
. Let ỹ1 = [ỹ11, . . . , ỹN1]T and ξ = H ỹ1, then

ξ̇ = −Hσ1 (ξ), where σ1 (ξ) = [σ1 (ξ1) , . . . , σ1 (ξN )]T . Consider the Lyapunov
function

V =
∑N

i=1
ri

∫ ξi

0
σ1(s)ds,

where ri , i = 1, . . . , N are defined in Lemma 11.1. From the properties of the satura-
tion functions given in Definition 11.4, it is easy to show that the Lyapunov function
V is positive definite in ξ . Furthermore, it holds that

V̇ = −σ T
1 (ξ) RHσ1 (ξ) ≤ −λmin(W )

2
σ T
1 (ξ) σ1 (ξ) .

Therefore, ξ → 0 as t → ∞. Since H is invertible, we have ỹ1 → 0 as t → ∞. Let

x̃i j = xi j − x0 j , it holds ỹi1 = ∑n−1
k=0

(
n − 1
k

)

x̃i(n−k) → 0. Noting (11.7), it leads

to x̃i j → 0, i = 1, . . . , N , j = 1, . . . , n which means xi (t) − x0(t) → 0, t → ∞.
Therefore, global coordinated tracking is achieved for (11.7) and (11.6). �

Based on the controller (11.8), we consider the following integral sliding mode
control-based controller to handle the effect of disturbances:

si = xin −
∫

ūi dt, ui = ūi − k sgn(si ), (11.11)

where k > 0.

Theorem 11.2 Let Assumptions 11.1 and 11.2 hold. Global input saturated coordi-
nated tracking for (11.5) and (11.6) is achieved with (11.11) if k > δ and

Mj <
1

2
L j+1, j = 1, . . . , n − 1, Mn ≤ um − k. (11.12)

Proof With the controller (11.11), we have

ṡi = ui + di − ūi = −k sgn(si ) + di ,

where i = 1, 2, . . . , N . Then under the condition k > δ, we have that after finite time
it holds si = 0. On the sliding surface, the closed-loop system evolves according to
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ẋi j = xi( j+1), j = 1, . . . , n − 1,

ẋin = ūi , i = 1, . . . , N .
(11.13)

It follows from Theorem 11.1 that xi (t) − x0(t) → 0, t → ∞. Noting that |ui | ≤
Mn + k, it holds |ui | ≤ um . By definition, robust global input saturated coordinated
tracking for (11.5) and (11.6) is achieved. �
Remark 11.3 For each follower agent i = 1, 2, . . . , N , the proposed controller
(11.11) only depends on local state measurement xi2, . . . , xin and relative state
measurement

∑N
j=0 ai j (xi1 − x j1), . . .,

∑N
j=0 ai j (xin − x jn). Furthermore, no global

information about the communication graph is needed in the controller design.

11.2.3 Input Constrained Robust Consensus Tracking with a
Dynamic Leader

Next, we focus on the case when the leader has unknown control input. Distributed
coordinated tracking controllers are proposed based on sliding mode observers to
estimate the unknown terms involving neighbors’ inputs and external disturbances.

Let x̃i j = xi j − x0 j , i = 1, 2, . . . , N , j = 1, 2 . . . , n, and ei j =
∑N

k=0 aik(x̃i j − x̃k j ), then from (11.5) and (11.6), we have

ėi j = ei( j+1), j = 1, 2, . . . , n − 1,

ėin =
∑N

j=1
ai j (ui + di − u j − d j ) + ai0(ui + di − u0)

= hiui −
∑N

j=0
ai j u j + hidi −

∑N

j=1
ai j d j ,

(11.14)

where hi = ∑N
j=0 ai j .

Lemma 11.5 Suppose that Assumption 11.1 holds. The coordinated tracking prob-
lem for the leader–follower network (11.5) and (11.6) is solved if ei j ,i = 1, 2, . . . , N,
j = 1, 2 . . . , n converge to zero as t → ∞.

Proof Let x̃ k = [x̃1k, . . . , x̃Nk]T and ek = [e1k, . . . , eNk]T , k = 1, 2, . . . , n, then we
have ek = Hx̃k . Since H is of full rank fromLemma 11.1, it holds that x̃ k converge to
zero if ek, k = 1, . . . , n converge to zero as t → ∞. Therefore, coordinated tracking
problem for the leader–follower network (11.5) and (11.6) is solved. �

Denote γi = −∑N
j=0 ai j u j + hidi − ∑N

j=1 ai j d j . Suppose that we have designed
a local observer γ̂i for each follower such that for some T1 > 0 it holds |γ̃i (t)| =
|γ̂i (t) − γi (t)| ≤ γτ , t ≥ T1 where γτ is a positive constant which can be made arbi-
trarily small. Then, the following distributed controller is considered:

ui = βi − γ̂i

hi
, (11.15)
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where βi is to be designed. Let β = [β1, . . . , βN ]T , γ̃ = [γ̃1, . . . , γ̃N ]T , u =
[u1, . . . , uN ]T , and d = [d1, . . . , dN ]T . The control input (11.15) satisfies H(u −
1Nu0 + d) = β − γ̃ . If ‖β(t)‖∞ ≤ um−ρ−δ

‖H−1‖∞
− γτ , then we will have

‖u(t)‖∞ = ∥
∥H−1(β(t) − γ̃ (t)) + 1Nu0(t) − d(t)

∥
∥∞

≤ ∥
∥H−1

∥
∥∞(‖β(t)‖∞ + γτ ) + ρ + δ

≤ um .

(11.16)

Moreover, with the controller (11.15), the closed-loop system (11.14) becomes

ėi j = ei( j+1), j = 1, 2, . . . , n − 1

ėin = βi − γ̃i .
(11.17)

Thus, if we design βi such that ei j converge to zero as t → ∞ and satisfy |βi (t)| ≤
um−ρ−δ

‖H−1‖∞
− γτ , then input saturated coordinated tracking is achieved. The following

design of β is considered which is shown to satisfy this property in Lemma 11.6:

βi = β̄i − ks sgn(si ), si = ein −
∫

β̄i (t)dt,

β̄i (t) = −σn(ēin + σn−1(ēi(n−1) + · · · + σ1(ēi1) · · · )),
(11.18)

where

ēi(n− j) =
∑ j

k=0

(
j
k

)

ei(n−k),

(
j
k

)

= j !
k!( j − k)! ,

and L j , Mj > 0, j = 1, 2, . . . , n, ks > 0 are design parameters.

Lemma 11.6 Consider the closed-loop system (11.17) with the control input βi

given in (11.18). If

ks > γτ , Mn + ks ≤ um − ρ − δ
∥
∥H−1

∥
∥∞

− γτ , (11.19)

then, ei j , j = 1, 2, . . . , n will converge to zero as t → ∞ and |βi (t)| ≤ um−ρ−δ

‖H−1‖∞
−

γτ .

Proof Consider the sliding mode variable si . From (11.17) to (11.18), it holds ṡi =
βi − γ̃i − β̄i = −ks sgn(si ) − γ̃i . Consider the Lyapunov function Vs = (1/2)s2i . It
follows that V̇s = si ṡi ≤ − (ks − γτ ) |si |. Therefore, under the condition ks > γτ , si
will reach zero in finite time. On the sliding surface, the closed-loop system evolves
according to

ėi j = ei( j+1), ėin = −σn(ēin + σn−1(ēi(n−1) + · · · + σ1(ēi1) · · · )).
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Following similar steps as in the proof of Theorem 11.1, it is easy to show that ei j
will converge to zero asymptotically. Furthermore, since |β̄i (t)| ≤ Mn , under the
condition Mn + ks ≤ um−ρ−δ

‖H−1‖∞
− γτ , it holds that |βi (t)| ≤ um−ρ−δ

‖H−1‖∞
− γτ . �

Next, we consider the construction of desired γ̂i for each follower. From (11.14),
we have ėin = hiui + γi . The following auxiliary observer is proposed for each
follower i = 1, . . . , N :

˙̂ein = hiui − ki sgn(êin − ein), (11.20)

where ki > 0 are the design parameters. The effectiveness of the observer is shown
in the following Lemma.

Lemma 11.7 Consider the observer (11.20), if |ui (t)| ≤ um, i = 1, 2, . . . , N and
the observer parameters ki , i = 1, . . . , N satisfy

ki > hium + 2hiδ, (11.21)

then the sliding surface si = êin − ein = 0 will be reached in finite time, and in
the sliding mode, it holds γi = [−ki sgn(êin − ein)]eq where [−ki sgn(êin − ein)]eq
denotes the equivalent control of the switching term −ki sgn(êin − ein).

Proof Let si = êin − ein , then we have ṡi = −ki sgn(si ) − γi . Under the condi-
tions |ui (t)| ≤ um , |di (t)| ≤ δ, and Assumption 11.2, it holds |γi (t)| ≤ hium + 2hiδ.
Therefore, under the condition (11.21), the sliding surface si = 0 will be reached in
finite time. Moreover, during the sliding mode, the equivalent control (Utkin 1992)
of the discontinuous term −ki sgn(êin − ein) can be determined from ṡi = 0 which
leads to γi = [−ki sgn(êin − ein)]eq . �

According to the results in Utkin and Poznyak (2013), [−ki sgn(êin − ein)]eq can
be obtained by passing the discontinuous term through a low-pass filter and filtering
out the high-frequency component. Consider the following low-pass filter:

˙̂γ i = − γ̂i

τ
− ki sgn(êin − ein)

τ
, γ̂i (0) = 0, (11.22)

with a small time constant τ > 0. Then, the output γ̂i is an estimate of [−ki sgn(êin −
ein)]eq and satisfies

∣
∣
∣γ̂i − [−ki sgn(êin − ein)

]
eq

∣
∣
∣ →

τ→0
0. Therefore, for sufficiently

small τ > 0, we have |γ̃i (t)| = |γ̂i (t) − γi (t)| ≤ γτ where γτ → 0 as τ → 0.
Combining (11.20), (11.22), (11.18), and (11.15), we propose the following dis-

tributed control input:
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ui = satum
(

βi−γ̂i
hi

)
,

βi = β̄i − ks sgn(si ), si = ein − ∫
β̄i (t)dt,

β̄i (t) = −σn(ēin + σn−1(ēi(n−1) + · · · + σ1(ēi1) · · · )),
˙̂ein = hiui − ki sgn(êin − ein),˙̂γ i = − γ̂i

τ
− ki sgn(êin−ein)

τ
,

(11.23)

where i = 1, . . . , N , Mj , L j , j = 1, 2, . . . , n, ks > 0, ki > 0, and τ > 0 satisfy the
conditions (11.9), (11.19), and (11.21).

Theorem 11.3 Suppose that Assumptions 11.1 and 11.2 hold. The robust global
input saturated coordinated tracking problem for (11.5) and (11.6) is solved by the
distributed control input (11.23) with the controller parameters

Mj <
1

2
L j+1, j = 1, . . . , n − 1,

Mn + ks + γτ ≤ um − ρ − δ
∥
∥H−1

∥
∥∞

,

γτ < ks, ki > hium + 2hiδ.

(11.24)

Furthermore, since γτ → 0 as τ → 0, there always exists a sufficiently small τ > 0
such that there exist control parameters Mj , L j , j = 1, 2, . . . , n, ks > 0, ki > 0 that
satisfy condition (11.24).

Proof From Lemma 11.7, it follows that with the proposed observer

˙̂ein = hiui − ki sgn(êin − ein),

˙̂γ i = − γ̂i

τ
− ki sgn(êin − ein)

τ
,

there exists a T1 > 0 such that |γ̃i (t)| = |γ̂i (t) − γi (t)| ≤ γτ for t ≥ T1. Consid-
ering the facts that the control input ui is bounded by |ui | ≤ um and the distur-
bance |di | ≤ δ, it is easy to obtain that all the closed-loop signals are bounded for
t ∈ [0, T1]. For t ≥ T1, we have that ui = βi−γ̂i

hi
. It follows from Lemma 11.6 that

ei j , i = 1, 2, . . . , N , j = 1, 2, . . . , n converge to zero as t → ∞. Furthermore, we
have |ui | ≤ um . Therefore, robust global input saturated coordinated tracking for
(11.5) and (11.6) is achieved. �
Remark 11.4 Under some circumstances, each follower can estimate the upper
bound of ‖H−1‖∞ using only local information. Then, the controller (11.23) can be
implemented in a fully distributed fashion without knowing the global communica-
tion graph. One such example is given in the simulation section where we consider
the platoon control of autonomous vehicles.

Remark 11.5 The convergence speed of the proposed distributed controller (11.23)
can be adjusted by tuning the control parameters Mj , L j , j = 1, 2, . . . , n, ks > 0,
ki > 0, and τ > 0.
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11.2.4 Output-Based Input Constrained Robust Consensus
Tracking

In this section, we consider the case when only local output measurement xi1 and/or
relative output measurement ei1 are available. Note that in this case the proposed
controllers cannot be directly used since for controller (11.11) we need xi2, . . . , xin
and ei2, . . . , ein and for controller (11.23) we need ei2, . . . , ein . Therefore, to design
the distributed controllers with only output measurement, we focus on developing
observers for the local states and relative state information.

The following finite-time observer of local state information is considered for
each follower i :

η̇i1 = wi1,

wi1 = −λn L
1/n |ηi1 − xi1|(n−1)/n sgn(ηi1 − xi1) + ηi2,

η̇ik = wik,

wik = −λn−k L
1/(n−k)

∣
∣ηik − wi(k−1)

∣
∣(n−k−1)/(n−k) ·

sgn(ηik − wi(k−1)) + ηi(k+1), k = 2, . . . , n − 1,

η̇in = ui − λ1L sgn(ηin − wi(n−1)),

(11.25)

where L ≥ δ and the parameters λi are determined according to Remark 11.1.
Let x̃i j = ηi j − xi j , j = 1, 2, . . . , n, from (11.5) and (11.25), it follows that

˙̃xi1(t) = w̃i1(t),

w̃i1(t) = −λn L
1/n |x̃i1(t)|(n−1)/n sgn(x̃i1(t)) + x̃i2(t),

˙̃xik(t) = w̃ik(t),

w̃ik(t) = −λn−k L
1/(n−k)

∣
∣x̃ik(t) − w̃i(k−1)(t)

∣
∣(n−k−1)/(n−k) ·

sgn(x̃ik(t) − w̃i(k−1)(t)) + x̃i(k+1)(t), k = 2, . . . , n − 1,

˙̃xin(t) = −di (t) − λ1L sgn(x̃in(t) − w̃i(n−1)(t)).

(11.26)

Noting that |di | ≤ δ and L ≥ δ, we have ηi j = xi j , j = 1, 2 . . . , n after a finite time
according to Lemma 11.3.

To design the finite-time observer of relative state information for each follower
i , note that from (11.14) it follows

ėi j = ei( j+1), j = 1, 2, . . . , n − 1,

ėin = hiui + γi ,
(11.27)

where i = 1, . . . , N and |γi | ≤ hium + 2hiδ. Consider the following distributed
observer for each follower i :
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ζ̇i1 = wi1,

wi1 = −λn L
1/n |ζi1 − ei1|(n−1)/n sgn(ζi1 − ei1) + ζi2,

ζ̇ik = wik,

wik = −λn−k L
1/(n−k)

∣
∣ζik − wi(k−1)

∣
∣(n−k−1)/(n−k) ·

sgn(ζik − wi(k−1)) + ζi(k+1), k = 2, . . . , n − 1,

ζ̇in = hiui − λ1L sgn(ζin − wi(n−1)),

(11.28)

where L ≥ hium + 2hiδ and the parameters λi are determined according to
Remark 11.1. It can be similarly obtained from Lemma 11.3 that there exists
a finite time T3 > 0 such that for t ≥ T3, we have ζi j = ei j , j = 1, 2, . . . , n and
γi = [−λ1L sgn(ẽin(t) − w̃n−1(t))]eq .

As in the previous section, we can obtain the equivalent control of
−λ1L sgn(ẽin(t) − w̃i(n−1)(t)) using a low-pass filter

˙̂γ i = − γ̂i

τ
− −λ1L sgn(ẽin(t) − w̃i(n−1)(t))

τ
, (11.29)

where τ > 0 is a small time constant. For sufficiently small τ > 0, we have |γ̃i (t)| =
|γ̂i (t) − γi (t)| ≤ γτ where γτ → 0 as τ → 0.

With the finite-time local state observer (11.25) and the finite-time relative state
observer (11.28), we can construct the distributed controller (11.11) using only local
and relative output measurement. Note that the trajectory of the closed-loop system is
bounded in any finite-time interval since the control inputs of the agents are bounded.
Therefore, the separation principle is trivially satisfied with the proposed finite-time
convergent observers since after the convergence of the observers, the controller
with only output measurements will reduce to the state feedback controller. Then,
the global asymptotic convergence of the tracking errors can be easily obtained from
the analysis in the previous sections.

Similarly, with the relative state observer (11.28) and the equivalent control filter
(11.29), we can implement controller (11.23) using only relative output measure-
ments. The convergence of the closed-loop system can be concluded following a
similar argument as given above.

Remark 11.6 The finite-time convergent observers employed in this section have
advantages over other types of commonly used observers such as high-gain ones due
to the ease of theoretical analysis and practical implementation.

11.3 Input Constrained Robust Finite-Time Consensus
Tracking for High-Order NCPS

Many practical applications of NCPS may require finite convergence time of the
consensus tracking task. In this section, we propose a switching control strategy
which combines a globally bounded asymptotic consensus tracking controller with
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a local finite-time convergent consensus controller to achieve robust global finite-
time convergent consensus tracking of high-order NCPS subject to input saturation
constraints. Both the cases of relative statemeasurement and relative outputmeasure-
ment are considered. There also requires no exchange of control inputs or internal
states between neighboring agents in the controller design.

11.3.1 Problem Formulation

Consider a network of high-order integrator systems with input disturbances

ẋi j = xi( j+1), j = 1, 2, . . . , n − 1,

ẋin = ui + di ,

yi = xi1, i = 1, . . . , N ,

(11.30)

with an active leader modeled by

ẋ0 j = x0( j+1), j = 1, 2, . . . , n − 1,

ẋ0n = u0,

y0 = x01,

(11.31)

where xi = [xi1, . . . , xin]T ∈ R
n , i = 0, . . . , N are the state vectors of the agents,

yi ∈ R are the outputs, di are the external disturbances which satisfy |di | ≤ δ, and
ui ∈ R, i = 1, . . . , N are the control inputs of the followers. The input u0 of the
leader is assumed to be bounded and satisfies |u0| ≤ C .

Suppose that the actuators of the agents can only provide control inputs satisfying
|ui | ≤ umax, i = 1, 2, . . . , N where umax is a known positive constant. Then, the
input saturated finite-time consensus tracking problem for (11.30) and (11.31) is to
design distributed control input ui satisfying |ui (t)| ≤ umax for each follower which
uses only local information from their neighbors such that for any initial condition,
there exists a time T > 0 such that for any t ≥ T

xi (t) = x0(t), i = 1, . . . , N .

Note that, to achieve precise consensus tracking, the control input ui needs to
provide the control input u0 after consensus is achieved. Therefore, a necessary
condition of the input saturation bound is that C < umax.
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11.3.2 Input Constrained Robust Finite-Time Consensus
Tracking with Relative State Measurements

In this section,we solve the input saturatedfinite-time consensus tracking problem for
(11.30) and (11.31) when relative state information is available. The distributed con-
troller is designed based on globally bounded finite-time stabilizing controllers for
single high-order integrators. We will first design such a controller using a switching
strategy between an asymptotic stabilization controller and a finite-time convergent
controller for a single high-order integrator. After that, we propose the distributed
consensus tracking controller for themulti-agent system (11.30) and (11.31) employ-
ing sliding mode control ideas.

For a single high-order integrator system described by

q̇i = qi+1, i = 1, 2, . . . , n − 1,

q̇n = u,
(11.32)

whereq = [q1, . . . , qn]T ∈ R
n is the system state and u is the control input, a globally

bounded asymptotic stabilizing controller is proposed in Ding and Zheng (2015) as
follows.

Definition 11.5 Define a series of polynomials as follows:

p1(s) = s + k1
p2(s) = s2 + k2s + k2k1
p3(s) = s3 + k3s2 + k3k2s + k3k2k1

...

pn(s) = sn + knsn−1 + knkn−1sn−2 + · · · + kn · · · k1.

If pi (s), i = 1, . . . , n are stable polynomials, then we call p(s) = pn(s) aP-stable
polynomial.

Denote ε̄i = [ε1, . . . , εi ]T , εi > 0, i = 1, . . . , n and

a1(ε̄1) = 0
a2(ε̄2) = ε2 + k1ε1 + k0a1(ε̄1)
a3(ε̄3) = ε3 + k2ε2 + k1a2(ε̄2)

...

an(ε̄n) = εn + kn−1εn−1 + kn−2an−1(ε̄n−1)

with ki > 0, i = 0, 1, . . . , n. Let

σε(x) =
{

εsgn(x), f or |x | > ε,

x, f or |x | ≤ ε,
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where ε > 0.

Lemma 11.8 If p(s) = sn + knsn−1 + knkn−1sn−2 + · · · + kn · · · k1 is a P-stable
polynomial, then system (11.32) can be globally asymptotically stabilized by the
following nested-saturation-based controller u = α1(q) where

α1(q) = −knσεn (qn + kn−1σεn−1(qn−1 + · · · + k1σε1(q1)) · · · ) (11.33)

with
kiεi > εi+1 + ki−1ai (ε̄1), i = 1, . . . , n − 1,
um ≥ knεn > kn−1an(ε̄n)

and it holds |u| ≤ um.

A local finite-time stabilizing feedback controller for single high-order integrators
was proposed in Bhat and Bernstein (2005) based on homogeneity theory.

Lemma 11.9 Let the positive constants c1, . . . , cn be such that polynomial pn +
cn pn−1 + · · · + c2 p + c1 is Hurwitz. There is γ ∈ (0, 1) such that, for every ν ∈
(1 − γ, 1), system (11.32) is stabilized at the origin in finite time under the feedback
u = α2(q) where

α2(q) = −c1 sgn(q1) |q1|ν1 − · · · − cn sgn(qn) |qn|νn (11.34)

where the standard notation sgn(·) denotes the signum function and ν1, . . . , νn satisfy

νi−1 = νiνi+1

2νi+1 − νi
, i = 2, . . . , n (11.35)

with νn+1 = 1 and νn = ν.

Based on the controllers (11.33) and (11.34), a globally bounded finite-time con-
vergent controller is proposed for (11.32) as follows. Suppose that ρ is such that for
∀q(0) ∈ Q = {q|‖q‖2 ≤ ρ}, ‖α2(t)‖∞ ≤ um . That is, as long as q enters the region
Q, then the state converges to zero in finite time while the control input satisfies
‖α2(t)‖∞ ≤ um . Then, the following switching controller is considered:

u(q(t)) = α(q(t)) =
{

α1(q(t)), t ≤ min{t |‖q(t)‖2 ≤ ρ}
α2(q(t)), t > min{t |‖q(t)‖2 ≤ ρ}. (11.36)

Note that only a single switching is needed for any initial condition. Since α1(q(t))
is a globally asymptotically convergent controller, the switching time is finite. Fur-
thermore, after the switching, the state converges to zero in finite time while the
controller always satisfies the control input constraints |u(t)| ≤ um .

Then, we design the distributed finite-time consensus tracking controller with
input saturation. For each follower, define the consensus tracking errors
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eik =
∑N

j=1
ai j (xik − x jk) + bi (xik − x0k), k = 1, . . . , n, (11.37)

where bi = ai0, i = 1, . . . , N . Similar to the proof of Lemma 11.5, it can be
shown that the finite-time consensus tracking problem for (11.30) and (11.31) is
solved if there exists a finite time T > 0 such that for t ≥ T , we have ei j = 0, i =
1, . . . , N , j = 1, . . . , n.

From (11.37), (11.30), and (11.31), we have that

ėi j = ei( j+1), j = 1, 2, . . . , n − 1,

ėin = hiui −
∑N

j=1
ai j u j − biu0 + hidi −

∑N

j=1
ai j d j ,

(11.38)

where hi = ∑N
j=1 ai j + bi , i = 1, . . . , N .

For the following high-order integrator system,

ėi j = ei( j+1), j = 1, . . . , n − 1,

ėin = α(ei ),
(11.39)

where α(·) is defined in (11.36), we know that it is finite-time stable where ei =
[ei1, . . . , ein]T .

To stabilize the system (11.38) in finite time, we design the control input ui based
on (11.39) using integral sliding mode control techniques. Define the sliding variable
si ∈ R, i = 1, . . . , N as

si = ein + eauxi , ėauxi = −α(ei ) (11.40)

with eauxi (0) = −ein(0). Then we have the following lemma.

Lemma 11.10 Suppose the communication graph G contains a spanning tree with
the leader as the root. If the sliding variables si , i = 1, . . . , N defined as in (11.40)
are kept at 0, then the finite-time consensus tracking problem for (11.30) and (11.31)
is solved along the sliding surfaces.

Proof Note that on the sliding surface, the dynamics of the closed-loop system can
be determined from ṡ = 0 as

ėi j = ei( j+1), j = 1, . . . , n − 1

ėin = α(ei ).

Then it follows that [ei1, . . . , ein] will converge to zero in finite time which means
the consensus tracking problem for (11.30) and (11.31) is solved. �

Next, we design the control inputs such that the sliding surfaces are kept at 0.
From (11.40) and (11.38), we have that
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ṡi =
∑N

j=1
ai j (ui − u j ) + bi (ui − u0) + hidi −

∑N

j=1
ai j d j − α(ei ), (11.41)

where i = 1, . . . , N . The following control input is considered:

ui (t) = −lsgn(si ), (11.42)

where l > 0 is the design parameter. The main result is presented below.

Theorem 11.4 Suppose the communication graph G contains a spanning tree with
the leader as the root, then the finite-time consensus tracking problem for (11.30)
and (11.31) is solved with the distributed controller (11.42) if

2rmax(um + 2hmδ)

λmin(W )
+ C < l ≤ umax,

where rmax = max{r1, . . . , rN }, hm = max
i=1,...,N

{hi }, W is defined in Lemma 11.1, um

is the design parameter of α(·), and C is the upper bound of the leader’s input.

Proof Let s = [s1, . . . , sN ]T , from (11.41), we have ṡ =
−H (lsgn(s) + ū0) + τ − ᾱ where ū0 = [u0, . . . , u0]T , τ = [h1d1 −∑N

j=1 a1 j d j , . . . , hNdN − ∑N
j=1 aN jd j ]T , and ᾱ = [α(e1), . . . , α(eN )]T . Note

that it holds ‖τ‖∞ ≤ 2hmδ and ‖ᾱ‖∞ ≤ um . From Lemma 11.1, we have that there
exists r = [r1, . . . , rN ]T such that both R and W are positive definite. Consider the
Lyapunov function V = ∑N

i=1 ri |si |. The derivative of V satisfies

V̇ ≤ ∑N
i=1 ri sgn(si )

[ ∑N
j=1 ai j

(−Csgn(si ) + Csgn(s j )
) + bi (−Csgn(si ) − u0)

]

− (l − C) sgnT (s)RHsgn(s) + rmax(um + 2hmδ)‖sgn(s)‖1
≤ − [

l−C
2 λmin(W ) − rmax(um + 2hmδ)

] ‖sgn(s)‖1.

Therefore, under the condition 2rmax(um+2hmδ)

λmin(W )
+ C < l, we have that si (t) = 0, i =

1, 2 . . . , N . Then from Lemma 11.10, finite-time consensus tracking of (11.30) and
(11.31) is achieved. �

Remark 11.7 From Theorem 11.4, a sufficient condition for the existence of the
controller gain l is 4rmaxhmδ

λmin(W )
+ C < umax. That is, the input saturation bound has a

lower bound 4rmaxhmδ

λmin(W )
+ C which is related to the bound of the external disturbance,

the communication graph, and the leader’s control input.

Remark 11.8 With the sliding variable design (11.40), the consensus tracking prob-
lem of the high-order NCPS is transformed into a stabilization problem for a first-
order system which facilitates the distributed controller design. Furthermore, the
convergence rate can be easily tuned by properly choosing the design parameters.



288 J. Fu et al.

11.3.3 Input Constrained Robust Finite-Time Consensus
Tracking with Relative Output Measurements

In this section, we consider the case when only the relative output measurement
is available for each agent. Note that the distributed controller (11.42) cannot be
directly implemented in this situation since the agents no longer have access to
ei2, . . . , ein, i = 1, . . . , N which are needed in the construction of si . Note, however,
with the control input (11.42), the closed-loop system takes the form of

ėi j = ei( j+1), j = 1, 2, . . . , n − 1,

ėin = − hi l sgn(si ) +
∑N

j=1
ai j l sgn s j − biu0 + hidi −

∑N

j=1
ai j d j .

(11.43)

Thus, it is easy to see that under controller (11.42) we have
∣
∣
∣e(n)

i1

∣
∣
∣ = |ėin| ≤ 2hi (l +

δ) + biC . Therefore, an (n − 1)-th-order uniform finite-time exact differentiator can
be designed according to Sect. 11.1.3 as

żi j = − λiθsig(zi1 − ei1)
n−i
n − ηi (1 − θ)sig(zi1 − ei1)

n+βi
n

+ zi( j+1), j = 1, . . . , n − 1,

żin = − λnθsgn(zi1 − ei1) − ηn(1 − θ)sig(zi1 − ei1)
1+β,

(11.44)

where i = 1, . . . , N . The uniform convergence time is designed as Tu > 0. Then we
have that for any initial estimation, after t ≥ Tu , it holds zi2 = ei2, . . . , zin = ein for
i = 1, . . . , N .

Based on the above reasoning, when only relative output information is available
for each agent, we modify the distributed controller (11.42) into

ui = −l sgn(si ), si = zin + eauxi , ėauxi = −α̂(êi ), (11.45)

where eauxi (Tu) = −zin(Tu), êi = [ei1, zi2, . . . , zin],

α̂(q(t)) =
{

α1(q(t)), t ≤ min{t |t ≥ Tu, ‖q(t)‖2 ≤ ρ},
α2(q(t)), t > min{t |t ≥ Tu, ‖q(t)‖2 ≤ ρ}

and zi j , i = 1, . . . , N , j = 2, . . . , n are the outputs of the uniform finite-time dif-
ferentiator (11.44). The main result in this section is summarized in the following
theorem.

Theorem 11.5 Suppose the communication graph G defined on the N + 1 agents is
a directed graph which contains a spanning tree with the leader as the root. With the
uniform finite-time differentiator (11.44) and the distributed control input (11.45),
the finite-time consensus tracking problem for (11.30) and (11.31) is solved if
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2rmax(um + 2hmδ)

λmin(W )
+ C < l ≤ umax, (11.46)

where rmax = max{r1, . . . , rN }, hm = max
i=1,...,N

{hi }, W is defined in Lemma 11.1, um

is the design parameter of α(·), and C is the upper bound of the leader’s input.

Proof We divide the convergence process into two phases. The first phase is the
differentiator convergence phase [0, Tu]. From (11.45), the closed-loop system takes
the form of

ėi j = ei( j+1), j = 1, 2, . . . , n − 1,

ėin = − hi l sgn(ŝi ) −
∑N

j=1
ai j u j − biu0 + hidi −

∑N

j=1
ai j d j .

(11.47)

Consider the closed-loop system (11.47) on the time interval [0, Tu]. Take the Lya-
punov function Vi = 1

2e
2
i1 + 1

2e
2
i2 + · · · + 1

2e
2
in , then we have

V̇i ≤ ei1ei2 + ei2ei3 + · · · + ei(n−1)ein +
[
hi (l + 2δ) + biC +

∑N

j=1
ai j l

]
|ein |

≤ 1

2
|ei1|2 + |ei2|2 + · · · + ∣

∣ei(n−1)
∣
∣2 + 1

2
|ein |2 +

[
hi (l + 2δ) + biC +

∑N

j=1
ai j l

]
|ein |

≤ Ki1Vi + Ki2
√
Vi ,

where
Ki1 = 2, Ki2 = √

2
[
hi (l + 2δ) + biC +

∑N

j=1
ai j l

]
.

Thus, it follows Vi (t) ≤ (
e(Ki1/2)t

√
Vi (0) + Ki2/Ki1(e(Ki1/2)t − 1)

)2
, that is, the state

of the closed-loop system will not escape in finite time. For t ≥ Tu , it holds zi2 =
ei2, . . . , zin = ein, i = 1, . . . , N and the controller (11.45) becomes the same as the
state feedback controller (11.42). Then following the same process as in the proof
of Theorem 11.4, we conclude that the finite-time consensus tracking problem for
(11.30) and (11.31) is solved under the condition (11.46). �

Remark 11.9 It is easy to see that the controller (11.45) is bounded. Furthermore,
the proposed control strategy (11.44) and (11.45) only requires relative output mea-
surement. No exchange of control inputs or internal states between neighboring
agents is needed in the controller design. The convergence rate can be easily tuned
by properly choosing the differentiator parameters and the controller parameters.

11.4 Numerical Examples

In this section, several simulation examples are provided to illustrate the performance
of the previously designed controllers for high-orderNCPS subject to input saturation
constraints.
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Fig. 11.1 Illustration of the autonomous vehicle platoon

11.4.1 Input Constrained Robust Consensus Tracking for
High-Order NCPS

In this section, the proposed control strategies are applied to the longitudinal con-
trol of a platoon of autonomous vehicles. In this problem, there exists a fleet of
autonomous vehicles moving along the highway with a leading vehicle which deter-
mines the desired speed (cf. Fig. 11.1). The objective is to design control input for
each follower vehicle such that they maintain the speed of the leader while keeping
desired relative distances between the vehicles. The vehicle platoon may have the
advantages of reducing traffic load, the chance of collision, and also fuel consump-
tion (Chiu et al. 1977; Shladover 1989). Assume that each of the follower vehicle is
only equipped with sensors such as laser or radar to measure relative position with
respect to its immediate preceding vehicle. The interactive relation is then shown in
Fig. 11.1. First, we model the dynamics of each vehicle. Under the assumption of
horizontal road surface and negligiblewind disturbance, each vehicle can bemodeled
as follows (Sheikholeslam and Desoer 1992, 1993):

mi v̇i = miξi − Kdiv
2
i − dmi ,

ξ̇i = − ξi

τi (vi )
+ ui

miτi (vi )
,

(11.48)

where mi is the mass, vi is the velocity, miξi represents the engine force applied to
the i-th vehicle, Kdi denotes the aerodynamic drag coefficient for the i-th vehicle,
and dmi is mechanical drag. τi (vi ) denotes the i-th vehicle’s engine time constant,
and ui represents the throttle input to the vehicle’s engine.

Let xi1 denote the position of the i-th vehicle, xi2 the velocity, and xi3 the accel-
eration. Then, the dynamics of the i-th vehicle can be determined as

ẋi1 = xi2, ẋi2 = xi3, ẋi3 = ai (vi )ui + bi (vi , v̇i ), (11.49)

where

ai (vi ) = 1

miτi (vi )
, bi (vi , v̇i ) = −2

Kdi

mi
vi v̇i − 1

τi (vi )

[

v̇i + Kdi

mi
v2i + dmi

mi

]

.
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With the input transformation

ui = 1

â(vi )
[qi − b̂(vi , v̇i )], (11.50)

where â and b̂ are obtained with the nominal parameters m̂i , τ̂i , K̂di , and d̂mi , it can
be obtained

ẋi1 = xi2, ẋi2 = xi3, ẋi3 = qi + di , (11.51)

where di = ( aâ − 1)qi − ab̂−âb
â . The control objective of the platoon can be expressed

as follows:

xi1 − x(i−1)1 − Ld → 0, xi2 − x02 → 0, i = 1, . . . , N , t → ∞,

where Ld is the desired separation between the vehicles. By denoting x̄i1 = xi1 + i ∗
Ld , i = 0, 1, . . . , N , it can be seen that coordinated tracking of x̄i1 with the leader’s
position x̄01 means xi1 − x(i−1)1 = Ld . Therefore, the platoon control problem can
be transformed into the coordinated tracking problem with the dynamics

˙̄xi1 = xi2, ẋi2 = xi3, ẋi3 = qi + di (11.52)

and the leader
ẋ01 = x02, ẋ02 = x03, ẋ03 = q0. (11.53)

Suppose that the finite actuation power of each vehicle’s engine requires that |qi | ≤
qm . The bound on the disturbances di can also be estimated in practical situations.
Then, the proposed control strategies can be used to design the control input qi while
the original control input ui can be obtained from the input transformation (11.50).

It is easy to see that the communication graph of the platoon satisfies Assumption
11.1. Suppose that the Laplacianmatrix is taken as a11 = Nmax, aii = Nmax, a(i−1)i =
−Nmax, i = 2, . . . , N where the number Nmax is the upper bound of the scale of the
platoon. Then it can be verified that ‖H−1‖∞ ≤ 1 for any N ≤ Nmax. In this case, the
proposed controller (11.23) is fully distributed which only needs the relative position
measurement between the neighboring two vehicles.

For the simulation, consider a platoon of four follower vehicles. The desired
separation between the vehicles is set to 10m under the nominal velocity 25m/s.
Suppose that at the beginning of the platoon maneuvering, all the vehicles
are moving at a constant velocity larger than 25m/s and with the separations
larger than 10m. Specifically, set the initial position of the leader at 0, and
the initial positions of the followers are [−30,−60,−90,−120]. The initial
velocity is set as 28m/s. To make the platoon forming more challenging, sup-
pose that the velocity of the leader is time varying as x02 = 28 − 3 sin(0.2t).
Then, q0 = 0.12 sin(0.2t) which leads to ρ = 0.12. The parameters of the vehi-
cles are m1 = 1300 kg, τ1 = 0.16, Kd1 = 0.3,m2 = 1400 kg, τ2 = 0.22, Kd2 =
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0.35,m3 = 1200 kg, τ3 = 0.18, Kd3 = 0.2,m4 = 1350 kg, τ4 = 0.24, Kd4 = 0.45
as in Seshagiri and Khalil (1989). The nominal parameters of the vehicles are
chosen the same for each vehicle as m = 1300 kg, τ = 0.2, Kd = 0.3. The dis-
turbances are assumed to be dm1 = 100 + 10 sin(0.2t), dm2 = 100 + 15 sin(0.3t),
dm3 = 100 + 10 cos(0.5t), dm4 = 100 + 20 sin(0.1t) with the nominal value set as
dm = 100. Then, the upper bound of the disturbances can be taken as δ = 0.3.

Suppose the Laplacian matrix is taken with Nmax = 4. Then we have

H =

⎡

⎢
⎢
⎣

4 0 0 0
−4 4 0 0
0 −4 4 0
0 0 −4 4

⎤

⎥
⎥
⎦ ,

which leads to ‖H‖−1∞ = 1. It is assumed that the engine power limit leads to input
saturation qm = 4. With the above setting, the distributed controller (11.23) which
uses only relative positionmeasurement between theneighboringvehicles is designed
with the parameters M3 = L3 = 3.4, M2 = L2 = 1.6, M1 = L1 = 0.6, ks = 0.1,
λ1 = 1.1, λ2 = 1.5, λ3 = 2, and τ = 0.1, ki = 30 determined according to Theorem
11.3. The initial conditions of the observers are set to zero. The simulation results
are given in Figs. 11.2, 11.3, 11.4, and 11.5.

It can be observed that the desired separations between the vehicles are achieved
successfully. Furthermore, the control inputs qi are bounded by qm = 4 during the
whole maneuver.
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Fig. 11.2 Intermediate inputs of the vehicles
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Fig. 11.4 Velocities of the
vehicles
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Fig. 11.6 Communication
graphs

11.4.2 Input Constrained Robust Finite-Time Consensus
Tracking for High-Order NCPS

In this section, we demonstrate the performance of the proposed robust finite-time
convergent consensus controllers for high-order NCPS subject to input saturation
constraints. Consider a leader–follower network of five followers and one leader with
third-order dynamics as shown in (11.30) and (11.31) where the external disturbance
di = (0.5 + 0.5 ∗ i) sin(0.2 ∗ i ∗ t).

The communication graph G is a directed graph as shown in Fig. 11.6. It is easy
to see that G contains a spanning tree with the leader as the root. The element ai j
i, j = 1, 2, . . . , 5 of the adjacent matrix equals to 1 or 0 where ai j = 1 if there is
information flow from agent j to agent i and ai j = 0 otherwise. The leader’s initial
condition is set as [3; 0; 0] and the control input is chosen such that |u0| ≤ 3.

We consider the case when only relative output measurements are available. The
uniformfinite-time exact observer is designedwith the parameters λ1 = 10, λ2 = 25,
λ3 = 40, η1 = 1, η2 = 3, η3 = 3, Tl = 0.1, and Tu = 15 with the initial states set-
ting to zero. The tracking controller (11.45) is implemented for each follower with
parameters k1 = 1/6, k2 = 2/3, k3 = 4, ε1 = 8, ε2 = 5/4, ε3 = 1/4, c1 = 1, c2 = 3,
c3 = 3, ν1 = 7/10, ν2 = 7/9, ν3 = 7/8, ρ = 0.1, and l = 10 which are determined
from Theorem 11.5. The followers are assumed to start moving from rest with initial
positions chosen randomly in the interval [−10, 10]. The tracking results of the fol-
lowers are shown in Fig. 11.7.We see that the finite-time consensus tracking problem
is solved with the proposed control strategy. Furthermore, the mode switching of the
controllers α(·) for each follower in this case is shown in Fig. 11.8.
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Fig. 11.7 Finite-time
consensus tracking with
relative output measurements
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11.5 Conclusions

In this chapter, the consensus tracking problem for high-order NCPS subject to input
saturation constraints is studied and several effective controller design methods have
been proposed which achieve asymptotic and finite-time convergence, respectively.
In Sect. 11.2, the robust global coordinated tracking problem has been studied for
a class of high-order NCPS with general directed communication graphs subject to
input saturation. Some new kinds of nonlinear distributed controllers have been pro-
posed which achieve global coordinated tracking with only local and relative mea-
surements. Digital communication between neighboring agents has been avoided.
Both the cases with static and dynamic leaders have been considered. In Sect. 11.3,
a switching control strategy is proposed to realize finite-time consensus control of
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high-order NCPS. The sliding mode control method is employed to guarantee that
the sliding variables remain to be zero using the distributed control input. Application
in the platoon control of autonomous vehicles has been presented to illustrate the
effectiveness of the proposed controllers. Some limitations of the obtained results
include that they are developed only for systems with matched disturbances and
only consensus tracking task is considered for the NCPS. Therefore, future work
includes considering more general system dynamics and richer classes of coordina-
tion tasks such as containment control and coordinated searching in the presence of
input saturation.
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Chapter 12
Optimal Subsystem Decomposition
and Resilient Distributed State
Estimation for Wastewater Treatment
Plants

Langwen Zhang, Miaomiao Xie, Wei Xie, and Bohui Wang

12.1 Introduction

The wastewater treatment plant (WWTP) is an important step in water recycling
(Qu et al. 2013). WWTP is usually composed of several interconnected operation
units. State estimation is a process of constructing system state based on output mea-
surements and system model. State estimation is important for WWTP since many
related states in WWTP cannot be measured or affected by significant noise. Cyber-
physical systems (CPS) integrates communication network, engineering, comput-
ing, and physical process components and uses the network to realize the interaction
between computing processes and physical processes (Zhang et al. 2021) and oper-
ate physical entities in a remote, reliable, real-time, secure (Wang et al. 2021), and
cooperative way (Ding et al. 2020). When the distributed state estimation of sewage
treatment system is carried out, in order to improve the efficiency, two or more
computer equipment are often used for calculation and processing. That is, each
computer processes a subsystem state estimation. Among the subsystems, the state
information needs to be exchanged through the communication network. Therefore,
WWTP can be regarded as an information physical system in which physical pro-
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cesses and networks are connected (Anter et al. 2020;Wei et al. 2020). In Barbu et al.
(2011), deterministic and stochastic observers were developed. A univariate statis-
tical technique was proposed in Baklouti et al. (2018) to enhance the monitoring of
WWTP and the state estimation of two-time scale nonlinear systems was considered
in Kiss et al. (2011). In Busch et al. (2013), a synthesis method based on optimiza-
tion for the design and estimation of sensor networks was proposed and was applied
to the WWTP system. Extended Kalman filter (EKF) and unscented Kalman filter
(UKF) were used to estimate the unmeasurable states in WWTP system in Wahab
et al. (2012). In Yin and Liu (2018), EKF and the moving horizon estimator (MHE)
estimators were proposed based on model reduction for improved computational
efficiency. Also, there are some researches on distributed state estimation.

WWTP is considered critical infrastructure and their resiliency is vital. The
resilience against natural disasters (storm and rain) as opposed to cyber-incidents
is critical. Performing distributed state estimation is one of the effective ways to
improve the resiliency of the system, compared to a centralized scheme applied to
the whole system. There are some existing results on the distributed state estimation
method for the WWTP system, i.e., in Zeng et al. (2016), distributed EKF (DEKF)
was applied toWWTP system, and distributedMHEwas studied in Yin et al. (2018).
However, the existing distribution control and estimation usually assume that the
system decomposition is available. A systematic approach to decompose the large-
scale system into subsystems has not yet received enough attention and is crucial
for distributed state estimation (Dunbar 2007). When applying the distributed state
estimation, a good subsystem decomposition with weak inter-subsystem interactions
can improve the resiliency of the system.

In Heo et al. (2015), there are some important results about the decomposition
algorithm of distributed control system. In Yin et al. (2016), a subsystem decomposi-
tion method for distributed estimation was proposed and applied to WWTP system.
In Yin and Liu (2019), the existing community discovery algorithm was extended
to the common framework of distributed state estimation and control. However, the
above subsystem partition based on community discovery algorithm only considers
the correlation degree of the system and ignores the connection strength between
different variables. In Zhang et al. (2019), a method of subsystem partition based
on weighted edge group detection was proposed and was applied in distributed state
estimation. However, the weighted community discovery algorithm for distributed
control has not been investigated.Also, there are little results about subsystemdecom-
position method for WWTP system. Thus, community structure detection is used to
decompose the WWTP into smaller groups, such that the intra-connection within
each group is made much stronger than the interaction among different groups. Sub-
system models that are appropriate for distributed state estimation are configured
based on the variables assigned to the groups.

In this work, an optimal subsystem decompositionmethod is investigated for com-
plex cyber-physical systems for the purpose of improving the resiliency under the
distributed state estimation. The main contributions lie in the following: (1) a sub-
system decomposition method based on community structure discovery algorithm is
proposed for the WWTP system; (2) to deal with the natural disasters and the unre-
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liable communication networks, a resilient distributed framework is proposed with
information compensation strategy; (3) comparative study is carried out for WWTP
system to show that the subsystem decomposition and resilient distributed state esti-
mation scheme improves the resiliency of the system, compared to a centralized
scheme applied to the whole system.

12.2 Model Description of Wastewater Treatment Plants

In this work, optimal subsystem decomposition and distributed EKF methods are
designed. The theoretical results will be validated in a benchmark WWTP system
(Alex et al. 2008). The benchmark WWTP system model will be reviewed in this
part and the motivation for decomposing the WWTP system will be derived. The
plant layout is shown in Fig. 12.1. In this process, the five activated sludge reactors
are composed of two sections: (1) The anoxic section: reactor 1 and reactor 2, where
the bacteria convert nitrate into nitrogen (i.e., denitrification biological reactions).
(2) The aerated section: reactor 3, reactor 4, and reactor 5, where the bacteria oxidize
ammonium to nitrate (i.e., nitrification reactions).

For each reactor, the following variables (k = 1 to 5) are defined: flow rate: Qk ;
concentration: Zas,k ; the volume of anoxic section: Vas,1 = Vas,2 = 1000m3; the
volume of aerobic section: Vas,3 = Vas,4 = Vas,5 = 1333m3; reaction rate: ri . In this
model, the general equation of mass balance of bioreactor (two anoxic reactors and
three aerobic reactors) follows from Alex et al. (2008).

For reactor 1 (k = 1),

dZas,1

dt
= 1

Vas,1
(Qint Zint + Qr Zr + Qi Zi + rZ ,1Vas,1 − Q1Zas,1), (12.1)

Q1 = Qint + Qr + Qi . (12.2)

Fig. 12.1 General overview of the BSM1 plant
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For reactor 2–5 (k = 2 − 5),

dZas,k

dt
= 1

Vas,k
(Qk−1Zas,k−1 + rZ ,kVas,k − Qk Zas,k), (12.3)

Qk = Qk−1. (12.4)

Special case for oxygen (SO,k):

dSO,as,k

dt
= 1

Vas,k
(Qk−1SO,as,k−1 + rZ ,kVas,k + (KLa)kVas,k(S

∗
O − SO,as,k) − Qk SO,as,k),

(12.5)
where the saturation concentration of oxygen is S∗

O = 8g · m3, and rk denotes the
conversion rate of different compounds in the reactor; the detailed calculation of rZ ,k

can be found in Alex et al. (2008). The flow rate of the reaction process in Fig. 12.1
satisfies the following:

Zint = Zas,5,

Z f = Zas,5,

Zw = Zr ,

Q f = Qe + Qr + Qw = Qe + Qu . (12.6)

The solid flux caused by gravity is Js = vs(Xsc)Xsc, where Xsc denotes the total
sludge concentration (i.e., including XI , XS , XB,H , XB,A, XP , and XND). The double
exponential settlement velocity function is selected:

vs(Xsc) = max
[
0,min

{
v

′
0, v0

(
e−rh(Xsc−Xmin) − e−rp(Xsc−Xmin)

)}]
, (12.7)

where Xmin = fns X f , X f is the total solids concentration from the bioreactor. The
upward velocity (vup) and the downward velocity (vdn) are calculated as follows:

vup = Qu

A = Qr+Qw

A ,

vdn = Qe

A . (12.8)

According to these symbols, the mass balance of sludge is written as follows:

m = 1 : dXsc,m

dt
= vdn(Xsc,m+1 − Xsc,m) + min(Js,m , Jsc,m+1)

zm
(12.9a)

m = 2 − 5 : dXsc,m

dt
= vdn(Xsc,m+1 − Xsc,m) + min(Js,m , Jsc,m+1) − min(Js,m , Jsc,m−1)

zm
(12.9b)

m = 6 : dXsc,m

dt
=

Q f X f
A + Jsc,m+1 − (vup + vdn)Xsc,m − min(Js,m , Jsc,m−1)

zm
(12.9c)
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m = 7 − 9 : dXsc,m

dt
= vup(Xsc,m−1 − Xsc,m) + Jsc,m+1 − Js,m

zm
(12.9d)

m = 10 : dXsc,m

dt
= vup(Xsc,m−1 − Xsc,m) − Js,m

zm
, (12.9e)

where the critical concentration is Xt = 3000g/m3, and the detailed calculation of
Jsc,m can be found in Alex et al. (2008).

For soluble components (i.e., SI , SS , SO , SNO , SNH , SND , and SALK ), each layer
represents the volume of complete mixing, and the concentration of soluble compo-
nents is calculated accordingly.

m = 1 − 5 : dZsc,m

dt
= vdn(Zsc,m+1 − Zsc,m)

zm
(12.10a)

m = 6 : dZsc,m

dt
=

Q f X f

A − (vup + vdn)Zsc,m

zm
(12.10b)

m = 7 − 10 : dZsc,m

dt
= vup(Zsc,m−1 − Zsc,m)

zm
, (12.10c)

where the concentration in the recycle and waste stream is equal to that in the first
layer (bottom layer), that is, Zu = Zsc,1.

According to the concentration in compartment 5 of the activated sludge reactor,
the sludge concentration can be calculated directly as follows:

X f = 1

f rCOD−SS
(XS,as,5 + XP,as,5 + XI,as,5 + XB,H,as,5 + XB,A,as,5), (12.11)

where the conversion coefficient f rCOD−SS from COD to SS is equal to 4/3. The
same principle applies X − u (in the underflow of the secondary sedimentation tank)
and X − e (at the outlet of the secondary sedimentation tank).

Then, Eqs. (12.1)–(12.11) form the WWTP system model. Typically, there are
145 states in the system and it is difficult to design centralized controller or estimator
for the WWTP system. Thus, distributed control/estimation method is necessary. To
do this, we have to (1) decompose the whole system into subsystems and (2) design
distributed controller/estimator.

12.3 Subsystem Decomposition

In this section, we will present a subsystem decomposition method for WWTP sys-
tem. The existing decomposition method usually ignores the weights on the edges.
We will present a weighted directed graph-based subsystem decomposition method
for large-scale system. The whole system will be represented by a weighted directed
graph, and the community structure detection method is derived for decomposition.
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The dynamic model of WWTP system can be formulated as follows:

ẋ(t) = f (x(t), u(t)) (12.12a)

y(t) = h(x(t)), (12.12b)

where x ∈ R
nx , u ∈ R

ny , and y ∈ R
ny , respectively, represent the state vector of the

system, the vector of inputs, and the vector of measured outputs, and f and h are
two vector fields describing the dynamics of the nonlinear system and the output
relation, respectively. The objective is to decompose system (12.12) into subsystems
with the form:

ẋi (t) = fi (xi (t), Xi (t), ui (t),Ui (t)) (12.13a)

yi (t) = hi (xi (t)), (12.13b)

where i = 1, . . . , p, with p being the number of subsystems, xi ∈ R
nxi denotes the

state vector of the i th subsystem, ui ∈ R
nui denotes the input vector of the i th subsys-

tem, yi ∈ R
nyi is the output vector of the i th subsystem, and Xi andUi are the vector

that comprises the states and input of all the subsystems that affect the dynamics of
subsystem i directly.

The weighted subsystem decomposition method is extended from our early work
(Zhang et al. 2019) to simultaneous state estimation and control (see Fig. 12.2). In the
proposed approach, system (12.12) is characterized by a weighted directed graph.
The graph characterizes the connectivity between the state, input, and measured
output variables. When the entire system is not observable or not controllable, we
have to adjust the system structure to get a observable or controllable system. For the
observation, we can add more sensors to make sure that the observability matrix is
full rank. Also, we can addmore control variables to guarantee that the controllability
matrix is full rank.

Specifically, the weighted directed graph is created based on the methods for
generating unweighted directed graphs described. All the state, input, and measured
output variables are considered as vertices of a graph, which are connected through
directed edges. Let fi , i = 1, · · · , nx , denote the i th element of the vector field f ,
and h j , j = 1, . . . , ny , denote the j th element of the vector field h. In addition, let
us denote xi , i = 1, . . . , nx , as the i th element of x , denote uk, k = 1, . . . , nu , as the
j th element of u, and denote y j , j = 1, . . . , ny , as the j th element of y. The edges
in a directed graph are constructed based on the following rules:

• State-to-state edge: there is a unidirectional edge from a state vertex xi to another
state vertex xl , if

∂ fl (x,u)

∂xi
�= 0, l, i = 1, . . . , nx .

• State-to-input edge: there is a unidirectional edge from an output vertex y j to a
state vertex xl , if

∂ fi (x,u)

∂uk
�= 0, i = 1, . . . , nx , k = 1, . . . , nu .

• State-to-output edge: there is a bidirectional edge from an output vertex y j to a

state vertex xl , if
∂h j (x)

∂xl
�= 0, l = 1, . . . , nx , j = 1, . . . , ny .
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Fig. 12.2 The flowchart of
the optimal subsystem
decomposition

Then, the weighted directed graphs are constructed with G = (V, E), where V =
{xi , yi , ui } is set of the vertices and E is the set of the edges. The edges are constructed
as follows:

S(uk, xi ) = ∂ fi (x, u)

∂uk

∣∣
(xs ,us )

(12.14a)

S(xi , xl) = ∂ fl(x, u)

∂xi

∣∣
(xs ,us )

(12.14b)

S(xl , y j ) = ∂h j (x)

∂xl

∣∣
x=xs

, (12.14c)

where S(xi , xl) is the sensitivity for a state-to-state pair (xi , x j ) and S(xl , y j ) is the
sensitivity for a state-to-output pair (xl , y j ). A sensitivity matrix is constructed as
follows:

S =
⎡
⎣

A B C
T

0nu×nx 0nu×nu 0nu×ny

C 0ny×nu 0ny×ny

⎤
⎦

nx+nu+ny

, (12.15)

where Ā, B̄, and C̄ are obtained by taking the Jacobian of system (12.12) at (xs, us),
respectively, as follows:
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A =

⎡
⎢⎢⎣

∂ f1
∂x1

· · · ∂ f1
∂xnx

...
. . .

...
∂ fnx
∂x1

· · · ∂ fnx
∂xnx

⎤
⎥⎥⎦

(xs ,us )

, B =

⎡
⎢⎢⎣

∂ f1
∂u1

· · · ∂ f1
∂unu

...
. . .

...
∂ fnx
∂u1

· · · ∂ fnx
∂unu

⎤
⎥⎥⎦

(xs ,us )

, C =

⎡
⎢⎢⎣

∂h1
∂x1

· · · ∂h1
∂xny

...
. . .

...
∂hny
∂x1

· · · ∂hny
∂xny

⎤
⎥⎥⎦

x=xs

.

(12.16)
The weights of the edges are defined as follows:

• Weight of state-to-state edge:

w(xi , xl) =
⎧
⎨
⎩

1

|S(xi , xl)| , if
∂ fl(x, u)

∂xi

∣∣∣
(xs ,us )

�= 0, l, i = 1, . . . , nx

∞, otherwise.
(12.17)

• Weight of input-to-state edge:

w(uk , xi ) =
⎧⎨
⎩

1

|S(uk , xi )| , if
∂ fi (x, u)

∂uk

∣∣∣
(xs ,us )

�= 0, k = 1, . . . , nu , i = 1, . . . , nx

∞, otherwise.
(12.18)

• Weight of state-to-output edge:

w(xl, y j ) =
⎧⎨
⎩

1

|S(xl , y j )| , if
∂h j (x)

∂xl

∣∣∣
xs

�= 0, l = 1, . . . , nx , j = 1, . . . , ny

∞, otherwise.
(12.19)

The shortest paths can be identified for constructing the adjacency matrix. The
lengths of the path Lil(Pil) from xi to xl and xl to an output vertex y j have been
given in Zhang et al. (2019). Additionally, we need to take the connection from uk to
a state vertex xi and path from a input vertex uk to an output vertex y j into account.

The length of the path Lki (Pki ) from a input vertex uk to a state vertex xi is given
as follows:

Lki (Pki ) = w
(
uk, x

(k,i)
1

)
+ · · · + w

(
x (k,i)
N (Pki )

, xi
)

. (12.20)

The corresponding shortest path d(uk, xi ) is calculated as follows:

d(uk, xi ) = min
Pki∈Pki

Lki (Pki )

= min
Pki∈Pki

⎧
⎪⎨
⎪⎩

1∣∣∣S
(
uk, x

(k,i)
1

) ∣∣∣
α + · · · + 1∣∣∣S

(
x (k,i)
N (Pki )

, xi
) ∣∣∣

α

⎫
⎪⎬
⎪⎭

,
(12.21)

where k = 1, . . . , nu , i = 1, . . . , nx , and Pki and Pki represent the set of all the paths
and one of path from a input vertex uk to a state vertex xi , respectively.
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The length of the path Lkj (Pkj ) from a input vertex uk to an output vertex y j is
given as follows:

Lkj (Pkj ) = w
(
uk, x

(k, j)
1

)
+ · · · + w

(
x (k, j)
N (Pkj )

, y j
)

. (12.22)

The corresponding shortest path d(uk, y j ) is calculated as follows:

d(uk, y j ) = min
Pkj∈Pk j

Lk j (Pkj )

= min
Pkj∈Pk j

⎧⎪⎨
⎪⎩

1∣∣∣S
(
uk, x

(k, j)
1

) ∣∣∣
α + · · · + 1∣∣∣S

(
x (k, j)
N (Pkj )

, y j
) ∣∣∣

α

⎫⎪⎬
⎪⎭

,
(12.23)

where k = 1, . . . , nu , j = 1, . . . , ny , andPk j and Pkj represent the set of all the paths
and one of path from a input vertex uk to an output vertex y j , respectively.

The length of the path L jm(Pjm) from an output vertex y j to another output vertex
ym is given as follows:

L jm(Pjm) = w
(
y j , x

( j,m)

1

)
+ · · · + w

(
x ( j,m)

N (Pjm ), ym
)

. (12.24)

The corresponding shortest path d(y j , ym) is calculated as follows:

d(y j , ym) = min
Pjm∈P jm

L jm(Pjm)

= min
Pjm∈P jm

⎧⎪⎨
⎪⎩

1∣∣∣S
(
y j , x

( j,m)

1

) ∣∣∣
α + · · · + 1∣∣∣S

(
x ( j,m)

N (Pjm ), ym
) ∣∣∣

α

⎫⎪⎬
⎪⎭

,
(12.25)

where j,m = 1, . . . , ny , and P jm and Pjm represent the set of all the paths and one
of path from an output vertex y j to another output vertex ym , respectively.

An adjacency matrix Aw ∈ R
na×na involving all the vertices is then constructed

based on d(xi , xl), d(xl , y j ), d(uk, xi ), d(uk, y j ), and d(y j , ym), i, l = 1, . . . , nx ,
k = 1, . . . , nu , j,m = 1, . . . , ny :

Aw =
⎡
⎣
Aw,11 Aw,12 A

T
w,31

0nu×nx 0nu×nu 0nu×ny

Aw,31 Aw,32 Aw,33

⎤
⎦

na×na

, (12.26)

where Aw,11, Aw,12, Aw,31, Aw,32, and Aw,33 are constructed as follows:
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Aw,11 =

⎡
⎢⎢⎣

1
d(x1,x1)

· · · 1
d(x1,xnx )

...
. . .

...
1

d(xnx ,x1)
· · · 1

d(xnx ,xnx )

⎤
⎥⎥⎦ , Aw,12 =

⎡
⎢⎢⎣

1
d(u1,x1)

· · · 1
d(u1,xnx )

...
. . .

...
1

d(unu ,x1)
· · · 1

d(unu ,xnx )

⎤
⎥⎥⎦ ,

Aw,31 =

⎡
⎢⎢⎣

1
d(x1,y1)

· · · 1
d(x1,yny )

...
. . .

...
1

d(xnx ,y1)
· · · 1

d(xnx ,yny )

⎤
⎥⎥⎦ , Aw,32 =

⎡
⎢⎢⎣

1
d(u1,y1)

· · · 1
d(u1,yny )

...
. . .

...
1

d(unu ,y1)
· · · 1

d(unu ,yny )

⎤
⎥⎥⎦ ,

Aw,33 =

⎡
⎢⎢⎣

1
d(y1,y1)

· · · 1
d(y1,yny )

...
. . .

...
1

d(yny ,y1)
· · · 1

d(yny ,yny )

⎤
⎥⎥⎦ .

(12.27)

The weighted adjacency matrix Aw is constructed following (Zhang et al. 2019).
The problem of subsystem decomposition is equivalent to performing community
structure detection by finding a higher value of modularity Q. Community struc-
ture detection (Zhang et al. 2019) is used to decompose the network into smaller
groups, such that the intra-connection within each group is made much stronger than
the interaction among different groups. Subsystem models that are appropriate for
distributed state estimation are configured based on the variables assigned to the
groups. To this end, we have constructed the subsystem model for distributed state
estimation. In the following section, we will present a resilient distributed estimator
for WWTP system.

12.4 Resilient Distributed State Estimator Design

In distributed state estimation design, the distributed operation of each subsystem
is usually carried out by multiple physical devices and the subsystem information
needs to be exchanged. The physical equipment operation is supported by the com-
munication network, and the subsystem information is transmitted through the com-
munication network. Because the communication network may be unreliable, the
data exchanged between subsystems may be altered, and they may be damaged by
malicious network attacks. There are two common types of attacks, denial-of-service
attack (DoS) and false data injection (FDI). DoS attack usually blocks the informa-
tion flow between the sending device and the receiving device, thus increasing the
packet loss rate in the communication process. FDI attack will hijack network nodes
or physical devices and inject wrong or useless data information into the system,
seriously endangering the safe and reliable operation of the system. To deal with the
unreliable communication networks, a resilient distributed framework is proposed
with information compensation strategy.

Based on the decomposed subsystems, distributed state estimator will be designed
to show the improvement of the resiliency compared to the centralized state estimator.
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During the distributed state estimator design, the subestimators will work colorably
tomake a coordination. Denote X̂i (tk−1) as the latest subsystem estimate information
of X(i)(t) for time t ∈ [tk−1, tk] available to filter i . The communication network can
be unreliable, i.e., X̂i (tk−1) is attacked or lost. When the communication network
is suffering FDI attack, the exchanged status will change to X̂i (tk−1) = X̂i (tk−1) +
Xa(tk−1). Thus, resilient distributed state estimator is necessary.

In the designed resilient DEKF, the attack is evaluated before each communication
between subsystems with following strategy:

a =
{
1, if ‖yi (tk−1) − Ci X̂i (tk−1)‖ > Δ or X̂i (tk−1) is not received

0, if ‖yi (tk−1) − Ci X̂i (tk−1)‖ ≤ Δ.
(12.28)

X̂i (tk−1) =

⎧⎪⎨
⎪⎩

X̂i (tk−1), if a = 0

X̂i (tk−2) +
∫ tk−1

tk−2

fi (x̂i (tk−2), X̂i (t), ui (t),Ui (t)))dt, if a = 1.

(12.29)
In the resilient distributedEKFdesign, each local filter is designed as a continuous–

discrete EKF. The resilient distributed EKF is implemented with the prediction step
and update step.

(1) Prediction step:

x̂i (tk |tk−1) = x̂i (tk−1) +
∫ tk

tk−1

fi (x̂i (t), X̂i (tk−1), ui (t),Ui (t))dt, (12.30)

Pi (tk |tk−1) = Ai (tk−1)Pi (tk−1)Ai (tk−1)
T + Qi . (12.31)

(2) Update step:

Ki (tk) = Pi (tk |tk−1)C
T
i

[
Ci Pi (tk |tk−1)C

T
i + Ri

]−1
, (12.32)

x̂i (tk) = x̂i (tk |tk−1) + Ki (tk)
[
yi (tk) − Ci x̂i (tk |tk−1)

]
, (12.33)

Pi (tk) = [I − Ki (tk)Ci ] Pi (tk |tk−1), (12.34)

where x̂i (tk |tk−1) denotes the state prediction at time tk , and, Pi (tk−1) is used to
denote the error covariance matrix of x(i)(tk−1). Pi (tk |tk−1) refer to the predicted
error covariance matrix for time tk . Qi and Ri are the covariances of process noise
and measurement noise of subsystem i , respectively; Ai (tk−1) is the Jacobian of f(i)
with respect to x(i) at time tk−1; and Ki (tk) is the filter gain at tk .

To show the derivation of the distributed EKF algorithm, the system is discretized
at time interval Δ, such that tk = kΔ:
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xi (tk) = fi (xi (tk−1), Xi (tk−1), ui (tk−1),Ui (tk−1)) + wi (tk−1) (12.35a)

yi (tk) = hi (xi (tk)) + vi (tk). (12.35b)

Assuming that the estimated error between the estimated value and the real
value and the prediction error between the predicted value and the real value are
ei (tk) = xi (tk) − x̂i (tk) and ei (tk |tk−1) = xi (tk) − x̂i (tk |tk−1), respectively, and the
estimation error covariance matrix and the prediction error covariance matrix are
Pi (tk) = E{ei (tk)eTi (tk)} and Pi (tk |tk−1) = E{ei (tk |tk−1)eTi (tk |tk−1)}, respectively,
where E{·} denotes mathematical expectation, then x̂i (tk |tk−1) and x̂i (tk) are

x̂i (tk |tk−1) = x̂i (tk−1) +
∫ tk

tk−1

fi (x̂i (t), X̂i (tk−1), ui (t),Ui (t)dt

x̂i (tk) = x̂i (tk |tk−1) + Ki (tk)[yi (tk) − hi (x̂i (tk |tk−1))],
(12.36)

where Ki (tk) is the filter gain at tk . The Taylor expansion of yi (tk) in Eq. (12.35) at
x̂i (tk |tk−1)

yi (tk) = hi (x̂i (tk |tk−1)) + Ci (xi (tk) − x̂i (tk |tk−1)) + vi (tk). (12.37)

So the estimation error and the estimation error covariance matrix are

ei (tk) = xi (tk) − x̂i (tk) = xi (tk) − x̂i (tk |tk−1) − Ki (tk)[yi (tk) − hi (x̂i (tk |tk−1))]
= xi (tk) − x̂i (tk |tk−1) − Ki (tk)[Ci (xi (tk) − x̂i (tk |tk−1)) + vi (tk)]
= (I − Ki (tk)Ci )(xi (tk) − x̂i (tk |tk−1)) − Ki (tk)vi (tk),

(12.38)
Pi (tk) = E{ei (tk)eTi (tk)}

= E{[(I − Ki (tk)Ci )(xi (tk) − x̂i (tk |tk−1)) − Ki (tk)vi (tk)]
[(I − Ki (tk)Ci )(xi (tk) − x̂i (tk |tk−1)) − Ki (tk)vi (tk)]T }

= (I − Ki (tk)Ci )E{ei (tk |tk−1)e
T
i (k|tk−1)}(I − Ki (tk)Ci )

T + Ki (tk)Ri K
T
i (tk)

= (I − Ki (tk)Ci )Pi (tk |tk−1)(I − Ki (tk)Ci )
T + Ki (tk)Ri K

T
i (tk).

(12.39)

Because the diagonal element of Pi (tk) is the square of the estimation error, the
trace of the matrix (expressed by T [·]) is the mean square deviation, that is,

T [Pi (tk)] = T [Pi (tk |tk−1)] − 2T [Ki (tk)Ci Pi (tk |tk−1)]
+ T [Ki (tk)(Ci Pi (tk |tk−1)C

T
i + Ri )K

T
i (tk)].

(12.40)

To make the estimated value closer to the real value, the trace above must be as
small as possible. Therefore, it is necessary to obtain an appropriate Kalman gain
Ki (tk) to minimize the trace. The implication is to make the partial derivative of the
trace to Ki (tk) is zero, that is,
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dT [Pi (tk)]
dKi (tk)

= −2(Ci Pi (tk |tk−1))
T + 2Ki (tk)(Ci Pi (tk |tk−1)C

T
i + Ri ) = 0.

(12.41)
Furthermore, we have (12.32) and (12.34). The Taylor expansion of xi (tk) in Eq.

(12.35) at (x̂i (tk), X̂i (tk−1)):

xi (tk) = fi (x̂i (tk−1), X̂i (tk−1), ui (tk−1),Ui (tk−1))

+ Ai (tk−1)(xi (tk−1) − x̂i (tk−1)) + wi (tk−1),
(12.42)

where Ai (tk−1) is the Jacobian of f(i) with respect to x(i) at time tk−1. Discretize
x̂i (tk |tk−1) in Eq. (12.36):

x̂i (tk |tk−1) = fi (x̂i (tk−1), X̂i (tk−1), ui (tk−1),Ui (tk−1)). (12.43)

So the prediction error and its mathematical expectation are

ei (tk |tk−1) = xi (tk) − x̂i (tk |tk−1)

= Ai (tk−1)(xi (tk−1) − x̂i (tk−1)) + wi (tk−1),
(12.44)

E{ei (tk |tk−1)e
T
i (tk |tk−1)}

=E{[Ai (tk−1)(xi (tk−1) − x̂i (tk−1)) + wi (tk−1)]
[Ai (tk−1)(xi (tk−1) − x̂i (tk−1)) + wi (tk−1)]T }

=Ai (tk−1)E{[xi (tk−1) − x̂i (tk−1)][xi (tk−1) − x̂i (tk−1)]T )}AT
i (tk−1) + Qi .

(12.45)

To this end, we get (12.31).
An algorithm is adopted for distributed EKFs to work collaboratively in this

work. It is assumed that each local filter shares the state estimates with its interacting
subsystem for each sampling periods. The resilient distributed EKF algorithm is
implemented:

• Step 1: At t0 = 0, initialize xi (0), Pi (t0), i = 1, . . . , p.
• Step 2: For time tk > 0, each local estimator i receives the measured output of the
subsystem i , i.e., yi (tk).

• Step 3: Each distributed EKF receives the state estimates of the interacting sub-
systems at the time tk−1.

• Step 4: Check the communication network with (12.28) and set X̂i (tk−1) using
(12.29).

• Step 5: Based on the latest X̂(i)(tk−1), each EKF i calculates the state esti-
mates x̂i (tk), i = 1, . . . , p. The estimate of the entire system state is x̂(tk) =[
x̂1(tk)T . . . x̂ p(tk)T

]T
.

• Step 6: At k = k + 1, go to Step 2.
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12.5 Simulation

In this section, the proposed subsystem decomposition method is validated by
decomposing the subsystem model of WWTP system. The resilient distributed EKF
under different subsystem methods is tested to show the efficiency of improving the
resiliency of the system.

12.5.1 Subsystem Decomposition

In this section, the WWTP system will be divided into two sub-
systems for distributed state estimation. The input variables are u =
[Qi , Qint , KLa3, KLa4, KLa5, Qr , Qw]T . We use the initial conditions shown in
Tables12.1 and 12.2 and us = [18446, 18446, 55338, 240, 240, 84, 18446, 385]T
as the working point (xs, us).

Two subsystem models are shown in Table12.3, in which Decomposition 1 is
directly divided according to the physical structure (Zeng et al. 2016) and Decom-
position 2 is obtained by the proposed method in this work. As shown in Table12.3,
considering the circulating f low from the secondary clarifier to the first anoxic reac-
tor, Decomposition 1 divides the secondary clarifier and and anoxic section (i.e.,
reactor 1 and reactor 2) into a subsystem and aerated section (i.e., reactor 3, reactor
4, and reactor 5) into another subsystem. It can be seen that when divided by struc-
ture, a reactor is considered as a whole, and the connections between internal states
are not considered. While Decomposition 2 considers both the number and strength

Table 12.1 Initial condition of the biological reactor

i 2 3 4 5 1 Units

SI,i 30 30 30 30 30 g COD/m3

SS,i 2.81 1.46 1.15 1.00 0.89 g COD/m3

XI,i 1149.13 1149.13 1149.13 1149.13 1149.13 g COD/m3

XS,i 82.13 76.39 64.85 55.69 49.31 g COD/m3

XB,H,i 2551.77 2553.38 2557.13 2559.18 2559.34 g COD/m3

XB,A,i 148.39 148.31 148.94 149.53 149.80 g COD/m3

XP,i 448.85 449.52 450.42 451.31 452.21 g COD/m3

SO,i 0.004299 0.00006313 1.72 2.43 0.49 g (−COD)/m3

SNO,i 5.37 3.66 6.54 9.30 10.42 g N/m3

SNH,i 7.92 8.34 5.55 2.97 1.73 g N/m3

SND,i 1.22 0.88 0.83 0.77 0.69 g N/m3

XND,i 5.28 5.03 4.39 3.88 3.53 g N/m3

SALK ,i 4.93 5.08 4.67 4.29 4.13 mol/m3
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Table 12.2 Initial condition of the secondary clarifier
j X j SI, j SS, j SO, j SNO, j SN H, j SN D, j SALK , j

1 6393.98 30 0.89 0.49 10.42 1.73 0.69 4.13

2 356.07 30 0.89 0.49 10.42 1.73 0.69 4.13

3 356.07 30 0.89 0.49 10.42 1.73 0.69 4.13

4 356.07 30 0.89 0.49 10.42 1.73 0.69 4.13

5 356.07 30 0.89 0.49 10.42 1.73 0.69 4.13

6 356.07 30 0.89 0.49 10.42 1.73 0.69 4.13

7 68.98 30 0.89 0.49 10.42 1.73 0.69 4.13

8 29.54 30 0.89 0.49 10.42 1.73 0.69 4.13

9 18.11 30 0.89 0.49 10.42 1.73 0.69 4.13

10 12.50 30 0.89 0.49 10.42 1.73 0.69 4.13

units gCOD/m3 gCOD/m3 gCOD/m3 g(–COD)/m3 gN/m3 g N/m3 gN/m3 mol/m3

Table 12.3 Decomposition of WWTP

Decomposition 1

Subsystem 1: States: All states in the anoxic section (reactor 1 and reactor 2) and the
secondary clarifier

Outputs: All measured outputs in the anoxic section and the secondary
clarifier

Inputs: Qi , Qint , Qr , Qw

Subsystem 2: States: All states in the aerated section (reactor 3, reactor 4, and reactor
5)

Outputs: All measured outputs in the aerated section

Inputs: KLa3, KLa4, KLa5

Decomposition 2

Subsystem 1: States: All states in reactor 1, concentration of SALK in reactors 2–5,
concentration of X , SI , and SALK in the secondary clarifier

Outputs: All measured outputs in reactor 1, SALK in reactors 2–5, values
of X , SI , and SALK in the secondary clarifier

Inputs: Qi , KLa4, Qr , Qw

Subsystem 2: States: Concentration of compounds except SALK in reactors 2–5,
concentration of SS , SO , SNO , SNH , and SND in the secondary
clarifier

Outputs: Measured outputs except SALK in reactors 2–5, values of SS ,
SO ,SNO ,SNH , and SND in the secondary clarifier

Inputs: Qint , KLa3, KLa5

of connections between internal variables. In Decomposition 2, Reactor 1, concen-
tration of SALK in reactors 2–5, concentration of X , SI , and SALK in the secondary
clarifier are configured as subsystem 1 and subsystem 2 includes the concentration
of compounds except SALK in reactors 2–5, concentration of SS , SO , SNO , SNH , and
SND in the secondary clarifier. It can be seen that the concentration of SALK in all five
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reactors is taken out alone and put into subsystem 1 because it has little connection
with other compounds in the same reactor.

12.5.2 Resilient Distributed State Estimator Design

WWTP is considered critical infrastructure and their resiliency is vital. In this section,
the proposed subsystem decomposition and resilient distributed state estimation
scheme is tested in the WWTP system to show the improvement of the resiliency
compared to a centralized scheme applied to the whole system. We investigate the
resiliency analysis under the storm and rain conditions, in which the unreliable com-
munication networks are simultaneously considered.

The random process disturbance of the state equation and the noise in measure-
ment are generated by the normal distribution values with mean value of zero and
standard deviation ofwQx0 andwR y0, respectively, wherewQ andwR are parameters
and the symbol x0 represents the initial condition shown in Tables12.1 and 12.2, and
y0 can be calculated by y0 = Cx0.The initial guess in different estimation schemes is
set to be 1.1x0. The parameters used in the centralized EKF are Q = diag((wQx0)2),
R = diag((wR y0)2), and P(0) = Q = diag((wQx0)2), where diag(V ) is a diag-
onal matrix whose diagonal elements are elements of vector v. The parameters
used in the distributed EKF are Qi = diag((wQx0,i )2), Ri = diag((wR y0,i )2), and
Pi (0) = Qi = diag((wQx0,i )2), where x0,i and y0,i are the corresponding portion in
x0 and y0 to subsystem i .

In order to compare the performance of different state estimation schemes, we
calculate the error. In order to explain the different magnitude of estimation error
in different states, the error of each state is normalized according to the maximum
estimation error of all estimation schemes. The Euclidean norm of the normalized
estimation error is defined as follows:

e(tk) =
√√√√ 145∑

i=1

(ei (tk))2, (12.46)

where e(tk) is the normalized error of 145 states at time instant tk , and ei (tk) is the
normalized error of state i , i = 1, 2, . . . , 145, defined as follows:

ei (tk) = x̂i (tk) − xi (tk)

max(x̂i − xi )
, (12.47)

where the maximum error of given state i is the maximum error of state i in EKF and
distributed EKFmethods. This means that the error of each state is normalized based
on the maximum estimation error given by two different schemes. The average and
maximum value of the normalized estimation error can be defined as follows:
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Mean|e| = 1

K

K∑
k=1

(e(tk)) (12.48a)

Max |e| = max{e(t1), e(t1), · · · , e(tk)}, (12.48b)

where K is the total number of samples over the simulation period.
Rain conditions. We adjust wQ and wR to test the performance under different

interference and noise conditions. The average andmaximumvalues of the estimation
error calculated by the three schemes are shown in Table12.4. Figure12.3 shows the
actual process state trajectories and the estimates given by the centralized EKF and
the distributed EKF (see Zhang et al. 2019) under the Decomposition 1 and the
Decomposition 2, and Fig. 12.4 shows the trajectories of the Euclidean norms of the
normalized estimation errors given by the three different schemes whenwQ = wR =
0.1.

Simulation results in Table12.4 show that the average estimation error of dis-
tributed EKF under Decomposition 2 is always smaller than that of the distributed
EKF under Decomposition 1, which shows that the proposed decomposition method
makes the internal connection of subsystems closer, which can reduce the state esti-
mation error under the same state estimation scheme. It also shows that when the
noise is greater, the distributed EKF may have better performance. It is verified that
the proposed subsystem decomposition with weak inter-subsystem interactions can
improve the resiliency of the system when applying the distributed state estimation.

Table 12.4 Performance comparison for different schemes under rain conditions

wR wQ Centralized
EKF

Distributed EKF

D1 D2

Mean|e| 0.2 0.2 4.1954 4.0622 4.0493

0.2 0.1 3.2232 3.1938 3.1534

0.1 0.2 4.6826 4.6691 4.6407

0.1 0.1 3.6538 3.6934 3.6465

0.2 0.05 2.2295 2.4193 2.3614

0.05 0.2 4.9480 5.0382 4.9800

0.05 0.05 2.9801 3.1684 3.0746

Max|e| 0.2 0.2 6.2810 6.3798 6.2979

0.2 0.1 8.1007 8.1007 8.1007

0.1 0.2 7.6567 7.8353 7.7048

0.1 0.1 8.1256 8.1256 8.1256

0.2 0.05 9.3052 9.3052 9.3052

0.05 0.2 8.2770 8.4781 8.3283

0.05 0.05 9.9826 9.9826 9.9826
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Fig. 12.3 Trajectories of the actual process state (black solid lines) and the estimates given by the
centralized EKF (green dashed lines) and the distributed EKF under the Decomposition 1 (red solid
lines)and the Decomposition 2 (blue dash-dotted lines) of reactor 5 under rain conditions
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Fig. 12.4 Trajectories of the Euclidean norm of normalized estimation errors given by the EKF
(green dashed lines) and the distributed EKF under the Decomposition 1 (red solid lines)and the
Decomposition 2 (blue dash-dotted lines) under rain conditions
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Fig. 12.5 Trajectories of the actual process state (black solid lines) and the DEKF (red dashed
lines) and the resilient DEKF (blue solid lines) under the Decomposition 2 of reactor 1 under rain
conditions with unreliable communication network X̂i (t) = X̂i (t) + 0.5xinit during t = 3(days)
to t = 3.05(days)

Furthermore, the condition with unreliable communication network is tested to
show the resiliency of the system under the resilient distributed state estimator. The
exchanged estimated stated is set as X̂i (t) = X̂i (t) + 0.5xinit during t = 3(days)
to t = 3.05(days). This means that the exchange information could be attacked or
modified. The proposed resilient distributed state estimator is used to construct the
states under the reliable communication network. Trajectories of the actual process
state and the resilient DEKF under the Decomposition 2 when wQ = wR = 0.1 are
shown in Fig. 12.5. The trajectories of the Euclidean norm of normalized estimation
errors given by the Distributed EKF and the resilient distributed EKF under the
Decomposition 2 are shown in Fig. 12.6. The results show that the proposed resilient
distributed state estimation scheme can improve the resiliency of the system with
unreliable communication network.
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Fig. 12.6 Trajectories of the
Euclidean norm of
normalized estimation errors
given by the DEKF (red
dashed lines) and the
resilient DEKF (blue solid
lines) under the
Decomposition 2 under rain
conditions with unreliable
communication network
X̂i (t) = X̂i (t) + 0.5xinit
during t = 3(days) to
t = 3.05(days) 0 1 2 3 4 5 6 7
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Storm conditions.We further test the resilient distributed EKF under storm con-
ditions. The average and maximum value of the estimation error calculated by the
three schemes are shown in Table 12.5. Figure12.7 shows the actual process state
trajectories and the estimates given by the centralized EKF and the distributed EKF
under the Decomposition 1 and the Decomposition 2 and Fig. 12.8 shows the trajec-
tories of the Euclidean norms of the normalized estimation errors given by the three
different schemes when wQ = wR = 0.1.

Simulation results in Table12.5 show that the average estimation error of dis-
tributed EKF under Decomposition 2 is always smaller than that of the distributed

Table 12.5 Performance comparison for different schemes under storm conditions

wR wQ Centralized
EKF

Distributed EKF

D1 D2

Mean|e| 0.2 0.2 4.0668 4.0572 4.0232

0.2 0.1 3.0962 3.0886 3.0219

0.1 0.2 4.5115 4.5524 4.5201

0.1 0.1 3.5968 3.6204 3.5504

0.2 0.05 2.0707 2.3161 2.2007

0.05 0.2 4.8841 4.9917 4.9308

0.05 0.05 2.7948 2.9948 2.9138

Max|e| 0.2 0.2 6.0169 6.1214 6.0297

0.2 0.1 7.3005 7.3005 7.3005

0.1 0.2 6.9390 7.1451 7.0182

0.1 0.1 7.3580 7.3580 7.3580

0.2 0.05 8.3908 8.3908 8.3908

0.05 0.2 7.1152 7.2747 7.1426

0.05 0.05 8.8528 8.8528 8.8528
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Fig. 12.7 Trajectories of the actual state (black solid lines) and the estimated states given by the
centralized EKF (green dashed lines) and the distributed EKF under the Decomposition 1 (red solid
lines) and the Decomposition 2 (blue dash-dotted lines) of reactor 5 under storm conditions
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Fig. 12.8 Trajectories of the
Euclidean norm of
normalized estimation errors
given by the EKF (green
dashed lines) and the
distributed EKF under the
Decomposition 1 (red solid
lines)and the Decomposition
2 (blue dash-dotted lines)
under storm conditions
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EKF under Decomposition 1, which shows that the proposed decomposition method
makes the internal connection of subsystems closer, which can reduce the state esti-
mation error under the same state estimation scheme. It confirms that the proposed
subsystem decomposition with weak inter-subsystem interactions can improve the
resiliency of the system when applying the distributed state estimation.

Similarly, the condition with unreliable communication network is tested to show
the resiliency of the system under the storm condition. The exchanged estimated
stated is set as X̂i (t) = X̂i (t) + 0.5xinit during t = 3(days) to t = 3.05(days). Tra-
jectories of the actual process state and the resilientDEKFunder theDecomposition 2
whenwQ = wR = 0.1 are shown in Fig. 12.9. The trajectories of the Euclidean norm
of normalized estimation errors are shown in Fig. 12.10. The results confirm that the
proposed resilient distributed state estimation scheme can improve the resiliency of
the system with unreliable communication network.
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Fig. 12.9 Trajectories of the actual process state (black solid lines) and theDEKF (red dashed lines)
and the resilient DEKF (blue solid lines) of reactor 1 under storm conditions with communicate
attack which set X̂i (t) = X̂i (t) + 0.5xinit , t = 3 − 3.05(days)



12 Optimal Subsystem Decomposition and Resilient … 321

Fig. 12.10 Trajectories of
the Euclidean norm of
normalized estimation errors
given by the DEKF (red
dashed lines) and the
resilient DEKF (blue solid
lines) under the
Decomposition 2 under
storm conditions with
communicate attack which
set X̂i (t) = X̂i (t) + 0.5xinit ,
t = 3 − 3.05(days)
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12.6 Conclusion

In this work, an optimal subsystem decomposition algorithm is proposed based on
the community discovery algorithm with weighted network graph and is applied to
a benchmark WWTP system. A resilient distributed state estimator is designed and
carried out under the subsystem models which are divided by the physical struc-
ture and the subsystem model obtained using the proposed decomposition method.
The results show that the subsystem decomposition and distributed state estimation
scheme improves the resiliency of the system, compared to a centralized scheme
applied to the whole system.
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Chapter 13
Cyber-Attack Detection for a Crude Oil
Distillation Column

H. M. Sabbir Ahmad, Nader Meskin, and Mohammad Noorizadeh

13.1 Introduction

13.1.1 Preliminary

Due to the continuous development of technology, an increasing number of elec-
tronic devices are being developed with networking features suitable for connecting
to industrial networks. This technological evolution has also made its way to Indus-
trial Control Systems (ICSs) where an increasing number of monitoring and control-
ling devices have been connected to computer networks facilitating the supervisory
level monitoring and control. Evolution in computing and internet technology has
encouraged increasing number of ICS to be linked to cyber-world giving rise to a
new class of systems called Cyber-Physical System (CPS) which provides several
economic and performance-enhancing benefits. However, it also makes ICS more
vulnerable to cyber-attacks. The effect of cyber-attacks differs in cyber-physical crit-
ical ICS compared to traditional ICT systems as they can cause damage to physical
infrastructure posing threats to human health and environment. The complex CPS
infrastructure more than ever requires the development of novel security solutions,
as these systems are continuously targeted by attacks and intrusions by intelligent
adversaries. Some typical examples of attacks in real systems are the Stuxnet worm
attack, multiple recent power blackouts in Brazil, and the SQL Slammer worm attack
on the Davis–Besse nuclear plant, to name a few (Pasqualetti et al. 2012; Nourian
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and Madnick 2018; Pasqualetti et al. 2015), further justifying the need to address
cyber-security for ICS.

Extensive research has been conducted on security issues from the prospec-
tive of network and communication technologies to securely defend network per-
formance against adversaries. These research works have mainly concentrated on
designing methodologies to secure communication networks in CPS ignoring inter-
actions between the cyber and physical domain. Traditionally, cyber-security for
ICS has been dealt by IT engineers from the prospective of network security. Such
approaches primarily aim to secure the communication network to protect the IT
infrastructure without considering the physical behavior of the plant and how the ICS
is affected by cyber-attack. ICS are characterized by feedback closed-loop control
architecture and aim to optimize the system control performance, such as reducing
state estimation errors, stabilizing an unstable plant, and enhancing the robustness
against uncertainties and noise. Therefore, it is important to guarantee the resiliency
of cyber-physical ICS subject to multiple types of malicious attacks. This chapter
focuses on the development of cyber-attack detection technique for a Cyber- Physical
Distillation Column.

13.1.2 Cyber-Security of Distillation Column

Cyber-security of CPS has become a hot topic of research lately with focus on a
wide range of physical plants. In Kundur et al. (2011), Manandhar et al. (2014), He
et al. (2017), Kurt et al. (2019), cyber-security for smart grid has been studied and
in Abokifa et al. (2019), the effect of cyber-attacks on water distribution systems
is investigated. In Li et al. (2019), Kravchik and Shabtai (2018), Lin et al. (2018),
Adepu and Mathur (2021), Elnour et al. (2020), different techniques for detecting
attacks on a cyber-physical Reverse Osmosis Water Treatment Plant are presented.
In Noorizadeh et al. (2021), a hybrid testbed is developed for Tennessee Eastman
process and different data-driven detection algorithms are developed and tested.
In Elnour et al. (2021), the security of Smart Buildings has been studied. To the
best of the author’s knowledge, cyber-security for a Crude Oil Distillation Column
(DC) is only considered in Sabbir Ahmad and Meskin (2020) where the system
dynamics simulated using Aspen Plus Dyanmics was integrated with Simulink and
an observer-based attack detection scheme was implemented and validated using
computer simulation in Simulink. In this study, first a detailed dynamical model of
the DC is presented and a HIL testbed is designed for a cyber-physical DC using
hardware from Siemens. Finally, an online real-time distributed detection scheme is
proposed based on Unscented Kalman Filter (UKF) scheme implemented directly
on PLCs.

In Taqvi et al. (2016), Minh and Pumwa (2012a), George and Francis (2015),
Kathel and Jana (2010), Zou et al. (2017), Bendib et al. (2015), Radulescu et al.
(2007),Weerachaipichasgul et al. (2010), a set of equations collectively calledMESH
equations are presented to describe the internal dynamics of a distillation column.
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In Taqvi et al. (2017), the column model is described in terms of the relationship
between the inputs and outputs which are generated using data from Aspen Plus
Dynamics. In Minh and Pumwa (2012a), George and Francis (2015), Kathel and
Jana (2010), Zou et al. (2017), a binary continuous distillation column is simulated
with the assumption that the molar hold up in each tray including the condenser
and reflux drum remains constant and there is negligible vapor holdup in each tray.
This assumption neglects the dynamics of liquid and vapor flow rates inside the
column due to tray hydraulics which have significant time constants impacting the
dynamic performance of the model. In Bendib et al. (2015), the MESH equations are
presented without any description for liquid and vapor flow rates dynamics inside
the column. The crude feed is considered as a pseudo-binary mixture with a constant
relative volatility in Minh and Pumwa (2012a), George and Francis (2015), Kathel
and Jana (2010), Zou et al. (2017), Bendib et al. (2015) which is not the case in
reality as the volatility varies with temperature and pressure. Finally, the fundamental
limitation of using input–output relationship for distillation column simulation is
that the internal dynamics which contains information on individual trays inside the
column is ignored. Such information can be extremely valuable in several ways, one
of which is temperature inferential output product quality measurement. The purity
of output product stream can be determined using off-line analyzers which is indeed
time-consuming. Time inferential measurement is fast and provides an efficient way
of controlling the quality of the products from a distillation column.

As part of this study, the DC plant presented in Minh and Pumwa (2012a, b) is
considered and the presented data to design the column in Aspen Plus is used to
generate the steady-state data. Then, in order to improve the model accuracy, the DC
plant is transported intoAspen PlusDynamics to observe the effect of various column
parameters to include them in themathematical model. Finally, using the steady-state
data, the dynamical model is simulated in real-time using MESH equations given in
Minh and Pumwa (2012a, b) inside Simulink environment.

Next, a hybrid Hardware-In-the-Loop (HIL) ICS testbed is developed and imple-
mented for the DC plant using industrial automation hardware from Siemens tomake
the study resembles a practical ICS. The hybrid HIL testbed contains three layers:
(I) Field layer, (II) Control layer, and (III) Supervisory layer, and PROFINET as
an industrial communication protocol is used for communication between I/O mod-
ules and PLCs. Different types of attack on ICS sensors and actuator such as false
data injection attack (Lv et al. 2019; Zhang et al. 2017) (scaling attack, bias injec-
tion attack, etc.), Denial of Service (DoS) attack (Meraj et al. 2015), replay attack
(AlDairi and Tawalbeh 2017) are emulated inside the testbed using their mathemat-
ical representation.

Finally, an online distributed attack detectionmethod for theDCplant is developed
and implemented in real-time on the testbed PLCs. The proposed detection algorithm
is based on state estimation using UKF. There are various nonlinear state estimators
available. As part of this study, three factors are considered while choosing UKF,
namely, convergence, implementation simplicity (the estimators are implemented
inside the PLCswhich have limitedmathematical library tool set), and computational
complexity (PLCs have limited computational ability). Based on these criteria, UKF
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is chosen as it is able to provide full system state estimation based on the systems
inputs and outputs in the presence of process andmeasurement noise which provided
the main motivation for the choice of this algorithm. Computationally, the algorithm
primarily involves basic linear mathematical operations (addition, subtraction, and
multiplication)which could be easily implemented inside the PLCs. The fundamental
idea is that during normal operation, the estimated measurements will coincide with
the actual measurements, while in the presence of any attack, there will be deviation
between the estimated and actual measurements. Hence, by computing the residuals
corresponding to the difference between the actual and estimated measurements and
comparing themwith a given threshold, attacks can be successfully detected. Various
formulated attack scenarios are emulated inside the testbed and performance of the
proposed detection scheme is demonstrated.

This chapter includes seven sections. In Sect. 13.2, the mathematical model and
the control system of the DC plant are presented and the details of the developed
hybrid testbed are discussed in Sect. 13.3. Next, the mathematical models of var-
ious attacks used in this study are provided in Sect. 13.4 and the proposed attack
detection algorithm is presented in Sect. 13.5. The results corresponding to different
attack scenarios injected in the developed testbed are given in Sect. 13.6. Finally, the
summary of the chapter is presented in the conclusion section.

13.2 Distillation Column Design and Modeling

A continuous binary distillation splits a crude feed into two fractions, which are
collected from the top and bottom sections of the crude tower. The raw crude is fed
to the binary column at the feed section and the column can be divided into two
sections, namely, rectifying and stripping section. The rectifying section is located
at the top just above the feed and the bottom section is called the stripping section.
The original crude feedstock is passed through a preheater which heats the feed to a
certain temperature in order to convert it into a two phase fluid before feeding to the
distillation column. Inside the column, the temperature gradient causes the relatively
volatile lighter components to vaporize and rise to the top of the column, and the
less volatile heavier components fall down to the bottom section of the column. The
vapor at the top is cooled down by a condenser and collected at the reflux drumwhere
a portion of it is extracted out as distillate and the remaining cooled liquid (known as
reflux) is fed back to the column. Similarly, the liquid at the column base is collected
in reboiler drum where a portion of it is extracted out as bottoms product and the
remaining portion is vaporized by the reboiler and fed back to the column.
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13.2.1 Plant Data

The considered DCmodel is based on a real petroleum project presented inMinh and
Pumwa (2012a, b). The plant operates for 24h and 365d over a year during which it
processes 130,000 tons of raw condensate. Figure13.1 illustrates the flowsheet of the
binary distillation column considered in this work. The plant operating specification
is to maintain the product quality within desired range; the purity of the distillate has

Fig. 13.1 Flowsheet of a binary distillation column, ©2020 IEEE. Reprinted, with permission,
from Sabbir Ahmad and Meskin (2020)
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Table 13.1 Raw condensate composition

Component Mole fraction Component Mole fraction (%)

Propane 0.00 n-C11H24 1.94

Normal Butane 19.00 n-C12H26 2.02

Iso-Butane 26.65 Cyclopentane 1.61

Iso-Pentane 20.95 Methylclopentane 2.02

Normal Pentane 10.05 Benzene 1.61

Hexane 7.26 Toulen 0.00

Heptane 3.23 O-xylene 0.00

Octane 1.21 E-benzen 0.00

Nonane 0.00 124-Mbenzen 0.00

Normal Decane 0.00

Table 13.2 Properties of pseudo components

Properties Ligas Napthas

Molar weight 54.5–55.6 84.1–86.3

Liquid density (kg/m3) 570–575 725–735

Feed composition (vol%) 48–52 48–52

to be higher than or equal to 98% and the impurity of the bottoms has to be equal or
less than 2%.

Table13.1 presents the nominal composition of the raw condensate and the actual
composition of the raw condensate generally fluctuates around their nominal values.
Although the liquid feed consists of multiple components, however, since the aim is
to use a binary distillation column, a pseudo-binary mixture is considered consisting
of Ligas (iso-butane, n-butane, and propane) and Napthas (iso-pentane, n- pentane,
and heavier components). There are 14 trays inside the column with the topmost
tray is numbered as the first layer. The properties of the pseudo components are
allowed to fluctuate within the range shown in Table13.2 based on the fluctuation in
the condensate composition. Before feeding to the column, the raw crude is passed
through a preheater to convert it into two phases which are vapor and liquid phase
and fed to trays 7 and 8, respectively.

13.2.2 Distillation Column Design

The column is designed using Redfrac model available in ASPEN Plus where two
degrees of freedomare considered for the columndesign and distillate rate (kmole/hr)
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Table 13.3 Column design parameters used in Aspen Plus

Parameter Value Parameter Value

Feed temperature (oC) 118 Feed pressure (atm) 4.6

Condenser pressure
(bar)

4 Stage pressure drop
(bar)

0.075

Distillate rate
(kmole/hr)

93 Reflux rate (kmole/hr) 350

Vapor feed stage 7 Vapor feed rate 185.827

(kmole/hr)

Liquid feed stage 8 Liquid feed rate 16.937

(kmole/hr)

Ligas concentration 0.513 Ligas concentration 0.127

In vapor feed In liquid feed

and reflux rate (kmole/hr) are the two parameters selected for the column design.
Table13.3 presents the data used in ASPEN Plus for the column design.

13.2.3 Dynamic Model of the Distillation Column

The dynamics of the nth tray using mass and balance equations can be written as

dMn

dt
= Ln−1 − Ln + Vn+1 − Vn (13.1)

d(Mnxn,i )

dt
= Ln−1xn−1,i − Lnxn,i + Vn+1yn+1,i − Vn yn,i , (13.2)

where Mn is the liquid hold up (kmole) in the nth tray inside the column, Ln and
hn denote the flow rate (kmole/hr) of the liquid flowing down the nth tray and the
amount of heat energy that is passed with the liquid from the nth tray, respectively,
Vn and Hn denote the vapor flow rate (kmole/hr) at the nth tray and the energy carried
by the vapor, respectively, and xn,i and yn,i denote the liquid and vapor mole fraction
of the i th component in tray n, respectively, where

C∑

i=1

xn,i = 1 ;
C∑

i=1

yn,i = 1, (13.3)

with C as the number of components in the feed. Since, it is assumed the feed to be a
pseudo-binary mixture, we haveC = 2 and it is only necessary to consider the molar
concentration dynamics of the lighter component based on the summation condition.
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By differentiating (13.2) and substituting (13.1), it follows that

d(xn,i )

dt
= Ln−1xn−1,i + Vn+1yn+1,i − (Ln−1 + Vn+1)xn,i + Vn(yn,i − xn,i )

Mn
.

(13.4)
The column is numbered from top as n = 1 for the reflux drum, n = 2 for the first
tray, n = f for the feed tray, n = N + 1 for the bottom tray, and n = N + 2 for the
reboiler with total of 14 trays inside the column, i.e., N = 14.

In order to perform a dynamic simulation to observe the dynamics of the tray
hydraulics, the model from Aspen Plus is transported to Aspen Plus Dynamics. It is
indeed necessary to include this dynamics since the time constants associated with
liquid and vapor flow rates are quite large which will affect the overall response
time of the system. Hence, the effect of tray hydraulics is included (as continuous
system states) to the liquid and vapor flow rates across every tray in the column by
introducing a time constant as follows:

dLn(s) = 1

τLn s + 1
dL(s) (13.5)

dVn(s) = 1

τvn s + 1
dV (s), (13.6)

where dL = L − Lnominal, dLn = Ln − Lnominal
n , dV = V − V nominal, and dVn =

Vn − V nominal
n . Lnominal

n and V nominal
n are the nominal liquid and vapor flow rates for

the nth tray inside the column which have been acquired from Aspen Plus. The time
constants are determined from Aspen Plus Dynamics. The initial molar holdup in
each tray has been computed using the Francise–Wier formula presented in Wijn
(1999). The following assumptions are considered here

• The relative volatility is constant across each tray of the column. This implies that
the vapor–liquid equilibrium relationship for the nth tray can be expressed as

yn = αxn
1 + (α − 1)xn

.

• The overhead vapor is totally condensed in a condenser.
• The pressure remains constant at the top of the column and the differential pressure
between trays remains constant.

• The holdup of vapor is negligible throughout the system.

The overall model of the DC plant is expressed as follows:

ẋ(t) = f (x(t), u(t)) + w(t) (13.7)

y(t) =
[
x1(t)
x16(t)

]
+ v(t), (13.8)
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where

x(t) = [x1(t), x2(t), . . . , x16(t), M1(t), M2(t), . . . , M16(t),

L2(t), L3(t), . . . , L15(t), V2(t), V3(t), . . . , V15(t)]T

is the state variable of the system, where for brevity, the subscript i is dropped from
xn,i due to having only two components in DC, u(t) = [L1(t), V16(t)]T is the control
input signal, andw and v are the process and measurement noise vector, respectively
which have been modeled as Gaussian white noise.

13.2.4 Control of Distillation Column

13.2.4.1 Control Requirement for Distillation Column

In order to control a binary DC plant, at first, it is essential to determine its degree of
freedom (DoF). DoF of a process is the number of independent variables that must be
specified in order to define the process completely. Consequently, the desired control
of a process will be achieved when and only when all degrees of freedom have
been specified. Among several available approaches, one of the simple approaches
to determine the DoF for a DC plant is to count the number of valves. There are
four control valves as shown in Fig. 13.1, one on each of the following streams:
distillate, reflux, bottoms, and reboiler vapor, and hence this column has four degrees
of freedom. The feed stream is considered being set by the upstream process and
consequently it is considered to be a constant. Inventories in any process must be
always controlled, and the inventory loops involve liquid levels and pressures. The
column has been designed in Aspen Plus to operate under constant pressure at the
top of the column with a constant differential pressure between the trays and this
implies that the liquid level in the reflux drum and the liquid level in the column base
must be controlled. Hence, by considering the two variables that must be allocated
for controlling the liquid level in the reflux drum and column base, there exist two
remaining degrees of freedom. Thus, there are two and only two additional variables
that can (and must) be manipulated to maintain the product quality of distillate and
bottoms product.

Generally, a column is designed to operate in the steady state at the values deter-
mined from design calculations during normal operation and a column remains at
energy and material balance (described by MESH equations) during the steady-state
operation. Material balance infers that the sum of products entering the column must
be equal (approximately) to the sum of products leaving the column, and energy bal-
ance implies that the heat input to the column must be equal (approximately) to heat
removed from the system. A column is said to be “stable” when it is under energy
and material balance.
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Table 13.4 Manipulated and controlled variable pairs for the binary distillation column

Controlled variables Manipulated variables Control valve (Fig. 13.1)

Purity of distillate Reflux flow rate Reflux flow V2
Liquid level in reflux drum Distillate flow rate Distillate flow V3
Impurity in bottoms Reboiler duty Heat flow V4
Liquid level in column base Bottoms flow rate Bottom flow V5

The column dynamics arises from the control loops, i.e., if value of a control
variable fluctuates from its desired value then the correspondingmanipulated variable
is adjusted to bring the control variable back to its desired value. Such changes in
value of control variables may occur due to various reasons including change in
properties of the feed within the range mentioned in Table13.2.

13.2.4.2 Controller Design for Distillation Column

As mentioned previously, the proposed DC in Fig. 13.1 has four control and four
controlled variables. Table13.4 summarizes the control variables selected to control
each of the four controlled variables. The PID controllers for distillation and bottoms
product composition control is tuned using model-based PID tuning tools available
from MATLAB. A PID controller contains a proportional, integral, and derivative
term associated with each is a constant gain, that takes into account tracking error to
achieve error convergence. The PID controller is given as

u(t) = Kpe(t) + Ki

∫
e(t)dt + Kd

de(t)

dt
, (13.9)

where e(t) = y(t) − yd(t), y(t) is the output and yd(t) is the set-point.
The levels of the refluxdrumandcolumnbase aremaintained constant by adjusting

the distillate and bottoms product flow, respectively, using the feed-forward control
as

D(t) = V14(t) − L refluxflow(t), (13.10)

B(t) = L1(t) − Vvaporflow(t), (13.11)

where V14(t) and L1(t) represent the vapor (kmole/hr) flowing out of tray 14 into
the condenser and liquid (kmole/hr) flowing from tray 1 to the reboiler, respectively,
D(t) corresponds to the distillate flow rate (kmole/hr) and B(t) corresponds to the
bottoms product flow rate (kmole/hr).
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13.3 Testbed Design

The hybrid testbed is designed to implement an ICS for the DC by integrating indus-
trially used hardware in the simulation loop to make the study practically viable. The
control objective of theDCplant is tomaintain the purity of the distillate from the rec-
tifying section and the bottoms product from the stripping section. Therefore, the DC
has two outputs which are controlled using the two inputs which are the reflux flow
rate (kmole/hr) and the vapor flow rate (kmole/hr) from the reboiler. The developed
hybrid testbed contains two control PLCs: one for the rectifying section regulating
the quality of the distillate and the second for the stripping section regulating the
bottoms impurity level.

As part of this study, a three-level hybrid HIL Cyber-Physical ICS testbed is
designed for the DC as shown in Figs. 13.2 and 13.3. The DC dynamics is simulated
in real-time in a PC using Simulink and a data acquisition board (DAQ) is used
to generate the measurements as well as receiving the valves commands from the
controller. The field layer (Level 0) of the testbed is implemented using ESP-200
Distributed I/O modules from Siemens which are connected to DAQ. The control
layer (Level 1) is implemented using Siemens S7-1500 PLCs which are interfaced to
the Distributed I/Os using PROFINET which is an industrially used communication
network. In addition, the second layer has a supervisory engineering station for
supervisory monitoring an control. Finally, a cloud server is included in the testbed
in the third layer (Level 2) for remote logging and online monitoring of the testbed.
The link between simulator and the ICS is established using Humosoft MF634 DAQ
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Fig. 13.2 Block level diagram of the DC testbed
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Fig. 13.3 The developed cyber-physical DC testbed

cardwhich is used to extract the sensormeasurements andmanage the actuator inputs
as voltages, and feed them to the distributed I/O modules.

The simulation sampling time for the DC plant simulator in MATLAB/Simulink
is set to 3.6 s and the PLCmonitors and updates the sensors and actuators every 3.6 s.
The control firmware has been implemented in the PLC using an interrupt routine
which is set to time-out every 3.6 s to service the feedback control loops in order to
fulfill the control objective.

13.4 Attack Modeling

Industrial control systems (ICS) for any physical plant consist of a number of control
loops that are responsible for controlling various parameters related to the plant. Each
control loop fundamentally contains a controller, sensors, and actuators. Our study
assumes that the attacker has managed to sneak through the IT security infrastructure
to the control systems operating the plant and is capable of launching attacks on these
systems, i.e., sensors and actuators. This is the worst attack scenario possible on the
ICS. Figure13.4 presents a diagram of a networked CPS under attack that has been
considered as part of this study.

For any arbitrary attack of time period Tai , let ψi (t) and ψ̂i (t) correspond to the
healthy and corrupt data due to attack on the i th sensor/actuator ICS resource. In this
case, the attack models can be expressed as follows:

1. Scaling attack (Sridhar and Govindarasu 2014): A scaling function is used to
generate a false data injection attack whereby the channel data during attack is
scaled by a constant factor as expressed below
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Fig. 13.4 Block level illustration of ICS of Cyber-Physical System under attack, ©2020 IEEE.
Reprinted, with permission, from Sabbir Ahmad and Meskin (2020)

ψ̂i (t) =
{

ψi (t), t /∈ Tai
λsψi (t), t ∈ Tai

, (13.12)

where λs ∈ R is a constant.
2. Bias Injection attack: In this attack, the true sensor/actuator measurements are

modified by adding a constant bias denoted by λb, as follows:

ψ̂i (t) =
{

ψi (t), t /∈ Tai
ψi (t) + λb, t ∈ Tai

, (13.13)

where λb ∈ R is a constant.
3. Ramp attack (Sridhar and Govindarasu 2014): As part of this attack, the true

sensor/actuator readings of the targeted resource are modified by adding a ramp
function which gradually increases/decreases with time based on the gradient of
ramp denoted by λr as follows:

ψ̂i (t) =
{

ψi (t), t /∈ Tai
ψi (t) + λrt, t ∈ Tai

. (13.14)

4. Replay attack (Mo et al. 2015): The replay attack has two stages. At first, the
adversary gathers sensor/actuator readings by disclosing the data from the targeted
ICS resources. Subsequently, the attacker replays this collected data to the targeted
ICS resources.
Stage 1 (0 ≤ t < TI ): disclosure of resource

It = It−1 ∪
[
γu 0
0 γy

] [
u(t)
y(t)

]
, (13.15)

where γu and γy are the binary incidencematricesmapping the actuator and sensor
data channels to the corresponding data gathered by the adversary, TI is the length
of gathering information for the replay attack, and the collected data is stored in
Ik .
Stage 2 (TI ≤ t < 2TI ): disruption of resource
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[
u(t)
y(t)

]
= It−n . (13.16)

5. DoS attack: The DoS attack can be launched by jamming the communication
channels, flooding packets in the network, and compromising devices to prevent
data transfer, etc. As the lack of available sensor/actuator data, the DoS attack can
be modeled as follows:

ψ̂i (t) =
{

ψi (t) t /∈ Tai
(1 − Ds(t))ψi (t) + Ds(t)ψi (t − tn) t ∈ Tai ,

(13.17)

where Ds(t) is a binary index and takes a value of 1 to resemble a scenario when a
packet is denied and 0 for the normal operation. To encompass energy limitations,
it is assumed that, within the attack time horizon Tai , the targeted resource can
send at most M data packets, while the attacker can launch DoS attack at most N
times where N < M . In (13.17), tn is the number of consecutive packets which
are jammed by the attacker and hence can take values from kn = {1, 2, 3, . . . , N }.
The attackmodel sends the last available packet during theDoS attack. DoS attack
is able tomake the data channels unavailable by jamming the disruption resources.

6. Bounded random attack (Manandhar et al. 2014; Sridhar and Govindarasu
2014): This attack involves the addition of randomly generated attack values
to the sensor/actuator signal as follows:

ψ̂i (t) =
{

ψi (t) t /∈ Tai
ψi (t) + N (0, σ 2) t ∈ Tai and |σ | < ρ,

(13.18)

where ρ ∈ R.

It should be noted that the above-presented attack models are applicable for tar-
geting both sensors and actuators.

13.5 Attack Detection Algorithm

13.5.1 UKF Based Attack Detection

The proposed detection method is based on state estimation which is implemented
using UKF. A UKF is a state estimation algorithm that estimates the system states
based on the system measurements and control inputs in the presence of Gaussian
process and measurement noise. The proposed detection scheme is based on the
idea of comparing the system measurements against the estimates from UKF and
computing the residuals for every measurement upon which a threshold is applied to
detect cyber-intrusions.
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The proposed column has two control inputs and output measurements which are
the refluxflow rate (kmole/hr) and vapor flow rate (kmole/hr), and distillate purity and
bottoms impurity concentrations, respectively. Each tray has four associated states
which are the molar holdup in the tray, molar concentration of distillate, liquid and
vapor flow rate for that particular tray. Additionally, the condenser and reboiler each
have two states which are the molar holdup and molar concentration of the distillate
and bottoms product. As there are 14 trays besides the condenser and reboiler, hence
in total there are 60 states. The system13.7 is decomposed by separating the rectifying
and stripping section dynamics of the column.Hence, the rectifying section dynamics
is given as follows:

ẋr (t) = f1(xr (t), xs(t), u(t)) + wr (t)
yr (t) = x1(t) + vr (t)

(13.19)

and the dynamics of the stripping section is given as follows:

ẋs(t) = f 2(xs(t), xr (t), u(t)) + ws(t)
ys(t) = x16(t) + vs(t),

(13.20)

where

xr (t) = [x1(t), x2(t), . . . , x8(t), M1(t), M2(t), . . . , M8(t),

L2(t), L3(t), . . . , L8(t), V2(t), V3(t), . . . , V8(t)]T
xs(t) = [x9(t), x10(t), . . . , x16(t), M9(t), M10(t), . . . , M16(t),

L9(t), L10(t), . . . , L15(t), V9(t), V10(t), . . . , V15(t)]T ,

xr (t) and xs(t), and yr (t) and ys(t) correspond to the states and outputs, for the
rectifying and stripping section, respectively. The continuous states of the rectifying
and stripping section include the liquidmolar concentration of the lighter components
in every tray along with the liquid and vapor flow rate dynamics for every tray inside
each section. f1(·) an f2(·) represent the vector fields describing the state dynamics
for the rectifying and stripping section, respectively, xi (t), Mi (t), Li (t) and Vi (t)
denote the molar concentration, molar holdup, liquid and vapor flow rate for the i th
tray in the column, and wr (t), ws(t), vr (t), and vs(t) represent the Gaussian white
process andmeasurement noise, for the rectifying and stripping section, respectively.

The distributed scheme is implemented using two UKF, one for the rectifying
section andone for the stripping sectionon their respective control PLCwhich interact
with each other for estimating the overall system states. Based on the estimated
state, each PLC computes residuals for its sensor measurements for each of which a
threshold is applied for attack detection. Figure13.5 shows a block diagram of the
proposed detection scheme.

As the given model is continuous-time hence Eulers discretization is applied to
derive the discrete-time model of the rectifying and stripping section of the column.



338 H. M. S. Ahmad et al.

Fig. 13.5 Block level illustration of the detection scheme

The two main steps for implementing UKF for a discrete-time system are given
below.
Prediction step:

Xa
k−1 = x̂ak−1 ±

√
(Δ + λ)Pa

k−1

X x
k|k−1 = f (X x

k−1, X
w
k−1)

x̂k|k−1 =
2Δ∑

i=0

W (m)
i X x

i,k|k−1

Pk|k−1 =
2Δ∑

i=0

W (c)
i [X x

i,k|k−1 − x̂k|k−1][X x
i,k|k−1 − x̂k|k−1]T .

Update step:

Y k|k−1 = h(X x
k|k−1, X

v
k−1)

ŷk =
2Δ∑

i=0

W (m)
i Y i,k|k−1

Pỹk , ỹk−1
=

2Δ∑

i=0

W (c)
i [Y i,k|k−1 − ŷk][Y i,k|k−1 − ŷk]T

Pxk , yk =
2Δ∑

i=0

W (c)
i [X x

i,k|k−1 − x̂k|k−1][Y i,k|k−1 − ŷk]T

K = Pxk , yk P
−1
ỹk , ỹk
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x̂k = x̂k|k−1 + K ( yk − ŷk)

Pk = Pk|k−1 − K Pỹk , ỹk K
T ,

where xa = [xT wT vT ]T , Xa = [(Xx)T (Xw)T (Xv)T ]T , W (m)
0 = λ/(Δ + λ),

W (m)
i = W (c)

i = 1/{2(Δ + λ)}, i = 1, . . . , 2Δ, λ = α2(Δ + K ) − Δ is the compos-
ite scaling parameter,Δ is the dimension of augmented state, x̂k is themean state esti-
mate, ŷk is the mean output estimate, Pk is the covariance matrix, X i , i = 1, . . . , 2Δ,
are the sigma points, Pa

k = diag(Pk, Pw, Pa), and Pw, Pv are the covariance of pro-
cess and measurement noise, respectively. The parameter α determines the spread of
the sigma points around x̂k and is usually set to a positive value (between 0 and 1)
and K is a secondary scaling parameter which is usually set to 0.

The residuals which are used for detection are defined as follows:

r1 = ∣∣xD − x̂D
∣∣ (13.21)

r2 = ∣∣xB − x̂B
∣∣ , (13.22)

where xD , xB , x̂D , and x̂B correspond to the distillate purity and bottoms impurity
measurement (i.e., x1, x16), and estimated distillate purity and bottoms impurity (i.e.,
x̂1, x̂16), respectively, and r1 and r2 denote the residual in distillate purity estimation
and bottoms impurity estimation, respectively. The value of the residuals is chosen
based on the specification of the measured parameters, i.e., product purity require-
ment with the aim of detecting the attack as early as possible to limit the potential
damage on the product qualities due to an attack without triggering false alarms.

13.5.2 Detector Design

Fundamentally, the detection algorithm is implemented usingmovingwindow-based
monitoring, whereby at each time-instant the window is shifted by one sample. The
time-instant is set as the same as the update frequency of the UKF filter (Ts) as 3.6 s.
The window length is defined as the number of samples corresponding to a residual
that has to bemonitored. Thewindow length for this study has been set to ten samples,
i.e., 36 s. The length of the window is set as such to reduce the number of false alarms
without missing any true positive attack events. A Boolean flag is allocated to each
residual at every time-instant indicating the outcome from comparing the residual
against a predefined threshold. If the residual exceeds the threshold the flag is set
to False and vice versa. In the proposed window-based monitoring, at every time-
instant a decision status is assigned to each residual based on the evaluation of the
flags in the window. The decision status is binary, and can be either “Healthy (0)”
or “Abnormal (1)” which is determined based on the percentage of the flag in each
window with given value. In our study, the status is set as Abnormal (1) if 60% of
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the flags inside the window are set as False. The detection algorithm is implemented
inside the PLC as shown in Fig. 13.5.

13.6 Results

This section presents the results of the various attack cases that are used to validate
the proposed detection scheme. For all attack cases, the threshold for the residuals
defined in (13.21) and (13.22) is set to 0.02 and 0.01, respectively.

13.6.1 Attack on Distillate Purity Measurement

During this attack, the distillate purity is scaled up by 5%with the aim of violating the
product quality specification of the distillate. The result for this attack is presented
in Fig. 13.6. The attack is detected within 36s by the residual corresponding to
the distillate purity. This is achieved as the UKF is able to estimate the distillate
purity correctly in the event of the attack as illustrated in the figure. Besides that the
presented results confirm that the scheme successfully detects the attack before the
product quality specification is violated.

13.6.2 Attack on Bottoms Impurity Measurement

In this case, the bottoms impurity measurement is targeted using a ramp attack with
λr = 1.8 × 10−6. Figure13.7 presents the results corresponding to this attack and
as can be seen, the attack is successfully detected in 36s by r2 before the bottoms
impurity requirement could be violated. Principally, in the event of a sensor attack, a
discrepancy arises between the estimator output estimate and the actual measurement
as illustrated in Fig. 13.7 that facilitates the attack detection. Additionally, the differ-
ence between the estimated and actual bottoms impurity during the normal operation
is due to the fact that the actual measurements contain noise which is filtered out by
the UKF.

13.6.3 Attack on Reflux Flow Rate

The attack is injected by scaling the actual reflux rate down by 20%. In the event of an
actuator attack, as both the correct sensor and actuator data is available to the control
PLC, hence it is able to detect the attack by monitoring the system measurements
which changes abnormally due to the attack as illustrated in Fig. 13.8. From these
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Fig. 13.6 Results illustrating the effect of attack on the distillate purity measurement

results, it can be seen that the attack is successfully detected by both residuals;
however, r1 detected the attack earlier in 1.5h. As a result of this attack, the distillate
product quality requirement is violated.

13.6.4 Attack Case Summary

Besides the presented cases, Table13.5 summarizes the results for various other
attack cases considered as part of this study. The main noticeable observation is
the difference between the sensor and actuator attacks detection times where the
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Fig. 13.7 Results illustrating the effect of attack on the bottoms impurity measurement

actuator attacks take longer to be detected. This is due to the fact that the sensor
attack directly manipulates a variable of the residual functions, whereas in the case
of actuator attacks, the attack is detected using the change in the product quality
which takes longer to be appear as the system is relatively slow.
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Fig. 13.8 Results illustrating the effect of attack on the reflux flow rate

13.7 Conclusion and Future Work

This chapter addresses the cyber-security of a cyber-physical DC plant by proposing
an attack detection technique. A dynamical model of the DC plant is developed
which allows for performing simulation study without the necessity of having a
physical column. Following that, a hybrid HIL ICS testbed is proposed for the DC
plant implemented using industrial hardware from Siemens. A PLC-based online
distributed detection scheme is developed based on state estimation using Unscented
Kalman Filter and successfully validated for various attack scenarios formulated
using the presented attack models. In the proposed model, it is assumed that the
column pressure at the top remains constant which is not the case in reality. A
feedback control loop is generally used to maintain constant column pressure by
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Table 13.5 Summary of detection results for various sensor and actuator attacks

Attack type Attack name Targeted resource Detection time (s)

Sensor attack Bias injection Distillate purity 36

Bottoms impurity 36

DoS attack Distillate purity 48

Bottoms impurity 68

Actuator attack Replay attack Reflux rate 4320

Vapor flow rate 3885

Constant value attack Reflux rate 3655

Vapor flow rate 5139

Random attack Reflux rate 4481

Vapor flow rate 3593

adjusting the condenser duty cycle. Thus, the existing model can be extended by
incorporating the column pressure dynamics and an additional feedback control
loop can be added to enhance the practicality of the study. As part of this study, a
continuous binary DC is considered while there exist other types of columns that
are found in industry, e.g., batch distillation column, multi-component distillation
column. Hence, further studies can be done to tackle cyber-security for the other
distillation column configurations. Furthermore, distillation column is a part of crude
processing and there exist various chemical and physical processes both upstream
and downstream that is used to convert the raw crude into commercial product. These
processes can be included in the future study to make it industrially more feasible.
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Chapter 14
A Resilient Nonlinear Observer for
Light-Emitting Diode Optical Wireless
Communication Under Actuator Fault
and Noise Jamming

Ibrahima N’Doye, Ding Zhang, Ania Adil, Ali Zemouche, Rajesh Rajamani,
and Taous-Meriem Laleg-Kirati

14.1 Introduction

Special attention has been recently devoted to designing distributed autonomous
robotic systems in several mission scenarios in which human operators cannot
assess the situation. Distributed autonomous robotic systems (DARS) presents many
opportunities beyond supporting human task forces in various applications, such as
patrolling in communication-restricted environments, rescue and search and local-
ization of targets, and surveillance of complex environments (GroB et al. 2018). Such
distributed autonomous robot systems work well when every node is functional and
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trustworthy, and require coordination capabilities at multiple levels, including global
allocation tasks and task selection to local spatial coordination to avoid collisions
(GroB et al. 2018; Saldana et al. 2018).

Radio-frequency (RF) communication has been the standard method for the
autonomous ground robotic network to operate wirelessly for this distributed
autonomous platform. However, RF technology presents limitations such as a limited
available data rate, and congested spectrum (Borah et al. 2012; Ghassemlooy et al.
2012). Hence, optical wireless communication (OWC) technology is an alternative
that can complement RF technology to overcome these limitations (Majumdar and
Ricklin 2010; Elgala et al. 2011;Borah et al. 2012;Ghassemlooy et al. 2012). Further-
more, the rapid adaption and decreasing cost of the light-emitting diode (LED) make
it a compelling alternative and a promising communication technique to radio-based
wireless communication.

Optical wireless communication (OWC) technologies are of great importance in
many indoor and outdoor applications. OWC is considered an emerging alternative
technology in the communication area as the demand for capacity increases. It carries
out flexible networking solutions with cost-effective and high-speed license-free
wireless connectivity for several applications (Ghassemlooy et al. 2012; Zhang et al.
2020; N’Doye et al. 2018). In addition, OWC technology provides low latency, low
cost and power consumption, and high data rates (Hanson and Radic 2008; Hagem
et al. 2011; Lu et al. 2009). The practical applications of the free-space optical
communication system have been a great interest of wide field-of-view (FoV) such
that NASA technologies for interplanetary FSO communication systems, Facebook’s
dronesAquila (Facebook2018),Google’s Internet balloons (De-Vaul et al. 2014), and
FSO communication in space (Elgala et al. 2017), and military platforms (Calhoun
2003).

Although there is extensive effort to build reliable OWC for mobile network-
ing sensing applications, however, OWC systems’ practicality to maintain accurate
alignment angle of tracking optical systems in autonomous robot platforms has been,
until recently, a significant problem. In addition, the required alignment angle is not
directly measured and has to be estimated. On the other hand, the OWC system is
often hampered by noise jamming attack that reduces the system capacity of thewire-
less optical mobile networks. Additionally, one robot can reduce the system capacity
and affects all other robots’ communication networks when a hardware failure occurs
due tomalfunctions or high instantaneous torques of the actuator-mechanism flexible
on the receiver side. Figure14.1 illustrates an example of robots’ optical commu-
nication networks in which jammer intercepts the receiver aperture under actuator
fault.

The jamming attack has become an urgent and severe threat in several communi-
cations applications (Li et al. 2018). In noise jamming, the jammer intends to limit
the legitimate transmission by saturating the receiver with noise through deliber-
ate signals limiting an opponent’s communication effectiveness. It can considerably
reduce the system capacity. Noisy jamming is less harmful than disguised jamming,
which can have a jamming power that is much higher than the signal power. On the
other hand, jamming has been widely modeled as Gaussian noise (Li et al. 2018) or
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Fig. 14.1 Distributed autonomous robots system with LED optical communication under actuator
fault and jamming attack on the optical communication channel (the jamming signal gets trapped
inside the photodetector at the receiver side)

non-Gaussian noise (Paul et al. 2019) in free-space optical communications. Differ-
ent jamming attack strategies that a wireless jammer can generate to interfere with
other communications have been proposed in Pelechrinis et al. (2011), Liao et al.
(2013), Zou et al. (2016).

Kalman-type filters have been considered industry-standard solutions for motion
control problems and navigation systems. However, these filters rely on local lin-
earization assumptions and fail when the initial estimation errors are significant.
Furthermore, previous results on the Extended Kalman Filter (EKF)-based algo-
rithm of maintaining active alignment control for LED-based wireless optical com-
munications lack strong theoretical stability guarantees of the convergence of the
estimator (Solanki et al. 2016, 2018). Indeed, minor deviations errors in the output
measurement can make the EKF system go unstable. In contrast to the stochastic
filters frameworks, LMI-based observer design techniques have been widely used
for different classes of nonlinear systems (Ha and Trinh 2004; Acikmese and Corless
2011; Wang et al. 2014; Arcak and Kokotovic 2001; Zemouche et al. 2017; Draa
et al. 2019). Moreover, these developed LMI-based observer design methods in the
literature may fail when applying non-monotonic nonlinear systems (Rajamani et al.
2020). Recently, a novel LMI-based switched-gain observer design method for non-
linear continuous systems has been developed in Rajamani et al. (2020), N’Doye
et al. (2020) to tackle the non-monotonicity gap. On the other hand, unknown input
observer design techniques have been proposed for estimating states and unknown
inputs in the literature. Recently, an estimation algorithm that can detect cyber-
attacks on the communication channel with the preceding vehicle and monitor the
radar sensor’s health was developed in Jeon et al. (2020). The solution decouples the
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cyber-attack signal from the sensor failures in the estimation error dynamics in Jeon
et al. (2020). In Bakhshande and Soffker (2015), a proportional-integral observer was
proposed to estimate the states and unknown inputs. In Phanomchoeng and Rajamani
(2014), an unknown input estimationmethod based on nonlinear observer design and
a dynamicmodel inversionwas proposed. Another approach is designing an observer
for a system represented in descriptor system form (Phanomchocng et al. 2018).

This chapter proposes to track a groundmobile receiver by a vehicle transmitter to
establish a point-to-point optical link under actuator fault and noise jamming attack
on the optical communication channel. The method derives a constant stabilizing
observer gain by providing the angular position and velocity in each monotonic
region required for the trajectory tracking while ensuring global asymptotic stability
via the Lyapunov function. To the best of our knowledge, there are few works in the
literature considering state and unknown input estimation for non-monotonic output
functions and in the more general context of noise jamming attack on the optical
communication channel.

In this chapter,

• We demonstrate the infeasibility to solutions for the observer design LMIs when
the nonlinear functions are all non-monotonic.

• We develop a switched-gain unknown input observer that can detect actuator fault
under noise jamming attack on the communication channel.

• We develop conditions on the controller design to guarantee the H∞ optimality
criterion.

• We project the observer and controller gains design to achieve the asymptotic
stability and theH∞ performance criterionof the resultingobserver-based tracking
control, thanks to the certainty-equivalence design.

• We conduct simulation results to analyze the capability of the proposed switched-
gain observer-based reference trajectory tracking control to reconstruct the angular
position and velocity under actuator fault and noise jamming attack on the optical
communication channel.

The chapter is organized as follows. In Sect. 14.2, the LED-based optical commu-
nication model is presented, including its state-space and measurement equation. In
Sect. 14.4, we formulate our estimation-based reference trajectory tracking problem.
In Sect. 14.3, we derive the LED system model representation under actuator fault
and noise jamming attack on the communication channel. In Sect. 14.5, simulation
results are provided to illustrate the performance of the observer-based tracking under
actuator fault and noise jamming attack. Finally, concluding remarks are shown in
Sect. 14.6. The proof of the infeasibility of solutions for the observer design LMIs is
given in Appendix.

Notation:Matrix AT represents the transposed matrix of A. The Euclidean norm
of a vector x ∈ IRn is defined as ‖x‖ = √

xT x . The identity matrix of dimension r is
denoted Ir . The blocks induced by symmetry are denoted as (�). The set Co(x, y) =
{λx + (1 − λ)y, 0 � λ � 1} is the convex hull of {x, y}. A vector of the canonical
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basis ofRs is denoted as es(i) = (
0, . . . , 0,

i th
︷︸︸︷
1 , 0, . . . , 0︸ ︷︷ ︸

s components

)T ∈ R
s, s � 1.Apositive

definite (negative definite) square matrix is denoted as S > 0 (S < 0).

14.2 LED-Based Optical Channel Modeling

TheLED-basedoptical channel is a two-way communication describing a singleLED
transmitter and a single photodiode receiver; each end can rotate by an angle in which
it establishes andmaintains a directed line-of-sight (LOS) optical communication. In
this section, we describe the experimental setup for an estimation problem of LED-
based optical channel modeling. We discuss the luminous flux model, and finally,
we formulate the state-space representation, which takes the form of a dynamical
system with a nonlinear output map.

14.2.1 System Setup

The radiation regionof theLEDsource inwhich the radiationpatterns have significant
differences can be separated into a near field and far-field by the LED-to-target
distance (Ivan and Ching-Cherng 2008). A high-power LED can have 20mm close
to midfield, in which region the radiation pattern is distance-dependent while it
will not change in the far-field. As the range of communication is far longer than
20mm, here we treat radiation pattern as distance-invariant and try to obtain the
spatial distribution of LED luminous flux for our specific system setup as shown in
Fig. 14.2.

A white high-power LED module commonly used as a mobile phone flash is
mounted on a 4-wheels car. The LED module requires a power supply source of
3.5Wandgenerates lightwhosewavelength is between400 and700 nmwith a typical
luminous intensity of 245 lux. The power meter device VLP-2000 that measures the
strength of the received LED-based optical signal is mounted on another car. The

     Simulink    
on PC

LED (Blue)

Power Meter
Photodiode

Fig. 14.2 Diagram of the LED-based optical communication
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detectable wavelength ranges from 180 to 19mm with a resolution of 0.001mW and
the uncertainty of this power meter is ±5%.

14.2.2 Luminous Flux Model

The spatial distributionmodel of the LEDmainly describes the effect of relative posi-
tion and orientation between the transmitter and the receiver on the signal strength
(Ghassemlooy et al. 2012; Doniec et al. 2013; Solanki et al. 2018). The relative posi-
tion between transmitter and receiver is described with three parameters: the distance
d between them, the angle θ between the normal direction and themain normal direc-
tion of transmitter, and the angle φ between the orientation of the receiver and the
normal direction. Figure14.3 illustrates the variables of interest, which include the
transmission distance d, the transmission angle θ , and the angle of incidence φ.

The power incident on the detector is determined based on the signal irradiance
at the relative detector position. The full signal strength model can be formulated as
follows (Ghassemlooy et al. 2012; Doniec et al. 2013; Solanki et al. 2016, 2018):

Pd = C I (θ, d) exp (−cd)g(φ), (14.1)

where Pd is the measurement of power which is proportional to the luminous flux
of light that is detected by the receiver, C and c are both constants. The exp (−cd)

portion comes fromBeer’s law (Miller et al. 2009) which describes the attenuation of
power when light travels through medium as an exponential decay; I (θ, d) is usually
in the following form (Ghassemlooy et al. 2012; Doniec et al. 2013; Solanki et al.
2016, 2018)

I (θ, d) = I (0, d) cosm(θ)/d2, (14.2)

where I (0) is the central luminous flux as well as the maximum luminous flux and
m is the order of Lambertian emission

Fig. 14.3 LED optical
communication scheme



14 A Resilient Nonlinear Observer for Light-Emitting Diode Optical … 353

m = ln(2)

ln cos(θ1/2)
.

In the above formula, θ1/2 is the angle at half the illuminanceof anLED.Physically,
I (0, d) cosm(θ) represents the radiation pattern of LED source (Ivan and Ching-
Cherng 2008) and the reciprocal of d2 comes from the inverse-square law which
describes the geometric dilution of a physical quantity.

14.2.3 Model Calibration

Toparameterize theLED-basedopticalmodel (14.1),wehave conducted experiments
to measure the luminous flux of a high-power LED module at different relative
positions in clear weather conditions when there is a relative motion between the
receiver and the transmitter. We design three experiments to estimate the unknown
parameters of the luminous flux model given in (14.1).

14.2.3.1 Measured Signal Strength Versus Transmitter-Receiver
Distance

The LED source is fixed at the center of concentric circles as shown in Fig. 14.4, and
themain normal direction of the LED is alignedwith the symmetric axis. The receiver
car is placed at eleven equidistant points to observe the impact of the distance in free-
space optical communication. At each endpoint, we took five samples of measured
power and computed their means and variances.

As shown in Fig. 14.5, the signal strength declines when the distance between
the receiver and the transmitter increases. In addition, the nonlinear model
a exp (−bx)/x2 which combines the effects of absorption, scattering, and geometric
dilution fits well with the measured signal strength data

Fig. 14.4 Transmitter–receiver distance setup in free-space. Adapted from figures that
were originally published under a CC BY-NC-ND license in N’Doye et al. (2020);
10.1016/j.ifacol.2020.12.1075 by I. N’Doye, D. Zhang, A. Adil, A. Zemouche, R. Rajamani, T.-M.
Laleg-Kirati

https://doi.org/10.1016/j.ifacol.2020.12.1075
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Fig. 14.5 Measured signal strength versus the transmitter–receiver distance in free-space. Adapted
from figures that were originally published under a CC BY-NC-ND license in N’Doye et al. (2020);
10.1016/j.ifacol.2020.12.1075 by I. N’Doye, D. Zhang, A. Adil, A. Zemouche, R. Rajamani, T.-M.
Laleg-Kirati

Pd(d, 0, 0) = a
exp (−bd)

d2
, (14.3)

where a and b are the curve fitting parameters defined in Table14.1.

14.2.3.2 Angular Transmission Intensity Distribution

Assuming that the maximum power at distance d0 is achieved when θ = 0°, we
define the power ratio Ĩθ as follows:

Ĩθ := I (θ, d0)

I (0, d0)
. (14.4)

Table 14.1 Fitting results
Terms Model Parameters R2 RMSE

a(a1) b(b1) c(c1) a2 b2 c2

Scattering,
absorp-
tion,
dilution

a exp (−bx)/x2 0.01009 1.972 – – – – 0.9947 0.0058

Receiver
orienta-
tion

Equation (14.6) 0.9953 0.06298 0.2517 0.2260 −0.1995 0.132 0.9970 0.0205

https://doi.org/10.1016/j.ifacol.2020.12.1075
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Using the fact that the angular intensity distribution of the transmitter is rotation-
ally symmetric with the LED’s normal (θ = 0°), then we can measure the intensity
of all the points at the same radial distance based on spatial power ratio intensity
distribution Ĩθ . Hence, at a unit distance, we assume that Ĩθ is known and represents
the light intensity for different transmitter angles.

14.2.3.3 Measured Signal Strength Versus Incidence Angle φ

High-power LED source is aligned with the center of the detector point and targeted
at the main normal direction. To obtain an approximate form of g(φ), we place the
receiver along a circle to maintain the distance d constant and the transmission angle
θ constant and known at all times, as illustrated in Fig. 14.6.

In this scenario, θ and the distance d are actually set to 0° and 34 cm, respectively.
g(φ) is a unimodal function which represents empirically the power ratio. Assume
that at φ0, g(φ) reaches its maximum g(φ0) = 1, then we can have

Pd(0.34, 0, φ)

Pd(0.34, 0, φ0)
= g(φ)

g(φ0)
= g(φ). (14.5)

A proper function g(φ) fitting measured data is composed of two Gaussian terms
with six unknowns as shown in Fig. 14.7. The curve fitting could be done using a
single Gaussian mode but having one extra Gaussian mode gives significantly better
fitting. Using MATLAB curve fitting tool which is based on Least Square method,
we can evaluate g(φ) as follows (N’Doye et al. 2020):

Fig. 14.6 System setup of the received power with respect to the incidence angle in free-space
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Fig. 14.7 Gaussian curve fitting the incidence angle φ. Adapted from figures that were originally
published under a CC BY-NC-ND license in N’Doye et al. (2020); 10.1016/j.ifacol.2020.12.1075
by I. N’Doye, D. Zhang, A. Adil, A. Zemouche, R. Rajamani, T.-M. Laleg-Kirati

g(φ) ≈ a1 exp

[
−
(φ − b1

c1

)2]+ a2 exp

[
−
(φ + b2

c2

)2]
, (14.6)

where a1, a2, b1, b2, c1, and c2 are the curve fitting parameters defined in Table14.1.
Now the resulting luminous fluxmodel is obtained by combining equations (14.3),

(14.4) and (14.6) into a compact model.

Pd(d, θ, φ) = a exp (−bd)

d2
Ĩθ

︸ ︷︷ ︸
Transmitter

g(φ)
︸︷︷︸
Receiver

. (14.7)

From (14.7), we can evaluate the luminous flux generated by LED source at given
d and θ with φ set to 0°, i.e., the receiver’s pointing error is set to zero. Then, we
transform from polar frame to Cartesian coordinates (x = d cos θ, y = d sin θ ), and
the spacial distribution of LED-based luminous flux in 2-D space is illustrated in
Fig. 14.8.

14.2.4 State-Space and Output Measurement Equations

From (14.7), we formulate the state-space representation based on the two variables
of interest φ � x1, and φ̇ � x2 that relate to the angles of the receiver. On the other
hand, we note that practically it is not easy to move the distance d ideally because it
needs to move the whole robot. Besides, controlling the angular velocity of φ̇ � x2 is

https://doi.org/10.1016/j.ifacol.2020.12.1075
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Fig. 14.8 Predicting spacial luminous flux distribution of high-power LED source

more practical. The robot alignment is performed by stabilizing the angular velocity.
Since the distance d cannot be adjusted easily and θ fixed, therefore, we define the
states as follows:

x =
[
x1
x2

]
=
[
φ

φ̇

]
. (14.8)

The discrete-time state-space representation can be written as follows:

xk+1 =
[
x1,k+1

x2,k+1

]
=
[
x1,k + Tsx2,k + w1,k

x2,k + uk + w2,k

]
, (14.9)

where w1,k and w2,k are the process noise inputs which are assumed to be Gaussian,
independent and white noise. uk is the control input which acts on the receiver’s
angular velocity and Ts is the sampling time.

The measurement Pd,k is expressed as

yk � Pd,k = C̄ pg(x1,k) + wk, (14.10)

where C̄ p = Cp Ĩθ exp (−cd0)/d2
0 , g(.) is defined in (14.6) andwk is an additivewhite

Gaussian noise.

14.3 LED System Model Representation Under Actuator
Fault and Noise Jamming Attack

Optical wireless communication technologies have significantly advanced in the
past decades; however, most optical wireless networks are vulnerable to jamming
attacks due to the open nature of the communication channels. On the other hand,
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Fig. 14.9 Mobile networking of ground vehicle robots with LED optical communication under
actuator fault and jamming attack. The jammer uses a directed line-of-sight signal

the research progress in detecting hostile jamming and designing jamming-resistant
wireless networking systems remains limited. In this section, we extend the LED-
based optical model described by (14.9) and (14.10) by incorporating a false actuator
signal due to any cyber-attack and a jamming sensor attack term. The jamming
attack and the actuator fault can easily paralyze the optical wireless communication
networks due to the lack of protection mechanisms. Hence, the vulnerability of
existing optical wireless communications networks underscores the critical need
in developing effective anti-jamming systems in practice. We consider a mobile
networking or ground vehicles robot with LED communication in which a situation
of an occurrence of actuator fault is considered and a noise jamming attack intend
to reduce the system capacity of the LED-based optical wireless communication
channels, as illustrated in Fig. 14.9.

The jammer considered as attack intends to reduce the bandwidth or saturate the
receiver with false information through deliberate Gaussian noise signals to jam the
communication nodes. Besides, a situation of an occurrence of actuator failures is
also considered. Since additive bias effects of the actuator-mechanism flexible torque
that controls the receiver angular velocity x2,k can occur due tomalfunctions. Finally,
we have the state-space model

[
x1,k+1

x2,k+1

]
=
[

x1,k + Tsx2,k + w1,k

x2,k + uk + f ak + w2,k

]
, (14.11)

where f a represents the actuator injected false signal.
We introduce an additional receiver on the same robot with a constant shifted

angle ofΔφ to achieve observability, as illustrated in Fig. 14.10. This shifted angle is
added to account for the actual orientation of the receiver. At each movement of the
transmitter platform, the states are updated according to the system dynamics. Both
φ and φ̄ = φ ± Δφ can be controlled to 0°, when φ is controlled to 0° and reads
the wirelessly transmitted data, its orientation is being maintained by using φ̄. The
resulting output vector can be written as follows:
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Fig. 14.10 Measurements of
two receivers φ and φ̄

yk = C̄ p

⎡

⎢
⎣

g(x1,k)
g(x1,k ± Δφ
︸ ︷︷ ︸

φ̄

)

⎤

⎥
⎦+ Jk + wk, (14.12)

where Jk represents the noise jamming signals that intend to reduce the system
capacity of the LED-based optical wireless communication channel. Notice that, in
practice, Jk can modeled either as non-Gaussian noise (Paul et al. 2019) or Gaussian
noise (Li et al. 2018) with known expectation E{Jk} = ρ̄.

Given the measurement setting, the primary goal is to detect the actuator failure
and the noise jamming attack while estimating the angular position x1,k and the
angular velocity x2,k based on which the control uk is designed to drive x2,k towards
zero, which corresponds to the maximum light intensity’s orientation.

The next section provides the design and stability analysis of the unknown input
observer-based reference tracking control design to estimate the states and actuator
fault, simultaneously.

14.4 Resilient Observer-Based Tracking Control Design

This section is devoted to a general theory on the unknown input state observer
design. This theory is motivated by the LED-based optical communication model
described in (14.9) and (14.12).

14.4.1 Problem Formulation

Let us consider the following system
{
xk+1 = Axk + Buk + F f ak + Ewk

yk = h(xk) + GJk + Dwk,
(14.13)
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where xk ∈ R
n is the state vector, uk ∈ R

m is the input vector, yk ∈ R
p is the output

measurement, f ak ∈ R
r is the actuator fault vector, wk ∈ R

z is the disturbance L2

bounded vector, Jk ∈ R
ẑ is the noise jamming modeled by a Gaussian noise and the

matrices A ∈ R
n×n , B ∈ R

n×m , F ∈ R
n×r , E ∈ R

n×z , G ∈ R
p×ẑ and D ∈ R

p×z are
constant.We assume that the actuator bias fault f ak and its derivative are bounded. The
nonlinear output function h : R

n −→ R
p is assumed and to be globally Lipschitz.

To simultaneously estimate the unmeasurable state variables and the actuator fault
in model (14.13), we augment the state vector and design observers that provide an
estimate of ξ = [

x f a
]�
. We obtain the following augmented system

{
ξk+1 = Aξk + Buk + Ewk + FΔ f ak
yk = h(ξk) + GJk + Dwk,

(14.14)

where A =
[
A F
0 I

]
, B =

[
B
0

]
, E =

[
E
0

]
, F =

[
0
I

]
, h(ξk) = [

h(xk)
]
, G = G,

D = D and Δ f ak = f ak+1 − f ak .
Note that designing an extended state observer for the augmented system (14.14)

yields estimates of both the original plant state xk and the actuator fault f ak .

Remark 14.1 Note that the augmented transformation (14.14) is used to generate
effective methods for unknown input observers for nonlinear systems. For the sake
of simplicity, we adopted the extended state observer for unknown input estima-
tion proposed in Chakrabarty and Corless (2019). The choice of this transformation
(14.14) is motivated by the fact that we only need to construct an extended state
observer to estimate both state and unknown actuator bias fault input as the jamming
is considered noise while coping with the switched-gain observer design framework.

Let us consider the following observer structure to estimate the above augmented
system {

ξ̂k+1 = Aξ̂k + Buk + L(yk − ŷk),
ŷk = h(ξ̂k).

(14.15)

Matrix L is observer gain parameter to be determined such that the estimation
error e = ξ − ξ̂ converges towards zero where ξ̂k is the estimate of ξk . Since h(.) is
globally Lipschitz, then, there exist zi ∈ Co(ϑi , ϑ̂i ), functions φi j : R

ni −→ R, and
constants ai j , bi j , such that

h(ξ) − h(ξ̂ ) =
p,ni∑

i, j=1

φi j (zi )Hi j

(
ϑi − ϑ̂i

)
(14.16)

and

ϑi = Hiξk, ϑ̂i = Hi ξ̂k, ai j � φi j

(
zi
)

� bi j , φi j (zi ) = ∂hi

∂ϑ
j
i

(zi ), (14.17)
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where
Hi j = ep(i)e

�
ni ( j), φi j � φi j

(
zi
)
, Hi ∈ R

ni×n.

Since ϑi − ϑ̂i = Hiek and for all i = 1, . . . , p and j = 1, . . . , ni , we can rewrite
the nonlinearities as follows:

h(ξk) − h(ξ̂k)=
p,ni∑

i, j=1

φi jHi j Hi ek �Cek+
p,ni∑

i, j=1

φ̃i jHi j Hi ek,

where

C�
∑

(i, j)∈F
ai jHi j Hi , φ̃i j �φi j − ai j , F�

{
(i, j) : ai j 	= 0

}
. (14.18)

Then, the dynamic equation of the observation error ek = ξk − ξ̂k can be written
as

ek+1=
⎛

⎝A−L
p,ni∑

i, j=1

[
φi jHi j Hi

]
⎞

⎠ek+
[
E − LD F −LG]]
︸ ︷︷ ︸

Ē

⎡

⎣
wk

Δ f ak
Jk

⎤

⎦

︸ ︷︷ ︸
w̄k

ek+1 =
⎛

⎝A − LC −
p,ni∑

i, j=1

φ̃i j LHi j Hi

⎞

⎠

︸ ︷︷ ︸
Ā

ek + Ēw̄k . (14.19)

It follows that
0 � φ̃i j � b̃i j � bi j − ai j .

The aim is to find the gain matrix L , so that the observation error (14.19) satisfies
the following H∞ criterion

‖e‖�n2
≤
√

μ‖w̄‖2
�z2

+ ν‖e0‖2, (14.20)

where μ > 0 is the gain from w to e and ν > 0 is to be determined. To analyze the
H∞ stability of the error, we use the following quadratic Lyapunov function

Vk(ek) = e�
k Pek, with P = P� > 0. (14.21)

Consequently, theH∞ criterion is satisfied if the following inequality holds

Wk � ΔVk + ‖ek‖2 − μ‖w̄k‖2 � 0, (14.22)
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where ΔVk = V (ek+1) − V (ek).

14.4.2 Unknown Input Observer Design Method

This subsection will derive the theoretical results on the unknown input observer
design procedure for a class of nonlinear monotonic output equations system. We
demonstrate infeasibility to solutions for the unknown input observer design LMIs
when the nonlinear LED functions are all non-monotonic. Then, we present a
switched-gain observer design methodology that enables stable observers for the
non-monotonic output functions of the LED optical communication systems.

The following theorem provides the conditions that guarantee the asymptotic
stability of the estimation error system (14.19) in theH∞−optimality sense (14.20).

Theorem 14.1 Assume that there exist symmetric positive definite matrices P ∈
R

n×n, Si j ∈ R
ni×ni , i = 1, . . . , n and matrix X ∈ R

p×n, so that the following LMI
condition holds

min(μ) subject to (14.24) (14.23)

⎡

⎣
M

[
Π�

1 . . . Π�
p

]

(�) −ΛN

⎤

⎦ < 0, (14.24)

where

M =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

⎡

⎣
−P + I 0

0 −μI

⎤

⎦

⎡

⎢⎢⎢⎢
⎣

A
�P + C

�X
⎡

⎣
E

�P + D
�X

F
�P

−G
�X

⎤

⎦

⎤

⎥⎥⎥⎥
⎦

(�) −P

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

, (14.25)

Πi =
[
Π�

i1(X ,Si1) . . . Π�
ini (X ,Sini )

]�
,

Π�
i j (X ,Si j ) =

⎡

⎣
0
0

X �Hi j

⎤

⎦+
⎡

⎣
H�
i
0
0

⎤

⎦ Si j , (14.26)

Λ = block-diag
(
Λ1, ..., Λp

)
, (14.27)

Λi = block-diag

(
2

b̃i1
Ini , . . . ,

2

b̃ini
Ini

)

, (14.28)
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N = block-diag
(
N1, . . . ,Np

)
, (14.29)

Ni = block-diag
(
Ni1, . . . ,Nini

)
, (14.30)

then the observation error system in (14.19) is asymptotically stable and the
H∞ performance criterion (14.20) is guaranteed with ν = λmax(P). In addition, the
observer gain L is computed as

L = −P−1X �.

Proof By calculating Wk along the trajectories of (14.19), we obtain the following
equation

Wk =e�
k

⎡

⎢
⎣

⎛

⎝A−LC−L
p,ni∑

i, j=1

[
φ̃i jHi j Hi

]
⎞

⎠

�
P

⎛

⎝A−LC−L
p,ni∑

i, j=1

[
φ̃i jHi j Hi

]
⎞

⎠− P+I

⎤

⎥
⎦ ek

+ w̄�
k

[
Ē

�P Ē − μI
]
w̄k

+ e�
k

⎡

⎢
⎣

⎛

⎝A − LC − L
p,ni∑

i, j=1

[
φ̃i jHi j Hi

]
⎞

⎠

�
PĒ

⎤

⎥
⎦ w̄k

+ w̄�
k

⎡

⎣Ē�P

⎛

⎝A − LC − L
p,ni∑

i, j=1

[
φ̃i jHi j Hi

]
⎞

⎠

⎤

⎦ ek . (14.31)

Then, (14.31) can be written as follows:

Wk =
[
e�
k

w̄�
k

] [
Ā

�
Ā − P + I Ā

�PĒ
(∗) Ē

�PĒ − μI

] [
ek
w̄k

]
. (14.32)

It follows that Wk � 0 if the following inequality holds

[
Ā

�PĀ − P + I Ā
�PĒ

(∗) Ē
�PĒ − μI

]
< 0, (14.33)

which is equivalent to

[−P + I 0
(∗) −μI

]
+
[
Ā

�P
Ē

�P

]
P−1 [PĀ PĒ

]
< 0. (14.34)

Using Schur lemma, we deduce that Wk < 0 if the following matrix inequality
holds
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⎡

⎣
−P + I 0 Ā

�P
(∗) −μI Ē�P
(∗) (∗) −P

⎤

⎦ < 0, (14.35)

which is equivalent to

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

⎡

⎣
−P+I 0

0 −μI

⎤

⎦

⎡

⎢⎢⎢⎢
⎣

⎛

⎝A− LC −L
p,ni∑

i, j=1

[
φ̃i jHi j Hi

]
⎞

⎠

�

P

[
E − LD F −LG

]�
P

⎤

⎥⎥⎥⎥
⎦

(�) −P

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

<0. (14.36)

Inequality (14.36) can be rewritten as follows:

M

︷ ︸︸ ︷⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

⎡

⎣
−P + I 0

0 −μI

⎤

⎦

⎡

⎢
⎢⎢⎢
⎣

A
�P − C

�L�P
⎡

⎣
E

�P − D
�L�P

F
�P

−G
�L�P

⎤

⎦

⎤

⎥
⎥⎥⎥
⎦

(�) −P

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

+

p,ni∑

i, j=1

φ̃i j

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

Y
�
i︷ ︸︸ ︷⎡

⎢⎢⎢⎢
⎣

H�
i

0

0

⎤

⎥⎥⎥⎥
⎦

Xi j
︷ ︸︸ ︷[
0 0 −H �

i j L
�P
]+X

�
i jYi

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

< 0. (14.37)

From Young’s inequality, we have

Y
�
i Xi j + X

�
i jYi � 1

2

(
Xi j + Si jYi

)�
S

−1
i j

Πi j
︷ ︸︸ ︷(
Xi j + Si jYi

)
,

for any symmetric positive definite matrices Si j . Therefore, from (14.17) and the fact
that ai j = 0, inequality (14.37) holds if
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M +
p,ni∑

i, j=1

(

Π T
i j

( 2

b̃i j
Si j

)−1
Πi j

)

< 0. (14.38)

Hence, by Schur lemma and the change of variable X = −LT P , inequality
(14.38) is equivalent to (14.24). This ends the proof. �

14.4.3 Feasibility of (14.24) for Non-monotonic Outputs

The following theorem provides the non-existence of a constant observer gain solu-
tion for the non-monotonic LED-based optical communication model.

Theorem 14.2 Assume that the two following items hold:

(i) All the nonlinear output functions hi , i = 1, . . . , p, are non-monotonic.
(i i) the system matrix A is not Schur stable.

Then, the LMI (14.24) is infeasible.

Proof First, consider the following change of variables

S̄i j ⇐= 2

b̃i j
Si j .

Then, the LMI (14.24) in Theorem 14.1 is equivalent to

⎡

⎣
M

[∇T
1 . . . ∇T

p

]

(�) −N

⎤

⎦ < 0, (14.39)

where

M =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

⎡

⎣
−P + I 0

0 −μI

⎤

⎦

⎡

⎢⎢
⎢⎢
⎣

A
�P + C

�X
⎡

⎣
E

�P + D
�X

F
�P

−G
�X

⎤

⎦

⎤

⎥⎥
⎥⎥
⎦

(�) −P

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

, (14.40)

∇i =
[
∇T
i1(X , S̄i1) . . . ∇T

ini (X , S̄ini )
]T

,

∇T
i j (X , S̄i j ) =

⎡

⎣
0
0

X THi j

⎤

⎦+ b̃i j
2

⎡

⎣
HT
i
0
0

⎤

⎦ S̄i j . (14.41)
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To simplicity the proof, we will use a compact form of (14.39). To this end, we
introduce the following notation

G �
[
H11 . . .Hin1 Hp1 . . .Hpnp

]
,

H � �
[
H�

1 . . . H�
1︸ ︷︷ ︸

n1times

. . . H�
p . . . H�

p︸ ︷︷ ︸
np times

]
.

We also define Γa and Γb under the same form than Λ by replacing
2

b̃i j
by ai j and

bi j , respectively. Then, LMI (14.39) can be written under the compact form

⎡

⎢⎢⎢
⎢
⎣

M −
⎡

⎣
0
0

PLG

⎤

⎦+
⎡

⎣
H �
0
0

⎤

⎦
( Λ−1

︷ ︸︸ ︷
Γb − Γa

)�
N

(�) −N

⎤

⎥⎥⎥
⎥
⎦

< 0. (14.42)

Since from (i) all the nonlinear functions h j are non-monotonic, then from the
definition of C in (14.18), we deduce that

C = GΓaH .

It follows that M in (14.40) can be decomposed as

M =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

⎡

⎣
−P + I 0

0 −μI

⎤

⎦

⎡

⎢⎢⎢⎢
⎣

A
�P + C

�X
⎡

⎣
E

�P + D
�X

F
�P

−G
�X

⎤

⎦

⎤

⎥⎥⎥⎥
⎦

(�) −P

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

−
⎡

⎣
0
0

PLG

⎤

⎦Γa
[
H 0 0

]−
⎡

⎣
H �
0
0

⎤

⎦Γ �
a

⎡

⎣
0
0

PLG

⎤

⎦

�

. (14.43)

Hence from Schur lemma and the decomposition (14.43), LMI (14.42) is equiv-
alent to (14.44). On the other hand, after some manipulations, the LMI (14.44) is
identicallywritten under the form (14.45),which brings out themonotonicity through
the term Γ �

a NΓb + Γ �
b NΓa .
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⎡

⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎣

⎡

⎣
−P + I 0

0 −μI

⎤

⎦

⎡

⎢⎢
⎢⎢
⎢
⎣

A
�P + C

�X

⎡

⎢
⎣
E

�P + D
�X

F
�P

−G
�X

⎤

⎥
⎦

⎤

⎥⎥
⎥⎥
⎥
⎦

(�) −P

⎤

⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎦

−
⎡

⎣
0
0

PLG

⎤

⎦Γa
[
H 0 0

]−
⎡

⎣
H �
0
0

⎤

⎦Γ �
a

[

0 0
(
PLG

)�]

+

⎛

⎜
⎜
⎝−

⎡

⎣
0
0

PLG

⎤

⎦+ 1

2

⎡

⎣
H �
0
0

⎤

⎦
(

Λ−1
︷ ︸︸ ︷
Γb − Γa

)�
N

⎞

⎟
⎟
⎠N

−1

⎛

⎜
⎜
⎝−

⎡

⎣
0
0

PLG

⎤

⎦+ 1

2

⎡

⎣
H �
0
0

⎤

⎦
(

Λ−1
︷ ︸︸ ︷
Γb − Γa

)�
N

⎞

⎟
⎟
⎠

�

< 0.

(14.44)

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

⎡

⎣
−P + I 0

0 −μI

⎤

⎦

⎡

⎢
⎢⎢⎢
⎣

A
�P + C

�X

⎡

⎣
E

�P + D
�X

F
�P

−G
�X

⎤

⎦

⎤

⎥
⎥⎥⎥
⎦

(�) −P

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

− 1

2

⎡

⎣
H �
0
0

⎤

⎦

<0
︷ ︸︸ ︷[
Γ �
a NΓb + Γ �

b NΓa

] [
H 0 0

]

+
⎛

⎝−
⎡

⎣
0
0

PLG

⎤

⎦+ 1

2

⎡

⎣
H �
0
0

⎤

⎦
(
Γb + Γa

)�
N

⎞

⎠N
−1

⎛

⎝−
⎡

⎣
0
0

PLG

⎤

⎦+ 1

2

⎡

⎣
H �
0
0

⎤

⎦
(
Γb + Γa

)�
N

⎞

⎠

�

︸ ︷︷ ︸
>0

< 0.

(14.45)

Hence, if all the nonlinearities are non-monotonic, i.e.,

Γ �
a NΓb + Γ �

b NΓa < 0,

then the feasibility of (14.45) implies

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

⎡

⎣
−P + I 0

0 −μI

⎤

⎦

⎡

⎢⎢⎢⎢
⎣

A
�P + C

�X
⎡

⎣
E

�P + D
�X

F
�P

−G
�X

⎤

⎦

⎤

⎥⎥⎥⎥
⎦

(�) −P

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

< 0,

and leads necessarily to A Schur stable, which contradicts item (i i) of Theorem 14.2.
Then if the matrix A is not Schur stable, the LMI (14.24) is infeasible. This ends the
proof. �
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Fig. 14.11 Switched-gain
observer with switched gains

14.4.4 A Switched-Gain-Based Observer Solution

It has recently been proven in the continuous-time case (Rajamani et al. 2020) that
when all the nonlinear output functions are non-monotonic, a single observer gain
that guarantees exponentially stable estimation error over the entire operating range
cannot be found. Consequently, the LMI (14.24) is not feasible. However, if we want
to keep LMI (14.24) and exploit it for the observer design, then the unique solution
is to introduce a switched-gain-based observer (Rajamani et al. 2020) as depicted
in Fig. 14.11. To proceed, we consider a switched-gain observer with a constant
gain Li in the region Ri designed using the LMI (14.24) with ΓaRi

, ΓbRi
, and the

corresponding value of the quadratic Lyapunov positive definite matrix Pi as shown
in Fig. 14.11 in the case of switching between two regions. In Fig. 14.11, yswitch is
the nominal switching point between the two regions, and the parameter ε is the
hysteresis added to the switching to ensure a minimum dwell time after each switch
(Rajamani et al. 2020). The stability of the switched-gain observer of Fig. 14.11
consisting of different constant observer gain regions needs to be considered. Let
the two observers be designed to be asymptotically stable in each of the two regions
using the quadratic Lyapunov function analysis of Theorem 14.1. Then, it should be
noted that inside each region, a single observer gain is used, and asymptotic stability
is guaranteed under the constraint of feasibility of (14.24). Furthermore, the stability
of the overall switched system can be guaranteed if the system satisfies a minimum
dwell time constraint in each region, according to results from switching system
theory (Alessandri et al. 2005; Liberzon 2003; Goebel et al. 2012).

14.4.5 Reference Trajectory Tracking Design

The control objective consists in tracking a given desired trajectory ξ d
k corresponding

to a desired input udk , where (ξ d
k , udk ) is assumed to be an admissible stable solution

for the system (14.13) in the absence of dynamics noises. That is the pair (ξ d
k , udk )

satisfies the following dynamic equation

ξ d
k+1 = Aξ d

k + Budk . (14.46)
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The observer-based tracking control is given as

uk = −K (ξ̂k − ξ d
k ) + udk . (14.47)

Let us define the trajectory tracking error by

ξ̃k = ξk − ξ d
k . (14.48)

Then, the dynamics of the reference tracking error x̃k is written as

ξ̃k+1=
(
A−BK

)
ξ̃k + BKek+Ēw̄k . (14.49)

In the disturbance-free case, from Barbalat’s Lemma (Khalil and Grizzle 2002),
the stabilization of (14.49) is ensured by a simple pole assignment of the matrix
A − BK . This is due to the fact that the system is linear and the estimation error ek
converges exponentially towards zero. However, in the disturbance case, i.e., w̄k 	≡ 0,
assuming that the estimation error satisfies theH∞ criterion (14.20), the objective is
to determine the controller gain K to satisfy the followingH∞−optimality criterion

‖ξ̃‖�n2
≤
√

μ2‖w̄‖2
�z2

+ ν2

∥∥∥∥

[
ξ̃0
e0

]∥∥∥∥

2

, (14.50)

where μ2 > 0 is the gain from w̄ to ξ̃ and ν2 is to determine later. Since the gains Li

are determined by the observer design part in the previous section, then it remains
to design the controller gain K . The design procedure we follow in this chapter
is borrowed from Draa et al. (2019). Hence for more details we refer the reader
to (Draa et al. 2019, Sect. 3). It should be notice that (Draa et al. 2019) concerns
continuous-time systems, while in this chapter we deal with discrete-time. However,
the extension to discrete-time is straightforward.

Proposition 14.1 Assume that there exist symmetric positive definite matrices Y ∈
R

n×n and matrix Z of appropriate dimensions, so that the following convex opti-
mization problem holds:

min(μ1) subject to (14.52) (14.51)

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

−Y 0 Y

[
A F
0 I

]�
− Z

[
B
0

]�
Y

(�) −μ1I

[[
E
0

]
− LD

[
0
I

]
−LG

]�
0

(�) (�) −Y 0
(�) (�) (�) −I

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

< 0. (14.52)
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Then the tracking error x̃ satisfies the H∞ performance criterion

‖ξ̃‖�n2
≤
√√√√μ1

∥∥∥∥

[
w̄k

BKek

]∥∥∥∥

2

�z2

+ ν1

∥∥∥ξ̃0
∥∥∥
2
, (14.53)

with μ1 given by (14.51), ν1 = λmax(Y ), and K = Z T Y−1.

Finally, the complete design procedure of the switched-gain observer-based track-
ing controller can be summarized in the unified proposition below

Proposition 14.2 Assume that there exist symmetric positive definite matrices P,
Y ,Si , i = 1, . . . , n, and matricesZ ,X of appropriate dimensions such that both
convex optimization problems (14.23) and (14.51) hold. Then, the observer-based
tracking controller (14.47) guarantees theH∞ optimality criterion (14.50) with μ2

and ν2 given by

μ2 � μ1

[
1 + μλmax

(
KT BT BK

)]
, (14.54)

ν2 � max

(
μ1λmax(P)λmax

(
KT BT BK

)
, ν1

)
, (14.55)

where μ and μ1 are returned by the convex optimization problems (14.23)
and (14.51), respectively, and ν1 = λmax(Y ).

Proof See Draa et al. (2019, Proposition 3.1), for the proof in the continuous-time
case. �

14.5 LED Application Under Actuator Fault and Noise
Jamming Attack on the Optical Communication
Channel

This section illustrates the theoretical contributions presented in the previous sec-
tions.The effectiveness of thediscrete-timenonlinear observer-based reference track-
ing controller is evaluated for the LED-based optical communication system under
actuator fault and noise jamming on the optical communication channel. To do so, we
augment the state variables and consider the problem of estimating the actuator fault
attack f ak , the angular position x1,k , and the angular velocity x2,k based on which the
control uk is designed to drive the states x2,k towards zero, which gives the orientation
with themaximum light intensity. The process dynamics of the LEDmodel (14.9) are
linear while the output Eq. (14.12) are nonlinear. It is also clear that g(.) is function
of the state x1,k . Using the discrete-time nonlinear switched-gain observer (14.14),
the nonlinear output functions yk is monotonic in the operating ranges of x1,k and
φ � x2,k as illustrated in Fig. 14.12. Hence, a constant observer gain matrix Li exists
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Fig. 14.12 Regions around slope-change points of g(φ) with Δφ = −6°

in the operating ranges of interest. However, it is impossible to find a constant gain
matrix of Li that makes the observer stable for the entire operating range. Therefore,
a switched-gain-based observer is needed for the allowable operating regimes.

We divide piece-wise into different regions the nonlinear output functions. In each
region, at least one of the output functions is amonotonic function. Figure14.12 illus-
trates a piece-wise division of the nonlinear output functions in the operating regions
of interest due to the monotonicity concept. We note that the regions’ boundaries lie
at the slope-change points. For example, R2 is a narrow region where the nonlinear
output function’s slope y1 is close to zero. In this region, only the output y2 will be
used by the observer since y2 is monotonic. Regions R1 and R3 lie on either side
of R2 and both of these regions can utilize both outputs y1 and y2. Both y1 and y2
are monotonic in these regions. Since each region of interest R1 through R5 has
monotonic output function properties, as illustrated in Fig. 14.12. Then, a constant
stabilizing observer gain exists in each of these regions. Table14.2 provides the five
operating regimes and their corresponding observer gains.

We evaluate the capability of the discrete-time nonlinear switched-gain observer-
based controller method to reconstruct the actuator fault and the states variables
for tracking the LED optical communication system (14.9)–(14.12). The convex
optimization problem in (14.52) is feasible with the controller gain K =[0.02 0.3

]
.

The actuator fault in the angular velocity of the robot vehicle is considered and is
generated as follows:

f a =
⎧
⎨

⎩
0.002 ×

[
cos

(
tk − 2

5

)
+ 0.25

(
sin
(2π

3
tk
)

− 1.5

)]
, tk � 3.5.

0 otherwise.
(14.56)

The actuator fault (14.56) is synchronously sampled at the current sampling time
defined as tk =kε where k ∈ ZZ+ is a positive integer and ε>0 is the sampling
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Table 14.2 Operating ranges of φ [rad] and corresponding switched-gain observer gains

Region Left [rad] Right [rad] Observer gain

1 −0.5000 0.0083

⎡

⎢
⎣
4.5981 × 10−8 2.4859

1.0061 × 10−6 55.1841

5.0782 × 10−8 2.6526

⎤

⎥
⎦

2 0.0083 0.1083

⎡

⎢
⎣

−0.5733 3.5712

−12.9587 80.7190

−0.6197 3.8602

⎤

⎥
⎦

3 0.1083 0.1483

⎡

⎢
⎣

−2.2797 2.3838

−33.1862 34.7009

−1.5286 1.5984

⎤

⎥
⎦

4 0.1483 0.2483

⎡

⎢
⎣

−2.5111 0.5538

−65.6161 14.4720

−3.1354 0.6915

⎤

⎥
⎦

5 0.2483 0.5000

⎡

⎢
⎣

−2.1796 −3.3568 × 10−10

−63.8935 −1.0240 × 10−8

−3.0212 −4.2906 × 10−10

⎤

⎥
⎦

Fig. 14.13 Estimated
angular position x̂1 along
with the actual angular
position x1
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period. We assume that the process noise vectorwk ∼ N (0, Q), measurement noise
wk ∼ N (0, R), and the jamming noise is considered to be non-Gaussian noise.

Figures14.13, 14.14, 14.16, and 14.17 illustrate the reference trajectory tracking
results of the discrete-time switched-gain observer-based controller. Figure14.15
shows the unknown actuator input fault and its estimate. The proposed nonlinear
observer-based control exhibits good estimation performance and maintains a good
reference trajectory tracking performance.
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Fig. 14.14 Estimated
angular velocity x̂2 along
with the actual angular
velocity x2
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Fig. 14.15 Estimated
actuator fault x̂3 along with
the actual actuator fault x3
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Fig. 14.16 Estimated output
power ŷ1 along with the
actual output power y1
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Fig. 14.17 Estimated output
power ŷ2 along with the
actual output power y2
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14.6 Conclusion

In this chapter, we have designed a switched-gain observer-based reference trajectory
tracking to estimate the actuator fault and state variables under noise jamming on
the optical communication channel where the jammer aims to degrade signal quality.
The simultaneous presence of actuator fault and jamming noise poses challenges that
arise straight out the estimation and reference trajectory tracking control practice.
Specifically, the designed observer-based control is applied to a LED-based opti-
cal communication system in which the output nonlinearities are non-monotonic.
Based on this framework, sufficient conditions for the asymptotic stability and the
H∞ performance criterion of the observation error dynamics are guaranteed using
Lyapunov-analysis. Our future work will develop a prototype experiment testbed to
evaluate the proposed observer design strategy to detect and estimate the unknown
inputs and validate the obtained results. Subsequently, the fundamental observer
design algorithm developed herein can be extended in the future to enable hostile
jamming-attack detection in more complex distributed autonomous robots through-
out optical communication architectures.

Acknowledgements This work has been supported by the King Abdullah University of Science
and Technology (KAUST) through Base Research Fund (BAS/1/1627-01-01). A. Zemouche would
like to thank the ANR agency for the partial support of this work via the project ArtISMo ANR-
20-CE48-0015.

References

B.Acikmese,M.Corless,Observers for systemswith nonlinearities satisfying incremental quadratic
constraints. Automatica 47(7), 1339–1348 (2011)

A. Alessandri, M. Baglietto, G. Battistelli, Receding-horizon estimation for switching discrete-time
linear systems. IEEE Trans. Autom. Control 50(11), 1736–1748 (2005)



14 A Resilient Nonlinear Observer for Light-Emitting Diode Optical … 375

M. Arcak, P. Kokotovic, Observer-based control of systems with slope-restricted nonlinearities.
IEEE Trans. Autom. Control 46(7), 1146–1150 (2001)

F. Bakhshande, D. Soffker, Proportional-integral-observer: a brief survey with special attention to
the actual methods using ACC benchmark. IFAC-PapersOnLine 48(1), 532–537 (2015)

D. Borah, A. Boucouvalas, C. Davis, S. Hranilovic, K. Yiannopoulos, A review of communication-
oriented optical wireless systems. EURASIP J. Wirel. Commun. Netw. 91(3), 226–236 (2012)

Calhoun, Free space optics communication for mobile military platforms (2003), http://calhoun.
nps.edu/handle/10945/6160

A. Chakrabarty, M. Corless, Estimating unbounded unknown inputs in nonlinear systems. Auto-
matica 104(9), 57–66 (2019)

R.W. De-Vaul, E. Teller, C.L. Biffle, J. Weaver, Balloon power sources with a buoyancy trade-off,
United States Patent US2014/0 048 646A1 (2014)

N. Doniec, M. Angermann, D. Rus, An end-to-end signal strength model for underwater optical
communications. IEEE J. Ocean. Eng. 38(4), 743–757 (2013)

K.C. Draa, A. Zemouche,M. Alma, H. Voos,M. Darouach, A discrete-time nonlinear state observer
for the anaerobic digestion process. Int. J. Robust Nonlinear Control 29(5), 1279–1301 (2019)

K.C. Draa, A. Zemouche, M. Alma, H. Voos, M. Darouach, Nonlinear observer-based control with
application to an anaerobic digestion process. Eur. J. Control 45, 74–84 (2019)

H. Elgala, R.Mesleh,H.Haas, Indoor optical wireless communication: potential and state of-the-art.
IEEE Commun. Mag. 49(9), 56–62 (2011)

H. Elgala, R. Mesleh, H. Haas, Optical communication in space: challenges and mitigation tech-
niques. IEEE Commun. Surv. Tut. 19(1), 57–96 (2017)

Facebook,Harnessing light for wireless communications (2018), https://code.fb.com/connectivity/
harnessing-light-for-wireless-communications

Z. Ghassemlooy,W. Popoola, S. Rajbhandari,OpticalWireless Communications: System andChan-
nel Modelling with MATLAB, 1st edn. (CRC Press, Berlin, 2012)

R. Goebel, R.G. Sanfelice, R.A. Teel,Hybrid Dynamical Systems—Modeling, Stability, and Robust-
ness (Princeton University Press, New Jersey, 2012)

R. GroB, A. Kolling, S. Berman, E. Frazzoli, A. Martinoli, F. Matsuno, M. Gauci, Distributed
Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol. 6 (2018)

Q.Ha,H.Trinh, State and input simultaneous estimation for a class of nonlinear systems.Automatica
40, 1779–1785 (2004)

R. Hagem, D.V. Thiel, S. O’Keefe, A.Wixted, T. Fickenscher, Low cost short-range wireless optical
FSKmodem for swimmers feedback, in IEEESensorsConference (LosAngeles, CA,USA, 2011)

F.Hanson, S. Radic, High bandwidth underwater optical communication.Appl. Opt. 47(2), 277–283
(2008)

M. Ivan, S. Ching-Cherng,Modeling the radiation pattern of LEDs. Opt. Express 16(3), 1808 (2008)
W. Jeon, Z. Xie, A. Zemouche, R. Rajamani, Simultaneous cyber-attack detection and radar sensor
health monitoring in connected ACC vehicles. IEEE Sens. J. 21(14), 15 741–15 752 (2020)

H.K. Khalil, J.W. Grizzle, Nonlinear Systems, vol. 3. (Prentice hall Upper Saddle River, NJ, 2002)
T. Li, T. Song, Y. Liang,Wireless Communications Under Hostile Jamming: Security and Efficiency
(Springer Nature Singapore, 2018)

H.J. Liao, C.H. Richard-Lun, Y.C. Lin, K.Y. Tung, Intrusion detection system: a comprehensive
review. J. Netw. Comput. Appl. 36(1), 16–24 (2013)

D. Liberzon, Switching in Systems and Control (Springer, New York, 2003)
F. Lu, S. Lee, J. Mounzer, C. Schurgers, Low-cost medium-range optical under water modem, in
4th ACMInternationl Workshop Under Water Network (Los Angeles, CA, USA, 2009), pp. 1–11

A. Majumdar, J. Ricklin, Free-Space Laser Communications: Principles and Advances (Springer,
Berlin, 2010)

F. Miller, A. Vandome, J. McBrewster, Beer-Lambert Law (VDM Publishing, Saarbrucken, Ger-
many, 2009)

http://calhoun.nps.edu/handle/10945/6160
http://calhoun.nps.edu/handle/10945/6160
https://code.fb.com/connectivity/harnessing-light-for-wireless-communications
https://code.fb.com/connectivity/harnessing-light-for-wireless-communications


376 I. N’Doye et al.

I. N’Doye, D. Zhang, M.-S. Alouini, T.-M. Laleg-Kirati, Establishing and maintaining a reliable
optical wireless communication in underwater environment. IEEE Access 9(2), 62 519–62 531
(2018)

I. N’Doye, D. Zhang, A. Zemouche, R. Rajamani, T.-M. Laleg-Kirati, A switched-gain nonlinear
observer for LED optical communication, in 21st IFACWorld Congress, Berlin, Germany (2020)

P. Paul,M.R. Bhatnagar, A. Jaiswal, Performance of free space optical communication system under
jamming attack and its mitigation over non-Gaussian noise channel, in 2019 IEEE 90th Vehicular
Technology Conference (Honolulu, HI, USA, 2019)

K. Pelechrinis, M. Iliofotou, V.S. Krishnamurthy, Denial of service attacks in wireless networks:
the case of jammers. IEEE Commun. Surv. Tutor. 13(2), 245–257 (2011)

G. Phanomchocng,A.Zemouche,W. Jeon,R.Rajamani, F.Mazenc,Real-time estimation of rollover
index for tripped rollovers with a novel unknown input nonlinear observer. Am. Control Conf.
(ACC) 19(2), 5952–5956 (2018)

G. Phanomchoeng, R. Rajamani, Real-time estimation of rollover index for tripped rollovers with a
novel unknown input nonlinear observer. IEEE/ASME Trans. Mechatron. 19(2), 743–754 (2014)

R. Rajamani, W. Jeon, H. Movahedi, A. Zemouche, On the need for switched-gain observers for
non-monotonic nonlinear systems. Automatica 114, 108814 (2020)

D. Saldana, A. Prorok, M.F.M. Campos, V. Kumar, Triangular networks for resilient formations,
in Distributed Autonomous Robotic Systems, ed. by R. GroB, Springer Proceedings in Advanced
Robotics, vol. 6, chap. 7 (2018), pp. 147–158

P.B. Solanki, M. Al-Rubaiai, X. Tan, Extended Kalman filter-aided alignment control for maintain-
ing line of sight in optical communication, in Proceedings American Control Conference (2016),
pp. 4520–4525

P.B. Solanki, M. Al-Rubaiai, X. Tan, Extended Kalman filter-based active alignment control for
LED optical communication. IEEE/ASME Trans. Mechatron. 23(4), 1501–1511 (2018)

Y. Wang, R. Rajamani, D. Bevly, Observer design for differentiable Lipschitz nonlinear systems
with time-varying parameters, in 53th IEEE Conference on Decision and Control, Los Angeles,
CA, USA (2014), p. 2014

A. Zemouche, R. Rajamani, G. Phanomchoeng, B. Boulkroune, H. Rafaralahy, M. Zasadzinski,
Circle criterion-basedH∞ circle observer design for lipschitz andmonotonic nonlinear systems—
enhanced LMI conditions and constructive discussions. Automatica 85, 412–425 (2017)

D. Zhang, I. N’Doye, T. Ballal, T.-Y. Al-Naffouri, M.-S. Alouini, T.-M. Laleg-Kirati, Localization
and tracking control using hybrid acoustic-optical communication for autonomous underwater
vehicles. IEEE Internet Things J. 7(10), 10 048–10 060 (2020)

Y. Zou, J. Zhu, X. Wang, L. Hanzo, A survey on wireless security: technical challenges, recent
advances, and future trends. Proc. IEEE 104(9), 1727–1765 (2016)



Index

A
Actuator fault, 348
ADAM, 134
Advanced persistent threat, 4
Adversarial machine learning, 18
Anomaly forecasting, 64
APT, 4, 119
APT-DASAC, 4
Architectural design, 127
Attack detection, 7, 169
Attack identification, 170
Attack mitigation, 172
Attack surface, 14
Auxiliary model, 92

B
Bad data detection, 86
Bernoulli random variable, 96
Bias injection attack, 335
Binary classifier, 95
BLACKENERGY 2, 121

C
Causative attack, 5, 211, 226
Centralized Secure Control, 24
Chernoff–Stein lemma, 37
Classifier, 65
Clustering, 70
Column Space Property (CSP), 99, 100
Command and control, 124
Command injection attacks, 136
Communication channels, 125
Community discovery algorithm, 6
Complex Malicious Response Injection

(CMRI), 136

Concurrent model, 88
Confidence scores, 18
Conformal prediction, 18
CRASHOVERRIDE, 121
Cross-entropy loss, 134
Cyber layer, 88
Cyber Physical Systems (CPS), 5, 37, 86,

209, 210, 213, 215
Cyber-Physical Systems (CPS), 61, 121
Cyber-security, 190

D
Data analysis layer, 127
Data collection, 124
Data deception, 188
Data input and probing layer, 127
Data-Driven ADII, 17
Decision layer, 127
Decoder, 90
Delivery, 124
Denial of Service, 325
Detection, 5, 212, 213, 215, 217, 218, 222–

224, 226–228, 231, 233
Detection framework, 127
Detection-driven, 212
Detector, 90
Digital twin, 63
Digital twin simulations, 18
Dimensionality reduction, 65
Distillation column, 7, 324
Distortion, 37
Distributed Control Systems (DCS), 119
Distributed secure control, 25
DoS attack, 137, 336
Dropout, 134
Dynamic ensemble forecast averaging, 74

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2022
M. Abbaszadeh and A. Zemouche (eds.), Security and Resilience in Cyber-Physical
Systems, https://doi.org/10.1007/978-3-030-97166-3

377

https://doi.org/10.1007/978-3-030-97166-3


378 Index

Dynamic model averaging, 62
Dynamical and control systems, 38

E
Early warning generation, 62
Edge computing, 14
Electrical power network, 253
Ensemble forecasting, 69
Estimation, 5, 210–222, 224–229, 231
Evaluation metrics, 139
Exfiltration, 124
Expectation maximization, 70
Explainability, 18
Explicit formulas, 38
Exploitation, 124
Extreme Learning Machine (ELM), 63

F
Fabrication, 135
False Data Injection Attack (FDIA), 86, 125
Feature Discovery, 68
Feature space, 63
5G, 14
Fundamental limits, 37
Fundamental tradeoffs, 37

G
Gas turbine, 3, 63
Gaussian Mixture Model (GMM), 3, 70
Gaussian process, 92
Gaussian process regression, 92
GMM clustering, 70

H
Hardware-In-the-Loop (HIL), 7, 325
HAVEX, 121
Human–machine interface, 14
Hyperparameters settings, 133
Hypotheses testing, 37

I
IEEE 14-bus system, 105
Implementation, 132
Industrial Control Systems, 323
Information theory, 37
Injection attacks, 38
Input constraint, 270
Input–output behaviors, 38
Interception, 135

Internet of Things (IoT), 14
Interruption, 135

K
Kalman predictor, 62
KDDCup99 dataset, 141
Kernel function, 93
KL divergence rate, 40
Kullback–Leibler (KL) divergence, 2, 37

L
Lateral movement, 124
Life cycle of APTs Attacks, 123
Linear Parameter-Varying (LPV), 188
Linear Time Invariant (LTI), 89
Line-Of-Sight, 351
Line-Of-Sight (LOS), 7
Localization, 93
Localization algorithm, 93
Locational bus marginal prices, 107

M
Malicious Function Code Injection (MFCI),

136
Malicious Parameter Command Injection

(MPCI), 136
Malicious State Command Injection

(MSCI), 136
Marginal cost congestion, 107
Marginal cost loses, 107
Master Control Unit (MTU), 4
Maximum likelihood estimation, 70
Mean squared-error distortion, 37
Measurement prior, 92
Model-Based ADII, 17
Modification, 135
Monitor, 89

N
Naïve Malicious Response Injection

(NMRI), 136
Networked Control Systems (NCS), 188
network topologies, 134
NGP dataset, 127
Noise jamming attack, 348
Null Space Property (NSP), 99
NY Independent SystemOperator (NYISO),

106



Index 379

O
Observer design, 187
Operation, 124
Operational Technology (OT), 9
Optical wireless communication, 7, 348

P
Parameterizing, 135
Payload information, 134
Performance degradation, 37
Performance limits, 37
Phasor Measurement Unit (PMU), 14
Physical layer, 88
Physical model, 89
Polytopic approach, 205
Positive Prediction Value (PPV), 95
Power spectral analysis, 2, 38
Power spectrums, 39
Power systems, 177
Precision, 95
Predictive situation awareness, 78
Principal Component Analysis (PCA), 69
Prior pruning, 94, 98
Pruning, 96
Pruning algorithm, 98
Pruning operation, 96
Pruning-based resilient estimation, 98
Pseudocode, 127

R
Ramp attack, 335
Randomizing, 135
Raw dataset, 136
Receiver Operating Characteristic (ROC),

95
Reconnaissance, 124
Relative measurement, 270
Remote Terminal Unit (RTU), 4
Replay attack, 335
Residual-based monitor mechanism, 90
Resilience, 37
Resilient control, 23
Resilient distributed state estimation, 6, 301
Resilient Estimation, 21
Resilient estimation, Resilient estimator, 98
Resilient power grid, 105
Resilient pruning observer, 101
Resilient state estimation, 150
Resilient Water distribution System, 110
Resilient wheeled mobile robot, 111
Resource-aware secure control, 26
Response injection attacks, 136
Restricted Isometry Property (RIP), 99

Robust consensus, 273
Robust finite-time consensus, 269

S
Safety-critical, 18, 37
SCADA, 4
Scaling attack, 334
Sector nonlinearity transformation, 188
Secure, 212, 213, 215, 217–221, 223–228
Secured, 212
secured sensor, 212
Secure estimation, 5, 212, 213
Security, 37, 209, 211, 218, 219, 224
Set-valued state estimates, 151
Sigmoid/ReLU, 133
Situation awareness, 3, 68
Sliding mode control, 238
SlidingModeObservation/Differentiation, 6
Softmax, 134
Sparse recovery algorithm, 242
State estimation, 188
Statistical detection theory, 37
Stealthiness, 38
Stealthiness-distortion tradeoffs, 38
Stochastic switching, 151
STUXNET, 121
Subsystem decomposition, 6, 300
Successful FDIA, 91
Supervised learning, 18
Switched systems, 153

T
Takagi–Sugeno systems, 187
Threat model, 91
Tracking control, 350
Two-class learning, 18

U
Uncertainty model, 95
Unscented Kalman Filter (UKF), 324
Unsecured sensor, 212
Unsupervised machine learning, 18
UNSW-NB15 dataset, 127

V
VAR model, 72

W
Wastewater treatment plant, 299
Weaponization, 124


	Preface
	Contents
	Contributors
	1 Overview
	2 Introduction to Cyber-Physical Security and Resilience
	2.1 Introduction
	2.2 Cyber-Physical Security and Resilience Functionality Overview
	2.3 Cyber-Physical Security Versus Adjacent Fields
	2.3.1 Cyber-Physical Security Versus Cyber-Security
	2.3.2 Cyber-Physical Security Versus FDII
	2.3.3 Cyber-Physical Security Versus Prognostics

	2.4 Attack Detection, Isolation, and Identification
	2.4.1 Model-Based ADII
	2.4.2 Data-Driven ADII

	2.5 Attack Resilience
	2.6 Resilient Estimation
	2.6.1 State of the Art on Resilient and Secure Estimation: A Glimpse on Existing Methods

	2.7 Resilient Control
	2.7.1 Centralized Secure Control
	2.7.2 Distributed Secure Control
	2.7.3 Resource-Aware Secure Control

	References

	3 Fundamental Stealthiness–Distortion Trade-Offs in Cyber-Physical Systems
	3.1 Introduction
	3.2 Preliminaries
	3.3 Stealthiness–Distortion Trade-Offs and Worst-Case Attacks
	3.3.1 Open-Loop Dynamical Systems
	3.3.2 Feedback Control Systems

	3.4 Simulation
	3.5 Conclusion
	References

	4 Predictive Situation Awareness and Anomaly Forecasting in Cyber-Physical Systems
	4.1 Introduction
	4.2 Forecasting Framework
	4.2.1 Digital Twin Simulation Platform
	4.2.2 Anomaly Forecasting Approaches
	4.2.3 Dimensionality Reduction
	4.2.4 Forecasting Process
	4.2.5 Feature Discovery

	4.3 Ensemble Forecasting
	4.3.1 Ensemble Modeling in Feature Space
	4.3.2 Adjusting Cluster Centroids to Physical Points
	4.3.3 Dynamic Modeling
	4.3.4 Dynamic Ensemble Forecast Averaging
	4.3.5 Receding Horizon Anomaly Forecast
	4.3.6 Committed Horizon Anomaly Forecast

	4.4 Predictive Situation Awareness
	4.5 Simulation Results
	4.6 Conclusions
	References

	5 Resilient Observer Design for Cyber-Physical Systems with Data-Driven Measurement Pruning
	5.1 Notation
	5.2 Introduction
	5.3 Concurrent Models
	5.3.1 Physical Model and Monitor
	5.3.2 Threat Model
	5.3.3 Data-Driven Auxiliary Measurement Prior
	5.3.4 Prior Pruning

	5.4 Pruning-Based Resilient Estimation
	5.4.1 Unconstrained ell1 Observer
	5.4.2 Resilient Pruning Observer

	5.5 Simulation Results
	5.5.1 Resilient Power Grid
	5.5.2 Resilient Water Distribution System
	5.5.3 Resilient Wheeled Mobile Robot

	5.6 Conclusion
	References

	6 Framework for Detecting APTs Based  on Steps Analysis and Correlation
	6.1 Introduction
	6.1.1 Targeted APT Attack on CPSs
	6.1.2 Safety of Cyber-Physical Systems (CPSs)
	6.1.3 Organization of Book Chapter

	6.2 Advanced Persistent Threats (APTs)
	6.2.1 Characteristics of APTs
	6.2.2 Life Cycle of APTs Attack
	6.2.3 Related Work

	6.3 APT Detection Framework
	6.3.1 Architectural Design of APT-DASAC
	6.3.2 Three Layers of APT-DASAC

	6.4 Implementation of APT-DASAC Approach
	6.4.1 Implementation Setup
	6.4.2 Implementation Dataset

	6.5 Experimental Evaluation of APT-DASAC Approach
	6.5.1 Result and Discussion

	6.6 Conclusion
	References

	7 Resilient State Estimation and Attack Mitigation in Cyber-Physical Systems
	7.1 Introduction
	7.1.1 Literature Review

	7.2 Problem Formulation
	7.2.1 Attack Modeling
	7.2.2 System Description
	7.2.3 Security Problem Statement

	7.3 Resilient State Estimation
	7.3.1 Multiple-Model State and Input Filtering/Estimation Algorithm
	7.3.2 Properties of the Resilient State Estimator
	7.3.3 Fundamental Limitations of Attack-Resilient Estimation

	7.4 Attack Detection and Identification
	7.4.1 Attack Detection
	7.4.2 Attack Identification

	7.5 Attack Mitigation
	7.6 Simulation Examples
	7.6.1 Benchmark System (Signal Magnitude , Location Attacks)
	7.6.2 IEEE 68-Bus Test System (Mode and Signal Magnitude Attacks)

	7.7 Conclusion
	References

	8 State and Attacks Estimation  for Nonlinear Takagi–Sugeno Multiple Model Systems with Delayed Measurements
	8.1 Introduction
	8.1.1 Contributions and Outline
	8.1.2 Chapter Organization

	8.2 Problem Statement
	8.2.1 False Data Injection Attacks on Actuators/Sensors
	8.2.2 Polytopic Modeling of Time-Varying Nonlinear Systems with Delayed Measurements
	8.2.3 Polytopic Modeling of Time-Varying Parameters (Malicious Attacks)
	8.2.4 LPV Model of Physical Plant Under Data Deception Attacks and Delayed Measurements

	8.3 Main Result: Observer Design
	8.4 Numerical Simulation
	8.4.1 LPV Representation of The Process
	8.4.2 Date Deception Attacks Representation  on The Actuator/Sensor
	8.4.3 Simulation Results

	8.5 Conclusions
	References

	9 Secure Estimation Under Model Uncertainty
	9.1 Introduction
	9.1.1 Overview and Contributions
	9.1.2 Related Studies

	9.2 Data Model and Definitions
	9.2.1 Attack Model
	9.2.2 Decision Cost Functions

	9.3 Secure Parameter Estimation
	9.4 Secure Parameter Estimation: Optimal Decision Rules
	9.5 Case Studies: Secure Estimation in Sensor Networks
	9.5.1 Case 1: One Sensor Vulnerable to Causative Attacks 
	9.5.2 Case 2: Both Sensors Vulnerable to Adversarial Attacks

	9.6 Conclusions
	References

	10 Resilient Control of Nonlinear Cyber-Physical Systems: Higher-Order Sliding Mode Differentiation and Sparse Recovery-Based Approaches
	10.1 Introduction
	10.2 Mathematical Modeling
	10.2.1 Problem Statement

	10.3 Preliminary: Sparse Recovering Algorithm
	10.4 Attack Reconstruction When the Number of Potential Attacks is Greater Than the Number of Sensors
	10.4.1 System Transformation
	10.4.2 Attack Reconstruction

	10.5 Attack Reconstruction When the Number of Sensors is Greater Than the Number of Potential Sensor Attacks
	10.5.1 State Attack Reconstruction
	10.5.2 Sensor Attacks Reconstruction

	10.6 Case Study: Cyber Attack Reconstruction in the US Western Electricity Coordinating Council Power System
	10.6.1 Mathematical Model of Electrical Power Network
	10.6.2 Transformation of DAE to ODE
	10.6.3 Parameterization of Mathematical Model of Western Electricity Coordinating Council Power System
	10.6.4 Reconstruction of Attacks via Sparse Recovery Algorithm: The Number of Potential Attacks  is Greater Than the Number of Sensors
	10.6.5 Reconstruction of Attacks and Estimation of States: The Number of Sensors is Greater Than the Number of Potential Sensor Attacks

	10.7 Conclusions
	References

	11 Resilient Cooperative Control of Input Constrained Networked Cyber-Physical Systems
	11.1 Introduction
	11.1.1 Notation
	11.1.2 Preliminaries on Algebraic Graph Theory
	11.1.3 Preliminaries on Finite-Time Stability

	11.2 Input Constrained Robust Consensus Tracking for High-Order NCPS
	11.2.1 Problem Formulation
	11.2.2 Input Constrained Robust Consensus Tracking with a Static Leader
	11.2.3 Input Constrained Robust Consensus Tracking with a Dynamic Leader
	11.2.4 Output-Based Input Constrained Robust Consensus Tracking

	11.3 Input Constrained Robust Finite-Time Consensus Tracking for High-Order NCPS
	11.3.1 Problem Formulation
	11.3.2 Input Constrained Robust Finite-Time Consensus Tracking with Relative State Measurements
	11.3.3 Input Constrained Robust Finite-Time Consensus Tracking with Relative Output Measurements

	11.4 Numerical Examples
	11.4.1 Input Constrained Robust Consensus Tracking for High-Order NCPS
	11.4.2 Input Constrained Robust Finite-Time Consensus Tracking for High-Order NCPS

	11.5 Conclusions
	References

	12 Optimal Subsystem Decomposition and Resilient Distributed State Estimation for Wastewater Treatment Plants
	12.1 Introduction
	12.2 Model Description of Wastewater Treatment Plants
	12.3 Subsystem Decomposition
	12.4 Resilient Distributed State Estimator Design
	12.5 Simulation
	12.5.1 Subsystem Decomposition
	12.5.2 Resilient Distributed State Estimator Design

	12.6 Conclusion
	References

	13 Cyber-Attack Detection for a Crude Oil Distillation Column
	13.1 Introduction
	13.1.1 Preliminary
	13.1.2 Cyber-Security of Distillation Column

	13.2 Distillation Column Design and Modeling
	13.2.1 Plant Data
	13.2.2 Distillation Column Design
	13.2.3 Dynamic Model of the Distillation Column
	13.2.4 Control of Distillation Column

	13.3 Testbed Design
	13.4 Attack Modeling
	13.5 Attack Detection Algorithm
	13.5.1 UKF Based Attack Detection
	13.5.2 Detector Design

	13.6 Results
	13.6.1 Attack on Distillate Purity Measurement
	13.6.2 Attack on Bottoms Impurity Measurement
	13.6.3 Attack on Reflux Flow Rate
	13.6.4 Attack Case Summary

	13.7 Conclusion and Future Work
	References

	14 A Resilient Nonlinear Observer for Light-Emitting Diode Optical Wireless Communication Under Actuator Fault and Noise Jamming
	14.1 Introduction
	14.2 LED-Based Optical Channel Modeling
	14.2.1 System Setup
	14.2.2 Luminous Flux Model
	14.2.3 Model Calibration
	14.2.4 State-Space and Output Measurement Equations

	14.3 LED System Model Representation Under Actuator Fault and Noise Jamming Attack
	14.4 Resilient Observer-Based Tracking Control Design
	14.4.1 Problem Formulation
	14.4.2 Unknown Input Observer Design Method
	14.4.3 Feasibility of (14.24) for Non-monotonic Outputs
	14.4.4 A Switched-Gain-Based Observer Solution
	14.4.5 Reference Trajectory Tracking Design

	14.5 LED Application Under Actuator Fault and Noise Jamming Attack on the Optical Communication Channel
	14.6 Conclusion
	References

	Index

