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Abstract. We build the first sub-linear (in fact, potentially constant-
time) public-key searchable encryption system:

– server can publish a public key PK.
– anybody can build an encrypted index for document D under PK.
– client holding the index can obtain a token zw from the server to

check if a keyword w belongs to D.
– search using zw is almost as fast (e.g., sub-linear) as the non-private

search.
– server granting the token does not learn anything about the docu-

ment D, beyond the keyword w.
– yet, the token zw is specific to the pair (D, w): the client does not

learn if other keywords w′ �= w belong to D, or if w belongs to other,
freshly indexed documents D′.

– server cannot fool the client by giving a wrong token zw.
We call such a primitive Encapsulated Search Index (ESI). Our ESI
scheme can be made (t, n)-distributed among n servers in the best possi-
ble way: non-interactive, verifiable, and resilient to any coalition of up to
(t− 1) malicious servers. We also introduce the notion of delegatable ESI
and show how to extend our construction to this setting.

Our solution — including public indexing, sub-linear search, dele-
gation, and distributed token generation — is deployed as a commercial
application by a real-world company.

1 Introduction

Imagine the user Alice has a powerful but potentially insecure device, which we
call Desktop. Since the Desktop is insecure (at least when not used by Alice),
Alice cannot permanently store any secret keys on the Desktop. Instead, all the
secret keys she will need for her work should be stored on a more secure, but
weaker device, which we call Phone.
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Alice works on the Desktop and periodically generates large documents D1,
D2 . . . , that she might want to index separately.1 Since the documents are sen-
sitive, Alice will always keep the indices encrypted, with the secret key stored
on the Phone (and capable of supporting multiple documents D1,D2, . . . with
the same key). Moreover, when the Phone approves her search request for key-
word w inside the document D, the token zw should only tell if w ∈ D, but will
not reveal anything else: either about different keywords w′ in D, or the same
keyword w for another document D′ (that Alice indexed separately).

Encapsulated Search Index. In order to solve the above motivating appli-
cation, we will introduce a new primitive, which we term Encapsulated Search
Index (ESI). As we will illustrate in Sect. 1.3, ESI is different than previously
studied primitives in the area of searchable encryption. But for now, we infor-
mally summarize the main functionality and security properties of ESI (see also
Definition 1):

– Phone can generate secret key SK, and send public key PK to the Desktop.
– Given PK and document D, Desktop can build an encrypted index E for D,

and a “compact” handle c.
– D is then encrypted and erased (together with any local randomness created

during the process), and Desktop only remembers E, c and PK.
– Desktop can ask the Phone’s permission to search for keyword w in D, by

sending it w and the compact handle c.
– If approved, the Phone will use the secret key SK to grant token z =

z(w, c, SK) to the Desktop.
– The Phone does not learn anything beyond w from the handle c. This should

hold information-theoretically.
– The Desktop can verify that the token z indeed corresponds to w, and, if so,

use E, c, z and PK to correctly learn if w ∈ D. In particular, the Phone cannot
cause the Desktop to output a wrong answer (beyond denial of service).

– The token z is specific to the pair (D,w): the Desktop does not learn if other
keywords w′ �= w belong to D, or if w belongs to other, freshly indexed
documents D′.

– While each tuple (E, c) is specific to the document D, the same (PK,SK)
pair should work for future documents D′, without compromising security.

Remark 1. For simplicity, we had the Desktop serve the role of both index cre-
ator and the storage location with the Phone serving the role of the search
approver. However, the same could be generalized to the setting where the stor-
age location is a company server, a trusted Desktop is the index creator, and
the Phone is the search approver — all three being different parties.

Additionally, in a good ESI, the overall search by the Desktop is much faster
than the number of keywords in D. In fact, ideally, the bulk of the search should
1 In fact, our solution will allow for generating secure indices even outside the Desktop,

possibly by different parties. But for simplicity, we discuss the already interesting
setting where Alice herself generates indices on the Desktop.
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be done by the Desktop using any non-private dictionary structure, while the
interaction between the Phone and the Desktop should have constant size/com-
plexity, independent of |D|. Our main construction will have this property.

Extensions of ESI. For applications, we would also like to consider various
extensions of ESI.

First, to mitigate Alice’s worry that her Phone might be compromised, she
might want to use a secure indexing scheme that is “friendly” to distributed
implementation. For example, she might wish to secretly share her master key
between her Phone, Laptop, and iPad (which we call mobile devices to differ-
entiate them from the Desktop) in a way that she gets the token whenever
two of them approve her search request. Moreover, this process should be non-
interactive. The Desktop will send a request “Do you authorize to search doc-
ument D for keyword w?” to each of the n mobile devices, and gets the token
zw the moment t ≤ n of them respond affirmatively. Moreover, the Desktop can
separately verify the authenticity of each of the shares from the mobile devices
(which is why it does not need to wait for all n to respond). The resulting notion
of threshold ESI is formalized and can be found in the full version of the paper
[3]. This would correspond to the setting of multiple devices serving the role of
the search approver.

Second, Alice might wish to delegate her searching ability to another user
Bob, without the need to re-index the document. (A special case of this scenario
is Bob being “Alice with a new Phone”.) In this case, Alice does not want to
freshly re-index the document, meaning that the encrypted index E should not
change. Instead, she only wants to convert the compact “handle” c corresponding
to her PK to a new compact handle c′ corresponding to Bob’s public key PK ′.
Once this conversion is done, Bob can use the pair (E, c′) with his Phone to
search for keywords in the same document D. We formalize several flavors of
such delegatable ESI in the full version of the paper [3].

Finally, we might want to have the ability to update the index E by adding
and deleting the keyword. In an updatable ESI, formalized in the full version of
the paper [3], the token zw sent by Phone is also sufficient for the Desktop to
update E to E′ accordingly: remove, w if w was in D, or add it if it was not.
This does not affect the handle c.

1.1 Our Main Tool: Encapsulated Verifiable Random Function

Naive Solution. Before introducing our solution approach, it is helpful to start
with the naive solution which almost works. The Phone can generate a (PK,SK)
pair for a chosen-ciphertext-attack (CCA) secure encryption scheme. To index
a document D, the Desktop can choose a seed k for a pseudorandom function
(PRF) Fk, and generate a standard (non-private) index E by replacing each
keyword w ∈ D with the PRF value y = Fk(w). These values are pseudorandom
(hence, also distinct w.h.p.); thus, index E will not reveal any information about
D except the number of keywords N .
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The Desktop will finally generate a ciphertext c encrypting k under PK, and
then erase the PRF key k. To get token for keyword w, the Desktop will send the
tuple (c, w) to the Phone, which will decrypt c to get k, and return y = Fk(w).

This naive solution satisfies our efficiency property and almost all the security
properties. For example, the value c is independent of the document D, so the
Phone does not learn anything about the document (including search results).
Similarly, the Desktop cannot use the token y to learn about other keyword
w′, as y′ = Fk(w′) is pseudorandom given y = Fk(w). The only basic property
missing is verifiability: the Desktop cannot tell if the value y indeed corresponds
to w. This can be fixed by replacing PRF FK with a verifiable random function
(VRF) [35]. A VRF has its own public-secret key pair (pk, sk). For each input
w, the owner of sk can produce not only the function value y = Fsk(w), but also
a “proof” z = z(sk, w). This proof can convince the verifier (who only knows
pk) that the value y is correct, while still leaving other yet “unproven” output
y′ = Fsk(w′) pseudorandom. While initial treatment of VRF focused on the
“standard model” constructions [23,24,34,35], VRFs are quite efficient in the
random oracle model. In particular, several such efficient constructions are given
the CFRG VRF standard [29,30].

Deficiencies of the Naive Solution. While the composition of VRF and
CCA encryption indeed works for the most basic ESI notion — and shows that
sublinear search can be meaningfully combined with public indexing2 — it seems
too inflexible for our two main extensions: threshold ESI and delegatable ESI.

For threshold ESI, achieving “decrypt-then-evaluate-VRF” functionality
non-interactively appears quite challenging with the current state-of-the-art. In
particular, a natural way to accomplish this task would be to combine some
non-interactive threshold CCA-decryption with a non-interactive threshold VRF
implementation. Each of these advanced primitives is highly non-trivial but
exists in isolation. For example, the works of [7,12] show how to achieve non-
interactive CCA-secure decryption in bilinear map groups. Unfortunately (for
our purposes), both of these constructions encrypt elements of the “target bilin-
ear group” G1 (see the full version [3].). Thus, to get a non-interactive threshold
ESI scheme we will need to build a non-interactive threshold VRF in which the
secret key resides in the bilinear target group G1. No such construction is known,
however. In fact, we are aware of only two recent non-interactive threshold VRF
schemes, both proposed by [26].3 Unfortunately, both of these constructions
have the secret key over the standard group Zp, and cannot be composed with
the schemes of [7,12]. Hence, we either need to build a new (threshold) VRF
with secret keys residing in G1, or build a new, non-interactive4 threshold CCA
decryption with keys residing in Zp. Both options seem challenging.

For delegatable ESI, our definitions (and the overall application) require an
efficient procedure S-Check(PK1, c1, PK2, c2) to check that the new handle c2

2 ESI is the first searchable encryption primitive to do so; see Sect. 1.3.
3 As other prior distributed VRFs were either interactive [23,33], or had no verifiabil-

ity [2,36] or offered no formal model/analysis [16,17,21,32,41].
4 E.g., we cannot use the interactive threshold Cramer-Shoup [19] construction of [13].
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was indeed delegated from c1. The naive delegation scheme of decrypting c1 to get
VRF key sk, and then re-encrypting sk with PK2 does not have such efficient
verifiability. We could try to attach a non-interactive zero-knowledge (NIZK)
proof for this purpose, but such proof might be quite inefficient, especially with
chosen ciphertext secure encryptions c1 and c2.

Our New Tool: Encapsulated VRF. Instead of tying our hands with the
very specific and inflexible “CCA-encrypt-VRF-key” solution, we introduce a
general primitive we call encapsulated VRF (EVRF). This primitive abstracts the
core of the naive solution, but without insisting on a particular implementation.
Intuitively, an EVRF allows the Phone to publish a public key PK, keep secret
key SK private so that the Desktop can use PK to produce a ciphertext C and
trapdoor key T in a way that for any input w, the correct VRF value y on w
can be efficiently evaluated in two different ways:

(a) Phone: using secret key SK and ciphertext C.
(b) Desktop: using trapdoor T .

In addition, if the Desktop erased T and only remembers C, PK, and w:

(c) Phone can produce a proof z convincing Desktop that the value y is correct.
(d) Without such proof, the value y will look pseudorandom to the Desktop.

These properties are formalized in Definition 2. It is then easy to see that we
can combine any EVRF with a non-private dictionary data structure, by simply
replacing each keyword w with EVRF output y, just as in the naive solution. See
Construction 2. Moreover, this construction is very friendly to all our extensions.
If the EVRF is a threshold (resp. delegatable) — see Definitions 3, 4, — then we
get threshold (resp. delegatable) ESI. Similarly, if the non-private data structure
allows updates, our ESI construction is updatable.

To summarize, to efficiently solve all the variants of our Encapsulated Search
Index scenario, we just need to build a custom EVRF which overcomes the
difficulties we faced with the naive composition of VRF and CCA encryption.

1.2 Our EVRF Constructions

This is precisely what we accomplish: we build a simple and efficient EVRF under
the Bilinear Decisional Diffie-Hellman (BDDH) assumption [9], in the random
oracle model. Our basic EVRF is given in Construction 1. It draws a lot of
inspiration and resemblance to the original Boneh-Franklin IBE (BF-IBE) [9],
but with a couple of important tweaks. In essence, we observe that BF-IBE
key encapsulation produces the ciphertext R = gr which is independent of the
“target identity”. Hence, we can use this value R as “part of identity” ID =
(R,w), where w is our input/keyword, and still have a meaningful “ID-based
secret key” zw corresponding to this identity. On the usability level, this trick
allows the index generator to produce the value R = gr before any of subsequent
EVRF inputs (keywords in our application) w will be known. On a technical
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level, it allows us to “upgrade” BF-IBE from a chosen-plaintext attack (CPA)
to CCA security for free.

Additionally, in Sect. 6.2 we show that our VRF construction easily lends
itself to very simple, non-interactive threshold EVRF (which gives threshold
ESI), by using Shamir’s Secret Sharing [42], Feldman VSS [25], and the fact
that the correctness of all computations is easily verified using the pairing. The
resulting (t, n)-threshold implementation, given in Construction 3, is the best
possible: it is non-interactive and every share is individually verifiable, which
allows computing the output the moment t correct shares are obtained.

Finally, Sects. 7.2, 7.3, 7.4 extend our basic EVRF to various levels of delegat-
able EVRFs (which yield corresponding delegatable ESIs). All our constructions
have a very simple delegation procedure, including a simple “equivalence” check
to test if two handles correspond to the same EVRF under two different keys
(which was challenging in the naive construction). The most basic delegatable
EVRF in Sects. 7.2 (Construction 4) is shown secure under the same BDDH
assumption as the underlying EVRF. It assumes that all delegations are per-
formed by non-compromised devices.

To handle delegation to/from an untrusted device, we modify our underly-
ing EVRF construction to also include “BLS Signature” [11], to ensure that the
sender “knew” the value r used to generate the original handle R = gr. See
Sect. 7.3 and Construction 5. This new construction is shown to have “unidirec-
tional” delegation security under the same BDDH assumption. Finally, we show
that the same construction can be shown to satisfy even stronger levels of “bidi-
rectional” delegation security, albeit under slightly stronger variants of BDDH
we justify in the generic group model (see Sects. 7.3, 7.4).

1.3 ESI vs Other Searchable Encryption Primitives

The notion of ESI is closely related to other searchable encryption primitives:
most notably, Searchable Symmetric Encryption (SSE) [5,15,20,22,22,28] and
Public-Key Encrypted Keyword Search (PEKS) [1,4,8,10,40,44]. Just like ESI,
SSE and PEKS achieve the most basic property of any searchable encryption
scheme, which we call index privacy: knowledge of encrypted index E and several
tokens zw does not reveal information about keywords w′ for which no tokens
were yet given. I.e., the keywords in the index that have not been searched so
far continue to remain private. Otherwise, the SSE/PEKS primitives have some
notable differences from ESI. We discuss them below, simultaneously arguing
why SSE/PEKS does not suffice for our application.

Setting of SSE. As suggested by its name, in this setting the index creator
is the same party as the search approver, meaning that both parties must know
the secret key SK which is hidden from the Desktop storing the index. On the
positive, this restriction allows for some additional properties which are hard
or even impossible in the public-indexing setting of the ESI (and PEKS; see
below). First, they allow for “universal searching”, where the search approver
can produce the token zw without getting the document-specific handle c: such



262 E. Aronesty et al.

token allows to simultaneously search different indices E1, E2, . . . corresponding
to different documents D1,D2, . . ..5

Second, one can talk about so-called “hidden queries” [22] which essentially
captures the idea of “keyword-privacy”. Specifically, the adversary who knows
the index E and keyword token z should not learn if z corresponds to keywords
w0 or keyword w1.6 With public-key indexing, such a strong semantic-security
guarantee is impossible, at least when combined with universal searching: the
adversary can always generate the index for some document D0 containing w0

and not w1 and then test if z works on this index.
We notice that “keyword privacy” and universal searching are not important

for our motivating application. In fact, w is generated by Alice when using the
Desktop (and will be erased when no longer relevant). Moreover, our verifiability
property of the ESI explicitly requires that the Desktop can check that the token
zw is correct, explicitly at odds with keyword privacy. Additionally, when Alice
sees the prompt on her phone asking if it is OK to search for the keyword w,
she generally wants to know in what context (i.e., to what document D) this
search would apply; and will not want a compromised token zw to search a more
sensitive document D′. Thus, we do not insist on universal searching either in
the ESI setting.

On the other hand, the biggest limitation of SSE — the inability to per-
form public-key indexing, — makes it inapplicable to our motivating applica-
tion. First, at the time of index creation, Alice already has the entire document
D she wants to index on the Desktop, and she does not want to transmit this
gigantic document to the Phone, have the Phone spend hours indexing it (or
possibly run out of memory doing so), and then send the (also gigantic) index
back to the Desktop. Second, even if efficiency was not an issue, Alice is not
willing to fully trust her Phone either. For example, while Alice hopes that the
Phone is more secure than the Desktop, it might be possible that the Phone is
compromised as well. In this case, Alice wants the (compromised) Phone to only
learn which keywords w she is searching for, but not to learn anything else about
the document D (including if her searches were successful!). Moreover, even if
Alice had a secure channel between the Desktop and the Phone, she does not
want to use SSE and send-then-erase the corresponding secret key. Indeed, this
method requires the phone to store a separate secret key for each document and
also does not allow other parties to generate encrypted indexes for different files
— a convenient feature Alice might find handy in the future.

To sum up, Alice wants to generate the entire encrypted index E on her Desk-
top (and then erase/encrypt the document D), without talking to the Phone,
5 From an application perspective, universal and document-specific setting are incom-

parable, as some application might want to restrict which keywords are allowed for
different databases. On a technical level, however, a universal scheme can always be
converted to a document-specific one, by prefixing the keyword with the name of
the document D. Thus, universal searching is more powerful.

6 Unfortunately, as surveyed by Cash et al. [14] and further studied by [20,31] (and
others), all SSE schemes in the literature do not achieve the strongest possible key-
word privacy and suffer from various forms of information leakage.
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and only contact the Phone to help authorize subsequent keyword searches. This
means that SSE is inapplicable, and we must use public-key cryptography.

Setting of PEKS. In a different vein, PEKS allows Alice to publish a public-
key PK allowing anybody to create her encrypted index. Akin to SSE, PEKS
also demand universal searching, meaning that the token zw can be produced
independently of the (handle c for the) document D. This means that strong
keyword privacy is impossible (and, thus, not required) in PEKS.

More significantly for our purposes, this feature makes searching inherently
slow: not as an artifact of the existing PEKS scheme, but as already mandated
even by the syntax of PEKS. Specifically, to achieve universality, the index is
created by indexing each keyword w′ ∈ D one-by-one (using PK), and then
the token zw can only be used to test each such “ciphertext” e separately, to
see whether or not it corresponds to w′ = w. Thus, inherently slow searching
makes PEKS inapplicable as well for our motivating application. In contrast, the
searching in the ESI is (required to be!) document-specific. As a result, we will
be able to achieve the sublinear searching we desire.

Summary Comparison. Summarizing the above discussion (see Table 1), we
can highlight five key properties of a given searchable encryption scheme: public-
key indexing, sublinear search, universal search, keyword privacy, and index pri-
vacy. All of ESI/SSE/PEKS satisfy (appropriate form) of index privacy, and
differ — sometimes by choice (ESI) or necessity (PEKS) — in terms of keyword
privacy. So the most interesting three dimensions separating them are public-key
indexing, sublinear search, and universal search, where (roughly) each primitive
achieves two out of three. For our purposes, however, ESI is the first primitive
which combines public-key indexing and sublinear search, which is precisely the
setting of our motivating example.

Table 1. A comparison of SSE, PEKS, and ESI.

SSE PEKS ESI

Public-Key Indexing ✗ ✓ ✓

Sublinear Search ✓ ✗ ✓

Universal Index ✓ ✓ ✗

Index Privacy ✓ ✓ ✓

Keyword Privacy ✓(partial) ✗(impossible) ✗(by choice!)

2 Preliminaries

Notation. In this paper, we let k be a security parameter. We employ the
standard cryptographic model in which protocol participants are modeled by
probabilistic polynomial (in k) time Turing machines (PPTs). We use poly(k)
to denote a polynomial function, and negl(k) to refer to a negligible function in
the security parameter k. For a distribution X, we use x ← X to denote that



264 E. Aronesty et al.

x is a random sample drawn from distribution X. For a set S we use x ← S
to denote that x is chosen uniformly at random from the set S. Additionally,
we use the equality operator to denote a deterministic algorithm, and the →,←
operation to indicate a randomized algorithm.

Further, our EVRF constructions will use some “cryptographic hash func-
tion(s)” H,H ′ : {0, 1}∗ → G mapping arbitrary-length strings (denoted {0, 1}∗)
to elements of the bilinear group G. We produce a formal discussion about bilin-
ear groups in the full version of our paper [3]. The key property of these groups
are that: for all u, v ∈ G and x, y ∈ Z, we have e(ux, vy) = e(u, v)xy. In our
security proofs, where we reduce EVRF security to an appropriate assumption,
we model the cryptographic hash functions as random oracles.

3 Encapsulated Search Index

We begin by formally introducing the new primitive of standard Encapsulated
Search Index in Sect. 3.1, defining its syntax and security. We also consider exten-
sions to this primitive, adding features such as distribution, delegation, and
update. Due to space constraints, we defer the discussions to the full version of
the paper [3].

3.1 Standard Encapsulated Search Index

We discussed, at length, the motivating application or setting for the primitive
we call as Encapsulated Search Index in Sect. 1.
For visual simplicity, for the remainder of this section we will use upper-case
letters (D,E, Y , etc.) to denote objects whose size can depend on the size of
document D (with the exception of various keys SK,PK, etc.), and by lower-
case letters (c, s, r, z, w, etc.) objects whose size is constant.

In the definition below, we let k be a security parameter, PPT stand for
probabilistic polynomial-time Turing machines, poly(k) to denote a polynomial
function, and negl(k) to refer to a negligible function in the security parameter
k.

Definition 1. An Encapsulated Search Index (ESI) is a tuple of PPT algo-
rithms ESI = (KGen,Prep, Index,S-Split,S-Core,Finalize) such that:

– KGen(1k) → (PK,SK): outputs the public/secret key pair.
– Prep(PK) → (s, c): outputs compact representation c, and trapdoor s.
– Index(s,D) = E: outputs the encrypted index E for a document D using the

trapdoor s.
– S-Split(PK, c′) = r′: outputs a handle r′ from the representation c′.
– S-Core(SK, r′, w) = z′: outputs a partial result z′ from the handle r′.
– Finalize(PK,E′, c′, z′, w) = β ∈ {0, 1,⊥}: outputs 1 if the word w is present

in the original document D, 0 if not present, and ⊥ if the partial output z′ is
inconsistent.
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Before we define the security properties, it is useful to define the following short-
hand functions:

– BldIdx(PK,D) = (Index(s,D), c), where (s, c) ← Prep(PK).
– S-Prove(PK,SK, c, w) = S-Core(SK,S-Split(PK, c), w).
– Search(PK,SK, (E, c), w) = Finalize(PK,E, c,S-Prove(SK, c, w), w).

We require the following security properties from this primitive:

1. Correctness: with prob. 1 (resp. (1 − negl(k))) over randomness of KGen

and Prep, for all documents D and keywords w ∈ D (resp. w �∈ D):

Search(PK,SK,BldIdx(PK,D), w) =

{
1 if w ∈ D

0 if w �∈ D

2. Uniqueness: there exist no values (PK,E, c, z1, z2, w) such that b1 �= ⊥,
b2 �= ⊥ and b1 �= b2, where:

b1 = Finalize(PK,E, c, z1, w); b2 = Finalize(PK,E, c, z2, w)

3. CCA Security: We require that for any PPT algorithm A = (A1,A2) the
following holds, where A does not make the query S-Prove(PK,SK, c∗, w)
with w ∈ (D1\D2)∪(D2\D1) and |D1| = |D2|, for variables SK, c∗,D1,D2, w
defined below:

Pr

⎡
⎢⎢⎢⎢⎣

b = b′

(PK, SK) ← KGen(1k);

(D1, D2, st) ← AS-Prove(PK,SK,·,·)
1 (PK);

b ← {0, 1};
(E∗, c∗) ← BldIdx(PK, Db);

b′ ← AS-Prove(PK,SK,·,·)
2 (E∗, c∗, st)

⎤
⎥⎥⎥⎥⎦

≤ 1

2
+ negl(k)

4. Privacy-Preserving7: We require that for any PPT Algorithm A =
(A1,A2) which outputs documents D1,D2 such that |D1| = |D2| for vari-
ables D1,D2 defined below, the following holds:

Pr

⎡
⎢⎢⎢⎢⎣

b = b′

(PK, SK) ← KGen(1k);
(D1, D2, st) ← A1(PK, SK);

b ← {0, 1};
(E∗, c∗) ← BldIdx(PK, Db);

b′ ← A2(c
∗, st)

⎤
⎥⎥⎥⎥⎦

≤ 1

2
+ negl(k)

Remark 2. We want to ensure that an honest representation c1 will not collide with
another honest representation c2. With this, we can ensure that honestly generated
documents do not conflict. If there is a non-trivial chance of such a collision, then
one can simply generate c2 until collision with the challenge c1. With this collision,
and with knowledge of trapdoor T2, one can trivially break security.
7 It is easy to see that our syntax guarantees that any ESI construction is uncondi-
tionally Privacy-Preserving (even with knowledge of SK), for the simple reason
that Prep that produces c does not depend on the input document D. Thus, we will
never explicitly address this property, but list it for completeness, as it is important
for our motivating application.
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Remark 3. For efficiency, we will want Search to run in time O(log N) or less,
where N is the size of the document D. In fact, our main construction will have
S-Prove run in time O(1), independent of the size of the document, andFinalize

would run in time at most O(log N), depending on the non-cryptographic data
structure we use.

3.2 Extensions to ESI

Threshold ESI. We extend the definition of the standard Encapsulated Search
Index to achieve support for distributed token generation. To do this, we intro-
duce a new algorithm called KG-Verify that aims to verify if the output of the
KGen algorithm is correct, and replace Finalize with two more fined-grained
procedures S-Verify and S-Combine. The formal discussion about the syntax
and security of this primitive can be found in the full version of the paper [3].

Delegatable ESI. We can also extend the definition of the standard Encap-
sulated Search Index to achieve support for delegation. Informally, Encapsu-
lated Search Index is delegatable if there are two polynomial-time procedures
S-Del,S-Check that work as follows: S-Del that achieves the delegation
wherein it takes as input a representation c corresponding to one key pair and
produces a representation c′ corresponding to another key pair; S-Check helps
verify if a delegation was performed correctly. The formal discussion about the
syntax and security of this primitive, including several definitional subtleties,
can be found in the full version of the paper [3].

Updatable ESI. We can further extend the definition of the standard Encap-
sulated Search Index to support a use-case where one might want to remove a
word, or add a word to the document D, without having to necessarily recom-
pute the entire index. To achieve this, we need an additional algorithm called
Update that can produce a new index E′ after performing an action relating
to word w in original index E, using the same token zw used for searching. The
formal discussion about the syntax and security of this primitive can be found
in the full version of the paper [3].

4 Encapsulated Verifiable Random Functions (EVRFs)

As mentioned earlier, we use a new primitive called Encapsulated Verifiable Ran-
dom Function to build the encapsulated search index. In this section, we begin
by introducing this primitive in Sect. 4.1. In Sect. 4.2, we present an overview of
extensions to this primitive. Later sections in paper contained detailed exposi-
tions on the extensions.

4.1 Standard EVRFs

Intuitively, an EVRF allows the receiver Alice to publish a public key PK and
keep secret key SK private so that any sender Bob can use PK to produce a
ciphertext C and trapdoor key T in a way such that for any input x, the correct
VRF value y on x can be efficiently evaluated in two different ways:
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(a) Alice can evaluate y using secret key SK and ciphertext C.
(b) Bob can evaluate y using trapdoor T .

In addition, for any third party Charlie who knows C, PK and x:

(c) Alice can produce a proof z convincing Charlie that the value y is correct.
(d) Without such proof, the value y will look pseudorandom to Charlie.

Definition 2. An Encapsulated Verifiable Random Function (EVRF) is a tuple
of PPT algorithms EVRF = (Gen,Encap,Comp,Split,Core, Post) such
that:

– Gen(1k) → (PK,SK): outputs the public/secret key pair.
– Encap(PK) → (C, T ): outputs ciphertext C and trapdoor T .
– Comp(T, x) = y: evaluates EVRF on input x, using trapdoor T .
– Split(PK,C ′) = R′: outputs a handle from full ciphertext C ′.

Note, this preprocessing is independent of the input x, can depend on the
public key PK, but not on the secret key SK.8

– Core(SK,R′, x) = z′: evaluates partial EVRF output on input x, using the
secret key SK and handle R′.

– Post(PK, z′, C ′, x) = y′∪⊥: outputs either the EVRF output from the partial
output z′, or ⊥.

Before we define the security properties, it is useful to define the following short-
hand functions:

– Prove(PK,SK,C, x) = Core(SK,Split(PK,C), x)
– Eval(PK,SK,C, x) = Post(PK,Prove(SK,C, x), C, x)

We require the following security properties:

1. Evaluation-Correctness: with prob. 1 over randomness of Gen and
Encap, for honestly generated ciphertext C and for all inputs x,

Comp(T, x) = Eval(PK,SK,C, x)

2. Uniqueness: there exist no values (PK,C, x, z1, z2) s.t. y1 �= ⊥, y2 �=
⊥, and y1 �= y2 where

y1 = Post(PK, z1, C, x), y2 = Post(PK, z2, C, x)

8 The algorithm Split is not technically needed, as one can always set R = C. In fact,
this will be the case for our EVRF in Sect. 5.1. However, one could envision EVRF
constructions where the Split procedure can do a non-trivial (input-independent)
part of the overall Prove = Core(Split) procedure, and without the need to know
the secret key SK. This will be the case for some of the delegatable EVRFs we
consider in Sect. 7.1.
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3. Pseudorandomness under Core ($-Core): for any PPT algorithm A =
(A1,A2), where A does not make query (C, x) to Prove(PK,SK, ·, ·), for
variables SK,C, x defined below, the following holds:

Pr

⎡
⎢⎢⎢⎢⎣

b = b′

(PK, SK) ← Gen(1k);
(C, T ) ← Encap(PK);

(x, st) ← AProve(PK,SK,·,·)
1 (PK, C);

y0 = Comp(T, x); y1 ← {0, 1}|y0|;
b ← {0, 1}; b′ ← AProve(PK,SK,·,·)

2 (yb, st)

⎤
⎥⎥⎥⎥⎦

≤ 1

2
+ negl(k)

We present a construction of our EVRF in Sect. 5.1.

Remark 4. We note that any valid ciphertext C implicitly defines a standard
verifiable random function (VRF). In particular, the value z = Prove(SK,C, x)
could be viewed as the VRF proof, which is accepted iff Post(PK, z, C, x) �= ⊥.

Remark 5. We reiterate that our pseudorandomness definition does not give the
attacker “unguarded” access to the Core procedure, but only “Split-guarded”
access to Prove = Core(Split). This difference does not matter when the
Split procedure just sets R = C. However, when Split is non-trivial, the owner
of SK (Alice) can only outsource it to some outside server (Charlie) if it trusts
Charlie and the authenticity (but not privacy) of the channel between Alice and
Charlie.

4.2 Extensions to EVRFs

Threshold EVRF. In the earlier definition, we had a single secret key SK.
With possession of this secret key, one can evaluate the EVRF on any input x.
Therefore, it becomes imperative to protect the key from leakage. Indeed, it is
natural to extend our early definition to cater to the setting of a distributed
evaluation of the EVRF. The key difference in the definition of threshold EVRF
from the earlier definition is that the Post algorithm is now formally split into
the share verification algorithm Shr-Vfy and the final evaluation algorithm
Combine. The formal discussion about the syntax and security of this primitive
can be found in Sect. 6.1.

Delegatable EVRF. Next, we extend the definition of standard EVRFs to the
setting where the EVRF owner could delegate its evaluation power to another
key. Recall that a standard EVRF has the following algorithms: Gen,Encap,
Comp,Split,Core,Post. Delegation, therefore, implies that one can convert
a ciphertext C1 for key pair (PK1, SK1) to ciphertext C2 for a different key pair
(PK2, SK2) which encapsulates the same VRF, i.e.,

∀x,Eval(PK1, SK1, C1, x) = Eval(PK2, SK2, C2, x) (1)

where Eval(PK,SK,C, x) = Post(PK,Prove(SK, c, x), C, x). The formal
discussion about the syntax and security of this primitive can be found in
Sect. 7.1.
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Protocol Standard EVRF

Gen(1k)

Sample a ∈r Z
∗
p

Compute A = ga ∈ G.
return SK = a and PK = (g, A).

Encap(PK)

Parse PK = (g, A).
Sample r ∈r Z

∗
p.

Compute R = gr, S = Ar.
return C = R, T = (R, S).

Comp(T, x)

Parse T = (R, S).
Compute y = e(H(R, x), S).
return y.

Split(PK, C′)

Parse PK = (g, A), C′ = R′.
return R′.

Core(SK, C′, x)

Parse SK = a, C′ = R′.
Compute z = H(R′, x)a.
return z.

Post(PK, z, C′, x)

Parse PK = (g, A), C′ = R′

if e(z, g) �= e(H(R′, x), A) then
return ⊥.

else
Compute y′ = e(z, R′).
return y′.

Construction 1. Standard EVRF = (Gen,Encap,Comp,Split,Core,Post).

5 Our Constructions

We begin by presenting the standard EVRF construction in Sect. 5.1. We then
present a generic construction of our ESI in Sect. 5.2.

5.1 Standard EVRF

We now present the standard EVRF construction, presented in Construction 1.

Security Analysis. To check Evaluation-Correctness, we observe that Ar =
gar = Ra, and by the bilinearity we have:

Comp(T = (R, S), x) = e(H(R, x), S) = e(H(R, x), Ar)

From our earlier observation, we get that:

e(H(R, x), Ar) = e(H(R, x), Ra) = e(H(R, x)a, R) = e(z, R)

This is the same as Post(A,Core(a,Split(A,R), x), R, x) which concludes
the proof.

To prove Uniqueness, consider any tuple (PK = A,C = R, x, z1, z2). Fur-
ther, let y1 = Post(A, z1, R, x) and y2 = Post(A, z2, R, x). If y1 �= ⊥ and
y2 �= ⊥, then we have that e(z1, g) = e(H(R, x), A) = e(z2, g). From definition of
bilinear groups, we get that z1 = z2. Consequently, y1 = e(z1, R) = e(z2, R) = y2.

Finally, we can prove the following result in the full version of the paper [3].

Theorem 1. The standard EVRF given in Construction 1 satisfies the $-Core
property under the BDDH assumption in the random oracle model.

5.2 Generic Construction of Encapsulated Search Index

Non-private Dictionary Data Structure. Our generic construction will
use the simplest kind of non-cryptographic dictionary which allows one to pre-
process some set D into some data structure E so that membership queries
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Protocol Generic ESI Construction

KGen(1k)

Run EVRF.Gen(1k) → (PK, SK).
return PK, SK.

Prep(PK)

Run EVRF.Encap(PK) → (C, T ).
return c = C and s = T .

Index(s, D)

for w ∈ D do
Compute yw=EVRF.Comp(s, w).

Compute Y = {yw|w ∈ D}.
Run DS.Construct(Y ) → E.
return E.

S-Split(PK, c′)

Run EVRF.Split(PK, c′) = r′.
return r′.

S-Core(SK, r′, w)

Run EVRF.Core(SK, r′, w) = z′.
return z′.

Finalize(PK, E′, c′, z′, w)

Run EVRF.Post(PK, z′, c′, w) = y′.
if y′ = ⊥ then

return ⊥.
else

return DS.Find(E′, y′).

Construction 2. Generic ESI = (KGen,Prep, Index,S-Split,S-Core, Finalize).

w ∈ D can be answered in sub-linear time in N = |D|. In particular, a clas-
sic instantiation of such a dictionary could be any balanced search trees with
search time O(log N). If a small probability of error is allowed, we could also
use faster data structures, such as hash tables [18], Bloom filters [6,37,38] or
cuckoo hash [39], whose search takes expected time O(1). The particular choice
of the non-cryptographic dictionary will depend on the application, which is a
nice luxury allowed by our generic composition.

Formally, a non-private dictionary DS = (Construct,Find) is any data
structure supporting the following two operations:

– Construct(D) → E: outputs the index E on an input document D.
– Find(E,w) → {0, 1}: outputs 1 if w is present in D, and 0 otherwise. We

assume perfect correctness for w ∈ D, and allow negligible error probability
for w �∈ D.

Our Composition. We show that Encapsulated Search Index can be easily built
from any such non-cryptographic dictionary DS = (Construct,Find) and and
EVRF = (Gen,Encap,Comp,Split,Core, Post). This composition is given
below in Construction 2.

Efficiency. By design, the Search operation of our composition inherits the
efficiency of the non-cryptographic dictionary DS. In particular, it is O(log |D|)
with standard balanced search trees and could become potentially O(1) with
probabilistic dictionaries, such as hash tables or Bloom filters.

Security Analysis. The Correctness and Uniqueness properties of the
above construction trivially follows from the respective properties of the under-
lying EVRF and DS. In particular, we get negligible error probability for w �∈ D
either due to unlikely EVRF collision between yw and yw′ for some w′ ∈ D,
or a false positive of the DS. In the full version of the paper [3] we prove the
following theorem:

Theorem 2. If EVRF satisfies the $-Core property, then Encapsulated Search
Index is CCA secure. Further, if the EVRF (resp. DS ) is threshold and/or
delegatable, the resulting ESI inherits the same.
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6 Threshold Encapsulated Verifiable Random Functions

In this section, we formally introduce the primitive known as a Threshold EVRF
in Sect. 6.1. We then present a construction of Threshold EVRF in Sect. 6.2 but
defer the security proof due to space constraints. The proof can be found in the
full version of the paper [3].

6.1 Definition of Threshold (or Distributed) EVRFs

Definition 3. A (t, n)-Threshold EVRF is a tuple of PPT algorithms
TEVRF = (Gen,Gen-Vfy,Encap,Comp,Split,D-Core,
Shr-Vfy, Combine) such that:

– Gen(1k, t, n) → (PK,SK = (sk1, . . . , skn),VK = (vk1, . . . , vkn)): outputs
the public key PK, a vector of secret shares SK, and public shares VK.

– Gen-Vfy(PK,VK) = β ∈ {0, 1}: verifies that the output of Gen is indeed
valid.

– Encap(PK) → (C, T ): outputs ciphertext C and trapdoor T .
– Comp(T, x) = y: evaluates EVRF on input x, using trapdoor T .
– Split(PK,n,C ′) = (R′

1, . . . R
′
n): outputs n handles R′

1, . . . , R
′
n from full

ciphertext C ′.
– D-Core(ski, R

′
i, x) = z′

i: evaluates EVRF share on input x, using handle R′
i

and secret key share ski.
– Shr-Vfy(PK, vki, z

′
i, x) = β ∈ {0, 1}: verifies that the share produced by the

party i is valid.
– Combine(PK,C ′, z′

i1
, . . . , z′

it
, x) = y′: uses the partial evaluations z′

i1
, . . . , z′

it

to compute the final value of EVRF on input x.9

Before we define the security properties, it is useful to define the following short-
hand functions:

– Prove(SK, i, C, x) = D-Core(ski, Ri, x), where
(R1, . . . , Rn) = Split(PK,n,C).

– Eval(SK, i1, . . . , it, C, x): For j = 1 . . . t, compute zij
= Prove(SK, ij , C, x).

Output ⊥ if, for some 1 ≤ j ≤ t, Shr-Vfy(PK, vkij
, zij

, x) = 0.
Otherwise, output Combine(PK,C, zi1 , . . . , zit

, x).

We require the following security properties:

1. Distribution-Correctness:
(a) with prob. 1 over randomness of Gen(1k, t, n) → (PK,SK,VK),

Gen-Vfy(PK,VK) = 1
(b) with prob. 1 over randomness of Gen and Encap, for honestly generated

ciphertext C: Eval(SK, i1, . . . , it, C, x) = Comp(T, x)

9 Without loss of generality, we will always assume that all the t partial evaluations z′
i

satisfy Shr-Vfy(PK, vki, z
′
i) = 1 (else, we output ⊥ before calling Combine). See

also the definition of Eval below to explicitly model this assumption.
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2. Uniqueness: there exists no values (PK,VK, C, x, Z1, Z2) where Z1 =
((i1, zi1), . . . , (it, zit

)) and Z2 = ((j1, zj1), . . . , (jt, zjt
)). s.t.

(a) Gen-Vfy(PK,VK) = 1
(b) for k = 1, . . . , t:

– Shr-Vfy(PK, vkik
, zik

, x) = 1.
– Shr-Vfy(PK, vkjk

, zjk
, x) = 1.

(c) Let Zi = (zi1 , . . . , zit
) and Zj = (zj1 , . . . , zjt

). Then,

Combine(PK,C,Zi, x) �= Combine(PK,C,Zj , x)

3. Pseudorandomness under D-Core ($-DCore): for any PPT algorithm
A = (A0,A1,A2), where A does not make query (j, C, x) to Prove(SK, ·, ·, ·),
for j �∈ {i1, . . . , it−1} for variables i1, . . . , it−1,SK, C, x defined below,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b = b′

{i1, . . . , it−1, st} ← A0(1
k, t, n);

(PK,SK,VK) ← Gen(1k, t, n);
(C, T ) ← Encap(PK);

(R1, . . . , Rn) = Split(PK, n, C);

(x, st) ← AProve(SK,·,·,·)
1 (PK, C,VK,SK′, st)

y0 = Comp(T, x); y1 ← {0, 1}|y0|;
b ← {0, 1}; b′ ← AProve(SK,·,·)

2 (yb, st)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 1

2
+ negl(k)

where SK′ = (ski1 , . . . , skit−1).

We present a construction of our threshold EVRF in Sect. 6.2.

Remark 6. For simplicity, in the above definition, we assume honest key gener-
ation and do not explicitly address distributed key generation. Even with this
simplification, the existence of the Gen-Vfy algorithm ensures the users of the
system that the public key (PK,VK) is “consistent”and was generated prop-
erly. Moreover, our construction, given in Sect. 6.2, can easily achieve efficient
distributed key generation using techniques of Gennaro et al. [27].

Remark 7. Note that when t = n = 1, our threshold EVRF implies the the stan-
dard EVRF definition (Definition 2), where Post algorithm first runs Shr-Vfy

on the single share z and then, if successful, runs Combine to produce the final
output y. For n > 1, however, we find it extremely convenient that we can sepa-
rately check the validity of each share, and be guaranteed to compute the correct
output the moment t servers return consistent (i.e., Shr-Vfy’ed) shares zi.

6.2 Construction of Threshold (or Distributed) EVRFs

Our non-interactive threshold EVRF is given in Construction 3. It combines
elements of our standard EVRF from Construction 1 with the ideas of Shamir’s
Secret Sharing [42], Feldman VSS [25], and the fact that the correctness of all
computations is easily verified using the pairing.
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Protocol Non-Interactive Threshold EVRF

Gen(1k)

Sample a random (t − 1) degree polynomial f ∈
Z

∗
p[X].

Compute a = f(0), A0 = ga.
for i = 1, . . . , n do

Compute ai = f(i), Ai = gai .

return PK = (g, A0), SK = (a1, . . . , an), VK =
(A1, . . . , An),
with server i getting secret key ski = ai and verifi-
cation key vki = Ai.

Gen-Vfy(PK,VK)

Parse PK = (g, A0),VK =, (A1, . . . , An)).
for i = t, . . . , n do

Compute Lagrange coefficients λi,0 . . . , λi,t−1

s.t. f(i) =
∑t−1

j=0 λi,j · f(j).
Each λi,j is a fixed constant.

if Ai �= ∏t−1
j=0 A

λi,j

j then
return 0

return 1

Encap(PK)

Parse PK = (g, A0).
Sample r ∈r Z

∗
p.

Compute R = gr, S = Ar
0.

return ciphertext C =R and trapdoor T = (R, S).

Comp(T, x)

Parse T = (R, S).
Compute y = e(H(R, x), S).
return y.

Split(PK, C′)

Parse PK = (g, A0), C′ = R′.
return R′

1 = R′, . . . , R′
n = R′.

D-Core(SKi, R
′
i, x)

Parse SKi = ai, R
′
i = R′.

Compute partial output zi = H(R′
i, x)ai .

return zi.

Shr-Vfy(PK, V Ki, z
′
i, x)

Parse PK = (g, A0), V Ki = Ai.
if e(z′

i, g) �= e(H(R′
i, x), Ai) then

return ⊥.

Combine(PK, C′, z′
i1 , . . . , z′

it
, x)

Parse PK = (g, A0), C′ = R′.
Compute Lagrange coefficients λ1 . . . , λt s.t.
f(0) =

∑t
j=1 λj · f(ij).

Note that these λj ’s only depend on indices i1, . . . , it.
Compute z′ =

∏t
j=1(z

′
ij

)λj .

return y = e(z′, R′).

Construction 3. TEVRF = (Gen, Gen-Vfy, Encap, Comp, Split, D-Core,
Shr-Vfy, Combine).

Security Analysis. To check Distribution-Correctness, we observe that A =
ga, S = gar, and R = gr. Therefore, Comp(T = (R,S), x) = e(H(R, x), S) =
e(H(R, x), g)ar. By definition, we have that:

Eval(PK,SK, i1, . . . , it, R, x) = e(

t∏
j=1

z
λj

ij
, R)

e(

t∏
j=1

z
λj

ij
, R) = e(

t∏
j=1

H(R, x)
aij

·λj , R) = e(H(R, x)
∑t

j=1 aij
·λj , R)

However, we know that a =
∑t

j=1 aij
· λj . Therefore,

e(H(R, x)
∑t

j=1 aij
·λj , R) = e(H(R, x)a

, gr) = e(H(R, x), g)ar

To check Uniqueness, we are given: (PK,VK = (vk1, . . . , vkn), R, x, Z1, Z2)
where Z1 = ((i1, zi1), . . . , (it, zit

)) and Z2 = ((j1, zj1), . . . , (jt, zjt
)).

– Gen-Vfy(PK,VK) = 1 implies that a0, a1, . . . , an where ga0 = PK and
gai = vki all lie on a consistent polynomial f of degree t − 1. Thus, there
exist λ1, . . . , λt ∈ Zp such that f(0) =

∑t
�=1 λ� · f(i�) and λ′

1, . . . , λ
′
t ∈ Zp

such that f(0) =
∑t

�=1 λ� · f(j�). Therefore, we have that:
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A =
t∏

�=1

vki�

λ� =
t∏

�=1

vkj�

λ′
� (2)

– We also know that for � = 1, . . . , t, Shr-Vfy(PK, vki�
, zi�

, x) = 1 and
Shr-Vfy(PK, vkj�

, zj�
, x) = 1. Therefore, we have that for � = 1, . . . , t:

e(zi� , g) = e(H(R, x), vki�); e(zj� , g) = e(H(R, x), vkj�) (3)

– We will now show that the 2 outputs of Combine must be equal. Here we we
will write R = gr for some r,

Combine(PK,R, zi1 , . . . , zit
, x) = e(

t∏
�=1

zλ�
i�

, R) =
t∏

�=1

e(zi�
, g)r·λ�

From Eq. (3):

t∏
�=1

e(zi�
, g)r·λ� =

t∏
�=1

e(H(R, x), vki�
)r·λ� = e

(
H(R, x),

t∏
�=1

vkλ�
i�

)r

From Eq. (2), we have that:

e(H(R, x),
t∏

�=1

vkλ�
i�

)r = e(H(R, x),
t∏

�=1

vk
λ′

�
j�

)r =
t∏

�=1

e(H(R, x), vkj�
)r·λ′

�

We again use Eq. (3) to conclude the proof. Finally, we prove the following result
in the full version of the paper [3].

Theorem 3. If Construction 1 satisfies the $-Core property of standard
EVRF, then Construction 3 satisfies the $-DCore property of threshold EVRF.
By Theorem 1, it follows that Construction 3 satisfies the $-DCore property
under the BDDH assumption in the random oracle model.

7 Delegatable Encapsulated Verifiable Random Functions

In this section, we formally introduce the primitive known as a Delegatable
EVRF in Sect. 7.1. This definition captures different levels of delegatability and
we present constructions that satisfy these levels in Sects. 7.2, 7.3, and 7.4. The
security proofs are deferred to the appendix.

7.1 Definition of Delegatable EVRFs

In this work, we will be interested in a stronger type of delegatable EVRFs where
anybody can check if two ciphertexts C1 and C2 “came from the same place”.
This is governed by the “comparison” procedure Same(PK1, C1, PK2, C2) which
outputs 1 only if Eq. (1) holds. This procedure will have several uses. First, it
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allows the owner of SK2 to be sure that the resulting ciphertext C2 indeed encap-
sulates the same VRF under PK2 as C1 does under PK1. Second, it will allow
us to cleanly define a “trivial” attack on the pseudorandomness of delegatable
EVRFs. See also Remark 9.

We define three levels of pseudorandomness security for delegatable EVRFs.

Definition 4. An EV RF = (Gen,Encap,Comp,Split,Core,Post) is dele-
gatable if there exists polynomial-time procedures Del and Same, such that:

– Del(SK1, C1, SK2) = C2 for the (default) secretly-delegatable variant;
– Del(SK1, C1, PK2) = C2 for the publicly-delegatable variant.
– Same(PK1, C1, PK2, C2) = β ∈ {0, 1}.

Before we define the security properties, it is useful to define the following
shorthand functions:

– Prove(SKi, C, x) = Core(SKi,Split(PKi, C), x)
– Eval(SK,C, x) = Post(PK,Prove(SK,C, x), C, x)

In addition to the standard EVRF properties of Evaluation-Correctness
and Uniqueness , we require the following security properties from a delegatable
EVRF:

1. Delegation-Completeness: for any valid (PK1, SK1), (PK2, SK2), and
ciphertext C1,

Del(SK1, C1, SK2/PK2) = C2 =⇒ Same(PK1, C1, PK2, C2) = 1

2. Delegation-Soundness: for any valid (PK1, SK1), (PK2, SK2), and
ciphertexts C1, C2

Same(PK1, C1, PK2, C2) = 1 =⇒
∀x Eval(SK1, C1, x) = Eval(SK2, C2, x)

Moreover, if we have PK1 = PK2, then C1 = C2.
3. Pseudorandomness under Core ($-Core): for any legal PPT attacker

A = (A1,A2), where legality of A and appropriate delegation oracle(s) O are
defined separately for each notion:

Pr

⎡
⎢⎢⎢⎢⎣

b = b′

(1, PK1) ← Reg(1k);
(C1, T1) ← Encap(PK1);

(x, st) ← AReg,HProve,O
1 (PK1, C1);

y0 = Comp(T1, x); y1 ← {0, 1}|y0|;
b ← {0, 1}; b′ ← AReg,HProve,O

2 (yb, st)

⎤
⎥⎥⎥⎥⎦

≤ 1

2
+ negl(k)

(a) Basic-$-Core: A has 1 delegation oracle O = HDel.
Legality of A: no call to HProve(i, C ′, x) s.t.
Same(PK1, C1, PKi, C

′) = 1.
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(b) Uni-$-Core: A has 2 delegation oracles O = (HDel, OutDel).
Legality of A: no call to HProve(i, C ′, x) or
OutDel(i, C ′, ∗) s.t. Same(PK1, C1, PKi, C

′) = 1.
(c) Bi–$-Core: A has 3 delegation oracles

O = (HDel,OutDel, InDel).
Legality of A: same as that of Uni-$-Core.

Now, we can define the oracles. As alluded to earlier, there are significant
subtleties in both the syntax and security of such a primitive. We defer this
exposition to the appendix for want of space. This discussion can be found in
the full version of the paper [3].

To adequately capture these nuances, we define the following oracles to the
attacker:

1. Reg(1k): registration oracle. It maintains a global variable q, initially 0,
counting the number of non-compromised users. A call to Reg: (a) increments
q; (b) calls (PKq, SKq) ← Gen(1k), (c) records this tuple (q, PKq, SKq) in
a global table not accessible to the attacker; (d) returns (q, PKq) to the
attacker.

2. HProve(i, C, x): honest evaluation oracle. Here 1 ≤ i ≤ q is an index, C
is a ciphertext, and x in an input. The oracle returns Prove(SKi, C, x) =
Core(SKi,Split(PKi, C), x).

3. HDel(i, C, j): honest delegation oracle. Here 1 ≤ i, j ≤ q are two indices,
and C is a ciphertext. The oracle returns C ′ = Del(SKi, C, SKj) (or
Del(SKi, C, PKj) in the publicly-delegatable case).

4. OutDel(i, C, SK/PK): “Out” delegation oracle. Here 1 ≤ i ≤ q is an index,
C is a ciphertext, and PK or SK (depending on whether scheme is publicly-
delegatable or not) is any public/secret key chosen by the attacker. The oracle
returns C ′ = Del(SKi, C, SK/PK).

5. InDel(SK,C, i): “In” delegation oracle. Here 1 ≤ i ≤ q is an index, and C
is a ciphertext, and SK is any secret key chosen by the attacker. The oracle
returns C ′ = Del(SK,C, SKi). Notice, this oracle is interesting only in the
secretly-delegatable case.

Remark 8. Delegation-Completeness and Delegation-Soundness easily
imply Delegation-Correctness which was advocated in Eq. (1):

Del(SK1, C1, SK2/PK2) = C2 =⇒ ∀x Eval(SK1, C1, x) = Eval(SK2, C2, x)

Remark 9. The legality condition on the attacker is necessary, as evaluating
EVRF on the “same” ciphertext C ′ as the challenge ciphertext C1 breaks pseu-
dorandomness (by delegation-soundness). However, it leaves open the possibil-
ity for the attacker to find such equivalent ciphertext C ′ without building some
explicit “delegation path” from the challenge ciphertext C1. Indeed, in the full
version of the paper [3], we will give an even stronger legality condition on A,
and some (but not all) of our schemes will meet it. For applications, however,
we do not envision this slight definitional gap to make any difference. Namely,
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the higher-level application will anyway need some mechanism to disallow any
“trivial” attacks. We expect this mechanism will explicitly use our Same proce-
dure, rather than keep track of the tree of “delegation paths” originating from
C1, which could quickly become unmanageable.

Remark 10. It is easy to observe the following implications:

Bi–$-Core =⇒ Uni-$-Core =⇒ Basic-$-Core =⇒ $-Core
Here, the last implication uses the fact that C1 is the only ciphertext equivalent
to C1 under PK1. Thus, bidirectional delegation security is the strongest of all
the notions.

Remark 11. One could also consider EVRFs which are simultaneously threshold
and delegatable. In this case, n1 servers for the sender’s EVRFs will communicate
with n2 servers for the receiver’s EVRF to help convert a ciphertext C1 for the
sender EVRF into a corresponding ciphertext C2 for the receiver EVRF. We
leave this extension to future work.

7.2 Construction of Basic Delegatable EVRF

We now show that our original EVRF Construction 1 can be extended to make
it basic-delegatable. The idea is to separate the role of the “handle” R hashed
under H inside the Core procedure from the one used in the preprocessing.
For technical reasons explained below, we will also hash the public key A when
evaluating the EVRF. The construction is presented as Construction 4.

Observations. We notice that, since R = D initially, the resulting EVRF
before the delegation is the same as the one we defined in Sect. 5.1, except (a)
we also include the public key A under the hash H during both Encap and
Core; and (b) we perform the delegation check e(A′, R′) ?= e(A,D′) in the split
procedure Split, which is trivially true initially, as A′ = A and R′ = D′ = R.
Thus, Evaluation-Correctness trivially holds, as before. For the same reason,
Uniqueness trivially holds as well.

The importance of change (a) comes from the fact that challenge ciphertext
C = (A,R,D) no longer includes only the value R, even though the value R
would be all that is needed to actually evaluate our EVRF, had we not included
A under the hash H. In particular, the attacker A given challenge C = (A,R,R),
can easily produce C ′ �= C by setting C ′ = (A2, R,R2). C ′ passes the delegation
check e(A2, R) = e(A,R2), but clearly produces the same partial output z =
H(R, x)a as the challenge ciphertext, trivially breaking the $-Core property.
Instead, by also hashing the public key, the oracle call Prove(C ′, x) would
return z′ = H(A2, R, x)a, which is now unrelated to z = H(A,R, x)a, foiling the
trivial attack.

The importance of change (b) comes from ensuring that a valid ciphertext
(A′, R′,D′) determines the value D′ information-theoretically from the values
(A′, R′) (and the public key A), because the condition e(A′, R′) = e(A,D′)
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Protocol Basic Delegatable EVRF

Gen(1k)

Sample a ∈r Z
∗
p

Compute A = ga ∈ G.
return SK = a and PK = (g, A).

Encap(PK)

Parse PK = (g, A).
Sample r ∈r Z

∗
p.

Compute R = D = gr, S = Ar.
return ciphertext C = (A, R, D) and trapdoor
T = (A, R, S).

Comp(T, x)

Parse T = (A, R, S).
Compute y = e(H(A, R, x), S).
return y.

Del(SK1, C1, SK2)

Parse SK1 = a1, SK2 = a2, C1 = (A, R, D1).
if e(A, R) �= e(ga1 , D1) then

return ⊥.
else

Compute D2 = D
a1/a2
1 where a1/a2 = a1 ·

(a2)
−1 mod p.
return C2 = (A, R, D2).

Split(PK, C′)

Parse PK = (g, A), C′ = (A, R′, D′).
if e(A′, R′) �= e(A, D′) then

return ⊥.
else

return (A′, R′).

Core(SK, C′, x)

Parse SK = a, C′ = (A′, R′, D′).
Compute partial output z = H(A′, R′, x)a.
return z.

Post(PK, z′, C′, x)

Parse PK = (g, A), C′ = (A′, R′, D′)
if e(z′, g) �= e(H(A′, R′, x), A) then

return ⊥.
else

Compute full output y′ = e(z′, D′).
return y′.

Same(PK1, C1, PK2, C2)

Parse PK1 = (g, A1), PK2 = (g, A2), C1 =
(A, R, D1), C2 = (A′, R′, D2).
if (A, R) �= (A′, R′) or e(A1, D1) �= e(A2, D2) then

return ⊥.

Construction 4. Basic Delegatable DEVRF1 = (Gen,Encap,Comp, Split, Core,
Post,Del,Same).

uniquely determines D′. Thus, it is OK that the Core procedure only passes
the values (A′, R′) under the random oracle H.

Delegation. To check Delegation-Completeness, notice that valid dele-
gation of (A,R,D1) outputs (A′, R′,D2), where (A′, R′) = (A,R) and D2 =
D

a1/a2
1 , which implies that

e(A2, D2) = e(ga2 , D
a1/a2
1 ) = e(ga1 , D1) = e(A1, D1)

which means Same(A1, (A,R,D1), A2, (A′, R′,D2)) = 1 indeed.
For Delegation-Soundness, given C1 = (A,R,D1) and C2 = (A′, R′,D2)

satisfying (A′, R′) = (A,R) and e(A1,D1) = e(A2,D2), we can see that the
delegation checks e(A,R) ?= e(A1,D1) and e(A′, R′) ?= e(A2,D2) are either both
false or true simultaneously. Moreover, by writing A1 = A

a1/a2
2 , the second

equation implies that D2 = D
a1/a2
1 . In particular, if A1 = A2, we have C1 = C2;

and, in general, when (A′, R′) = (A,R) and D2 = D
a1/a2
1 , for any x, we know:

Eval(a2, (A,R,D2), x) = e(H(A,R, x)a2 ,D2).
However, that can be rewritten as

e(H(A,R, x)a2 ,D
a1/a2
1 ) = e(H(A,R, x)a2 ,D

a1/a2
1 ) = e(H(A,R, x)a1 ,D1)

which concludes the proof.
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We reiterate that though our delegation is secretly-delegatable, as D2

depends on a2, in practice the owner Alice of a1 will simply send the trapdoor
value T1 = Da1

1 to the owner Bob of a2 over secure channel (say, encrypted under
a separate public key), and Bob can then compute D2 = T

1/a2
1 . In particular,

this does not leak any extra information beyond (D2, a2) to Bob, as T1 = Da2
2

is efficiently computable from D2 and a2. Also, the delegation check does not
require any of the secret keys. Despite that, it ensures that only properly del-
egated ciphertexts can be securely re-delegated again. We will critically use to
prove the following:

Theorem 4. The basic delegatable EVRF, given in Construction 4, satisfies
the Basic-$-Core property under the BDDH assumption in the random oracle
model.

The proof of the above theorem is deferred to full version of paper [3].

Delegation Attack on Stronger Legality. We briefly mentioned in
Sect. 7.1 that one could require a stronger legality condition to say that the
only way to distinguish the evaluation of C on x from random is to honestly
delegate C to some honest user (possibly iteratively), getting ciphertext C ′, and
then ask this user to evaluate EVRF on x.

Here we show that our construction does not satisfy this notion. Consider
challenge ciphertext C1 = (A1, R1, R1) under public key A1. Construct C ′

1 =
(A1, R

2
1, R

2
1). C ′

1 will satisfy the delegation check, so we could ask to delegate
C ′ to public key A2. We get C ′

2 = (A1, R
2
1, (R

2
1)

a1/a2) = (A1, R
2
1, (R

a1/a2
1 )2). By

taking square roots from the last two components, we get C2 = (A1, R1, R
a1/a2
1 ).

Notice, Same(A1, C1, A2, C2) = 1 is true, so our original definition does not per-
mit the attacker to evaluate HProve(2, C2, x) (which clearly breaks the scheme).
However, since we obtained C2 without asking the delegate C1 itself (instead, we
asked a different ciphertext C ′

1), the stronger notion would have allowed the
attacker to call HProve(2, C2, x) and break the scheme.

7.3 Construction of Uni- And Bidirectional Delegatable EVRF

Next, we extend the construction from the previous EVRF construction to
also handle delegation to (and, under a stronger assumption, from) potentially
untrusted parties. The idea is to add a “BLS signature” [11] σ in the Encap

procedure which will prove that the initial ciphertext was “well-formed”. This
makes it hard for the attacker to maul a valid initial ciphertext C into a related
ciphertext C ′, whose delegation might compromise the security of C. The public
verifiability of the signature σ will also make it easy to add a “signature check”
to the “delegation check” we already used in our scheme, to ensure that the
appropriate pseudorandomness property is not compromised. This is presented
as Construction 5.
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Protocol Delegatable EVRF

Gen(1k)

Sample a ∈r Z
∗
p

Compute A = ga ∈ G.
return SK = a and PK = (g, A).

Encap(PK)

Parse PK = (g, A).
Sample r ∈r Z

∗
p.

Compute R = D = gr, S = Ar, σ = H ′(A, R)r.
return ciphertext C = (A, R, D, σ) and trapdoor T =
(A, R, S).

Comp(T, x)

Parse T = (A, R, S).
Compute y = e(H(A, R, x), S).
return y.

Del(SK1, C1, SK2)

Parse SK1 = a1, SK2 = a2, C1 = (A, R, D1, σ).
if e(A, R) �= e(ga1 , D1) or e(H ′(A, R), R) �= e(σ, g) then

return ⊥.
else

Compute D2 = D
a1/a2
1 where a1/a2 = a1 · (a2)

−1

mod p.
return C2 = (A, R, D2).

Split(PK, C′)

Parse PK = (g, A), C′ = (A′, R′, D′, σ′).
if e(A′, R′) �= e(A, D′) or e(H ′(A′, R′), R′) �=
e(σ′, g) then

return ⊥.
else

return (A′, R′).

Core(SK, C′, x)

Parse SK = a, C′ = (A′, R′, D′, σ′).
Compute partial output z = H(A′, R′, x)a.
return z.

Post(PK, z′, C′, x)

Parse PK = (g, A), C′ = (A′, R′, D′, σ′)
if e(z′, g) �= e(H(A′, R′, x), A) then

return ⊥.
else

Compute full output y′ = e(z′, D′).
return y′.

Same(PK1, C1, PK2, C2)

Parse PK1 = (g, A1), PK2 = (g, A2), C1 =
(A, R, D1, σ), C2 = (A′, R′, D2, σ

′).
if (A, R, σ) �= (A′, R′, σ′) or e(A1, D1) �=
e(A2, D2) then

return ⊥.

Construction 5. DEVRF2 = (Gen,Encap,Comp, Split, Core, Post,Del,Same).

Security Analysis. Since DEVRF2 is essentially the same as DEVRF1, its cor-
rectness follows the same argument. In particular, we notice that the original
signature σ indeed satisfies our signature check:

e(H ′(A,R), R) = e(H ′(A,R), gr) = e(H ′(A,R)r, g) = e(σ, g)

Similar to the delegation check, the signature check, e(H ′(A′, R′), R′) ?= e(σ′, g),
is important to ensure that the value σ′ is information-theoretically determined
from the value (A′, R′), so it is fine to not include σ under H.

Also, since the delegation procedure Del simply copies the values A,R
and σ, and only modifies the value D1, the Delegation-Completeness and
Delegation-Soundness of DEVRF2 holds as it did for DEVRF1, since the
signature check is not affected by changing D1 to D2 = D

a1/a2
1 . In particular,

similar to the delegation checks, both signature checks are either simultaneously
true or false.

More importantly, in the full version of the paper [3], we also show how the
addition of the “BLS signature” σ and the new signature check allow us to prove
the following theorem:

Theorem 5. The delegatable EVRF given in Construction 5 satisfies the Uni-
$-Core property under the BDDH assumption in the random oracle model.

Finally, we also show that the same construction also satisfies the strongest
bidirectional-delegation security, but now under a much stronger iBDDH
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assumption. In fact, for this result, we will even show a stronger legality con-
dition mentioned earlier: the only way to break DEVRF2 is to trivially delegate
it “out” to the attacker, or delegate it to the honest user, and then ask the user
to evaluate on challenge x. We define this formally in the full version of the
paper [3], where we also show the following result:

Theorem 6. The delegatable EVRF given in Construction 5 satisfies the Bi–
$-Core property under the interactive iBDDH assumption in the random ora-
cle model. It satisfies the strongest possible legality condition for the attacker
(see [3]).

7.4 Construction of One-time Delegatable EVRF

Note that the bidirectional-delegation security of Construction 5 relied on a
very strong inversion-oracle BDDH (iBDDH) assumption, which is interactive
and not well studied. For applications where we only guarantee security after
a single delegation, we could prove bidirectional-delegation under a much rea-
sonable extended BDDH (eBDDH) assumption. More precisely, any party P is
“safe” to do any number of “out-delegations” to other, potentially untrusted
parties P ′, but should only accept “in-delegation” from such an untrusted P ′

only if the delegated ciphertext C ′ was created directly for P ′ (and not delegated
to P ′ from somewhere else).

More formally, the one-time delegation scheme we present here is identical to
the unidirectional-delegation scheme from the previous section, except we replace
the “delegation check” (e(A,R) ?= e(A1,D1)) by a stricter “equality check”(
(A,R) ?= (A1,D1)) which means that the ciphertext C1 was directly created
for public key A1 = A. We call the resulting 1-time-delegatable construction
DEVRF3. In the full version of the paper [3] we show that DEVRF3 satisfies
bidirectional-delegation security, but now under a much weaker (non-interactive)
eBDDH assumption:

Theorem 7. The one-time delegatable DEVRF3 above satisfies the Bi–$-Core
property under the eBDDH assumption in the random oracle model. It satisfies
the strongest possible legality condition for the attacker (see [3]).

We stress that our 1-time delegatable scheme could in principle be delegated
further, if the stricter delegation check (A,R) ?= (A1,D1) is replaced by the
original check e(A,R) ?= e(A1,D1). However, by doing so the party receiving the
EVRF from some untrusted source must rely on the stronger iBDDH complexity
assumption.

8 Conclusion and Final Thoughts

In this work we introduce the idea of an encapsulated search index (ESI) that
offers support for public-indexing and where the search takes sub-linear time.
We also presented a generic construction of ESI from another primitive known as
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encapsulated verifiable random functions (EVRF). We further detailed meaning-
ful extensions to both ESI and EVRF with support for delegation and distribu-
tion. We presented constructions of a standard EVRF and its various extensions.
Indeed, obtain the following Theorem as a corollary of Theorem 2, and by using
any updatable sub-linear DS with an appropriate (delegatable and/or threshold)
EVRF from the earlier sections, we get:

Theorem 8. We have an updatable ESI (see [3]) which

(a) maintains the efficiency of the non-cryptographic DS;
(b) has non-interactive (t, n) threshold implementation for token generation (by

using TEVRF); and
(c) achieves either of the following delegation security levels in the random oracle

model:
– Basic CCA secure under BDDH assumption (by using DEVRF1)
– Uni CCA secure under BDDH assumption (by using DEVRF2)
– Bi CCA secure under iBDDH assumption (by using DEVRF2)
– One Time CCA secure under eBDDH assumption (by using

DEVRF3)

Commercial Product. This theorem forms the backbone of a commercially
available product that has been in the market since 2020. It serves over two-dozen
enterprise customers, with the largest having over 100 users. At a high level, the
commercial application is essentially the motivating application described in the
Introduction, but with a few pragmatic extensions.

The code is production quality and has been deployed without any noticeable
performance degradation, even for large files. Note that a typical mobile device
has the capability to compute 10,000 elliptic curve multiplications (which is
needed in our partial decryption step) per second, with the help of multiple cores.
This number is only expected to go up with further technological advancements
such as the growth of mobile GPUs. In the search functionality, a user can enter
one or several keywords. The system then sequentially searches each file using the
ESI that has been built leading to a total complexity proportional to the product
of the number of keywords, the number of files, and the ESI search time. By using
a blinded bloom filter as the data structure, the application achieves a constant
time search dictionary.10 Currently, searching 1000 files with up to 4 keywords
(or 2000 files with a maximum of 2 keywords) can be accomplished in about
2 s on a standard mobile phone. The application already uses the distributed
token generation and the search delegation capabilities of our underlying ESI.
We present additional details in the full version of the paper [3].
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