
Financially Backed Covert Security

Sebastian Faust1, Carmit Hazay2, David Kretzler1, and Benjamin Schlosser1(B)

1 Technical University of Darmstadt, Darmstadt, Germany
{sebastian.faust,david.kretzler,benjamin.schlosser}@tu-darmstadt.de

2 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

Abstract. The security notion of covert security introduced by Aumann
and Lindell (TCC’07) allows the adversary to successfully cheat and
break security with a fixed probability 1 − ε, while with probability ε,
honest parties detect the cheating attempt. Asharov and Orlandi (ASI-
ACRYPT’12) extend covert security to enable parties to create publicly
verifiable evidence about misbehavior that can be transferred to any
third party. This notion is called publicly verifiable covert security (PVC)
and has been investigated by multiple works. While these two notions
work well in settings with known identities in which parties care about
their reputation, they fall short in Internet-like settings where there are
only digital identities that can provide some form of anonymity.

In this work, we propose the notion of financially backed covert secu-
rity (FBC), which ensures that the adversary is financially punished if
cheating is detected. Next, we present three transformations that turn
PVC protocols into FBC protocols. Our protocols provide highly efficient
judging, thereby enabling practical judge implementations via smart con-
tracts deployed on a blockchain. In particular, the judge only needs to
non-interactively validate a single protocol message while previous PVC
protocols required the judge to emulate the whole protocol. Further-
more, by allowing an interactive punishment procedure, we can reduce
the amount of validation to a single program instruction, e.g., a gate in
a circuit. An interactive punishment, additionally, enables us to create
financially backed covert secure protocols without any form of common
public transcript, a property that has not been achieved by prior PVC
protocols.

Keywords: Covert Security · Multi-Party Computation (MPC) ·
Public Verifiability · Financial Punishment

1 Introduction

Secure multi-party computation (MPC) protocols allow a set of parties to jointly
compute an arbitrary function f on private inputs. These protocols guarantee
privacy of inputs and correctness of outputs even if some of the parties are
corrupted by an adversary. The two standard adversarial models of MPC are

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13178, pp. 99–129, 2022.
https://doi.org/10.1007/978-3-030-97131-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97131-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-97131-1_4

100 S. Faust et al.

semi-honest and malicious security. While semi-honest adversaries follow the
protocol description but try to derive information beyond the output from the
interaction, malicious adversaries can behave in an arbitrary way. MPC proto-
cols in the malicious adversary model provide stronger security guarantees at
the cost of significantly less efficiency. As a middle ground between good effi-
ciency and high security Aumann and Lindell introduced the notion of security
against covert adversaries [AL07]. As in the malicious adversary model, cor-
rupted parties may deviate arbitrarily from the protocol specification but the
protocol ensures that cheating is detected with a fixed probability, called deter-
rence factor ε. The idea of covert security is that adversaries fear to be detected,
e.g., due to reputation issues, and thus refrain from cheating.

Although cheating can be detected in covert security, a party of the pro-
tocol cannot transfer the knowledge about malicious behavior to other (exter-
nal) parties. This shortcoming was addressed by Asharov and Orlandi [AO12]
with the notion of covert security with public verifiability (PVC). Informally,
PVC enables honest parties to create a publicly verifiable certificate about the
detected malicious behavior. This certificate can subsequently be checked by any
other party (often called judge), even if this party did not contribute to the pro-
tocol execution. The idea behind this notion is to increase the deterrent effect by
damaging the reputation of corrupted parties publicly. PVC secure protocols for
the two-party case were presented by [AO12,KM15,ZDH19,HKK+19]. Recently,
Damg̊ard et al. [DOS20] showed a generic compiler from semi-honest to publicly
verifiable covert security for the two-party setting and gave an intuition on how
to extend their compiler to the multi-party case. Full specifications of generic
compilers from semi-honest to publicly verifiable covert security for multi-party
protocols were presented by Faust et al. [FHKS21] and Scholl et al. [SSS21].

Although PVC seems to solve the shortcoming of covert security at first
glance, in many settings PVC is not sufficient; especially, if only a digital iden-
tity of the parties is known, e.g., in the Internet. In such a setting, a real party
can create a new identity without suffering from a damaged reputation in the
sequel. Hence, malicious behavior needs to be punished in a different way. A
promising approach is to use existing cryptocurrencies to directly link cheat-
ing detection to financial punishment without involving trusted third parties;
in particular, cryptocurrencies that support so-called smart contracts, i.e., pro-
grams that enable the transfer of assets based on predefined rules. Similar to
PVC, where an external judge verifies cheating by checking a certificate of mis-
behavior, we envision a smart contract that decides whether a party behaved
maliciously or not. In this setting, the task of judging is executed over a dis-
tributed blockchain network keeping it incorruptible and verifiable at the same
time. Since every instruction executed by a smart contract costs fees, it is highly
important to keep the amount of computation performed by a contract small.
This aspect is not solely important for execution of smart contracts but in all
settings where an external judge charges by the size of the task it gets. Due
to this constraint, we cannot straightforward adapt PVC protocols to work in
this setting, since detection of malicious behavior in existing PVC protocols is
performed in a naive way that requires the judge to recompute a whole protocol
execution.

Financially Backed Covert Security 101

Related Work. While combining MPC with blockchain technologies is an active
research area (e.g., [KB14,BK14,ADMM14]) none of these works deal with real-
izing the judging process of PVC protocols over a blockchain. The only work
connecting covert security with financial punishment thus far is by Zhu et al.
[ZDH19], which we describe in a bit more detail below. They combine a two-
party garbling protocol with an efficient judge that can be realized via a smart
contract. Their construction leverages strong security primitives, like a mali-
cious secure oblivious transfer for the transmission of input wires, to ensure
that cheating can only occur during the transmission of the garbled circuit and
not in any other part of the two-party protocol. By using a binary search over
the transmitted circuit, the parties narrow down the computation step under
dispute to a single circuit gate. This process requires O(log(|C|)) interactions,
where |C| denotes the circuit size, and enables the judge to resolve the dispute
by recomputing only a single circuit gate.

While the approach of Zhu et al. [ZDH19] provides an elegant way to reduce
the computational complexity of the judge in case cheating is restricted to a sin-
gle message, it falls short if multiple messages or even a whole protocol execution
is under dispute. As a consequence, their construction is limited in scalability
and generality, since it is only applicable to two-party garbling protocols, i.e.,
neither other semi-honest two-party protocols nor more parties are supported.

Generalizing the ideas of [ZDH19] to work for other protocol types and the
multi-party case requires us to address several challenges. First, in [ZDH19] the
transmitted garbled circuit under dispute is the result of the completely non-
interactive garbling process. In contrast, many semi-honest MPC protocols (e.g.,
[GMW87,BMR90]) consist of several rounds of interactions that need to be all
considered during the verification. Interactivity poses the challenge that multi-
ple messages may be under dispute and the computation of messages performed
by parties may depend on data received in previous rounds. Hence, verifications
of messages need to consider local computations and internal states of the par-
ties that depend on all previous communication rounds. This task is far more
complex than verifying a single public message. Second, supporting more than
two parties poses the challenge of resolving a dispute about a protocol execu-
tion during which parties might not know the messages sent between a subset of
other parties. Third, the transmitted garbled circuit in [ZDH19] is independent
of the parties private inputs. Considering protocols where parties provide secret
inputs or messages that depend on these inputs, requires a privacy-preserving
verification mechanism to protect parties’ sensitive data.

1.1 Contribution

Our first contribution is to introduce a new security notion called financially
backed covert security (FBC). This notion combines a covertly secure proto-
col with a mechanism to financially punish a corrupted party if cheating was

102 S. Faust et al.

detected. We formalize financial security by adding two properties to covert secu-
rity, i.e., financial accountability and financial defamation freeness. Our notion is
similar to the one of PVC; in fact, PVC adds reputational punishment to covert
security via accountability and defamation freeness. In order to lift these prop-
erties to the financial context, FBC requires deposits from all parties and allows
for an interactive judge. We present two security games to formalize our intro-
duced properties. While the properties are close to accountability and defamation
freeness of PVC, our work for the first time explicitly presents formal security
games for these security properties, thereby enabling us to rigorously reason
about financial properties in PVC protocols. We briefly compare our new notion
to the security definition of Zhu et al. [ZDH19], which is called financially secure
computation. Zhu et al. follow the approach of simulation-based security by pre-
senting an ideal functionality for two parties that extends the ideal functionality
of covert security. In contrast, we present a game-based security definition that
is not restricted to the two-party case. While simulation-based definitions have
the advantage of providing security under composition, proving a protocol secure
under their notion requires to create a full simulation proof which is an expen-
sive task. Instead, our game-based notion allows to re-use simulation proofs of
all existing covert and PVC protocols, including future constructions, and to
focus on proving financial accountability and financial defamation freeness in a
standalone way.

We present transformations from different classes of PVC protocols to FBC
protocols. While we could base our transformations on covert protocols, FBC
protocols require a property called prevention of detection dependent abort, which
is not always guaranteed by a covert protocol. The property ensures that a
corrupted party cannot abort after learning that her cheating will be detected
without leaving publicly verifiable evidence. PVC protocols always satisfy pre-
vention of detection dependent abort. So, by basing our transformation on PVC
protocols, we inherit this property.

While the mechanism utilized by [ZDH19] to validate misbehavior is highly
efficient, it has only been used for non-interactive algorithms so far, i.e., to vali-
date correctness of the garbling process. We face the challenge of extending this
mechanism over an interactive protocol execution while still allowing for effi-
cient dispute resolution such that the judge can be realized via a smart contract.
In order to tackle these challenges, we present a novel technique that enables
efficient validation of arbitrary complex and interactive protocols given the ran-
domness and inputs of all parties. What’s more, we can allow for private inputs if
a public transcript of all protocol messages is available. We utilize only standard
cryptographic primitives, in particular, commitments and signatures.

We differentiate existing PVC protocols according to whether the parties pro-
vide private inputs or not. The former protocols are called input-dependent and
the latter ones input-independent. Input-independent protocols are typically used
to generate correlated randomness. Further, all existing PVC protocols incorpo-
rate some form of common public transcript. Input-dependent protocols require
a common public transcript of messages. In contrast, for input-independent pro-

Financially Backed Covert Security 103

tocols, it is enough to agree on the hashes of all sent messages. While it is not
clear, if it is possible to construct PVC protocols without any form of public
transcript, we construct FBC protocols providing this property. We achieve this
by exploiting the interactivity of the judge, which is non-interactive in PVC.
Based on the above observations, we define the following three classes of FBC
protocols, for which we present transformations from PVC protocols.

Class 1: The first class contains input-independent protocols during which par-
ties learn hashes of all protocol messages such that they agree on a common
transcript of message hashes.

Class 2: The second class contains input-dependent protocols with a public
transcript of messages. In contrast to class 1, parties may provide secret
inputs and share a common view on all messages instead of a common view
on hashes only.

Class 3: The third class contains input-independent protocols where parties
do not learn any information about messages exchanged between a subset
of other parties (cf. class 1). As there are no PVC protocol fitting into this
class, we first convert PVC protocols matching the requirements of class 1
into protocols without public transcripts and second leverage an interactive
punishment procedure to transform the resulting protocols into FBC proto-
cols without public transcripts. Our FBC protocols benefit from this property
since parties have to send all messages only to the receiver and not to all other
parties. This effectively reduces the concrete communication complexity by a
factor depending on the number of parties. In the optimistic case, if there is no
cheating, we get this benefit without any overhead in the round complexity.

For each of our constructions, we provide a formal specification and a rigorous
security analysis; the ones of the second class can be found in the full version
of this paper. This is in contrast to the work of [ZDH19] which lacks a formal
security analysis for financially secure computation. We stress that all existing
PVC multi-party protocols can be categorized into class 1 and 2. Additionally,
by combining any of the transformations from [DOS20,FHKS21,SSS21], which
compile semi-honest protocols into PVC protocols, our constructions can be used
to transform these protocol into FBC protocols.

The resulting FBC protocols for class 1 and 2 allow parties to non-
interactively send evidence about malicious behavior to the judge. As the judge
entity in these two classes is non-interactive, techniques from our transforma-
tions are of independent interest to make PVC protocols more efficient. Since,
in contrast to class 1 and 2, there is no public transcript present in protocols
of class 3, we design an interactive process involving the judge entity to gener-
ate evidence about malicious behavior. For all protocols, once the evidence is
interactively or non-interactively created, the judge can efficiently resolve the
dispute by recomputing only a single protocol message regardless of the overall
computation size. We can further reduce the amount of validation to a single
program instruction, e.g., a gate in a circuit, by prepending an interactive search
procedure. This extension is presented in the full version of this paper.

104 S. Faust et al.

Finally, we provide a smart contract implementation of the judging party
in Ethereum and evaluate its gas costs (cf. Sect. 8). The evaluation shows the
practicability, e.g., in the three party setting, with optimistic execution costs of
533 k gas. Moreover, we show that the dispute resolution of our solution is highly
scalable in regard to the number of parties, the number of protocol rounds and
the protocol complexity.

1.2 Technical Overview

In this section, we outline the main techniques used in our work and present the
high-level ideas incorporated into our constructions. We start with on overview
of the new notion of financially backed covert security. Then, we present a first
attempt of a construction over a blockchain and outline the major challenges.
Next, we describe the main techniques used in our constructions for PVC proto-
cols of classes 1 and 2 and finally elaborate on the bisection procedure required
for the more challenging class 3.

Financially Backed Covert Security. We recall that, a publicly verifiable covertly
secure (PVC) protocol (πcov,Blame, Judge) consists of a covertly secure protocol
πcov, a blaming algorithm Blame and a judging algorithm Judge. The blam-
ing algorithm produces a certificate cert in case cheating was detected and the
judging algorithm, upon receiving a valid certificate, outputs the identity of the
corrupted party. The algorithm Judge of a PVC protocol is explicitly defined as
non-interactive. Therefore, cert can be transferred at any point in time to any
third party that executes Judge and can be convinced about malicious behavior
if the algorithm outputs the identity of a corrupted party.

In contrast to PVC, financially backed covert security (FBC) works in a
model where parties own assets which can be transferred to other parties. This
is modelled via a ledger entity L. Moreover, the model contains a trusted judging
party J which receives deposits before the start of the protocol and adjudicates
in case of detected cheating. We emphasize that the entity J , which is a single
trusted entity interacting with all parties, is not the same as the algorithm Judge
of a PVC protocol, which can be executed non-interactively by any party. An
FBC protocol (π′

cov,Blame′,Punish) consists of a covertly secure protocol π′
cov, a

blaming algorithm Blame′ and an interactive punishment protocol Punish. Simi-
lar to PVC, the blaming algorithm Blame′ produces a certificate cert′ that is used
as an input to the interactive punishment protocol. Punish is executed between
the parties and the judge J . If all parties behave honestly during the execution
of π′

cov, J sends the deposited coins back to all parties after the execution of
Punish. In case cheating is detected during π′

cov, the judge J burns the coins of
the cheating party.

First Attempt of an Instantiation Over a Blockchain. Blockchain technologies
provide a convenient way of handling monetary assets. In particular, in combi-
nation with the execution of smart contracts, e.g., offered by Ethereum [W+14],
we envision to realize the judging party J as a smart contract. A first attempt

Financially Backed Covert Security 105

of designing the punishment protocol is to implement J in a way, that the judge
just gets the certificate generated by the PVC protocol’s blame algorithm and
executes the PVC protocol’s Judge-algorithm. However, the Judge-algorithm of
all existing PVC protocols recomputes a whole protocol instance and compares
the output with a common transcript on which all parties agree beforehand.
As computation of a smart contract costs money in form of transaction fees,
recomputing a whole protocol is prohibitively expensive. Therefore, instead of
recomputing the whole protocol, we aim for a punishment protocol that facili-
tates a judging party J which needs to recompute just a single protocol step or
even a single program instruction, e.g., a gate in a circuit. The resulting judge
becomes efficient in a way that it can be practically realized via a smart contract.

FBC Protocols with Efficient Judging from PVC Protocols. In this work, we
present three transformations from PVC protocols to FBC protocols. Our trans-
formations start with PVC protocols providing different properties which we use
to categorize these protocols into three classes. We model the protocol execu-
tion in a way such that every party’s behavior is deterministically defined by
her input, her randomness and incoming messages. More precisely, we define
the initial state of a party as her input and some randomness and compute
the next state according to the state of the previous round and the incoming
messages of the current round. Our first two transformations build on PVC pro-
tocols where the parties share a public transcript of the exchanged messages
resp. message hashes. Additionally, parties send signed commitments on their
intermediate states to all parties. The opening procedure ensures that correctly
created commitments can be opened – falsely created commitments open to an
invalid state that is interpreted as an invalid message. By sending the internal
state of some party Pm for a single round together with the messages received
by Pm in the same round to the judging party, the latter can efficiently verify
malicious behavior by recomputing just a single protocol step. The resulting
punishment protocol is efficient and can be executed without contribution of the
cheating party.

Interactive Punishment Protocol to Support Private Transcripts. Our third
transformation compiles input-independent PVC protocols with a public tran-
script into protocols where no public transcript is known to the parties. The
lack of a public transcript makes the punishment protocol more complicated.
Intuitively, since an honest party has no signed information about the mes-
sage transcript, she cannot provide verifiable data about the incoming message
used to calculate a protocol step. Therefore, we use the technique of an inter-
active bisection protocol which was first used in the context of verifiable com-
puting by Canetti et al. [CRR11] and subsequently by many further construc-
tions [KGC+18,TR19,ZDH19,EFS20]. While the bisection technique is very effi-
cient to narrow down disagreement, it was only used for non-interactive algo-
rithms so far. Hence, we extend this technique to support also interactive proto-
cols. In particular, in our work, we use a bisection protocol to allow two parties
to efficiently agree on a common message history. To this end, both parties, the

106 S. Faust et al.

accusing and the accused one, create a Merkle tree of their emulated message
history up to the disputed message and submit the corresponding root. If they
agree on the message history, the accusation can be validated by reference to this
history. If they disagree, they perform a bisection search over the proposed his-
tory that determines the first message in the message history, they disagree on,
while automatically ensuring that they agree on all previous messages. Hence,
the judge can verify the message that the parties disagree on based on the pre-
vious messages they agree on. At the end of both interactions, the judge can
efficiently resolve the dispute by recomputing just a single step.

2 Preliminaries

We start by introducing notation and cryptographic primitives used in our con-
struction. Moreover, we provide the definition of covert security and publicly
verifiable covert security in the full version of this paper.

We denote the computational security parameter by κ. Let n be some integer,
then [n] = {1, . . . , n}. Let i ∈ [n], then we use the notation j �= i for j ∈ [n]\{i}.
A function negl(n) : N → R is negligible in n if for every positive integer c there
exists an integer n0 such that ∀n > n0 it hols that negl(n) < 1

nc . We use the
notation negl(n) to denote a negligible function.

We define REALπ,A(z),I(x̄, 1κ) to be the output of the execution of an n-party
protocol π executed between parties {Pi}i∈[n] on input x̄ = {xi}i∈[n] and security
parameter κ, where A on auxiliary input z corrupts parties I ⊂ {Pi}i∈[n]. We
further specify OUTPUTj(REALπ,A(z),I(x̄, 1κ)) to be the output of party Pj for
j ∈ [n].

Our protocol utilizes a signature scheme (Generate,Sign,Verify) that is exis-
tentially unforgeable under chosen-message attacks. We assume that each party
executes the Generate-algorithm to obtain a key pair (pk, sk) before the protocol
execution. Further, we assume that all public keys are published and known to
all parties while the secret keys are kept private. To simplify the protocol descrip-
tion we denote signed messages with

〈
x
〉

i
instead of (x, σ := Signski(x)). The

verification is therefore written as Verify(
〈
x
〉

i
) instead of Verifypki(x, σ). Further,

we make use of a hash function H(·) : {0, 1}∗ → {0, 1}κ that is collision resistant.
We assume a synchronous communication model, where communication hap-

pens in rounds and all parties are aware of the current round. Messages that are
sent in some round k arrive at the receiver in round k + 1. Since we consider a
rushing adversary, the adversary learns the messages sent by honest parties in
round k in the same round and hence can adapt her own messages accordingly.
We denote a message sent from party Pi to party Pj in round k of some protocol
instance denoted with � as msg

(i,j)
(�,k). The hash of this message is denoted with

hash
(i,j)
(�,k) := H(msg

(i,j)
(�,k)).

A Merkle tree over an ordered set of elements {xi}i∈[N] is a labeled binary
hash tree, where the i-th leaf is labeled by xi. We assume N to be an integer
power of two. In case the number of elements is not a power of two, the set can

Financially Backed Covert Security 107

be padded until N is a power of two. For construction of Merkle trees, we make
use of the collision-resistant hash function H(·) : {0, 1}∗ → {0, 1}κ.

Formally, we define a Merkle tree as a tuple of algorithms (MTree,MRoot,
MProof,MVerify). Algorithm MTree takes as input a computational security
parameter κ as well as a set of elements {xi}i∈[N] and creates a Merkle tree
mTree. To ease the notation, we will omit the security parameter and implicitly
assume it to be provided. Algorithm MRoot takes as input a Merkle tree mTree
and returns the root element root of tree mTree. Algorithm MProof takes as
input a leaf xj and Merkle tree mTree and creates a Merkle proof σ showing
that xj is the j-th leaf in mTree. Algorithm MVerify takes as input a proof σ,
an index i, a root root and a leaf x∗ and returns true iff x∗ is the i-the leaf of a
Merkle tree with root root.

A Merkle Tree satisfies the following two requirements. First, for each Merkle
tree mTree created over an arbitrary set of elements {xi}i∈[N], it holds that
for each j ∈ [N] MVerify(MProof(xj ,mTree), j,MRoot(mTree), xj) = true. We
call this property correctness. Second, for each Merkle tree mTree with root
root := MRoot(mTree) created over an arbitrary set of elements {xi}i∈[N] with
security parameter κ it holds that for each polynomial time algorithm adver-
sary A outputting an index j∗, leaf x∗ �= xj∗ and proof σ∗ the probability that
MVerify(σ∗, j∗,MRoot(mTree), x∗) = true is negl(κ). We call this property bind-
ing.

3 Financially Backed Covert Security

In the following, we specify the new notion of financially backed covert security.
This notion extends covert security by a mechanism of financial punishment.
More precisely, once an honest party detects cheating of the adversary during
the execution of the covertly secure protocol, there is some corrupted party
that is financial punished afterwards. The financial punishment is realized by
an interactive protocol Punish that is executed directly after the covertly secure
protocol. In order to deal with monetary assets, financially backed covertly secure
protocols depend on a public ledger L and a trusted judge J . The former can be
realized by distributed ledger technologies, such as blockchains, and the latter
by a smart contract executed on the said ledger. In the following, we describe
the role of the ledger and the judging party, formally define financially backed
covert security and outline techniques to prove financially backed covert security.

3.1 The Ledger and Judge

An inherent property of our model is the handling of assets and asset transfers
based on predefined conditions. Nowadays, distributed ledger technologies like
blockchains provide convenient means to realize this functionality. We model
the handling of assets resp. coins via a ledger entity denoted by L. The entity
stores a balance of coins for each party and transfers coins between parties upon
request. More precisely, L stores a balance b

(t)
i for each party Pi at time t. For

108 S. Faust et al.

the security definition presented in Sect. 3.2, we are in particular interested in
the balances before the execution of the protocol π, i.e., b

(pre)
i , and after the

execution of the protocol Punish, i.e., b
(post)
i . The balances are public such that

every party can query the amount of coins for any party at the current time.
In order to send coins to another party, a party interacts with L to trigger the
transfer.

While we consider the ledger as a pure storage of balances, we realize the
conditional transfer of coins based on some predefined rules specified by the
protocol Punish via a judge J . In particular, J constitutes a trusted third party
that interacts with the parties of the covertly secure protocol. More precisely,
we require that each party sends some fixed amount of coins as deposit to J
before the covertly secure protocol starts. During the covertly secure protocol
execution, the judge keeps the deposited coins but does not need to be part of
any interaction. After the execution of the covertly secure protocol, the judge
plays an important role in the punishment protocol Punish. In case any party
detects cheating during the execution of the covertly secure protocol, J acts
as an adjudicator. If there is verifiable evidence about malicious behavior of
some party, the judge financially punishes the corrupted party by withholding
her deposit. Eventually, J will reimburse all parties with their deposits except
those parties that have been proven to be malicious. The rules according to
which parties are considered malicious and hence according to which the coins
are reimbursed or withhold need to be specified by the protocol Punish.

Finally, we emphasize that both entities the ledger L and the judge J are
considered trusted. This means, the correct functionality of these entities cannot
be distorted by the adversary.

3.2 Formal Definition

We work in a model in which a ledger L and a judge J as explained above exist.
Let π′ be an n-party protocol that is covertly secure with deterrence factor ε.
Let the number of corrupted parties that is tolerated by π′ be m < n and the set
of corrupted parties be denoted by I. We define π as an extension of π′, in which
all involved parties transfer a fixed amount of coins, d, to J before executing
π′. Additionally, after the execution of π′, all parties execute algorithm Blame
which on input the view of the honest party outputs a certificate and broadcasts
the generated certificate – still as part of π. The certificate is used for both
proving malicious behavior, if detected, and defending against being accused for
malicious behavior.

After the execution of π, all parties participate in the protocol Punish. In case
honest parties detected misbehavior, they prove said misbehavior to J such that
J can punish the malicious party. In case a malicious party blames an honest
one, the honest parties participate to prove their correct behavior. Either way,
even if there is no blame at all, all honest parties wait to receive their deposits
back, which are reimbursed by J at the end of the punishment protocol Punish.

Financially Backed Covert Security 109

Definition 1 (Financially backed covert security). We call a triple
(π,Blame,Punish) an n-party financially backed covertly secure protocol with
deterrence factor ε computing some function f in the L and J model, if the
following security properties are satisfied:

1. Simulatability with ε-deterrent: The protocol π (as described above) is
secure against a covert adversary according to the strong explicit cheat for-
mulation with ε-deterrent and non-halting detection accurate.

2. Financial Accountability: For every PPT adversary A corrupting parties
Pi for i ∈ I ⊂ [n], there exists a negligible function μ(·) such that for all
(x̄, z) ∈ ({0, 1})n+1 the following holds:
If for any honest party Ph ∈ [n]\I it holds that OUTPUTh(REALπ,A(z),I(x̄, 1κ)) =

corrupted∗ 1, then ∃m ∈ I such that:

Pr[b(post)m = b(pre)m − d] > 1 − μ(κ),

where d denotes the amount of deposited coins per party.
3. Financial Defamation Freeness: For every PPT adversary A corrupting

parties Pi for i ∈ I ⊂ [n], there exists a negligible function μ(·) such that for
all (x̄, z) ∈ ({0, 1})n+1 and all j ∈ [n] \ I the following holds:

Pr[b(post)j < b
(pre)
j] < μ(κ).

Remark 1. For simplicity, we assume that the adversary does not transfer coins
after sending the deposit to J . This assumption can be circumvented by restating
financial accountability such that the sum of the balances of all corrupted parties
(not just the ones involved in the protocol) is reduced by d.

3.3 Proving Security of Financially Backed Covert Security

Our notion of financially backed covert security (FBC) consists of three prop-
erties. The simulatability property requires the protocol π, which augments the
covertly secure protocol π′, to be covertly secure as well. This does not automat-
ically follows from the security of π′, in particular since π includes the broadcast
of certificates in case of detected cheating. Showing simulatability of π guaran-
tees that the adversary does not learn sensitive information from the certificates.
Showing that a protocol π satisfies the simulatability property is proven via a
simulation proof. In contrast, we follow a game-based approach to formally prove
financial accountability and financial defamation freeness. To this end, we intro-
duce two novel security games, ExpFA and ExpFDF, in the following. Although
these two properties are similar to the accountability and defamation freeness
properties of PVC, we are the first to introduce formal security games for any
of these properties. While we focus on financial accountability and financial

1 We use the notation corrupted∗ to denote that the output of Ph is corruptedi for some
i ∈ I. We stress that i does not need to be equal to m of the financial accountability
property.

110 S. Faust et al.

defamation freeness, we note that our approach and our security games can be
adapted to suit for the security properties of PVC as well.

Both security games are played between a challenger C and an adversary
A. We define the games in a way that allows us to abstract away most of the
details of π. In particular, we parameterize the games by two inputs, one for
the challenger and one for the adversary. The challenger’s input contains the
certificates {certi}i∈[n]\I of all honest parties generated by the Blame-algorithm
after the execution of π while the adversary’s input consists of all malicious par-
ties’ views {viewi}i∈I . By introducing the certificates as inputs to the game, we
can prove financial accountability and financial defamation freeness independent
from proving simulatability of protocol π.

Throughout the execution of the security games, the adversary executes one
instance of the punishment protocol Punish with the challenger that takes over
the roles of all honest and trusted parties, i.e., the honest protocol parties Ph

for h /∈ I, the judge J , and the ledger L. To avoid an overly complex challenger
description, we define those parties as separated entities that can be addressed
by the adversary separately and are all executed by the challenger: {Ph}h∈[n]\I ,
J, and L. In case any entity is supposed to act pro-actively and does not only
wait to react to malicious behavior, the entity is invoked by the challenger. Com-
munication between said entities is simulated by the challenger. The adversary
acts on behalf of the corrupted parties.

Financial Accountability Game. Intuitively, financial accountability states that
whenever any honest party detects cheating, there is some corrupted party that
loses her deposit. Therefore, we require that the output of all honest parties
was corruptedm for m ∈ I in the execution of π. If this holds, the security game
executes Punish as specified by the FBC protocol. Before the execution of Punish,
the challenger asks the ledger for the balances of all parties and stores them as
{b

(prePunish)
i }i∈[n]. Note that prePunish denotes the time before Punish but after

the whole protocol already started. This means, relating to Definition 1, the
security deposits are already transferred to J , i.e., bprePunishi = bprei − d. After the
execution, the challenger C again reads the balances of all parties storing them as
{b

(post)
i }i∈[n]. If b

(post)
m = b

(prePunish)
m +d for all m ∈ I, i.e., all corrupted parties get

their deposits back, the adversary wins and C outputs 1, otherwise C outputs 0.
A protocol satisfies the financial accountability property as stated in Definition 1
if for each adversary A running in time polynomial in κ the probability that A
wins game ExpFA is at most negligible, i.e., if Pr[ExpFA(A, κ) = 1] ≤ negl(κ).

Financial Defamation Freeness Game. Intuitively, financial defamation freeness
states that an honest party can never lose her deposit as a result of executing
the Punish protocol. The security game is executed in the same way as the
financial accountability game. It only differs in the winning conditions for the
adversary. After the execution C checks the balances of the honest parties. If
b
(post)
h < b

(prePunish)
h + d for at least one h ∈ [n] \ I, the adversary wins and the

challenger outputs 1, otherwise C outputs 0. A protocol satisfies the financial

Financially Backed Covert Security 111

defamation freeness property as stated in Definition 1 if for each adversary A
running in time polynomial in κ the probability that A wins game ExpFDF is at
most negligible, i.e. if Pr[ExpFDF(A, κ) = 1] ≤ negl(κ).

4 Features of PVC Protocols

We present transformations from different classes of publicly verifiable covertly
secure multi-party protocols (PVC) to financially backed covertly secure proto-
cols (FBC). As our transformations make use of concrete features of the PVC
protocol (e.g., the exchanged messages), we cannot use the PVC protocol in a
block-box way. Instead, we model the PVC protocol in an abstract way, stating
features that are required by our constructions. In the remainder of this section,
we present these features in detail and describe how we model them. We note
that all existing PVC multi-party protocols [DOS20,FHKS21,SSS21] provide the
features specified in this section.

4.1 Cut-and-Choose

Although not required per definition of PVC, a fundamental technique used by
all existing PVC protocols is the cut-and-choose approach that leverages a semi-
honest protocol by executing t instances of the semi-honest protocol in parallel.
Afterwards, the views (i.e., input and randomness) of the parties is revealed in
s instances. This enables parties to detect misbehavior with probability ε = s

t .
PVC protocols can be split into protocols where parties provide private inputs
and those where parties do not have secret data. While cut-and-choose for input-
independent protocols, i.e., those where parties do not have private inputs, work
as explained on a high level before, the approach must be utilized in such a way
that input privacy is guaranteed for input-dependent protocols. However, for
both classes of protocols, a cheat detection probability of ε = s

t can be achieved.
We elaborate more on the two variants and provide details about them in the
full version of this paper.

4.2 Verification of Protocol Executions

An important feature of PVC protocols based on cut-and-choose is to enable
parties to verify the execution of the opened protocol instances. This requires
parties to emulate the protocol messages and compare them with the messages
exchanged during the real execution. In order to emulate honest behavior, we
need the protocol to be derandomized.

Derandomization of the Protocol Execution. In general, the behavior of each
party during some protocol execution depends on the party’s private input, its
random tape and all incoming messages. In order to enable parties to check
the behavior of other parties in retrospect, the actions of all parties need to be
made deterministic. To this end, we require the feature of a PVC protocol that all

112 S. Faust et al.

random choices of a party Pi in a protocol instance are derived from some random
seed seedi using a pseudorandom generator (PRG). The seed seedi is fixed before
the beginning of the execution. It follows that the generated outgoing messages
are computed deterministically given the seed seedi, the secret input and all
incoming messages.

State Evolution. Corresponding to our communication model (cf. Sect. 2), the
internal states of the parties in a semi-honest protocol instance evolve in rounds.
For each party Pi, for i ∈ [n], and each round k > 0 the protocol defines a state
transition computeRoundi

k that on input the previous internal state state
(i)
(k−1)

and the set of incoming messages {msg
(j,i)
(k−1)}j �=i computes the new internal state

state
(i)
(k) and the set of outgoing messages {msg

(i,j)
(k) }j �=i. Based on the derandom-

ization feature, the state transition is deterministic, i.e., all random choices are
derived from a random seed included in the internal state of a party. Each party
starts with an initial internal state that equals its random seed seedi and its
secret input xi. In case no secret input is present (i.e., in the input-independent
setting) or no message is sent, the value is considered to be a dummy symbol
(⊥). We denote the set of all messages sent during a protocol instance by protocol
transcript. Summarizing, we formally define

state
(i)
(0) ← (seedi, xi)

{msg
(j,i)
(0) }j∈[n]\{i} ← {⊥}j∈[n]\{i}

(state(i)(k), {msg
(i,j)
(k) }j∈[n]\{i}) ← computeRoundi

k(state(i)(k−1), {msg
(j,i)
(k−1)}j∈[n]\{i}).

Protocol Emulation. In order to check for malicious behavior, parties locally
emulate the protocol execution of the opened instances and compare the set of
computed messages with the received ones. In case some involved parties are not
checked (e.g., in the input-dependent setting), the emulation gets their messages
as input and assumes them to be correct. In this case, in order to ensure that
each party can run the emulation, it is necessary that each party has access to
all messages sent in the opened instance (cf. Sect. 4.4).

To formalize the protocol emulation, we define for each n-party protocol π
with R rounds two emulation algorithms. The first algorithm emulatefullπ emulates
all parties while the second algorithm emulatepartπ emulates only a partial subset
of the parties and considers the messages of all other parties as correct. We
formally define them as

({msg
(i,j)
(k) }k,i,j �=i, {state(i)(k)}k,i) ← emulatefullπ ({state(i)(0)}i) and

({msg
(i,j)
(k) }k,i,j �=i, {state(̂i)(k)}k,̂i) ← emulatepartπ (O, {state(̂i)(0)}î, {msg

(i∗,j)
(k) }k,i∗,j �=i∗)

where k ∈ [R], i, j ∈ [n], î ∈ O and i∗ ∈ [n] \ O. O denotes the set of opened
parties.

Financially Backed Covert Security 113

4.3 Deriving the Initial States

As a third feature, we require a mechanism for the parties of a PVC protocol
to learn the initial states of all opened parties in order to perform the protocol
emulation (cf. Sect. 4.2). Since PVC prevents detection dependent abort, parties
learn the initial state even if the adversary aborts after having learned the cut-
and-choose selection. Existing multi-party PVC protocols provide this feature
by either making use of oblivious transfer or time-lock puzzles as in [DOS20]
resp. [FHKS21,SSS21]. We elaborate on these protocols in the full version of
this paper.

To model this behavior formally, we define the abstract tuples initDatacore and
initDataaux as well as the algorithm deriveInit. initDatacore(i) represents data each
party holds that should be signed by Pi and can be used to derive the initial
state of party Pi in a single protocol instance (e.g., a signed time-lock puzzle).
initDataaux(i) represents the additional data all parties receive during the PVC
protocol that can be used to interpret initDatacore(i) (e.g., the verifiable solution of
the time-lock puzzle). Finally, deriveInit is an algorithm that on input initDatacore(i)

and initDataaux(i) derives the initial state of party Pi (e.g., verifying the solution
of the puzzle). Instead of outputting an initial state, the algorithm deriveInit
can also output bad or ⊥. The former states that party Pi misbehaved during
the PVC protocol by providing inconsistent data. The symbol ⊥ states that
the input to deriveInit has been invalid which can only occur if initDatacore(i) or
initDataaux(i) have been manipulated.

Similar to commitment schemes, our abstraction satisfies a binding and hiding
requirement, i.e., it is computationally binding and computationally hiding. The
binding property requires that the probability of any polynomial time adversary
finding a tuple (x, y1, y2) such that deriveInit(x, y1) �= ⊥, deriveInit(x, y2) �= ⊥,
and deriveInit(x, y1) �= deriveInit(x, y2) is negligible. The hiding property requires
that the probability of a polynomial time adversary finding for a given initDatacore

a initDataaux such that deriveInit(initDatacore, initDataaux) �= ⊥ is negligible.

4.4 Public Transcript

A final feature required by PVC protocols of class 1 and 2 is the availability of a
common public transcript. We define three levels of transcript availability. First,
a common public transcript of messages ensures that all parties hold a common
transcript containing all messages that have been sent during the execution of
a protocol instance. Every protocol can be transformed to provide this feature
by requiring all parties to send all messages to all other parties and defining
a fixed ordering on the sent messages – we consider an ordering of messages
by the round they are sent, the index of the sender, and the receiver’s index
in this sequence. If messages should be secret, each pair of parties executes a
secure key exchange as part of the protocol instance and then encrypts messages
with the established keys. Agreement is achieved by broadcasting signatures
on the transcript, e.g., via signing the root of a Merkle tree over all message
hashes as discussed in [FHKS21] and required in our transformations. Second,
a common public transcript of hashes ensures that all parties hold a common

114 S. Faust et al.

transcript containing the hashes of all messages sent during the execution of a
protocol instance. This feature is achieved similar to the transcript of messages
but parties only send message hashes to all parties that are not the intended
receiver. Finally, the private transcript does not require any agreement on the
transcript of a protocol instance.

Currently, all existing multi-party PVC protocols either provide a common
public transcript of messages [DOS20,FHKS21] or a common public transcript
of hashes [SSS21]. However, [DOS20] and [FHKS21] can be trivially adapted to
provide just a common public transcript of hashes.

5 Building Blocks

In this section, we describe the building blocks for our financially backed covertly
secure protocols. In the full version of this paper, we show security of the building
blocks and that incorporating the building blocks into the PVC protocol does
not affect the protocol’s security.

5.1 Internal State Commitments

To realize the judge in an efficient way, we want it to validate just a single pro-
tocol step instead of validating a whole instance. Existing PVC protocols prove
misbehavior in a naive way by allowing parties to show that some other party
Pj had an initial state state

(j)
(0). Based on the initial state, the judge recomputes

the whole protocol instance. In contrast to this, we incorporate a mechanism
that allows parties to prove that Pj has been in state state

(j)
(k) in a specific round

k where misbehavior was detected. Then, the judge just needs to recompute a
single step. To this end, we require that parties commit to each intermediate
internal state during the execution of each semi-honest instance in a publicly
verifiable way. In particular, in each round k of each semi-honest instance �,
each party Pi sends a hash of its internal state to all other parties using a
collision-resistant hash function H(·), i.e., H(state(i)(�,k)). At the end of a pro-
tocol instance each party Ph creates a Merkle tree over all state hashes, i.e.,
sTree� := MTree({hash(i)(�,k)}k∈[R],i∈[n]), and broadcasts a signature on the root
of this tree, i.e.,

〈
MRoot(sTree�)

〉
h
.

5.2 Signature Encoding

Our protocol incorporates signatures in order to provide evidence to the judge J
about the behavior of the parties. Without further countermeasures, an adver-
sary can make use of signed data across multiple instances or rounds, e.g., she
could claim that some message msg sent in round k has been sent in round k′

using the signature received in round k. To prevent such an attack, we encode
signed data by prefixing it with the corresponding indices before being signed.
Merkle tree roots are prefixed with the instance index �. Message hashes are

Financially Backed Covert Security 115

prefixed with �, the round index k, the sender index i and the receiver index j.
Initial state commitments (initDatacore(�,i)) are prefixed with � and the index i of
the party who’s initial state the commitment refers to. The signature verifica-
tion algorithm automatically checks for correct prefixing. The indices are derived
from the super- and subscripts. If one index is not explicitly provided, e.g., in
case only one instance is executed, the index is assumed to be 1.

5.3 Bisection of Trees

Our constructions make heavily use of Merkle trees to represent sets of data.
This enables parties to efficiently prove that chunk of data is part of a set by
providing a Merkle proof showing that the chunk is a leaf of the corresponding
Merkle tree. In case two parties disagree about the data of a Merkle tree which
should be identical, we use a bisection protocol ΠBS to narrow down the dispute
to the first leaf of the tree on which they disagree. This helps a judging party
to determine the lying party by just verifying a single data chunk in contrast to
checking the whole data. The technique of bisecting was first used by Canetti
et al. [CRR11] in the context of verifiable computing. Later, the technique was
used in [KGC+18,TR19,EFS20].

The protocol is executed between a party Pb with input a tree mTreeb, a
party Pm with input a tree mTreem and a trusted judge J announcing three
public inputs: rootj , the root of mTreej as claimed by Pj for j ∈ {b,m}, and
width, the width of the trees, i.e., the number of leaves. The protocol returns the
index z of the first leaf at which mTreeb and mTreem differentiate, the leaf hashm

z

at position z of mTreem, and the common leaf hash(z−1) at position z − 1. The
latter is ⊥ if z = 1. Let node(mTree, x, y) be the node of a tree mTree at position
x of layer y – positions start with 1. The protocol is executed as follows:

Protocol Bisection ΠBS

1. J initializes layer variable y := 1, position variable x := 1, last agreed hash
hasha := ⊥, and depth := �log2(width)� + 1

2. All parties repeat this step while y ≤ depth:
(a) Both Pj (for j ∈ {b, m}) send hashj := node(mTreej , x, y) and σj :=

MProof(hashj ,mTreej) to J .
(b) If MVerify(hashj , x, rootj , σj) = false (for j ∈ {b, m}), J discards the mes-

sage from Pj .
(c) If y = depth, J keeps hashb and hashm and sets y = y + 1.
(d) If y < depth and hashb = hashm, J sets x = (2 · x) + 1 and y = y + 1.
(e) If y < depth and hashb �= hashm, J sets x = (2 · x) − 1 and y = y + 1.

3. If hashb = hashm

– J sets z := x + 1 and hash(z−1) := hashb.
– Pm sends hashm

z := node(mTreem, z, depth) and σ :=
MProof(hashm

z ,mTreem) to J .
– If MVerify(hashm

z , z, root, σ) = false, J discards. Otherwise J stores hashm
z .

4. If hashb �= hashm

– J sets z := x and hashm
z := hashm. If z = 1, J sets hash(z−1) := ⊥, and the

protocol jumps to step 5.

116 S. Faust et al.

– Pm sends hash(z−1) := node(mTreem, z − 1, depth) and σ :=
MProof(hash(z−1),mTreem) to J .

– If MVerify(hash(z−1), z − 1,mTreem, σ) = false, J discards. Otherwise, J
keeps hash(z−1).

5. J announces public outputs z, hashm
z and hash(z−1).

6 Class 1: Input-Independent with Public Transcript

Our first transformation builds on input-independent PVC protocols where all
parties possess a common public transcript of hashes (cf. Sect. 4.4) for each
checked instance. Since the parties provide no input in these protocols, all parties
can be opened. The set of input-independent protocols includes the important
class of preprocessing protocols. In order to speed up MPC protocols, a common
approach is to split the computation in an offline and an online phase. Dur-
ing the offline phase, precomputations are carried out to set up some correlated
randomness. This phase does not require the actual inputs and can be executed
continuously. In contrast, the online phase requires the private inputs of the par-
ties and consumes the correlated randomness generated during the offline phase
to speed up the execution. As the online performance is more time critical, the
goal is to put as much work as possible into the offline phase. Prominent examples
following this approach are the protocols of Damg̊ard et al. [DPSZ12,DKL+13]
and Wang et al. [WRK17a,WRK17b,YWZ20]. Input-independent PVC pro-
tocols with a public transcript can be obtained from semi-honest protocols
using the input-independent compilers of Damg̊ard et al. [DOS20] and Faust
et al. [FHKS21].

In order to apply our construction to an input-independent PVC protocol,
πpp, we require πpp to provide some features presented in Sect. 4 and to have
incorporated some of the building blocks described in Sect. 5. First, we require
the PVC protocol to be based on the cut-and-choose approach (cf. Sect. 4.1).
Second, we require the actions of each party Pi in a protocol execution to be
deterministically determined by a random seed (cf. Sect. 4.2). Third, we require
that all parties learn the initial states of all other parties in the opened protocol
instances (cf. Sect. 4.3). To this end, the parties receive signed data (e.g., a
commitment and decommitment value) to derive the initial states of the other
parties. Fourth, parties need to commit to their intermediate internal states
during the protocol executions in a publicly verifiable way (cf. Sect. 5.1). Finally,
all signed data match the encoded form specified in Sect. 5.2.

In order to achieve the public transcript of hashes and the commitments to
the intermediate internal states, parties exchange additional data in each round.
Formally, whenever some party Ph in round k of protocol instance � transitions to
a state state

(h)
(�,k) with the outgoing messages {msg

(h,i)
(�,k)}i∈[n]\{h} , then it actually

sends the following to Pi:

(msg
(h,i)
(�,k), {hash(h,j)

(�,k) := H(msg
(h,j)
(�,k))}j∈[n]\{h,i}, hash

(h)
(�,k) := H(state(h)(�,k)))

Financially Backed Covert Security 117

Let O denote the set of opened instances. We summarize the aforemen-
tioned requirements by specifying the data that the view of any honest party Ph

includes. It contains signed data to derive the initial state of all parties for the
opened instances (1a), a Merkle tree over the hashes of all messages exchanged
within a single instance for all instances (1b), a Merkle tree over the hashes of
all intermediate internal states of a single instance for all instances (1c), and
signatures from each party over the roots of the message and state trees (1d):

{(
〈
initDatacore(i,�)

〉
i
, initDataaux(i,�))}�∈O,i∈[n], (1a)

{mTree�}�∈[t] := {MTree({hash(i,j)(�,k)}k∈[R],i∈[n],j �=i)}�∈[t], (1b)

{sTree�}�∈[t] := {MTree({hash(i)(�,k)}k∈[R],i∈[n])}�∈[t] (1c)

{〈
MRoot(mTree�)

〉
i
}i∈[n],�∈[t] and {〈MRoot(sTree�)

〉
i
}i∈[n],�∈[t]. (1d)

We next define the blame algorithm that takes the specified view as input and
continue with the description of the punishment protocol afterwards.

The Blame Algorithm. At the end of protocol πpp, all parties execute the blame
algorithm Blamepp to generate a certificate cert. The resulting certificate is broad-
casted and the honest party finishes the execution of πpp by outputting cert. The
certificate is generated as follows:

Algorithm Blamepp

1. Ph runs state
(i)

(�,0) = deriveInit(initDatacore(i,�), initData
aux
(i,�)) for each i ∈ [n], � ∈ O.

Let B be the set of all tuples (�, 0, m, 0) such that state
(m)

(�,0) = bad. If B �= ∅,
goto step 4.

2. Ph emulates for each � ∈ O the protocol executions on input the initial
states from all parties to obtain the expected messages and the expected inter-
mediate states of all parties, i.e., ({msg

(i,j)

(�,k)}k∈[R],i∈[n],j �=i, {state(i)(�,k)}k,i,j) :=

emulatefull({state(i)(�,0)}i∈[n]).

3. Let B be the set of all tuples (�, k, m, i) such that H(msg
(m,i)

(�,k)) �= hash
(m,i)

(�,k)

or H(state
(m)

(�,k)) �= hash
(m)

(�,k) – where hash
(m,i)

(�,k) and hash
(m)

(�,k) are extracted from
mTree� or sTree� respectively. In case of an incorrect state hash, set i = 0.

4. If B = ∅ Ph outputs cert := ⊥. Otherwise, Ph picks the tuple (�, k, m, i) from
B with the smallest �, k, m, i in this sequence, sets k′ := k − 1 and defines
variables as follows – variables that are not explicitly defined are set to ⊥.

118 S. Faust et al.

(Always): ids := (�, k, m, i)

initData := (
〈
initDatacore(�,m)

〉
m

, initDataaux(�,m))

rootstate :=
〈
MRoot(sTree�)

〉
m

rootmsg :=
〈
MRoot(mTree�)

〉
m

(If k > 0): stateout := (hash
(m)

(�,k),MProof(hash
(m)

(�,k), sTree�))

msgout := (hash
(m,i)

(�,k) ,MProof(hash
(m,i)

(�,k) ,mTree�))

(If k > 1): statein := (state
(m)

(�,k′),MProof(H(state
(m)

(�,k′)), sTree�))

Min := {(msg
(j,m)

(�,k′),MProof(H(msg
(j,m)

(�,k′)),mTree�))}j∈[n]

5. Output cert := (ids, initData, rootstate, rootmsg, statein, Min, stateout,msgout).

The Punishment Protocol. Each party Pi (for i ∈ [n]) checks if cert �= ⊥. If this
is the case, Pi sends cert to J pp. Otherwise, Pi waits till time T to receive her
deposit back. Timeout T is set such that the parties have sufficient time to submit
a certificate after the execution of πpp and Blamepp. The judge J pp is described
in the following. The validation algorithms wrongMsg and wrongState and the
algorithm getIndex can be found in the full version of this paper. We stress that
the validation algorithms wrongMsg and wrongState don’t need to recompute a
whole protocol execution but only a single step. Therefore, J pp is very efficient
and can, for instance, be realized via a smart contract. To be more precise, the
judge is execution without any interaction and runs in computation complexity
linear in the protocol complexity. By allowing logarithmic interactions between
the judge and the parties, we can further reduce the computation complexity
to logarithmic in the protocol complexity. This can be achieved by applying the
efficiency improvement described in the full version of this paper.

Judge J pp

Initialization: The judge has access to public variables n, t, T and the set of parties
{Pi}i∈[n]. Further, it maintains a set cheaters initially set to ∅. Prior to the execution
of πpp, J pp has received d coins from each party Pi.

Proof verification: Wait until time T1 to receive ((�, k, m, i), initData,
〈
rootstate(�)

〉
m

,〈
rootmsg

(�)

〉
m

, statein, Min, stateout, (hash, σ)) and do:

1. If Pm ∈ cheaters, abort.
2. Parse initData to (

〈
initDatacore(�,m)

〉
m

, initDataaux(�,m)) and set state0 =

deriveInit(initDatacore(�,m), initData
aux
(�,m)). If Verify(

〈
initDatacore(�,m)

〉
m

) = false or
state0 = ⊥, abort. If state0 = bad, add Pm to cheaters and stop.

3. If Verify(
〈
rootstate(�)

〉
m

) = false or Verify(
〈
rootmsg

(�)

〉
m

) = false, abort.

4. If i = 0 and wrongState(state0, statein, stateout, Min, rootstate(�) , rootmsg
(�) , �, k, m) =

true, add Pm to cheaters.

Financially Backed Covert Security 119

5. If i > 0, MVerify(hash, getIndex(k, m, i), rootmsg
(�) , σ) = true and

wrongMsg(state0, statein, hash, Min, , rootstate(�) , rootmsg
(�) , �, m, k, i) = true, add

Pm to cheaters.

Timeout: At time T1, send d coins to each party Pi /∈ cheaters.

6.1 Security

Theorem 1. Let (πpp, ·, ·) be an n-party publicly verifiable covert protocol com-
puting function f with deterrence factor ε satisfying the view requirements stated
in Eq. (1a)–(1d). Further, let the signature scheme (Generate,Sign,Verify) be
existentially unforgeable under chosen-message attacks, the Merkle tree satisfies
the binding property and the hash function H be collision resistant. Then the
protocol πpp together with algorithm Blamepp, protocol Punishpp and judge J pp

satisfies financially backed covert security with deterrence factor ε according to
Definition 1.

We formally prove Theorem 1 in the full version of this paper.

7 Class 3: Input-Independent with Private Transcript

At the time of writing, there exists no PVC protocol without public transcript
that could be directly transformed into an FBC protocol. Moreover, it is not
clear, if it is possible to construct a PVC protocol without a public transcript.
Instead, we present a transformation from an input-independent PVC protocol
with public transcript into an FBC protocol without any form of common public
transcript. As in our first transformation, we start with an input-independent
PVC protocol πpvc

3 that is based on cut-and-choose where parties share a com-
mon public transcript. Due to the input-independence, all parties of the checked
instances can be opened. However, unlike our first transformation, which uti-
lizes the public transcript, we remove this feature from the PVC protocol as
part of the transformation. We denote the protocol that results by removing the
public transcript feature from πpvc

3 by π3. Without having a public transcript,
the punishment protocol becomes interactive and more complicated. Intuitively,
without a public transcript it is impossible to immediately decide if a message
that deviates from the emulation is maliciously generated or is invalid because
of a received invalid messages. Note that we still have a common public tree
of internal state hashes in our exposition. However, the necessity of this tree
can also be removed by applying the techniques presented here that allow us to
remove the common transcript.

In order to apply our construction to a protocol π3, we require almost the
same features of π3 as demanded in our first transformation (cf. Sect. 6). For
the sake of exposition, we outline the required features here again and point out
the differences. First, we require π3 to be based on the cut-and-choose approach
(cf. Sect. 4.1). Second, we require the actions of each party Pi in a semi-honest

120 S. Faust et al.

instance execution to be deterministically determined by a random seed (cf.
Sect. 4.2). Third, we require that all parties learn the initial states of all other
parties in the opened protocol instances (cf. Sect. 4.3). To this end, the parties
receive signed data (e.g., a commitment and decommitment value) to derive
the initial states of the other parties. Fourth, parties need to commit to their
intermediate internal states during the protocol executions in a publicly verifiable
way (cf. Sect. 5.1). Finally, all signed data match the encoded form specified in
Sect. 5.2.

In contrast to the transformation in Sect. 6 we no longer require from protocol
π3 that the parties send all messages or message hashes to all other parties.
Formally, whenever some party Ph in round k of protocol instance � transitions to
a state state

(h)
(�,k) with the outgoing messages {msg

(h,i)
(�,k)}i∈[n]\{h}, then it actually

sends the following to Pi:

(
〈
msg

(h,i)
(�,k)

〉
h
, hash

(h)
(�,k) := H(state(h)(�,k)))

Let O be the set of opened instances. We summarize the aforementioned
requirements by specifying the data that the view of any honest party Ph after
the execution of π3 includes. The view contains data to derive the initial state
of all parties which is signed by each party for each party and every opened
instance, i.e.,

{(
〈
initDatacore(i,�)

〉
j
, initDataaux(i,�))}�∈O,i∈[n],j∈[n], (2a)

a Merkle tree over the hashes of all intermediate internal states of a single
instance for all instances, i.e.,

{sTree�}�∈[t] := {MTree({hash(i)(�,k)}k∈[R],i∈[n])}�∈[t], (2b)

signatures from each party over the roots of the state trees, i.e.,

{〈
MRoot(sTree�)

〉
i
}i∈[n],�∈[t] (2c)

and the signed incoming message, i.e.,

M := {〈msg
(i,h)
(�,k)

〉
i
}�∈[t],k∈[R],i∈[n]\{h}. (2d)

The Blame Algorithm. At the end of protocol π3, all parties first execute an evi-
dence algorithm Evidence to generate partial certificates cert′. The partial certifi-
cate is a candidate to be used for the punishment protocol and is broadcasted to
all other parties as part of π3. In case the honest party detects cheating in several
occurrences, the party picks the occurrence with the smallest indices (�, k,m, i)
(in this sequence). The algorithm to generate partial certificates Evidence is for-
mally described as follows:

Financially Backed Covert Security 121

Algorithm Evidence

1. Ph runs state
(i)

(�,0) = deriveInit(initDatacore(i,�), initData
aux
(i,�)) for each i ∈ [n], � ∈ O.

Let B be the set of all tuples (�, 0, m, 0) such that state
(m)

(�,0) = bad. If B �= ∅,
goto step 4.

2. Ph emulates for each � ∈ O the protocol executions on input the initial
states from all parties to obtain the expected messages and the expected inter-
mediate states of all parties, i.e., ({m̃sg

(i,j)

(�,k)}k∈[R],i∈[n],j �=i, {state(i)(�,k)}k,i,j) :=

emulatefull({state(i)(�,0)}i∈[n]).

3. Let B be the set of all tuples (�, k, m, h) such that msg
(m,h)

(�,k) �= m̃sg
(m,h)

(�,k) or

H(state
(m)

(�,k)) �= hash
(m)

(�,k) – where msg
(m,h)

(�,k) and hash
(m)

(�,k) are taken from M or
sTree� respectively. In case of an invalid state, set h = 0.

4. Pick the tuple (�, k, m, i) from B with the smallest �, k, m, i in this sequence. If

k > 0 set msgout :=
〈
msg

(m,i)

(�,k)

〉
m

. Otherwise, set msgout := ⊥.

5. Output partial certificate (ids,msgout).

Since π3 does not contain a public transcript of messages, parties can only
validate their own incoming message instead of all messages as done in previ-
ous approaches. Hence, it can happen that different honest parties generate and
broadcast different partial certificates. Therefore, all parties validate the incom-
ing certificates, discard invalid ones and pick the partial certificate cert′ with the
smallest indices (�, k,m, i) (in this sequence) as their own. If no partial certificate
has been received or created, parties set cert′ := ⊥.

Finally, each honest party executes the blame algorithm Blamesp to create
the full certificate that is used for both, blaming a malicious party and defend-
ing against incorrect accusations. As in this scenario the punishment protocol
requires input of accused honest parties, the blame algorithm returns a certifi-
cate even if no malicious behavior has been detected, i.e., if cert′ = ⊥. The final
certificate is generated by appending following data from the view to the certifi-
cate: {(

〈
initDatacore(i,�)

〉
j
, initDataaux(i,�))}�∈O,i∈[n],j∈[n] (cf. Eq. 2a), {sTree�}�∈[t] (cf.

Eq. 2b), and {〈MRoot(sTree�)
〉

i
}i∈[n],�∈[t] (cf. Eq. 2c). All the appended data is

public and does not really need to be broadcasted. However, in order to match
the formal specification, all parties broadcast their whole certificate. If cert′ �= ⊥,
the honest party outputs in addition to the certificate corruptedm.

To ease the specification of the punishment protocol in which parties derive
further data from the certificates, we define an additional algorithm mesHistory
that uses the messages obtained during the emulation (m̃sg)2 to compute the
message history up to a specific round k′ (inclusively) of instance �. We structure
the message history in two layers. For each round k∗ < k′, parties create a Merkle
tree of all messages emulated in this round. These trees constitute the bottom
layer. On the top layer, parties create a Merkle tree over the roots of the bottom
layer trees. This enables parties to agree on all messages of one round making

2 Formally, parties need to re-execute the emulation, as we do not allow them to use
any data not included in the certificate.

122 S. Faust et al.

it easier to submit Merkle proofs for messages sent in this round. The message
history is composed of the following variables:

{mTreeroundk∗ }k∗∈[k′] := {MTree({H(m̃sg
(i,j)
(�,k∗))}i∈[n],j �=i)}k∗∈[k′]

mTreek′ := MTree({MRoot(mTreeroundk∗ }k∗∈[k′])
rootmsg

k′ := MRoot(mTree)

Additionally, if cert′ �= ⊥, parties compute the following:

(Always): initData := (
〈
initDatacore(�,m)

〉
m

, initDataaux(�,m))

rootstate :=
〈
MRoot(sTree�)

〉
m

(If k > 0): stateout := (hash(m)
(�,k),MProof(hash(m)

(�,k), sTree�))

(If k > 1): statein := (state(m)
(�,k′),MProof(H(state(m)

(�,k′)), sTree�))

({mTreeroundk∗ }k∗∈[k′],mTreek′ , rootmsg
k′) := mesHistory(k′, �)

σk′ := MProof(MRoot(mTreeroundk′),mTreek′))

Min := {(m̃sg
(j,m)
(�,k′),MProof(H(m̃sg

(j,m)
(�,k′)),mTreeroundk′))}j∈[n]

The Punishment Protocol. The main difficulty of constructing a punishment
protocol Punishsp for this scenario is that there is no publicly verifiable evidence
about messages like a common transcript used in the previous transformations.
Hence, incoming messages required for the computation of a particular protocol
step cannot be validated directly. Instead, the actions of all parties need to be
validated against the emulated actions based on the initial states. This leads
to the problem that deviations from the protocol can cause later messages of
other honest parties to deviate from the emulated ones as well. Therefore, it is
important that the judge disputes the earliest occurrence of misbehavior.

We divide the punishment protocol Punishsp into three phases. First, the
judge determines the earliest accusation of misbehavior. To this end, if cert �= ⊥
all parties start by sending tuple ids from cert to J sp and the judge selects the
tuple with the smallest indices (�, k,m, i). This mechanism ensures that either
the first malicious message or malicious state hash received by an honest party is
disputed or the adversary blames some party at an earlier point. To look ahead,
if the adversary blames an honest party at an earlier point, the punishment will
not be successful and the malicious blamer will be punished for submitting an
invalid accusation. If the adversary blames another malicious party, either one of
them will be punished. This mechanism ensures that if an honest party submits
an accusation, a malicious party will be punished, even if it is not the honest
party’s accusation that is disputed.

If there has not been any accusation submitted in the first phase, J sp reim-
burses all parties. Otherwise, J sp defines a blamer Pb, the party that has sub-
mitted the earliest accusation, and an accused party Pm. Pb either accuses mis-
behavior in the initial state, the first round, or in some later round. For the

Financially Backed Covert Security 123

former two, misbehavior can be proven in a straightforward way, similar to our
first construction. For the latter, Pb is supposed to submit a proof containing
the hash of a tree of the message history up to the disputed round k. Pm can
accept or decline the message history depending on whether the tree corresponds
to the one emulated by Pm or not. If the tree is accepted, the certificate can be
validated as in previous scenarios, with the only difference that incoming mes-
sages are validated with respect to the submitted message history tree instead
of the common public transcript. In case any party does not respond in time,
this party is considered maliciously and is financially punished.

If the message history is declined, the protocol transitions to the third phase.
Parties Pb and Pm together with J sp execute a bisection search in the message
history tree to find the first message they disagree on (cf. Sect. 5.3). By definition
they agree on all messages before the disputed one – we call these messages the
agreed sub-tree. At this step, J sp can validate the disputed message of the history
tree (not the one disputed in the beginning) the same way as done in previous
constructions with the only difference that incoming messages are validated with
respect to the agreed sub-tree.

The number of interactions is logarithmic while the computation complexity
of the judge is linear in the protocol complexity. We can further reduce the
computation complexity to be logarithmic in the protocol complexity while still
having logarithmic interactions using the efficiency improvements described in
the full version of this paper. The judge is defined as follows:

Protocol Punishsp

Phase 1: Determine earliest accusation
1. If cert �= ⊥, Ph sends ids := (�, k, m, i) taken from cert to J sp which stores

(�, k, m, i, h).
2. J sp waits till time T to receive message (�, k, m, i) from parties Pb for b ∈ [n]. If

no accusations have been received, J sp sends d coins to each party at time T .
Otherwise, J sp picks the smallest tuple (�, k, m, i, b) (ordered in this sequence),
sets k′ := k − 1 and continues with Phase 2.

Timeout: If its Pj ’s turn for j ∈ {b, m} and Pj does not respond with a valid
message, i.e., one that is not discarded, in time, Pj is considered malicious and J sp

terminates by sending d coins to all parties but Pj .

Phase 2: First evidence
3. If k < 2, Pb sends (initData, rootstate, stateout,

〈
msg

(m,i)

(�,k)

〉
m

) taken from cert to
J sp

(a) J sp parses initData to (
〈
initDatacore(�,m)

〉
m

, initDataaux(�,m)) and sets state0 =

deriveInit(initDatacore(�,m), initData
aux
(�,m)). If Verify(

〈
initDatacore(�,m)

〉
m

) = false or
state0 = ⊥, J sp discards. If state0 = bad, J sp terminates by sending d coins
to all parties but Pm.

(b) If Verify(
〈
rootstate(�)

〉
m

) = false, J sp discards.
(c) If i = 0 and wrongState(state0, ⊥, stateout, ∅, rootstate(�) , ⊥, �, k, m) = false, J sp

discards.
(d) If i > 0, Verify(

〈
msg

(m,i)

(�,k)

〉
m

) = false or

wrongMsg(state0, ⊥, H(msg
(m,i)

(�,k)), ∅, rootstate(�) , ⊥, �, m, k, i) = false, J sp

discards.

124 S. Faust et al.

(e) J sp terminates by sending d coins to all parties but Pm.

4. Otherwise, Pb sends (rootstate, statein, stateout,
〈
rootstate(�)

〉
m

, rootmsg, rootroundk′ ,
σk′ , Min,msgout) taken from cert to J sp.

(a) Pm executes mesHistory(k − 1, �). Let r̃oot
msg

be the root of the emulated
message history tree. If rootmsg �= r̃oot

msg
Pm sends r̃oot

msg
to J sp. Otherwise,

Pm sends (⊥).
(b) If r̃oot

msg
received by Pm does not equal ⊥, J sp jumps to phase 3.

(c) J sp checks that Verify(
〈
rootstate(�)

〉
m

) = true and

MVerify(rootroundk′ , k′, rootmsg, σk′) = true and discards otherwise.
(d) If i = 0 and wrongState(⊥, statein, stateout, Min, rootstate(�) , rootroundk′ , �, k,

m) = false, J sp discards.

(e) If i > 0, Verify(
〈
msg

(m,i)

(�,k)

〉
m

) = false or

wrongMsg(state0, statein, H(msg
(m,i)

(�,k)), Min, , rootstate(�) , rootroundk′ , �, m, k

, i) = false, J sp discards.
(f) J sp terminates by sending d coins to all parties but Pm.

Phase 3: Dispute the message tree

5. Parties Pb, Pm and J sp run bisection sub-protocol ΠBS on the top-level tree.
Pb’s input is the tree with root rootmsg; Pm’s the one with root r̃oot

msg
. J sp

announces public inputs rootmsg and width of rootmsg, width := k′. The output
is the first round they disagree on k2, the agreed hash rootroundk′

2
of leaf with index

k′
2 := k2 − 1 and the hash rootround(b,k2)

of leaf with index k2 as claimed by Pm.
6. Parties Pm, Pb and J sp run bisection sub-protocol ΠBS on the low-level tree.

Both, Pm and Pb take as input mTreeroundk2 from their certificate. J sp announces

public inputs rootround(b,k2)
and the width of the low level tree width′n × (n − 1).

The output is the index x of the first message they disagree on and the hash of
this message hashx as claimed by Pm. The index of the sender of the disputed
message is m2 := � x

n−1
� and the index of the receiver i2 = x mod (n − 1) if

m2 > (x mod (n − 1)) and i2 := (x mod (n − 1)) + 1 otherwise.
7. Party Pb define variables as follows – variables that are not explicitly defined

are set to ⊥.

(Always): initData2 := (
〈
initDatacore(�,m2)

〉
m

, initDataaux(�,m2))

rootstate :=
〈
MRoot(sTree�)

〉
m

(If k2 > 1): state2in := (state
(m2)

(�,k′
2)

,MProof(H(state
(m2)

(�,k′
2)

), sTree�))

M2
in := {(msg

(j,m2)

(�,k′
2)

,MProof(H(msg
(j,m2)

(�,k′
2)

),mTreeroundk′
2

))}j∈[n]

and sends (initData2,
〈
MRoot(sTree�)

〉
m

, state2in, M2
in) to J sp.

8. J sp parses initData2 to (
〈
initDatacore(�,m2)

〉
m

, initDataaux(�,m2)
) and sets state

(m2)
(0) :=

deriveInit(initDatacore(�,m2)
, initDataaux(�,m2)

). If Verify(
〈
rootstate(�)

〉
m

) = false,

Verify(
〈
initDatacore(�,m2)

〉
m

) = false or state
(m2)
(0) ∈ {⊥, bad}, J sp discards.

9. If wrongMsg(state
(m2)
(0) , state2in, hashx, M2

in, rootstate(�) , rootroundk′
2

, �, m2, k2, i2) =

false, J sp discards.
10. J sp terminates by sending d coins to all parties but Pm.

Financially Backed Covert Security 125

7.1 Security

Theorem 2. Let (πpvc
3 ,Blamepvc, Judgepvc) be an n-party publicly verifiable

covert protocol computing function f with deterrence factor ε satisfying the view
requirements stated in Eq. (2). Further, πpvc

3 generates a common public tran-
script of hashes that is only used for Blamepvc and Judgepvc. Let π3 be a protocol
that is equal to πpvc

3 but does not generate a common transcript and instead of
calling Blamepvc executes the blame procedure explained above (including execu-
tion of Evidence and Punishsp). Further, let the signature scheme (Generate,Sign,
Verify) be existentially unforgeable under chosen-message attacks, the Merkle tree
satisfies the binding property, the hash function H be collision resistant and the
bisection protocol ΠBS be correct. Then, the protocol π3, together with algorithm
Blamesp, protocol Punishsp and judge J sp satisfies financially backed covert secu-
rity with deterrence factor ε according to Definition 1.

We formally prove Theorem 2 in the full version of this paper.

8 Evaluation

In order to evaluate the practicability of our protocols, i.e., to show that the
judging party can be realized efficiently via a smart contract, we implemented
the judge of our third transformation (cf. Sect. 7) for the Ethereum blockchain
and measured the associated execution costs. We focus on the third setting, the
verification of protocols with a private transcript, since we expect this scenario to
be the most expensive one due to the interactive punishment procedure. Further,
we have extended the transformation such that the protocol does not require a
public transcript of state hashes.

Our implementation includes the efficiency features described in the full ver-
sion of this paper. In particular, we model the calculation of each round’s and
party’s computeRound function as an arithmetic circuit and compress disputed
calculations and messages using Merkle trees. The latter are divided into 32-byte
chunks which constitute the leave of the Merkle tree. The judge only needs to
validate either the computation of a single arithmetic gate or the correctness of a
single message chunk of a sent or received message together with the correspond-
ing Merkle tree proofs. The proofs are logarithmic in the size of the computation
resp. the size of a message. Messages are validated by defining a mapping from
each chunk to a gate in the corresponding computeRound function.

In order to avoid redundant deployment costs, we apply a pattern that allows
us to deploy the contract code just once and for all and create new independent
instances of our FBC protocol without deploying further code. When starting
a new protocol instance, parties register the instance at the existing contract
which occupies the storage for the variables required by the new instance, e.g.,
the set of involved parties. Further, we implement the judge to be agnostic to the
particular semi-honest protocol executed by the parties – recall that our FBC
protocol wraps around a semi-honest protocol that is subject to the cut-and-
choose technique. Every instance registered at the judge can involve a different

126 S. Faust et al.

Table 1. Costs for deployment, instance
registration and optimistic execution.

Protocol steps n Cost

Gas USD

Deployment 4 775 k 639.91

New instance 2 287 k 38.41

New instance 3 308 k 41.30

New instance 5 351 k 47.05

New instance 10 458 k 61.43

Honest execution 2 178 k 23.92

Honest execution 3 224 k 30.07

Honest execution 5 316 k 42.38

Honest execution 10 546 k 73.14

Gates: Number of gates in the circuit of
each computeRound function.
Chunks: Number of chunks in each
message.
R: Number of communication rounds.
n: Number of parties.

Table 2. Worst-case execution costs.

Gates Chunks R n Cost

Gas USD

10 10 10 3 1 780 k 238.58

1 000 10 10 3 2 412 k 323.25

1M 10 10 3 3 512 k 470.55

1B 10 10 3 4 782 k 640.75

1T 10 10 3 6 182 k 828.35

10 10 10 3 1 785 k 239.14

100 100 10 3 2 086 k 279.61

1 000 1 000 10 3 2 422 k 324.55

100 10 10 3 2 081 k 278.91

100 10 10 4 2 223 k 297.86

100 10 10 7 2 442 k 327.29

100 10 10 10 2 659 k 356.34

100 10 10 50 4 764 k 638.35

100 10 3 3 1 878 k 251.65

100 10 10 3 2 074 k 277.88

100 10 100 3 2 403 k 322.04

100 10 1 000 3 2 834 k 379.79

number of parties and define its own semi-honest protocol. This means that the
same judge contract can be used for whatever semi-honest protocol our FBC
protocol instance is based on, e.g., for both the generation of Beaver triples and
garbled circuits. Parties simply define for each involved party and each round
the computeRound function as a set of gates, aggregate all gates into a Merkle
tree and submit the tree’s root upon instance registration.

We perform all measurements on a local test environment. We setup the local
Ethereum blockchain with Ganache (core version 2.13.2) on the latest supported
hard fork, Muir Glacier. The contract is compiled to EVM byte code with solc
(version 0.8.1, optimized on 20 runs). As common, we measure the efficiency of
the smart contracts via its gas consumption – this metric directly translates to
execution costs. Further, we estimate USD costs based on the prices (gas to ETH
and ETH to USD) on Aug. 20, 2021 [Eth21,Coi21]. For comparison, a simple
Ether transfer costs 21,000 gas resp. 2,81 USD.

In Table 1, we display the costs of the deployment, the registration of a new
instance and the optimistic execution without any disputes. The costs of these
steps only depend on the number of parties. In Table 2, we display the worst-case
costs of a protocol execution for different protocol parameters, i.e., complexity of
the computeRound functions, message size, communication rounds and number of
parties. In order to determine the worst-case costs, we measured different dispute
patterns, e.g., disputing sent messages or disputing gates of the computeRound
functions, and picked the pattern with the highest costs. The execution costs,
both optimistic and worst case, incorporate all protocol steps, incl. the secure

Financially Backed Covert Security 127

funding of the instance. We exclude the derivation of the initial seeds as this
step strongly depends on the underlying PVC protocol.

In the optimistic case, the costs of executing our protocol are similar to
the ones of [ZDH19]. The authors report a gas consumption of 482 k gas while
our protocol consumes between 465 k and 1 M gas, depending on the number
of parties – recall that the protocol of [ZDH19] is restricted to the two-party
setting. This overhead in our protocol when considering more than two parties
is mainly introduced by the fact that [ZDH19] does assume a single deposit while
our implementation requires each party to perform a deposit.

Unfortunately, we cannot compare worst-case costs directly, as the protocol
of [ZDH19] validates the consistency of a fixed data structure, i.e., a garbled
circuit, while our implementation validates the correctness of the whole protocol
execution. In particular, [ZDH19] performs a bisection over the garbled circuit
while we perform two bisections, first over the message history and then over
the computation generating the outgoing messages; such a message might for
example be a garbled circuit. Further, [ZDH19] focuses on a boolean circuit,
while we model the computeRound function as an arithmetic circuit – as the EVM
always stores data in 32-byte words, it does not make sense to model the function
as a boolean circuit. Although not directly comparable, we believe the protocol
of [ZDH19] to be more efficient for the special case of a two-party garbling
protocol, as the protocol can exploit the fact that a dispute is restricted to a
single message, i.e., the garbled circuit, and the data structure of this message
is fixed such that the dispute resolution can be optimized to said data structure.

Our measurements indicate that the worst-case costs of each scenario are
always defined by a dispute pattern that does not dispute a message chunk but
a gate of the computeRound functions. This is why the message chunks have no
influence on the worst-case execution costs. Of course, this observation might
be violated if we set the number of chunks much higher than the number of
gates. However, it does not make sense to have more message chunks than gates
because each message chunk needs to be mapped to a gate of the computeRound
function defining the value of said chunk.

Both, the number of rounds and the number of parties increase the maximal
size of the disputed message history and, hence, the depth of the bisected history
tree. As the depth of the bisected tree grows logarithmic in the tree size, our
protocol is highly scalable in the number of parties and rounds.

Finally, we note that we understand our implementation as a research proto-
type showing the practicability of our protocol. We are confident that additional
engineering effort can further reduce the gas consumption of our contract.

Acknowledgments. The first, third, and fourth authors were supported by the Ger-
man Federal Ministry of Education and Research (BMBF) iBlockchain project (grant
nr. 16KIS0902), by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) SFB 1119 - 236615297 (CROSSING Project S7), by the BMBF and the
Hessian Ministry of Higher Education, Research, Science and the Arts within their
joint support of the National Research Center for Applied Cybersecurity ATHENE,
and by Robert Bosch GmbH, by the Economy of Things Project. The second author
was supported by the BIU Center for Research in Applied Cryptography and Cyber

128 S. Faust et al.

Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s
Office, and by ISF grant No. 1316/18.

References

[ADMM14] Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure
multiparty computations on bitcoin. In: IEEE SP (2014)

[AL07] Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient pro-
tocols for realistic adversaries. In: TCC (2007)

[AO12] Asharov, G., Orlandi, C.: Calling out cheaters: covert security with public
verifiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 681–698. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34961-4 41

[BK14] Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
421–439. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44381-1 24

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols (extended abstract). In: STOC (1990)

[Coi21] CoinMarketCap. Ethereum (ETH) price (2021). https://coinmarketcap.
com/currencies/ethereum/

[CRR11] Canetti, R., Riva, B., Rothblum, G.N.: Practical delegation of computation
using multiple servers. In: CCS (2011)

[DKL+13] Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical covertly secure MPC for dishonest majority – or: breaking the
SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40203-6 1

[DOS20] Damg̊ard, I., Orlandi, C., Simkin, M.: Black-box transformations from pas-
sive to covert security with public verifiability. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 647–676. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 23

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 38

[EFS20] Eckey, L., Faust, S., Schlosser, B.: OptiSwap: fast optimistic fair exchange.
In: ASIA CCS (2020)

[Eth21] Etherscan. Ethereum Average Gas Price Chart (2021). https://etherscan.
io/chart/gasprice

[FHKS21] Faust, S., Hazay, C., Kretzler, D., Schlosser, B.: Generic compiler for pub-
licly verifiable covert multi-party computation. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 782–811.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6 27

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game
or a completeness theorem for protocols with honest majority. In: STOC
(1987)

https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-662-44381-1_24
https://coinmarketcap.com/currencies/ethereum/
https://coinmarketcap.com/currencies/ethereum/
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-030-56880-1_23
https://doi.org/10.1007/978-3-642-32009-5_38
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://doi.org/10.1007/978-3-030-77886-6_27

Financially Backed Covert Security 129

[HKK+19] Hong, C., Katz, J., Kolesnikov, V., Lu, W., Wang, X.: Covert security
with public verifiability: faster, leaner, and simpler. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 97–121. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 4

[KB14] Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct com-
putations. In: CCS (2014)

[KGC+18] Kalodner, H.A., Goldfeder, S., Chen, X., Matthew Weinberg, S., Felten,
E.W.: Arbitrum: scalable, private smart contracts. In: USENIX Security
(2018)

[KM15] Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model
(almost) for free. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9453, pp. 210–235. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48800-3 9

[SSS21] Scholl, P., Simkin, M., Siniscalchi, L.: Multiparty computation with covert
security and public verifiability. IACR Cryptology ePrint Archive (2021)

[TR19] Teutsch, J., Reitwießner, C.: A scalable verification solution for
blockchains. CoRR, abs/1908.04756 (2019)

[W+14] Wood, G., et al.: Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper (2014)

[WRK17a] Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient
maliciously secure two-party computation. In: CCS (2017)

[WRK17b] Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty compu-
tation. In: CCS (2017)

[YWZ20] Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple
generation and authenticated garbling. In: CCS (2020)

[ZDH19] Zhu, R., Ding, C., Huang, Y.: Efficient publicly verifiable 2pc over a
blockchain with applications to financially-secure computations. In: CCS
(2019)

https://doi.org/10.1007/978-3-030-17659-4_4
https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-662-48800-3_9

	Financially Backed Covert Security
	1 Introduction
	1.1 Contribution
	1.2 Technical Overview

	2 Preliminaries
	3 Financially Backed Covert Security
	3.1 The Ledger and Judge
	3.2 Formal Definition
	3.3 Proving Security of Financially Backed Covert Security

	4 Features of PVC Protocols
	4.1 Cut-and-Choose
	4.2 Verification of Protocol Executions
	4.3 Deriving the Initial States
	4.4 Public Transcript

	5 Building Blocks
	5.1 Internal State Commitments
	5.2 Signature Encoding
	5.3 Bisection of Trees

	6 Class 1: Input-Independent with Public Transcript
	6.1 Security

	7 Class 3: Input-Independent with Private Transcript
	7.1 Security

	8 Evaluation
	References

