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Abstract. Authenticated Key Exchange (AKE) is a cryptographic pro-
tocol to share a common session key among multiple parties. Usually,
PKI-based AKE schemes are designed to guarantee secrecy of the ses-
sion key and mutual authentication. However, in practice, there are many
cases where mutual authentication is undesirable such as in anonymous
networks like Tor and Riffle, or difficult to achieve due to the certifi-
cate management at the user level such as the Internet. Goldberg et al.
formulated a model of anonymous one-sided AKE which guarantees the
anonymity of the client by allowing only the client to authenticate the
server, and proposed a concrete scheme. However, existing anonymous
one-sided AKE schemes are only known to be secure in the random
oracle model. In this paper, we propose generic constructions of anony-
mous one-sided AKE in the random oracle model and in the standard
model, respectively. Our constructions allow us to construct the first
post-quantum anonymous one-sided AKE scheme from isogenies in the
standard model.
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anonymity * post-quantum - isogenies

1 Introduction

Authenticated Key Exchange (AKE) is a cryptographic protocol to share a com-
mon session key among multiple parties through an unauthenticated channel
such as the Internet. In ordinary PKI-based AKE, each party locally keeps its
own static secret key (SSK) and issues a static public key (SPK) corresponding
to the SSK. The validity of the SPK is guaranteed by a certificate issued by
the certification authority. In a key exchange session, each party generates an
ephemeral secret key (ESK) and sends an ephemeral public key (EPK) corre-
sponding to the ESK to the other party. The session key is derived from these
keys and the key derivation function. Ordinary AKE is intended for session key
secrecy and mutual authentication, and provable security is formulated by secu-
rity models such as CK model [8] and eCK model [34].
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On the other hand, there are situations that the mutual authentication is
undesirable such as anonymous networks like Tor [14] and Riffle [33]. In addi-
tion, in HTTPS transactions, it is common for an unauthenticated client to
communicate with an authenticated server. In these cases, it is desirable for the
client to be anonymous, and the mutual authentication is not necessary. The
ordinary security models of AKE cannot cover such one-sided authentication
and anonymity.

Anonymous one-sided AKE (OS-AKE) is a cryptographic protocol which
guarantees the anonymity of the client with the one-sided authentication. In
OS-AKE, there are a client and a server, and only the server locally keeps a
SSK and publishes a certified SPK. In a key exchange session, both the client
and the server generate ESK and EPK to share a common session key. Since the
client does not have any static secret, OS-AKE is AKE without authentication
to the client. Also, in OS-AKE, it is required that the client and the server can
generate ESK/EPK in offline (i.e., before starting a session). Goldberg et al.
[24] formulated a security model for OS-AKE (GSU model). The GSU model
captures the anonymity of clients and exposure resilience for non-trivial leakage
patterns, and they proposed a concrete scheme satisfying their model.

One of main objectives of this paper is to construct post-quantum OS-
AKE because known OS-AKE schemes in the GSU model are not (fully) post-
quantum.

1.1 Related Work

One-Sided AKE. The notion of one-sided AKE has been studied in many
literatures. For example, to capture the security of SSL/TLS, various flavors
of security models [12,13,15,23,29,31,32,38] are introduced. In these models,
the application to the setting of anonymous networks is not considered and the
anonymity is not focused.

Anonymous AKE. The notion of anonymous AKE has been studied in con-
texts of the symmetric key (including password) setting [1,3,35,44] or the group
setting [10,42]. These models cannot be simply applied to (asymmetric key-based
client-server) one-sided AKE.

OS-AKE. There are three existing OS-AKE schemes secure in the GSU model
or its variant: ntor [24] by Goldberg et al., Ace [6] by Backes et al., and Hybri-
dOR [22] by Ghosh and Kate. These schemes are based on Diffie-Hellman (DH)
problems, and HybridOR is also based on lattices. There are three problems in
these schemes. First, these schemes are proved in the random oracle model. Ran-
dom oracles do not exist, and cannot always be instantiated by real hash func-
tions. Indeed, Canetti et al. [7] show that there are primitives which are secure
in the random oracle model but insecure if random oracles are instantiated by
real hash functions. Second, Ace and HybridOR are not proved to be secure in
the original GSU model. The security of these schemes is guaranteed under an
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weaker freshness setting [6] than the original one. Finally, though these schemes
use MAC for explicit authentication, implicit authentication is enough to satisfy
the GSU model. Thus, removing such a MAC can make OS-AKE schemes be
more simple and efficient. For more details of the security of existing schemes,
please see Sect. 4.

Isogeny-Based AKE. Recently, many post-quantum AKE schemes are pro-
posed from isogenies. Isogeny-based AKE schemes are classified into two set-
tings: SIDH-based [26] and CSIDH-based [9]. There are several SIDH-based AKE
schemes [19,21,36] from specific SIDH-related assumptions. Also, some generic
constructions [17,25,43] of AKE can be instantiated from SIDH-based KEM.
On the other hand, CSIDH-based AKE schemes [20,27,28] are also proposed.
However, there is no known isogeny-based OS-AKE scheme.

1.2 Owur Contribution

In this paper, we achieve the first post-quantum OS-AKE scheme without ran-
dom oracles. Specifically, we propose a generic construction (GC-Std) for OS-
AKE secure in the GSU model in the standard model from an IND-CCA secure
KEM and an IND-CPA secure KEM with public-key-independent-ciphertext
(PKIC-KEM) [45]. PKIC-KEM allows that a ciphertext can be generated inde-
pendently from the public key, and a KEM session key can be generated with
the ciphertext, the public key and randomness in generating the ciphertext. By
instantiating GC-Std with CSIDH-based KEM schemes, we can obtain CSIDH-
based anonymous OS-AKE in the standard model. Moreover, we also propose
a generic construction (GC-RO) for OS-AKE secure in the GSU model in the
random oracle model from an OW-CCA secure KEM and an OW-CPA secure
PKIC-KEM.

Compared with existing DH-based OS-AKE schemes [6,24], an instantiation
of GC-Std with DH-based KEM is secure in the standard model though existing
schemes are secure in the random oracle model. For the DH-based instantiations,
please see Sect. 6.

Also, the existing (partially) post-quantum OS-AKE scheme [22] is secure in
the weaker model than the GSU model, and its post-quantum security is guaran-
teed only in a partial adversarial scenario. On the other hand, an instantiation
of our generic constructions with isogeny-based KEM schemes guarantees the
security in the original GSU model and is fully post-quantum for any adversar-
ial scenario. For the isogeny-based instantiations, please see Sect. 7.

1.3 Key Technique

We start from the FSXY generic construction [18] of AKE (with the mutual
authentication) from KEM (see Fig. 3). Since a difference between AKE and OS-
AKE is static keys for clients, it seems that the FSXY construction removing
static keys for clients works as OS-AKE. However, there are several problems in
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such a strategy. The eCK security model [34] and CK+ security model [18,30]
for AKE allow leakage of the ESK of the target session, and the TPRF trick [18]
and the NAXOS trick [34] are known as techniques to guarantee security against
such leakage. However, since the client does not have the SSK in OS-AKE such
tricks cannot be used in the client side. Hence, we need another solution to prove
the security.

We focus on the definition of session freshness in the GSU model. Since the
secrecy of the session key is trivially broken if all secret values of the client
are revealed, the adversary cannot reveal at least a secret value of the client.
Thus, if there is only one ESK used at the client side, there is no need to
consider leakage at the client side. However, the FSXY construction uses two
types of KEMs, and two randomness are necessary as ESKs. Our solution is to
generate two types of randomness from an ESK with a pseudo-random function
(PRF), and generate the ciphertext of each KEM from these output values of
the PRF as randomness. Then, by erasing the two randomness used to generate
the ciphertexts after sending the ciphertexts, the client only keeps single ESK.
Therefore, the number of secret values used in our scheme is one on the client
side (ESK) and two on the server side (ESK, SSK), and thus we only need to
consider the case where (1) the SSK on the server side is revealed and (2) the
ESK on the server side is revealed.

There is another problem to be solved. In the GSU model, both the client
and the server need to be able to generate EPKs offline (i.e., before starting
a session). However, in the FSXY construction, the server cannot generate a
ciphertext of KEM in advance because it depends on the session-specifically
generated public key sent from the client. We solve this problem by using PKIC-
KEM. Since, in PKIC-KEM, the ciphertext can be generated independently from
the public key, the server can generate the ciphertext offline. Finally, for reducing
the computational cost of the client, we reverse procedures of the client and the
server to generate such a ciphertext (i.e., the client generates the ciphertext of
PKIC-KEM). For more details, please see Sect. 5.1.

2 Security Model for OS-AKE

In this section, we introduce the GSU security model [24] by Goldberg et al. Their
model consists of the definitions of OS-AKE security and OS-anonymity, which
cover the secrecy of session keys in one-sided authentication and the anonymity
of clients, respectively.

As the notation, x € X denotes that the element x is sampled uniformly
random from the set X.

2.1 System Model and Adversarial Capacity

Parties, Key Pairs, and Certificates. Parties are modeled as probabilis-
tic polynomial-time Turing machines. Each party is activated by receiving an
initialization message, and returns a message defined by the protocol.
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A key pair that each party keeps is denoted in the form (z, X), where z is the
secret value and X is the public value. The key pair includes, for example, the
private key and public key in public key cryptography, and the ciphertext and
the randomness used for encryption. There are two types of key pairs: ephemeral
key pairs that are used in a specific session and static key pairs that are used
through all sessions.

Each server owns a certificate certx = (I Dg, X) that combines a public value
X and a identifier I Dg as SPK, and uses it for the server authentication. When
a party owns the secret value x corresponding to the public value X, the party
is said to be the owner of the public value X.

Protocol and Sessions. Each execution of the protocol is called a session,
and each session has a session identifier sid assigned to the party, where each
sid must be unique within the party. Each session is associated with a session
state containing intermediate values, and the session state of sid by party Up is
denoted by M7, [sid]. If a session sid is executed within a party, the party is
called the owner of sid. Also, if the owner of a session completes the session by
computing the session key sk, the session is called a completed session.

Session Execution. When the session sid in which party Up is the owner is
completed, the ephemeral key pair (z, X) used in the session is deleted, and Up
outputs L or (sk,pid,v) as the output M2 ,[sid] of the session, where sk is the
session key in the keyspace SIC, pid is the peer’s identifier or anonymous symbol
“@”, Each vector v; in ¥ = (09,1, ...) is a vector of the public values of the
static and the ephemeral keys used in the session. For example, v is a set of
values consisting of the public values sent by party U;. By including the public
values used as part of the output, each session can be uniquely determined. If
necessary, we use the notation ML ,[sid].sk to denote the session key of session
sid. Other output values are denoted in the same way.

Adversary. Let params be a public parameter. The adversary A is modeled as a
probabilistic polynomial-time Turing machine, which takes params as input and
has oracle access to parties P, ..., P,. A controls all communication between
users including session activation. A can interfere in party Up to execute a
specific action using the following adversary’s queries.

— Send(params, pid) — (sid, msg): Let a party activate a session. The party
activates a new session and returns a message according to the protocol. The
input value params is defined by the protocol and includes the following. (1)
the protocol to be executed, (2) the certificate used by the party to authenti-
cate itself if the party is a server, (3) the certificate used by the peer pid in the
session. The pid is the identifier of the intended peer establishing the session.
When the session is intended to be with an unauthenticated anonymous peer,
the pid is a special symbol “®”.
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— Send(sid,msg) — msg’: The party executes the session sid with msg and
returns the message msg’ according to the protocol.

— RevealNext — X: A obtains a public value that is precomputed offline. The
party generates a new key pair (z, X), records it as unused, and returns the
public value X.

— Partner(X) — z: A obtains the secret value x corresponding to the public
value X used in the session. If the key pair (z, X) is recorded in the party’s
memory, it returns the secret value .

— SessionKeyReveal(sid) — sk: A obtains the session key of sid. It returns the

session key ML [sid].sk of sid if the session is completed.

In addition, A can generate public keys and certificates using the following
query.

— EstablishCertificate(ID;, X): A registers a certificate containing the public
value X of an unused identifier ID; to all parties. A becomes the owner
of the certificate as ID;. If a party is registered by this query, we call the
party dishonest, otherwise we call it honest.

Where necessary to avoid ambiguity, we use the superscript to indicate the
party to whom the query is posed, such as Send” (sid,msg).

Partnering. Unless a value X is the input of a Send query or the output of a
RevealNext query to party P;, and has not issued a Partner query to P;, then the
adversary A is called a partner of X. If a party generates a key pair (z, X) by a
query from A or by executing a session, we call the party a partner of X. Also,
If different public values X and X’ are corresponding to the same secret value
z, then if A is a partner of X, then A is also considered to be a partner of X'.

Correctness. If a two-party key exchange protocol II satisfies the following
conditions, IT is said to be correct.

— The adversary A relays all messages in the protocol running between the two
parties without any modification.

— If a party is activated with a Send query with pid # ®, it will have the correct
certificate for pid.

— Both parties output the same session key sk and the same vector .

The value pid in the output of each party matches the pid in the Send query

that was used to activate the party.

2.2 One-Sided AKE Security
For defining OS-AKE security, we need the notion of freshness.

Definition 1 (Freshness). If the following conditions are satisfied, the session
sid by party P; is said to be OS-AKFE fresh.
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1. For each vector v; in ML, there is at least one public value X in v; such
that A is not a partner, where j > 1.

2. A does not issue a SessionKeyReveal(sid) query to any party P;, where P;
is the owner of the certificate of M’ [sid].pid such that it is ML [sid].T =
M, [sid).5.

The goal of the adversary A in the OS-AKE security game is to distinguish
between the true session key and a random key. Initially, A is given a set of
honest parties, and makes any sequence of the queries described above. During
the experiment, A makes the following query.

— Test(i, sid*) — SK: Here, sid* must be OS-AKE fresh. If M, [sid*].sk =L
or M(f?jt [sid*].pid = ®, an error symbol is returned. Otherwise, it chooses
b er {0,1}. If b = 0, then it returns M~ [sid*].sk. Otherwise, it returns a
random element of SXC. This query can be issued only once.
Since OS-AKE provides the one-sided authentication, the test session sid* is
only for the session of client-side that performs the authentication to the server.
The adversary A obtains either the session key of sid* or a random key with
probability 1/2 respectively. After issuing the Test query, the game continues
until A outputs b’ as a result of guessing whether the received key is random
or not. If sid* is OS-AKE fresh by the end and the guess of A is correct (i.e.,
b=1"0"), then it defines A wins the game.

Definition 2 (One-sided AKE security). The advantage of the adversary A
in the above game with the OS-AKE protocol IT is defined as follows.

Adv§ST B (A) = Prb =] — 1/2

Let k be a security parameter. For all probabilistic polynomial-time adver-
saries A, IT is one-sided AKE-secure if Advgi_AKE is negligible in k.

Remark 1. Due to the RevealNext query, this model requires offline generation of
ephemeral keys. Hence, the secret values may be stored in different locations for
each generation. For example, a static key is stored in the database, an ephemeral
key used for offline generation is stored in the storage, and another ephemeral
key used for online generation is stored in the cache. In order to cover such a case,
the leakage of each secret value is considered in OS-AKE fresh (Definition 1).

Remark 2. As described in the second condition of the Definition 1, the tar-
get session to be tested is the session in which sid matches between the two
parties and the server’s SSK can be revealed. Thus, the model captures weak
forward secrecy which the adversary who does not modify the messages in the
target session cannot break the security even if SSK is revealed. It also captures
the adversarial arbitrary key registrant because of the EstablishCertificate query,
which allow the adversary to establish a new party with registering an arbitrary
certified keys. Furthermore, it also captures the known-key security because of
the SessionKeyReveal query, which no information about the session key of the
target session is revealed if other session keys are revealed.
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2.3 One-Sided Anonymity

The goal of the adversary A in the OS-anonymity game is to distinguish which
of the two clients is participating in the session. Here, instead of A querying
directly to the target party, the challenger C relays its communication. A gives
the indices ip and i; of the parties it is the target to identify to C. C chooses
i* €g {io, i1} randomly and relays the message between A and P;-. A guesses i*.

In the game, in addition to the normal queries, A can issue the following
special queries to C. The first two queries are for the activation and the commu-
nication of the target session.

- Startc(io,il,params,pid) — msg’: If i9 = 47, an error symbol is returned.
Otherwise, it sets i* €p {io, 1}, and it poses Send” (params, pid) — (sid*,
msg’). Then it returns msg’. This query can be issued only once.

— Send®(msg) — msg’: It poses Send”* (sid*, msg) — msg’ and returns msg’.

The other queries that A can query to C are to leak information about the
target session sid*.

~ RevealNext® — X: It queries RevealNext”* and returns the public value,
under restriction that the returned public value is not used in any session other
than the target session, and the public value generated by the adversary’s
direct queries to RevealNext™** is not used in the target session.

— SessionKeyReveal®() — sk: It poses SessionKeyReveal™ " (sid*) and returns the
session key sk.

~ Partner® — : It poses Partner™ (X) and returns the secret value z, where
X is the value returned by the Send® query.

Definition 3 (One-sided anonymity). Let k be a security parameter and n >
1. For all probabilistic polynomial-time adversaries A, the protocol IT is one-sided
anonymous if the advantage Adv9°~""(A) = Pr[i* = i'| — 1/2 of A wins the
following game is negligible in k. ’

B A)

e Initialize params and parties Pi,..., P,.

e Sets i « APvPuC(params).

e Suppose that A poses a Startc(io,il,params,pid) query and the chal-
lenger C chooses i*. If i* = i’ and the query of A satisfies the following
restrictions, then A wins the game.

* There is no SessionKeyReveal(sid*) query to P;, nor P;,.

* There is no Partner(X) query to P;, nor P;, for any public value X
returned by C.

* There is no Send(sid*,-) query to P;, nor P;,.

* Both P;, and P;; had the same certificate for pid during the run of
the protocol for sid*.
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The restrictions in Definition 3 are to prevent A from knowing P;« trivially
by obtaining information about the target session. For example, if i* = i,
then the SessionKeyReveaIPiD (sid*) query returns the true session key, and the
SessionKeyReveaIP"'1 (sid*) query returns | because P;, is not participating in
sid*. Therefore, A can determine i* = i trivially. Thus, the main restrictions in
the OS-anonymity game are that queries for P;, and F;, must be posed through
the challenger C, and the public values used in the target session must not be
used in any other session.

3 Building Blocks

3.1 Key Encapsulation Mechanism (KEM)
In this section, we shows the definition for KEM.

Definition 4 (KEM). KEM consist of algorithms (KeyGen, EnCap, DeCap) as
follows.

— (ek,dk) <+ KeyGen(1%;r,): The key generation algorithm takes 1% and ry €
RSq as input and outputs a key pair of public and private key (ek, dk), where
K is a security parameter and RSqg is the randomness space of the key gen-
eration algorithm.

- (K,C) <« EnCap(ek;r.): The encapsulation algorithm takes the public key
ek and ro € RSE as input and outputs the session key K € KS and the
ciphertext C € CS, where RS is the randomness space of the encapsulation
algorithm, KS is the session key space, and CS is the ciphertext space.

- K « DeCap(dk,C): The decapsulation algorithm takes the secret key dk and
the ciphertext C' € CS as input and outputs the session key K € KS.

Here, for any x € N, any public and private key (ek,dk) «— KeyGen(1%;7y),
and any session key and ciphertext (K,C) < EnCap(ek;r.), it is satisfied that
K «— DeCap(dk, C).

The definition of security for KEM is as follows.

Definition 5 (IND-CCA security for KEM). For any probabilistic poly-
nomial time adversary A = (Ai, Az), the KEM scheme is IND-CCA secure
if the advantage Adv}?gﬁf: = |Pr[(ek,dk) «— KeyGen(1%;ry);state «—
AQ(ek);b —r {0,1}; (K§, Cj) « EnCap(ek;ro); Ki er KS;b <
AL (ek, (Kj, Cy), state);b = b]—1/2] is negligible in r, where O is the decryption
oracle.

Definition 6 (OW-CCA security for KEM). For any probabilistic polyno-
mial time adversary A = (A1, As), the KEM scheme is OW-CCA secure if the
advantage Advilpyfn = | Pr((ek,dk) < KeyGen(1%;1y); state « AP (ek); (K*,
C*) — EnCap(ek;r.); K'* — AS(ek,C*, state); K'* = K*|| is negligible in k,
where O is the decryption oracle.
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A KEM scheme is a k-min-entropy KEM if for any secret key, the distribution
Dxs for K defined by (K, C) « EnCap(ek;re), the distribution D, for public
information, and a randomness 7. € R, it holds that He(Dis|Dpuws) > k.
Here, H,, denotes the min-entropy function.

3.2 PKIC-KEM

In this section, we show the definition of PKIC-KEM [45] that can generate the
ciphertext independently to the public key.

Definition 7 (PKIC-KEM). PKIC-KEM  consist ~ of  algorithms
(wKeyGen, wEnCapC, wEnCapK, wDeCap) as follows.

- (ek,dk) — wKeyGen(1%;r,): The key generation algorithm takes 1% and
rq € RSq as input and outputs a key pair of public and private key (ek, dk),
where k is a security parameter and RSq s the randomness space of the key
generation algorithm.

— C «— wEnCapC(r.): The ciphertext generation algorithm takes r. € RSg as
input and outputs a ciphertext C € CS, where RS is the randomness space
of the encapsulation algorithm and CS is the ciphertext space.

- K «— wEnCapK(ek,C,r.): The encapsulation algorithm takes the public key
ek, the ciphertext C € CS and a randomness r. € RSg as input, and outputs
the session key K € KS, where KS is the session key space.

— K « DeCap(dk,C): The decapsulation algorithm takes the secret key dk and
the ciphertext C' € CS as input and outputs the session key K € KS.

For any x € N, any public and private key (ek, dk) — wKeyGen(1%;7,), and
any ciphertext C' «— wEnCapC(r,), it is satisfied that K «— wEnCapK(ek, C,r.)
and K < wDeCap(dk, C).

The definition of security for PKIC-KEM is as follows.

Definition 8 (IND-CPA security for PKIC-KEM). For any probabilistic
polynomial time adversary A = (A1, A2), the PKIC-KEM scheme is IND-CPA
secure if the advantage Adviy . = | Pri(ek,dk) «— wKeyGen(1%;r,);
state «— Ay(ek);b —g {0,1};C; — wEnCapC(r.): Ki «— wEnCapK(ek, Cf,7e);
Ki €r KS;0 — Ag(ek, (K, CF), state); b = b] — 1/2| is negligible in k.

Definition 9 (OW-CPA security for PKIC-KEM). For any probabilistic
polynomial time adversary A = (A1, As), the PKIC-KEM scheme is OW-CPA

ow—cpa

secure if the advantage Advpy & kpy . = |Prl(ek,dk) « wKeyGen(1%;7);

state — Aj(ek); C* — wEnCapC(r); K* «— wEnCapK(ek, C*,r.); K'* — As(ek,
C*, state); K * = K*]| is negligible in k.

Also, the k-min-entropy of PKIC-KEM can be defined in the same way as
KEM.
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Public parameter : H,g,G
Static secret key for Us : SSKs :=b, SPKs := gb
Party Uc (Client) Party Us (Server)
xr] X2
r1,x2 < r G % y<+<rG
y
(g—
SK «— H((g")™ - (¢¥)", 9", 9", SK «H((g")" - (¢")Y, 9", 9",
9%,9"; Ace) 9%,9", Ace)

Fig. 1. Overview of Ace

Public parameter : Hi,Hs, g, p,t, X
Static secret key for Ugs : SSKs :=s,SPKs :=a,g°®

Party Uc (Client) Party Us (Server)
(rc,ec) <—r X; x <R Zy;
pcmgz !
pc < arc +tec ——— (rs,es,eg) < r X

ps < ars + tes
kic < psrc + tec kis < pcrs + tels; o hR(kls);
ki = fR(kic, a); k2 = (g°)" ki = ff(kis,0); ka = (g%)%
SK + Hl(k17p07p5) S HQ(k2agzags) SK + Hl(kl,pc,ps) @ HQ(k27gw7g5)

p57a

Fig. 2. Overview of HybridOR

3.3 Pseudo-Random Function

We show the definition of Pseudo-Random Function (PRF). Let x be a security
parameter and F = {F, : Dom, x FS, — Rng.}. be a function family with
a family of domains {Dom,},, a family of key spaces {FS,}, and a family of
ranges { Rngy -

Definition 10 (Pseudo-Random Function). We say that function family
F = {F.}« is a PRF family if for any probabilistic polynomial time distinguisher
D, AdvPEF = | Pr[l — DF«C:R)] — Pr[1 — DRF<0)]| < negl, where RF,, : Dom,
— Rng, is a truly random function.

3.4 Key-Derivation Function

Let x be a security parameter and KDF : Salt x Dom — Rng be a function
with finite domain Dom, finite range Rng, and a space of non-secret random
salt Salt.

Definition 11 (Key-Derivation Function). We say that function KDF is a
KDF if the following condition holds for a security parameter k. For any proba-
bilistic polynomial time adversary A and any distribution Dpem over Dom with
Hoo(DPpom) > K, |Prly €r Rng,s €g Salt;1 — A(s,y)] — Prlx €g Dom;s €g
Salt;y «— KDF(s,x); 1 « A(s,y)]| < negl.
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4 Security of Ace and HybridOR in GSU Model

In this section, we revisit the security of existing OS-AKE schemes. While
ntor [24] is proved in the GSU model, other two schemes Ace [6] and Hybri-
dOR [22] are proved in an weaker model. Specifically, the security of Ace and
HybridOR are proved under an weaker freshness setting [6] than the original one.
The weak freshness is called the double value freshness, and it requires that if
the client and the server has two secret values (I1, I3) and (Ji, J2) respectively,
then the adversary cannot reveal (I, J2) or (I2,J1). In the OS-AKE freshness
in the GSU model, the adversary is allowed to reveal such secret values. Hence,
the model that Ace and HybridOR are proved is weaker than the GSU model.
Here, we show the definition of the double value freshness.

Definition 12 (Double value freshness [6]). We say that a session is double
value OS-AKE fresh if it is OS-AKE fresh and the following condition does not
hold.

If 0 is (I, I2) and vj is (Ji, J2), A is not a partner of (I, J2) nor (I, J1).

We show that Ace is not secure in the GSU model. An overview of Ace is
shown in Fig. 1, where G is the exponent group and H is a random oracle. It uses
two ESKs z1 and x5 on the client side, and a SSK b and an ESK y on the server
side. By the OS-AKE freshness definition of the GSU model, the adversary can
reveal (z2,b) or (z1,y). For example, If (z2,0) is revealed, the adversary can
compute the session key as follows.

1. Obtain (z2,b) by Partner queries.
2. Obtain the EPKs (¢**, g*2, g¥) from the communication channel.
3. Compute the session key SK « H((g"*)"- (g¥)*2, g, g%, g, g°, Ace).

Next, we show that HybridOR is not secure in the GSU model. An overview
of HybridOR is shown in Fig.2, where ff(:) is a robust extractor, hf{() is a
randomized algorithm used to generate the signal value «, X is the error dis-
tribution of the ring-LWE problem, and H; and Hy are random oracles. It uses
two ESKs (r¢,ec) and x on the client side, and a SSK s and an ESK (eg, €%)
on the server side. By the OS-AKE freshness definition of the GSU model, the
adversary can reveal ((rc,ec),s) or (z, (rs,eg)). For example, If ((r¢, ec), s) is
revealed, the adversary can compute the session key as follows.

1. Obtain ((r¢,ec),s) by Partner queries..
2. Obtain the EPKs (¢*, pc, ps, ) from the communication channel.
3. Compute the session key as follows.

(a) k1c — psrc +lec

( ) fR(klca )

(c) k2 =(g")°

(d) SK — Hi(k1,pc,ps) © Ha(k2, g%, g°)

Therefore, Ace and HybridOR are insecure in the GSU model.

Remark 3. By applying our technique of using a single randomness to produce
two randomness via PRFs to these schemes, we can obtain secure schemes in
the GSU model.
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Public parameter params : F,F’,PRF,KDF, s
Static secret key for Us : SSKg := (dks,05 € FS,04 € {0,1}"),SPKgs := ekg
Party Uc (Client) Party Ug (Server)

rc €r RS;rrc €ERr RS’
(Cc, Kc) < EnCap(eks;rc)

Cc,ek
(ekr, dkr) «— wKeyGen(1%; rpc) —S2 T

rs €r {0,1}%;ry €g FS
rsT < F(os,rs) @ F/ (1, 0%)
Cr

— (CT,KT) <—wEnCap(ekT;rST)
K7 + wbDeCap(Cr, dkr) K¢ <+ DeCap(dks,Cc)
K, + KDF(s, Kc); Ko, < KDF(s, K7) K, + KDF(s, K¢); Ky + KDF(s, K7)
sid := (IDg, (Cc,ekr),Cr) sid := (IDg, (Cc, ekr),Cr)
SK = PRF(sid, K,) ® PRF(sid, K..) SK = PRF(sid, K,) ® PRF(sid, K)
M., [sid] M5, [sid]
= (SK,IDs,(Cc,ekr), (Cr,eks)) = (SK,®, (Cc,ekr), (Cr,eks))

Fig. 3. FSXY-based OS-AKE scheme

5 Our Generic Constructions

In this section, we propose two generic constructions of OS-AKE from KEM
in the standard model (GC-Std) and the random oracle model (GC-RO). GC-
Std is based on IND-CCA secure KEM and IND-CPA secure PKIC-KEM, and
GC-RO is based on OW-CCA secure KEM and OW-CPA secure PKIC-KEM.
Our constructions are secure in the GSU model. The protocols of GC-Std and
GC-RO are shown in Fig. 4 and 5, respectively.

5.1 Construction Idea

As discussed in Sect.1.3, our generic construction are based on the FSXY
construction [18] which is CK+ secure AKE scheme. Since a client does not
have any static keys in OS-AKE, we show a naive FSXY-based OS-AKE pro-
tocol in Fig.3 by simply removing static keys and related computations of
the client, where (KeyGen, EnCap, DeCap) is an IND-CCA secure KEM and
(wKeyGen, wEnCap,wDeCap) is an IND-CPA secure KEM. The CK+ secu-
rity model allows leakage of the ephemeral key of the test session, and the
TPRF trick is used to guarantee security against such a leakage such that
rsr < F(rs,o5)®F (0%, %). Naturally, OS-AKE provides the one-sided authen-
tication and clients that need to guarantee anonymity cannot have the static key
pairs, and thus the TPRF trick is not available on the client side. Furthermore,
though all ESKs (r¢, rre) are revealed at once by a query to the client in the
CK+ model and the freshness definition prohibits leakage of ESKs if there is
no SSK, the Partner query in the GSU model reveals the secret value x for the
public value X and the OS-AKE freshness definition allows leakage of one of
ESKs. For example, the session key can be computed if the adversary reveals an
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ESK rr¢ of the client and the SSK dkg of the server (such a leakage is allowed
in the GSU model) because the adversary can compute dk7 from rpe and then
can decrypt both Cc and Cp. Therefore, it is not trivial to construct OS-AKE
secure scheme from the FSXY construction.

Also, in the GSU model, for RevealNext queries, the ephemeral keys used by
both parties in each session must be able to be generated offline in advance. On
the other hand, in the FSXY-based construction, the server needs to generate the
EPK after receiving the client’s message, and thus the IND-CPA secure KEM is
not sufficient for OS-AKE.

For the problem on leakage in the client side, we propose a technique such
that two types of randomness are generated from a single ESK. According to
the definition of OS-AKE freshness, if there is only one ESK used at the client
side, there is no need to consider leakage at the client side. However, the FSXY-
based construction requires the generation of a ciphertext of a session-specific
public key of IND-CCA KEM and IND-CPA KEM at the client side, thus two
types of randomness are required. We generate two types of randomness from
a single ESK through a PRF, and generate the ciphertext of each KEM from
these randomness. Concretely, we construct the PRF F to obtain two outputs
from one randomness by using a PRF F’ and two PRFs Fé), F'1 having each range
is each randomness space of KEMs. Then, two randomness (rg||r1) < F(IDg, )
is computed as (ro||r1) = (Fy(IDs, F'(0,7))||Fi(IDg, F'(1,7))). In this way, two
types of randomness are generated from one randomness. Here, if only F’ is used
in this technique, the OS-AKE security cannot be reduced to the CCA security or
the CPA security. For example, in a game of the reduction to the CCA security,
rll* is masked first, but the simulator needs to simultaneously input the correct
value of 7, into F’ to generate r(,. This case cannot be simulated correctly because
the simulator does not have rg. Therefore, the output of F’ is passed through F{,
and F} to be enabled for these reductions. We prove that our constructions are
still secure under such a randomness generation in Sect. 5.2. Then, by erasing the
two randomness used to generate the ciphertext and the session-specific public
key after sending client’s message, the target of the Partner query can be one
ESK that was generated first. Therefore, the number of secret values can be one
on the client side (ESK) and two on the server side (ESK, SSK).

Next, for the problem on the offline generation of EPKs, we use an IND-CPA
secure PKIC-KEM instead of IND-CPA secure KEM. Since the PKIC-KEM can
generate ciphertexts independently of the public key, it is possible to generate
the EPK for each session before starting the session. Specifically, the server can
generate Cr before starting session by using wEnCapC algorithm of PKIC-KEM.

Finally, we reverse procedures of the client and the server to generate the
public key ekp and the ciphertext Cpr of PKIC-KEM. If the client generates
ekr and the server generates Cr as the FSXY construction, the client must
compute wKeyGen again before decrypting C' because the client must erase
dkr after sending client’s message. Since the computational cost for the client is
increased by wKeyGen, and it is not efficient, we reverse the procedures. If the
client generates Cr and the server generates ek, then the client does not need
to compute wKeyGen again.
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Public parameter params : F/, F6, F'17 PRF, KDF, s
Static secret key for Us : SSKg := dks, SPKys := ekg,certerg = (IDs, eks)

Party Uc (Client) Party Ug (Server)
verify ekg using certeyg

rc €Er FS
ry < F'(0,7¢))

1+ F'(1,7¢))
T < FO(IDs, 6)
7]y F’ (IDs, /1)
(C1, K1) + Encap(eks,’rl) rs €ER 'RSCGpa
Co < wEnCapC(ro) (ekr,dkr) < wKeyGen(rg)
erase (r(,r},70,71) erase rg
Co,C1,IDg
ekr
o < F'(0,7¢))
ro F/0(1D57T6) K1 — DeCap(dks,Cl)
Ko + wEnCapK(ekT, Co; o) Ko < wDeCap(dkr, Cop)
K, « KDF(s, K1); K < KDF(s, Ko) K « KDF(s, K1); K, < KDF(s, Ko)
sid := (IDS7C'0,C1,ekT) sid := (IDg,Co, C1, ekr)
SK = PRF(sid, K} ) & PRF(sid, K,) SK = PRF(sid, K ) ® PRF(sid, K,)
erase (r¢,T(,T0) erase dkr
Moc;t[Sid] Mégut [sid]
= (SK,IDg, (Co,C1), (ekr,cks)) = (SK,®, (Co,C1), (ekr,eks))

Fig. 4. Generic construction in the standard model (GC-Std)

In the proof of the proposed construction, by the definition of freshness, the
ESK on the client side is not revealed, and thus we need to consider the case
where (1) the SSK on the server side is revealed and (2) the ESK on the server
side is revealed. In (1), since the ESK at the server side is not compromised,
the adversary cannot compute Ky which is the session key of the IND-CPA
secure PKIC-KEM. Similarly, in (2), since the SSK at the server side is not
compromised, the adversary cannot compute K7 which is the session key of the
IND-CCA secure KEM. Thus, the proposed construction satisfies the OS-AKE
security. Moreover, since the ESK used by the client side in each session is only
one randomness independent to the client’s ID, no information about the client
can be obtained from the ciphertext. Hence, the proposed construction satisfies
the OS-anonymity.

5.2 OS-AKE in Standard Model

The protocol in the standard model consists of an IND-CCA secure KEM (KeyGen,
EnCap, DeCap) and an IND-CPA secure PKIC-KEM (wKeyGen,wEnCapC,
wEnCapK, wDeCap) as follows.
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Protocol

Public Parameters: Let r be a security parameter, F : {0,1}F x FS§ — FS,
Fo : {0,1}° x FS§ — RSP, F, : {0,1}" x FS — RS%, and PRF : {0,1}* x
FS — {0,1}" be pseudo-random functions. Also, let KDF : Salt x KS — FS
be a key derivation function and it chooses s €g Salt, where RSE” and RSZ*
are randomness spaces of the encapsulation algorithm and the key generation
algorithm of IND-CPA secure PKIC-KEM, RS%® and RSE® are randomness
spaces of the encapsulation algorithm and the key generation algorithm of IND-
CCA secure KEM, FS is a key space of the pseudo-random functions (|FS| = k),
KCS is a session key space of KEM, and Salt is a salt space of the key derivation
functions. These are provided as part of the public parameters.

Secret and Public Keys: Party Ug selects a randomness r € RSE“, computes
(ekg,dks) «— KeyGen(1%;r) and sets certery = (IDg,eks) as a certificate for
Us. The static key pair for party Us is (eks, dkg).

Key Exchange: Let Ug which has a static key pair (ekg,dkgs) be a server, and
Uc be a client. When Ug is initialized as a client, it obtains the certificate
certers = (IDg, ekg) of Us.

1. U verifies the server using certer, = (IDg,eks). Uc chooses an unused
ephemeral key pair ((Cy,C1),rc) or chooses a ephemeral secret key ro €g
FS and sets r, «— F'(0,7¢)), r1 <« F(1,7¢)), ro «— FL(IDg,1}), and
r1 <« F{(IDg,r}). Also, U computes (C1,K;) « EnCap(ekg;r1), Co «—
wEnCapC(rg), and erases (rg,71). Then, Uc sends (Cy, C1,1Dg) to Us.

2. Upon receiving (Cy,C1,IDg), Us chooses an unused ephemeral key pair
(ekr, dkr) or chooses a randomness rg €g RSE* and computes (ekr, dkr) —
wKeyGen(rg) to generate a key pair, and sends ekr to Ug. Also, Ug com-
putes K; «— DeCap(dkg, Cy), Ko — wDeCap(dky,Cy), K, — KDF(s, K1),
and Ké — KDF(s, Ky). Usg sets sid = (IDg,Cyp,C1,ekr) and computes the
session key SK = PRF(sid, K;) ® PRF(sid, K;). Then, Ug erases (rg, dkr)
and outputs (SK,®, (Co, C1), (ekr, eks)).

3. Upon receiving ekr, Uc sets r, — F'(0,7¢)), ro — Fy(IDg,r(), computes
Ko «— wEnCapK(ekr,Co,m), K; — KDF(s, K1), and K, «— KDF(s, Kp).
Uec sets sid = (IDg,Cy,Cq,ekr) and computes the session key SK =
PRF(sid, K;) ® PRF(sid, K;). Then, Ug erases (rc,r,r1) and outputs (SK,
I.DS, (Co, Cl), (ekT, eks)).

Remark 4. Existing OS-AKE schemes contain the explicit authentication of the
server with the key confirmation by MAC. As discussed in Sect. 1.1, the implicit
authentication is sufficient to satisfy the security in the GSU model. It is trivial
to be able to add the explicit authentication to our construction by the same
key confirmation step.
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Security. We show the security of the proposed scheme in the standard model.
An intuition of the proof is shown in Sect.5.1.

Theorem 1. If (KeyGen, EnCap, DeCap) is an IND CCA secure and k-min-
entropy KEM, (wKeyGen, wEnCapC, wEnCapK, wDeCap) is an IND-CPA and k-
min-entropy PKIC-KEM, F', Fj), F}, and PRF are pseudo-random functions, and
KDF is a key derivation function, GC-Std is OS-AKFE secure.

Proof. Suc denotes the event that A wins. We consider the following events that
cover all cases of the behavior of A.

-F1: The ESK dk7. of the server is revealed.
-E5: The SSK dk§ of the server is revealed.

Let  be a security parameter. In the OS-AKE security game, sid* is a ses-
sion ID of the target session, and the maximum number of parties is n and
the maximum £ sessions are activated. Let the adversary A be a probabilis-
tic polynomial-time adversary in k, and construct the IND-CCA or IND-CPA
adversary S and a distinguisher D from A that performs the OS-AKE game.

To finish the proof, we investigate events E; A Suc (i = 1,2) that cover
all cases of event Suc. Due to the page limitation, we give the proof of event
E; A Suc, and the proof of the other event is given in the full version.

Event E1 N\ Suc: We change the interface of oracle queries and the computa-
tion of the session key. These instances are gradually changed over eight hybrid
experiments, depending on specific subcases. In the last hybrid experiment, the
session key in the test session does not contain information of the bit . Thus, the
adversary clearly only outputs a random guess. We denote these hybrid experi-
ments by Hy, ..., H7, and the advantage of the adversary A when participating
in experiment H; by Adv(A, H;).

Hybrid Experiment Hg: This experiment denotes the real experiment for OS-
AKE security and in this experiment the environment for A is as defined in the
protocol. Thus, Adv(A, Hop) is the same as the advantage of the real experiment.

Hybrid Experiment H;: This experiment aborts when a session ID is matched
with multiple sessions.

By the randomness of KEM, the probability of outputting the same cipher-
text from different randomness in each session is negligible. Thus, |Adv(A,
H;) — Adv(A,Hyp)| < negl.

Hybrid Experiment Hj: This experiment chooses a party Ug and a party Ug,
an integer i* € [1,£] in advance, and fixes parties and the session for the Test
query. If A queries a session other than the i*-th of client U}, (partner is Ug) in
Test query, it aborts the experiment.

The probability that the guess of the test session is correct is 1/n%¢, thus
Adv(A,Hg) > 1/n?0 - Adv(A, Hy).
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Hybrid Experiment Hgz: This experiment changes the way of the computation
of r{* and 1" in the i*-th session of U} (partner is U). Instead of ri* < F/(0, )
and " «— F'(1,7¢), it is changed as ;" €g FS and ri* €gr FS.

We construct a distinguisher Dy that distinguishes if F* is either a pseudo-
random function F’ or a random function RF from A in Hy or H3. Dy performs
the following steps.

[setup]

Dy is given a pseudo-random function F : {0,1}F x F§ — FS. Then, Dy
chooses pseudo-random functions Fy : {0,1}% x FS — RSP, Fy : {0,1}" x
FS — RSE®, PRF : {0,1}* x FS — {0,1}", a key derivation function KDF :
Salt x KS — FS§, and s € Salt.

Dy generates (ek;, dk;) for each server U; including (ek¥, dk%) of U according
to the protocol, publishes ek;, and sets cert.r, = (ID;,ek;) as a certificate for
each server U;. Dy poses 0 and 1 to the oracle F*, receives ri* and r{ as a
challenge, and computes r§ «— F((IDg,ry), 7 — Fi(IDg,r"), (CT,K}) <
EnCap(ek¥;ry), and Cf «— wEnCapC(r§) for the i*-th session of Uf.

[simulation]
Dy keeps the list Lgx that contains queries and answers of SessionKeyReveal.
Dy simulates oracle queries by A as follows.

1. Send(params, pid): If the session is the ¢*-th session of U}, then Dy sets K1 =
K{, returns (C§, CT,IDY), and records (I1,ID = pid, (C§, CT), (*,%),*, K1)
in Lgk. Otherwise, Dy chooses ((Cp, C1),r¢c) from the unused key pairs and
returns it, or computes ((Co,C1),7¢) according to the protocol and returns
it, and records (I1,1D = pid, (Co, C1), (*,%),%, K1) in Lgk.

2. Send(sid, msg = (Cy, C1,1id)): If msg = (Cg,Ct,1D%), then Dy sets K1 =
K7, chooses (ekZ., dk%.) from the unused key pairs and returns it, or generates
(ekX., dk%.) according to the protocol and return it, computes SK, and records
(I1,ID =id, (Cg,CY), (ek}, ekl), Ko, K1) and SK as a completed session in
Lsk. Otherwise, Dy chooses (ekr, dkr) from the unused key pairs and returns
it, or generates ek according to the protocol and returns it, computes SK,
and records (IT, 1D = id, (Cy, C1), (ekr, eks), Ko, K1) and SK as a completed
session in Lggk.

3. Send(sid, msg = ekr): If the session is the i*-th session of U}, Dy computes
K «— wEnCapK(ekr, C§,14), sets Ko = K, computes SK according to the
protocol, and records (II,ID = id, (C},CT), (ekr,eks), Ko, K1) and SK as
a completed session in Lgg. Otherwise, Dy computes SK according to the
protocol and records (II,ID = id, (Co, C1), (ekr,eks), Ko, K1) and SK as a
completed session in Lgg.

4. SessionKeyReveal(sid):

(a) If sid is not completed, then Dy returns error.
(b) Otherwise, Dy returns SK as recorded in Lgg.

5. Partner(X): Dy returns the secret value x of the public value X as defined.

6. RevealNext(): Dy generates a key pair (ESK,EPK), keeps it as unused, and
returns the EPK to A as defined.
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7. EstablishCertificate(ID;, X): Dy registers the public key of ID; as X according
to the protocol, and marks U; as a dishonest party.

8. Test(sid): Dy returns as defined.

9. A outputs a guess b € {0,1}. If A outputs b = 0, then Dy outputs that
F* = F/, otherwise Dy outputs that F* = RF.

[Analysis]

For A, the simulation by Dy is the same as the experiment Ho if F* = F'.
Otherwise, the simulation by Dy is the same as the experiment Hgz. Thus, since
the advantage of Dy is negligible due to the security of the PRF, |Adv(A, Hgz) —
Adv(A,Hz)| < negl.

Hybrid Experiment H4: This experiment changes the way of the computation
of r} in the ¢*-th session of US (partner is Ug). Instead of r} « F{(IDg, 1), it
is changed as r} €g RSE".

We construct a distinguisher D; that distinguishes if F* is either a pseudo-
random function F} or a random function RF from A in Hs or Hy. D; performs
the following steps.

[setup]

D, is given a pseudo-random function F} : {0,1}" x FS — RS%®. Then, D;
chooses pseudo-random functions F : {0,1}* x FS — FS, Fy: {0,1}* x FS —
RSE, PRF : {0,1}* x FS — {0,1}", a key derivation function KDF : Salt x
KS — FS, and s € Salt.

D: generates (ek;, dk;) for each server U; including (ek}, dk§) of U according
to the protocol, publishes ek;, and sets cert.r, = (ID;,ek;) as a certificate for
each server U;. Dy poses IDg to the oracle F*, receives ri as a challenge, and
computes (C7, K{) <« EnCap(ek%;rT), and C§ «— wEnCapC(r{) by using r;* €r
F'S according to the protocol for the i*-th session of U.

[simulation]
D keeps the list Lgk that contains queries and answers of SessionKeyReveal.
D; simulates oracle queries by A as follows.

1. Send(params, pid): If the session is the i*-th session of Uf,, then Dy sets Ky =
K7, returns (C§, Ct,ID%), and records (I1,ID = pid, (C§, CT), (*,%),*, K1)
in Lgk. Otherwise, Dy chooses ((Cp, C1),7¢) from the unused key pairs and
returns it, or computes ((Co, C1),7¢) according to the protocol and returns
it, and records (II, 1D = pid, (Cp,C1), (*,%),*, K1) in Lgk.

2. Send(sid, msg = (Co, C1,1id)): If msg = (Cg,CYt,1D%), then Dy sets K; =
K7, chooses (ekZ., dk%.) from the unused key pairs and returns it, or generates
(ekk., dk3.) according to the protocol and return it, computes SK, and records
(I1,ID =id, (C§,CY), (ek}, ek¥), Ko, K1) and SK as a completed session in
Lgk. Otherwise, Dy chooses (ekr, dkr) from the unused key pairs and returns
it, or generates ekp according to the protocol and returns it, computes SK,
and records (I1, ID = id, (Cy, C1), (ekr, eks), Ko, K1) and SK as a completed
session in Lgk.



54 R. Ishibashi and K. Yoneyama

3. Send(sid, msg = eky): If the session is the i*-th session of Up, D; computes
K} — wEnCapK(ek?., C§,1y), sets Ky = K, computes SK according to the
protocol, and records (II,ID = id, (C},Cy), (ekr,eks), Ko, K1) and SK as
a completed session in Lgg. Otherwise, D; computes SK according to the
protocol and records (I, ID = id, (Cy, Cy), (ekr,eks), Ko, K1) and SK as a
completed session in Lgg.

4. SessionKeyReveal(sid):

(a) If sid is not completed, then D returns error.
(b) Otherwise, Dy returns SK as recorded in Lgg.

5. Partner(X): D; returns the secret value z of the public value X as defined.

6. RevealNext(): D; generates a key pair (ESK,EPK), keeps it as unused, and
returns the EPK to A as defined.

7. EstablishCertificate(ID;, X): D; registers the public key of I D, as X according
to the protocol, and marks U; as a dishonest party.

8. Test(sid): Dy returns as defined.

9. A outputs a guess b e {0,1}. If A outputs — 0, then D; outputs that
F* = F}, otherwise D; outputs that F* = RF.

[Analysis]

For A, the simulation by D; is the same as the experiment Hg if F* = F/.
Otherwise, the simulation by D; is the same as the experiment Hy. Thus, since
the advantage of D; is negligible due to the security of the PRF, |Adv(A, Hy) —
Adv(A,Hs)| < negl.

Hybrid Experiment Hs: This experiment changes the way of computation of
K7 on the client side in the i*-th session of Uf. Instead of computing (C*, K7) <
EnCap(ek%,r7), it is changed as K{ €g KScca-

We construct an IND-CCA adversary S from A in Hy or Hs. The S performs
the following steps.

[init]

S receives ek§ from the challenger as a challenge.
[setup]

S chooses pseudo-random functions F' : {0,1}" x FS — FS, Fy : {0,1}" x
FS — RSP, Fy : {0,1}% x FS§ — RS%*, PRF : {0,1}* x FS — {0,1}", a key
derivation function KDF : Salt x KS — FS, and s €r Salt.

S receives (K, CY) as a challenge and sets Cq = C for the i*-th session of
U¢. Also, S generates (ek;, dk;) for each server U; other than Ug, publishes ek;,
and sets certer, = (ID;,ek;) as a certificate for each server Us.

[simulation]
S keeps the list Lgx that contains queries and answers of SessionKeyReveal.
S simulates oracle queries by A as follows.

1. Send(params, pid): If the session is the ¢*-th session of U}, then S computes
C§ < wEnCapC(r§) where r§ egr RSE®, sets K1 = K}, C; = Cf, and Cy =
C§, returns (Cy, Cy,IDY), and records (II,ID = pid, (Co, Ch), (x, %), *, K1)
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in Lgg. Otherwise, S chooses ((Cp,Cy),7¢) from the unused key pairs and
returns (Cp, C1), or computes ((Co, C1),rc) according to the protocol and
returns (Cy, C1), and records (II, ID = pid, (Cy, C1), (*,%),*, K1) in Lgk.

2. Send(sid, msg = (Co, C1,id)): If id = ID} and C; # Cf, S poses Cy to the
decryption oracle to obtain K, chooses (ekr,dkr) from the unused key pairs
and returns ekr, or generates (ekr, dkr) and returns ek, computes SK, and
records (II,ID = id, (Co,Ch1), (ekr,eks), Ko, K1) and SK as a completed
session in Lgg. Also, else if id = ID§ and C; = CY, S sets K1 = K,
chooses (ekj., dk%) from the unused key pairs and returns it, or generates
(ekk., dkZ.) according to the protocol and returns it, computes SK, and records
(I1,ID = id, (Cy, Ch), (eky, ekl), Ko, K1) and SK as a completed session in
Lgk. Otherwise, S chooses (ekr, dkr) from the unused key pairs and returns
it, or generates (ekr,dkr) according to the protocol and returns it, com-
putes SK, and records (II,ID = id, (Cy, Cy), (ekr,eks), Ko, K1) and SK as
a completed session in Lggk.

. Send(sid,msg = ekr): S computes SK according to the protocol and records
(II,ID = id, (Cy, C1), (ekr, eks), Ko, K1) and SK as a completed session in
Lsk.

4. SessionKeyReveal(sid):

(a) If sid is not completed, then S returns error.
(b) Otherwise, S returns SK as recorded in Lgg.

. Partner(X): S returns the secret value x of the public value X as defined.

. RevealNext(): S generates a key pair (ESK,EPK), keeps it as unused, and
returns the EPK to A as defined.

7. EstablishCertificate(ID;, X): S registers the public key of ID; as X according
to the protocol, and marks U; as a dishonest party.

. Test(sid): S returns as defined.

. Aoutputs a guess b € {0,1}. If A outputs b, then S outputs b’

w

D Ot

© oo

[Analysis]

For A, the simulation by § is same the as the experiment Hy if the challenge
is (Cf, K). Otherwise, the simulation by S is same the as the experiment Hs.
Thus, since the advantage of S is negligible due to the security of the IND-CCA
secure KEM, |Adv(A, Hg) — Adv(A, Hy)| < negl.

Hybrid Experiment Hg: This experiment changes the way of the computation
of the K* in the i*-th session of Ug. Instead of computing K* — KDF(s, K%),
it is changed as choosing Ki* er FS.

Since K7 is randomly chosen in Hj, it has sufficient min-entropy because the
KEM is s-min-entropy KEM. Thus, by the definition of the KDF, | Adv(A, Hg) —
Adv(A,Hs)| < negl.

Hybrid Experiment H7: This experiment changes the way of the computation
of SK in the i*-th session of U}. Instead of computing SK = PRF(sid, K1) &
PRF(sid, Ky), it is changed as SK = = ® PRF(sid, Ky), where z € {0,1}".

We construct a distinguisher Do that distinguishes if F* is either a pseudo-
random function PRF or a random function RF from A in Hg or Hy. Dy performs
the following steps.
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[setup]

Ds is given a pseudo-random function PRF : {0,1}*xFS — {0,1}". Then, D
chooses pseudo-random functions F : {0,1}* x FS — FS, Fé) :{0,1}F x FS —
RSP F) - {0,1}" x FS — RS%®, PRF : {0,1}* x FS — {0,1}*, a key
derivation function KDF : Salt x KS — FS, and s € Salt.

D, generates (ek;, dk;) for each server U; including (ek%, dk%) of U according
to the protocol, publishes ek;, and sets cert.r, = (ID;,ek;) as a certificate for
each server Uj;.

[simulation]
Dy keeps the list Lgx that contains queries and answers of SessionKeyReveal.
D, simulates oracle queries by A as follows.

1. Send(params, pid): If the session is the i*-th session of U}, then Dy com-
putes (C},K}) «— EnCap(ekf;ry) and Cf «— wEnCapC(r§), where rf —
Fo(ID%,rg) and ri €r RSE®, returns (Cg, CF, ID¥), and records (I1,ID =
id, (C3,CF), (%, %), %, KT) in Lgk. Otherwise, Dy chooses ((Cy, C1),r¢) from
the unused key pairs and returns (Cy, C1), or computes ((Co, C1), r¢) accord-
ing to the protocol and returns (Cy, C1), and records (11, ID = id, (Cy, C1), (%,
x),%, K7) in Lgk.

2. Send(sid, msg = (Cy,Ch,id)): If msg = (C§,Cy,IDY%), then Dy chooses
(ek., dk%.) from the unused key pairs and returns it, or generates (eky., dk.)
according to the protocol and returns it. Also, Dy sets sid according to the
protocol, poses it to the oracle (PRF or RF), obtains « € {0, 1}", computes
SK* = z @ PRF(sid, Ky), and records (II,ID = id,(C§,CY), (ek}, eks))
and SK* as a completed session in Lgx. Otherwise, Doy chooses (ekr, dkr)
from the unused key pairs and returns ekr, or generates (ekr,dkr) accord-
ing to the protocol and returns ekp. Also, Dy computes SK and records
(I1,ID = id, (Cy, C1), (ekr, eks)) and SK as a completed session in Lgg.

3. Send(sid, msg = ekr): If the session is the i*-th session of Uf, then Dy sets
sid according to the protocol, poses it to the oracle (PRF or RF), obtains
x € {0,1}", computes SK* = z @ PRF(sid, ko), and records (II,ID =
id, (Co, C1), (ekr,eks)) and SK* as a completed session in Lgg. Other-
wise, Dy computes SK according to the protocol and records (II,ID =
id, (Co, C1), (ekp,ekg)) and SK as a completed session in Lgk.

4. SessionKeyReveal(sid):

(a) If sid is not completed, then Dy returns error.
(b) Otherwise, Dy returns SK as recorded in Lgk.

5. Partner(X): Dy returns the secret value z of the public value X as defined.

6. RevealNext(): Dy generates a key pair (ESK,EPK), keeps it as unused, and
returns the EPK to A as defined.

7. EstablishCertificate(ID;, X): D5 registers the public key of ID; as X according
to the protocol, and marks U; as a dishonest party.

8. Test(sid): Dy returns as defined.

9. A outputs a guess b € {0,1}. If A outputs b', then Dy outputs b'.
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[Analysis]

For A, the simulation by Ds is the same as the experiment Hg if F* = PRF.
Otherwise, the simulation by D; is the same as the experiment H7. Thus, since
the advantage of Dy is negligible due to the security of PRF, |Adv(A,Hr) —
Adv(A,Hg)| < negl.

In Hy, the session key in the test session is perfectly randomized. This gives A
no information from the Test query, therefore Adv(A, Hy) = 0 and Pr[E;ASec] =
negl.

Theorem 2. In the standard model, GC-Std is one-sided anonymous.

Proof. We proceed by introducing another experiment, in which cannot win more
than random guessing. In this new experiment, the choice of i* is independent
of the behavior of the rest of the system. Then, we show that no adversary can
distinguish this new experiment from the original experiment, thereby showing
the OS-anonymity of the protocol.

Exptggj'g;;"/ (A) is the same experiment as Expto2,_49" (A) except for the
following oracle used by the challenger C.

— Start/(ig, i1, params, pid = ID%) — msg':
1. If ig = i1, then abort.
2. Set 7* R {io,il}.
3. Set ID* — ID%.
4. Choose ((C§,CY),rE) from the unused key pairs and returns
(C4,C1. D).
— Send’(sid, msg = ek.):
1. Compute ri* «— F'(0,r%)) and r§ <« F{(IDg, r(f)
2. Compute K «— wEnCapK(ek’, C§,14).
3. Compute SK according to the protocol.
— SessionKeyReveal’ () — SK: If the test session is a completed session, return
SK.
Partner’(C*) — rf: Return the secret value rf, corresponding to C*.
— RevealNext’ — X: Return the future public value X and record it as unused.

Since all messages computed in Exptggi‘gzgnl (A) are independent of the
choice of i*, the adversary A has no advantage, thus the probability that A
wins the game is as follows.

PrExptde 49" (A) = win] = 1/2 (1)

Also, the distribution of messages returned by the challenger in
OS—anon’

Exptoo %™ (A) is the same as that returned in Expt92 415" (A). Furthermore,

messages from all parties except P;, and F;, are unchanged. For messages from

P;, and P;, in Exptggi‘g’zzn/ (A), all queries return messages of the same distri-

bution as in Exptoe_m"(A).
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Public parameter params : Ho, Hi, H
Static secret key for Us : SSKg := dks, SPKs := ¢eks, certery = (IDg, eks)

Party Uc (Client) Party Us (Server)

verify eks using certerg
rc €r {0,1}"
ro < Ho(?"c)

)
(Cl,Kl) — EnCap(ek’s;rl) rs €Er RsiGpa
Co + wEnCapC(ro) (ekr, dkr) < wKeyGen(rs)
erase (70,71) erase Ts

007017IDS
—_—>

ekT
ro < Ho(Tc) Ky + DeCap(dks,C’l)
Ko + wEnCapK(ekT, 0077“0) Ko +— wDeCap(dkT7 Co)
sid := (IDg, Co, Cy, ekr) sid := (IDg, Co,C1, ekr)
SK = H(Sid7 K07K1) SK = H(S’Ld7 K07K1)

erase (rc,To) erase dkr

ME,,[sid) MZ,,[sid)]

= (SK7 IDs, (007 Cl)v (ekTv 6ks)) = (SK7 ®, (007 Cl)a (ekT7 6k5))

Fig. 5. Generic construction in the random oracle model (GC-RO)

Here, queries that reveal information about whether P;, or P;, participated
in the test session are prohibited by the definition. For example, A is prohibited
from using a SessionKeyReveal(sid) query to P;, to find out if P;, has the session
key for the target session.

Thus, A cannot distinguish between the two games.

Pr{Expt2e- 415" (A) = win] = Pr[Exptos_49" (A) = win] (2)

From Egs. (1) and (2), the scheme has one-sided anonymity. O

5.3 OS-AKE in Random Oracle Model

The protocol in the random oracle model consists of an OW-CCA
secure KEM (KeyGen, EnCap, DeCap) and an OW-CPA secure PKIC-KEM
(wKeyGen, wEnCapC, wEnCapK, wDeCap) as follows.

Protocol

Public Parameters: Let k be a security parameter, and Hp : {0,1}* — RSP,
Hy : {0,1}* — RSF*, H: {0,1}* — {0,1}" be hash functions, where RSE*
and RSZ are randomness spaces of the encapsulation algorithm and the key
generation algorithm of OW-CPA secure PKIC-KEM, RSE* and RSE” are ran-
domness spaces of the encapsulation algorithm and the key generation algorithm
of OW-CCA secure KEM. These are provided as part of the public parameters.
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Secret and Public Keys: Party Ug selects a randomness r € RSE“, computes
(eks,dks) — KeyGen(1%;r) and sets certers = (IDg,eks) as a certificate for
Us. The static key pair for party Ug is (ekg, dkg).

Key Exzchange: Let Ug which has a static key pair (ekg,dks) be a server, and
Uc be a client. When Ug is initialized as a client, it obtains the certificate
certers = (IDg, ekg) of Us.

1. U verifies the server using cert.r, = (IDg,eks). Uc chooses an unused
key pair ((Co,C1),7¢) or chooses a ephemeral secret key ro €r {0,1}*
and sets 19 < Ho(r¢), and 1 «— Hi(re). Also, Uo computes (Cp, Kp) «—
EnCap(eks;r1), and Cy «— wEnCapC(ry), and deletes (rg,r1). Then, Us sends
(Co, Cl,IDs) to Ug.

2. Upon receiving (Cy, Cy,1Dg), Ug chooses an unused ephemeral key pair (ekr,
dkr), or chooses a randomness rg €p RSE" and computes (ekr,dkr) —
wKeyGen(rg), and sends ekr to Uc. Thus, Ug computes Ky <« DeCap(dks,
C1) and Ky < wDeCap(dkr, Cy), sets sid = (IDg, (Cy,C1),ekr), and com-
putes the session key SK = H(sid, Ky, K1). Ug erases (rg, dkr) and outputs
(SK, ®, (Co, Ol), (ekT, ek‘g)).

3. Upon receiving ekr, Uc sets rg «— Ho(re) and computes Ky < wEnCapK(ekr,
Co,ro). Also, Ug sets sid = (IDg, (Cy,C1),ekr) and computes the session
key SK = H(sid, Ko, K1). Then, Uq erases (r¢,ro), and outputs (SK,IDg,
(Co, Cl), (ekT, (:’ks)).

Security. We show the security of the proposed scheme in the random oracle
model. An intuition of the proof is shown in Sect. 5.1.

Theorem 3. If (KeyGen,EnCap,DeCap) is an OW-CCA secure KEM,
(wKeyGen, wEnCapC,wEnCapK, wDeCap) is an OW-CPA secure PKIC-KEM,
and Ho,Hy, H are random oracles, GC-RO is OS-AKE secure.

Theorem 4. In the random oracle model, GC-RO scheme is one-sided anony-
mous.

We show the proof of Theorem 3 and 4 in the full version.

6 Instantiations Based on DH Problems

A comparison of the efficiency among our instantiations and existing schemes is
shown in Table 1.
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Table 1. Comparison among existing DH-based schemes and our instantiations

Protocol Model Resource | Assumption | Exp. (client) Exp. (server) Communication
Off-line | On-line | Off-line | On-line | complexity

ntor [24] GSU RO gap DH 1 2 1 1.33 [ID| 4+ 2|G|

Ace [6] weak GSU | RO gap DH 2 1.08 1 1.08 |ID| + 3|G|

Oursl [ 6.1] |GSU RO CDH 3 1 1 3 [ID| 4+ 3|G| + &

Ours2 [ 6.2] | GSU Std DDH 5.08 |1 1 3.16 | |ID|+ 5|G|

For exponentiation costs, we apply the parallel computation technique [39] for two exponentiations
using the same base, which costs 1.33 exponentiations for k, and Avanzi’s algorithm [4] for multi-
exponentiations in the elliptic curve setting, which costs 1.08 exponentiations for . |ID| is the length
of server’s ID and |G| is the size of a group element.

6.1 Random Oracle Model

We can obtain an OS-AKE scheme in the random oracle model by instantiating
GC-RO using the PSEC-KEM [40] which is an OW-CCA secure KEM, and the
ElGamal KEM which is an OW-CPA secure PKIC-KEM. It is shown that the
ElGamal KEM can be PKIC-KEM [45], and the PSEC-KEM and the ElGamal
KEM are obviously x-min-entropy KEM. Since these KEM schemes are based on
the computational DH (CDH) assumption, the instantiation is also secure under
the CDH assumption though ntor and Ace rely on the gap DH assumption. Also,
the online computational cost of a client is smaller than existing schemes.

6.2 Standard Model

We can obtain an OS-AKE scheme in the standard model by instantiating GC-
Std using CS3 [11] which is an IND-CCA secure KEM, and the ElGamal KEM
which is an IND-CPA secure PKIC-KEM. CS3 is obviously x-min-entropy KEM.
Since these KEM schemes are based on the decisional DH (DDH) assumption,
the instantiation is also secure under the DDH assumption. This scheme is the
first DH-based anonymous OS-AKE scheme in the standard model. Moreover,
the online computational cost of a client is smaller than existing schemes even
in the standard model.

7 Instantiations Based on Isogeny Problems

7.1 Random Oracle Model

SIDH-Based. We can obtain a SIDH-based OS-AKE scheme in the random
oracle model by instantiating GC-RO using the SIKE-KEM [5] which is an IND-
CCA secure KEM, and an OW-CPA PKIC-KEM which is obtained by a trans-
formation of SIKE-PKE [5]. In order to transform the SIKE-PKE to PKIC-
KEM, we remove the generation of the ciphertext C; = F(j) @ m (i.e., masking
of plaintext m) in the encapsulation algorithm and the decryption procedure
m = F(j) @ C} in the decryption algorithm, and use j = isoexa(pks, sko) as the
session key of PKIC-KEM. Such a PKIC-KEM based on SIKE-PKE is shown in
Fig. 6. SIKE-KEM and PKIC-KEM in Fig. 6 are obviously x-min-entropy KEM.
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Public parameter : K3, K», isogen, isogen,, isoexa, isoexs

wKeyGen(17) wEnCapC wEnCapK(pks, Co, sk2)|wDeCap(sks, Co)
sks €r K3 sko €r K2 j = isoexa(pks, sk2) j = isoexs(Clo, sks)
pks = isogens(sks)|Co = isogen, (sk2)|K = j K=j

return: (pks, sks) [return: Cy return: K return: K

Fig. 6. PKIC-KEM scheme based on SIKE-PKE [5]

Public parameter : X,G, Ey € G, H
wKeyGen(17) wEnCapC  [wEnCapK(pk, C,t)|wDeCap(sk, C)

seEr G ter G S = [t] x pk S =[sk|xC
sk=s C=[t]*xEyg|K = H(S) K =H(S)
pk = [s] *x Eg return: C |return: K return: K

return :(pk, sk)

Fig. 7. Hashed CSIDH-KEM scheme

Note that PKIC-KEM in Fig. 6 is regarded as a SIDH version of the ElGamal
KEM and it is pointed that it is OW-CPA secure under the supersingular deci-
sional DH (SSDDH) assumption [37]. Since SIKE-KEM is based on the supersin-
gular computational DH (SSCDH) assumption, the instantiation is secure under
the SSDDH assumption.

CSIDH-Based. We can obtain a CSIDH-based OS-AKE scheme in the random
oracle model by instantiating GC-RO using the CSIDH-PSEC-KEM [46] which
is an IND-CCA secure KEM, and CSIDH-KEM [9] which is an OW-CPA secure
KEM. Note that CSIDH-KEM can be used as PKIC-KEM in the same way as
Fig. 6. CSIDH-PSEC-KEM and CSIDH-KEM are obviously k-min-entropy KEM.
Note that CSIDH-KEM is pointed that it is OW-CPA secure under the commu-
tative supersingular decisional DH (CSSDDH) assumption [37]. Since CSIDH-
PSEC-KEM is based on the commutative supersingular computational DH (CSS-
CDH) assumption, the instantiation is secure under the CSSDDH assumption.

7.2 Standard Model

We can obtain a CSIDH-based OS-AKE scheme in the standard model by instan-
tiating GC-Std using the KEM from smooth projective hashing [2] which is an
IND-CCA secure KEM based on the hash proof system under the existence
of weak pseudorandom effective group action (WPR-EGA) (a generalization of
CSIDH assumptions), and a hashed CSIDH-KEM. The hashed CSIDH-KEM is
a variant of CSIDH-KEM such that the session key is computed as the out-
put of the entropy-smoothing hash function H on inputting the result of the
group action of the randomness and the public key (K = H([t] * pk)) or the
secret key and the ciphertext (K = H([s] * C)). We can use the hashed CSIDH-
KEM as PKIC-KEM as Fig. 6. The protocol of hashed CSIDH-KEM is shown
in Fig. 7. As the same as the hashed ElGamal KEM [41], it is pointed that the
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hashed CSIDH-KEM is IND-CPA secure under the CSSDDH assumption [37].
This instantiation is the first post-quantum anonymous OS-AKE scheme in the
standard model under the wPR-EGA and the CSSDDH assumption.

Also, very recently, a KEM scheme called Sim$ [16] was proposed as a CSIDH-

based IND-CCA secure KEM in the standard model. By using SimS as the instan-
tiation of IND-CCA secure KEM, we can also construct the OS-AKE scheme from
a knowledge of exponent-type assumption and the CSSDDH assumption.
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