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Preface

The 25th IACR International Conference on Practice andTheory of Public-KeyCryptog-
raphy (PKC 2022) was held virtually duringMarch 8–11, 2022. (Initially, the conference
was scheduled to be held in Yokohama, Japan, but unfortunately, due to the prolonged
global outbreak of COVID-19, it was finally decided to hold the conference virtually.)
This conference is organized annually by the International Association of Cryptologic
Research (IACR), and is the main IACR-sponsored conference with an explicit focus on
public-key cryptography. The proceedings are comprised of two volumes and include
the 39 papers that were selected by the Program Committee. (Initially, 40 papers were
accepted, but one of them was later withdrawn by the authors.)

A total of 137 submissions were received for consideration for this year’s program.
Submissions were assigned to at least three reviewers, while submissions by Program
Committee members received at least five reviews. The review period was divided into
two stage. The first stage was reserved for individual reviewing and lasted four weeks. It
was followed by the second stage, which lasted about five weeks, in which the Program
Committee members engaged in discussion. On a number of occasions, authors were
contacted regarding reviewer questions and provided clarifications. One of the papers
was conditionally accepted and received a final additional round of reviewing. The
reviewing and paper selection process was a difficult task and I am deeply grateful to
the members of the Program Committee for their hard and thorough work. Additionally,
my deep gratitude is extended to the 145 external reviewers who assisted the Program
Committee. PKC 2022 was the first PKC to use HotCRP in the peer review process.
I would like to express my sincere thanks to Kevin McCurley for his support in using
HotCRP.

Two invited talkswere given at PKC2022. The first invited talk, entitled “The First 25
Years of the PKCAnnual Conference”, was delivered byYuliang Zheng, who is the chair
of the PKC steering committee. Since PKC 2022 was the 25th PKC, this invited talk was
a review of the history of the past quarter century. The second invited talk, entitled “The
Beginning of the End: The First NIST PQC Standards”, was delivered by DustinMoody.
In this invited talk, he presented the latest status of NIST Post-Quantum Cryptography
Standardization. I would like to express my deepest gratitude to both invited speakers
for accepting the invitation and contributing to the program this year as well as all the
authors who submitted their work. I would like to also thank co-editors of these two
volumes, Junji Shikata and Yohei Watanabe, who served as general co-chairs this year. I
would also like to express my appreciation to the PKC 2022 local organizing committee
members (Keita Emura, Ryuya Hayashi, Takahiro Matsuda, Takayuki Nagane, Yusuke
Naito, Kazumasa Shinagawa, Jacob Schuldt, Naoto Yanai, and Kazuki Yoneyama) for
their dedication and cooperation. Finally, I am deeply grateful to our industry sponsors,
listed on the conference’s website, who provided generous financial support.

March 2022 Goichiro Hanaoka
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Post-quantum Asynchronous Deniable
Key Exchange and the Signal Handshake

Jacqueline Brendel1(B), Rune Fiedler1, Felix Günther2, Christian Janson1,
and Douglas Stebila3

1 Technische Universität Darmstadt, Darmstadt, Germany
{jacqueline.brendel,rune.fiedler,christian.janson}@cryptoplexity.de,

mail@felixguenther.info
2 ETH Zürich, Zurich, Switzerland

3 University of Waterloo, Waterloo, Canada
dstebila@uwaterloo.ca

Abstract. The key exchange protocol that establishes initial shared
secrets in the handshake of the Signal end-to-end encrypted messaging
protocol has several important characteristics: (1) it runs asynchronously
(without both parties needing to be simultaneously online), (2) it pro-
vides implicit mutual authentication while retaining deniability (tran-
scripts cannot be used to prove either party participated in the protocol),
and (3) it retains security even if some keys are compromised (forward
secrecy and beyond). All of these properties emerge from clever use of
the highly flexible Diffie–Hellman protocol.

While quantum-resistant key encapsulation mechanisms (KEMs) can
replace Diffie–Hellman key exchange in some settings, there is no replace-
ment for the Signal handshake solely from KEMs that achieves all three
aforementioned properties, in part due to the inherent asymmetry of
KEM operations. In this paper, we show how to construct asynchronous
deniable key exchange by combining KEMs and designated verifier sig-
nature (DVS) schemes, matching the characteristics of Signal. There are
several candidates for post-quantum DVS schemes, either direct con-
structions or via ring signatures. This yields a template for an efficient
post-quantum realization of the Signal handshake with the same asyn-
chronicity and security properties as the original Signal protocol.

Keywords: Authenticated key exchange · Deniability ·
Asynchronous · Signal protocol · Post-quantum · Designated verifier
signatures

1 Introduction

The Signal protocol [66,67], designed by Marlinspike and Perrin, has enabled
mass adoption of end-to-end encrypted messaging in consumer applications such
as WhatsApp, Signal, Facebook Messenger, Skype, and more. From a crypto-
graphic perspective, the Signal protocol consists of an initial handshake and key
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13178, pp. 3–34, 2022.
https://doi.org/10.1007/978-3-030-97131-1_1
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Alice Bob
gb, gs, gy

Bob’s pre-key bundle

ga

Alice’s pre-key bundle
x $ Zq

gx

K KDF(gas gxb gxs gxy) K KDF(gas gxb gxs gxy)

Fig. 1. Simplified version of Signal’s X3DH handshake. Long-term keys a and b; semi-
static key s; ephemeral keys x and y.

exchange (called “X3DH” [67], a simplified version of which is shown in Fig. 1),
asymmetric and symmetric key exchange “ratchets” that establish new keys for
every new chat message sent (called the “double ratchet” algorithm [66]), and
symmetric authenticated encryption for application data. Each of these compo-
nents contributes to Signal’s interesting and useful security features:

– Implicit mutual authentication in the handshake: The session key K estab-
lished in the handshake can only be computed by the intended peer. This
comes from the terms involving the long-term secret keys a and b in Fig. 1.

– Forward secrecy in the handshake: The session key K established in the hand-
shake remains secret even if long-term keys are later compromised. This comes
from the terms involving the ephemeral keys x and y in Fig. 1.

– Offline deniability of the handshake: A judge seeing a transcript of an hon-
est communication session cannot be convinced that a particular party was
actually involved in the session. This comes from the use of Diffie–Hellman
for authentication rather than signatures; all of the DH shared secrets input
to the key derivation function in Fig. 1 could have been computed unilater-
ally either by Alice or by Bob (e.g., both Alice and Bob can compute gas,
using a and s respectively). We provide a new formalization of deniability
reflecting the specification of Signal more closely. We discuss the differences
between the deniability notions in Sect. 3 and in more detail in the full ver-
sion. While a formal proof that X3DH fulfills our new notion is not known
to the authors, we expect it to hold without any additional assumptions. See
[81] for a detailed analysis of the deniability of X3DH with respect to the
deniability notion of [29].

– Asynchronicity : The two communicating parties need never be online simul-
taneously, and can leave packets at an untrusted relay server until the other
party comes back online. The handshake is made asynchronous by allowing
each party to upload a pre-key bundle to an untrusted server in advance,
consisting of long-term, medium-term, and ephemeral public keys, and an
initiator can start sending text messages before their peer comes online. The
restrictions on communication flow in an asynchronous protocol are weaker
than those of non-interactive key exchange [41].

– Forward secrecy and post-compromise security [22] in long-lived conversa-
tions: Keys are updated using a new DH key exchange with each chat mes-
sage via the asymmetric ratchet, enabling secrecy of past and future messages
after a compromise.
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1.1 Making Signal Post-quantum

Since the Diffie–Hellman problem upon which much of Signal relies is not secure
against quantum adversaries, it is important to have a post-quantum alternative
available.

The symmetric ratchet and authenticated encryption components of Signal
are built on symmetric primitives, and thus are not in immediate danger from
quantum algorithms. The asymmetric ratchet was phrased by Marlinspike and
Perrin [66] and analyzed by Cohn-Gordon, Cremers, Dowling, Garratt, and Ste-
bila [21] in terms of Diffie–Hellman. Alwen, Coretti, and Dodis [1] generalized it
into a primitive called continuous key agreement that can be built from KEMs,
yielding post-quantum security. Hence, our focus in the rest of this paper is on
the handshake.

The post-quantum primitives to be standardized by the United States
National Institute of Standards and Technology (NIST) post-quantum standard-
ization project are signatures and key encapsulation mechanisms (KEMs), so
these would be most preferable to employ. It is certainly possible to generically
construct an authenticated key exchange protocol from signatures and KEMs,
but it is not possible to use only KEMs and signatures in a generic way to
create a post-quantum replacement for Signal with all of the properties listed
above. Suppose one tried to use KEMs instead of Diffie–Hellman in Fig. 1. Recall
that, to use a KEM for key exchange, one party uses the key generation algo-
rithm to create a public-key/secret-key pair and transmits the public key to
their peer; the peer encapsulates against that public key, producing a cipher-
text and a shared secret, then transmits the ciphertext, which the first party
decapsulates using their secret key to compute the shared secret. In the Signal
handshake, one could try using KEM public keys to replace the Diffie–Hellman
shares in Alice and Bob’s pre-key bundles. We can still obtain ephemeral key
exchange (by having Alice encapsulate against Bob’s ephemeral public key) and
implicit Bob-to-Alice authentication (by having Alice encapsulate against Bob’s
long-term public key). However, we cannot obtain Alice-to-Bob authentication
using KEMs without adding an extra flow: Bob cannot produce a ciphertext
for Alice to decapsulate without knowing Alice’s public key first, so he cannot
asynchronously produce a pre-key bundle for Alice to immediately use. This
highlights the difference between DH and KEMs: in DH, both parties’ shares
are objects of the same type and can be generated independently, but in generic
KEMs, public keys and ciphertexts are in principle objects of differing types and
a ciphertext is generated with respect to a given public key. To obtain Alice-to-
Bob authentication without adding an extra communication round, Alice could
of course produce a signature for Bob to verify, but this undermines deniability.

The problem, in a nutshell, is to create an asynchronous deniable authenti-
cated key exchange protocol that can be instantiated in the post-quantum setting,
preferably with an efficient construction based on standardized primitives or at
least cryptographic assumptions used in standardized primitives.
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1.2 Options for PQ Asynchronous DAKE

There are several examples of authenticated key exchange protocols built generi-
cally from KEMs which have the potential for deniability [11,12,27,42,75] but do
not have the desired asynchronicity property for reasons similar to the discussion
above.

One post-quantum option that avoids the problem with KEMs described
above is to use CSIDH [20], a primitive based on supersingular isogenies that
yields a commutative group action which enables non-interactive key exchange.
CSIDH could be used to achieve implicit Alice-to-Bob authentication while main-
taining asynchronicity and deniability; indeed several key exchange protocols
from CSIDH have been proposed [26,52]. Unfortunately, there are several rea-
sons CSIDH may not be a fully satisfactory solution: it is much more compu-
tationally expensive than most other forms of post-quantum cryptography, and
there is ongoing debate about the security of its concrete parameters [10,69].

Most other post-quantum assumptions used in KEMs, including SIDH [50]
and learning-with-errors (LWE) [72], are insecure against key reuse attacks with-
out additional protection such as the Fujisaki–Okamoto transform [43] that
leaves them unable to be used for non-interactive key exchange (since the cipher-
text must be generated with respect to a given public key). There have been
several attempts at SIDH-based non-interactive key exchange which have ended
up being insecure [2,31,32,36], and one attempt relying on an additional novel
assumption [9] the security of which is unknown.

Brendel, Fischlin, Günther, Janson, and Stebila [15] previously considered the
question of building a post-quantum version of the Signal handshake, highlight-
ing many of these problems. They proposed decomposing the three operations
of a KEM into a 4-operation “split KEM”, and showed how a Signal-like hand-
shake could be built from a split KEM meeting a suitably strong security notion.
They showed how CSIDH and LWE could be used to build split KEMs meet-
ing a weaker security notion, but these constructions did not achieve the strong
security notion required for their Signal-like handshake, effectively leaving the
overall problem unsolved.

Unger and Goldberg [79,80] also consider deniable authenticated key
exchange (DAKE) protocols for secure messaging. Their protocol permits the
optional use of a PQ KEM for ephemeral key exchange to achieve forward secrecy
against future-quantum adversaries. To achieve deniability, they employ ring sig-
natures with classical security and further rely on dual receiver encryption, which
does not yet appear to have a PQ instantiation in the literature. Observe that
their formalization of deniability is given in the UC model.

The recent work by Hashimoto, Katsumata, Kwiatkowski, and Prest [46] is
closest to ours. Their core protocol is meant to replace the Signal handshake
based on (post-quantum) KEMs and signatures. It achieves security against
exposure of long-term keys and session state and a weaker deniability level.
Unlike Signal (and our proposed protocol), it does however not provide security
against randomness exposure and lacks support for semi-static keys to miti-
gate the exhaustion of ephemeral pre-keys. Hashimoto et al. provide an imple-
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Alice Bob
pkKEM

B , pkDVS
B , epkKEM

B

Bob’s pre-key bundle

pkDVS
A

Alice’s pre-key bundle

(K1, c1) $ KEM1.Encaps(pkKEM
B )

(K2, c2) $ KEM2.Encaps(epkKEM
B )

σ $ DVS.Sign(skDVS
A , pkDVS

B , transcript)
c1, c2, σ

DVS.Vrfy(pkDVS
A , pkDVS

B , transcript, σ)

K1 KEM1.Decaps(skKEM
B , c1)

K2 KEM2.Decaps(eskKEM
B , c2)

K KDF(K1‖K2, transcript) K KDF(K1‖K2, transcript)

Fig. 2. Our core asynchronous asynchronous DAKE protocol, combining static and
ephemeral key encapsulation schemes KEM1 and KEM2, and a designated verifier sig-
nature DVS.

mentation for their weakly-deniable protocol and further discuss two additional
variants achieving stronger deniability. The second protocol achieves deniabil-
ity against semi-honest adversaries based on ring signatures, while their third
protocol additionally uses non-interactive zero-knowledge arguments and strong
knowledge-type assumptions for plaintext-aware [4] KEMs to achieve deniability
against malicious adversaries.

Dobson and Galbraith [30] recently proposed using SIDH key exchange to
replace the DH key exchange in the (slightly modified) X3DH protocol. Even
though SIDH is in general insecure against adaptive attacks, Dobson and Gal-
braith show that carefully adding a zero-knowledge proof enables them to prove
that the long-term SIDH public keys are generated honestly. In order to prove
deniability, they require strong knowledge-type assumptions following [81].

1.3 Our Contributions

We show how to construct an asynchronous deniable authenticated key exchange
protocol generically from designated verifier signature schemes and key encap-
sulation mechanisms.

Introduced by Jakobsson, Sako, and Impagliazzo [49], a designated verifier
signature (DVS) scheme allows a signer to convince a chosen recipient, called
the designated verifier, of the authenticity of a message, but in such a way that
the designated verifier cannot convince any other party of the authenticity. In
a DVS scheme, both the signer and the verifier have a public-key/secret-key
pair; signing requires both the signer’s secret key and the verifier’s public key,
and verification uses both parties’ public keys. To achieve the non-transferability
property (called “source hiding”), a DVS scheme is accompanied by an additional
simulation algorithm with which the designated verifier can, using its own secret
key, construct a signature indistinguishable from one generated by the signer.
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Asynchronous DAKE Construction. We combine a DVS with a KEM to achieve
an asynchronous deniable authenticated key exchange as shown in Fig. 2. As
expected, Bob-to-Alice authentication comes from an implicitly authenticated
key exchange in which Alice encapsulates to Bob’s long-term KEM key (KEM1

with long-term public key pkKEM
B and ciphertext c1 in Fig. 2), and forward secrecy

comes from a key exchange using an ephemeral KEM key (KEM2 with public
key epkKEM

B and ciphertext c2). Alice-to-Bob authentication comes from Alice
using the designated verifier signature scheme to sign a transcript with Bob as
the designated verifier; she can obtain Bob’s DVS verification key (pkDVS

B ) from
his pre-key bundle. Since the source hiding property of the DVS scheme enables
Bob to also have created a valid-looking signature from Alice with himself as the
designated verifier, the transcript of the key exchange protocol could have been
constructed by either Alice or Bob, yielding the desired deniability property.

Deniability. We model the informal deniability requirement from the Signal spec-
ification [67, §4.4] through a new deniability notion (for asynchronous DAKE)
capturing the following scenario: Alice wants to convince a judge that a certain
conversation took place between her and Bob. Hence, Alice gives the correspond-
ing transcript to the judge. The judge may coerce Alice and Bob to give up their
secret keys (e.g., by law). Under these circumstances, the judge should not be
able to tell if this transcript stems from a real conversation or if Alice faked
the transcript on her own without Bob’s interaction. On the one hand, our new
notion is weaker than the definition of [29] in the sense that we limit Alice to stick
to the protocol description (i.e., be semi-honest) and allow the use of a secret
key for faking a transcript. On the other hand, our new notion is stronger in the
sense that we allow the judge to know all secret keys. On a more technical note,
we provide a game-based definition while [29] uses the simulation paradigm. In
a nutshell, a strength of our notion is that it provides deniability against pow-
erful judges that can compromise secret keys of users. A consequence of our
new, incomparable deniability definition is that we can achieve it without strong
knowledge assumptions needed for X3DH [81] and in the work of Hashimoto
et al. [46,47]; we conjecture both protocols can likewise be shown to be deniable
wrt. our definition without such assumptions.

Post-quantum Designated Verifier Signatures. To achieve our goal of post-
quantum asynchronous DAKE, we thus need a post-quantum designated verifier
signature scheme. While there is a long line of research on DVS schemes from
pre-quantum assumptions (including [16,25,49,55,59,74,77,84]), comparatively
little is available in the literature on post-quantum DVS schemes. An isogeny-
based DVS scheme was proposed in [78] but is insecure due to key reuse attacks
identified in [44]. There are several lattice-based DVS schemes which may fit the
bill [57,68,82,83,87], but these have not received much scrutiny in the main-
stream cryptographic literature; we summarize this literature in Sect. 2.1. These
lattice-based DVS schemes are direct constructions not based on any NIST can-
didates, so they would require their own thorough analysis.
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DVS from Ring Signatures. Rather than constructing DVS schemes directly, it
is possible to use a ring signature scheme [73] as a designated verifier signature
scheme. In a ring signature scheme, one signer can sign a message intended to
verify under a ring of public keys, only one of which is theirs; yet no one should
be able to determine which signer produced such a signature. Following ideas
sketched in [6,73], we show in Sect. 2.2 how to use a 2-user ring signature scheme
to build a DVS scheme: the ring used by the signer consists of the public keys
of themselves and the one designated verifier. There are several candidates for
post-quantum ring signatures whose properties we discuss in Sect. 2.2.

In a concurrent update to their work, Hashimoto et al. have shown the
reverse, i.e., constructing a ring signature scheme from a DVS scheme [47] (which
is the full version of [46]). Hence, in the 2-user case ring signatures and DVS are
equivalent under the security notions put forward in this paper.

Given this equivalence, observe that our core asynchronous DAKE protocol
(Fig. 2) is indeed similar to the second construction of [46]. While our construc-
tion sends the DVS signature as is, their construction employs a ring signature
that is masked with the output of a PRF evaluation.

Application to the Signal Handshake. We present a version of the Signal X3DH
handshake which we call SPQR—Signal in a Post-Quantum Regime—based on
our asynchronous DAKE design that uses KEMs and a designed verifier sig-
nature scheme. We show that the SPQR handshake achieves strong (“maximal-
exposure”) session key security in a variant of the security model of [21] covering
compromises of long- and medium-term keys and ephemeral randomness, as well
as deniability.

Outline of the Paper. Section 2 focuses on the security properties of designated
verifier schemes and how to construct these in a post-quantum setting, including
existing direct constructions as well as via ring signatures; the full version of this
paper [14] gives a discussion of our failed attempts at constructing DVS from
chameleon hash functions in an earlier version of this work. In Sect. 3 we present
a security model for key exchange that captures session key indistinguishability
with implicit mutual authentication and weak forward secrecy, as well as offline
deniability. In Sect. 4 we show that our core asynchronous deniable authenticated
key exchange protocol from Fig. 2 fulfills these security notions; in particular,
offline deniability is based on the source hiding property of the DVS scheme. In
Sect. 5 we introduce a complete post-quantum version of the Signal handshake
that extends our core protocol to include additional components present in the
Signal handshake (e.g., semi-static keys); we provide a security model and proof
of session key indistinguishability and deniability for the full protocol in the full
version [14]. In Sect. 6, we conclude with a discussion of the results and some
limitations.

1.4 Notation

To sample an element x uniformly at random from a set S (or a distribution on
an underlying set) we write x ←$ S. For deterministic algorithms A we denote
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by y ← A(x) the execution of A on input x with output y. Similarly, y ←$ A(x)
denotes the probabilistic execution of A, and y ← A(x; r) the deterministic exe-
cution of a probabilistic algorithm A with its random coins fixed to r. Adver-
saries are typically denoted by A and we write AOracle to indicate that A has
access to the oracle Oracle. Adversaries can have local quantum computation
power but their oracle access and outputs are still classical. For an integer n,
we denote by [n] the set {1, . . . , n}. Double square brackets �·� that enclose a
boolean statement return the bit 1 if the statement is true, and 0 otherwise.

2 Designated Verifier Signatures

Designated verifier signature (DVS) schemes were introduced by Jakobsson,
Sako, and Impagliazzo [49]. Their goal is for a signer to convince a chosen recip-
ient (the “designated verifier”) that a message is authentic but in such a way
that the designated verifier cannot convince any other party of the authenticity
of the message1. This property is typically modeled by requiring that the desig-
nated verifier can efficiently simulate signatures that are indistinguishable from
signatures produced by the signer.

Definition 1. A designated verifier signature scheme (DVS) is a tuple of algo-
rithms DVS = (SKGen,VKGen,Sign,Vrfy,Sim) along with a message space M.

– SKGen() $→ (pkS , skS): A probabilistic key generation algorithm that outputs
a public-/secret-key pair for the signer.

– VKGen() $→ (pkD, skD): A probabilistic key generation algorithm that outputs
a public-/secret-key pair for the verifier.

– Sign(skS , pkD,m) $→ σ: A probabilistic signing algorithm that uses a signer
secret key skS to produce a signature σ for a message m ∈ M for a designated
verifier with public key pkD.

– Vrfy(pkS , pkD,m, σ) → true/false: A deterministic verification algorithm that
checks a message m and signature σ against a signer public key pkS and
verifier public key pkD.

– Sim(pkS , skD,m) $→ σ: A probabilistic signature simulation algorithm that
uses the verifier’s secret key skD to produce a signature σ on message m
for signer public key pkS.

A DVS scheme DVS is correct, if, for any honestly generated key pairs
(pkS , skS), (pkD, skD) and every message m ∈ M, it holds that Pr[Vrfy(pkS ,
pkD,m,Sign(skS , pkD,m)) = true] = 1.

We follow Laguillaumie and Vergnaud [55] in defining separate key generation
algorithms for signers and designated verifiers; in some cases these two algorithms
may be identical.

1 In contrast, a strong DVS scheme allows only the designated verifier to verify a
signature by requiring the verifier’s secret key as input to the verification algorithm.
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Guf
DVS(A):

1 Q

2

∅
L ∅

3 (pkS , skS) $ DVS.SKGen()
4 (pkD, skD) $ DVS.VKGen()
5 for i ∈ [n]
6 (pki, ski) $ DVS.VKGen()
7 L L ∪ {(pki, ski)}
8 (m∗, σ∗) $ ASign(pkS , pkD, L)
9 d DVS.Vrfy(pkS , pkD, m∗, σ∗)

10 return d = true ∧ m∗ /∈ Q

Sign(pk, m):

11 if pk = pkD

12 Q Q ∪ {m}
13 else if (pk, ·) /∈ L
14 return ⊥
15 σ $ DVS.Sign(skS , pk, m)
16 return σ

Gsrchid
DVS (A):

1 (pkS , skS) $ DVS.SKGen()
2 (pkD, skD) $ DVS.VKGen()
3 b $ {0, 1}
4 b′

$ AChall(pkS , skS , pkD, skD)
5 return b′ = b

Chall(m):

6 if b = 0
7 σ $ DVS.Sign(skS , pkD, m)
8 else
9 σ $ DVS.Sim(pkS , skD, m)

10 return σ

Fig. 3. Unforgeability (top) and source hiding (bottom) of a designated verifier signa-
ture scheme DVS.

A long line of research has scrutinized the security of DVS schemes in different
settings, e.g. strong DVS schemes, including [16,25,49,55,59,74,77,84]. For the
purpose of this paper, it suffices to define the security notions of unforgeability
and source hiding. Unforgeability for DVS schemes is similar to that for standard
signature schemes, providing the adversary with a signing oracle and asking it
to forge a signature on a (fresh) message of its choice. Prior work restricts the
signing oracle to the challenge designated verifier key. In contrast, and to account
for settings where a signer’s key is used with many other users’ verifier keys (cf.
Sect. 4), we allow the adversary to pick the designated verifier key to be used in
the signing oracle from a set of additional, honestly generated key pairs.

Definition 2. A designated verifier signature scheme DVS is (t, ε, n,QS)-
unforgeable if, for any adversary A with running time at most t, having
access to n additional DVS verifier key pairs beyond the challenge keys, and
making at most QS queries to the Sign oracle, we have that AdvufDVS(A) =
Pr

[Guf
DVS(A) = 1

] ≤ ε, where Guf
DVS(A) is as in Fig. 3.

The second property we consider is called source hiding [55], demanding that
it should be infeasible for an adversary to determine whether a given signature
has been generated by the signer (using Sign) or by the designated verifier (using
Sim), even if the adversary learns the secret keys of both parties.

Definition 3. A designated verifier signature scheme DVS is (t, ε,QCh)-
source hiding if, for any adversary A with running time at most t and
making at most QCh to the Chall oracle, we have that AdvsrchidDVS (A) =∣
∣Pr

[Gsrchid
DVS (A) = 1

] − 1
2

∣
∣ ≤ ε, where Gsrchid

DVS (A) is defined in Fig. 3.
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The property of source hiding also appears under different terms in the lit-
erature such as the designated verifier property [49,74], non-transferability [77],
source deniable [40], untransferability [16], and recently off-the-record [25]. While
all these definitions share the intuition that the sender can blame another party
(in particular, the designated receiver) as the originator of a signature, they
vary in the adversary capabilities, i.e., whether the adversary is unbounded or
whether it gets access to the secret keys.

2.1 Post-quantum DVS Schemes: Prior Work

For this work, we are interested in DVS constructions that promise post-quantum
security. Despite the long line of research on DVS schemes, there are only a few
candidate post-quantum constructions available in the literature; furthermore,
most of those have not received much scrutiny in the mainstream cryptographic
literature. In the following, we summarize prior direct constructions before turn-
ing to generic constructions from ring signatures in Sect. 2.2.

An isogeny-based strong DVS scheme was proposed by Sun, Tian, and
Wang [78] which turned out to be insecure due to key reuse attacks identified
by Galbraith, Petit, Shani, and Ti [44].

Wang, Hu, and Wang [82] construct a strong DVS scheme directly from
lattice assumptions (LWE and SIS) by combining the Bonsai tree lattice trapdoor
of [19] with the GPV lattice-based signature scheme [45]; a subsequent paper of
theirs [83] extends this to the identity-based setting.

Noh and Jeong [68] improve on [82,83] by giving direct constructions from
lattices that can be proven without relying on random oracles; they do so by
replacing the random oracle with a chameleon hash function.

Li, Liu, and Yang [57] construct a universal DVS scheme directly from ideal
lattice assumptions (ring-SIS) by combining a ring version of the GPV signature
scheme [64] with a ring chameleon hash function [35] and adding a Fiat–Shamir-
with-aborts technique [62,63].

Zhang, Liu, Tang, and Tian [87] also give a universal DVS constructed
directly from SIS by adapting the Lyubashevsky signature scheme [63].

2.2 Building Post-quantum DVS Schemes from Ring Signatures

We now turn to building DVS schemes generically from ring signatures, show
which properties are required to obtain a post-quantum-secure instantiation and
evaluate several ring signature candidates. Our constructions draws from the idea
sketched in [6,73], with syntax and security closely following the exposition of
Bender, Katz, and Morselli [6].

Definition 4. A ring signature scheme is a tuple of algorithms Ring = (KGen,
Sign,Vrfy) along with a message space M.

– KGen() $→ (pk, sk): A probabilistic key generation algorithm that outputs a
public-/secret-key pair.
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– Sign(sks,m,R) $→ σ: A probabilistic signing algorithm that uses a secret key
sks to produce a signature σ for a message m ∈ M w.r.t. to a list of distinct
public keys R, where (pks, sks) is an honestly generated key pair and pks ∈ R.

– Vrfy(R,m, σ) → true/false: A deterministic verification algorithm that checks
a message m and signature σ against a ring R.

A 2-user ring signature is a ring signature fixed to rings of size 2. A ring signature
scheme Ring is correct, if, for honestly generated key pairs {(pki, ski)}n

i=1, any
s ∈ [n], and any message m ∈ M, it holds that Pr[Vrfy({pki}n

i=1,m,Sign(sks,m,
{(pki)}n

i=1)) = true] = 1.

The unforgeability and anonymity property we require for ring signatures
are subtly different from prior literature. Like in the unforgeability notion w.r.t.
insider corruption defined in [6], we consider an unforgeability adversary with
access to a corruption oracle Corr. However, our unforgeability adversary is
limited to rings consisting of honestly generated public keys for both its final
forgery as well as the queries to the signing oracle (like the unforgeability against
chosen-subring attacks defined in [6]). It is easy to see that unforgeability w.r.t.
insider corruption implies our unforgeability notion. Herranz [48] informally dis-
cusses a similar notion.

Definition 5. A ring signature scheme Ring is (t, ε, n,QS , QCo)-unforgeable
w.r.t. honest-ring insider corruption if, for any adversary A with running time
at most t, having access to n public keys, and making at most QS queries to the
Sign oracle and QCo queries to the Corr oracle, we have that AdvufRing(A) =

Pr
[
Guf
Ring(A) = 1

]
≤ ε, where Guf

Ring(A) is as in Fig. 4.

We consider an anonymity notion based on anonymity against full key expo-
sure [6]. The first difference is that we directly give all secret keys to the adversary
instead of providing a signing and a corruption oracle to the adversary, where the
latter in [6] returns the key generation randomness. The other difference is that
we parameterize the game in the number of queries QCh allowed to the challenge
oracle. As a result, anonymity against full key exposure implies our anonymity
notion with QCh = 1. Similarly, the anonymity notions of [60] and [39], where
the attacker has access to a key generation oracle, imply our anonymity notion
with QCh = 1.

Definition 6. A ring signature scheme Ring is (t, ε, n,QCh)-anonymous against
key exposure if, for any adversary A with running time at most t, having access
to n key pairs, and making at most QCh queries to the Chall oracle, we have
that AdvanonRing (A) = Pr

[
Ganon
Ring (A) = 1

]
≤ ε, where Ganon

Ring (A) is as in Fig. 4.

It is easy to see that one can transform any (t, ε, n, 1)-anonymous (as per
Definition 6) ring signature scheme into a (t, ε ·QCh, n,QCh)-anonymous scheme
via a hybrid argument.
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Guf
Ring(A):

1 QS

2 QCo

3

∅
∅

L ∅
4 for i ∈ [n]
5 (pki, ski) $ Ring.KGen()
6 L L ∪ {pki}
7 (R�, m�, σ�) $ ASign,Corr(L)
8 d1 Ring.Vrfy(R�, m�, σ�)
9 d2 (m�,R�) /∈ QS

10 d3 R� ⊆ L\QCo

11 return d1 ∧ d2 ∧ d3

Sign(s, m,R):

12 if pks /∈ R ∨ s /∈ [n] //sign wrt. honest key

13 return ⊥
14 if R L⊆	 //sign wrt. honest ring

15 return ⊥
16 QS QS ∪ {(m,R)}
17 σ $ Ring.Sign(skS , m,R)
18 return σ

Corr(i):

19 QCo QCo ∪ {pki}
20 return ski

Ganon
Ring (A):

1

2 for i ∈ [n]
3 (pki, ski) Ring.KGen()
4

L ∅

L L ∪ {(pki, ski)}
5 b $ {0, 1}
6 b′

$ AChall(L)
7 return b′ = b

Chall(m, i0, i1,R):

8 if {pki0 , pki1 ⊆	} R //challenge signers in ring

9 return ⊥
10 if {i0, i1 ⊆	} [n] //sign with honest keys only

11 return ⊥
12 σ $ Ring.Sign(skib , m,R)
13 return σ

Fig. 4. Unforgeability w.r.t. honest-ring insider corruption (top) and anonymity
against key exposure (bottom) of a ring signature scheme Ring. The latter game is
specialized for the ring size 2.

The Construction. Our construction, denoted RingDVS, is a straightforward
adaption of a 2-user ring signature Ring to the DVS setting as detailed in
Fig. 5. The security of the resulting DVS scheme hinges on the unforgeability
and anonymity of the ring signature as per Definitions 5 and 6.

Theorem 1 (Unforgeability of RingDVS). If Ring is a (t, ε, n+2, QS , QCo)-
unforgeable w.r.t. honest-ring insider corruption 2-user ring signature scheme,
then RingDVS defined in Fig. 5 is (t′, ε, n,QS)-existentially unforgeable under
chosen message attacks, with t′ ≈ t.

Proof. We reduce the existential unforgeability of RingDVS to the unforgeability
w.r.t. honest-ring insider corruption of Ring.

Initialization of A. The adversary B against unforgeability of the ring signa-
ture receives as input a list L of honestly generated public keys {pki}n+2

i=1 .
Next, B corrupts all keys except the first two via its Corr oracle. It sets the
first two public keys as challenge keys for A as pkS ← pk1 and pkD ← pk2.
(Observe that we choose these two indices wlog. for easier bookkeeping.) The
reduction then initializes the adversary A against unforgeability of the DVS
on input (pkS , pkD, {(pki, ski)}n+2

i=3 ).
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RingDVS.SKGen():

1 (pkS , skS) $ Ring.KGen()
2 return (pkS , skS)

RingDVS.VKGen():

3 (pkD, skD) $ Ring.KGen()
4 return (pkD, skD)

RingDVS.Sign(skS , pkD, m):

5 return Ring.Sign(skS , m, {pkS , pkD})
RingDVS.Sim(pkS , skD, m):

6 return Ring.Sign(skD, m, {pkS , pkD})
RingDVS.Vrfy(pkS , pkD, m, σ):

7 return Ring.Vrfy( pkS , pkD , m, σ)

Fig. 5. Designated-verifier signature scheme RingDVS = RingDVS[Ring] constructed
from a 2-user ring signature scheme Ring.

Queries to Sign. Queries of A to the Sign oracle are of the form (pk,m). If pk
is not one of the honestly generated keys that the reduction gave to A, return
⊥. For each query, B queries its own signing oracle on (1,m, {pk1, pk}) and
returns the answer directly to A. If pk = pk2, record m in Q.

Existential Forgery. At some point, A outputs a DVS forgery (m∗, σ∗) wrt.
pkS and pkD. The reduction outputs (m∗, σ∗, pk1, pk2) as its own forgery.

The reduction soundly simulates the unforgeability game against RingDVS.
It simulates the signing oracle truthfully by using its own signing oracle.

If A outputs a valid DVS forgery wrt. sender key pkS = pk1 and verifier
key pkD = pk2, the output of B is a valid ring forgery wrt. the ring {pk1, pk2}
by construction of RingDVS. Furthermore, since m /∈ Q, A has not queried its
Sign oracle on m and pkD. Thus, the message-ring pair (m, {pk1, pk2}) was not
queried by B to its oracle either. Lastly, the forgery is wrt. the keys {pk1, pk2},
which B did not corrupt. Hence, all winning conditions for the ring unforgeability
game are met.

The running time t of B is dominated by the running time t′ of A and we
write t ≈ t′; simulating the signing oracle and querying the corruption oracle n
times are not expensive. If A outputs a successful DVS forgery with probability
ε, then B is able to produce a valid ring forgery with the same probability. �	
Theorem 2 (Source hiding of RingDVS). If Ring is a (t, ε, n,QCh)-
anonymous against key exposure 2-user ring signature for n ≥ 2, then RingDVS
as shown in Fig. 5 is (t′, ε, QCh)-source hiding, with t′ ≈ t.

Proof. We reduce the source hiding of RingDVS to the anonymity against key
exposure of Ring.

Initialization of A. The adversary B against anonymity of the ring signature
receives as input a list of honestly generated key pairs {(pki, ski)}n

i=1. It
sets the first two public keys as challenge keys for A as pkS ← pk1 and
pkD ← pk2. The reduction then initializes the source hiding adversary A on
input (skS , pkS , skD, pkD).

Queries to Chall. A’s queries to the Chall oracle are of the form m. For each
of the QCh queries, B forwards the query to its own Chall oracle as (m, 1,
2, {pk1, pk2}) and returns the answer it gets directly to A.
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Output. When A outputs its guess b′, the reduction outputs b′.

The reduction soundly simulates the source hiding game against RingDVS for
A. The runtime of B is essentially the runtime of A plus the runtime to forward
the challenge queries and responses and we write t ≈ t′.

Adversary A distinguishing between outputs of RingDVS.Sign and
RingDVS.Sim amounts to distinguishing between Ring signatures under the two
signing keys sk1 and sk2 in the ring {pk1, pk2}. Hence, B inherits A’s winning
probability ε. �	

Implications and the Inverse Direction. Our construction above estab-
lishes that DVS schemes with the security properties needed for this work (i.e.,
unforgeability and source hiding) can be generically constructed from 2-user ring
signatures that provide unforgeability w.r.t. honest-ring insider corruption and
anonymity against key exposure. We note that the latter security properties are
weaker than those put forward by Bender, Katz, and Morselli [6].

Hashimoto et al. have recently shown in the full version of their work [47]
that it is indeed possible to construct also the reverse direction (in contrast to an
earlier statement of ours). For their construction each ring member has a signer
key pair and a designated verifier key pair. In the signing procedure, depending
on the lexicographical order of the signer public keys either DVS.Sign or DVS.Sim
is executed generating a ring signature. Verification follows analogously.

Post-quantum Ring Signature Candidates. Several post-quantum ring sig-
nature schemes were suggested in the literature. In the following, we list a selec-
tion of schemes having concrete instantiations and report on the signature sizes
and other practical parameters provided in the corresponding works to illustrate
their practicality. All schemes except Raptor (listed first) come with security
proofs for unforgeability and anonymity definitions that imply our notions.

Lu, Au, and Zhang [61] introduce Raptor, which uses a chameleon hash
function based on the NIST finalist FALCON [71], producing signatures of size
approximately 5 KB for a 2-user ring. However, they argue that the best-known
attack is inefficient instead of proving unforgeability and anonymity.

Yuen, Esgin, Liu, Au, and Ding [85] propose DualRing-LB (which is a lattice-
based instantiation of their generic construction DualRing) with a signature size
of 4.4 KB for rings of size 2. They prove anonymity (against full key exposure) of
their scheme under a slightly different notion, where only the first-stage attacker
has access to a signing oracle and only the second-stage attacker gets the ran-
domness used in creating all keys (i.e., access to the secret keys).

The following two schemes use zero-knowledge proofs based on symmetric
primitives, akin to the NIST alternate candidate Picnic [86]: Derler, Ramacher,
and Slamanig [28] provide a scheme using NIZK proofs and accumulators. For
their smallest reported ring size 25, signatures can have a size of 719 KB. Katz,
Kolesnikov, and Wang [51] use NIZKPoK with the MPC-in-the-head paradigm.
For their smallest ring size 27, signing takes 2 s and produces signatures of size
285 KB.
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In terms of lattice-based constructions, a series of works [37–39] by Esgin
et al. provide constructions relying on the hardness of M-LWE and M-SIS. The
most recent candidate has a signature size of 18 KB for a 2-user ring. A construc-
tion by Lyubashevsky, Nguyen, and Seiler [65] relies on (variants of) M-LWE and
M-SIS and their smallest signature for rings of size 25 is 16 KB. Beullens, Kat-
sumata, and Pintore [7] introduce Falafl that also relies on M-LWE and M-SIS
and produces signatures of size 29 KB in less than 100 ms.

Sheikhi-Garjan, Kiliç, and Cenk [76] recently presented an isogeny-based ring
signature in which signing and verifying scale in the product nq of the ring size
n and isogeny security parameter q.

3 Security Model for Asynchronous Deniable Key
Exchange

From a formal perspective, an asynchronous authenticated key exchange protocol
is just a traditional authenticated key exchange protocol with a specific type of
message flow. In particular, asynchronicity allows one party to post pre-key
bundles containing long-term and possibly ephemeral public keys, provided that
they can be constructed without knowing the intended partner. We will formalize
security for this setting based on a Bellare–Rogaway-type model [3] with implicit
authentication and (weak) forward secrecy using post-specified peers [18,53]. The
model presented in this section is simplified to deal with basic Bellare–Rogaway-
type security with only long-term keys; in the full version [14] we present a
more granular model that accommodates the complex characteristics found in
the Signal protocol handshake, including semi-static keys and stronger security
against maximal exposure.

Parties and Sessions. Let P be the set of np parties, each of whom has a long-
term public-key/secret-key pair generated by an algorithm KGenLT. Each party
may run multiple instances of the protocol simultaneously or sequentially, each
of which is called a session. The ith session at party P is denoted πi

P . For each
session, the party maintains the following collection of session-specific informa-
tion:

– oid ∈ P: The identity of the session owner.
– pid ∈ P ∪ {�}: The identity of the intended peer, which may initially be

unknown (indicated by �).
– role ∈ {initiator, responder}: The role of the party.
– stexec ∈ {⊥, running, accepted, rejected}: The status of this session’s execution.
– sid ∈ {0, 1}∗ ∪ {⊥}: A session identifier defining partnering.
– cid ∈ {0, 1}∗ ∪ {⊥}: A contributive identifier, defining a preliminary form of

partnering (often as a substring or prefix of the session identifier) for the case
the session is not yet bound to an authenticated peer [34].

– K ∈ KKE ∪ {⊥}: The session key established in this session.
– Any additional protocol-specific data used during execution.
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Protocol Specification. A 2-party key exchange protocol consists of the following
algorithms:

– KGenLT() $→ (pk, sk): A probabilistic long-term key generation algorithm
that outputs a public-key/secret-key pair.

– Run(sk,pk , π,m) $→ (π′,m′): A probabilistic session execution algorithm
that takes as input a party’s long-term secret key sk, a list of long-term
public keys for all honest parties pk , a session state π, and an incoming
message m, and outputs an updated session state π′ and a (possibly empty)
outgoing message m′. To set up the session sending the first message, Run is
called with a distinguished message m = create.

In a deniable key exchange protocol, we will demand the existence of an addi-
tional algorithm:

– Fake(pkU , skV ) $→ (K,T): A probabilistic transcript simulation algorithm
that takes as input one party’s public key and the other party’s secret key
and generates a session key K and a transcript T of a protocol interaction
between them.

Asynchronous Key Exchange. In principle, a key exchange protocol can have an
arbitrary number of message flows, which correspond to multiple calls to Run
for a single session. In normal execution of an asynchronous authenticated key
exchange protocol, the following three calls to Run occur: 1) a call to Run at
the responder (Bob)2 with m = create, which sets up the responder session and
outputs the responder’s pre-key bundle, including an ephemeral public key; 2)
a call to Run at the initiator with the responder’s pre-key bundle (long-term
public and ephemeral public keys) which generates a session key and outputs a
key exchange message; and 3) a call to Run at the responder with the initiator’s
long-term public key and key exchange message which generates a session key
and has no output message.

Partnering. Two sessions πi
U and πj

V are said to be partners if they agree on
the session identifier (πi

U .sid = πj
V .sid). An honest partner session is a partner

session that is honest, i.e., not under adversarial control.

Session Key Indistinguishability. The first security property we want of an
authenticated key exchange protocol is indistinguishability of session keys. At
the start of the security experiment, long-term public-key/secret-key pairs are
generated for all np honest parties and the public keys pk are provided to the
adversary, as well as a random challenge bit btest fixed for the duration of the
experiment. The adversary is then able to interact with honest parties via the
following queries:
2 Note that we call Bob the responder in our model despite Bob outputting the first,

asynchronous key exchange message. Based on the high-level protocol interaction,
we deem it more natural to call Alice, who decides to initiate a Signal session with
Bob, the initiator (in contrast to, e.g., [21,79,80]).
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– Send(U, i,m): Sends message m to session πi
U , which corresponds to exe-

cuting Run(skU ,pk , πi
U ,m), saving the updated session state π′ as πi

U , and
returning the outgoing message m′ to the adversary.

– CorruptLTKey(U): Returns party U ’s long-term secret key skU to the
adversary.

– RevealSessKey(U, i): If session πi
U has accepted, return its session key πi

U .K
to the adversary.

– Test(U, i): If the Test query has been called before or session πi
U has not

accepted, then return ⊥. Otherwise, if btest = 0, return πi
U .K, otherwise return

an element of KKE chosen uniformly at random. Record π∗ ← πi
U .

The test session π∗ = πi∗
U∗ is called fresh if the following all hold:

1. RevealSessKey(U∗, i∗) was never called.
2. RevealSessKey(V, j) was never called for any V, j such that π∗.sid = πj

V .sid.
3. Either

(a) there exists an honest partner session π∗
p (π∗

p .sid = π∗.sid if π∗ is a respon-
der, and π∗

p .cid = π∗.cid if π∗ is an initiator), covering weak forward
secrecy, or

(b) CorruptLTKey(π∗.oid) and CorruptLTKey(π∗.pid) were never
called, covering implicit authentication.

At the end of the experiment, the adversary outputs a bit b′. The adversary
is said to win if b′ = btest and the test session π∗ is fresh. Formally, if the
test session is fresh, the experiment outputs 1 if b′ = btest and 0 otherwise; if
the test session is not fresh, then the experiment outputs a random bit. The
adversary’s advantage in the key indistinguishability game is the absolute value
of the difference between 1

2 and the probability that the experiment outputs 1.

Deniability. The second security property we want is deniability. At the start of
this experiment, long-term public-key/secret-key pairs are generated for all np

honest parties and the public and secret keys are provided to the adversary. A
random challenge bit b is fixed for the duration of the experiment. The adver-
sary is given repeated access to a Chall oracle which takes as input two party
identifiers U and V . If b is 0, then Chall will generate an honest transcript of
an interaction between U and V using the Run algorithm and each party’s secret
keys. If b is 1, then Chall will generate a simulated transcript of an interaction
between U and V using the Fake algorithm. At the end of the experiment, the
adversary outputs a guess b′ of b. The experiment outputs 1 if b′ = b and 0 oth-
erwise. The adversary’s advantage in the deniability game is the absolute value
of the difference between 1

2 and the probability the experiment outputs 1.
There are several prior works giving definitions of offline deniability for key

exchange [23,24,29,79,80]. Our definition differs from previous ones threefold:
Firstly, the challenge oracle executes Run on behalf of the framing party, i.e., we
consider semi-honest adversaries only. Secondly, the Fake algorithm (correspond-
ing to the simulator in simulation-based definitions) has access to the receiver’s
secret key. Thirdly, the adversary (the judge in simulation-based settings) has
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access to all secret keys. This restricts the deniability to semi-honest adversaries
and 1-out-of-2 (one needs a secret key of either party to create a transcript) but
lifts us to the so-called big brother setting. The strong point of this deniability
notion is that you get some deniability guarantees even against strong judges,
who know all secret keys. This models the informal deniability requirement from
the Signal specification [67, §4.4]. See the full version [14] for a more detailed
discussion.

4 Security of the Core Protocol

We now show that our core protocol Π from Fig. 2 achieves the security prop-
erties defined in Sect. 3. Key indistinguishability of Π depends on the IND-CCA
security of the two KEMs, the unforgeability of the DVS, and the security of the
KDF; deniability of Π depends on the source hiding of the DVS. Both proofs
are in the standard model.

To formally capture Π in the security model of Sect. 3, we need to specify a
few more details:

– Alice takes the initiator role, Bob the responder role.
– The transcript in Fig. 2 corresponds to the session identifier and consists of

the parties’ identities and long-term public keys, the responder’s ephemeral
public key, and the KEM ciphertexts; the contributive identifier corresponds
to the pre-key bundle part of the transcript, received by Alice from Bob:

transcript = sid = (A,B, pkDVS
A , pkKEM

B , pkDVS
B , epkKEM

B , c1, c2),

cid = (B, pkKEM
B , pkDVS

B , epkKEM
B ).

Note that the session identifier does not include the DVS signature itself to
avoid that the latter needs to be non-malleable (akin to strong unforgeability
of regular signatures) [58].

4.1 Key Indistinguishability

Theorem 3 (Key indistinguishability of Π). Let DVS be a (t, εDVS, np,
QS)–unforgeable DVS scheme, KEM1 be a (t, εKEM1 , ns)–IND-CCA-secure KEM,
KEM2 be a (t, εKEM2 , 1)–IND-CCA-secure KEM, and KDF be a (t, εKDF, ns)–PRF-
secure key derivation function when keyed through either of the key compo-
nents K1 and K2. Then the asynchronous DAKE protocol Π from Fig. 2 pro-
vides key indistinguishability (as defined in Sect. 3) in that the advantage ε′ of
any adversary A running in time t′ ≈ t is upper bounded as

ε′ ≤ ns ·
⎛

⎝
ns · (

εKEM2 + εKDF
)

+np · (
εKEM1 + εKDF

)

+n2
p · (

εDVS + ns · (εKEM2 + εKDF)
)

⎞

⎠ ,

where ns ≤ QSnd is the maximum number of sessions (upper bounded by the
number QSnd of Send queries) and np the number of parties.
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Proof. We proceed via a sequence of game hops starting from the key indistin-
guishability game for an adversary A. We bound the difference between each
hop until we reach a game where the adversary’s advantage is 0.

Game 0. The initial key indistinguishability game, denoted G0, letting ε′ :=
AdvG0

ADAKE(A) = |Pr[G0 = 1] − 1
2 |.

Game 1 (Guess test session π∗). We first guess the tested session π∗ and
“invalidate” the game by overwriting the adversary’s bit guess with 0 if the
adversary calls Test on a different session. Guessing among the ns many ses-
sions (where ns is at most the number QSnd of calls to the Send oracle),
AdvG0

ADAKE(A) ≤ ns · AdvG1
ADAKE(A).

For the remaining proof, we distinguish the following three cases for the test
session being fresh:

A. There exists an honest partner session π∗
p (π∗

p .sid = π∗.sid if π∗ is a responder,
and π∗

p .cid = π∗.cid if π∗ is an initiator).
B. The tested session is an initiator (“Alice”) session and CorruptLTKey(π∗.pid)

was never called.3

C. The tested session is a responder (“Bob”) session and neither
CorruptLTKey(π∗.oid) nor CorruptLTKey(π∗.pid) was ever called.4

Treating theses cases as events in G1, and writing G1[X] to indicate that event X
occurs, by the union bound we have:

AdvG1
ADAKE(A) ≤ Adv

G1[A]
ADAKE(A) + Adv

G1[B]
ADAKE(A) + Adv

G1[C]
ADAKE(A).

Case A (Honest partner). In the first proof case, there exists a session π∗
p

that agrees with the tested session π∗ on the responder’s ephemeral KEM public
key epkKEM used. We will leverage this to embed a challenge into the ephemeral
KEM ciphertext c2.

Game A.1 (Guess partnered session). We first guess a session π∗
p which

is partnered via sid (if π∗ is a responder) or cid (if π∗ is an initiator) to the
test session π∗, and let the adversary lose if the guess is incorrect. By this case’s
prerequisites, (at least) one partner session exists and is guessed with probability
at least 1/ns, hence Adv

G1[A]
ADAKE(A) ≤ ns · AdvGA.1

ADAKE(A).

Game A.2 (Ephemeral KEM). We now replace the KEM key K2 with a
random key K̃2 in π∗ and also in π∗

p (unless the latter is a responder and receives
a different ciphertext c2 than sent by π∗).

3 This is slightly stronger than what freshness condition 3 (b) demands. In the security
result for our full SPQR protocol (see Sect. 5), this is captured more precisely.

4 In our full SPQR protocol (see Sect. 5), we will strengthen this case by having
Bob use semi-static DVS keys. This limits the time window for a key-compromise
impersonation (KCI) attack [8] against Bob, as in the Signal handshake [67, §4.6].
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We bound the difference introduced by this step through a reduction to the
IND-CCA security of the KEM2 scheme, which simulates GA.1 truthfully except for
the following changes and runs in time t ≈ t′. It embeds the obtained challenge
public key pk into the ephemeral KEM public key epk of the responder session
among π∗ and π∗

p , the challenge ciphertext c∗ as c2 of the initiator session (among
π∗ and π∗

p), and the challenge (real-or-random) key K∗
b ) as K2 into both π∗ and

π∗
p . If π∗ is an initiator session, it uses its Decaps oracle (at most once, i.e.,

QD ≤ 1) to decrypt a potentially different ciphertext c′
2 �= c2 = c∗ received

by π∗
p . Depending on the IND-CCA KEM challenge bit, the reduction perfectly

simulates GA.1 or GA.2, hence AdvGA.1
ADAKE(A) ≤ εKEM2 + AdvGA.2

ADAKE(A).

Game A.3 (KDF). We finally replace the key derivation function KDF in both
π∗ and π∗

p (in the latter only if it uses K̃2) with a random function, in particular
replacing the session key K of π∗ with a randomly sampled key K̃.

We bound the introduced advantage difference via a reduction to the pseudo-
randomness of the key derivation function KDF, treated as a PRF keyed through
the second key component K2 and taking (K1, transcript) as label. The reduc-
tion runs in time t ≈ t′ and simulates Game GA.2 truthfully, except that it
does not sample K̃2 itself but instead uses its oracle PRFChallenge to com-
pute the session key values derived from K̃2. It calls its oracle at most twice,
once for π∗ and possibly once for π∗

p on a different label, hence QPRF ≤ ns.
Depending on whether its oracle output is the true KDF evaluation or that
of a random function, the reduction perfectly simulates GA.2 or GA.3, thus
AdvGA.2

ADAKE(A) ≤ εKDF + AdvGA.3
ADAKE(A).

In Game GA.3, the challenge key Ktest for π∗ is a uniformly random key,
independent of btest. Furthermore, by the first two freshness conditions, A cannot
reveal Ktest via a RevealSessKey query on π∗ or any partnered session who
might hold the same key. Thus, in GA.3, A cannot do better than guessing, leaving
it with advantage AdvGA.3

ADAKE(A) = 0.

Case B (Initiator tested, peer uncorrupted). In the second proof case, we
have that the tested initiator session π∗ has an uncorrupted intended peer. We
will leverage this to embed a challenge into the static KEM ciphertext c1.

Game B.1 (Guess responder identity). We first guess the test session’s
intended peer, V = π∗.pid, among the np many parties in the game and let the
adversary lose if we guess incorrectly. This reduces the adversary’s advantage by
a factor at most np: Adv

G1[B]
ADAKE(A) ≤ np · AdvGB.1

ADAKE(A).

Game B.2 (Static KEM). We can now replace the KEM key K1 in π∗ (and
any responder session of V receiving the same ciphertext c1) with a random
key K̃1.

We bound the advantage difference introduced by this step through a reduc-
tion to the IND-CCA security of the KEM1 scheme. The reduction runs in
time t ≈ t′ and simulates GB.1 truthfully, but embeds the obtained challenge
public key pk as V ’s public KEM key pkKEM

V at the outset of the game. It further
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embeds the challenge ciphertext c∗ as c1 sent by π∗ and the challenge (real-or-
random) key K∗

b ) as K1 into π∗ (and any responder session of V receiving c∗).
The reduction uses the Decaps oracle to decapsulate any ciphertexts c1 �= c∗

received by sessions of V (calling the oracle at most ns times), and never has
to respond to CorruptLTKey(V ) queries as otherwise π∗ would not be fresh.
Depending on the IND-CCA KEM challenge bit, the reduction perfectly simulates
GB.1 or GB.2, hence AdvGB.1

ADAKE(A) ≤ εKEM1 + AdvGB.2
ADAKE(A).

Game B.3 (KDF). We finally replace the key derivation function KDF in π∗

(and any other session using K̃1) with a random function, in particular replacing
the session key K of π∗ with a randomly sampled key K̃.

Analogous to Game GA.3, we can bound the introduced advantage difference
by the pseudorandomness of KDF when keyed through the first key compo-
nent K1 and taking (K2, transcript) as label. The challenge static KEM key K̃1

may possibly be decapsulated in many responder sessions of V , who use distinct
transcript labels unless they are partnered with π∗; the PRF reduction, running
in time t ≈ t′, may hence make up to ns queries to its PRFChallenge oracle.
Simulating either of the two games in the reduction, we get AdvGB.2

ADAKE(A) ≤
εKDF + AdvGB.3

ADAKE(A).
Here, the challenge key Ktest for π∗ is uniformly random and independent, as

only partnered sessions will use the same transcript label to derive their session
keys, but for π∗ to be fresh those cannot be revealed. Thus AdvGB.3

ADAKE(A) = 0.

Case C (Responder tested, both parties uncorrupted). In the final proof
case, we know that the tested responder session π∗ has an uncorrupted intended
peer. We will leverage this to ensure that there is a partnered initiator session
(which signed the transcript) and then embed a challenge into the ephemeral
KEM ciphertext c2 between these two sessions.

Game C.1 (Guess initiator and responder identities). We first guess the
(responder) test session’s owner V = π∗.oid and intended (initiator) peer U =
π∗.pid among the np many parties in the game and “invalidate” the game (over-
writing A’s bit guess by 0) if we guess incorrectly. Guessing both parties induces
a quadratic loss in np: Adv

G1[C]
ADAKE(A) ≤ n2

p · AdvGC.1
ADAKE(A).

Game C.2 (Signature unforgeability). We now “invalidate” the game (over-
writing A’s bit guess by 0) if the test session π∗ accepts a DVS signature σ on
a transcript that no session of U has issued.

We bound this event by a reduction against the existential unforgeability
of DVS, running in time t ≈ t′ and simulating GC.1 with the following modifi-
cation: Instead of generating parties’ DVS keys itself, the reduction embeds the
unforgeability game’s challenge public keys as pkU = pkS and pkV = pkD, and
assigns the additional DVS public-secret key pairs from the unforgeability game’s
list L to the remaining parties. (Note that the reduction obtains the secret keys
for the latter keys, allowing it to fully simulate those parties.) The reduction
uses its signing oracle to compute signatures under pkU = pkS (and for any peer
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public key pk). As U and V remain uncorrupted in this proof case, the reduc-
tion never has to answer a CorruptLTKey(U) or CorruptLTKey(V ) query.
In the case that π∗ receives a valid DVS transcript-signature pair (transcript,
σ) that no session of U sent (and hence transcript was not queried to the DVS
Sign oracle), the reduction outputs this pair as its forgery and wins. Therefore,
AdvGC.1

ADAKE(A) ≤ εDVS + AdvGC.2
ADAKE(A).

Game C.3 (Guess partnered session). As of GC.2, we know that π∗ receives
a DVS signature on a transcript value transcript = π∗.sid sent by some session
of U . We now guess this (sid-partnered) session π∗

p (among the ns many sessions)
and, invalidating the game (overwriting A’s bit guess by 0) upon wrong guess,
get AdvGC.2

ADAKE(A) ≤ ns · AdvGC.3
ADAKE(A).

Game C.4 (Ephemeral KEM). We next replace the KEM key K2 with a
random key K̃2 in π∗ and π∗

p .
As in Game GA.2, we bound the introduced advantage difference by the

IND-CCA security of the KEM2 scheme. The reduction runs in time t ≈ t′,
embeds the challenge pk and c∗ into π∗’s ephemeral KEM public key, resp.
π∗
p ’s c2 ciphertext, and uses the challenge key K∗

b in place of K2 in both ses-
sions. It does not need to use its Decaps oracle (i.e., QD = 0), since pk
is not used in another session and we are at this point guaranteed that π∗

receives π∗
p ’s ephemeral ciphertext. (So in fact we only need IND-CPA security

of KEM2 here.) The reduction simulates the difference between GC.3 and GC.4, so
AdvGC.3

ADAKE(A) ≤ εKEM2 + AdvGC.4
ADAKE(A).

Game C.5 (KDF). In the final game hop, we replace KDF in both π∗ and
π∗
p with a random function, replacing the session key K of π∗ with a randomly

sampled key K̃.
As in Game GA.3, this is bounded by the pseudorandomness of KDF with

key K2 and label (K1, transcript). Due to π∗ and π∗
p agreeing on the transcript

input to KDF, the corresponding reduction only makes one query, QPRF = 1 ≤
ns, running in time t ≈ t′. Simulating the game difference through this reduction,
we get AdvGC.4

ADAKE(A) ≤ εKDF + AdvGC.5
ADAKE(A).

This completes the last proof case, as the challenge key Ktest for π∗ is now
uniformly random and independent (beyond partnered sessions), leaving A with
advantage AdvGC.5

ADAKE(A) = 0. �	

4.2 Deniability

Observe that we use a different deniability notion compared to prior works as dis-
cussed in Sect. 3. A more thorough discussion of the different deniability notions
can be found in the full version [14]. In consequence, we can forgo the strong
knowledge assumptions that both [46,81] used to prove deniability of X3DH and
their own construction, respectively. We conjecture that either construction can
likewise be shown to be deniable wrt. our definition without strong knowledge
assumptions.
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Theorem 4 (Deniability of Π). Let DVS = (SKGen,VKGen,Sign,Vrfy,Sim)
be a (t, εsrchid, QCh)-source hiding DVS scheme. Then the asynchronous DAKE
protocol Π from Fig. 2 provides deniability (as defined in Sect. 3) in that the
advantage ε′ of any adversary A running in time t′ ≈ t and making up to QCh

challenge queries is upper bounded as ε′ ≤ n2
p · εsrchid, where np is the number of

parties.

Proof. The proof follows by a standard hybrid argument. Let A be a successful
adversary against deniability of Π, then we can construct a reduction B against
the source hiding property of DVS. Observe that B computes for each of the np

parties a long-term key pair. It randomly guesses the identifiers of two parties
iid∗, rid∗ ∈ [np] for which A can distinguish between Run and Fake. Let a number
i ∈ [n2

p] uniquely denote two independent values iid, rid in a query (e.g., encoded
as (iid − 1) · np + rid) and let i∗ ∈ [n2

p] denote the specific guess iid∗, rid∗ of B.
For party iid∗, B replaces the sampled long-term key with its challenge key pair
(pkS , skS) and similarly it replaces for party rid∗ with (pkD, skD).

In case A makes a query i for 1 ≤ i < i∗, then B answers as if b = 0, i.e.,
it runs DVS.Sign. For all i∗ < i ≤ n2

p, if A makes a query, then B answers as
if b = 1, i.e., it runs DVS.Sim. If A queries i = i∗, then B passes it to its own
oracle. In all cases B returns the transcript and the session key K to A. Finally,
when A returns its guess bit b′, B returns b′ as its guess.

Observe that B faithfully simulates the deniability game for A. Moreover,
the runtime of B is essentially the runtime of A plus the runtime to generate the
keys and answer the oracle queries.

Now we analyze the winning probability of A against deniability. For this, we
define the hybrids H0, . . . , Hn2

p
with Hi being the hybrid that answers all chal-

lenge queries for indices 1, . . . , i with Run and the challenge queries for indices
i+1, . . . , n2

p with Fake. The extreme hybrids are Hn2
p
, which answers all the chal-

lenge queries with Run, and H0, which answers all queries with Fake. Observe
that Hi−1 and Hi only differ in an execution of Run or Fake. Hence, the prob-
ability of distinguishing between Hi−1 and Hi is bounded by εsrchid. Since there
are n2

p many hybrids, we overall obtain that A’s probability of winning the deni-
ability game is bounded by ε′ ≤ n2

p · εsrchid. �	

5 Signal in a Post-quantum Regime

We now extend our core protocol Π from Fig. 2 to capture all the characteristics
of the Signal handshake. The core protocol already captures implicit mutual
authentication, forward secrecy, offline deniability, and asynchronicity. Signal’s
X3DH has a few more subtle aspects and security features to consider, which
we address in our extended asynchronous DAKE protocol: SPQR (Signal in a
Post-Quantum Regime), depicted in Fig. 6.

Semi-static Keys. In Signal, asynchronicity is facilitated by a central, untrusted
server which stores the users’ pre-key bundles. To enable multiple users to asyn-
chronously contact some responder user, say Bob, the latter uploads multiple
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KGenLT():

(pkKEM, skKEM) $ KEM1.KGen()
(pkDVS, skDVS) $ DVS.SKGen()
tk $ tPRF.KGen()
pk (pkKEM, pkDVS)

sk (skKEM, skDVS, tk)
return (pk, sk)

KGenSS():

(sspkKEM, ssskKEM) $ KEM2.KGen()
(sspkDVS, ssskDVS) $ DVS.VKGen()
sspk (sspkKEM, sspkDVS)

sssk (ssskKEM, ssskDVS)
return (sspk, sssk)

KGenEP():
return (epk, esk) $ KEM3.KGen()

Alice BobSignal Server

Initiator Registration Responder Registration

(pkA, skA) $ KGenLT() (pkB , skB) $ KGenLT()
(sspkB , ssskB) $ KGenSS()

Responder Ephemeral Key Generation

(epkB , eskB) $ KGenEP()Send Pre-Key Bundle to Initiator

B, pkB , sspkB , epkB

define: cid := (B, pkB , sspkB , epkB)

define: sid := (A, B, pkA, pkB , sspkB , epkB , n, c1, c2, c3)

Initiator Key Agreement and Protocol Message Responder Key Agreement (on input m)

(skKEM
A , skDVS

A , tkA) skA (skKEM
B , skDVS

B , tkB) skB

(ssskKEM
B , ssskDVS

B ) ssskB

(pkKEM
B , pkDVS

B ) pkB (pkKEM
A , pkDVS

A ) pkA

(sspkKEM
B , sspkDVS

B ) sspkB (sspkKEM
B , sspkDVS

B ) sspkB

(n, r) $ {0, 1}λ × RtPRF if DVS.Vrfy(pkDVS
A , sspkDVS

B , sid, σ) = false
r1‖r2‖r3‖r4 tPRF(tkA, r) return (⊥, ⊥, rejected, ⊥)

(K1, c1) KEM1.Encaps(pkKEM
B ; r1) K1 KEM1.Decaps(skKEM

B , c1)

(K2, c2) KEM2.Encaps(sspkKEM
B ; r2) K2 KEM2.Decaps(ssskKEM

B , c2)
if epkB �= ⊥ if eskB �= ⊥

(K3, c3) KEM3.Encaps(epkB ; r3) K3 KEM3.Decaps(eskB , c3)

else (K3, c3) (ε, ε) else (K3, c3) (ε, ε)

ms K1‖K2‖K3 ms K1‖K2‖K3

σ DVS.Sign(skDVS
A , sspkDVS

B , sid; r4)
K KDF(ms, sid) K KDF(ms, sid)

m (A, pkA, n, c1, c2, c3, σ)

return (K, sid, accepted, m) return (K, sid, accepted, ε)

m = (A, pkA, n, c1, c2, c3, σ)

Responder Fake transcript

run Responder Ephemeral Key Generation, and Initiator Key Agreement with a modified random-
ness sampling and DVS generation:
(K1, c1) $ KEM1.Encaps(pkKEM

B )

(K2, c2) $ KEM2.Encaps(sspkKEM
B )

if epkB �= ⊥ (K3, c3) $ KEM3.Encaps(epkB)
else (K3, c3) (ε, ε)

σ $ DVS.Sim(ssskDVS
B , pkDVS

A , sid)
K KDF(ms, sid)
return (K, m = (B, pkB , sspkB , epkB , A, pkA, n, c1, c2, c3, σ))

Fig. 6. The SPQR protocol (top: key generation, middle: protocol flow, bottom: fake
transcript generation), combining static, semi-static and ephemeral key encapsulation
schemes KEM1, KEM2, and KEM3, a designated verifier signature DVS, and a twisted
pseudorandom function tPRF.
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ephemeral public pre-keys to the Signal server, of which one is handed to any
initiator session that wants to contact Bob (along with the other pre-key bundle
elements) and then deleted from the Signal server.

Bob will periodically upload new ephemeral pre-keys; however, if Bob has
been offline for a long time, those pre-keys may run out. Therefore, the Sig-
nal protocol also includes a semi-static key in user pre-key bundles, and always
includes key derivations based on that semi-static key. If the Signal server runs
out of ephemeral pre-keys, the corresponding key share is not derived and
left out; in that case the semi-static key share still provides delayed forward
secrecy [13]. We capture this similarly in SPQR by encapsulating a key-ciphertext
pair (K3, c3) against Bob’s ephemeral KEM public key epkB only if the latter is
present.

Maximal-Exposure Security. Signal aims for very strong security guarantees,
considering beyond long-term and session key compromise and also compromise
of semi-static and ephemeral keys (via the randomness of sessions) [17,21,56].
We model this in an accordingly strong key exchange model and prove that
SPQR achieves equivalent security in the post-quantum setting as Signal does
in the classical setting in the full version [14]. In particular, we show that ses-
sion keys remain secret, as long as any of the (Alice–Bob) secret combinations
ephemeral–ephemeral, ephemeral–semi-static, ephemeral–long-term, and long-
term–semi-static are uncompromised. Secrecy from the first three is straightfor-
wardly achieved via encapsulations against the corresponding ephemeral, semi-
static, and long-term KEM keys of Bob. To achieve secrecy from the last one
(i.e., when all initiator randomness is compromised), beyond relying on the DVS
scheme for initiator authentication, we apply a NAXOS-like [56] trick to extract
randomness from Alice’s long-term secrets via a twisted PRF [42,54]. Twisted
PRFs can be generically instantiated from regular PRFs (see full version [14])
and yield output indistinguishable from random as long as a session’s long-term
secret or randomness is uncompromised.

Our formal security results establishing key indistinguishability and deni-
ability for SPQR are as follows; see the full version [14] for the game-based
formalizations of key indistinguishability and deniability as well as for the full
proof details expanding beyond the core ideas from Sect. 4.

Theorem 5 (Key indistinguishability of SPQR). Let DVS be a (t, εDVS,
np · nss , QS)–unforgeable DVS scheme.

Let KEM1 be a (t, εKEM1 , ns)–IND-CCA-secure KEM, KEM2 be a (t, εKEM2 ,
ns)–IND-CCA-secure KEM, KEM3 be a (t, εKEM3 , 1)–IND-CCA-secure KEM with
randomness space RKEM3 , and δcorr be the maximal correctness error among
KEM1, KEM2, and KEM3.

Let KDF be a (t, εKDF, ns)–PRF-secure key derivation function when keyed
through any key component K1, K2, K3, and tPRF a (t, εtPRF, ns)-secure twisted
pseudorandom function with label space RtPRF.
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Then the SPQR protocol with randomness space RKE = {0, 1}λ × RtPRF ×
RKEM3 as shown in Fig. 6 provides (t′, ε′, (QSnd, QCorrLT , QCorrSS , QRevR,
QRevSK))–key indistinguishability (formalized in the full version) for t ≈ t′ and

ε′ ≤ n2
s

2λ
+

n2
s

2|RtPRF| +
n2

s

2|RKEM3 | + 3ns · δcorr

+ ns · n2
p ·

(
nss · (

εDVS + 2ns · (εtPRF + εKEM2 + εKDF)
)

+ns · (
2εtPRF + εKEM1 + εKEM3 + 2εKDF

)
)

,

where ns ≤ QSnd is the maximum number of sessions (upper bounded by the
number QSnd of Send queries), np the number of parties, and nss the number
of semi-static keys per party.

Theorem 6 (Deniability of SPQR). If DVS is a (t, εsrchid, QCh)-source hiding
designated verifier signature and tPRF is a (t, εtPRF, QCh)-pseudorandom func-
tion, then the SPQR protocol as shown in Fig. 6 is (t′, ε′, Q′

Ch)-deniable, where
t′ ≈ t, ε′ ≤ n2

pnss · εsrchid + npQCh · εtPRF, where np is the number of parties and
nss the number of semi-static keys per party, and Q′

Ch = QCh.

6 Discussion and Limitations

Our protocols demonstrate that designated verifier signatures are helpful for con-
structing practical AKE protocols with constraints on the message flow (asyn-
chronicity) and with specialized security properties (deniability).

The key ingredient in our approach for achieving post-quantum asynchronous
DAKE is a post-quantum designated verifier signature scheme. While there are
several lattice-based DVS schemes in the literature as described in Sect. 2.1,
we believe that their security merits further scrutiny before adoption. In the
meantime, we propose instantiations via 2-user ring signatures, for which we
discussed post-quantum candidates in Sect. 2.2.

We believe SPQR is a good start as a PQ replacement for the Signal X3DH
handshake, but in any real-world protocol deployment there are many subtleties,
some of which we now highlight.

The way Signal is used in practice has the semi-static keys signed under the
long-term key. In SPQR the long-term key is not suitable for this purpose, so
an additional long-term signing key might have to be introduced solely for the
purposes of signing the other keys; note this could be done without undermin-
ing deniability. This characteristic was likewise not considered in the provable
security analysis of Signal of [21].

SPQR is solely a replacement for the initial handshake (X3DH). A fully post-
quantum Signal would require quantum-resistance in the ratcheting and message
encryption; fortunately there are several generic treatments of ratcheting [1,5,
70].

As Signal does not use certificates or a PKI, long-term public keys must be
manually authenticated out-of-band, and that remains the case with SPQR.
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Our analysis of SPQR considers randomness exposure, but not malicious
randomness. The latter has been captured for ratcheting [1], but not yet in the
initial handshake. Our security analysis shows that SPQR, as an authenticated
key exchange protocol, has offline deniability. As discussed in the full version,
we think that our deniability notion is the best one can hope for if the adversary
has access to the secret keys. We leave formally proving this as future work.

Cryptographic deniability should be treated with caution. How cryptogra-
phers understand deniability may be different from how a judge in a legal sys-
tem understands it [79]. Additionally, there are stronger notions of deniabil-
ity [33] that SPQR (and the Signal handshake) does not achieve, such as if one
party maliciously generates messages or colludes in real-time with the judge. One
should further confirm deniability at all protocol levels, and that deniability of
individual components composes appropriately. Despite all these subtleties, steps
toward deniability are helpful, as Unger and Goldberg write [79]: “we should
strive to design deniable protocols to avoid unintentionally incriminating users.”
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Abstract. Authenticated Key Exchange (AKE) is a cryptographic pro-
tocol to share a common session key among multiple parties. Usually,
PKI-based AKE schemes are designed to guarantee secrecy of the ses-
sion key and mutual authentication. However, in practice, there are many
cases where mutual authentication is undesirable such as in anonymous
networks like Tor and Riffle, or difficult to achieve due to the certifi-
cate management at the user level such as the Internet. Goldberg et al.
formulated a model of anonymous one-sided AKE which guarantees the
anonymity of the client by allowing only the client to authenticate the
server, and proposed a concrete scheme. However, existing anonymous
one-sided AKE schemes are only known to be secure in the random
oracle model. In this paper, we propose generic constructions of anony-
mous one-sided AKE in the random oracle model and in the standard
model, respectively. Our constructions allow us to construct the first
post-quantum anonymous one-sided AKE scheme from isogenies in the
standard model.

Keywords: authenticated key exchange · one-sided secure ·
anonymity · post-quantum · isogenies

1 Introduction

Authenticated Key Exchange (AKE) is a cryptographic protocol to share a com-
mon session key among multiple parties through an unauthenticated channel
such as the Internet. In ordinary PKI-based AKE, each party locally keeps its
own static secret key (SSK) and issues a static public key (SPK) corresponding
to the SSK. The validity of the SPK is guaranteed by a certificate issued by
the certification authority. In a key exchange session, each party generates an
ephemeral secret key (ESK) and sends an ephemeral public key (EPK) corre-
sponding to the ESK to the other party. The session key is derived from these
keys and the key derivation function. Ordinary AKE is intended for session key
secrecy and mutual authentication, and provable security is formulated by secu-
rity models such as CK model [8] and eCK model [34].
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On the other hand, there are situations that the mutual authentication is
undesirable such as anonymous networks like Tor [14] and Riffle [33]. In addi-
tion, in HTTPS transactions, it is common for an unauthenticated client to
communicate with an authenticated server. In these cases, it is desirable for the
client to be anonymous, and the mutual authentication is not necessary. The
ordinary security models of AKE cannot cover such one-sided authentication
and anonymity.

Anonymous one-sided AKE (OS-AKE) is a cryptographic protocol which
guarantees the anonymity of the client with the one-sided authentication. In
OS-AKE, there are a client and a server, and only the server locally keeps a
SSK and publishes a certified SPK. In a key exchange session, both the client
and the server generate ESK and EPK to share a common session key. Since the
client does not have any static secret, OS-AKE is AKE without authentication
to the client. Also, in OS-AKE, it is required that the client and the server can
generate ESK/EPK in offline (i.e., before starting a session). Goldberg et al.
[24] formulated a security model for OS-AKE (GSU model). The GSU model
captures the anonymity of clients and exposure resilience for non-trivial leakage
patterns, and they proposed a concrete scheme satisfying their model.

One of main objectives of this paper is to construct post-quantum OS-
AKE because known OS-AKE schemes in the GSU model are not (fully) post-
quantum.

1.1 Related Work

One-Sided AKE. The notion of one-sided AKE has been studied in many
literatures. For example, to capture the security of SSL/TLS, various flavors
of security models [12,13,15,23,29,31,32,38] are introduced. In these models,
the application to the setting of anonymous networks is not considered and the
anonymity is not focused.

Anonymous AKE. The notion of anonymous AKE has been studied in con-
texts of the symmetric key (including password) setting [1,3,35,44] or the group
setting [10,42]. These models cannot be simply applied to (asymmetric key-based
client-server) one-sided AKE.

OS-AKE. There are three existing OS-AKE schemes secure in the GSU model
or its variant: ntor [24] by Goldberg et al., Ace [6] by Backes et al., and Hybri-
dOR [22] by Ghosh and Kate. These schemes are based on Diffie-Hellman (DH)
problems, and HybridOR is also based on lattices. There are three problems in
these schemes. First, these schemes are proved in the random oracle model. Ran-
dom oracles do not exist, and cannot always be instantiated by real hash func-
tions. Indeed, Canetti et al. [7] show that there are primitives which are secure
in the random oracle model but insecure if random oracles are instantiated by
real hash functions. Second, Ace and HybridOR are not proved to be secure in
the original GSU model. The security of these schemes is guaranteed under an
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weaker freshness setting [6] than the original one. Finally, though these schemes
use MAC for explicit authentication, implicit authentication is enough to satisfy
the GSU model. Thus, removing such a MAC can make OS-AKE schemes be
more simple and efficient. For more details of the security of existing schemes,
please see Sect. 4.

Isogeny-Based AKE. Recently, many post-quantum AKE schemes are pro-
posed from isogenies. Isogeny-based AKE schemes are classified into two set-
tings: SIDH-based [26] and CSIDH-based [9]. There are several SIDH-based AKE
schemes [19,21,36] from specific SIDH-related assumptions. Also, some generic
constructions [17,25,43] of AKE can be instantiated from SIDH-based KEM.
On the other hand, CSIDH-based AKE schemes [20,27,28] are also proposed.
However, there is no known isogeny-based OS-AKE scheme.

1.2 Our Contribution

In this paper, we achieve the first post-quantum OS-AKE scheme without ran-
dom oracles. Specifically, we propose a generic construction (GC-Std) for OS-
AKE secure in the GSU model in the standard model from an IND-CCA secure
KEM and an IND-CPA secure KEM with public-key-independent-ciphertext
(PKIC-KEM) [45]. PKIC-KEM allows that a ciphertext can be generated inde-
pendently from the public key, and a KEM session key can be generated with
the ciphertext, the public key and randomness in generating the ciphertext. By
instantiating GC-Std with CSIDH-based KEM schemes, we can obtain CSIDH-
based anonymous OS-AKE in the standard model. Moreover, we also propose
a generic construction (GC-RO) for OS-AKE secure in the GSU model in the
random oracle model from an OW-CCA secure KEM and an OW-CPA secure
PKIC-KEM.

Compared with existing DH-based OS-AKE schemes [6,24], an instantiation
of GC-Std with DH-based KEM is secure in the standard model though existing
schemes are secure in the random oracle model. For the DH-based instantiations,
please see Sect. 6.

Also, the existing (partially) post-quantum OS-AKE scheme [22] is secure in
the weaker model than the GSU model, and its post-quantum security is guaran-
teed only in a partial adversarial scenario. On the other hand, an instantiation
of our generic constructions with isogeny-based KEM schemes guarantees the
security in the original GSU model and is fully post-quantum for any adversar-
ial scenario. For the isogeny-based instantiations, please see Sect. 7.

1.3 Key Technique

We start from the FSXY generic construction [18] of AKE (with the mutual
authentication) from KEM (see Fig. 3). Since a difference between AKE and OS-
AKE is static keys for clients, it seems that the FSXY construction removing
static keys for clients works as OS-AKE. However, there are several problems in
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such a strategy. The eCK security model [34] and CK+ security model [18,30]
for AKE allow leakage of the ESK of the target session, and the TPRF trick [18]
and the NAXOS trick [34] are known as techniques to guarantee security against
such leakage. However, since the client does not have the SSK in OS-AKE such
tricks cannot be used in the client side. Hence, we need another solution to prove
the security.

We focus on the definition of session freshness in the GSU model. Since the
secrecy of the session key is trivially broken if all secret values of the client
are revealed, the adversary cannot reveal at least a secret value of the client.
Thus, if there is only one ESK used at the client side, there is no need to
consider leakage at the client side. However, the FSXY construction uses two
types of KEMs, and two randomness are necessary as ESKs. Our solution is to
generate two types of randomness from an ESK with a pseudo-random function
(PRF), and generate the ciphertext of each KEM from these output values of
the PRF as randomness. Then, by erasing the two randomness used to generate
the ciphertexts after sending the ciphertexts, the client only keeps single ESK.
Therefore, the number of secret values used in our scheme is one on the client
side (ESK) and two on the server side (ESK, SSK), and thus we only need to
consider the case where (1) the SSK on the server side is revealed and (2) the
ESK on the server side is revealed.

There is another problem to be solved. In the GSU model, both the client
and the server need to be able to generate EPKs offline (i.e., before starting
a session). However, in the FSXY construction, the server cannot generate a
ciphertext of KEM in advance because it depends on the session-specifically
generated public key sent from the client. We solve this problem by using PKIC-
KEM. Since, in PKIC-KEM, the ciphertext can be generated independently from
the public key, the server can generate the ciphertext offline. Finally, for reducing
the computational cost of the client, we reverse procedures of the client and the
server to generate such a ciphertext (i.e., the client generates the ciphertext of
PKIC-KEM). For more details, please see Sect. 5.1.

2 Security Model for OS-AKE

In this section, we introduce the GSU security model [24] by Goldberg et al. Their
model consists of the definitions of OS-AKE security and OS-anonymity, which
cover the secrecy of session keys in one-sided authentication and the anonymity
of clients, respectively.

As the notation, x ∈R X denotes that the element x is sampled uniformly
random from the set X.

2.1 System Model and Adversarial Capacity

Parties, Key Pairs, and Certificates. Parties are modeled as probabilis-
tic polynomial-time Turing machines. Each party is activated by receiving an
initialization message, and returns a message defined by the protocol.
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A key pair that each party keeps is denoted in the form (x,X), where x is the
secret value and X is the public value. The key pair includes, for example, the
private key and public key in public key cryptography, and the ciphertext and
the randomness used for encryption. There are two types of key pairs: ephemeral
key pairs that are used in a specific session and static key pairs that are used
through all sessions.

Each server owns a certificate certX = (IDS ,X) that combines a public value
X and a identifier IDS as SPK, and uses it for the server authentication. When
a party owns the secret value x corresponding to the public value X, the party
is said to be the owner of the public value X.

Protocol and Sessions. Each execution of the protocol is called a session,
and each session has a session identifier sid assigned to the party, where each
sid must be unique within the party. Each session is associated with a session
state containing intermediate values, and the session state of sid by party UP is
denoted by MP

state[sid]. If a session sid is executed within a party, the party is
called the owner of sid. Also, if the owner of a session completes the session by
computing the session key sk, the session is called a completed session.

Session Execution. When the session sid in which party UP is the owner is
completed, the ephemeral key pair (x,X) used in the session is deleted, and UP

outputs ⊥ or (sk, pid,�v) as the output MP
out[sid] of the session, where sk is the

session key in the keyspace SK, pid is the peer’s identifier or anonymous symbol
“�”, Each vector �vi in �v = (�v0, �v1, ...) is a vector of the public values of the
static and the ephemeral keys used in the session. For example, �v1 is a set of
values consisting of the public values sent by party U1. By including the public
values used as part of the output, each session can be uniquely determined. If
necessary, we use the notation MP

out[sid].sk to denote the session key of session
sid. Other output values are denoted in the same way.

Adversary. Let params be a public parameter. The adversary A is modeled as a
probabilistic polynomial-time Turing machine, which takes params as input and
has oracle access to parties P1, . . . , Pn. A controls all communication between
users including session activation. A can interfere in party UP to execute a
specific action using the following adversary’s queries.

– Send(params, pid) → (sid,msg): Let a party activate a session. The party
activates a new session and returns a message according to the protocol. The
input value params is defined by the protocol and includes the following. (1)
the protocol to be executed, (2) the certificate used by the party to authenti-
cate itself if the party is a server, (3) the certificate used by the peer pid in the
session. The pid is the identifier of the intended peer establishing the session.
When the session is intended to be with an unauthenticated anonymous peer,
the pid is a special symbol “�”.
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– Send(sid,msg) → msg′: The party executes the session sid with msg and
returns the message msg′ according to the protocol.

– RevealNext → X: A obtains a public value that is precomputed offline. The
party generates a new key pair (x,X), records it as unused, and returns the
public value X.

– Partner(X) → x: A obtains the secret value x corresponding to the public
value X used in the session. If the key pair (x,X) is recorded in the party’s
memory, it returns the secret value x.

– SessionKeyReveal(sid) → sk: A obtains the session key of sid. It returns the
session key MP

out[sid].sk of sid if the session is completed.

In addition, A can generate public keys and certificates using the following
query.

– EstablishCertificate(IDi,X): A registers a certificate containing the public
value X of an unused identifier IDi to all parties. A becomes the owner
of the certificate as IDi. If a party is registered by this query, we call the
party dishonest, otherwise we call it honest.

Where necessary to avoid ambiguity, we use the superscript to indicate the
party to whom the query is posed, such as SendPi(sid,msg).

Partnering. Unless a value X is the input of a Send query or the output of a
RevealNext query to party Pi, and has not issued a Partner query to Pi, then the
adversary A is called a partner of X. If a party generates a key pair (x,X) by a
query from A or by executing a session, we call the party a partner of X. Also,
If different public values X and X ′ are corresponding to the same secret value
x, then if A is a partner of X, then A is also considered to be a partner of X ′.

Correctness. If a two-party key exchange protocol Π satisfies the following
conditions, Π is said to be correct.

– The adversary A relays all messages in the protocol running between the two
parties without any modification.

– If a party is activated with a Send query with pid �= �, it will have the correct
certificate for pid.

– Both parties output the same session key sk and the same vector �v.
– The value pid in the output of each party matches the pid in the Send query

that was used to activate the party.

2.2 One-Sided AKE Security

For defining OS-AKE security, we need the notion of freshness.

Definition 1 (Freshness). If the following conditions are satisfied, the session
sid by party Pi is said to be OS-AKE fresh.
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1. For each vector �vj in MPi
out, there is at least one public value X in �vj such

that A is not a partner, where j ≥ 1.
2. A does not issue a SessionKeyReveal(sid) query to any party Pj, where Pj

is the owner of the certificate of MPi
out[sid].pid such that it is MPi

out[sid].�v =
M

Pj

out[sid].�v.

The goal of the adversary A in the OS-AKE security game is to distinguish
between the true session key and a random key. Initially, A is given a set of
honest parties, and makes any sequence of the queries described above. During
the experiment, A makes the following query.

– Test(i, sid∗) → SK: Here, sid∗ must be OS-AKE fresh. If MPi
out[sid∗].sk =⊥

or MPi
out[sid∗].pid = �, an error symbol is returned. Otherwise, it chooses

b ∈R {0, 1}. If b = 0, then it returns MPi
out[sid∗].sk. Otherwise, it returns a

random element of SK. This query can be issued only once.

Since OS-AKE provides the one-sided authentication, the test session sid∗ is
only for the session of client-side that performs the authentication to the server.
The adversary A obtains either the session key of sid∗ or a random key with
probability 1/2 respectively. After issuing the Test query, the game continues
until A outputs b′ as a result of guessing whether the received key is random
or not. If sid∗ is OS-AKE fresh by the end and the guess of A is correct (i.e.,
b = b′), then it defines A wins the game.

Definition 2 (One-sided AKE security). The advantage of the adversary A
in the above game with the OS-AKE protocol Π is defined as follows.

AdvOS−AKE
Π,κ (A) = Pr[b = b′] − 1/2

Let κ be a security parameter. For all probabilistic polynomial-time adver-
saries A, Π is one-sided AKE-secure if AdvOS−AKE

Π,κ is negligible in κ.

Remark 1. Due to the RevealNext query, this model requires offline generation of
ephemeral keys. Hence, the secret values may be stored in different locations for
each generation. For example, a static key is stored in the database, an ephemeral
key used for offline generation is stored in the storage, and another ephemeral
key used for online generation is stored in the cache. In order to cover such a case,
the leakage of each secret value is considered in OS-AKE fresh (Definition 1).

Remark 2. As described in the second condition of the Definition 1, the tar-
get session to be tested is the session in which sid matches between the two
parties and the server’s SSK can be revealed. Thus, the model captures weak
forward secrecy which the adversary who does not modify the messages in the
target session cannot break the security even if SSK is revealed. It also captures
the adversarial arbitrary key registrant because of the EstablishCertificate query,
which allow the adversary to establish a new party with registering an arbitrary
certified keys. Furthermore, it also captures the known-key security because of
the SessionKeyReveal query, which no information about the session key of the
target session is revealed if other session keys are revealed.
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2.3 One-Sided Anonymity

The goal of the adversary A in the OS-anonymity game is to distinguish which
of the two clients is participating in the session. Here, instead of A querying
directly to the target party, the challenger C relays its communication. A gives
the indices i0 and i1 of the parties it is the target to identify to C. C chooses
i∗ ∈R {i0, i1} randomly and relays the message between A and Pi∗ . A guesses i∗.

In the game, in addition to the normal queries, A can issue the following
special queries to C. The first two queries are for the activation and the commu-
nication of the target session.

– StartC(i0, i1, params, pid) → msg′: If i0 = i1, an error symbol is returned.
Otherwise, it sets i∗ ∈R {i0, i1}, and it poses SendPi∗ (params, pid) → (sid∗,
msg′). Then it returns msg′. This query can be issued only once.

– SendC(msg) → msg′: It poses SendPi∗ (sid∗,msg) → msg′ and returns msg′.

The other queries that A can query to C are to leak information about the
target session sid∗.

– RevealNextC → X: It queries RevealNextPi∗ and returns the public value,
under restriction that the returned public value is not used in any session other
than the target session, and the public value generated by the adversary’s
direct queries to RevealNextPi∗ is not used in the target session.

– SessionKeyRevealC() → sk: It poses SessionKeyRevealPi∗ (sid∗) and returns the
session key sk.

– PartnerC → x: It poses PartnerPi∗ (X) and returns the secret value x, where
X is the value returned by the SendC query.

Definition 3 (One-sided anonymity). Let κ be a security parameter and n ≥
1. For all probabilistic polynomial-time adversaries A, the protocol Π is one-sided
anonymous if the advantage AdvOS−anon

Π,κ (A) = Pr[i∗ = i′] − 1/2 of A wins the
following game is negligible in κ.

– ExptOS−anon
Π,κ,n (A):

• Initialize params and parties P1, . . . , Pn.
• Sets i′ ← AP1,...,Pn,C(params).
• Suppose that A poses a StartC(i0, i1, params, pid) query and the chal-

lenger C chooses i∗. If i∗ = i′ and the query of A satisfies the following
restrictions, then A wins the game.

* There is no SessionKeyReveal(sid∗) query to Pi0 nor Pi1 .
* There is no Partner(X) query to Pi0 nor Pi1 for any public value X

returned by C.
* There is no Send(sid∗, ·) query to Pi0 nor Pi1 .
* Both Pi0 and Pi1 had the same certificate for pid during the run of

the protocol for sid∗.
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The restrictions in Definition 3 are to prevent A from knowing Pi∗ trivially
by obtaining information about the target session. For example, if i∗ = i0,
then the SessionKeyRevealPi0 (sid∗) query returns the true session key, and the
SessionKeyRevealPi1 (sid∗) query returns ⊥ because Pi1 is not participating in
sid∗. Therefore, A can determine i∗ = i0 trivially. Thus, the main restrictions in
the OS-anonymity game are that queries for Pi0 and Pi1 must be posed through
the challenger C, and the public values used in the target session must not be
used in any other session.

3 Building Blocks

3.1 Key Encapsulation Mechanism (KEM)

In this section, we shows the definition for KEM.

Definition 4 (KEM). KEM consist of algorithms (KeyGen,EnCap,DeCap) as
follows.

– (ek, dk) ← KeyGen(1κ; rg): The key generation algorithm takes 1κ and rg ∈
RSG as input and outputs a key pair of public and private key (ek, dk), where
κ is a security parameter and RSG is the randomness space of the key gen-
eration algorithm.

– (K,C) ← EnCap(ek; re): The encapsulation algorithm takes the public key
ek and re ∈ RSE as input and outputs the session key K ∈ KS and the
ciphertext C ∈ CS, where RSE is the randomness space of the encapsulation
algorithm, KS is the session key space, and CS is the ciphertext space.

– K ← DeCap(dk,C): The decapsulation algorithm takes the secret key dk and
the ciphertext C ∈ CS as input and outputs the session key K ∈ KS.

Here, for any κ ∈ N, any public and private key (ek, dk) ← KeyGen(1κ; rg),
and any session key and ciphertext (K,C) ← EnCap(ek; re), it is satisfied that
K ← DeCap(dk,C).

The definition of security for KEM is as follows.

Definition 5 (IND-CCA security for KEM). For any probabilistic poly-
nomial time adversary A = (A1,A2), the KEM scheme is IND-CCA secure
if the advantage Advind−cca

KEM,κ = |Pr[(ek, dk) ← KeyGen(1κ; rg); state ←
AO

1 (ek); b ←R {0, 1}; (K∗
0 , C∗

0 ) ← EnCap(ek; re);K∗
1 ∈R KS; b

′ ←
AO

2 (ek, (K∗
b , C∗

0 ), state); b
′
= b]−1/2| is negligible in κ, where O is the decryption

oracle.

Definition 6 (OW-CCA security for KEM). For any probabilistic polyno-
mial time adversary A = (A1,A2), the KEM scheme is OW-CCA secure if the
advantage Advow−cca

KEM,κ = |Pr[(ek, dk) ← KeyGen(1κ; rg); state ← AO
1 (ek); (K∗,

C∗) ← EnCap(ek; re);K
′∗ ← AO

2 (ek, C∗, state);K
′∗ = K∗]| is negligible in κ,

where O is the decryption oracle.
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A KEM scheme is a κ-min-entropy KEM if for any secret key, the distribution
DKS for K defined by (K,C) ← EnCap(ek; re), the distribution Dpub for public
information, and a randomness re ∈ RE , it holds that H∞(DKS |Dpub) ≥ κ.
Here, H∞ denotes the min-entropy function.

3.2 PKIC-KEM

In this section, we show the definition of PKIC-KEM [45] that can generate the
ciphertext independently to the public key.

Definition 7 (PKIC-KEM). PKIC-KEM consist of algorithms
(wKeyGen,wEnCapC,wEnCapK,wDeCap) as follows.

– (ek, dk) ← wKeyGen(1κ; rg): The key generation algorithm takes 1κ and
rg ∈ RSG as input and outputs a key pair of public and private key (ek, dk),
where κ is a security parameter and RSG is the randomness space of the key
generation algorithm.

– C ← wEnCapC(re): The ciphertext generation algorithm takes re ∈ RSE as
input and outputs a ciphertext C ∈ CS, where RSE is the randomness space
of the encapsulation algorithm and CS is the ciphertext space.

– K ← wEnCapK(ek, C, re): The encapsulation algorithm takes the public key
ek, the ciphertext C ∈ CS and a randomness re ∈ RSE as input, and outputs
the session key K ∈ KS, where KS is the session key space.

– K ← DeCap(dk,C): The decapsulation algorithm takes the secret key dk and
the ciphertext C ∈ CS as input and outputs the session key K ∈ KS.

For any κ ∈ N, any public and private key (ek, dk) ← wKeyGen(1κ; rg), and
any ciphertext C ← wEnCapC(re), it is satisfied that K ← wEnCapK(ek, C, re)
and K ← wDeCap(dk,C).

The definition of security for PKIC-KEM is as follows.

Definition 8 (IND-CPA security for PKIC-KEM). For any probabilistic
polynomial time adversary A = (A1,A2), the PKIC-KEM scheme is IND-CPA
secure if the advantage Advind−cpa

PKIC−KEM,κ = |Pr[(ek, dk) ← wKeyGen(1κ; rg);
state ← A1(ek); b ←R {0, 1};C∗

0 ← wEnCapC(re);K∗
0 ← wEnCapK(ek, C∗

0 , re);
K∗

1 ∈R KS; b
′ ← A2(ek, (K∗

b , C∗
0 ), state); b

′
= b] − 1/2| is negligible in κ.

Definition 9 (OW-CPA security for PKIC-KEM). For any probabilistic
polynomial time adversary A = (A1,A2), the PKIC-KEM scheme is OW-CPA
secure if the advantage Advow−cpa

PKIC−KEM,κ = |Pr[(ek, dk) ← wKeyGen(1κ; rg);
state ← A1(ek);C∗ ← wEnCapC(re);K∗ ← wEnCapK(ek, C∗, re);K

′∗ ← A2(ek,
C∗, state);K

′∗ = K∗]| is negligible in κ.

Also, the κ-min-entropy of PKIC-KEM can be defined in the same way as
KEM.
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Fig. 1. Overview of Ace

Fig. 2. Overview of HybridOR

3.3 Pseudo-Random Function

We show the definition of Pseudo-Random Function (PRF). Let κ be a security
parameter and F = {Fκ : Domκ × FSκ → Rngκ}κ be a function family with
a family of domains {Domκ}κ, a family of key spaces {FSκ}κ and a family of
ranges {Rngκ}κ.

Definition 10 (Pseudo-Random Function). We say that function family
F = {Fκ}κ is a PRF family if for any probabilistic polynomial time distinguisher
D, AdvPRF = |Pr[1 ← DFκ(·,k)] − Pr[1 ← DRFκ(·)]| ≤ negl, where RFκ : Domκ

→ Rngκ is a truly random function.

3.4 Key-Derivation Function

Let κ be a security parameter and KDF : Salt × Dom → Rng be a function
with finite domain Dom, finite range Rng, and a space of non-secret random
salt Salt.

Definition 11 (Key-Derivation Function). We say that function KDF is a
KDF if the following condition holds for a security parameter κ. For any proba-
bilistic polynomial time adversary A and any distribution DDom over Dom with
H∞(DDom) ≥ κ, |Pr[y ∈R Rng, s ∈R Salt; 1 ← A(s, y)] − Pr[x ∈R Dom; s ∈R

Salt; y ← KDF(s, x); 1 ← A(s, y)]| ≤ negl.
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4 Security of Ace and HybridOR in GSU Model

In this section, we revisit the security of existing OS-AKE schemes. While
ntor [24] is proved in the GSU model, other two schemes Ace [6] and Hybri-
dOR [22] are proved in an weaker model. Specifically, the security of Ace and
HybridOR are proved under an weaker freshness setting [6] than the original one.
The weak freshness is called the double value freshness, and it requires that if
the client and the server has two secret values (I1, I2) and (J1, J2) respectively,
then the adversary cannot reveal (I1, J2) or (I2, J1). In the OS-AKE freshness
in the GSU model, the adversary is allowed to reveal such secret values. Hence,
the model that Ace and HybridOR are proved is weaker than the GSU model.
Here, we show the definition of the double value freshness.

Definition 12 (Double value freshness [6]). We say that a session is double
value OS-AKE fresh if it is OS-AKE fresh and the following condition does not
hold.

If �vi is (I1, I2) and �vj is (J1, J2), A is not a partner of (I1, J2) nor (I2, J1).

We show that Ace is not secure in the GSU model. An overview of Ace is
shown in Fig. 1, where G is the exponent group and H is a random oracle. It uses
two ESKs x1 and x2 on the client side, and a SSK b and an ESK y on the server
side. By the OS-AKE freshness definition of the GSU model, the adversary can
reveal (x2, b) or (x1, y). For example, If (x2, b) is revealed, the adversary can
compute the session key as follows.

1. Obtain (x2, b) by Partner queries.
2. Obtain the EPKs (gx1 , gx2 , gy) from the communication channel.
3. Compute the session key SK ← H((gx1)b · (gy)x2 , gx1 , gx2 , gy, gb,Ace).

Next, we show that HybridOR is not secure in the GSU model. An overview
of HybridOR is shown in Fig. 2, where fR(·) is a robust extractor, hR(·) is a
randomized algorithm used to generate the signal value α, X is the error dis-
tribution of the ring-LWE problem, and H1 and H2 are random oracles. It uses
two ESKs (rC , eC) and x on the client side, and a SSK s and an ESK (eS , e′

S)
on the server side. By the OS-AKE freshness definition of the GSU model, the
adversary can reveal ((rC , eC), s) or (x, (rS , e

′
S)). For example, If ((rC , eC), s) is

revealed, the adversary can compute the session key as follows.

1. Obtain ((rC , eC), s) by Partner queries..
2. Obtain the EPKs (gx, pC , pS , α) from the communication channel.
3. Compute the session key as follows.

(a) k1C ← pSrC + teC

(b) k1 = fR(k1C , α)
(c) k2 = (gx)s

(d) SK ← H1(k1, pC , pS) ⊕ H2(k2, gx, gs)

Therefore, Ace and HybridOR are insecure in the GSU model.

Remark 3. By applying our technique of using a single randomness to produce
two randomness via PRFs to these schemes, we can obtain secure schemes in
the GSU model.
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Fig. 3. FSXY-based OS-AKE scheme

5 Our Generic Constructions

In this section, we propose two generic constructions of OS-AKE from KEM
in the standard model (GC-Std) and the random oracle model (GC-RO). GC-
Std is based on IND-CCA secure KEM and IND-CPA secure PKIC-KEM, and
GC-RO is based on OW-CCA secure KEM and OW-CPA secure PKIC-KEM.
Our constructions are secure in the GSU model. The protocols of GC-Std and
GC-RO are shown in Fig. 4 and 5, respectively.

5.1 Construction Idea

As discussed in Sect. 1.3, our generic construction are based on the FSXY
construction [18] which is CK+ secure AKE scheme. Since a client does not
have any static keys in OS-AKE, we show a naive FSXY-based OS-AKE pro-
tocol in Fig. 3 by simply removing static keys and related computations of
the client, where (KeyGen,EnCap,DeCap) is an IND-CCA secure KEM and
(wKeyGen,wEnCap,wDeCap) is an IND-CPA secure KEM. The CK+ secu-
rity model allows leakage of the ephemeral key of the test session, and the
TPRF trick is used to guarantee security against such a leakage such that
rST ← F(rS , σS)⊕F′(σ′

S , r′
S). Naturally, OS-AKE provides the one-sided authen-

tication and clients that need to guarantee anonymity cannot have the static key
pairs, and thus the TPRF trick is not available on the client side. Furthermore,
though all ESKs (rC , rTC) are revealed at once by a query to the client in the
CK+ model and the freshness definition prohibits leakage of ESKs if there is
no SSK, the Partner query in the GSU model reveals the secret value x for the
public value X and the OS-AKE freshness definition allows leakage of one of
ESKs. For example, the session key can be computed if the adversary reveals an
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ESK rTC of the client and the SSK dkS of the server (such a leakage is allowed
in the GSU model) because the adversary can compute dkT from rTC and then
can decrypt both CC and CT . Therefore, it is not trivial to construct OS-AKE
secure scheme from the FSXY construction.

Also, in the GSU model, for RevealNext queries, the ephemeral keys used by
both parties in each session must be able to be generated offline in advance. On
the other hand, in the FSXY-based construction, the server needs to generate the
EPK after receiving the client’s message, and thus the IND-CPA secure KEM is
not sufficient for OS-AKE.

For the problem on leakage in the client side, we propose a technique such
that two types of randomness are generated from a single ESK. According to
the definition of OS-AKE freshness, if there is only one ESK used at the client
side, there is no need to consider leakage at the client side. However, the FSXY-
based construction requires the generation of a ciphertext of a session-specific
public key of IND-CCA KEM and IND-CPA KEM at the client side, thus two
types of randomness are required. We generate two types of randomness from
a single ESK through a PRF, and generate the ciphertext of each KEM from
these randomness. Concretely, we construct the PRF F to obtain two outputs
from one randomness by using a PRF F′ and two PRFs F

′
0, F

′
1 having each range

is each randomness space of KEMs. Then, two randomness (r0||r1) ← F(IDS , r)
is computed as (r0||r1) = (F′

0(IDS ,F′(0, r))||F′
1(IDS ,F′(1, r))). In this way, two

types of randomness are generated from one randomness. Here, if only F′ is used
in this technique, the OS-AKE security cannot be reduced to the CCA security or
the CPA security. For example, in a game of the reduction to the CCA security,
r

′∗
1 is masked first, but the simulator needs to simultaneously input the correct

value of r∗
C into F′ to generate r′

0. This case cannot be simulated correctly because
the simulator does not have r∗

C . Therefore, the output of F′ is passed through F′
0

and F′
1 to be enabled for these reductions. We prove that our constructions are

still secure under such a randomness generation in Sect. 5.2. Then, by erasing the
two randomness used to generate the ciphertext and the session-specific public
key after sending client’s message, the target of the Partner query can be one
ESK that was generated first. Therefore, the number of secret values can be one
on the client side (ESK) and two on the server side (ESK, SSK).

Next, for the problem on the offline generation of EPKs, we use an IND-CPA
secure PKIC-KEM instead of IND-CPA secure KEM. Since the PKIC-KEM can
generate ciphertexts independently of the public key, it is possible to generate
the EPK for each session before starting the session. Specifically, the server can
generate CT before starting session by using wEnCapC algorithm of PKIC-KEM.

Finally, we reverse procedures of the client and the server to generate the
public key ekT and the ciphertext CT of PKIC-KEM. If the client generates
ekT and the server generates CT as the FSXY construction, the client must
compute wKeyGen again before decrypting CT because the client must erase
dkT after sending client’s message. Since the computational cost for the client is
increased by wKeyGen, and it is not efficient, we reverse the procedures. If the
client generates CT and the server generates ekT , then the client does not need
to compute wKeyGen again.
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Fig. 4. Generic construction in the standard model (GC-Std)

In the proof of the proposed construction, by the definition of freshness, the
ESK on the client side is not revealed, and thus we need to consider the case
where (1) the SSK on the server side is revealed and (2) the ESK on the server
side is revealed. In (1), since the ESK at the server side is not compromised,
the adversary cannot compute K0 which is the session key of the IND-CPA
secure PKIC-KEM. Similarly, in (2), since the SSK at the server side is not
compromised, the adversary cannot compute K1 which is the session key of the
IND-CCA secure KEM. Thus, the proposed construction satisfies the OS-AKE
security. Moreover, since the ESK used by the client side in each session is only
one randomness independent to the client’s ID, no information about the client
can be obtained from the ciphertext. Hence, the proposed construction satisfies
the OS-anonymity.

5.2 OS-AKE in Standard Model

The protocol in the standard model consists of an IND-CCA secure KEM (KeyGen,
EnCap,DeCap) and an IND-CPA secure PKIC-KEM (wKeyGen,wEnCapC,
wEnCapK,wDeCap) as follows.



50 R. Ishibashi and K. Yoneyama

Protocol

Public Parameters: Let κ be a security parameter, F
′

: {0, 1}κ × FS → FS,
F

′
0 : {0, 1}κ × FS → RScpa

E , F
′
1 : {0, 1}κ × FS → RScca

E , and PRF : {0, 1}∗ ×
FS → {0, 1}κ be pseudo-random functions. Also, let KDF : Salt × KS → FS
be a key derivation function and it chooses s ∈R Salt, where RScpa

E and RScpa
G

are randomness spaces of the encapsulation algorithm and the key generation
algorithm of IND-CPA secure PKIC-KEM, RScca

E and RScca
G are randomness

spaces of the encapsulation algorithm and the key generation algorithm of IND-
CCA secure KEM, FS is a key space of the pseudo-random functions (|FS| = κ),
KS is a session key space of KEM, and Salt is a salt space of the key derivation
functions. These are provided as part of the public parameters.

Secret and Public Keys: Party US selects a randomness r ∈R RScca
G , computes

(ekS , dkS) ← KeyGen(1κ; r) and sets certekS
= (IDS , ekS) as a certificate for

US . The static key pair for party US is (ekS , dkS).

Key Exchange: Let US which has a static key pair (ekS , dkS) be a server, and
UC be a client. When UC is initialized as a client, it obtains the certificate
certekS

= (IDS , ekS) of US .

1. UC verifies the server using certekS
= (IDS , ekS). UC chooses an unused

ephemeral key pair ((C0, C1), rC) or chooses a ephemeral secret key rC ∈R

FS and sets r′
0 ← F′(0, rC)), r′

1 ← F′(1, rC)), r0 ← F′
0(IDS , r′

0), and
r1 ← F′

1(IDS , r′
1). Also, UC computes (C1,K1) ← EnCap(ekS ; r1), C0 ←

wEnCapC(r0), and erases (r0, r1). Then, UC sends (C0, C1, IDS) to US .
2. Upon receiving (C0, C1, IDS), US chooses an unused ephemeral key pair

(ekT , dkT ) or chooses a randomness rS ∈R RScpa
G and computes (ekT , dkT ) ←

wKeyGen(rS) to generate a key pair, and sends ekT to UC . Also, US com-
putes K1 ← DeCap(dkS , C1), K0 ← wDeCap(dkT , C0), K

′
1 ← KDF(s,K1),

and K
′
0 ← KDF(s,K0). US sets sid = (IDS , C0, C1, ekT ) and computes the

session key SK = PRF(sid,K
′
1) ⊕ PRF(sid,K

′
0). Then, US erases (rS , dkT )

and outputs (SK,�, (C0, C1), (ekT , ekS)).
3. Upon receiving ekT , UC sets r′

0 ← F′(0, rC)), r0 ← F′
0(IDS , r′

0), computes
K0 ← wEnCapK(ekT , C0, r0), K

′
1 ← KDF(s,K1), and K

′
0 ← KDF(s,K0).

UC sets sid = (IDS , C0, C1, ekT ) and computes the session key SK =
PRF(sid,K

′
1) ⊕ PRF(sid,K

′
0). Then, UC erases (rC , r0, r1) and outputs (SK,

IDS , (C0, C1), (ekT , ekS)).

Remark 4. Existing OS-AKE schemes contain the explicit authentication of the
server with the key confirmation by MAC. As discussed in Sect. 1.1, the implicit
authentication is sufficient to satisfy the security in the GSU model. It is trivial
to be able to add the explicit authentication to our construction by the same
key confirmation step.
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Security. We show the security of the proposed scheme in the standard model.
An intuition of the proof is shown in Sect. 5.1.

Theorem 1. If (KeyGen,EnCap,DeCap) is an IND CCA secure and κ-min-
entropy KEM, (wKeyGen,wEnCapC,wEnCapK,wDeCap) is an IND-CPA and κ-
min-entropy PKIC-KEM, F′, F′

0, F
′
1, and PRF are pseudo-random functions, and

KDF is a key derivation function, GC-Std is OS-AKE secure.

Proof. Suc denotes the event that A wins. We consider the following events that
cover all cases of the behavior of A.

-E1: The ESK dk∗
T of the server is revealed.

-E2: The SSK dk∗
S of the server is revealed.

Let κ be a security parameter. In the OS-AKE security game, sid∗ is a ses-
sion ID of the target session, and the maximum number of parties is n and
the maximum � sessions are activated. Let the adversary A be a probabilis-
tic polynomial-time adversary in κ, and construct the IND-CCA or IND-CPA
adversary S and a distinguisher D from A that performs the OS-AKE game.

To finish the proof, we investigate events Ei ∧ Suc (i = 1, 2) that cover
all cases of event Suc. Due to the page limitation, we give the proof of event
E1 ∧ Suc, and the proof of the other event is given in the full version.

Event E1 ∧ Suc: We change the interface of oracle queries and the computa-
tion of the session key. These instances are gradually changed over eight hybrid
experiments, depending on specific subcases. In the last hybrid experiment, the
session key in the test session does not contain information of the bit b. Thus, the
adversary clearly only outputs a random guess. We denote these hybrid experi-
ments by H0, . . . ,H7, and the advantage of the adversary A when participating
in experiment Hi by Adv(A,Hi).

Hybrid Experiment H0: This experiment denotes the real experiment for OS-
AKE security and in this experiment the environment for A is as defined in the
protocol. Thus, Adv(A,H0) is the same as the advantage of the real experiment.

Hybrid Experiment H1: This experiment aborts when a session ID is matched
with multiple sessions.

By the randomness of KEM, the probability of outputting the same cipher-
text from different randomness in each session is negligible. Thus, |Adv(A,
H1) − Adv(A,H0)| ≤ negl.

Hybrid Experiment H2: This experiment chooses a party U∗
S and a party U∗

C ,
an integer i∗ ∈ [1, �] in advance, and fixes parties and the session for the Test
query. If A queries a session other than the i∗-th of client U∗

C (partner is U∗
S) in

Test query, it aborts the experiment.
The probability that the guess of the test session is correct is 1/n2�, thus

Adv(A,H2) ≥ 1/n2� · Adv(A,H1).
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Hybrid Experiment H3: This experiment changes the way of the computation
of r′∗

0 and r′∗
1 in the i∗-th session of U∗

C (partner is U∗
S). Instead of r′∗

0 ← F′(0, r∗
C)

and r′∗
1 ← F′(1, r∗

C), it is changed as r′∗
0 ∈R FS and r′∗

1 ∈R FS.
We construct a distinguisher D0 that distinguishes if F∗ is either a pseudo-

random function F′ or a random function RF from A in H2 or H3. D0 performs
the following steps.

[setup]
D0 is given a pseudo-random function F

′
: {0, 1}κ × FS → FS. Then, D0

chooses pseudo-random functions F
′
0 : {0, 1}κ × FS → RScpa

E , F
′
1 : {0, 1}κ ×

FS → RScca
E , PRF : {0, 1}∗ × FS → {0, 1}κ, a key derivation function KDF :

Salt × KS → FS, and s ∈R Salt.
D0 generates (eki, dki) for each server Ui including (ek∗

S , dk∗
S) of U∗

S according
to the protocol, publishes eki, and sets certeki

= (IDi, eki) as a certificate for
each server Ui. D0 poses 0 and 1 to the oracle F∗, receives r′∗

1 and r′∗
0 as a

challenge, and computes r∗
0 ← F′

0(IDS , r′∗
0 ), r∗

1 ← F′
1(IDS , r′∗

1 ), (C∗
1 ,K∗

1 ) ←
EnCap(ek∗

S ; r∗
1), and C∗

0 ← wEnCapC(r∗
0) for the i∗-th session of U∗

C .

[simulation]
D0 keeps the list LSK that contains queries and answers of SessionKeyReveal.

D0 simulates oracle queries by A as follows.

1. Send(params, pid): If the session is the i∗-th session of U∗
C , then D0 sets K1 =

K∗
1 , returns (C∗

0 , C∗
1 , ID∗

S), and records (Π, ID = pid, (C∗
0 , C∗

1 ), (∗, ∗), ∗, K1)
in LSK . Otherwise, D0 chooses ((C0, C1), rC) from the unused key pairs and
returns it, or computes ((C0, C1), rC) according to the protocol and returns
it, and records (Π, ID = pid, (C0, C1), (∗, ∗), ∗,K1) in LSK .

2. Send(sid,msg = (C0, C1, id)): If msg = (C∗
0 , C∗

1 , ID∗
S), then D0 sets K1 =

K∗
1 , chooses (ek∗

T , dk∗
T ) from the unused key pairs and returns it, or generates

(ek∗
T , dk∗

T ) according to the protocol and return it, computes SK, and records
(Π, ID = id, (C∗

0 , C∗
1 ), (ek∗

T , ek∗
S),K0,K1) and SK as a completed session in

LSK . Otherwise, D0 chooses (ekT , dkT ) from the unused key pairs and returns
it, or generates ekT according to the protocol and returns it, computes SK,
and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as a completed
session in LSK .

3. Send(sid,msg = ekT ): If the session is the i∗-th session of U∗
C , D0 computes

K∗
0 ← wEnCapK(ekT , C∗

0 , r∗
0), sets K0 = K∗

0 , computes SK according to the
protocol, and records (Π, ID = id, (C∗

0 , C∗
1 ), (ekT , ekS),K0,K1) and SK as

a completed session in LSK . Otherwise, D0 computes SK according to the
protocol and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as a
completed session in LSK .

4. SessionKeyReveal(sid):
(a) If sid is not completed, then D0 returns error.
(b) Otherwise, D0 returns SK as recorded in LSK .

5. Partner(X): D0 returns the secret value x of the public value X as defined.
6. RevealNext(): D0 generates a key pair (ESK,EPK), keeps it as unused, and

returns the EPK to A as defined.
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7. EstablishCertificate(IDi,X): D0 registers the public key of IDi as X according
to the protocol, and marks Ui as a dishonest party.

8. Test(sid): D0 returns as defined.
9. A outputs a guess b

′ ∈ {0, 1}. If A outputs b
′

= 0, then D0 outputs that
F∗ = F′, otherwise D0 outputs that F∗ = RF.

[Analysis]
For A, the simulation by D0 is the same as the experiment H2 if F∗ = F′.

Otherwise, the simulation by D0 is the same as the experiment H3. Thus, since
the advantage of D0 is negligible due to the security of the PRF, |Adv(A,H3)−
Adv(A,H2)| ≤ negl.

Hybrid Experiment H4: This experiment changes the way of the computation
of r∗

1 in the i∗-th session of U∗
C (partner is U∗

S). Instead of r∗
1 ← F′

1(ID∗
S , r′

1), it
is changed as r∗

1 ∈R RScca
E .

We construct a distinguisher D1 that distinguishes if F∗ is either a pseudo-
random function F′

1 or a random function RF from A in H3 or H4. D1 performs
the following steps.

[setup]
D1 is given a pseudo-random function F

′
1 : {0, 1}κ × FS → RScca

E . Then, D1

chooses pseudo-random functions F
′
: {0, 1}κ × FS → FS, F

′
0 : {0, 1}κ × FS →

RScpa
E , PRF : {0, 1}∗ × FS → {0, 1}κ, a key derivation function KDF : Salt ×

KS → FS, and s ∈R Salt.
D1 generates (eki, dki) for each server Ui including (ek∗

S , dk∗
S) of U∗

S according
to the protocol, publishes eki, and sets certeki

= (IDi, eki) as a certificate for
each server Ui. D1 poses IDS to the oracle F∗, receives r∗

1 as a challenge, and
computes (C∗

1 ,K∗
1 ) ← EnCap(ek∗

S ; r∗
1), and C∗

0 ← wEnCapC(r∗
0) by using r′∗

0 ∈R

FS according to the protocol for the i∗-th session of U∗
C .

[simulation]
D1 keeps the list LSK that contains queries and answers of SessionKeyReveal.

D1 simulates oracle queries by A as follows.

1. Send(params, pid): If the session is the i∗-th session of U∗
C , then D1 sets K1 =

K∗
1 , returns (C∗

0 , C∗
1 , ID∗

S), and records (Π, ID = pid, (C∗
0 , C∗

1 ), (∗, ∗), ∗, K1)
in LSK . Otherwise, D1 chooses ((C0, C1), rC) from the unused key pairs and
returns it, or computes ((C0, C1), rC) according to the protocol and returns
it, and records (Π, ID = pid, (C0, C1), (∗, ∗), ∗,K1) in LSK .

2. Send(sid,msg = (C0, C1, id)): If msg = (C∗
0 , C∗

1 , ID∗
S), then D1 sets K1 =

K∗
1 , chooses (ek∗

T , dk∗
T ) from the unused key pairs and returns it, or generates

(ek∗
T , dk∗

T ) according to the protocol and return it, computes SK, and records
(Π, ID = id, (C∗

0 , C∗
1 ), (ek∗

T , ek∗
S),K0,K1) and SK as a completed session in

LSK . Otherwise, D1 chooses (ekT , dkT ) from the unused key pairs and returns
it, or generates ekT according to the protocol and returns it, computes SK,
and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as a completed
session in LSK .
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3. Send(sid,msg = ekT ): If the session is the i∗-th session of U∗
C , D1 computes

K∗
0 ← wEnCapK(ek∗

T , C∗
0 , r∗

0), sets K0 = K∗
0 , computes SK according to the

protocol, and records (Π, ID = id, (C∗
0 , C∗

1 ), (ekT , ekS),K0,K1) and SK as
a completed session in LSK . Otherwise, D1 computes SK according to the
protocol and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as a
completed session in LSK .

4. SessionKeyReveal(sid):
(a) If sid is not completed, then D1 returns error.
(b) Otherwise, D1 returns SK as recorded in LSK .

5. Partner(X): D1 returns the secret value x of the public value X as defined.
6. RevealNext(): D1 generates a key pair (ESK,EPK), keeps it as unused, and

returns the EPK to A as defined.
7. EstablishCertificate(IDi,X): D1 registers the public key of IDi as X according

to the protocol, and marks Ui as a dishonest party.
8. Test(sid): D1 returns as defined.
9. A outputs a guess b

′ ∈ {0, 1}. If A outputs b
′

= 0, then D1 outputs that
F∗ = F′

1, otherwise D1 outputs that F∗ = RF.

[Analysis]
For A, the simulation by D1 is the same as the experiment H3 if F∗ = F′

1.
Otherwise, the simulation by D1 is the same as the experiment H4. Thus, since
the advantage of D1 is negligible due to the security of the PRF, |Adv(A,H4)−
Adv(A,H3)| ≤ negl.

Hybrid Experiment H5: This experiment changes the way of computation of
K∗

1 on the client side in the i∗-th session of U∗
C . Instead of computing (C∗,K∗

1 ) ←
EnCap(ek∗

S , r∗
1), it is changed as K∗

1 ∈R KScca.
We construct an IND-CCA adversary S from A in H4 or H5. The S performs

the following steps.

[init]
S receives ek∗

S from the challenger as a challenge.

[setup]
S chooses pseudo-random functions F

′
: {0, 1}κ × FS → FS, F

′
0 : {0, 1}κ ×

FS → RScpa
E , F

′
1 : {0, 1}κ × FS → RScca

E , PRF : {0, 1}∗ × FS → {0, 1}κ, a key
derivation function KDF : Salt × KS → FS, and s ∈R Salt.

S receives (K∗
b , C∗

1 ) as a challenge and sets C1 = C∗
1 for the i∗-th session of

U∗
C . Also, S generates (eki, dki) for each server Ui other than US , publishes eki,

and sets certeki
= (IDi, eki) as a certificate for each server Ui.

[simulation]
S keeps the list LSK that contains queries and answers of SessionKeyReveal.

S simulates oracle queries by A as follows.

1. Send(params, pid): If the session is the i∗-th session of U∗
C , then S computes

C∗
0 ← wEnCapC(r∗

0) where r∗
0 ∈R RScpa

E , sets K1 = K∗
b , C1 = C∗

1 , and C0 =
C∗

0 , returns (C0, C1, ID∗
S), and records (Π, ID = pid, (C0, C1), (∗, ∗), ∗,K1)
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in LSK . Otherwise, S chooses ((C0, C1), rC) from the unused key pairs and
returns (C0, C1), or computes ((C0, C1), rC) according to the protocol and
returns (C0, C1), and records (Π, ID = pid, (C0, C1), (∗, ∗), ∗,K1) in LSK .

2. Send(sid,msg = (C0, C1, id)): If id = ID∗
S and C1 �= C∗

1 , S poses C1 to the
decryption oracle to obtain K1, chooses (ekT , dkT ) from the unused key pairs
and returns ekT , or generates (ekT , dkT ) and returns ekT , computes SK, and
records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as a completed
session in LSK . Also, else if id = ID∗

S and C1 = C∗
1 , S sets K1 = K∗

b ,
chooses (ek∗

T , dk∗
T ) from the unused key pairs and returns it, or generates

(ek∗
T , dk∗

T ) according to the protocol and returns it, computes SK, and records
(Π, ID = id, (C0, C1), (ek∗

T , ek∗
S),K0,K1) and SK as a completed session in

LSK . Otherwise, S chooses (ekT , dkT ) from the unused key pairs and returns
it, or generates (ekT , dkT ) according to the protocol and returns it, com-
putes SK, and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as
a completed session in LSK .

3. Send(sid,msg = ekT ): S computes SK according to the protocol and records
(Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as a completed session in
LSK .

4. SessionKeyReveal(sid):
(a) If sid is not completed, then S returns error.
(b) Otherwise, S returns SK as recorded in LSK .

5. Partner(X): S returns the secret value x of the public value X as defined.
6. RevealNext(): S generates a key pair (ESK,EPK), keeps it as unused, and

returns the EPK to A as defined.
7. EstablishCertificate(IDi,X): S registers the public key of IDi as X according

to the protocol, and marks Ui as a dishonest party.
8. Test(sid): S returns as defined.
9. A outputs a guess b

′ ∈ {0, 1}. If A outputs b
′
, then S outputs b

′
.

[Analysis]
For A, the simulation by S is same the as the experiment H4 if the challenge

is (C∗
1 ,K∗

0 ). Otherwise, the simulation by S is same the as the experiment H5.
Thus, since the advantage of S is negligible due to the security of the IND-CCA
secure KEM, |Adv(A,H5) − Adv(A,H4)| ≤ negl.

Hybrid Experiment H6: This experiment changes the way of the computation
of the K

′∗
1 in the i∗-th session of U∗

C . Instead of computing K
′∗
1 ← KDF(s,K∗

1 ),
it is changed as choosing K

′∗
1 ∈R FS.

Since K∗
1 is randomly chosen in H5, it has sufficient min-entropy because the

KEM is κ-min-entropy KEM. Thus, by the definition of the KDF, |Adv(A,H6)−
Adv(A,H5)| ≤ negl.

Hybrid Experiment H7: This experiment changes the way of the computation
of SK in the i∗-th session of U∗

C . Instead of computing SK = PRF(sid,K1) ⊕
PRF(sid,K0), it is changed as SK = x ⊕ PRF(sid,K0), where x ∈R {0, 1}κ.

We construct a distinguisher D2 that distinguishes if F∗ is either a pseudo-
random function PRF or a random function RF from A in H6 or H7. D2 performs
the following steps.



56 R. Ishibashi and K. Yoneyama

[setup]
D2 is given a pseudo-random function PRF : {0, 1}∗×FS → {0, 1}κ. Then, D2

chooses pseudo-random functions F
′
: {0, 1}κ × FS → FS, F

′
0 : {0, 1}κ × FS →

RScpa
E , F

′
1 : {0, 1}κ × FS → RScca

E , PRF : {0, 1}∗ × FS → {0, 1}κ, a key
derivation function KDF : Salt × KS → FS, and s ∈R Salt.

D2 generates (eki, dki) for each server Ui including (ek∗
S , dk∗

S) of U∗
S according

to the protocol, publishes eki, and sets certeki
= (IDi, eki) as a certificate for

each server Ui.

[simulation]
D2 keeps the list LSK that contains queries and answers of SessionKeyReveal.

D2 simulates oracle queries by A as follows.

1. Send(params, pid): If the session is the i∗-th session of U∗
C , then D2 com-

putes (C∗
1 ,K∗

1 ) ← EnCap(ek∗
S ; r∗

1) and C∗
0 ← wEnCapC(r∗

0), where r∗
0 ←

F′
0(ID∗

S , r′∗
0 ) and r∗

1 ∈R RScca
E , returns (C∗

0 , C∗
1 , ID∗

S), and records (Π, ID =
id, (C∗

0 , C∗
1 ), (∗, ∗), ∗,K∗

1 ) in LSK . Otherwise, D2 chooses ((C0, C1), rC) from
the unused key pairs and returns (C0, C1), or computes ((C0, C1), rC) accord-
ing to the protocol and returns (C0, C1), and records (Π, ID = id, (C0, C1), (∗,
∗), ∗,K∗

1 ) in LSK .
2. Send(sid,msg = (C0, C1, id)): If msg = (C∗

0 , C∗
1 , ID∗

S), then D2 chooses
(ek∗

T , dk∗
T ) from the unused key pairs and returns it, or generates (ek∗

T , dk∗
T )

according to the protocol and returns it. Also, D2 sets sid according to the
protocol, poses it to the oracle (PRF or RF), obtains x ∈ {0, 1}κ, computes
SK∗ = x ⊕ PRF(sid,K0), and records (Π, ID = id, (C∗

0 , C∗
1 ), (ek∗

T , ek∗
S))

and SK∗ as a completed session in LSK . Otherwise, D2 chooses (ekT , dkT )
from the unused key pairs and returns ekT , or generates (ekT , dkT ) accord-
ing to the protocol and returns ekT . Also, D2 computes SK and records
(Π, ID = id, (C0, C1), (ekT , ekS)) and SK as a completed session in LSK .

3. Send(sid,msg = ekT ): If the session is the i∗-th session of U∗
C , then D2 sets

sid according to the protocol, poses it to the oracle (PRF or RF), obtains
x ∈ {0, 1}κ, computes SK∗ = x ⊕ PRF(sid, k0), and records (Π, ID =
id, (C0, C1), (ekT , ekS)) and SK∗ as a completed session in LSK . Other-
wise, D2 computes SK according to the protocol and records (Π, ID =
id, (C0, C1), (ekT , ekS)) and SK as a completed session in LSK .

4. SessionKeyReveal(sid):
(a) If sid is not completed, then D2 returns error.
(b) Otherwise, D2 returns SK as recorded in LSK .

5. Partner(X): D2 returns the secret value x of the public value X as defined.
6. RevealNext(): D2 generates a key pair (ESK,EPK), keeps it as unused, and

returns the EPK to A as defined.
7. EstablishCertificate(IDi,X): D2 registers the public key of IDi as X according

to the protocol, and marks Ui as a dishonest party.
8. Test(sid): D2 returns as defined.
9. A outputs a guess b

′ ∈ {0, 1}. If A outputs b
′
, then D2 outputs b

′
.
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[Analysis]
For A, the simulation by D2 is the same as the experiment H6 if F∗ = PRF.

Otherwise, the simulation by D2 is the same as the experiment H7. Thus, since
the advantage of D2 is negligible due to the security of PRF, |Adv(A,H7) −
Adv(A,H6)| ≤ negl.

In H7, the session key in the test session is perfectly randomized. This gives A
no information from the Test query, therefore Adv(A,H7) = 0 and Pr[E1∧Sec] =
negl.

�
Theorem 2. In the standard model, GC-Std is one-sided anonymous.

Proof. We proceed by introducing another experiment, in which cannot win more
than random guessing. In this new experiment, the choice of i∗ is independent
of the behavior of the rest of the system. Then, we show that no adversary can
distinguish this new experiment from the original experiment, thereby showing
the OS-anonymity of the protocol.

ExptOS−anon′
GC−Std (A) is the same experiment as ExptOS−anon

GC−Std (A) except for the
following oracle used by the challenger C.

– Start′(i0, i1, params, pid = ID∗
S) → msg′:

1. If i0 = i1, then abort.
2. Set i∗ ←R {i0, i1}.
3. Set ID∗ ← ID∗

S .
4. Choose ((C∗

0 , C∗
1 ), r∗

C) from the unused key pairs and returns
(C∗

0 , C∗
1 , ID∗).

– Send′(sid,msg = ek∗
T ):

1. Compute r′∗
0 ← F′(0, r∗

C)) and r∗
0 ← F′

0(IDS , r′∗
0 )

2. Compute K∗
0 ← wEnCapK(ek∗

T , C∗
0 , r∗

0).
3. Compute SK according to the protocol.

– SessionKeyReveal′() → SK: If the test session is a completed session, return
SK.

– Partner′(C∗) → r∗
C : Return the secret value r∗

C corresponding to C∗.
– RevealNext′ → X: Return the future public value X and record it as unused.

Since all messages computed in ExptOS−anon′
GC−Std (A) are independent of the

choice of i∗, the adversary A has no advantage, thus the probability that A
wins the game is as follows.

Pr[ExptOS−anon′
GC−Std (A) = win] = 1/2 (1)

Also, the distribution of messages returned by the challenger in
ExptOS−anon′

GC−Std (A) is the same as that returned in ExptOS−anon
GC−Std (A). Furthermore,

messages from all parties except Pi0 and Pi1 are unchanged. For messages from
Pi0 and Pi1 in ExptOS−anon′

GC−Std (A), all queries return messages of the same distri-
bution as in ExptOS−anon

GC−Std (A).
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Fig. 5. Generic construction in the random oracle model (GC-RO)

Here, queries that reveal information about whether Pi0 or Pi1 participated
in the test session are prohibited by the definition. For example, A is prohibited
from using a SessionKeyReveal(sid) query to Pi0 to find out if Pi0 has the session
key for the target session.

Thus, A cannot distinguish between the two games.

Pr[ExptOS−anon′
GC−Std (A) = win] = Pr[ExptOS−anon

GC−Std (A) = win] (2)

From Eqs. (1) and (2), the scheme has one-sided anonymity. �

5.3 OS-AKE in Random Oracle Model

The protocol in the random oracle model consists of an OW-CCA
secure KEM (KeyGen,EnCap,DeCap) and an OW-CPA secure PKIC-KEM
(wKeyGen,wEnCapC,wEnCapK,wDeCap) as follows.

Protocol

Public Parameters: Let κ be a security parameter, and H0 : {0, 1}∗ → RScpa
E ,

H1 : {0, 1}∗ → RScca
E , H : {0, 1}∗ → {0, 1}κ be hash functions, where RScpa

E

and RScpa
G are randomness spaces of the encapsulation algorithm and the key

generation algorithm of OW-CPA secure PKIC-KEM, RScca
E and RScca

G are ran-
domness spaces of the encapsulation algorithm and the key generation algorithm
of OW-CCA secure KEM. These are provided as part of the public parameters.



Post-quantum Anonymous OS-AKE Without Random Oracles 59

Secret and Public Keys: Party US selects a randomness r ∈R RScca
G , computes

(ekS , dkS) ← KeyGen(1κ; r) and sets certekS
= (IDS , ekS) as a certificate for

US . The static key pair for party US is (ekS , dkS).

Key Exchange: Let US which has a static key pair (ekS , dkS) be a server, and
UC be a client. When UC is initialized as a client, it obtains the certificate
certekS

= (IDS , ekS) of US .

1. UC verifies the server using certekS
= (IDS , ekS). UC chooses an unused

key pair ((C0, C1), rC) or chooses a ephemeral secret key rC ∈R {0, 1}κ

and sets r0 ← H0(rC), and r1 ← H1(rC). Also, UC computes (C1,K1) ←
EnCap(ekS ; r1), and C0 ← wEnCapC(r0), and deletes (r0, r1). Then, UC sends
(C0, C1, IDS) to US .

2. Upon receiving (C0, C1, IDS), US chooses an unused ephemeral key pair (ekT ,
dkT ), or chooses a randomness rS ∈R RScpa

G and computes (ekT , dkT ) ←
wKeyGen(rS), and sends ekT to UC . Thus, US computes K1 ← DeCap(dkS ,
C1) and K0 ← wDeCap(dkT , C0), sets sid = (IDS , (C0, C1), ekT ), and com-
putes the session key SK = H(sid,K0,K1). US erases (rS , dkT ) and outputs
(SK,�, (C0, C1), (ekT , ekS)).

3. Upon receiving ekT , UC sets r0 ← H0(rC) and computes K0 ← wEnCapK(ekT ,
C0, r0). Also, UC sets sid = (IDS , (C0, C1), ekT ) and computes the session
key SK = H(sid,K0,K1). Then, UC erases (rC , r0), and outputs (SK, IDS ,
(C0, C1), (ekT , ekS)).

Security. We show the security of the proposed scheme in the random oracle
model. An intuition of the proof is shown in Sect. 5.1.

Theorem 3. If (KeyGen,EnCap,DeCap) is an OW-CCA secure KEM,
(wKeyGen, wEnCapC,wEnCapK,wDeCap) is an OW-CPA secure PKIC-KEM,
and H0,H1,H are random oracles, GC-RO is OS-AKE secure.

Theorem 4. In the random oracle model, GC-RO scheme is one-sided anony-
mous.

We show the proof of Theorem 3 and 4 in the full version.

6 Instantiations Based on DH Problems

A comparison of the efficiency among our instantiations and existing schemes is
shown in Table 1.
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Table 1. Comparison among existing DH-based schemes and our instantiations

Protocol Model Resource Assumption Exp. (client) Exp. (server) Communication

Off-line On-line Off-line On-line complexity

ntor [24] GSU RO gap DH 1 2 1 1.33 |ID| + 2|G|
Ace [6] weak GSU RO gap DH 2 1.08 1 1.08 |ID| + 3|G|
Ours1 [ 6.1] GSU RO CDH 3 1 1 3 |ID| + 3|G| + κ

Ours2 [ 6.2] GSU Std DDH 5.08 1 1 3.16 |ID| + 5|G|
For exponentiation costs, we apply the parallel computation technique [39] for two exponentiations

using the same base, which costs 1.33 exponentiations for κ, and Avanzi’s algorithm [4] for multi-

exponentiations in the elliptic curve setting, which costs 1.08 exponentiations for κ. |ID| is the length

of server’s ID and |G| is the size of a group element.

6.1 Random Oracle Model

We can obtain an OS-AKE scheme in the random oracle model by instantiating
GC-RO using the PSEC-KEM [40] which is an OW-CCA secure KEM, and the
ElGamal KEM which is an OW-CPA secure PKIC-KEM. It is shown that the
ElGamal KEM can be PKIC-KEM [45], and the PSEC-KEM and the ElGamal
KEM are obviously κ-min-entropy KEM. Since these KEM schemes are based on
the computational DH (CDH) assumption, the instantiation is also secure under
the CDH assumption though ntor and Ace rely on the gap DH assumption. Also,
the online computational cost of a client is smaller than existing schemes.

6.2 Standard Model

We can obtain an OS-AKE scheme in the standard model by instantiating GC-
Std using CS3 [11] which is an IND-CCA secure KEM, and the ElGamal KEM
which is an IND-CPA secure PKIC-KEM. CS3 is obviously κ-min-entropy KEM.
Since these KEM schemes are based on the decisional DH (DDH) assumption,
the instantiation is also secure under the DDH assumption. This scheme is the
first DH-based anonymous OS-AKE scheme in the standard model. Moreover,
the online computational cost of a client is smaller than existing schemes even
in the standard model.

7 Instantiations Based on Isogeny Problems

7.1 Random Oracle Model

SIDH-Based. We can obtain a SIDH-based OS-AKE scheme in the random
oracle model by instantiating GC-RO using the SIKE-KEM [5] which is an IND-
CCA secure KEM, and an OW-CPA PKIC-KEM which is obtained by a trans-
formation of SIKE-PKE [5]. In order to transform the SIKE-PKE to PKIC-
KEM, we remove the generation of the ciphertext C1 = F (j) ⊕ m (i.e., masking
of plaintext m) in the encapsulation algorithm and the decryption procedure
m = F (j) ⊕ C1 in the decryption algorithm, and use j = isoex2(pk3, sk2) as the
session key of PKIC-KEM. Such a PKIC-KEM based on SIKE-PKE is shown in
Fig. 6. SIKE-KEM and PKIC-KEM in Fig. 6 are obviously κ-min-entropy KEM.
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Fig. 6. PKIC-KEM scheme based on SIKE-PKE [5]

Fig. 7. Hashed CSIDH-KEM scheme

Note that PKIC-KEM in Fig. 6 is regarded as a SIDH version of the ElGamal
KEM and it is pointed that it is OW-CPA secure under the supersingular deci-
sional DH (SSDDH) assumption [37]. Since SIKE-KEM is based on the supersin-
gular computational DH (SSCDH) assumption, the instantiation is secure under
the SSDDH assumption.

CSIDH-Based. We can obtain a CSIDH-based OS-AKE scheme in the random
oracle model by instantiating GC-RO using the CSIDH-PSEC-KEM [46] which
is an IND-CCA secure KEM, and CSIDH-KEM [9] which is an OW-CPA secure
KEM. Note that CSIDH-KEM can be used as PKIC-KEM in the same way as
Fig. 6. CSIDH-PSEC-KEM and CSIDH-KEM are obviously κ-min-entropy KEM.
Note that CSIDH-KEM is pointed that it is OW-CPA secure under the commu-
tative supersingular decisional DH (CSSDDH) assumption [37]. Since CSIDH-
PSEC-KEM is based on the commutative supersingular computational DH (CSS-
CDH) assumption, the instantiation is secure under the CSSDDH assumption.

7.2 Standard Model

We can obtain a CSIDH-based OS-AKE scheme in the standard model by instan-
tiating GC-Std using the KEM from smooth projective hashing [2] which is an
IND-CCA secure KEM based on the hash proof system under the existence
of weak pseudorandom effective group action (wPR-EGA) (a generalization of
CSIDH assumptions), and a hashed CSIDH-KEM. The hashed CSIDH-KEM is
a variant of CSIDH-KEM such that the session key is computed as the out-
put of the entropy-smoothing hash function H on inputting the result of the
group action of the randomness and the public key (K = H([r] ∗ pk)) or the
secret key and the ciphertext (K = H([s] ∗ C)). We can use the hashed CSIDH-
KEM as PKIC-KEM as Fig. 6. The protocol of hashed CSIDH-KEM is shown
in Fig. 7. As the same as the hashed ElGamal KEM [41], it is pointed that the
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hashed CSIDH-KEM is IND-CPA secure under the CSSDDH assumption [37].
This instantiation is the first post-quantum anonymous OS-AKE scheme in the
standard model under the wPR-EGA and the CSSDDH assumption.

Also, very recently, a KEM scheme called SimS [16] was proposed as a CSIDH-
based IND-CCA secure KEM in the standard model. By using SimS as the instan-
tiation of IND-CCA secure KEM, we can also construct the OS-AKE scheme from
a knowledge of exponent-type assumption and the CSSDDH assumption.
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Abstract. In a lockable obfuscation scheme, a party called the obfus-
cator takes as input a circuit C, a lock value y, and a message m, and
outputs an obfuscated circuit. Given the obfuscated circuit, an evaluator
can run it on an input x and learn the message if C(x) = y. For security,
we require that the obfuscation reveals no information on the circuit as
long as the lock y has high entropy even given the circuit C.

The only known constructions of lockable obfuscation schemes require
indistinguishability obfuscation (iO) or the learning with errors (LWE)
assumption. Furthermore, in terms of technique, all known constructions,
excluding iO-based, are build from provably secure variations of graph-
induced multilinear maps.

We show a generic construction of a lockable obfuscation scheme built
from a (leveled) fully homomorphic encryption scheme that is circularly
insecure. Specifically, we need a fully homomorphic encryption scheme
that is secure under chosen-plaintext attack (IND-CPA) but for which
there is an efficient cycle tester that can detect encrypted key cycles.
Our finding sheds new light on how to construct lockable obfuscation
schemes and shows why cycle tester constructions were helpful in the
design of lockable obfuscation schemes. One of the many use cases for
lockable obfuscation schemes are constructions for IND-CPA secure but
circularly insecure encryption schemes. Our work shows that there is a
connection in both ways between circular insecure encryption and lock-
able obfuscation.

1 Introduction

In program obfuscation, we want to compile a circuit C to an obscure form ̂C
while preserving the functionality of the input circuit. For security, we require
that ̂C reveal no information on C, except what is trivially known from inspect-
ing the input/output relations. We refer to this strong security property as vir-
tual black-box (VBB) security. Unfortunately, Barak et al. [BGI+01,BGI+12]
showed that it is impossible to achieve virtual black-box security for general
functionalities. On the other hand, it turns out that it is possible to realize
VBB security for some relaxed classes of functions. One such relatively expres-
sive class consists of compute-and-compare programs, for which Goyal, Koppula,
c© International Association for Cryptologic Research 2022
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and Waters [GKW17a] and independently Wichs and Zirdelis [WZ17] construct
obfuscators under the learning with errors assumption. Additionally, Wichs and
Zirdelis [WZ17] show a simple construction assuming indistinguishability obfus-
cation [BGI+01,BGI+12]. In short, we call obfuscation for such classes lockable
obfuscation as in [GKW17a].

While the functionality of lockable obfuscation is limited to evasive func-
tions, both works [GKW17a,WZ17] show numerous applications. For exam-
ple, we can compile encryption schemes to their anonymous versions that hide
the recipients public key, identity, or attributes, or construct a private sketch
[DS05] from a non-private one [DRS04,DORS08]. Importantly, lockable obfus-
cation implies obfuscators for other important classes of functionalities like point
functions [Can97,LPS04,Wee05] or conjunctions [BR13,BVWW16,BKM+18,
BW19,BLMZ19].

Both works [GKW17a,WZ17], constructed lockable obfuscation from a vari-
ant of the graph induced multilinear maps of Gentry, Gorbunov, and Halevi
[GGH15] also known as GGH15 directed encodings. Chen, Vaikuntanathan, and
Wee [CVW18b] gave an extension of GGH15 encodings from permutation branch-
ing programs to read-once matrix branching program, and along the way, showed
a lockable obfuscator for that class of functions. Recently, Goyal et al. [GKVW20]
extended the construction from [GKW17a], to offer perfect correctness.

While all current constructions [GKW17a,WZ17,CVW18b,GKVW20] can
be proven secure assuming the hardness of the learning with errors (LWE)
problem [Reg05] with subexponential modulus-to-noise ratio, all lockable obfus-
cators, excluding the iO based, build upon on a variant of the GGH15
encodings technique [GGH15]. Despite recent advancements in con-
structing iO [LT17,AJL+19,Agr19,JLMS19,BHJ+19,JLS20,GJLS20,LPST16,
BDGM20a,GP20,BDGM20b,WW20], the existing constructions are heavy and
require circular or subexponential security of the underlying primitives. We note
that even if iO is realizable from standard assumptions in the near future, lock-
able obfuscation may actually be the tool of choice in many applications for effi-
ciency reasons or simplicity of the constructions. Nevertheless, to us, the current
state of affairs is unsatisfactory. Notably, while the GGH15-based constructions
themselves are elegant, the used techniques do not reveal any general design pat-
tern from weaker primitives. Furthermore, current techniques are insufficient to
instantiate lockable obfuscation from other assumptions. For instance, it is not
clear how to realize lockable obfuscation from the ring version of LWE [LPR10],
approximate greatest common divisor [HG01] or NTRU-style [HPS98] assump-
tions, in a way that exploits the underlying structure of the problems to get
more efficient constructions.

1.1 Contribution

In this paper, we show generic constructions for lockable obfuscation, assuming
the existence of a symmetric encryption scheme and a (leveled) fully homomor-
phic encryption (FHE) scheme that is indistinguishable under chosen-plaintext
attack (IND-CPA). Additionally, we assume that the FHE is circularly insecure,
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in the sense that it is feasible to detect encrypted key cycles or encryptions of
key-dependent plaintexts. We give a thorough study of our main idea and show
multiple variations and extensions of our lockable obfuscation schemes.

Base Generic Constructions. Our basic construction assumes that the symmet-
ric key encryption scheme is IND-CPA secure. We show that when we consider
cryptosystems with weak keys or, in other words, leakage resilient symmetric
encryption, then we can achieve lockable obfuscation where the lock value has
high HILL pseudo-entropy [HILL99,HLR07] or is unpredictable given the cir-
cuit. An important observation is that when the fully homomorphic encryption
scheme is itself leakage resilient for a class of leakage, then we can build the
obfuscation scheme only from the FHE scheme. In particular, for the class of
uniformly distributed lock values, we need to assume only the existence of the
circularly insecure FHE.

Then we show a slight modification that may be of interest for concrete
efficiency that assumes that the symmetric key encryption has pseudorandom
ciphertexts. That is, the ciphertexts are indistinguishable from pseudorandom
given an adaptive encryption oracle. We will call both schemes the base schemes.

Based on the analysis of the base schemes, we note that in the case where the
FHE scheme is key-dependent message insecure, i.e., there exists a cycle tester
for a key cycle of length one, then we can implement the symmetric encryption
scheme as a one time pad.

Extensions. We show how to extend both schemes to lockable obfuscation with
multi-bit messages. We note that there are generic methods to build such exten-
sions. In particular, [GKW17a,WZ17] use a method that requires providing an
obfuscated program for every bit of the message. Our method is conceptually dif-
ferent and exploits the homomorphism of the underlying FHE scheme to decode
an encrypted message. Crucially, we do not need to publish an obfuscated circuit
for every single bit of the message.

Finally, we observe that our technique to encode and decode a message in our
lockable obfuscator can be used to launch a key recovery attack. Consequently,
we show that FHE schemes that are circularly insecure and are capable of binary
decomposing an encrypted message are naturally susceptible to key recovery
attacks. We note, however, that the result does not influence the security of our
lockable obfuscation.

Implications. As our constructions are generic and as we showcase several ver-
sions targeting different settings for lockable obfuscation, we believe that the
results give us a better understanding of the primitive. Importantly we believe
that the overall design paradigm is very simple and can even be used as a class-
room example for lockable obfuscation. An important consequence of our work
is that we showcase the usefulness of IND-CPA secure but circularly insecure
encryption. Furthermore, our results, together with [GKW17a,WZ17], show a
two-way connection of such encryption with lockable obfuscation. In summary,
the works [GKW17a,WZ17] show that given a lockable obfuscation scheme
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and an IND-CPA secure encryption scheme, we can build an IND-CPA secure
encryption scheme equipped with a cycle tester. We note that the encryption
scheme may be a fully homomorphic encryption scheme. For completeness we
give the construction in [Klu21, Appendix A]. In this paper, we show that we
can build a lockable obfuscation scheme given a (leveled) fully homomorphic
encryption scheme with an efficient cycle tester. We believe that our results
explain why GGH15 multilinear maps or similar cascading cancellations tech-
niques [KW16,GKW17c] devised to build cycle testers proved to be so useful to
build lockable obfuscation.

Finally, in this paper, we focus solely on the generic construction, its varia-
tions, and its extensions. While our result opens the gate to lockable obfuscation
schemes, secure under assumptions other than LWE, and may perhaps even
admit concretely efficient instantiations, we leave concrete constructions of such
to future work.

1.2 Overview of Our Techniques

In the following section, we informally discuss our results and techniques.

Our Main Idea. Let us remind again that in lockable obfuscation, a party
can evaluate an obfuscation ̂C of the circuit C on an input x, and learn a
message msg if C(x) = lock, where lock is a lock value. We require that ̂C
reveals no information on C, assuming that lock has large min-entropy even if
the adversary (the evaluator) would be given C and some auxiliary information
aux. Let us, for now, focus on the simplified case, where msg is always 1. In other
words, if C(x) = lock, then the lockable obfuscator returns 1, and ⊥ otherwise.
Intuitively, we can think of a lockable obfuscation ̂C as an encryption of C that
we can evaluate and then test whether C(x) = lock or not. Note that the concept
is very similar to zero testable homomorphic encryption and multilinear maps.
However, in the case of lockable obfuscation, we allow testing an element of high
min-entropy in contrast to testing zeros.

Encrypting the Circuit and Testing Ciphertexts. To encrypt a circuit, we can use
a fully homomorphic encryption (FHE) scheme. That is an encryption scheme
in which we can evaluate any polynomial-size circuit over encrypted data. We
can also use a somewhat/leveled homomorphic encryption scheme where the cir-
cuit’s depth is upper-bounded. Still, for simplicity, we refer to the scheme as
fully homomorphic. As usual, we require that the fully homomorphic encryption
scheme is indistinguishable under chosen plaintext attacks (IND-CPA). Hence an
encryption of the circuit is indistinguishable from an encryption of zero and, in
particular, reveals no information on the circuit. But to realize the testing part
of the obfuscation seems to be rather difficult. This is because, at first glance,
the IND-CPA property seems to stand in the way of testing anything about the
plaintexts. However, we observe that actually, there already exist encryption
schemes that are provably IND-CPA secure but allow to test whether a cipher-
text encrypts its secret key or not. A long line of works [Rot13,BHW15,KRW15,
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KW16,AP16,GKW17c,GKW17b,GKW17a,WZ17] showed separations between
IND-CPA secure encryption and circular secure encryption. Roughly speaking,
an encryption scheme is said to be n-circular secure if a vector of encryptions
Enc(sk1, sk2), . . . , Enc(skn, sk1) is indistinguishable from encryptions of zero. Pre-
vious works were primarily concerned with whether IND-CPA secure encryption
is also circular secure. Fortunately, for our work, the answer is negative. That
is, there are provably IND-CPA secure encryption schemes that are not circular
secure, and in some drastic cases allow to recover the secret key if given a key
cycle. We exploit such distinguishing or key recovery attacks to test whether
the evaluated obfuscation of C equals the lock or not. In particular, we use the
concept of cycle testers first formalized by Bishop, Hohenberger, and Waters
[BHW15]. For instance, the folklore1 circularly insecure encryption does sat-
isfy our needs, as we need cycle testers that work correctly when given a FHE
ciphertext that is not necessarily a fresh ciphertext. We note that previous work
considered only cycle testers for fresh encryptions. For simplicity, we focus on
the special case of 1-cycles in this section, and show a generalized construction
in Sect. 3.

The Lockable Obfuscation. At first, it seems that our job is done. We set lock to
the secret key sk of the FHE scheme equipped with a cycle tester, encrypt the cir-
cuit C, and we have a lockable obfuscation of C. There is but one more problem
to overcome. Namely, we need to be able to choose the lock independently from
the FHE parameters. Let SKE be a symmetric key encryption scheme. In the final
obfuscation scheme, we give an encryption of the FHE secret key using the lock
as a secret key for SKE. Concretely, we compute ct

(lock) ← SKE.Enc(lock, sk),
ct(lock) ← FHE.Enc(sk, ct(lock)) and ct ← FHE.Enc(sk, C). Then we set the obfus-
cated circuit as ̂C = (ct(lock), ct). To evaluate on x, we homomorphically evaluate
the universal circuit Ux that takes a circuit f and outputs f(x). Specifically, we
evaluate Ux on ct, obtaining as a result ct(C) such that FHE.Dec(sk, ct(C)) = C(x)
with high probability. Then we homomorphically evaluate the SKE decryption
circuit on ct(lock) using the plaintext in ct(C) as the secret key. Precisely, we
compute ct(Test) ← FHE.Eval([ct(C), ct(lock)],SKE.Dec(., .)). If C(x) = lock, then
SKE.Dec(lock, ct(lock)) = sk and FHE.Dec(sk, ct(Test)) = sk. In other words, ct(Test)

encrypts its secret key what we can test with a cycle tester. Otherwise, with over-
whelming probability, we end up with an FHE encryption of something different
from the FHE secret key.

Proving Security. To prove security, we need to construct a simulator and show
that the real obfuscation is computationally indistinguishable from a simulated
obfuscation. The simulator gets as input only the dimensions of the circuit and
the security parameter and outputs FHE encryptions of zero of the same quantity

1 The folklore counterexample for 1-cycles is an augmented construction of any
IND-CPA secure encryption. In short, we append y ← F (sk) to the public key, where
F is a one-way function. Encryption of a message m is as in the original encryption
scheme, except we return m if F (m) = y.
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and with the same parameters as in the real obfuscation algorithm. Now we give
a hybrid argument showing that a real obfuscation is indistinguishable from a
simulated one.

Hybrid 0: This is the real obfuscation algorithm.

Hybrid 1: Instead of ct(lock) ← SKE.Enc(lock, sk), we compute SKE.Enc(lock, 0).
Indistinguishability of the hybrids follows from IND-CPA security of the SKE
scheme.

Hybrid 2: Instead of ct(lock) ← FHE.Enc(sk, ct(lock)), we compute FHE.Enc(sk, 0).
Indistinguishability of the hybrids follows from the IND-CPA security of the
FHE scheme. Note that from Hybrid 1, ct(lock) is independent of any parameter
of the FHE scheme. In particular, ct

(lock) does not depend on sk anymore.
Hence we can use IND-CPA of the FHE scheme, even if the adversary would
know/chose lock.

Hybrid 3: Instead of ct ← FHE.Enc(sk, C), we compute FHE.Enc(sk, 0). Indis-
tinguishability of the hybrids follows again from the IND-CPA security of the
FHE scheme.

Finally, after Hybrid 3, we end up with an obfuscation that is equivalent to a
simulated one.

Lock Ciphertext in the Plain. Note that for the simulator to work, we need to
encrypt the ciphertext ct

(lock) with the FHE key. In many concrete instantia-
tions, this requirement may pose a significant problem for concrete efficiency,
and especially the size of the obfuscated circuit. Technically, if ct(lock) would be
given in the clear, then the simulator still needs to know the lock value, and
IND-CPA security is insufficient to get rid of lock. To overcome the problem, we
need to assume that ciphertexts of the SKE scheme are indistinguishable from
uniformly random strings. We also need to redefine the simulator, to choose
ct

(lock) uniformly at random. Then, in Hybrid 1, we choose ct
(lock) uniformly at

random, and we set Hybrid 3 in place of Hybrid 2. That is, after we change the
obfuscation to choose ct

(lock) uniformly in Hybrid 1, we compute FHE.Enc(sk, 0)
instead of FHE.Enc(sk, C) in Hybrid 2.

Extending the Message Space. Finally, we show an extension of both the
above obfuscation methods to the general case, where the obfuscation returns a
message msg ∈ {0, 1}�msg , instead of just indicating whether C(x) = lock or not.

Previous Approaches. Similarly, as in previous work [GKW17a,WZ17], we could
encode the message by building an obfuscation for each bit of the message. To
encode a 1-bit, the obfuscation is as given by the specification. To encode a 0-bit,
the obfuscation is created as in a simulation. There are some additional problems
with the above solution that we can resolve using pseudorandom generators as
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in [GKW17a,WZ17]. The obvious problem with this repetition approach is effi-
ciency, as every single bit of the message requires publishing and evaluating an
obfuscated circuit. Additionally, Goyal, Kopppula, and Waters [GKW17a] show
an extension that is specific to their lockable obfuscation construction. In partic-
ular, it is not a generic construction. We show how to exploit the homomorphism
of the FHE scheme in the presence of a cycle tester to encode a large message.
Consequently, we obtain a generic construction that does not require publishing
an obfuscated program for every bit in the circuit. Furthermore, the evaluator
only need to perform a small constant number of homomorphic operation per
bit of the message, in contrast to evaluating an entire obfuscated circuit.

Decoding Messages via Homomorphism and Cycle Testing. The main observa-
tion is as follows. Suppose that along with the obfuscated circuit, we publish
FHE.Enc(msgi), where msgi is the ith bit of the message msg. Then assuming
the FHE scheme is multiplicatively homomorphic, we have with high probability

FHE.Dec
(

sk,FHE.Enc(sk, sk) · FHE.Enc(sk,msgi)
)

= msgi · sk.

Now, it is easy to see that if msgi = 0, then we have an encryption of zero,
and the cycle tester will output that the ciphertext does not encode the FHE
secret key. Otherwise, if msgi = 1, then the cycle tester will output 1 with high
probability. This way, we can restore all bits of msg. Security follows immediately
from our base lockable obfuscators’ security and IND-CPA security of the FHE
scheme.

Key Recovery Attack. The way we test the message as described above gave
us a simple idea of constructing a key recovery attack against a fully homomor-
phic encryption scheme that has a cycle tester. The attack requires an encrypted
secret key (or key cycle) and assumes the FHE scheme is capable of binary decom-
posing an encrypted message. Fully homomorphic encryption schemes with a
binary plaintext space satisfy the later requirement immediately. Then it is easy
to see that we can use the decoding technique from the previous paragraph to
decode the secret keys from the key cycle.

A consequence of this observation is that a party capable of evaluating a
lockable obfuscation to output a message may also be able to decrypt the obfus-
cated circuit. Note that this does not contradict the security notion for lockable
obfuscation. However, we note that our lockable obfuscation schemes, together
with the key recovery attack, tightly exemplify the security guarantees that a
lockable obfuscator may offer. For instance, in constructions based on the GGH15
directed encodings technique [GGH15], it is not immediately clear whether one
can easily decrypt the circuit upon successful evaluation.

1.3 Related Work and Applications

As mentioned in the introduction, all current constructions [GKW17a,WZ17,
CVW18b,GKVW20] rely on the GGH15 directed encoding technique [GGH15],
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or indistinguishability obfuscation2 [BGI+01,BGI+12] to build lockable obfusca-
tion. The original works [GKW17a,WZ17] showed the first applications of lock-
able obfuscation. Both works show how to use lockable obfuscation to build one-
sided predicate encryption assuming, additionally, attribute-based encryption,
or anonymous broadcast encryption from non-anonymous broadcast encryp-
tion. A similar technique can be used to build indistinguishability obfusca-
tion for evasive functions assuming, additionally, witness encryption. Finally,
we can also compile a public key or identity-based encryption to their anony-
mous counterparts where ciphertexts do not reveal the receiver’s public key
or its identity. An important use for lockable obfuscation is to show sepa-
rations between IND-CPA security and circular security. Additionally, Goyal,
Koppula, and Waters [GKW17a] show random oracle uninstantiability results.
Wichs and Zirdelis [WZ17], show how to use lockable obfuscation to obfus-
cate affine functions and conjunctions. It is worth noting that there is only a
handful of conjunction obfuscator constructions. In particular, Brakerski and
Rothblum [BR13] show such obfuscators from multilinear maps, Brakerski et al.
[BVWW16] assume entropic LWE. Bishop et al. [BKM+18] followed by Beullens
and Wee [BW19] show conjunction obfuscators in the generic group model or
from new knowledge assumptions. Recently, Bartusek et al. [BLMZ19], building
upon [BKM+18], showed conjunction obfuscators for exponential alphabets in
the generic group model and for binary alphabets from learning parity with noise.
Notably, lockable obfuscation gives the only conjunction obfuscator for exponen-
tial alphabets from standard LWE with subexponential modulus-to-noise ratio.
Our work shows the first way of building such schemes generically. Furthermore,
lockable obfuscation trivially implies point function and hyperplane obfusca-
tion [Can97,LPS04,Wee05,CD08,DKL09,GKPV10,CRV10,YZ16,BS16,KY18].
Finally, [WZ17] show how to build private secure sketches [DS05] from lockable
obfuscation and non-private secure sketches [DRS04,DORS08].

As discussed, the core of our technique relies on IND-CPA secure encryp-
tion that is breakable/testable in the presence of a key cycle. We explicitly
use the terminology of cycle testers introduced by Bishop, Hohenberger, and
Waters [BHW15]. The first separations for IND-CPA secure and circular secure
encryption are due to Haitner and Holenstein [HH09] who show that there is
no black-box reduction from circular secure encryption to one-way functions,
or any cryptographic assumption if the adversary can obtain encryption of an
arbitrarily chosen function of the secret key. Acar et al. [ABBC10] and later
Cash, Green and Hohenberger [CGH12] construct encryption schemes that are
testable in the presence of a key cycle of the length of 2. Rothblum [Rot13]
showed encryption schemes that allow to recover the secret key given a key cycle
for bit encryption. Koppula, Ramchen, and Waters [KRW15] show a IND-CPA
secure encryption scheme that allows testing n-length cycles assuming indistin-
guishability obfuscation. Later Koppula and Waters [KW16], and independently

2 Specifically, Wichs and Zirdelis show a lockable obfuscator from null-iO, that is, iO
for evasive functions. However, the only known realization requires lockable obfus-
cation and witness encryption which we know how to build from iO or multilinear
maps that imply iO.
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Alamati and Peikert [AP16] achieve a similar result from LWE and ring-LWE.
Goyal, Koppula, and Waters [GKW17b] showed 1-circular insecure bit encryp-
tion from iO. Finally, [GKW17a,WZ17] used lockable obfuscation to construct
cycle testers for bit encryption of unbounded cycle length.

We note that the idea of exploiting circular insecure encryption to build
useful cryptographic algorithms is borrowed from a very recent paper by Klucz-
niak [Klu20], who shows a witness encryption scheme from a variant of fully
homomorphic encryption with a cycle tester.

Other Applications. Chen et al. [CVW+18a] used lockable obfuscation to build
traitor tracing schemes. Badrinarayanan et al. [BKSW18] showed separations
for encryption secure under chosen ciphertext attack and Functional Encryption
compatible encryption using lockable obfuscation. Chen et al. [CVW+18a] use
lockable obfuscation to build mixed functional encryption [GKW18]. Lockable
obfuscation was also used by Bitansky, Khurana, and Paneth [BKP19] to con-
struct zero-knowledge arguments with low round complexity. Recently Ananth
and La Placa [AL20], and Bitansky and Shmueli [BS20] constructed constant-
round post-quantum secure zero-knowledge arguments using lockable obfusca-
tion.

2 Preliminaries

Notation. We denote as [i]ni=1 the vector [1, 2 . . . , n]. For brevity, we denote
as [n] the vector [i]ni=1 and as [n,m] the vector [n, n + 1, . . . , m]. We sample a
variable a from a distribution S as a ←D S. We sample a variable a from the
uniform distribution over S as a ←R S. By default, we sample from the uniform
distribution unless said otherwise. We denote as x ← AO(.)(y) an execution of
the algorithm A on input y that gets access to an oracle O and treats it as its
subroutine. In general, we mark unassigned variables when calling an algorithm
with a “.”.

We denote any positive polynomial as poly(.). Finally, we denote as negl(.)
any negligible function. That is, for any positive polynomial poly(.) there exists
c ∈ N such that for all λ ≥ c we have |negl(λ)| ≤ 1

poly(λ) .

Entropy. The min-entropy of a random variable A is defined as H∞(A) =
− log(maxa Pr[A = a]). Let E denote the expectation of a random variable.
The average conditional min-entropy of a random variable X conditioned on a
possibly correlated variable Y is defined as

˜H∞(X|Y ) = − log
(

Ey←Y

[

2−H∞(X|Y =y)
]

)

.

Definition 1 (Conditional (HILL) Pseudo-Entropy [HILL99,HLR07]).
Let λ be a security parameter. Let X = {Xλ}, Y = {Yλ} be ensembles of jointly
distributed random variables. We define the conditional pseudo-entropy of X con-
ditioned on Y to be at least α(λ), denoted HHILL(X|Y ) ≥ α(λ) if there exist some
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X ′ = {X ′
λ} possibly jointly distributed with Y such that ˜H∞(X ′

λ|Yλ) ≥ α(λ), and
for all PPT adversaries we have

∣

∣ Pr[A(X,Y ) = 1] − Pr[A(X ′, Y ) = 0]
∣

∣ = negl(λ).

Symmetric Encryption. Below we give a generalized definition of symmet-
ric key encryption. Our correctness definition states explicitly that decryption
with a wrong key should result in an incorrect message with high probability.
We define indistinguishability under chosen-plaintext attack and pseudorandom
ciphertexts of symmetric-key ciphers. We define the security properties for secret
keys sampled from a given class of distributions. Later we recall popular classes
of distributions from the literature, but we stress that our results are shown
generically, without relying on any particular class.

Definition 2 (Symmetric Key Encryption). An encryption scheme SKE =
(Enc, Dec) consists of an encryption algorithm Enc and decryption algorithm Dec
with the following syntax.

Enc(λ, sk,msg): Takes as input a security parameter λ, a secret key sk ∈ {0, 1}�sk

and a message msg ∈ {0, 1}�msg where �sk, �msg = poly(λ), and outputs a
ciphertext ct ∈ {0, 1}�ct where �ct = poly(λ).

Dec(sk, ct): This deterministic algorithm takes as input a secret key sk ∈ {0, 1}�sk

and a ciphertext ct ∈ {0, 1}�ct , and outputs msg ∈ {0, 1}�msg .

Correctness: We say that SKE = (Enc, Dec) is correct, if for all security param-
eters λ ∈ N, sk ∈ {0, 1}�sk and msg ∈ {0, 1}�msg , where �sk, �msg = poly(λ) we
have

Dec(sk, Enc(λ, sk,msg)) = msg,

and for all sk
′ ∈ {0, 1}�sk such that sk

′ �= sk we have

Pr
[

Dec
(

sk
′
, Enc(λ, sk,msg)

)

= msg
]

= ErrcorrSKE(λ),

where ErrcorrSKE(λ) = negl(λ).

D-Indistinguishability Under Chosen Plaintext Attack: Let λ ∈ N be
a security parameter and A = (A0,A1) be a PPT adversary. Let D be a
class of distribution ensembles {Dk}k∈N that sample (sk, aux) ←D Dk with
sk ∈ {0, 1}�sk where �sk = poly(k). We define the advantage of the adversary
A against a SKE = (Enc, Dec) encryption scheme in the D-IND-CPA game as

AdvIND-CPA
A,SKE (λ) = Pr

⎡

⎢

⎢

⎣

(sk, aux) ←D Dλ,

A1(ctb, st) = b : (st,msg0,msg1) ← A
O(sk,.)
0 (λ, aux),

b ←R {0, 1},

ctb ← Enc(λ, sk,msgb)

⎤

⎥

⎥

⎦

,
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where the oracle O on input a message msg outputs ct ← Enc(λ, sk,msg).
We say that SKE = (Enc, Dec) is D-IND-CPA-secure if for all PPT adver-
saries A = (A0,A1) we have AdvD-IND-CPA

A,SKE (λ) = negl(λ).
We say that a cryptosystem SKE = (Enc, Dec) is D-semantically secure if the
above holds but A has no access to the oracle O.

D-Pseudorandom Ciphertexts: Let λ ∈ N be a security parameter and A =
(A0,A1) be a PPT adversary. Let D be a class of distribution ensembles
{Dk}k∈N that sample (sk, aux) ←D Dk with sk ∈ {0, 1}�sk where �sk = poly(k).
We define the advantage of A against a SKE = (Enc, Dec) encryption scheme
in the pseudorandom ciphertexts game as

AdvRandCtA,SKE (λ) = Pr

⎡

⎢

⎢

⎣

(sk, aux) ←D Dλ,

A1(ctb, st) = b : (st,msg) ← A
O(sk,.)
0 (λ, aux),

b ←R {0, 1},

ct0 ← Enc(λ, sk,msg), ct1 ←R {0, 1}�ct

⎤

⎥

⎥

⎦

,

where the oracle O on input a message msg outputs ct ← Enc(λ, sk,msg).
We say that SKE = (Enc, Dec) has D-pseudorandom ciphertexts if for all
PPT adversaries A = (A0,A1) we have AdvD-RandCt

A,SKE (λ) = negl(λ).
Analogously to semantic security, we say that a cryptosystem SKE = (Enc,
Dec) has weakly D-pseudorandom ciphertexts if the above holds but A has no
access to the oracle O.

Classes of Distributions. Let us recall popular classes of distributions. The
following classes were also considered by Wichs, and Zirdelis [WZ17] for their
lockable obfuscation scheme.

Uniform: The variable x is chosen uniformly at random. This is the standard
definition of IND-CPA.

Unpredictable: Informally, it is hard to predict x given aux. Formally, a class
D is unpredictable if for all PPT adversaries A, security parameters λ ∈ N,
and distribution ensembles {Dk}k∈N ∈ D we have

Pr[x ← A(aux) : (x, aux) ←D Dλ] = negl(λ).

Pseudo-Entropy: For a function α(λ) in the security parameter λ the class
of α-pseudo-entropy distributions consists of ensembles {Dk}k∈N such that
(x, aux) ←D Dλ satisfies HHILL(x|aux) ≥ α(λ).

Symmetric or public-key encryption schemes secure for the class of unpre-
dictable distribution can be constructed from learning parity with noise [DKL09],
decisional Diffie-Hellman and learning with errors [DGK+10] assumptions and
from point function obfuscators satisfying some special properties [CKVW10].
For the class of pseudo-entropy distributions we know constructions from learn-
ing with errors [AGV09,GKPV10] hash proof systems [NS09,ADN+10], assump-
tions in bilinear groups [DHLW10], computational Diffie-Hellman and subgroup
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indistinguishability assumptions [BG10,BLSV18]. It is worth mentioning that
we might realize leakage resilient encryption from pseudorandom functions with
weak seeds [Pie09,AKPW13] and encryption schemes with semantic security and
weakly pseudorandom ciphertexts from leakage resilient pseudorandom genera-
tors [DP08,Zha16].

Fully Homomorphic Encryption. We recall the definition of fully homo-
morphic encryption [RAD+78,Gen09]. In the definition, the Setup algorithm
takes as input a depth of the circuit reflecting leveled/somewhat homomorphic
schemes capable of evaluating the circuit of the given depth. We note, however,
that our results apply to unbounded fully homomorphic encryption schemes as
well. For brevity, we will omit “leveled/somewhat” and refer to the schemes as
fully homomorphic. Additionally, we note that usually, we define a public key or
an evaluation key in fully homomorphic encryption schemes. In this paper, we do
not use such keys explicitly. Therefore, we assume that such a public/evaluation
key is part of the secret key or ciphertext.

Definition 3 (Fully Homomorphic Encryption). A fully homomorphic
encryption FHE consists of algorithms (Setup, Enc, Eval, Dec) with the fol-
lowing syntax.

Setup(λ, δ): This PPT algorithm takes as input a security parameter λ and
bound on the circuit depth δ. The algorithm outputs a secret key sk. Sometimes
we omit the circuit depth in the input when it is not needed in the given
context.

Enc(sk,msg): This PPT algorithm takes as input a secret key sk, and a message
msg, and returns a ciphertext ct.

Eval([cti]κi=1, C): Given as input a set of ciphertexts [cti]κi=1, and a circuit C,
the algorithm outputs a ciphertext ct.

Dec(sk, ct): This deterministic algorithm given a secret key sk and a ciphertext
ct, outputs a message msg.

Correctness: We say that FHE = (Setup, Enc, Eval, Dec) is correct, if for all
security parameters λ ∈ N, circuits C : Mκ �→ M over the message space M
of depth δ = poly(λ), and messages [msgi ∈ M]κi=1 we have

Pr

⎡
⎣

sk ← Setup(λ, δ),
Dec(sk, ctout) = C([msgi]

κ
i=1) : [cti ← Enc(sk,msgi)]

κ
i=1

ctout ← Eval([cti]
κ
i=1, C)

⎤
⎦ = 1 − ErrcorrEval(λ),

where ErrcorrEval(λ) = negl(λ). We call ErrcorrEval(λ) the correctness error.

The distribution of evaluated ciphertexts and fresh ciphertexts may differ. In
our correctness analysis, we need conveniently denote to what message a given
ciphertext decrypts. Therefore, we denote as ctout ≈ Enc(sk,msg) the fact that
Dec(sk, ctout) = msg with some correctness error ErrcorrEval(λ).
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Efficiency: We require that Setup, Enc and Dec run in poly(λ, δ) time, and Eval
runs in poly(λ, |C|) time.

Indistinguishability Under Chosen Plaintext Attack: We define indistin-
guishability under chosen plaintext attack as in Definition 2, with the excep-
tion that the Setup algorithm generates the secret key. Furthermore, we note
that, while it is possible to define fully homomorphic encryption with weak
keys, it does not play a special role in our paper. Therefore, we consider
the secret keys’ distribution to be uniform (the Setup algorithm works on
a uniformly random seed), and we use IND-CPA as the acronym instead of
D-IND-CPA.

We use the concept of cycle testers introduced by Bishop, Hohenberger, and
Waters [BHW15]. However, we use the definition by Kluczniak [Klu20], as it
is easier to use for our purposes3. We give the construction from [GKW17a]
of a fully homomorphic encryption with a cycle tester in [Klu21, Appendix A].
Furthermore, we note that the the scheme can be instantiated from LWE with
subexponential modulus-to-noise ratio.

Definition 4 (Cycle Testing). We define an additional algorithm Test with
the following syntax.

Test([cti,j ]
n,m
i=1,j=1): The algorithm on input a vector of ciphertexts [cti,j ]

n,m
i=1,j=1

outputs a bit b ∈ {0, 1}.

Efficiency: We require that Test runs in time poly(λ).

Correctness: Let FHE = (Setup, Enc, Eval, Dec, Test) be a fully homomorphic
encryption scheme with an n-cycle tester Test for functions Fj : S �→ M,
where M is the message space and S is the secret key space and j ∈ [m]. We
say that the cycle tester is correct if for all security parameters λ ∈ N, and
all executions

[

ski ← Setup(λ)
]n

i=1
, we have ErrcorrTest(λ) = negl(λ), where

Pr
[

Test([cti,j ]
n,m
i=1,j=1) �= 1

] ≤ ErrcorrTest(λ)

given that [Fj(sk(i mod n)+1)]
n,m
i=1,j=1 = [Dec(ski, cti,j)]

n,m
i=1,j=1, and

Pr
[

Test([cti,j ]
n,m
i=1,j=1) �= 0

] ≤ ErrcorrTest(λ)

given that [Fj(sk(i mod n)+1)]
n,m
i=1,j=1 �= [Dec(ski, cti,j)]

n,m
i=1,j=1.

3 As pointed by Kluczniak [Klu20], the definition by Bishop, Hohenberger, and Waters
[BHW15] does not make a distinction between a cycle tester and an encryption
scheme with an efficient zero tester.
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Lockable Obfuscation. Now we recall lockable obfuscation introduced by
Goyal, Koppula, and Waters [GKW17a], and independently by Wichs and Zird-
elis [WZ17].

Definition 5 (Lockable Obfuscation). A lockable obfuscation scheme
LObf = (Obf, Eval) consists of an obfuscation algorithm Obf and an evaluation
algorithm Eval with the following syntax.

Obf(λ,C, lock,msg): This algorithm takes as input a security parameter λ ∈ N,
a circuit C : {0, 1}κ �→ {0, 1}η, a lock string lock ∈ {0, 1}η, and a message
msg ∈ {0, 1}�msg . The algorithm outputs an obfuscated circuit ̂C.

Eval( ̂C, x) : This deterministic algorithm takes as input an obfuscated circuit ̂C
and input x ∈ {0, 1}κ, and outputs msg or ⊥.

Efficiency: We say that the lockable obfuscation scheme is polynomially effi-
cient, if Obf and Eval run in time poly(λ, |C|).

Correctness: We say that a lockable obfuscator LObf = (Obf, Eval) is correct
if for all λ ∈ N, C : {0, 1}κ �→ {0, 1}η, msg ∈ {0, 1}�msg , lock ∈ {0, 1}η, and
x ∈ {0, 1}κ, given that ̂C ← Obf(λ,C, lock,msg) and C(x) = lock, we have

Pr[Eval( ̂C, x) �= msg] ≤ ErrcorrLObf.Eval(λ),

and given that C(x) �= lock we have that

Pr[Eval( ̂C, x) �= ⊥] ≤ ErrcorrLObf.Eval(λ),

where ErrcorrLObf.Eval(λ) = negl(λ) and the probability is over random coins of
the obfuscation algorithm Obf.

We consider also a limited version, where the lockable obfuscation has the
message set to msg = 1 for C(x) = lock and outputs 0 instead of ⊥. In particular,
our first construction given in Sect. 3 follows the limited functionality. Later
in Sect. 4.2, we show how to extend the scheme to handle any polynomial-size
messages.

Distributional Virtual Black-Box (D-DVBB) Security: Let Ck = {Cκ,η,υ}
be the set of all circuits with κ input variables, η output variables and size υ,
where κ, η, υ = poly(k). Let D be a class of distribution ensembles {Dk}k∈N

that sample (lock, aux) ←D Dk with lock ∈ {0, 1}η.
We say that the lockable obfuscation is distributional virtual black-box secure
for the distribution class D if for all PPT adversaries A = (A1,A2), there
exists a PPT simulator Sim, such that AdvD-DVBB

A,LObf (λ) = negl(λ), where

AdvD-DVBB
A,LObf (λ) =

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(lock, aux) ←D Dλ,
b ←R {0, 1},

A2( ̂Cb, st) = b : (C,msg, st) ← A1(λ, aux),
msg ∈ {0, 1}�msg , C ∈ Cλ

̂C0 ← Obf(λ,C, lock,msg),
̂C1 ← Sim(λ, κ, η, υ, �msg)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

,
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We call AdvD-DVBB
A,LObf (λ) the advantage of the adversary A against DVBB secu-

rity.

3 Lockable Obfuscation from Circular Insecure FHE

In this section, we show the basic construction of lockable obfuscation from fully
homomorphic encryption with an efficient cycle tester. The lockable obfuscation
returns a single bit that is set to 1 when the outcome of the obfuscated function
is equal to the lock, and ⊥ otherwise.

Construction 1 (Our Lockable Obfuscation Construction). Let FHE =
(Setup, Enc, Dec, Test) be a fully homomorphic encryption scheme with a cycle
tester detecting n-length key cycles for Fj where j ∈ [m]. Let SKE = (Enc, Dec)
be a symmetric encryption scheme with secret key space {0, 1}η and message
space {0, 1}�sk . Denote as Ux(.) the universal circuit that on input a circuit C :
{0, 1}κ �→ {0, 1}η, outputs C(x), where x ∈ {0, 1}κ. Let δ ∈ N be the depth of the
circuit SKE.Dec(Ux(.), .). We define the lockable obfuscation LObf = (Obf, Eval)
as follows.

Obf(λ,C, lock): Takes as input a security parameter λ, a circuit C : {0, 1}κ �→
{0, 1}η, and a lock string lock ∈ {0, 1}η.
1. For i ∈ [n] do

– Run ski ← FHE.Setup(λ, δ).
– Run cti ← FHE.Enc(ski, C).
– For j ∈ [m] do

• Run ct
(lock)
i,j ← SKE.Enc

(

λ, lock,Fj(sk(i mod n)+1)
)

.

• Run ct
(lock)
i,j ← FHE.Enc(ski, ct

(lock)
i,j ).

2. Return ̂C ← (

[cti]ni=1, [ct
(lock)
i,j ]n,m

i=1,j=1

)

.

Eval( ̂C, x): Takes as input an obfuscated circuit ̂C =
(

[cti]ni=1, [ct
(lock)
i,j ]n,m

i=1,j=1

)

,
and an input x ∈ {0, 1}κ.
1. For i ∈ [n] do

– Compute ct
(C)
i ← FHE.Eval(cti, Ux).

– For j ∈ [m] compute

ct
(Test)
i,j ← FHE.Eval

(

[ct(C)
i , ct

(lock)
i,j ],SKE.Dec(., .)

)

.

2. If FHE.Test([ct(Test)i,j ]n,m
i=1,j=1) = 1, then output 1, and output ⊥ otherwise.

Theorem 1 (Correctness). For all λ, C : {0, 1}κ �→ {0, 1}η, all lock ∈ {0, 1}η,
LObf as given by Construction 1 is a polynomially efficient and correct lockable
obfuscation with correctness error

ErrcorrLObf(λ) ≤ n · m · ErrcorrFHE.Eval(λ, δ) + ErrcorrSKE(λ) + ErrcorrFHE.Test(λ).
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Proof. Polynomial efficiency follows directly from the efficiency of the underlying
encryption schemes. Thus we focus on analyzing the correctness. From correct-
ness of the FHE scheme we have ct(C)

i = FHE.Eval(cti, Ux) ≈ FHE.Enc(ski, C(x))
and

ct
(Test)
i,j = FHE.Eval

(

[ct(C)
i , ct

(lock)
i,j ],SKE.Dec(., .)

)

≈ FHE.Enc
(

ski,SKE.Dec(C(x), ct(lock)i,j )
)

with probability of failure bounded by ErrcorrFHE.Eval(λ, δ) for each i ∈ [n] and
j ∈ [m].

If C(x) = lock we have ct
(Test)
i,j ≈ FHE.Enc

(

ski,Fj(sk(i mod n)+1)
)

. Then

we have Test([ct(Testi,j )]n,m
i=1,j=1) = 1 with probability failure bounded by

ErrcorrFHE.Test(λ).
If C(x) �= lock, then we have ct

(Test)
i,j ≈ FHE.Enc(ski, m̃sgi,j), where the plain-

text is m̃sgi,j = SKE.Dec(C(x), ct(lock)i,j ). From correctness of the SKE scheme we
have that there exists i ∈ [n] and all j ∈ [m] such that m̃sgi,j �= Fj(sk(i mod n)+1)

with probability at least 1 − ErrcorrSKE(λ). Therefore, the ciphertexts ct
(Test)
i,j does

not encode a proper cycle. Consequently, we have Test([ct(Test)i,j ]n,m
i=1,j=1) = 0 with

probability of failure bounded by ErrcorrFHE.Test(λ).
To summarize we have the probability of failure of the lockable obfuscation

ErrcorrLObf(λ) ≤ n · m · ErrcorrFHE.Eval(λ) + ErrcorrSKE(λ) + ErrcorrFHE.Test(λ).

Theorem 2 (Security). Let D be a class of distribution ensembles {Dλ}λ∈N

that sample (lock, C) ←D Dλ, with C : {0, 1}κ �→ {0, 1}η, lock ∈ {0, 1}η and
κ, η = poly(λ). Let SKE be a D-IND-CPA secure symmetric key encryption
scheme, and FHE be a IND-CPA secure fully homomorphic encryption scheme.
Then, LObf given by Construction 1, is D-DVBB secure.

Proof. Let us first describe the simulator. The simulator Sim takes as input λ,
κ, η, υ and �msg. Then Sim runs ski ← FHE.Setup(λ, δ) as in the real scheme,
and computes ̂C ← (

[cti]ni=1, [ct
(lock)
i,j ]n,m

i=1,j=1

)

, where cti ← FHE.Enc(ski, 0) and

ct
(lock)
i,j ← FHE.Enc(ski, 0), for all i ∈ [n] and j ∈ [m].

Via the following hybrid argument, we show that a simulated program is
computationally indistinguishable from an obfuscated program. We denote as
Hj the event that an adversary guesses the bit b in Hybrid j.

Hybrid 0: This is the DVBB game with the bit b = 0. That is we compute
̂Cb ← Obf(λ,C, lock,msg). We have AdvDVBBA,LObf = |Pr[H0] − 1

2 |.

Hybrid (i−1) ·m+ j: For i ∈ [n] and j ∈ [m] we compute the ciphertext ct(lock)i,j

← SKE.Enc(λ, lock, 0) instead of the ciphertext ct
(lock)
i,j ← SKE.Enc

(

λ, lock,
Fj(sk(i mod n)+1)

)

.
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Claim. If an adversary A distinguishes between Hybrid (i−1) ·m+j and Hybrid
(i − 1) · m + j − 1, then there exists a distinguisher D, that uses A to break
D-IND-CPA security of SKE. We have

∣

∣ Pr[H(i−1)·m+j ] − Pr[H(i−1)·m+j−1]
∣

∣ = AdvD-IND-CPA
D,SKE (λ).

Proof. First, the solver generates all secret keys of the FHE scheme. For i′ ∈ [n]
and j′ ∈ [m] such that (i′ − 1) · m + j′ < (i − 1) · m + j the solver queries
the O for ct

(lock)
i′,j′ ← O(lock, 0). For (i′ − 1) · m + j′ > (i − 1) · m + j, the

solver queries ct
(lock)
i′,j′ ← O(lock,Fj′(sk(i′ mod n)+1). Finally, the solver submits

msg0 = Fj(sk(i mod n)+1) and msg1 = 0 as the challenge, and obtains ct
(lock)
i,j .

The rest of the obfuscated program is computed as given by the specification.
Then if the adversary outputs that it is Hybrid (i−1) ·m+ j −1, then the solver
answers that the encrypted message is msg0. Otherwise, the solver answers that
the message is msg1.

Hybrid n · m + (i − 1) · m + j: For i ∈ [n] and j ∈ [m] we compute ct
(lock)
i,j ←

FHE.Enc(ski, 0) instead of ct(lock)i,j ← FHE.Enc(ski, ct
(lock)
i,j ).

Claim. If an adversary A distinguishes between Hybrid n · m + (i − 1) · m + j
and Hybrid n · m + (i − 1) · m + j − 1, then there exists a distinguisher D, that
uses A to break IND-CPA security of FHE.

We have
∣

∣ Pr[Hn·m+(i−1)·m+j ] − Pr[Hn·m+(i−1)·m+j−1]
∣

∣ = AdvIND-CPA
D,FHE (λ).

Proof. First, the solver generates all secret keys of the FHE scheme except ski.
For all i′ ∈ [n] such that i′ �= i and all j′ ∈ [m], the solver generates ct

(lock)
i′,j and

cti′ as in the previous hybrid. To obtain cti the solver queries O(ski, .) on input
C. To obtain ct

(lock)
i,j′ the solver submits 0 for all j′ < j, and ct

(lock)
i,j′ for j′ > j.

Finally, to obtain ct
(lock)
i,j the solver sets the challenge query as msg0 = ct

(lock)
i,j′

and msg1 = 0.
If the adversary outputs that it is Hybrid n · m + (i − 1) · m + j − 1, then

the solver answers that the encrypted message is msg0. Otherwise, the solver
answers that the message is msg1.

Hybrid 2 · n · m + i: For i ∈ [n] we compute cti ← FHE.Enc(ski, 0) instead of
cti ← FHE.Enc(ski, C).

Claim. If an adversary A distinguishes between Hybrid 2 · n · m + i and Hybrid
2 ·n ·m+ i−1, then there exists a distinguisher D, that uses A to break IND-CPA
security of FHE.

We have
∣

∣ Pr[H2·n·m+i] − Pr[H2·n·m+i−1]
∣

∣ = AdvIND-CPA
D,FHE (λ).
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Proof. The proof is a standard reduction to IND-CPA of the FHE scheme analo-
gous to the proof of Hybrids n · m + (i − 1) · m + j for i ∈ [n] and j ∈ [m].

In Hybrid 2 · n · m + n the obfuscated program is equivalent to a simulated
program. In particular all encryptions that constitute the obfuscated program
are encryptions of 0. To summarize, we have that the advantage to distinguish
between Hybrid 0 and Hybrid 2 ·n ·m+n is AdvDVBBA,LObf ≤ n ·m ·AdvD-IND-CPA

D,SKE (λ)+
(n · m + n) · AdvIND-CPA

D,FHE (λ).

4 Extensions and Variants of the Lockable Obfuscation
Scheme

In this section, we show a variant of the lockable obfuscation scheme and an
extension that allows the obfuscator to output polynomial-size messages.

4.1 Lock Ciphertext in the Plain

We show a slight modification of Construction 1, where instead of encrypting the
lock ciphertexts [ct(lock)i,j ]n,m

i=1,j=1, with the FHE encyption algorithm, we include
these ciphertexts into the obfuscated program. However, for the security proof
to work, we need to assume that SKE has pseudorandom ciphertexts. To not
restate the construction from Sect. 3, we only give the changes.

Construction 2 (Lock Ciphertexts in the Plain). Let LObf be as in Con-
struction 1, except we do not compute ct

(lock)
i,j , and Obf returns the obfuscated

circuit ̂C =
(

[(cti]ni=1, [ct(lock)i,j ]n,m
i=1,j=1

)

. Furthermore, in the Eval algorithm we

compute ct
(Test)
i,j ← FHE.Eval

(

ct
(C)
i , SKE.Dec(., ct(lock)i,j )

)

.

Theorem 3 (Correctness). For all λ, C : {0, 1}κ �→ {0, 1}η, all lock ∈ {0, 1}η,
LObf as given by Construction 2 is a polynomially efficient and correct lockable
obfuscation with correctness error

ErrcorrLObf(λ) ≤ n · m · ErrcorrFHE.Eval(λ, δ) + ErrcorrSKE(λ) + ErrcorrFHE.Test(λ).

Proof. From correctness of the FHE scheme we have ct(C)
i = FHE.Eval(cti, Ux) ≈

FHE.Enc(ski, C(x)) and

ct
(Test)
i,j = FHE.Eval

(

ct
(C)
i ,SKE.Dec(., ct(lock)i,j )

)

≈ FHE.Enc
(

ski,SKE.Dec(C(x), ct(lock)i,j )
)

with probability of failure bounded by ErrcorrFHE.Eval(λ) for each i ∈ [n] and j ∈ [m].
If C(x) = lock, then we have ct

(Test)
i,j ≈ FHE.Enc

(

ski,Fj(sk(i mod n)+1)
)

and

Test([ct(Test)i,j ]n,m
i=1,j=1) = 1 with probability failure bounded by ErrcorrFHE.Test(λ).
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If C(x) �= lock, then we have ct
(Test)
i,j ≈ FHE.Enc(ski, m̃sgi,j), where the plain-

text is m̃sgi,j = SKE.Dec(C(x), ctlocki,j ). From correctness of the SKE scheme
we have that there exists i ∈ [n] and all j ∈ [m] such that m̃sgi,j �=
Fj(sk(i mod n)+1) with probability at least 1 −ErrcorrSKE(λ). Consequently, we have
Test([ctTesti,j ]n,m

i=1,j=1) = 0 with probability of failure bounded by ErrcorrFHE.Test(λ).
To summarize we have the probability of failure from the lockable obfuscation

ErrcorrLObf(λ) ≤ n · m · ErrcorrFHE.Eval(λ) + ErrcorrSKE(λ) + ErrcorrFHE.Test(λ).

Theorem 4 (Security). Let D be a class of distribution ensembles {Dλ}λ∈N

that sample (lock, C) ←D Dλ, with C : {0, 1}κ �→ {0, 1}η, lock ∈ {0, 1}η and
κ, η = poly(λ). Let SKE be a D-RandCt secure symmetric key encryption scheme,
and FHE be a IND-CPA secure fully homomorphic encryption scheme. Then,
LObf given by Construction 2, is D-DVBB secure.

Proof. To prove security, we define the simulator to compute the FHE ciphertexts
as encryptions of 0, and choose the SKE ciphertexts uniformly at random. Note
that the simulator requires only the circuit’s dimensions and the size of the lock
key.

The hybrid argument is the same as in the proof of Theorem 2, except with
the following changes. The hybrids (i − 1) · m + j for i ∈ [n] and j ∈ [m] is as
we define below. After hybrid n · m come hybrids n · m + i for i ∈ [n] that are
the same as the hybrids 2 · n · m + i in the proof of Theorem 2. Note that the
hybrids n · m + (i − 1) · m + j from the proof of Theorem 2, are missing as we
no longer use those encryptions.

Now the hybrids (i − 1) · m + j that we need to redefine are as follows.

Hybrid (i − 1) · m + j: For i ∈ [n] and j ∈ [m] we choose the ciphertext
ct

(lock)
i,j ←R {0, 1}�sk from the uniform distribution instead of computing it as

ct
(lock)
i,j ← SKE.Enc

(

λ, lock,Fj(sk(i mod n)+1)
)

.

Claim. If an adversary A distinguishes between Hybrid (i−1) ·m+j and Hybrid
(i−1)·m+j−1, then there exists a distinguisher D, that uses A to break D-RandCt
security of SKE. We have

∣

∣ Pr[H(i−1)·m+j ] − Pr[H(i−1)·m+j−1]
∣

∣ = AdvD-RandCt
D,SKE (λ).

Proof. First, the solver generates all secret keys of the FHE scheme. For i′ ∈ [n]
and j′ ∈ [m] such that (i′ − 1) · m + j′ < (i − 1) · m + j the solver chooses
ct

(lock)
i′,j′ ←R {0, 1}�sk uniformly at random. For (i′ − 1) · m + j′ > (i − 1) · m +

j, the solver queries ct
(lock)
i′,j′ ← O(lock,Fj′(sk(i′ mod n)+1). Finally, the solver

submits msg = Fj(sk(i mod n)+1) as the challenge, and obtains ct
(lock)
i,j . The rest

of the obfuscated program is computed as given by the specification. Then if
the adversary outputs that it is in Hybrid (i − 1) · m + j − 1, then the solver
answers that the encrypted message is msg. Otherwise, the solver answers that
the ciphertext is uniformly random.
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In summary we have that the advantage to distinguish between Hybrid 0 and
Hybrid n · m + n is AdvDVBBA,LObf ≤ n · m · AdvD-RandCt

D,SKE (λ) + n · AdvIND-CPA
D,FHE (λ).

Remark 1 (Relaxing the Security Requirement on the SKE Scheme). From the
proof of Hybrids [1, n ·m] in the proofs of Theorem 2 and Theorem 4, we observe
that we need D-IND-CPA (resp. D-RandCt) because we need to encrypt multiple
FHE secret keys using the same lock key. Note that in the special case of key
dependent message insecure fully homomorphic encryption where n = 1 and
m = 1, we can relax the requirement on SKE to D-semantic security (resp. weak
D-pseudorandom ciphertext). Furthermore, for D being the class of uniform
distributions, we can efficiently implement SKE as a one-time pad.

4.2 Extending to Multi-bit Messages

In this section, we show variants of our lockable obfuscation scheme capable of
returning larger messages instead of only a single bit. We show that it is enough
to publish encryptions of the bits of the message, and then use the multiplicative
homomorphism and the cycle tester to test which bit is encrypted. We extend
the idea and show that circular insecure, fully homomorphic encryption schemes
are naturally susceptible to key recovery attacks. Finally, we note that we can
exploit a full key recovery attack to reduce further the number of ciphertexts
that constitute the obfuscated program.

Construction 3 (Multibit Lockable Obfuscation). Let LObf =
(Obf, Eval) be the lockable obfuscation as given by Construction 1 or Construc-
tion 2. Let C : {0, 1}κ �→ {0, 1}η be a circuit and let ̂C ← LObf.Setup(λ,C, lock)
for lock ∈ {0, 1}η. Denote as msg[l] ∈ {0, 1} for l ∈ [�msg] the lth bit of a mes-
sage msg. For the message msg ∈ {0, 1}�msg where �msg = poly(λ), we extend the
obfuscated circuit as follows.

– The Obf algorithm additionally computes ct
(msg)
i,l ← FHE.Enc(ski,msg[l]) for

all i ∈ [n] and l ∈ [�msg]. The extended program is
• ̂C =

(

[cti]ni=1, [ct
(msg)
i,l ]n,�msg

i=1,l=1, [ct
(lock)
i,j ]n,m

i=1,j=1

)

for base Construction 1,
and

• ̂C =
(

[cti]ni=1, [ct
(msg)
i,l ]n,�msg

i=1,l=1, [ct
(lock)
i,j ]n,m

i=1,j=1

)

for base Construction 2.

– The Eval algorithm upon computing ct
(Test)
i,j as in Construction 1 or Con-

struction 2, restores the message msg as follows.

1. If FHE.Test([ct(Test)i,j ]n,m
i=1,j=1) = 0, then return ⊥.

2. For all l ∈ [�msg] do
• For i ∈ [n] and j ∈ [m] compute

ct
(Test,msg)
i,j,l ← FHE.Eval

(

[ct(Test)i,j , ct
(msg)
i,l ], Mul(., .)

)

.

• Set msg[l] = FHE.Test
(

[ct(Test,msg)
i,j,l ]n,m

i=1,j=1

)

.
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Theorem 5 (Correctness). For all λ ∈ N, all C : {0, 1}κ �→ {0, 1}η, all lock ∈
{0, 1}η and msg ∈ {0, 1}�msg , LObf given by Construction 3 is a polynomially
efficient and correct lockable obfuscation with correctness error

ErrcorrLObf(λ) ≤ n · m · �msg · ErrcorrFHE.Eval(λ, δ) + �msg · ErrcorrFHE.Test(λ) + ErrcorrSKE(λ).

Proof. Again, polynomial efficiency follows from polynomial efficiency of the
underlying primitives. The proofs of correctness for both versions that are based
on Construction 1 and Construction 2, follow the proofs of Theorem 2 and
Theorem 4, respectively, until the ciphertexts ct

(Test)
i,j are computed. Remind

that for C(x) = lock we have ct
(Test)
i,j ≈ FHE.Enc(ski,Fj(sk(i mod n)+1)). Then

from Construction 3 we have

ct
(Test,msg)
i,j,l = FHE.Eval

(

[ct(Test)i,j , ct
(msg)
i,l ], Mul(., .)

)

≈ FHE.Enc(ski,Fj(sk(i mod n)+1) · msg[l])

with probability failure ErrcorrFHE.Eval(λ, δ) for all i ∈ [n], j ∈ [m] and l ∈
[�msg]. Therefore, if msg[l] = 0, then Test([ct(Test,msg)

i,j,l ]n,m
i=1,j=1) = 0, and if

msg[j] = 1, then FHE.Test
(

[ct(Test,msg)
i,j,l ]n,m

i=1,j=1

)

= 1, with probability of failure
ErrcorrFHE.Test(λ).

If C(x) �= lock, then we have ct
(Test,msg)
i,j,l ≈ FHE.Enc(ski, m̃sgi,j), where

the plaintext is m̃sgi,j = SKE.Dec(C(x), ctlocki,j ). From correctness of the SKE
scheme we have that there exists i ∈ [n] and all j ∈ [m] such that m̃sgi,j �=
Fj(sk(i mod n)+1) with probability at least 1 −ErrcorrSKE(λ). Consequently, we have
that, even if msg[l] = 1, the vector [ct(Test,msg)

i,j,l ]n,m
i=1,j=1 does not encode a cycle,

and the tester returns 0 with probability failure bounded by ErrcorrFHE.Test(λ) and
the LObf.Eval algorithm outputs ⊥.

Note that in the case C(x) �= lock, the circuit evaluated by the FHE is smaller,
however we upperbound the error with ErrcorrFHE.Eval(λ, δ). Furthermore, in the case
C(x) = lock, SKE always returns the correct message, but we upperbound the
probability of failure with ErrcorrSKE(λ).

To summarize, we have that the message extraction may fail with probability
at least n · m · �msg · ErrcorrFHE.Eval(λ) + �msg · ErrcorrFHE.Test(λ) + ErrcorrSKE(λ).

Theorem 6 (Security). Let SKE be a D-IND-CPA secure symmetric key
encryption scheme when using Construction 1 as base, or D-RandCt secure when
using Construction 2 as base. Let FHE be a IND-CPA secure fully homomorphic
encryption scheme. Then, LObf given by Construction 1, is D-DVBB secure.

Proof. The proof of Theorem 6 follows the proofs of Theorem 2 and Theorem 4
depending which base construction is used, except with the following changes.

The simulator works as in Theorem 6 or Theorem 4 but it additionally com-
putes ct(msg)

i,l as encryptions of zero. Let L be the number of the last hybrid in the
proof of Theorem 2 or Theorem Theorem 4. We additionally define the following
sequence of hybrids.
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Hybrid L + n · (i − 1) + l: For i ∈ [n] and l ∈ [�msg], instead of computing
ct

(msg)
i,l ← FHE.Enc(ski,msg[l]), we compute ct

(msg)
i,l ← FHE.Enc(ski, 0).

Claim. If an adversary A distinguishes between Hybrid L + n · (i − 1) + l and
Hybrid L + n · (i − 1) + l − 1, then there exists a distinguisher D, that uses A to
break IND-CPA security of FHE. We have

∣

∣ Pr[HL+n·(i−1)+l] − Pr[HL+n·(i−1)+l−1]
∣

∣ = AdvIND-CPA
D,FHE (λ).

Proof. First, the solver generates all secret keys of the FHE scheme except ski.
The solver generates all ciphertexts as in Hybrid L + n · (i − 1) + l − 1, except
for the ciphertext ct

(msg)
i,l . To obtain ct

(msg)
i,l the solver sets the challenge query

as msg0 = msg[l] and msg1 = 0. All other ciphertexts for the secret key are
obtained by querying O on messages as in Hybrid L + n · (i − 1) + l − 1.

If the adversary outputs that it is Hybrid L+n ·(i−1)+ l−1, then the solver
answers that the encrypted message is msg0. Otherwise, the solver answers that
the message is msg1.

Finally, we have that for

– the base Construction 1, the adversary’s advantage of distinguish between
hybrid 0 and hybrid L + n · �msg is

AdvDVBBA,LObf ≤ n · m · AdvD-IND-CPA
D,SKE (λ) + n · (m + �msg) · AdvIND-CPA

D,FHE (λ)

and for
– the base Construction 2, the adversary’s advantage of distinguish between

hybrid 0 and hybrid L + n · �msg is

AdvDVBBA,LObf ≤ n · m · AdvD-RandCt
D,SKE (λ) + n · (1 + �msg) · AdvIND-CPA

D,FHE (λ)

Key Recovery Attack. We show that given a key cycle for any circular inse-
cure fully homomorphic encryption, it is possible to decode the key material.
The idea follows from Construction 3.

Construction 4 (The Key Recovery Attack). Let FHE = (Setup, Enc,
Dec, Eval, Test) be a fully homomorphic encryption scheme with a cycle tester.
We build the algorithm KeyRecovery as follows:

KeyRecovery([cti]
n,m
i=1,j=1): Takes as input a vector of ciphertexts [cti,j ]

n,m
i=1,j=1

and returns a vector [˜ski,j ]
n,m
i=1,j=1.

1. Let � ≥ �log2 Fj(.)� for all j ∈ [m].
2. For i ∈ [n], j ∈ [m] and l ∈ �

– Compute ct
(Bit,i,j)
l ← FHE.Eval

(

cti,j , GetBit(., l)
)

, where
GetBit(x, l) is a circuit that returns the lth bit of x.

– For i′ ∈ [n] and j′ ∈ [m]
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• If i′ = i, then set

ct
(Test,i,j)
i′,j′ ← FHE.Eval

(

[ct(Bit,i,j)l,i′ , cti′,j′ ], Mul(., .)
)

.

• Otherwise set ct(Test,i,j)i′,j′ ← cti′,j′ .

– Set ˜bi,j,l ← Test
(

[ct(Test,i,j)i′,j′ ]n,m
i′=1,j′=1

)

.
3. For i ∈ [n] and j ∈ [m] compute ˜ski,j ← ∑�

l=1
˜bi,j,l · 2l−1.

4. Return [˜ski,j ]
n,m
i=1,j=1.

Theorem 7 (Correctness). For i ∈ [n] and j ∈ [m] let cti,j ≈ FHE.Enc(ski,
Fj(sk(i mod n)+1)). Let CKR be the circuit that KeyRecovery homomorphically
computes on each ciphertext cti,j until it obtains ct

(Test,i,j)
i′,j′ . Denote as δ the

depth of CKR. Let [˜ski,j ]
n,m
i=1,j=1 ← KeyRecovery([cti,j ]

n,m
i=1,j=1). Then the equation

˜ski,j = Fj(sk(i mod n)+1) holds for all i ∈ [n] and all j ∈ [m] with probability
1 − (

ErrcorrFHE.Eval(λ, δ) + ErrcorrFHE.Test(λ)
)

.

Proof. Let us denote as bi,j,l ∈ {0, 1} the bits which satisfy Fj(sk(i mod n)+1) =
∑�

l=1 b(i mod n)+1,j,l ·2l−1. From correctness of the FHE we have that ct(Bit,i,j)l =
FHE.Eval(cti,j , GetBit(., l)) ≈ FHE.Enc(ski, bi,j,l).

Again from correctness of the FHE we have

ct
(Test,i,j)
i′,j′ = FHE.Eval

(

[ct(Bit,i,j)l,i′ , cti′,j′ ], Mul(., .)
)

≈ FHE.Enc
(

ski′ , bi,j,l · Fj′(sk(i′ mod n)+1)
)

,

for i′ = i. For i′ �= i, we set ct
(Test,i,j)
i′,j′ = cti,j . Now observe that the vector

[ct(Test,i,j)i′,j′ ]n,m
i′=1,j′=1 decrypts to the same messages as the vector [cti,j ]

n,m
i=1,j=1 if

bi,j,l = 1. If bi,j,l = 0, then the ciphertexts ct
(Test,i,j)
i,j′ are ciphertexts of 0, and

the cycle is broken. Hence from correctness of the cycle tester we have ˜bi,j,l = 0
if bi,j,l = 0, since ct

(Test,i,j)
i′,j′ ≈ FHE.Enc(ski′ , 0), and ˜bi,j,l = 1 if bi,j,l = 1, since

ct
(Test,i,j)
i′,j′ ≈ FHE.Enc(ski′ ,Fj′(sk(i′ mod n)+1)). Finally, from the definition we

have that ˜ski,j =
∑�

l=1
˜bi,j,l · 2l−1 = Fj(sk(i mod n)+1).

Remark 2 (Further simplification of Multibit Lockable Obfuscation). At this
point we believe it is easy to see, that we can reduce the size of the obfuscated pro-
gram given by Construction 3, by publishing ctmsg ← FHE.Enc(sk1,msg) instead
of [ctmsgi,j ]

�msg
j=1)]

n
i=1. The idea to decrypt the message from ctmsg, is to run the

attack given by Construction 3, i.e., recover all secret keys for the FHE scheme,
including sk1. Note that we assume that it is feasible to recover the secret keys
given [Fj(sk(i mod n)+1)]

n,m
i=1,j=1. Finally, we compute msg ← FHE.Dec(sk1, ctmsg).
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5 Conclusions

We believe that our lockable obfuscators are intuitive and easy to understand.
Our algorithms exemplify, alongside the work from Kluczniak [Klu20], that cir-
cular insecure encryption is a useful building block for advanced cryptographic
primitives. It is worth noting that circular insecure encryption was previously
constructed solely out of theoretical curiosity.

As mentioned in the introduction, the main aim of this paper is to introduce
and analyze a general methodology of building lockable obfuscators. In particu-
lar, we leave concrete instantiations of our methods to future work. An exciting
direction would be whether, for instance, we can use existing fully homomorphic
encryption schemes together with the cycle testers in [BHW15,KW16,AP16] to
build more efficient lockable obfuscation without the need to obfuscate branching
programs.

Funding. This work has been partially funded/supported by the German
Ministry for Education and Research through funding for the project CISPA-
Stanford Center for Cybersecurity (Funding number 16KIS0927).
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Abstract. The security notion of covert security introduced by Aumann
and Lindell (TCC’07) allows the adversary to successfully cheat and
break security with a fixed probability 1 − ε, while with probability ε,
honest parties detect the cheating attempt. Asharov and Orlandi (ASI-
ACRYPT’12) extend covert security to enable parties to create publicly
verifiable evidence about misbehavior that can be transferred to any
third party. This notion is called publicly verifiable covert security (PVC)
and has been investigated by multiple works. While these two notions
work well in settings with known identities in which parties care about
their reputation, they fall short in Internet-like settings where there are
only digital identities that can provide some form of anonymity.

In this work, we propose the notion of financially backed covert secu-
rity (FBC), which ensures that the adversary is financially punished if
cheating is detected. Next, we present three transformations that turn
PVC protocols into FBC protocols. Our protocols provide highly efficient
judging, thereby enabling practical judge implementations via smart con-
tracts deployed on a blockchain. In particular, the judge only needs to
non-interactively validate a single protocol message while previous PVC
protocols required the judge to emulate the whole protocol. Further-
more, by allowing an interactive punishment procedure, we can reduce
the amount of validation to a single program instruction, e.g., a gate in
a circuit. An interactive punishment, additionally, enables us to create
financially backed covert secure protocols without any form of common
public transcript, a property that has not been achieved by prior PVC
protocols.

Keywords: Covert Security · Multi-Party Computation (MPC) ·
Public Verifiability · Financial Punishment

1 Introduction

Secure multi-party computation (MPC) protocols allow a set of parties to jointly
compute an arbitrary function f on private inputs. These protocols guarantee
privacy of inputs and correctness of outputs even if some of the parties are
corrupted by an adversary. The two standard adversarial models of MPC are
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semi-honest and malicious security. While semi-honest adversaries follow the
protocol description but try to derive information beyond the output from the
interaction, malicious adversaries can behave in an arbitrary way. MPC proto-
cols in the malicious adversary model provide stronger security guarantees at
the cost of significantly less efficiency. As a middle ground between good effi-
ciency and high security Aumann and Lindell introduced the notion of security
against covert adversaries [AL07]. As in the malicious adversary model, cor-
rupted parties may deviate arbitrarily from the protocol specification but the
protocol ensures that cheating is detected with a fixed probability, called deter-
rence factor ε. The idea of covert security is that adversaries fear to be detected,
e.g., due to reputation issues, and thus refrain from cheating.

Although cheating can be detected in covert security, a party of the pro-
tocol cannot transfer the knowledge about malicious behavior to other (exter-
nal) parties. This shortcoming was addressed by Asharov and Orlandi [AO12]
with the notion of covert security with public verifiability (PVC). Informally,
PVC enables honest parties to create a publicly verifiable certificate about the
detected malicious behavior. This certificate can subsequently be checked by any
other party (often called judge), even if this party did not contribute to the pro-
tocol execution. The idea behind this notion is to increase the deterrent effect by
damaging the reputation of corrupted parties publicly. PVC secure protocols for
the two-party case were presented by [AO12,KM15,ZDH19,HKK+19]. Recently,
Damg̊ard et al. [DOS20] showed a generic compiler from semi-honest to publicly
verifiable covert security for the two-party setting and gave an intuition on how
to extend their compiler to the multi-party case. Full specifications of generic
compilers from semi-honest to publicly verifiable covert security for multi-party
protocols were presented by Faust et al. [FHKS21] and Scholl et al. [SSS21].

Although PVC seems to solve the shortcoming of covert security at first
glance, in many settings PVC is not sufficient; especially, if only a digital iden-
tity of the parties is known, e.g., in the Internet. In such a setting, a real party
can create a new identity without suffering from a damaged reputation in the
sequel. Hence, malicious behavior needs to be punished in a different way. A
promising approach is to use existing cryptocurrencies to directly link cheat-
ing detection to financial punishment without involving trusted third parties;
in particular, cryptocurrencies that support so-called smart contracts, i.e., pro-
grams that enable the transfer of assets based on predefined rules. Similar to
PVC, where an external judge verifies cheating by checking a certificate of mis-
behavior, we envision a smart contract that decides whether a party behaved
maliciously or not. In this setting, the task of judging is executed over a dis-
tributed blockchain network keeping it incorruptible and verifiable at the same
time. Since every instruction executed by a smart contract costs fees, it is highly
important to keep the amount of computation performed by a contract small.
This aspect is not solely important for execution of smart contracts but in all
settings where an external judge charges by the size of the task it gets. Due
to this constraint, we cannot straightforward adapt PVC protocols to work in
this setting, since detection of malicious behavior in existing PVC protocols is
performed in a naive way that requires the judge to recompute a whole protocol
execution.
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Related Work. While combining MPC with blockchain technologies is an active
research area (e.g., [KB14,BK14,ADMM14]) none of these works deal with real-
izing the judging process of PVC protocols over a blockchain. The only work
connecting covert security with financial punishment thus far is by Zhu et al.
[ZDH19], which we describe in a bit more detail below. They combine a two-
party garbling protocol with an efficient judge that can be realized via a smart
contract. Their construction leverages strong security primitives, like a mali-
cious secure oblivious transfer for the transmission of input wires, to ensure
that cheating can only occur during the transmission of the garbled circuit and
not in any other part of the two-party protocol. By using a binary search over
the transmitted circuit, the parties narrow down the computation step under
dispute to a single circuit gate. This process requires O(log(|C|)) interactions,
where |C| denotes the circuit size, and enables the judge to resolve the dispute
by recomputing only a single circuit gate.

While the approach of Zhu et al. [ZDH19] provides an elegant way to reduce
the computational complexity of the judge in case cheating is restricted to a sin-
gle message, it falls short if multiple messages or even a whole protocol execution
is under dispute. As a consequence, their construction is limited in scalability
and generality, since it is only applicable to two-party garbling protocols, i.e.,
neither other semi-honest two-party protocols nor more parties are supported.

Generalizing the ideas of [ZDH19] to work for other protocol types and the
multi-party case requires us to address several challenges. First, in [ZDH19] the
transmitted garbled circuit under dispute is the result of the completely non-
interactive garbling process. In contrast, many semi-honest MPC protocols (e.g.,
[GMW87,BMR90]) consist of several rounds of interactions that need to be all
considered during the verification. Interactivity poses the challenge that multi-
ple messages may be under dispute and the computation of messages performed
by parties may depend on data received in previous rounds. Hence, verifications
of messages need to consider local computations and internal states of the par-
ties that depend on all previous communication rounds. This task is far more
complex than verifying a single public message. Second, supporting more than
two parties poses the challenge of resolving a dispute about a protocol execu-
tion during which parties might not know the messages sent between a subset of
other parties. Third, the transmitted garbled circuit in [ZDH19] is independent
of the parties private inputs. Considering protocols where parties provide secret
inputs or messages that depend on these inputs, requires a privacy-preserving
verification mechanism to protect parties’ sensitive data.

1.1 Contribution

Our first contribution is to introduce a new security notion called financially
backed covert security (FBC). This notion combines a covertly secure proto-
col with a mechanism to financially punish a corrupted party if cheating was
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detected. We formalize financial security by adding two properties to covert secu-
rity, i.e., financial accountability and financial defamation freeness. Our notion is
similar to the one of PVC; in fact, PVC adds reputational punishment to covert
security via accountability and defamation freeness. In order to lift these prop-
erties to the financial context, FBC requires deposits from all parties and allows
for an interactive judge. We present two security games to formalize our intro-
duced properties. While the properties are close to accountability and defamation
freeness of PVC, our work for the first time explicitly presents formal security
games for these security properties, thereby enabling us to rigorously reason
about financial properties in PVC protocols. We briefly compare our new notion
to the security definition of Zhu et al. [ZDH19], which is called financially secure
computation. Zhu et al. follow the approach of simulation-based security by pre-
senting an ideal functionality for two parties that extends the ideal functionality
of covert security. In contrast, we present a game-based security definition that
is not restricted to the two-party case. While simulation-based definitions have
the advantage of providing security under composition, proving a protocol secure
under their notion requires to create a full simulation proof which is an expen-
sive task. Instead, our game-based notion allows to re-use simulation proofs of
all existing covert and PVC protocols, including future constructions, and to
focus on proving financial accountability and financial defamation freeness in a
standalone way.

We present transformations from different classes of PVC protocols to FBC
protocols. While we could base our transformations on covert protocols, FBC
protocols require a property called prevention of detection dependent abort, which
is not always guaranteed by a covert protocol. The property ensures that a
corrupted party cannot abort after learning that her cheating will be detected
without leaving publicly verifiable evidence. PVC protocols always satisfy pre-
vention of detection dependent abort. So, by basing our transformation on PVC
protocols, we inherit this property.

While the mechanism utilized by [ZDH19] to validate misbehavior is highly
efficient, it has only been used for non-interactive algorithms so far, i.e., to vali-
date correctness of the garbling process. We face the challenge of extending this
mechanism over an interactive protocol execution while still allowing for effi-
cient dispute resolution such that the judge can be realized via a smart contract.
In order to tackle these challenges, we present a novel technique that enables
efficient validation of arbitrary complex and interactive protocols given the ran-
domness and inputs of all parties. What’s more, we can allow for private inputs if
a public transcript of all protocol messages is available. We utilize only standard
cryptographic primitives, in particular, commitments and signatures.

We differentiate existing PVC protocols according to whether the parties pro-
vide private inputs or not. The former protocols are called input-dependent and
the latter ones input-independent. Input-independent protocols are typically used
to generate correlated randomness. Further, all existing PVC protocols incorpo-
rate some form of common public transcript. Input-dependent protocols require
a common public transcript of messages. In contrast, for input-independent pro-
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tocols, it is enough to agree on the hashes of all sent messages. While it is not
clear, if it is possible to construct PVC protocols without any form of public
transcript, we construct FBC protocols providing this property. We achieve this
by exploiting the interactivity of the judge, which is non-interactive in PVC.
Based on the above observations, we define the following three classes of FBC
protocols, for which we present transformations from PVC protocols.

Class 1: The first class contains input-independent protocols during which par-
ties learn hashes of all protocol messages such that they agree on a common
transcript of message hashes.

Class 2: The second class contains input-dependent protocols with a public
transcript of messages. In contrast to class 1, parties may provide secret
inputs and share a common view on all messages instead of a common view
on hashes only.

Class 3: The third class contains input-independent protocols where parties
do not learn any information about messages exchanged between a subset
of other parties (cf. class 1). As there are no PVC protocol fitting into this
class, we first convert PVC protocols matching the requirements of class 1
into protocols without public transcripts and second leverage an interactive
punishment procedure to transform the resulting protocols into FBC proto-
cols without public transcripts. Our FBC protocols benefit from this property
since parties have to send all messages only to the receiver and not to all other
parties. This effectively reduces the concrete communication complexity by a
factor depending on the number of parties. In the optimistic case, if there is no
cheating, we get this benefit without any overhead in the round complexity.

For each of our constructions, we provide a formal specification and a rigorous
security analysis; the ones of the second class can be found in the full version
of this paper. This is in contrast to the work of [ZDH19] which lacks a formal
security analysis for financially secure computation. We stress that all existing
PVC multi-party protocols can be categorized into class 1 and 2. Additionally,
by combining any of the transformations from [DOS20,FHKS21,SSS21], which
compile semi-honest protocols into PVC protocols, our constructions can be used
to transform these protocol into FBC protocols.

The resulting FBC protocols for class 1 and 2 allow parties to non-
interactively send evidence about malicious behavior to the judge. As the judge
entity in these two classes is non-interactive, techniques from our transforma-
tions are of independent interest to make PVC protocols more efficient. Since,
in contrast to class 1 and 2, there is no public transcript present in protocols
of class 3, we design an interactive process involving the judge entity to gener-
ate evidence about malicious behavior. For all protocols, once the evidence is
interactively or non-interactively created, the judge can efficiently resolve the
dispute by recomputing only a single protocol message regardless of the overall
computation size. We can further reduce the amount of validation to a single
program instruction, e.g., a gate in a circuit, by prepending an interactive search
procedure. This extension is presented in the full version of this paper.
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Finally, we provide a smart contract implementation of the judging party
in Ethereum and evaluate its gas costs (cf. Sect. 8). The evaluation shows the
practicability, e.g., in the three party setting, with optimistic execution costs of
533 k gas. Moreover, we show that the dispute resolution of our solution is highly
scalable in regard to the number of parties, the number of protocol rounds and
the protocol complexity.

1.2 Technical Overview

In this section, we outline the main techniques used in our work and present the
high-level ideas incorporated into our constructions. We start with on overview
of the new notion of financially backed covert security. Then, we present a first
attempt of a construction over a blockchain and outline the major challenges.
Next, we describe the main techniques used in our constructions for PVC proto-
cols of classes 1 and 2 and finally elaborate on the bisection procedure required
for the more challenging class 3.

Financially Backed Covert Security. We recall that, a publicly verifiable covertly
secure (PVC) protocol (πcov,Blame, Judge) consists of a covertly secure protocol
πcov, a blaming algorithm Blame and a judging algorithm Judge. The blam-
ing algorithm produces a certificate cert in case cheating was detected and the
judging algorithm, upon receiving a valid certificate, outputs the identity of the
corrupted party. The algorithm Judge of a PVC protocol is explicitly defined as
non-interactive. Therefore, cert can be transferred at any point in time to any
third party that executes Judge and can be convinced about malicious behavior
if the algorithm outputs the identity of a corrupted party.

In contrast to PVC, financially backed covert security (FBC) works in a
model where parties own assets which can be transferred to other parties. This
is modelled via a ledger entity L. Moreover, the model contains a trusted judging
party J which receives deposits before the start of the protocol and adjudicates
in case of detected cheating. We emphasize that the entity J , which is a single
trusted entity interacting with all parties, is not the same as the algorithm Judge
of a PVC protocol, which can be executed non-interactively by any party. An
FBC protocol (π′

cov,Blame′,Punish) consists of a covertly secure protocol π′
cov, a

blaming algorithm Blame′ and an interactive punishment protocol Punish. Simi-
lar to PVC, the blaming algorithm Blame′ produces a certificate cert′ that is used
as an input to the interactive punishment protocol. Punish is executed between
the parties and the judge J . If all parties behave honestly during the execution
of π′

cov, J sends the deposited coins back to all parties after the execution of
Punish. In case cheating is detected during π′

cov, the judge J burns the coins of
the cheating party.

First Attempt of an Instantiation Over a Blockchain. Blockchain technologies
provide a convenient way of handling monetary assets. In particular, in combi-
nation with the execution of smart contracts, e.g., offered by Ethereum [W+14],
we envision to realize the judging party J as a smart contract. A first attempt
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of designing the punishment protocol is to implement J in a way, that the judge
just gets the certificate generated by the PVC protocol’s blame algorithm and
executes the PVC protocol’s Judge-algorithm. However, the Judge-algorithm of
all existing PVC protocols recomputes a whole protocol instance and compares
the output with a common transcript on which all parties agree beforehand.
As computation of a smart contract costs money in form of transaction fees,
recomputing a whole protocol is prohibitively expensive. Therefore, instead of
recomputing the whole protocol, we aim for a punishment protocol that facili-
tates a judging party J which needs to recompute just a single protocol step or
even a single program instruction, e.g., a gate in a circuit. The resulting judge
becomes efficient in a way that it can be practically realized via a smart contract.

FBC Protocols with Efficient Judging from PVC Protocols. In this work, we
present three transformations from PVC protocols to FBC protocols. Our trans-
formations start with PVC protocols providing different properties which we use
to categorize these protocols into three classes. We model the protocol execu-
tion in a way such that every party’s behavior is deterministically defined by
her input, her randomness and incoming messages. More precisely, we define
the initial state of a party as her input and some randomness and compute
the next state according to the state of the previous round and the incoming
messages of the current round. Our first two transformations build on PVC pro-
tocols where the parties share a public transcript of the exchanged messages
resp. message hashes. Additionally, parties send signed commitments on their
intermediate states to all parties. The opening procedure ensures that correctly
created commitments can be opened – falsely created commitments open to an
invalid state that is interpreted as an invalid message. By sending the internal
state of some party Pm for a single round together with the messages received
by Pm in the same round to the judging party, the latter can efficiently verify
malicious behavior by recomputing just a single protocol step. The resulting
punishment protocol is efficient and can be executed without contribution of the
cheating party.

Interactive Punishment Protocol to Support Private Transcripts. Our third
transformation compiles input-independent PVC protocols with a public tran-
script into protocols where no public transcript is known to the parties. The
lack of a public transcript makes the punishment protocol more complicated.
Intuitively, since an honest party has no signed information about the mes-
sage transcript, she cannot provide verifiable data about the incoming message
used to calculate a protocol step. Therefore, we use the technique of an inter-
active bisection protocol which was first used in the context of verifiable com-
puting by Canetti et al. [CRR11] and subsequently by many further construc-
tions [KGC+18,TR19,ZDH19,EFS20]. While the bisection technique is very effi-
cient to narrow down disagreement, it was only used for non-interactive algo-
rithms so far. Hence, we extend this technique to support also interactive proto-
cols. In particular, in our work, we use a bisection protocol to allow two parties
to efficiently agree on a common message history. To this end, both parties, the
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accusing and the accused one, create a Merkle tree of their emulated message
history up to the disputed message and submit the corresponding root. If they
agree on the message history, the accusation can be validated by reference to this
history. If they disagree, they perform a bisection search over the proposed his-
tory that determines the first message in the message history, they disagree on,
while automatically ensuring that they agree on all previous messages. Hence,
the judge can verify the message that the parties disagree on based on the pre-
vious messages they agree on. At the end of both interactions, the judge can
efficiently resolve the dispute by recomputing just a single step.

2 Preliminaries

We start by introducing notation and cryptographic primitives used in our con-
struction. Moreover, we provide the definition of covert security and publicly
verifiable covert security in the full version of this paper.

We denote the computational security parameter by κ. Let n be some integer,
then [n] = {1, . . . , n}. Let i ∈ [n], then we use the notation j �= i for j ∈ [n]\{i}.
A function negl(n) : N → R is negligible in n if for every positive integer c there
exists an integer n0 such that ∀n > n0 it hols that negl(n) < 1

nc . We use the
notation negl(n) to denote a negligible function.

We define REALπ,A(z),I(x̄, 1κ) to be the output of the execution of an n-party
protocol π executed between parties {Pi}i∈[n] on input x̄ = {xi}i∈[n] and security
parameter κ, where A on auxiliary input z corrupts parties I ⊂ {Pi}i∈[n]. We
further specify OUTPUTj(REALπ,A(z),I(x̄, 1κ)) to be the output of party Pj for
j ∈ [n].

Our protocol utilizes a signature scheme (Generate,Sign,Verify) that is exis-
tentially unforgeable under chosen-message attacks. We assume that each party
executes the Generate-algorithm to obtain a key pair (pk, sk) before the protocol
execution. Further, we assume that all public keys are published and known to
all parties while the secret keys are kept private. To simplify the protocol descrip-
tion we denote signed messages with

〈
x
〉

i
instead of (x, σ := Signski(x)). The

verification is therefore written as Verify(
〈
x
〉

i
) instead of Verifypki(x, σ). Further,

we make use of a hash function H(·) : {0, 1}∗ → {0, 1}κ that is collision resistant.
We assume a synchronous communication model, where communication hap-

pens in rounds and all parties are aware of the current round. Messages that are
sent in some round k arrive at the receiver in round k + 1. Since we consider a
rushing adversary, the adversary learns the messages sent by honest parties in
round k in the same round and hence can adapt her own messages accordingly.
We denote a message sent from party Pi to party Pj in round k of some protocol
instance denoted with � as msg

(i,j)
(�,k). The hash of this message is denoted with

hash
(i,j)
(�,k) := H(msg

(i,j)
(�,k)).

A Merkle tree over an ordered set of elements {xi}i∈[N ] is a labeled binary
hash tree, where the i-th leaf is labeled by xi. We assume N to be an integer
power of two. In case the number of elements is not a power of two, the set can
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be padded until N is a power of two. For construction of Merkle trees, we make
use of the collision-resistant hash function H(·) : {0, 1}∗ → {0, 1}κ.

Formally, we define a Merkle tree as a tuple of algorithms (MTree,MRoot,
MProof,MVerify). Algorithm MTree takes as input a computational security
parameter κ as well as a set of elements {xi}i∈[N ] and creates a Merkle tree
mTree. To ease the notation, we will omit the security parameter and implicitly
assume it to be provided. Algorithm MRoot takes as input a Merkle tree mTree
and returns the root element root of tree mTree. Algorithm MProof takes as
input a leaf xj and Merkle tree mTree and creates a Merkle proof σ showing
that xj is the j-th leaf in mTree. Algorithm MVerify takes as input a proof σ,
an index i, a root root and a leaf x∗ and returns true iff x∗ is the i-the leaf of a
Merkle tree with root root.

A Merkle Tree satisfies the following two requirements. First, for each Merkle
tree mTree created over an arbitrary set of elements {xi}i∈[N ], it holds that
for each j ∈ [N ] MVerify(MProof(xj ,mTree), j,MRoot(mTree), xj) = true. We
call this property correctness. Second, for each Merkle tree mTree with root
root := MRoot(mTree) created over an arbitrary set of elements {xi}i∈[N ] with
security parameter κ it holds that for each polynomial time algorithm adver-
sary A outputting an index j∗, leaf x∗ �= xj∗ and proof σ∗ the probability that
MVerify(σ∗, j∗,MRoot(mTree), x∗) = true is negl(κ). We call this property bind-
ing.

3 Financially Backed Covert Security

In the following, we specify the new notion of financially backed covert security.
This notion extends covert security by a mechanism of financial punishment.
More precisely, once an honest party detects cheating of the adversary during
the execution of the covertly secure protocol, there is some corrupted party
that is financial punished afterwards. The financial punishment is realized by
an interactive protocol Punish that is executed directly after the covertly secure
protocol. In order to deal with monetary assets, financially backed covertly secure
protocols depend on a public ledger L and a trusted judge J . The former can be
realized by distributed ledger technologies, such as blockchains, and the latter
by a smart contract executed on the said ledger. In the following, we describe
the role of the ledger and the judging party, formally define financially backed
covert security and outline techniques to prove financially backed covert security.

3.1 The Ledger and Judge

An inherent property of our model is the handling of assets and asset transfers
based on predefined conditions. Nowadays, distributed ledger technologies like
blockchains provide convenient means to realize this functionality. We model
the handling of assets resp. coins via a ledger entity denoted by L. The entity
stores a balance of coins for each party and transfers coins between parties upon
request. More precisely, L stores a balance b

(t)
i for each party Pi at time t. For
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the security definition presented in Sect. 3.2, we are in particular interested in
the balances before the execution of the protocol π, i.e., b

(pre)
i , and after the

execution of the protocol Punish, i.e., b
(post)
i . The balances are public such that

every party can query the amount of coins for any party at the current time.
In order to send coins to another party, a party interacts with L to trigger the
transfer.

While we consider the ledger as a pure storage of balances, we realize the
conditional transfer of coins based on some predefined rules specified by the
protocol Punish via a judge J . In particular, J constitutes a trusted third party
that interacts with the parties of the covertly secure protocol. More precisely,
we require that each party sends some fixed amount of coins as deposit to J
before the covertly secure protocol starts. During the covertly secure protocol
execution, the judge keeps the deposited coins but does not need to be part of
any interaction. After the execution of the covertly secure protocol, the judge
plays an important role in the punishment protocol Punish. In case any party
detects cheating during the execution of the covertly secure protocol, J acts
as an adjudicator. If there is verifiable evidence about malicious behavior of
some party, the judge financially punishes the corrupted party by withholding
her deposit. Eventually, J will reimburse all parties with their deposits except
those parties that have been proven to be malicious. The rules according to
which parties are considered malicious and hence according to which the coins
are reimbursed or withhold need to be specified by the protocol Punish.

Finally, we emphasize that both entities the ledger L and the judge J are
considered trusted. This means, the correct functionality of these entities cannot
be distorted by the adversary.

3.2 Formal Definition

We work in a model in which a ledger L and a judge J as explained above exist.
Let π′ be an n-party protocol that is covertly secure with deterrence factor ε.
Let the number of corrupted parties that is tolerated by π′ be m < n and the set
of corrupted parties be denoted by I. We define π as an extension of π′, in which
all involved parties transfer a fixed amount of coins, d, to J before executing
π′. Additionally, after the execution of π′, all parties execute algorithm Blame
which on input the view of the honest party outputs a certificate and broadcasts
the generated certificate – still as part of π. The certificate is used for both
proving malicious behavior, if detected, and defending against being accused for
malicious behavior.

After the execution of π, all parties participate in the protocol Punish. In case
honest parties detected misbehavior, they prove said misbehavior to J such that
J can punish the malicious party. In case a malicious party blames an honest
one, the honest parties participate to prove their correct behavior. Either way,
even if there is no blame at all, all honest parties wait to receive their deposits
back, which are reimbursed by J at the end of the punishment protocol Punish.
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Definition 1 (Financially backed covert security). We call a triple
(π,Blame,Punish) an n-party financially backed covertly secure protocol with
deterrence factor ε computing some function f in the L and J model, if the
following security properties are satisfied:

1. Simulatability with ε-deterrent: The protocol π (as described above) is
secure against a covert adversary according to the strong explicit cheat for-
mulation with ε-deterrent and non-halting detection accurate.

2. Financial Accountability: For every PPT adversary A corrupting parties
Pi for i ∈ I ⊂ [n], there exists a negligible function μ(·) such that for all
(x̄, z) ∈ ({0, 1})n+1 the following holds:
If for any honest party Ph ∈ [n]\I it holds that OUTPUTh(REALπ,A(z),I(x̄, 1κ)) =

corrupted∗ 1, then ∃m ∈ I such that:

Pr[b(post)m = b(pre)m − d] > 1 − μ(κ),

where d denotes the amount of deposited coins per party.
3. Financial Defamation Freeness: For every PPT adversary A corrupting

parties Pi for i ∈ I ⊂ [n], there exists a negligible function μ(·) such that for
all (x̄, z) ∈ ({0, 1})n+1 and all j ∈ [n] \ I the following holds:

Pr[b(post)j < b
(pre)
j ] < μ(κ).

Remark 1. For simplicity, we assume that the adversary does not transfer coins
after sending the deposit to J . This assumption can be circumvented by restating
financial accountability such that the sum of the balances of all corrupted parties
(not just the ones involved in the protocol) is reduced by d.

3.3 Proving Security of Financially Backed Covert Security

Our notion of financially backed covert security (FBC) consists of three prop-
erties. The simulatability property requires the protocol π, which augments the
covertly secure protocol π′, to be covertly secure as well. This does not automat-
ically follows from the security of π′, in particular since π includes the broadcast
of certificates in case of detected cheating. Showing simulatability of π guaran-
tees that the adversary does not learn sensitive information from the certificates.
Showing that a protocol π satisfies the simulatability property is proven via a
simulation proof. In contrast, we follow a game-based approach to formally prove
financial accountability and financial defamation freeness. To this end, we intro-
duce two novel security games, ExpFA and ExpFDF, in the following. Although
these two properties are similar to the accountability and defamation freeness
properties of PVC, we are the first to introduce formal security games for any
of these properties. While we focus on financial accountability and financial

1 We use the notation corrupted∗ to denote that the output of Ph is corruptedi for some
i ∈ I. We stress that i does not need to be equal to m of the financial accountability
property.
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defamation freeness, we note that our approach and our security games can be
adapted to suit for the security properties of PVC as well.

Both security games are played between a challenger C and an adversary
A. We define the games in a way that allows us to abstract away most of the
details of π. In particular, we parameterize the games by two inputs, one for
the challenger and one for the adversary. The challenger’s input contains the
certificates {certi}i∈[n]\I of all honest parties generated by the Blame-algorithm
after the execution of π while the adversary’s input consists of all malicious par-
ties’ views {viewi}i∈I . By introducing the certificates as inputs to the game, we
can prove financial accountability and financial defamation freeness independent
from proving simulatability of protocol π.

Throughout the execution of the security games, the adversary executes one
instance of the punishment protocol Punish with the challenger that takes over
the roles of all honest and trusted parties, i.e., the honest protocol parties Ph

for h /∈ I, the judge J , and the ledger L. To avoid an overly complex challenger
description, we define those parties as separated entities that can be addressed
by the adversary separately and are all executed by the challenger: {Ph}h∈[n]\I ,
J, and L. In case any entity is supposed to act pro-actively and does not only
wait to react to malicious behavior, the entity is invoked by the challenger. Com-
munication between said entities is simulated by the challenger. The adversary
acts on behalf of the corrupted parties.

Financial Accountability Game. Intuitively, financial accountability states that
whenever any honest party detects cheating, there is some corrupted party that
loses her deposit. Therefore, we require that the output of all honest parties
was corruptedm for m ∈ I in the execution of π. If this holds, the security game
executes Punish as specified by the FBC protocol. Before the execution of Punish,
the challenger asks the ledger for the balances of all parties and stores them as
{b

(prePunish)
i }i∈[n]. Note that prePunish denotes the time before Punish but after

the whole protocol already started. This means, relating to Definition 1, the
security deposits are already transferred to J , i.e., bprePunishi = bprei − d. After the
execution, the challenger C again reads the balances of all parties storing them as
{b

(post)
i }i∈[n]. If b

(post)
m = b

(prePunish)
m +d for all m ∈ I, i.e., all corrupted parties get

their deposits back, the adversary wins and C outputs 1, otherwise C outputs 0.
A protocol satisfies the financial accountability property as stated in Definition 1
if for each adversary A running in time polynomial in κ the probability that A
wins game ExpFA is at most negligible, i.e., if Pr[ExpFA(A, κ) = 1] ≤ negl(κ).

Financial Defamation Freeness Game. Intuitively, financial defamation freeness
states that an honest party can never lose her deposit as a result of executing
the Punish protocol. The security game is executed in the same way as the
financial accountability game. It only differs in the winning conditions for the
adversary. After the execution C checks the balances of the honest parties. If
b
(post)
h < b

(prePunish)
h + d for at least one h ∈ [n] \ I, the adversary wins and the

challenger outputs 1, otherwise C outputs 0. A protocol satisfies the financial
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defamation freeness property as stated in Definition 1 if for each adversary A
running in time polynomial in κ the probability that A wins game ExpFDF is at
most negligible, i.e. if Pr[ExpFDF(A, κ) = 1] ≤ negl(κ).

4 Features of PVC Protocols

We present transformations from different classes of publicly verifiable covertly
secure multi-party protocols (PVC) to financially backed covertly secure proto-
cols (FBC). As our transformations make use of concrete features of the PVC
protocol (e.g., the exchanged messages), we cannot use the PVC protocol in a
block-box way. Instead, we model the PVC protocol in an abstract way, stating
features that are required by our constructions. In the remainder of this section,
we present these features in detail and describe how we model them. We note
that all existing PVC multi-party protocols [DOS20,FHKS21,SSS21] provide the
features specified in this section.

4.1 Cut-and-Choose

Although not required per definition of PVC, a fundamental technique used by
all existing PVC protocols is the cut-and-choose approach that leverages a semi-
honest protocol by executing t instances of the semi-honest protocol in parallel.
Afterwards, the views (i.e., input and randomness) of the parties is revealed in
s instances. This enables parties to detect misbehavior with probability ε = s

t .
PVC protocols can be split into protocols where parties provide private inputs
and those where parties do not have secret data. While cut-and-choose for input-
independent protocols, i.e., those where parties do not have private inputs, work
as explained on a high level before, the approach must be utilized in such a way
that input privacy is guaranteed for input-dependent protocols. However, for
both classes of protocols, a cheat detection probability of ε = s

t can be achieved.
We elaborate more on the two variants and provide details about them in the
full version of this paper.

4.2 Verification of Protocol Executions

An important feature of PVC protocols based on cut-and-choose is to enable
parties to verify the execution of the opened protocol instances. This requires
parties to emulate the protocol messages and compare them with the messages
exchanged during the real execution. In order to emulate honest behavior, we
need the protocol to be derandomized.

Derandomization of the Protocol Execution. In general, the behavior of each
party during some protocol execution depends on the party’s private input, its
random tape and all incoming messages. In order to enable parties to check
the behavior of other parties in retrospect, the actions of all parties need to be
made deterministic. To this end, we require the feature of a PVC protocol that all



112 S. Faust et al.

random choices of a party Pi in a protocol instance are derived from some random
seed seedi using a pseudorandom generator (PRG). The seed seedi is fixed before
the beginning of the execution. It follows that the generated outgoing messages
are computed deterministically given the seed seedi, the secret input and all
incoming messages.

State Evolution. Corresponding to our communication model (cf. Sect. 2), the
internal states of the parties in a semi-honest protocol instance evolve in rounds.
For each party Pi, for i ∈ [n], and each round k > 0 the protocol defines a state
transition computeRoundi

k that on input the previous internal state state
(i)
(k−1)

and the set of incoming messages {msg
(j,i)
(k−1)}j �=i computes the new internal state

state
(i)
(k) and the set of outgoing messages {msg

(i,j)
(k) }j �=i. Based on the derandom-

ization feature, the state transition is deterministic, i.e., all random choices are
derived from a random seed included in the internal state of a party. Each party
starts with an initial internal state that equals its random seed seedi and its
secret input xi. In case no secret input is present (i.e., in the input-independent
setting) or no message is sent, the value is considered to be a dummy symbol
(⊥). We denote the set of all messages sent during a protocol instance by protocol
transcript. Summarizing, we formally define

state
(i)
(0) ← (seedi, xi)

{msg
(j,i)
(0) }j∈[n]\{i} ← {⊥}j∈[n]\{i}

(state(i)(k), {msg
(i,j)
(k) }j∈[n]\{i}) ← computeRoundi

k(state(i)(k−1), {msg
(j,i)
(k−1)}j∈[n]\{i}).

Protocol Emulation. In order to check for malicious behavior, parties locally
emulate the protocol execution of the opened instances and compare the set of
computed messages with the received ones. In case some involved parties are not
checked (e.g., in the input-dependent setting), the emulation gets their messages
as input and assumes them to be correct. In this case, in order to ensure that
each party can run the emulation, it is necessary that each party has access to
all messages sent in the opened instance (cf. Sect. 4.4).

To formalize the protocol emulation, we define for each n-party protocol π
with R rounds two emulation algorithms. The first algorithm emulatefullπ emulates
all parties while the second algorithm emulatepartπ emulates only a partial subset
of the parties and considers the messages of all other parties as correct. We
formally define them as

({msg
(i,j)
(k) }k,i,j �=i, {state(i)(k)}k,i) ← emulatefullπ ({state(i)(0)}i) and

({msg
(i,j)
(k) }k,i,j �=i, {state(̂i)(k)}k,̂i) ← emulatepartπ (O, {state(̂i)(0)}î, {msg

(i∗,j)
(k) }k,i∗,j �=i∗)

where k ∈ [R], i, j ∈ [n], î ∈ O and i∗ ∈ [n] \ O. O denotes the set of opened
parties.
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4.3 Deriving the Initial States

As a third feature, we require a mechanism for the parties of a PVC protocol
to learn the initial states of all opened parties in order to perform the protocol
emulation (cf. Sect. 4.2). Since PVC prevents detection dependent abort, parties
learn the initial state even if the adversary aborts after having learned the cut-
and-choose selection. Existing multi-party PVC protocols provide this feature
by either making use of oblivious transfer or time-lock puzzles as in [DOS20]
resp. [FHKS21,SSS21]. We elaborate on these protocols in the full version of
this paper.

To model this behavior formally, we define the abstract tuples initDatacore and
initDataaux as well as the algorithm deriveInit. initDatacore(i) represents data each
party holds that should be signed by Pi and can be used to derive the initial
state of party Pi in a single protocol instance (e.g., a signed time-lock puzzle).
initDataaux(i) represents the additional data all parties receive during the PVC
protocol that can be used to interpret initDatacore(i) (e.g., the verifiable solution of
the time-lock puzzle). Finally, deriveInit is an algorithm that on input initDatacore(i)

and initDataaux(i) derives the initial state of party Pi (e.g., verifying the solution
of the puzzle). Instead of outputting an initial state, the algorithm deriveInit
can also output bad or ⊥. The former states that party Pi misbehaved during
the PVC protocol by providing inconsistent data. The symbol ⊥ states that
the input to deriveInit has been invalid which can only occur if initDatacore(i) or
initDataaux(i) have been manipulated.

Similar to commitment schemes, our abstraction satisfies a binding and hiding
requirement, i.e., it is computationally binding and computationally hiding. The
binding property requires that the probability of any polynomial time adversary
finding a tuple (x, y1, y2) such that deriveInit(x, y1) �= ⊥, deriveInit(x, y2) �= ⊥,
and deriveInit(x, y1) �= deriveInit(x, y2) is negligible. The hiding property requires
that the probability of a polynomial time adversary finding for a given initDatacore

a initDataaux such that deriveInit(initDatacore, initDataaux) �= ⊥ is negligible.

4.4 Public Transcript

A final feature required by PVC protocols of class 1 and 2 is the availability of a
common public transcript. We define three levels of transcript availability. First,
a common public transcript of messages ensures that all parties hold a common
transcript containing all messages that have been sent during the execution of
a protocol instance. Every protocol can be transformed to provide this feature
by requiring all parties to send all messages to all other parties and defining
a fixed ordering on the sent messages – we consider an ordering of messages
by the round they are sent, the index of the sender, and the receiver’s index
in this sequence. If messages should be secret, each pair of parties executes a
secure key exchange as part of the protocol instance and then encrypts messages
with the established keys. Agreement is achieved by broadcasting signatures
on the transcript, e.g., via signing the root of a Merkle tree over all message
hashes as discussed in [FHKS21] and required in our transformations. Second,
a common public transcript of hashes ensures that all parties hold a common
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transcript containing the hashes of all messages sent during the execution of a
protocol instance. This feature is achieved similar to the transcript of messages
but parties only send message hashes to all parties that are not the intended
receiver. Finally, the private transcript does not require any agreement on the
transcript of a protocol instance.

Currently, all existing multi-party PVC protocols either provide a common
public transcript of messages [DOS20,FHKS21] or a common public transcript
of hashes [SSS21]. However, [DOS20] and [FHKS21] can be trivially adapted to
provide just a common public transcript of hashes.

5 Building Blocks

In this section, we describe the building blocks for our financially backed covertly
secure protocols. In the full version of this paper, we show security of the building
blocks and that incorporating the building blocks into the PVC protocol does
not affect the protocol’s security.

5.1 Internal State Commitments

To realize the judge in an efficient way, we want it to validate just a single pro-
tocol step instead of validating a whole instance. Existing PVC protocols prove
misbehavior in a naive way by allowing parties to show that some other party
Pj had an initial state state

(j)
(0). Based on the initial state, the judge recomputes

the whole protocol instance. In contrast to this, we incorporate a mechanism
that allows parties to prove that Pj has been in state state

(j)
(k) in a specific round

k where misbehavior was detected. Then, the judge just needs to recompute a
single step. To this end, we require that parties commit to each intermediate
internal state during the execution of each semi-honest instance in a publicly
verifiable way. In particular, in each round k of each semi-honest instance �,
each party Pi sends a hash of its internal state to all other parties using a
collision-resistant hash function H(·), i.e., H(state(i)(�,k)). At the end of a pro-
tocol instance each party Ph creates a Merkle tree over all state hashes, i.e.,
sTree� := MTree({hash(i)(�,k)}k∈[R],i∈[n]), and broadcasts a signature on the root
of this tree, i.e.,

〈
MRoot(sTree�)

〉
h
.

5.2 Signature Encoding

Our protocol incorporates signatures in order to provide evidence to the judge J
about the behavior of the parties. Without further countermeasures, an adver-
sary can make use of signed data across multiple instances or rounds, e.g., she
could claim that some message msg sent in round k has been sent in round k′

using the signature received in round k. To prevent such an attack, we encode
signed data by prefixing it with the corresponding indices before being signed.
Merkle tree roots are prefixed with the instance index �. Message hashes are
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prefixed with �, the round index k, the sender index i and the receiver index j.
Initial state commitments (initDatacore(�,i)) are prefixed with � and the index i of
the party who’s initial state the commitment refers to. The signature verifica-
tion algorithm automatically checks for correct prefixing. The indices are derived
from the super- and subscripts. If one index is not explicitly provided, e.g., in
case only one instance is executed, the index is assumed to be 1.

5.3 Bisection of Trees

Our constructions make heavily use of Merkle trees to represent sets of data.
This enables parties to efficiently prove that chunk of data is part of a set by
providing a Merkle proof showing that the chunk is a leaf of the corresponding
Merkle tree. In case two parties disagree about the data of a Merkle tree which
should be identical, we use a bisection protocol ΠBS to narrow down the dispute
to the first leaf of the tree on which they disagree. This helps a judging party
to determine the lying party by just verifying a single data chunk in contrast to
checking the whole data. The technique of bisecting was first used by Canetti
et al. [CRR11] in the context of verifiable computing. Later, the technique was
used in [KGC+18,TR19,EFS20].

The protocol is executed between a party Pb with input a tree mTreeb, a
party Pm with input a tree mTreem and a trusted judge J announcing three
public inputs: rootj , the root of mTreej as claimed by Pj for j ∈ {b,m}, and
width, the width of the trees, i.e., the number of leaves. The protocol returns the
index z of the first leaf at which mTreeb and mTreem differentiate, the leaf hashm

z

at position z of mTreem, and the common leaf hash(z−1) at position z − 1. The
latter is ⊥ if z = 1. Let node(mTree, x, y) be the node of a tree mTree at position
x of layer y – positions start with 1. The protocol is executed as follows:

Protocol Bisection ΠBS

1. J initializes layer variable y := 1, position variable x := 1, last agreed hash
hasha := ⊥, and depth := �log2(width)� + 1

2. All parties repeat this step while y ≤ depth:
(a) Both Pj (for j ∈ {b, m}) send hashj := node(mTreej , x, y) and σj :=

MProof(hashj ,mTreej) to J .
(b) If MVerify(hashj , x, rootj , σj) = false (for j ∈ {b, m}), J discards the mes-

sage from Pj .
(c) If y = depth, J keeps hashb and hashm and sets y = y + 1.
(d) If y < depth and hashb = hashm, J sets x = (2 · x) + 1 and y = y + 1.
(e) If y < depth and hashb �= hashm, J sets x = (2 · x) − 1 and y = y + 1.

3. If hashb = hashm

– J sets z := x + 1 and hash(z−1) := hashb.
– Pm sends hashm

z := node(mTreem, z, depth) and σ :=
MProof(hashm

z ,mTreem) to J .
– If MVerify(hashm

z , z, root, σ) = false, J discards. Otherwise J stores hashm
z .

4. If hashb �= hashm

– J sets z := x and hashm
z := hashm. If z = 1, J sets hash(z−1) := ⊥, and the

protocol jumps to step 5.
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– Pm sends hash(z−1) := node(mTreem, z − 1, depth) and σ :=
MProof(hash(z−1),mTreem) to J .

– If MVerify(hash(z−1), z − 1,mTreem, σ) = false, J discards. Otherwise, J
keeps hash(z−1).

5. J announces public outputs z, hashm
z and hash(z−1).

6 Class 1: Input-Independent with Public Transcript

Our first transformation builds on input-independent PVC protocols where all
parties possess a common public transcript of hashes (cf. Sect. 4.4) for each
checked instance. Since the parties provide no input in these protocols, all parties
can be opened. The set of input-independent protocols includes the important
class of preprocessing protocols. In order to speed up MPC protocols, a common
approach is to split the computation in an offline and an online phase. Dur-
ing the offline phase, precomputations are carried out to set up some correlated
randomness. This phase does not require the actual inputs and can be executed
continuously. In contrast, the online phase requires the private inputs of the par-
ties and consumes the correlated randomness generated during the offline phase
to speed up the execution. As the online performance is more time critical, the
goal is to put as much work as possible into the offline phase. Prominent examples
following this approach are the protocols of Damg̊ard et al. [DPSZ12,DKL+13]
and Wang et al. [WRK17a,WRK17b,YWZ20]. Input-independent PVC pro-
tocols with a public transcript can be obtained from semi-honest protocols
using the input-independent compilers of Damg̊ard et al. [DOS20] and Faust
et al. [FHKS21].

In order to apply our construction to an input-independent PVC protocol,
πpp, we require πpp to provide some features presented in Sect. 4 and to have
incorporated some of the building blocks described in Sect. 5. First, we require
the PVC protocol to be based on the cut-and-choose approach (cf. Sect. 4.1).
Second, we require the actions of each party Pi in a protocol execution to be
deterministically determined by a random seed (cf. Sect. 4.2). Third, we require
that all parties learn the initial states of all other parties in the opened protocol
instances (cf. Sect. 4.3). To this end, the parties receive signed data (e.g., a
commitment and decommitment value) to derive the initial states of the other
parties. Fourth, parties need to commit to their intermediate internal states
during the protocol executions in a publicly verifiable way (cf. Sect. 5.1). Finally,
all signed data match the encoded form specified in Sect. 5.2.

In order to achieve the public transcript of hashes and the commitments to
the intermediate internal states, parties exchange additional data in each round.
Formally, whenever some party Ph in round k of protocol instance � transitions to
a state state

(h)
(�,k) with the outgoing messages {msg

(h,i)
(�,k)}i∈[n]\{h} , then it actually

sends the following to Pi:

(msg
(h,i)
(�,k), {hash(h,j)

(�,k) := H(msg
(h,j)
(�,k))}j∈[n]\{h,i}, hash

(h)
(�,k) := H(state(h)(�,k)))
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Let O denote the set of opened instances. We summarize the aforemen-
tioned requirements by specifying the data that the view of any honest party Ph

includes. It contains signed data to derive the initial state of all parties for the
opened instances (1a), a Merkle tree over the hashes of all messages exchanged
within a single instance for all instances (1b), a Merkle tree over the hashes of
all intermediate internal states of a single instance for all instances (1c), and
signatures from each party over the roots of the message and state trees (1d):

{(
〈
initDatacore(i,�)

〉
i
, initDataaux(i,�))}�∈O,i∈[n], (1a)

{mTree�}�∈[t] := {MTree({hash(i,j)(�,k)}k∈[R],i∈[n],j �=i)}�∈[t], (1b)

{sTree�}�∈[t] := {MTree({hash(i)(�,k)}k∈[R],i∈[n])}�∈[t] (1c)

{〈
MRoot(mTree�)

〉
i
}i∈[n],�∈[t] and {〈MRoot(sTree�)

〉
i
}i∈[n],�∈[t]. (1d)

We next define the blame algorithm that takes the specified view as input and
continue with the description of the punishment protocol afterwards.

The Blame Algorithm. At the end of protocol πpp, all parties execute the blame
algorithm Blamepp to generate a certificate cert. The resulting certificate is broad-
casted and the honest party finishes the execution of πpp by outputting cert. The
certificate is generated as follows:

Algorithm Blamepp

1. Ph runs state
(i)

(�,0) = deriveInit(initDatacore(i,�), initData
aux
(i,�)) for each i ∈ [n], � ∈ O.

Let B be the set of all tuples (�, 0, m, 0) such that state
(m)

(�,0) = bad. If B �= ∅,
goto step 4.

2. Ph emulates for each � ∈ O the protocol executions on input the initial
states from all parties to obtain the expected messages and the expected inter-
mediate states of all parties, i.e., ({msg

(i,j)

(�,k)}k∈[R],i∈[n],j �=i, {state(i)(�,k)}k,i,j) :=

emulatefull({state(i)(�,0)}i∈[n]).

3. Let B be the set of all tuples (�, k, m, i) such that H(msg
(m,i)

(�,k) ) �= hash
(m,i)

(�,k)

or H(state
(m)

(�,k)) �= hash
(m)

(�,k) – where hash
(m,i)

(�,k) and hash
(m)

(�,k) are extracted from
mTree� or sTree� respectively. In case of an incorrect state hash, set i = 0.

4. If B = ∅ Ph outputs cert := ⊥. Otherwise, Ph picks the tuple (�, k, m, i) from
B with the smallest �, k, m, i in this sequence, sets k′ := k − 1 and defines
variables as follows – variables that are not explicitly defined are set to ⊥.
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(Always): ids := (�, k, m, i)

initData := (
〈
initDatacore(�,m)

〉
m

, initDataaux(�,m))

rootstate :=
〈
MRoot(sTree�)

〉
m

rootmsg :=
〈
MRoot(mTree�)

〉
m

(If k > 0): stateout := (hash
(m)

(�,k),MProof(hash
(m)

(�,k), sTree�))

msgout := (hash
(m,i)

(�,k) ,MProof(hash
(m,i)

(�,k) ,mTree�))

(If k > 1): statein := (state
(m)

(�,k′),MProof(H(state
(m)

(�,k′)), sTree�))

Min := {(msg
(j,m)

(�,k′),MProof(H(msg
(j,m)

(�,k′)),mTree�))}j∈[n]

5. Output cert := (ids, initData, rootstate, rootmsg, statein, Min, stateout,msgout).

The Punishment Protocol. Each party Pi (for i ∈ [n]) checks if cert �= ⊥. If this
is the case, Pi sends cert to J pp. Otherwise, Pi waits till time T to receive her
deposit back. Timeout T is set such that the parties have sufficient time to submit
a certificate after the execution of πpp and Blamepp. The judge J pp is described
in the following. The validation algorithms wrongMsg and wrongState and the
algorithm getIndex can be found in the full version of this paper. We stress that
the validation algorithms wrongMsg and wrongState don’t need to recompute a
whole protocol execution but only a single step. Therefore, J pp is very efficient
and can, for instance, be realized via a smart contract. To be more precise, the
judge is execution without any interaction and runs in computation complexity
linear in the protocol complexity. By allowing logarithmic interactions between
the judge and the parties, we can further reduce the computation complexity
to logarithmic in the protocol complexity. This can be achieved by applying the
efficiency improvement described in the full version of this paper.

Judge J pp

Initialization: The judge has access to public variables n, t, T and the set of parties
{Pi}i∈[n]. Further, it maintains a set cheaters initially set to ∅. Prior to the execution
of πpp, J pp has received d coins from each party Pi.

Proof verification: Wait until time T1 to receive ((�, k, m, i), initData,
〈
rootstate(�)

〉
m

,〈
rootmsg

(�)

〉
m

, statein, Min, stateout, (hash, σ)) and do:

1. If Pm ∈ cheaters, abort.
2. Parse initData to (

〈
initDatacore(�,m)

〉
m

, initDataaux(�,m)) and set state0 =

deriveInit(initDatacore(�,m), initData
aux
(�,m)). If Verify(

〈
initDatacore(�,m)

〉
m

) = false or
state0 = ⊥, abort. If state0 = bad, add Pm to cheaters and stop.

3. If Verify(
〈
rootstate(�)

〉
m

) = false or Verify(
〈
rootmsg

(�)

〉
m

) = false, abort.

4. If i = 0 and wrongState(state0, statein, stateout, Min, rootstate(�) , rootmsg
(�) , �, k, m) =

true, add Pm to cheaters.
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5. If i > 0, MVerify(hash, getIndex(k, m, i), rootmsg
(�) , σ) = true and

wrongMsg(state0, statein, hash, Min, , rootstate(�) , rootmsg
(�) , �, m, k, i) = true, add

Pm to cheaters.

Timeout: At time T1, send d coins to each party Pi /∈ cheaters.

6.1 Security

Theorem 1. Let (πpp, ·, ·) be an n-party publicly verifiable covert protocol com-
puting function f with deterrence factor ε satisfying the view requirements stated
in Eq. (1a)–(1d). Further, let the signature scheme (Generate,Sign,Verify) be
existentially unforgeable under chosen-message attacks, the Merkle tree satisfies
the binding property and the hash function H be collision resistant. Then the
protocol πpp together with algorithm Blamepp, protocol Punishpp and judge J pp

satisfies financially backed covert security with deterrence factor ε according to
Definition 1.

We formally prove Theorem 1 in the full version of this paper.

7 Class 3: Input-Independent with Private Transcript

At the time of writing, there exists no PVC protocol without public transcript
that could be directly transformed into an FBC protocol. Moreover, it is not
clear, if it is possible to construct a PVC protocol without a public transcript.
Instead, we present a transformation from an input-independent PVC protocol
with public transcript into an FBC protocol without any form of common public
transcript. As in our first transformation, we start with an input-independent
PVC protocol πpvc

3 that is based on cut-and-choose where parties share a com-
mon public transcript. Due to the input-independence, all parties of the checked
instances can be opened. However, unlike our first transformation, which uti-
lizes the public transcript, we remove this feature from the PVC protocol as
part of the transformation. We denote the protocol that results by removing the
public transcript feature from πpvc

3 by π3. Without having a public transcript,
the punishment protocol becomes interactive and more complicated. Intuitively,
without a public transcript it is impossible to immediately decide if a message
that deviates from the emulation is maliciously generated or is invalid because
of a received invalid messages. Note that we still have a common public tree
of internal state hashes in our exposition. However, the necessity of this tree
can also be removed by applying the techniques presented here that allow us to
remove the common transcript.

In order to apply our construction to a protocol π3, we require almost the
same features of π3 as demanded in our first transformation (cf. Sect. 6). For
the sake of exposition, we outline the required features here again and point out
the differences. First, we require π3 to be based on the cut-and-choose approach
(cf. Sect. 4.1). Second, we require the actions of each party Pi in a semi-honest
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instance execution to be deterministically determined by a random seed (cf.
Sect. 4.2). Third, we require that all parties learn the initial states of all other
parties in the opened protocol instances (cf. Sect. 4.3). To this end, the parties
receive signed data (e.g., a commitment and decommitment value) to derive
the initial states of the other parties. Fourth, parties need to commit to their
intermediate internal states during the protocol executions in a publicly verifiable
way (cf. Sect. 5.1). Finally, all signed data match the encoded form specified in
Sect. 5.2.

In contrast to the transformation in Sect. 6 we no longer require from protocol
π3 that the parties send all messages or message hashes to all other parties.
Formally, whenever some party Ph in round k of protocol instance � transitions to
a state state

(h)
(�,k) with the outgoing messages {msg

(h,i)
(�,k)}i∈[n]\{h}, then it actually

sends the following to Pi:

(
〈
msg

(h,i)
(�,k)

〉
h
, hash

(h)
(�,k) := H(state(h)(�,k)))

Let O be the set of opened instances. We summarize the aforementioned
requirements by specifying the data that the view of any honest party Ph after
the execution of π3 includes. The view contains data to derive the initial state
of all parties which is signed by each party for each party and every opened
instance, i.e.,

{(
〈
initDatacore(i,�)

〉
j
, initDataaux(i,�))}�∈O,i∈[n],j∈[n], (2a)

a Merkle tree over the hashes of all intermediate internal states of a single
instance for all instances, i.e.,

{sTree�}�∈[t] := {MTree({hash(i)(�,k)}k∈[R],i∈[n])}�∈[t], (2b)

signatures from each party over the roots of the state trees, i.e.,

{〈
MRoot(sTree�)

〉
i
}i∈[n],�∈[t] (2c)

and the signed incoming message, i.e.,

M := {〈msg
(i,h)
(�,k)

〉
i
}�∈[t],k∈[R],i∈[n]\{h}. (2d)

The Blame Algorithm. At the end of protocol π3, all parties first execute an evi-
dence algorithm Evidence to generate partial certificates cert′. The partial certifi-
cate is a candidate to be used for the punishment protocol and is broadcasted to
all other parties as part of π3. In case the honest party detects cheating in several
occurrences, the party picks the occurrence with the smallest indices (�, k,m, i)
(in this sequence). The algorithm to generate partial certificates Evidence is for-
mally described as follows:
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Algorithm Evidence

1. Ph runs state
(i)

(�,0) = deriveInit(initDatacore(i,�), initData
aux
(i,�)) for each i ∈ [n], � ∈ O.

Let B be the set of all tuples (�, 0, m, 0) such that state
(m)

(�,0) = bad. If B �= ∅,
goto step 4.

2. Ph emulates for each � ∈ O the protocol executions on input the initial
states from all parties to obtain the expected messages and the expected inter-
mediate states of all parties, i.e., ({m̃sg

(i,j)

(�,k)}k∈[R],i∈[n],j �=i, {state(i)(�,k)}k,i,j) :=

emulatefull({state(i)(�,0)}i∈[n]).

3. Let B be the set of all tuples (�, k, m, h) such that msg
(m,h)

(�,k) �= m̃sg
(m,h)

(�,k) or

H(state
(m)

(�,k)) �= hash
(m)

(�,k) – where msg
(m,h)

(�,k) and hash
(m)

(�,k) are taken from M or
sTree� respectively. In case of an invalid state, set h = 0.

4. Pick the tuple (�, k, m, i) from B with the smallest �, k, m, i in this sequence. If

k > 0 set msgout :=
〈
msg

(m,i)

(�,k)

〉
m

. Otherwise, set msgout := ⊥.

5. Output partial certificate (ids,msgout).

Since π3 does not contain a public transcript of messages, parties can only
validate their own incoming message instead of all messages as done in previ-
ous approaches. Hence, it can happen that different honest parties generate and
broadcast different partial certificates. Therefore, all parties validate the incom-
ing certificates, discard invalid ones and pick the partial certificate cert′ with the
smallest indices (�, k,m, i) (in this sequence) as their own. If no partial certificate
has been received or created, parties set cert′ := ⊥.

Finally, each honest party executes the blame algorithm Blamesp to create
the full certificate that is used for both, blaming a malicious party and defend-
ing against incorrect accusations. As in this scenario the punishment protocol
requires input of accused honest parties, the blame algorithm returns a certifi-
cate even if no malicious behavior has been detected, i.e., if cert′ = ⊥. The final
certificate is generated by appending following data from the view to the certifi-
cate: {(

〈
initDatacore(i,�)

〉
j
, initDataaux(i,�))}�∈O,i∈[n],j∈[n] (cf. Eq. 2a), {sTree�}�∈[t] (cf.

Eq. 2b), and {〈MRoot(sTree�)
〉

i
}i∈[n],�∈[t] (cf. Eq. 2c). All the appended data is

public and does not really need to be broadcasted. However, in order to match
the formal specification, all parties broadcast their whole certificate. If cert′ �= ⊥,
the honest party outputs in addition to the certificate corruptedm.

To ease the specification of the punishment protocol in which parties derive
further data from the certificates, we define an additional algorithm mesHistory
that uses the messages obtained during the emulation (m̃sg)2 to compute the
message history up to a specific round k′ (inclusively) of instance �. We structure
the message history in two layers. For each round k∗ < k′, parties create a Merkle
tree of all messages emulated in this round. These trees constitute the bottom
layer. On the top layer, parties create a Merkle tree over the roots of the bottom
layer trees. This enables parties to agree on all messages of one round making

2 Formally, parties need to re-execute the emulation, as we do not allow them to use
any data not included in the certificate.
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it easier to submit Merkle proofs for messages sent in this round. The message
history is composed of the following variables:

{mTreeroundk∗ }k∗∈[k′] := {MTree({H(m̃sg
(i,j)
(�,k∗))}i∈[n],j �=i)}k∗∈[k′]

mTreek′ := MTree({MRoot(mTreeroundk∗ }k∗∈[k′])
rootmsg

k′ := MRoot(mTree)

Additionally, if cert′ �= ⊥, parties compute the following:

(Always): initData := (
〈
initDatacore(�,m)

〉
m

, initDataaux(�,m))

rootstate :=
〈
MRoot(sTree�)

〉
m

(If k > 0): stateout := (hash(m)
(�,k),MProof(hash(m)

(�,k), sTree�))

(If k > 1): statein := (state(m)
(�,k′),MProof(H(state(m)

(�,k′)), sTree�))

({mTreeroundk∗ }k∗∈[k′],mTreek′ , rootmsg
k′ ) := mesHistory(k′, �)

σk′ := MProof(MRoot(mTreeroundk′ ),mTreek′))

Min := {(m̃sg
(j,m)
(�,k′),MProof(H(m̃sg

(j,m)
(�,k′)),mTreeroundk′ ))}j∈[n]

The Punishment Protocol. The main difficulty of constructing a punishment
protocol Punishsp for this scenario is that there is no publicly verifiable evidence
about messages like a common transcript used in the previous transformations.
Hence, incoming messages required for the computation of a particular protocol
step cannot be validated directly. Instead, the actions of all parties need to be
validated against the emulated actions based on the initial states. This leads
to the problem that deviations from the protocol can cause later messages of
other honest parties to deviate from the emulated ones as well. Therefore, it is
important that the judge disputes the earliest occurrence of misbehavior.

We divide the punishment protocol Punishsp into three phases. First, the
judge determines the earliest accusation of misbehavior. To this end, if cert �= ⊥
all parties start by sending tuple ids from cert to J sp and the judge selects the
tuple with the smallest indices (�, k,m, i). This mechanism ensures that either
the first malicious message or malicious state hash received by an honest party is
disputed or the adversary blames some party at an earlier point. To look ahead,
if the adversary blames an honest party at an earlier point, the punishment will
not be successful and the malicious blamer will be punished for submitting an
invalid accusation. If the adversary blames another malicious party, either one of
them will be punished. This mechanism ensures that if an honest party submits
an accusation, a malicious party will be punished, even if it is not the honest
party’s accusation that is disputed.

If there has not been any accusation submitted in the first phase, J sp reim-
burses all parties. Otherwise, J sp defines a blamer Pb, the party that has sub-
mitted the earliest accusation, and an accused party Pm. Pb either accuses mis-
behavior in the initial state, the first round, or in some later round. For the
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former two, misbehavior can be proven in a straightforward way, similar to our
first construction. For the latter, Pb is supposed to submit a proof containing
the hash of a tree of the message history up to the disputed round k. Pm can
accept or decline the message history depending on whether the tree corresponds
to the one emulated by Pm or not. If the tree is accepted, the certificate can be
validated as in previous scenarios, with the only difference that incoming mes-
sages are validated with respect to the submitted message history tree instead
of the common public transcript. In case any party does not respond in time,
this party is considered maliciously and is financially punished.

If the message history is declined, the protocol transitions to the third phase.
Parties Pb and Pm together with J sp execute a bisection search in the message
history tree to find the first message they disagree on (cf. Sect. 5.3). By definition
they agree on all messages before the disputed one – we call these messages the
agreed sub-tree. At this step, J sp can validate the disputed message of the history
tree (not the one disputed in the beginning) the same way as done in previous
constructions with the only difference that incoming messages are validated with
respect to the agreed sub-tree.

The number of interactions is logarithmic while the computation complexity
of the judge is linear in the protocol complexity. We can further reduce the
computation complexity to be logarithmic in the protocol complexity while still
having logarithmic interactions using the efficiency improvements described in
the full version of this paper. The judge is defined as follows:

Protocol Punishsp

Phase 1: Determine earliest accusation
1. If cert �= ⊥, Ph sends ids := (�, k, m, i) taken from cert to J sp which stores

(�, k, m, i, h).
2. J sp waits till time T to receive message (�, k, m, i) from parties Pb for b ∈ [n]. If

no accusations have been received, J sp sends d coins to each party at time T .
Otherwise, J sp picks the smallest tuple (�, k, m, i, b) (ordered in this sequence),
sets k′ := k − 1 and continues with Phase 2.

Timeout: If its Pj ’s turn for j ∈ {b, m} and Pj does not respond with a valid
message, i.e., one that is not discarded, in time, Pj is considered malicious and J sp

terminates by sending d coins to all parties but Pj .

Phase 2: First evidence
3. If k < 2, Pb sends (initData, rootstate, stateout,

〈
msg

(m,i)

(�,k)

〉
m

) taken from cert to
J sp

(a) J sp parses initData to (
〈
initDatacore(�,m)

〉
m

, initDataaux(�,m)) and sets state0 =

deriveInit(initDatacore(�,m), initData
aux
(�,m)). If Verify(

〈
initDatacore(�,m)

〉
m

) = false or
state0 = ⊥, J sp discards. If state0 = bad, J sp terminates by sending d coins
to all parties but Pm.

(b) If Verify(
〈
rootstate(�)

〉
m

) = false, J sp discards.
(c) If i = 0 and wrongState(state0, ⊥, stateout, ∅, rootstate(�) , ⊥, �, k, m) = false, J sp

discards.
(d) If i > 0, Verify(

〈
msg

(m,i)

(�,k)

〉
m

) = false or

wrongMsg(state0, ⊥, H(msg
(m,i)

(�,k) ), ∅, rootstate(�) , ⊥, �, m, k, i) = false, J sp

discards.
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(e) J sp terminates by sending d coins to all parties but Pm.

4. Otherwise, Pb sends (rootstate, statein, stateout,
〈
rootstate(�)

〉
m

, rootmsg, rootroundk′ ,
σk′ , Min,msgout) taken from cert to J sp.

(a) Pm executes mesHistory(k − 1, �). Let r̃oot
msg

be the root of the emulated
message history tree. If rootmsg �= r̃oot

msg
Pm sends r̃oot

msg
to J sp. Otherwise,

Pm sends (⊥).
(b) If r̃oot

msg
received by Pm does not equal ⊥, J sp jumps to phase 3.

(c) J sp checks that Verify(
〈
rootstate(�)

〉
m

) = true and

MVerify(rootroundk′ , k′, rootmsg, σk′) = true and discards otherwise.
(d) If i = 0 and wrongState(⊥, statein, stateout, Min, rootstate(�) , rootroundk′ , �, k,

m) = false, J sp discards.

(e) If i > 0, Verify(
〈
msg

(m,i)

(�,k)

〉
m

) = false or

wrongMsg(state0, statein, H(msg
(m,i)

(�,k) ), Min, , rootstate(�) , rootroundk′ , �, m, k

, i) = false, J sp discards.
(f) J sp terminates by sending d coins to all parties but Pm.

Phase 3: Dispute the message tree

5. Parties Pb, Pm and J sp run bisection sub-protocol ΠBS on the top-level tree.
Pb’s input is the tree with root rootmsg; Pm’s the one with root r̃oot

msg
. J sp

announces public inputs rootmsg and width of rootmsg, width := k′. The output
is the first round they disagree on k2, the agreed hash rootroundk′

2
of leaf with index

k′
2 := k2 − 1 and the hash rootround(b,k2)

of leaf with index k2 as claimed by Pm.
6. Parties Pm, Pb and J sp run bisection sub-protocol ΠBS on the low-level tree.

Both, Pm and Pb take as input mTreeroundk2 from their certificate. J sp announces

public inputs rootround(b,k2)
and the width of the low level tree width′n × (n − 1).

The output is the index x of the first message they disagree on and the hash of
this message hashx as claimed by Pm. The index of the sender of the disputed
message is m2 := � x

n−1
� and the index of the receiver i2 = x mod (n − 1) if

m2 > (x mod (n − 1)) and i2 := (x mod (n − 1)) + 1 otherwise.
7. Party Pb define variables as follows – variables that are not explicitly defined

are set to ⊥.

(Always): initData2 := (
〈
initDatacore(�,m2)

〉
m

, initDataaux(�,m2))

rootstate :=
〈
MRoot(sTree�)

〉
m

(If k2 > 1): state2in := (state
(m2)

(�,k′
2)

,MProof(H(state
(m2)

(�,k′
2)

), sTree�))

M2
in := {(msg

(j,m2)

(�,k′
2)

,MProof(H(msg
(j,m2)

(�,k′
2)

),mTreeroundk′
2

))}j∈[n]

and sends (initData2,
〈
MRoot(sTree�)

〉
m

, state2in, M2
in) to J sp.

8. J sp parses initData2 to (
〈
initDatacore(�,m2)

〉
m

, initDataaux(�,m2)
) and sets state

(m2)
(0) :=

deriveInit(initDatacore(�,m2)
, initDataaux(�,m2)

). If Verify(
〈
rootstate(�)

〉
m

) = false,

Verify(
〈
initDatacore(�,m2)

〉
m

) = false or state
(m2)
(0) ∈ {⊥, bad}, J sp discards.

9. If wrongMsg(state
(m2)
(0) , state2in, hashx, M2

in, rootstate(�) , rootroundk′
2

, �, m2, k2, i2) =

false, J sp discards.
10. J sp terminates by sending d coins to all parties but Pm.
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7.1 Security

Theorem 2. Let (πpvc
3 ,Blamepvc, Judgepvc) be an n-party publicly verifiable

covert protocol computing function f with deterrence factor ε satisfying the view
requirements stated in Eq. (2). Further, πpvc

3 generates a common public tran-
script of hashes that is only used for Blamepvc and Judgepvc. Let π3 be a protocol
that is equal to πpvc

3 but does not generate a common transcript and instead of
calling Blamepvc executes the blame procedure explained above (including execu-
tion of Evidence and Punishsp). Further, let the signature scheme (Generate,Sign,
Verify) be existentially unforgeable under chosen-message attacks, the Merkle tree
satisfies the binding property, the hash function H be collision resistant and the
bisection protocol ΠBS be correct. Then, the protocol π3, together with algorithm
Blamesp, protocol Punishsp and judge J sp satisfies financially backed covert secu-
rity with deterrence factor ε according to Definition 1.

We formally prove Theorem 2 in the full version of this paper.

8 Evaluation

In order to evaluate the practicability of our protocols, i.e., to show that the
judging party can be realized efficiently via a smart contract, we implemented
the judge of our third transformation (cf. Sect. 7) for the Ethereum blockchain
and measured the associated execution costs. We focus on the third setting, the
verification of protocols with a private transcript, since we expect this scenario to
be the most expensive one due to the interactive punishment procedure. Further,
we have extended the transformation such that the protocol does not require a
public transcript of state hashes.

Our implementation includes the efficiency features described in the full ver-
sion of this paper. In particular, we model the calculation of each round’s and
party’s computeRound function as an arithmetic circuit and compress disputed
calculations and messages using Merkle trees. The latter are divided into 32-byte
chunks which constitute the leave of the Merkle tree. The judge only needs to
validate either the computation of a single arithmetic gate or the correctness of a
single message chunk of a sent or received message together with the correspond-
ing Merkle tree proofs. The proofs are logarithmic in the size of the computation
resp. the size of a message. Messages are validated by defining a mapping from
each chunk to a gate in the corresponding computeRound function.

In order to avoid redundant deployment costs, we apply a pattern that allows
us to deploy the contract code just once and for all and create new independent
instances of our FBC protocol without deploying further code. When starting
a new protocol instance, parties register the instance at the existing contract
which occupies the storage for the variables required by the new instance, e.g.,
the set of involved parties. Further, we implement the judge to be agnostic to the
particular semi-honest protocol executed by the parties – recall that our FBC
protocol wraps around a semi-honest protocol that is subject to the cut-and-
choose technique. Every instance registered at the judge can involve a different
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Table 1. Costs for deployment, instance
registration and optimistic execution.

Protocol steps n Cost

Gas USD

Deployment 4 775 k 639.91

New instance 2 287 k 38.41

New instance 3 308 k 41.30

New instance 5 351 k 47.05

New instance 10 458 k 61.43

Honest execution 2 178 k 23.92

Honest execution 3 224 k 30.07

Honest execution 5 316 k 42.38

Honest execution 10 546 k 73.14

Gates: Number of gates in the circuit of
each computeRound function.
Chunks: Number of chunks in each
message.
R: Number of communication rounds.
n: Number of parties.

Table 2. Worst-case execution costs.

Gates Chunks R n Cost

Gas USD

10 10 10 3 1 780 k 238.58

1 000 10 10 3 2 412 k 323.25

1M 10 10 3 3 512 k 470.55

1B 10 10 3 4 782 k 640.75

1T 10 10 3 6 182 k 828.35

10 10 10 3 1 785 k 239.14

100 100 10 3 2 086 k 279.61

1 000 1 000 10 3 2 422 k 324.55

100 10 10 3 2 081 k 278.91

100 10 10 4 2 223 k 297.86

100 10 10 7 2 442 k 327.29

100 10 10 10 2 659 k 356.34

100 10 10 50 4 764 k 638.35

100 10 3 3 1 878 k 251.65

100 10 10 3 2 074 k 277.88

100 10 100 3 2 403 k 322.04

100 10 1 000 3 2 834 k 379.79

number of parties and define its own semi-honest protocol. This means that the
same judge contract can be used for whatever semi-honest protocol our FBC
protocol instance is based on, e.g., for both the generation of Beaver triples and
garbled circuits. Parties simply define for each involved party and each round
the computeRound function as a set of gates, aggregate all gates into a Merkle
tree and submit the tree’s root upon instance registration.

We perform all measurements on a local test environment. We setup the local
Ethereum blockchain with Ganache (core version 2.13.2) on the latest supported
hard fork, Muir Glacier. The contract is compiled to EVM byte code with solc
(version 0.8.1, optimized on 20 runs). As common, we measure the efficiency of
the smart contracts via its gas consumption – this metric directly translates to
execution costs. Further, we estimate USD costs based on the prices (gas to ETH
and ETH to USD) on Aug. 20, 2021 [Eth21,Coi21]. For comparison, a simple
Ether transfer costs 21,000 gas resp. 2,81 USD.

In Table 1, we display the costs of the deployment, the registration of a new
instance and the optimistic execution without any disputes. The costs of these
steps only depend on the number of parties. In Table 2, we display the worst-case
costs of a protocol execution for different protocol parameters, i.e., complexity of
the computeRound functions, message size, communication rounds and number of
parties. In order to determine the worst-case costs, we measured different dispute
patterns, e.g., disputing sent messages or disputing gates of the computeRound
functions, and picked the pattern with the highest costs. The execution costs,
both optimistic and worst case, incorporate all protocol steps, incl. the secure
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funding of the instance. We exclude the derivation of the initial seeds as this
step strongly depends on the underlying PVC protocol.

In the optimistic case, the costs of executing our protocol are similar to
the ones of [ZDH19]. The authors report a gas consumption of 482 k gas while
our protocol consumes between 465 k and 1 M gas, depending on the number
of parties – recall that the protocol of [ZDH19] is restricted to the two-party
setting. This overhead in our protocol when considering more than two parties
is mainly introduced by the fact that [ZDH19] does assume a single deposit while
our implementation requires each party to perform a deposit.

Unfortunately, we cannot compare worst-case costs directly, as the protocol
of [ZDH19] validates the consistency of a fixed data structure, i.e., a garbled
circuit, while our implementation validates the correctness of the whole protocol
execution. In particular, [ZDH19] performs a bisection over the garbled circuit
while we perform two bisections, first over the message history and then over
the computation generating the outgoing messages; such a message might for
example be a garbled circuit. Further, [ZDH19] focuses on a boolean circuit,
while we model the computeRound function as an arithmetic circuit – as the EVM
always stores data in 32-byte words, it does not make sense to model the function
as a boolean circuit. Although not directly comparable, we believe the protocol
of [ZDH19] to be more efficient for the special case of a two-party garbling
protocol, as the protocol can exploit the fact that a dispute is restricted to a
single message, i.e., the garbled circuit, and the data structure of this message
is fixed such that the dispute resolution can be optimized to said data structure.

Our measurements indicate that the worst-case costs of each scenario are
always defined by a dispute pattern that does not dispute a message chunk but
a gate of the computeRound functions. This is why the message chunks have no
influence on the worst-case execution costs. Of course, this observation might
be violated if we set the number of chunks much higher than the number of
gates. However, it does not make sense to have more message chunks than gates
because each message chunk needs to be mapped to a gate of the computeRound
function defining the value of said chunk.

Both, the number of rounds and the number of parties increase the maximal
size of the disputed message history and, hence, the depth of the bisected history
tree. As the depth of the bisected tree grows logarithmic in the tree size, our
protocol is highly scalable in the number of parties and rounds.

Finally, we note that we understand our implementation as a research proto-
type showing the practicability of our protocol. We are confident that additional
engineering effort can further reduce the gas consumption of our contract.
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Abstract. In this paper we show that standard model black-box reduc-
tions naturally lift to various setup assumptions, such as the random oracle
(ROM) or ideal cipher model. Concretely, we prove that a black-box reduc-
tion from a security notion P to security notion Q in the standard model
can be turned into a non-programmable black-box reduction from PO to
QO in a model with a setup assumption O, where PO and QO are the nat-
ural extensions of P and Q to a model with a setup assumption O.

Our results rely on a generalization of the recent framework by Hofheinz
and Nguyen (PKC 2019) to support primitives which make use of a trusted
setup. Our framework encompasses standard idealized settings like the ran-
dom oracle and the ideal cipher model. At the core of our main result lie
novel properties of negligible functions that can be of independent interest.

1 Introduction

Security reductions. In this paper we investigate the interplay between secu-
rity reductions and setup assumptions. Security reductions [15] are perhaps the
single most powerful idea that underlies modern cryptography. Roughly speak-
ing, a security reduction is an algorithm which turns an adversary that breaks
some protocol Q into one which breaks some underlying primitive P 1. If such a
reduction exists, it follows that if P is secure, then so is Q, so the security of
a complex system is reduced to that of its underlying components. Here, and
throughout the paper, P and Q are understood as security notions; that is classes
of instantiations together with an experiment which defines their security. Fur-
thermore, reductions correspond to specific constructions which turn an instance
of P into an instance of Q.
1 We do not attempt to make a sharp distinction between primitives and protocols.

We use the terms primitive and protocol loosely and only to emphasize that one
employs the other in its design. P may also stand for cryptographic assumption,
e.g. factorization is hard, just as Q may stand for a more involved primitive, e.g.
authenticated encryption.
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The landscape of reductions has been carefully mapped via a taxonomy
introduced by Reingold, Trevisan and Vadhan (RTV) [22] and later refined by
Baecher, Brzuska, and Fischlin [1]. In its latest incarnation, the taxonomy iden-
tifies three components relevant to reductions, namely, the construction, the
adversary and the instance used in the construction, and classifies reductions
depending on how they access these components. Of central interest in this tax-
onomy are the so-called “black-box” reductions where the reduction only gets
oracle access (i.e. only input/output) to the adversary; further variants distin-
guish between how the reduction accesses the construction and the instance of
the primitive used in the construction. Indeed, with only very few exceptions, the
cryptographic practice employs black-box reductions. Not only are these reduc-
tions simpler to design but black-box access to the adversary and the instance
enables a hierarchical modular design, thereby helping tame the inherent com-
plexity of cryptographic designs.

Setup assumptions. For efficiency reasons, or to circumvent impossibility
results, concrete instantiations of cryptographic constructs often rely on setup
assumptions. That is, constructions make use of already set-up trusted compo-
nents. Well-known examples of such assumptions include the random beacon
model [21], the random oracle [3], the ideal cipher model [23], the common ran-
dom string model [4], and its common reference string variant. Other examples
include the quantum random oracle [5] or access to specific hardware [9,14,20].

Reductions may use setup assumptions in fundamental ways. They may track
the adversary’s queries towards the random oracle and program the output of
random oracles at dynamically identified inputs. They can access a trapdoor
associated to a common random string which allows them to decrypt adversarial
ciphertexts or equivocate commitments.

In this paper we are interested in the interplay between reductions and secu-
rity assumptions. Most of the previous work on classifying reductions does not
explicitly surface the use of setup assumptions and, a priori, are set in the stan-
dard (vanilla) model. A notable exception is the work of Fischlin et al. [13] who
extends the black-box separation techniques to get impossibility results for vari-
ous constructions even in settings with a (or with variants of the) random oracle
model.

The problem. In this paper we investigate the interaction between reductions
and setup assumptions from a different perspective which we detail below. For
concreteness, in our motivating discussion we use the random oracle as an exam-
ple setup assumption under consideration. Nonetheless, our work treats generi-
cally other settings as well.

Assume that we have already designed a black-box reduction from some pro-
tocol Q to a primitive P . The reduction is in the standard model. Then consider
protocol QO which uses in its construction instantiations of the primitive PO
which potentially rely on the random oracle O. Can we conclude something
about the security of QO? Put differently, does a black-box reduction from Q to
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P in the standard model lift to a reduction from QO to PO? And what, and how
does one define the extension of PO to the random oracle, in the first place?

We contend that the answer is far from obvious. The first obstacle is a syntac-
tic one. Observe that an adversary against QO makes queries that exercise the
functionality of the protocol yet also queries the random oracle. The reduction
from Q to P “knows” how to deal with the former type of queries but makes
no provisions for the latter type. We consider the natural extension of the stan-
dard model reduction to a non-programming random oracle reduction, where
the reduction simply forwards the queries and answers between the adversary
and the random oracle.

The second obstacle is more substantial. How would one argue that the ran-
dom oracle reduction works? Since the existence of the standard model reduction
is the only available handle one would need to relate the event that a random
oracle adversary wins to the event that a standard adversary wins. However,
there is a fundamental difference between the standard model setting and the
random oracle one.

In the standard model the only information available to the adversary about
the internal state of the protocol is whatever can be inferred from their communi-
cation mediated by the security game. In the random oracle model, however, the
adversary and the protocol indirectly share state through their joint access to
the random oracle. With this in mind, it is unclear how to map events from the
joint-state setting to the standard model or, indeed, whether this is even possible.
It is conceivable that the adversary manages to break the protocol because of
the shared state and this is something which the standard model reduction may
not even account for. Looking ahead, we show how to bypass these obstacles and
provide a positive answer to the question we posed above. We detail our results
next.

2 Our contributions

Formal foundations. Our first contribution is a framework which allows to
talk about “lifting” notions and reductions between notions from the standard
model to a model with setup assumptions. Our starting point is the recent frame-
work of Hofheinz and Nguyen [16], who in turn build on the work of Reingold,
Trevisan, and Vadhan [22]. In their framework, the notion of a primitive has two
key ingredients: i) a set theoretic notion of an instance (essentially the set of all
instantiations for the primitive), and ii) an explicit notion of a security game
– defined as an interactive (oracle) Turing machine (and an associated advan-
tage function). We extend this framework in two ways. First, we formalize setup
assumptions as a mathematical object, essentially as family of distributions over
sets of functions. Later in the section, we outline a number of technical challenges
we need to overcome to make this approach rigorous, and make our definitions
precise and general. One can then extend arbitrary security games to include
setup assumptions by providing to the adversary (and the primitive) black-box
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access to a function; which is sampled in an eager manner (from a computa-
tional perspective) according to the distribution(s) before the execution begins.
Our abstract approach subsumes many of the widely used setup assumptions
including the random oracle model, the CRS model, and the ideal cipher model.

Second, we provide a careful treatment of the notion of primitive instances.
Both [22] and [16] define instances of a primitive as arbitrary sets of Turing
machines. This approach is too abstract for our purposes since it does not give
rise to a meaningful way of lifting the notion of an instantiation from the stan-
dard model to the random oracle model. A more concrete definition is necessary
that allows one to explicitly define correctness and security membership sets
for the primitives. We opt for identifying primitive instances by considering an
explicit correctness game associated to the primitive.

With these extensions in place, we can then rigorously define the extension of
a particular cryptographic notion to a specific setup assumption and the lifting
of a reduction from the standard model to a model with a setup assumption.
Main result. Our main result establishes that fully black-box reductions in the
standard model indeed do lift to setup assumptions. That is, if a standard model
reduction from some protocol Q to some primitive P exists, then the reduction
(or rather its canonical extension) also “works” in the setup assumption. The
proof of this result is along the following lines. Once an individual instance of
the setup assumption is fixed, then the adversary can be viewed as an adversary
in the standard model with the instance of the setup hardwired in its code; the
same observation holds for the primitive. One can therefore establish a relation
between the success of the reduction and the success of the adversary, for each
individual instance of the setup assumption. The crux of the proof is to show
how to “aggregate” the distinct individual bounds on advantage functions to get
a bound on the adversary’s advantage when the setup is sampled according to
its defining distribution.

A related and somewhat simpler case of this problem is to show that instanti-
ating a protocol with a correct instance of the primitive with a setup assumption
yields a correct instance of the protocol (with a setup assumption). We cast both
of these problems as a generic property of (countable) sets of certain type of fam-
ilies of negligible functions.
Technical challenges. As it soon becomes clear in the paper, we require a
lot of mathematical machinery, and it is instructive to understand the source
of some of the complications we deal with. In particular, there are two related
challenges rooted in an interesting interplay between fully black-box reductions
and random oracles: (i) how to define a generic notion of a setup assumption
and (ii) how to define the adversary’s advantage. Recall that a fully black-box
reduction “works” even if the adversary against the protocol is unbounded. In
particular, the reduction needs to work even for an adversary that with some
small probability does not stop and instead keeps on querying the random oracle
on increasingly larger inputs. How should one then define the advantage of the
adversary? The difficulty here is identifying the underlying sample space of the



134 N. K. Nguyen et al.

experiment since an unbounded adversary will essentially require an unbounded
random tape.

This discussion also sheds some light on our modeling of a setup assumption.
Intuitively, we would like to define a setup assumption simply as a function from
some domain X to some co-domain Y to which the different parties involved in
the execution get access. The function would need to be sampled, eagerly, at the
beginning of the execution. This intuitively appealing approach does not work
for the type of infinite execution in the above discussion. For the random oracle
model we would have X = Y = {0, 1}∗ and it’s not clear how to sample from
this space “uniformly at random” as one would expect.

Our solution is to view the setup as a family of sampling algorithms indexed
by a natural number �. For each � the setup is sampled from finite sets of functions
with (now bounded) domain X� and range Y . Our formalization enforces that
X� ⊆ X�+1 and that sampling is “consistent” across the parameters, that is
the distribution on Y X�+1 extends naturally the distribution on Y X� . For each
parameter � we define a corresponding execution model where the execution of
the game aborts if either the adversary or the construction queries the setup on a
point outside X�. With these bounds in place, we can rigorously show the sample
space, required by the setup assumption, is well-defined, and the advantage of
the adversary for each individual parameter is well defined and converges. That
is the corresponding sums parameterized over � converge and thus it makes sense
to define the notions of adversarial advantage and correctness.
Applications. In order to illustrate the practicality of our main result, we
present the following simple example. Consider the Lamport construction of a
one-time (OT) signature scheme out of a one-way function (OWF). Let us call
the generic construction Lamp[·]. The traditional reduction shows that Lamp[f ]
is a secure OT signature scheme if f is a OWF: for any OWF instance f , an
adversary against Lamp[f ] can be used in a black-box way to break f . Note that
the reduction allows to establish the security of OT signature instances of the
form Lamp[f ] only for instantiations of f in the standard model.

Consider now an OWF instance which uses a random oracle (RO), e.g. consider
the construction gO, where g simply forwards its inputs to the random oracle O
and returns the result. We claim that, given the state of the art, it is not possible
to immediately conclude Lamp[gO] is a secure OT signature. Indeed, one cannot
draw any rigorous conclusions from existing results: even brushing under the car-
pet that gO is “obviously” a OWF, the key observation is that the scheme Lamp[gO]
is a scheme in the RO model. So, the existing reduction does not apply. It is here
where our main result is useful: it lifts the reduction from the standard model to
the random oracle model and allows us to conclude that the security of Lamp[f ]
reduces to that of f , even if f is a construction in the RO.

Obviously, one can re-establish the security of Lamp[gO] directly, in the ran-
dom oracle, but that would require a new proof where one would have to redo
the interesting part of the reduction.

To give another example, consider the black-box construction of a NM-CPA
scheme out of a semantically secure scheme by Choi, Soled, Malkin, and Wee
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[10]. For brevity we shall call the construction CSMW. Their result shows that
CSMW[Enc] is an NM-CPA scheme for any semantically secure scheme in the
standard model.

Consider now the instantiation of CSMW[BR] where BR is the concrete
semantically secure scheme from the original RO paper by Bellare and Rogaway
[2], i.e. for a trapdoor permutation f then Enc(m) = f(r)||H(r)⊕m. Our results
allow one to conclude that CSMW[BR] is an NM-CPA scheme in the RO model.
Without this contribution, one would have to the best of our knowledge provide
a direct reduction to the security of f2. Generally, our results expose the concrete
security gap, yet the theorems allow for abstract, and relatively simple, proofs
as shown in Sect. 5.5.

Discussion. Our main result shows how to lift fully black-box reductions set
in the standard model to a model with a setup. In particular, we rely in a rea-
sonably strong way on the fact that such reductions can deal with unbounded
adversaries – at some point we need to hardwire a potentially large table (rep-
resenting the setup) into adversaries and implementations. Consequently, the
resulting constructions may not be efficient anymore. In turn this implies that
our result does not immediately extend to a reduction which is only guaranteed
to work for efficient adversaries e.g. [1, Section 2.6]. That would be extending our
result to BBBa reductions using the terminology of [1]. Restricting our results
to such a setting would, however, allow us to avoid many complications that the
unbounded nature of the random oracle causes, as outlined above.

An intriguing question is whether our results extend to the case where start-
ing reduction/construction is already in a model with already an idealized setup
(as opposed to the standard model). In particular, answering this question raises
the question of how idealized models interact/compose. We leave both of these
questions to further work.

Related work. The closest work to ours is the work of Hofheinz and
Nguyen [16]. They introduce a generic framework for abstractly specifying games
(and security reductions) and use it to study the relation between single instance
and multi-instance security of primitives. Our work extends their framework
with setup assumptions and explicit correctness games, and we study a different
extension of the reduction. A somewhat related line of work studies “relativizing”
reductions [1,18,22]. This concept borrowed from complexity theory is about
establishing relations of the type: if primitive P can be instantiated (securely)
then primitive Q can also be instantiated (securely). Such a relation “relativizes”
if the statement holds even if the adversaries against P and Q have access to an
arbitrary oracle Π. Although apparently related, the focus and results of that
line of work are quite different.

RTV [22] assumed probabilistic polynomial time oracle machines when intro-
ducing relativizing reductions. In particular, they asserted that for a primitive

2 Note that this would incorporate the reduction in CSMW as well as some spe-
cific, potentially smarter way, of answering RO queries of the adversary against
CSMW[BR].
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with oracle access to exist there must be a PPTOM machine that can compute
it and that no PPTOM machine breaks it (see Definition 2 in the full version of
[22] or definition 5 of [1]). Lifting does not have that restriction, and is as such a
more general and flexible notion. A lifted reduction holds even if the adversary
performs a countable number of queries from an infinite query space. Further-
more, we do not require an efficient implementation in the idealized model (see
Definition 5). The same holds for the security definition – even though as is
standard we define here security via a PPT game – one may transfer our result
to non-polynomial time security settings. As such our tooling and approach can
accommodate oracle querying with non-trivial, non-finite, underlying probability
distributions.

Note also the difference is one of intent. In relativizing reductions, the security
of the primitive under question is not impacted by the choice of oracle the
adversary has access to. The reduction must hold for any oracle. This of course
can rule out such reductions due to oracle separation results. In our work we
focus on a particular idealized model and inquire if we can “lift” the security to
this idealized model.

A rich line of research, also originating in the seminal work of Rudich and
Impagliazzo [18] and continuing with the works of Boneh and Venkatesan [6],
Simon [24] and Hsiao and Reyzin [17] has developed a number of black-box
separation techniques. These can be used to show negative results of the type:
no black-box construction of protocol Q out of primitive P exists, or conversely
that no black-box reduction from Q to P exists. Such results are important to
rule out minimal assumption for the existence of Q, or identify the need for
non-black box constructions but do not serve as support for drawing positive
results.

3 Preliminaries

3.1 Notation

For two arbitrary sets X and Y we write Y X for the set of all functions from
X to Y . Let N = {0, 1, 2, 3, . . . , } be the set of natural numbers. We use λ ∈ N

to denote the security parameter, which is a natural number; we assume that
it is implicitly provided to all algorithms in the unary representation 1λ, unless
stated otherwise.

We use the shorthand PPT for the Probabilistic Polynomial Time algorithms
– in the (unary) security parameter λ. We describe (y1, . . . ) ←$ A(1λ, x1, . . . ; r) as
an event when A gets (1λ, x1, . . . ) as input, uses fresh random coins r and outputs
(y1, . . . ). If A is deterministic then we simply write (y1, . . . ) ← A(1λ, x1, . . . ). Let
us write AB to denote that A has black-box access to algorithm B, meaning it
sees only its input-output behaviour. The notation A(·) means that A expects a
black-box access to some other algorithm. Similarly as in [13], we highlight that
when an algorithm B is given oracle access to AO for a particular oracle O then
B does not get to answer A’s queries to O. Throughout the paper, ⊥ denotes an
error symbol.
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For a finite set S, we denote its cardinality by |S| and write s ←$ S meaning
that we choose an element s from S uniformly at random. For readability, we
define [k] = {1, . . . , k} for k ∈ N and [a, b] = {x ∈ R : a ≤ x ≤ b}. Set S is
countable if there exists an injective map φ : S → N.

A function ε : N → R is negligible if for any c ∈ N, there exists N ∈ N such
that for all λ ≥ N : |ε(λ)| < 1/λc. We write negl(λ) for an unspecified negligible
function in λ. In general, we denote with negl to be a set of all negligible functions.
Similarly, we define UBnegl to be the set of functions f : N → R which are upper-
bounded by a negligible function. Concretely, f ∈ UBnegl if and only if there
exists ε(·) ∈ negl such that f(λ) ≤ ε(λ) for all λ ∈ N. We highlight that functions
in UBnegl are not necessarily negligible, e.g. the constant function f(λ) = −1.
By definition of a negligible function we obtain the following lemma.

Lemma 1. Let f : N → R be a function. Then, the following conditions are
equivalent.

1. f ∈ UBnegl,
2. function g(λ) := max{f(λ), 0} is negligible,
3. for all c ∈ N, there exists N ∈ N such that for all λ ≥ N : f(λ) < 1/λc.

3.2 Limits and Suprema

Let A be a (possibly uncountable) set. Then, for a function f : A → R we define
the supremum supa∈A f(a) to be the smallest real number t (if exists) such that
f(a) ≤ t for all a ∈ A. In this paper, will use the following simple lemmas. For
completeness, we provide the proofs in Appendix A.

Lemma 2. Let A,S be non-empty sets, where S is either finite or countable,
and (fs)s∈S be a sequence of functions fs : A → R. If for all s ∈ S, supa∈A fs(a)
exists and if sup(as∈A)s∈S

∑
s∈S fs(as) exists then

∑

s∈S

sup
a∈A

fs(a) = sup
(as∈A)s∈S

∑

s∈S

fs(as).

Lemma 3. Let A be a non-empty set and (fa)a∈A be a family of non-decreasing
functions fa : N → R. Then:

lim
k→+∞

sup
a∈A

fa(k) = sup
a∈A

lim
k→+∞

fa(k)

assuming supa∈A limk→+∞ fa(k) and limk→+∞ fa(k) exist for all a ∈ A.

Lemma 4. Let f : N×N → [0, 1] be function such that for all k, � ∈ N: f(k, �) ≤
f(k + 1, �) and f(k, �) ≤ f(k, � + 1). Then, limk→+∞ lim�→+∞ f(k, �) exists and

lim
k→+∞

lim
�→+∞

f(k, �) = lim
�→+∞

lim
k→+∞

f(k, �) = lim
k→+∞

f(k, k).
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Lemma 5. Let S be a non-empty, either finite or countable set and f : N×S →
[0, 1] be a function which satisfies f(k, s) ≤ f(k + 1, s) and

∑

s∈S

f(k, s) ∈ [0, 1]

for all k ∈ N, s ∈ S. Then
∑

s∈S

lim
k→+∞

f(k, s) = lim
k→+∞

∑

s∈S

f(k, s).

3.3 Fully Black-Box Reductions in the Standard Model

We briefly recall the framework on primitives and black-box reductions by Rein-
gold, Trevisan, and Vadhan [22] (RTV). Using their notation, primitive P is a
pair

〈
FP , RP

〉
where FP is a set of functions f : {0, 1}∗ → {0, 1}∗ and RP is a

relation over pairs (f,M) for f ∈ FP and machine M . One can think of FP as
implementations of a primitive P and RP as security conditions on FP .

Then, there is a fully black-box reduction from a primitive P =
〈
FP , RP

〉
to

Q =
〈
FQ, RQ

〉
if there exist PPT machines G,S such that:

• for every function f ∈ FQ, Gf ∈ FP ,
• for every function f ∈ FQ and every adversary A, (Gf ,A) ∈ RP =⇒

(f, SA) ∈ RQ.

Informally, G and S are called the generic construction and the reduction respec-
tively. As mentioned in [22], this definition of reduction does not apply to non-
uniform or information-theoretic notions of security. They also define different
types of reductions such as semi-black-box or relativizing reductions.

There is a long line of research on formalising (black-box) reductions [1,
13,16,19]. In this paper we adapt the recently defined notion of fully black-
box reductions by Hofheinz and Nguyen [16]. The main difference to the RTV
framework is that the security conditions are represented as a security game
instead of a set of relations. Thus, Hofheinz and Nguyen could formally define
what is meant by “breaking one primitive with about the same success as the
other primitive” in terms of probabilities.

Definition 1 ([16]). A primitive P is a tuple
〈
P, FP , RP , σ

〉
where:

• P is a pair of sets (A,B)
• FP is a subset of {f : A → B},
• R

(·,·)
P is a PPT security algorithm,

• σ : N → [0, 1] is a security threshold.

We say that f is an implementation of P if f ∈ FP .
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Note that usually we define FP via the use of correctness games.
Since we do not consider primitives in the multi-instance setting as in [16],

we already include the setup SP in the security algorithm RP . For readability,
in this paper we also do not restrict the input space for RP to call f , i.e. C = A
in [16, Definition 4].

There are two main differences between this definition and the one proposed
by RTV. Firstly, P = (A,B) is a pair of sets which describe the domain and the
co-domain. This modification enables to characterize implementations which are
defined on more abstract mathematical models (e.g. groups, rings) rather than
on {0, 1}∗. Secondly, RP is now an efficient algorithm which expects black-box
access to both an implementation f and an adversary A. One can think of RP as
a security game, e.g. one-wayness or IND-CPA game. Here, we want to associate
for each pair (f,A) a value in [0, 1] which corresponds to the probability of A
winning the RP game against f . We recall the definition of an advantage from
[16].

Definition 2 ([16]). Let P =
〈
P, FP , RP , σ

〉
be a primitive. Take f ∈ FP and

any algorithm A. We define the advantage of A in breaking f as

AdvP
f,A[(λ)] := Pr

[
1 ←$ Rf,A

P

]
− σ(λ)

where the probability is defined over random coins in the system 3.
We say that A P−breaks f if AdvP

f,A[(λ)] �∈ UBnegl, i.e. there is no negligible
function ε : N → R such that AdvP

f,A[(λ)] ≤ ε(λ) for all λ ∈ N. Primitive P
is called secure if there exists an implementation f of P such that there are no
PPT algorithms A that P−break f .

Example 1. We define a primitive corresponding to an IND-CPA secure public-
key encryption scheme as PKE =

〈
PPKE, FPKE, RPKE,

1
2

〉
where PPKE defines the

domain and range for the encryption schemes, RPKE is the IND-CPA game and
FPKE the set that contains encryption schemes, which we could define via a
“encryption scheme correctness” game.

We briefly explain why we want the advantage to be in UBnegl rather than negl.
Note that there are certain types of adversaries, for which their advantage is
not negligible, and yet they do not win the security game in the usual sense.
For instance, consider a decisional game, e.g. the IND-CPA game, where the
adversary has to guess the bit, and set the security threshold σ(λ) = 1

2 . Then,
an adversary A, which simply aborts/loops, certainly will not win the IND-CPA
game (the security game cannot detect A looping since it is only given black-box
access). However, its advantage, as defined in Definition 2, will be 0 − 1

2 = − 1
2 ,

which is not negligible (but still upper-bounded by a negligible function).
Using the definitions above, Hofheinz and Nguyen formalise fully-black box

reductions as follows.

3 Usually, the security threshold function σ is a constant – either 0 or 1
2
.
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Definition 3 (Fully Black-Box Reductions). Let P =
〈
P1, FP , RP , σ

〉
and

Q =
〈
P2, FQ, RQ, τ

〉
be primitives. Then, there is a fully black-box reduction

from P to Q if there exist PPT algorithms G(·), S(·) such that:

• for every implementation f of Q, Gf is an implementation of P ,
• for every implementation f of Q and every (unbounded) algorithm A, if A

P -breaks Gf then SA Q-breaks f .

4 Average of Negligible Functions

In this section we establish several technical properties of negligible functions
which will be crucial when proving our main reduction correspondence result. It
is a well known that given a finite set of negligible functions P = {f1, f2, . . . , fn},
the average 1

n

∑n
i=1 fi of these functions is also negligible. We provide a similar

result in the setting when the set P is countable.
Informally, suppose we have a function P : N × N → [−1, 1] such that for

any f : N → N, function Pf (λ) := P (λ, f(λ)) is negligible in λ. Then, for any
discrete distribution D on N and an infinite sequence of independent random
variables X1,X2, . . . ←$ D, the function E(P ) : N → [−1, 1] defined as

E(P )(λ) := E (P (λ,Xλ))

is also negligible. Intuitively, this result says that if a set P 4 consists of only
negligible functions then the “expectation of all functions”, defined as E(P ) and
also called informally as the average of P , is also negligible.

Below we state a generalisation of this result. Roughly speaking and using
the language from the previous paragraph, it says the following. Assume there
exists a correspondence between negligible functions from set Q to set P . If the
expectation of Q is negligible then so is the expectation of P . Clearly, by setting
the set Q to only contain the zero functions yields the result described above.

To apply these observations in the context of fully black-box reductions, we
work with functions in UBnegl (see Sect. 3.1) rather than with negligible func-
tions.

Theorem 1. Let k ∈ N, S be a (possibly uncountable) set and (Dλ)λ∈N be a
sequence of discrete probability distributions Dλ : Sλ → [0, 1] over countable sets
Sλ ⊆ S. Take arbitrary functions P,Q1, . . . , Qk : N × S → [−1, 1]. Suppose that
for every function f : N → S, the following holds:

∀i ∈ [k], Qi(λ, f(λ)) ∈ UBnegl =⇒ P (λ, f(λ)) ∈ UBnegl.

Then, for Xλ ←$ Dλ we have

∀i ∈ [k], E (Qi(λ,Xλ)) ∈ UBnegl =⇒ E (P (λ,Xλ)) ∈ UBnegl.

4 Formally, we mean the set of functions {P (λ, f(λ)) : f ∈ {g : N → N}}.
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Proof. Suppose that each E (Qi(λ,Xλ)) is upper-bounded by a negligible func-
tion. Then, for each i ∈ [k], we can find an infinite sequence of positive inte-
gers J(i, 1) < J(i, 2) < . . . such that for every d ∈ N and any λ ≥ J(i, d),
E (Qi(λ,Xλ)) < 1/λd. Fix d ∈ N and define

jd = max{2k + 1,max
i∈[k]

J(i, d + 1)}.

We claim that for every λ ≥ jd, there exists a ∈ Sλ which satisfies:

∀i ∈ [k], Qi(λ, a) < 1/λd.

First, we fix arbitrary i ∈ [k] and λ ≥ jd. Let

Mi = {a : a ∈ Sλ ∧ Qi(λ, a) < 1/λd}.

We know that E (Qi(λ,Xλ)) < 1/λd+1. Therefore,

Pr[Xλ ∈ Sλ\Mi]
λd

≤
∑

a∈Sλ\Mi
Pr[Xλ = a]

λd
≤

∑

a∈Sλ

Pr[Xλ = a] ·Qi(λ, a) <
1

λd+1
.

In particular, Pr[Xλ ∈ Sλ\Mi] ≤ 1/λ. Then, by the union bound we have:

Pr[∃i,Xλ ∈ Sλ\Mi] ≤ k/λ ≤ 2k/jd < 1.

Hence, Pr[∀i,Xλ ∈ Mi] > 0 so there exists a ∈ Sλ such that for every i ∈
[k], Qi(λ, a) < 1/λd. For λ ≥ jd, let a(λ) be the smallest such value.

Next, we prove the following lemma.

Lemma 6. Let c ∈ N. Then, there exists a positive integer d ≥ c, such that
there are only finitely many pairs (λ, a) which satisfy the following conditions:

a ∈ Sλ ∧ ∀i, Qi(λ, a) < 1/λd ∧ P (λ, a) ≥ 1/λc. (1)

Proof. We prove it by contradiction. Suppose there exists a positive integer c,
such that for every d ≥ c, there are infinitely many pairs (λ, a) which satisfy (1).
We construct a function f : N → S such that for i ∈ [k], Qi(λ, f(λ)) ∈ UBnegl
but P (λ, f(λ)) �∈ UBnegl. Then, we get a contradiction.

Fix d ≥ c. Let us introduce the following notation. First, L(�, d) is the smallest
λ ≥ � such that there exists an integer a so that (λ, a) satisfies (1). Additionally,
denote R(�, d) to be the smallest a such that (L(�, d), a) satisfies (1). Then, by
definition (L(�, d), R(�, d)) satisfy (1). Finally, set I(c) = jc and I(d + 1) =
max{jd+1, L(I(d), d) + 1}.

We define the function f as follows. For λ < I(c), set f(λ) = x where x is
an arbitrary fixed element in Sλ. Then, for I(d) ≤ λ < I(d + 1), where d ≥ c,
define:

f(λ) =

{
R(I(d), d) if λ = L(I(d), d)
a(λ) otherwise.

Recall that a(λ) is the smallest value a such that i ∈ [k], Qi(λ, a) < 1/λd.
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We now prove that for each i, Qi(λ, f(λ)) is upper-bounded by a negligible
function. Let i ∈ [k]. By construction, for any d ∈ N and I(d) ≤ λ < I(d + 1),
we have Qi(λ, f(λ)) < 1/λd. Indeed, if λ = L(I(d), d) then (λ, f(λ)) satisfies
(1). On the other hand, if λ �= L(I(d), d) then since λ ≥ I(d) ≥ jd we have
Qi(λ, f(λ)) = Qi(λ, a(λ)) < 1/λd.

As a result, for all λ ≥ I(d) we have Qi(λ, f(λ)) < 1/λd. The reason is that
for λ ≥ I(d) there is some α ≥ d so that I(α) ≤ λ < I(α+1). By the observation
above, we have Qi(λ, f(λ)) < 1/λα ≤ 1/λd. Consequently, Qi(λ, f(λ)) is upper-
bounded by a negligible function.

On the other hand, for all d ∈ N, we have P (λ, f(λ)) ≥ 1/λc where λ =
L(I(d), d). This means that there are infinitely many positive integers λ such
that P (λ, f(λ)) ≥ 1/λc. Hence, P (λ, f(λ)) �∈ UBnegl by Lemma 1. �

Finally, we prove that E (P (λ,Xλ)) is upper-bounded by a negligible function.
Let c ∈ N and c′ = c + k + 1. From Lemma 6 we know that there exists d ≥ c′

such that there are finitely many pairs (λ, a) satisfying (1). Therefore, there is
an integer N , such that for all pairs (λ, a), where λ ≥ N , one of the conditions in
(1) does not hold. Now, let m = max{2, j2d−1, N}. We claim that for all λ ≥ m,
E (P (λ,Xλ)) < 1/λc. This would imply that E (P (λ,Xλ)) ∈ UBnegl.

Take any λ ≥ m. Let us compute a lower-bound on Pr[Xλ ∈ H : Xλ ←$ Dλ]
where

H = {a ∈ Sλ : ∀i ∈ [k], Qi(λ, a) < 1/λd}.

We proceed similarly as before. Let i ∈ [k]. Then, we have E (Qi(λ,Xλ)) < 1/λ2d

since m ≥ j2d−1. Denote Hi = {a ∈ Sλ : Qi(λ, a) < 1/λd}. Thus,

Pr[Xλ ∈ Sλ\Hi]
λd

≤
∑

a∈Sλ\Hi
Pr[Xλ = a]

λd
≤

∑

a∈Sλ

Pr[Xλ = a] · Qi(λ, a) <
1

λ2d
.

Therefore, Pr[Xλ ∈ Sλ\Hi] < 1/λd. Hence, by the union bound we get:

Pr[∃i ∈ [k],Xλ ∈ Sλ\Hi] ≤ k/λd

and thus Pr[Xλ ∈ H] ≥ 1 − k/λd.
Note that each pair (λ, a), where a ∈ H, satisfies the first two conditions

in (1). Since λ ≥ m ≥ N , we get that P (λ, a) < 1/λc′
. Therefore, we can

upper-bound E (P (λ,Xλ)) as follows:

E (P (λ, Xλ)) ≤
∑

a∈Sλ

Pr[Xλ = a] · P (λ, a)

≤
∑

a∈H

Pr[Xλ = a] · P (λ, a) +
∑

a �∈H

Pr[Xλ = a] · P (λ, a)

<
∑

a∈H

Pr[Xλ = a] · 1

λc′ +
∑

a �∈H

Pr[Xλ = a] (2)

<
Pr[Xλ ∈ H]

λc′ + Pr[Xλ ∈ S\H]

< 1/λ
c′

+ k/λ
d

< (k + 1)/λ
c+k+1

< 1/λ
c
.

Thus, E (P (λ,Xλ)) ∈ UBnegl. �
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5 Setup Assumptions

In this section we formalize, generically, the notion of a setup assumption.
Such assumptions are ubiquitous in modern cryptography and include, for

instance, popular settings such as the Ideal Cipher model [23], the Common
Random String (CRS) [4], the Random Oracle model (ROM) [3]. They allow
one to bypass impossibility results or simply yield more efficient schemes.

Before we present our definition, we motivate some of the choices we make.
Naively, we could simply attempt to construct a Turing machine that samples a
function X → Y according to some arbitrary distribution, which would encode
the expected behaviour of the oracle. The astute reader is soon to notice that
several questions arise. How do we pick the domain of the oracle? For example,
in the random oracle model the query domain is {0, 1}∗ which is infinite. What
is then our sample space?

We cannot sample eagerly such a function. While one implementation might
simply query a small number of polynomial length values in the security parame-
ter λ, we must recall that reductions should also work for unbounded adversaries.
Indeed, an unbounded adversary might query the oracle infinitely many times,
which raises a conundrum.

5.1 Formal Model for Setup Assumptions

Our formalization is heavily influenced by having to solve the Random Oracle
case outlined above. We proceed as follows. We model the use of a random oracle
(viewed as an infinite random tape) via a sequence of finite setups. Each setup
being parameterized by some parameter � ∈ N – think about this parameter as
a restriction on the size of the valid inputs to the random oracle. As � tends to
infinity, the setup becomes a better approximation of a random oracle.

For this approach to be meaningful we require a few additional ingredients.
We define X� to be the first � elements of X. Clearly X� ⊆ X�+1 and X� is an
increasingly better approximation of X, as � grows. Thus, we seek that when
� goes to infinity, X� comes close to X. Here we enforce a total order on X.
Since we only consider countable sets X, we model this total order by fixing an
arbitrary injection φ between X and N; the total order on X is then induced by
transporting on X the total order on N.

We may now define a setup assumption as a tuple (X,Y, φ,M) where X and
Y are the domain and range for all possible setup instances. The setup generator
M takes as input the usual security parameter λ and a parameter � as above.
For each λ and �, the setup generator defines some distribution on the set of
functions with domain X� and range Y .

More importantly, we demand that the distributions defined by M are consis-
tent across the choices of �. That is, a function sampled from Y X�+1 according to
M�+1,λ, when restricted to X� has the same distribution as a function sampled
from M�,λ. The intuition behind this restriction is that the functions output by
the setup should “behave” the same on all entries on which they are defined,
independent of the size of the domain specified by �.
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This requirement is important since, for instance, we do not wish that altering
the size of the query space to X�+1 affects the behavior of participants that only
queries the setup with entries from X�. As it will become clear a bit later in
the paper (Definition 5), this property is necessary to meaningfully define the
adversary advantage when � goes to infinity.

The following definition formalizes the discussion above.

Definition 4 (Setup Assumptions). Define setup assumption as a tuple
M = (X,Y, φ,M) where X,Y are non-empty countable sets, φ is an injective
map from X to N and M(·,·) is a probabilistic algorithm with the following prop-
erties. Namely, given a “length” parameter � ∈ N and a security parameter
λ ∈ N, it outputs a function O : X� → Y according to some distribution over
Y X� , where

X� := {x ∈ X : φ(x) < �}.

Note that this distribution is still discrete. We further call the setup assumption
consistent, if for all � ∈ N and a1, . . . , a|X�| ∈ Y we have:

Pr

⎡

⎣
|X�|∧

i=1

f(x�,i) = ai : f ←$ M�,λ

⎤

⎦ = Pr

⎡

⎣
|X�|∧

i=1

g(x�,i) = ai : g ←$ M�+1,λ

⎤

⎦

where X� = {x�,1, . . . , x�,|X�|}.
Henceforth, we shall simply refer to consistent sampling setup assumptions sim-
ply as setup assumption. When working with primitives in the standard model,
we will abuse the notation and write M = ∅.

5.2 Defining Primitives with Setup Assumptions

We build on our notion of a setup assumption defined in the previous section to
formalize models for primitives with setup assumptions.

Before we proceed, we introduce the following notation. Suppose the sampler
M(·,·) of M samples a function O : X → Y where X and Y are countable and
let φ : X → N be a fixed injective map. Then, for an algorithm A(·) and function
t : N → N, we denote A(·)

t to be the algorithm which behaves identically as A(·)

but if a query x ∈ X is made to the setup assumption, where φ(x) > t(λ), then
it automatically aborts. Recall φ is our total ordering function. We call t the
threshold function. When t is constant, i.e. t(λ) = � for all λ, then we slightly
abuse notation and simply write A(·)

� .
We now present the notion of a primitive equipped with a setup assumption.

The definition below, refines Definition 1 in two different ways. It introduces as
part of the execution model the setup generator and it introduces an explicit
correctness notion for the primitive as an additional separate algorithm.

Definition 5. Primitive P with a setup assumption M is a tuple〈
P,M,CP , RP , σ

〉
where:
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• P is a pair of sets (A,B),
• M = (X,Y, φ,M) is the setup assumption defining the oracle O,
• C

(·,·)
P is a correctness algorithm,

• R
(·,·)
P is a PPT security algorithm (related to λ),

• σ : N → [0, 1] is a security threshold.

We say that f (·) : A → B is an implementation of P if for all (unbounded)
adversaries A(·):

lim
k→+∞

lim
�→+∞

Pr
[
1 ← C

fk
O,AO

�

P

]

is negligible, where probability is over random coins in the environment and
especially O ←$ Mmax{k,�},λ.

For an implementation f (·) and any algorithm A(·), we define the advantage
of A(·) in breaking f (·) as

AdvP
f,A[(λ)] := lim

k→+∞
lim

�→+∞
Pr

[
1 ←$ R

fO
k ,AO

�

P

]
− σ(λ)

where the probability is defined over O ←$ M(max{k, �}, λ) and the random coins
in the system.

We say that A P−breaks f (·) if AdvP
O←M,f,A[(λ)] �∈ UBnegl. Furthermore,

f (·) is called a secure implementation of P if there are no PPT algorithms A(·)

that P−break f (·).

A few remarks are in order. First, we argue that the notion of correctness
and the adversary advantage are well-defined, in that the limits are guaran-
teed to exist. This property is established by the following lemma. Its proof (in
Appendix A) crucially relies on the consistency property of the setup assumption.
Broadly speaking, the property guarantees that the behavior of an adversary (in
terms of winning the security game) is monotonic with respect to �. That is, if
an adversary wins the game when its query space is X� (with some probability),
then the adversary will win (with at least the same probability) the instance
of the game where the query space is X�+1. This property then gives rise to a
monotonically non-decreasing sequence upper-bounded by 1, which implies that
the desired limit exists.

Lemma 7. Let f (·), A(·) and R(·,·) be any function, unbounded adversary and
PPT machine respectively. Then, for M = (X,Y, φ,M), the following limit
exists:

lim
k→+∞

lim
�→+∞

F (k, �),

where

F (k, �) := Pr
[
1 ←$ Rfk

O,AO
�

]

and the probability is over O ←$ Mmax{k,�},λ and the random coins in the envi-
ronment.
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The proof of the lemma is presented in Appendix A.5.
Second, the limits in the definition of a correct implementation can be

swapped or merged into a single parameter, as hinted at in the introduction,
by Lemma 4. Nonetheless, we prefer to keep the present formulation since it is
particularly helpful for proving our main theorem (Theorem 3).

Finally, our definition no longer describes implementations of a primitive as
functions from some abstract implementation set. Instead, we identify correct
implementations as those for which no efficient adversary can win a correctness
game CP

5. The reason for this departure is that we need to formalize what
is the extension of a notion P to a setup assumption. Indeed, above we have
essentially shown how to define a game with an abstract setup assumption. Lift-
ing a notion from the standard model to some particular setup comes down to
simply replacing the setup assumption M (which is ∅ for the standard model),
appropriately.

5.3 Fully Black-Box Non-programmable Reductions

We now introduce a notion of a fully black-box non-programmable reduction
between primitives with setup assumptions.

Definition 6. Let P and Q be primitives with the setup assumption M . We say
that there is a fully black-box non-programmable reduction from P to Q in M

(written as P
M

↪−→ Q) if there exist PPT algorithms G(·), S(·) such that:

• for every implementation f (·) of Q, Gf (·) is an implementation of P ,
• for every implementation f (·) of Q and every (unbounded) algorithm A(·), if

A(·) P -breaks Gf (·) then SA(·)
Q-breaks f (·).

In the literature, S has access to an external oracle O instead of A. We call
this reduction non-programmable since we let A have access to O via S, meaning
that if the adversary wants to query O, it sends the value to S, S passes it to
O and returns to A what it got from O. Apart from that, S does not query O
at all. From the perspective of A, this is clearly equivalent to A having access
to O, as illustrated in the definition above. There is another type of reduction
called programmable [13], where S can simulate an oracle on its own. However,
we omit the details in this paper.

5.4 Setup Assumption Extensions

In order to describe our main result, we need to define what it means to “natu-
rally extend “the primitive to a setup assumption M . Hence, we define a notion
of a M−extension of a primitive.
5 One side effect of this change is that Definition 5 does not cover a number of potential

oddities which can be represented using previous frameworks [16,22], e.g. a primitive
where the set of valid instances is defined as some undecidable set of Turing machines.
However, these cases are irrelevant for our purpose.
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Definition 7. Let P =
〈
P1, ∅, CP , RP , σ

〉
be a primitive in the standard model

and M be a setup assumption. Then, a M−extension P (M) of P is the tuple
P (M) = 〈P1,M,CP , RP , σ

〉
.

We can now formalize our main result. Namely, if there exists a fully black-
box reduction from P to Q in the standard model, then there also exists a fully
black-box reduction from P (M) to Q(M), where M is any setup assumption.

Theorem 2 (Ideal Model Correspondence). Let P and Q be primitives in
the standard model and M be any ideal model. Then, assuming a fully black-box
reduction in the standard model implies a fully black-box reduction in the ideal
model.

P ↪→ Q =⇒ P (M)
M

↪−→ Q(M).

We provide the proof in Sect. 6.

Remark. Let (G,S) be a reduction from P to Q. Intuitively, (G,S) should
also be a correct reduction from P (M) to Q(M). However, in the M model,
the adversary as well as the implementation have access to some “shared state”
which is the external oracle. This, however, is not the case in the standard
model. Indeed, this additional advice might help an adversary break P (M) but
not Q(M). In Theorem 2 we show that if (G,S) is a fully black-box reduction,
then it can be extended to a setup assumption representing some ideal model.
However, the open question remains whether the same property holds when
(G,S) is not fully black-box anymore.

Fig. 1. We prove a correspondence for fully black-box reductions in the standard model
to ideal models.

5.5 Common Instantiations of Setup Assumptions

In this section we present common ideal models in the framework we introduced.
We also prove they satisfy the consistent sampling property.

The Random Oracle Model. This model [3] is one of the cornerstones of
modern cryptography. A random oracle represents ideal hash functions. When
a party queries with a bitstring {0, 1}∗, the random oracle, given a security
parameter λ, samples an element from {0, 1}λ uniformly at random.

Formally, we define a random oracle setup assumption MROM as the tuple

MROM =
({0, 1}∗, {0, 1}∗, φ,MROM

�,λ

)
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Note we can well-order all bit-strings, for instance as follows: 0, 1, 00, 01, ·.
Here, φ simply outputs the index of the ordering above. Now define Y to be a
set of arbitrary bit-strings with cardinality equal to some polynomial of λ. That
is Yλ = {0, 1}�out(λ), for some length function �out – see [8]. Then MROM

�,λ samples
from Y X�

λ which has cardinality 2�out(λ)�. Thus the sampler MROM
�,λ iterates over

all � inputs at setup, and for each one picks independently uniformly at random
with probability 1

2�out(λ) an element from Y .

Proposition 1. The above construction MROM is a consistent setup assump-
tion.

Proof. We can easily see that on each instantiation of the setup the sampler picks
each element independently at random. Thus, the sampler does not depend on
elements ordered after i to pick the value of i. �

The Ideal Cipher Model. In the Ideal Cipher Model [23] the participants
may access an ideal cipher enc : {0, 1}k × {0, 1}n → {0, 1}n, s.t. enc are random
permutations {0, 1}n → {0, 1}n that have been independently and uniformly
drawn (with replacement for each key). Recall that the Ideal Cipher model is
equivalent to the Random Oracle model [11] (original [12]).

We can define the setup assumption for an (k, n)-ideal cipher similarly to
ROM above.

MIC =
({0, 1}∗ × {0, 1}∗, {0, 1}∗, φ : {0, 1}∗ × {0, 1}∗ → N,MIC

�,λ

)
.

For simplicity we just set k above equal to λ. Note that here we use the normal
ordering as described prior of the bitstrings to the naturals φ. We order strings
similarly. This implies a 2n period on the domain set: each of the 2λ keys is
paired with 2n input values. In particular, note that the sampler MIC

�,λ has to
pick a permutation enc(key) : {0, 1}n → {0, 1}n independently for each key. Note
that n might depend on the security parameter λ.

Proposition 2. The above setup assumption MIC satisfies the consistent sam-
pling property.

Proof. Assume the normal ordering as discussed above. First for each new key (of
the 2k) we sample a new random permutation. Thus, we need only to show that
while sampling a permutation for 0 ≤ � < 2n the consistent sampling property
holds. We can generalize for each of the keyed permutations. Without loss of
generality, if � < 2n − 1, observe that the sampling process of the �’th query
element of X�+1 does not depend on the � + 1 value (it depends only on some of
the elements of X�−1 (if � > 0) – as we sample without replacement. �

The Common Reference String model (CRS) In the Common Reference
String model, a generalization of the Common Random String [4] the oracle
provides access to a common value that is sampled from some arbitrary desired
distribution specific to the protocol. Namely, following the definition of [7] on
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setup the oracle samples d ←$ Dλ and sends it to the querying party. For each
subsequent query the oracle responds with d.

Formally, for a CRS model with distribution Dλ over a countable set D, we
define the following setup assumption MCRS

MCRS =
({0},D, φ : {0} → N,MCRS

�,λ

)

We simply define φ(0) = 0 and define the sampler MCRS
�,λ to sample d from Dλ

and return O : 0 �→ d.

Proposition 3. The above setup assumption MCRS satisfies the consistent sam-
pling property.

Proof. It follows immediately from the observation that the sampling process is
independent of the parameter �. �

6 Proof of Theorem 2

We prove our main claim via Theorems 3 and 4. Namely, we show that if (G,S)
is a fully black-box reduction from primitives P to Q in the standard model
then (i) G is a generic construction in the setup assumption M and (ii) for
every implementation f (·) of Q(M) and every (unbounded) algorithm A(·), if
A(·) P (M)-breaks Gf (·) then SA(·)

Q(M)-breaks f (·).

6.1 Generic Construction Theorem

We first prove a vital lemma about satisfying correctness with functions with
access to a bounded oracle random tape.

Lemma 8. Let P be a primitive in the setup assumption M = (X,Y, φ,M), f (·)

be a function and OA be the set of all unbounded adversaries with oracle access.
Then, f (·) is an implementation of P if and only if CorrP (f) is negligible, where:

CorrP (f)(λ) = sup
A∈OA

lim
k→+∞

lim
�→+∞

Pr
[
1 ←$ C

fO
k (λ),AO

� (λ)
P

]

and O ←$ Mmax{k,�},λ.

Proof. Clearly, if CorrP (f)(λ) is negligible then for any adversary A we have

lim
k→+∞

lim
�→+∞

Pr
[
1 ←$ C

fO
k (λ),AO

� (λ)
P

]
≤ CorrP (f)(λ).

Thus, f (·) is an implementation of P .
Now, suppose that f (·) is an implementation of P . Note that by definition of

supremum, we can find a sequence of adversaries A1,A2, . . . indexed by λ such
that for all λ:

CorrP (f)(λ) ≤ lim
k→+∞

lim
�→+∞

Pr
[

1 ←$ C
fO

k (λ),AO
λ,�(λ)

P

]

+
1
2λ

.
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Hence, let us pick an adversary A which given λ runs Aλ. Since f (·) is an
implementation of P , we know that limk→+∞ lim�→+∞ Pr

[
1 ←$ C

fO
k (λ),AO

� (λ)
P

]

is negligible and therefore so is CorrP (f)(λ). �

For convenience, we continue using OA to denote the set of all unbounded
adversaries with oracle access henceforth.

Theorem 3. Let (G,S) be a fully black-box reduction from P to Q in the stan-
dard model and M = (X,Y, φ,M) be a setup assumption. Then, for every imple-
mentation f (·) of Q(M), Gf(·)

is an implementation of P (M).

Proof. Let us first fix λ ∈ N and f (·) be an implementation of Q(M). We first
prove that there exists a function t : N → N such that ft is also an implementa-
tion of Q(M) and if Gf

(·)
t is an implementation of P (M) then so is Gf(·)

.

Lemma 9. For any function f (·), there exists t : N → N which satisfies the
following properties:

– f (·) is an implementation of Q(M) if and only if f
(·)
t is an implementation

of Q(M).
– Gf(·)

is an implementation of P (M) if and only if Gf
(·)
t is an implementation

of P (M).

Proof. We prove the statement by construction. Let f (·) be any function and
λ ∈ N. Then, by Lemma 3 we have

CorrQ(M)(f)(λ) = sup
A∈OA

lim
k→+∞

lim
�→+∞

Pr
[
1 ←$ C

fO
k (λ),AO

� (λ)
P

]

= lim
k→+∞

sup
A∈OA

lim
�→+∞

Pr
[
1 ←$ C

fO
k (λ),AO

� (λ)
P

]
(3)

= lim
k→+∞

ck

where
ck = sup

A∈OA
lim

�→+∞
Pr

[
1 ←$ C

fO
k (λ),AO

� (λ)
P

]
.

Therefore, there exists an integer N1 such that for all n ≥ N1

|cn − CorrQ(M)(f)(λ)| <
1
2λ

.

Note that

cn = sup
A∈OA

lim
�→+∞

Pr
[
1 ←$ C

fO
n (λ),AO

� (λ)
P

]

= lim
k→+∞

sup
A∈OA

lim
�→+∞

Pr
[

1 ←$ C
fO
min{n,k}(λ),AO

� (λ)

P

]

(4)

= sup
A∈OA

lim
k→+∞

lim
�→+∞

Pr
[

1 ←$ C
fO
min{n,k}(λ),AO

� (λ)

P

]

= CorrQ(M)(fn)(λ).
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Similarly, one can find N2 ∈ N such that for all n ≥ N2:

|CorrP (M)

(
Gfn

)
(λ) − CorrP (M)

(
Gf

)
(λ)| <

1
2λ

.

Let us set t(λ) := max{N1, N2}. Then, the statement holds by construction and
Lemma 8. �

Next, we select t as in the lemma above and define the “relevant tape” as a
sequence of sets T1, T2, . . . defined as:

Tλ = Xt(λ) = {x ∈ X : φλ(x) < t(λ)}.

For simplicity, we index Tλ as follows Tλ = {xλ,1, . . . , xλ,|Tλ|}. Define:

Sλ = Y |Tλ| and S =
⋃

λ∈N

Sλ.

Then, we set the distribution Dλ : Sλ → [0, 1] as

Dλ(y1, . . . , y|Tλ|) := Pr [∀i ∈ [|Tλ|],O(xλ,i) = yi : O ←$ M (t(λ), λ)] .

Since Tλ is finite, the distribution is discrete. Moreover, by consistency of setup
assumptions we get that for all � ≥ t(λ):

Dλ(y1, . . . , y|Tλ|) = Pr [∀i ∈ [|Tλ|],O(xλ,i) = yi : O ←$ M (�, λ)] .

Now, we define

Q(λ,y) =

⎧
⎪⎨

⎪⎩

supA∈OA lim�→+∞ Pr

[

1 ←$ C
fO

t (λ),AO
� (λ)

Q

∣
∣
∣
∣
∣
∀i,O(xλ,i) = yi

]

if y ∈ Sλ

0 otherwise

and similarly

P (λ,y) =

⎧
⎪⎨

⎪⎩

supA∈OA lim�→+∞ Pr

[

1 ←$ C
GfO

t (λ),AO
� (λ)

P

∣
∣
∣
∣
∣
∀i,O(xλ,i) = yi

]

if y ∈ Sλ

0 otherwise.

Here, the probabilities are defined over O ←$ Mmax{�,t(λ)},λ and the random
coins in the system. One argues similarly as in Lemma 7 that functions P and
Q are well-defined.

We claim that for any g : N → S, we have

Q(λ, g(λ)) ∈ UBnegl =⇒ P (λ, g(λ)) ∈ UBnegl.

Indeed, suppose that Q(λ, g(λ)) ∈ UBnegl. By construction, we have 0 ≤
Q(λ, g(λ)) ≤ 1 for all λ ∈ N and thus this function is negligible.
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We define the function fg
t with hardwired oracle queries g as follows. Given

a security parameter λ, it behaves identically as in f
(·)
t but when f “queries an

oracle” on input xλ,i ∈ Tλ, it gets yi where g(λ) = (y1, . . . , y|Tλ|) ∈ Sλ. On the
other hand, for λ so that g(λ) �∈ Sλ, we set fg

t to simply abort.
By construction, CorrQ(fg

t ) = Q(λ, g(λ)) is negligible and therefore, fg
t is an

implementation of Q. Since G is a generic construction in the standard model,
we have that Gfg

t is an implementation of P , i.e. CorrQ(Gfg
t ) is negligible. As a

consequence, P (λ, g(λ)) is negligible and in particular P (λ, g(λ)) ∈ UBnegl.
We are now ready to apply Theorem 1 for k = 1. Note that for Zλ ←$ Dλ we

have

E(Q(λ,Zλ))

=
∑

y∈Sλ

Q(λ,y) · Pr[Zλ = y]

=
∑

y∈Sλ

sup
A∈OA

lim
�→+∞

Pr

[

1 ←$ C
fO

t (λ),AO
� (λ)

Q

∣
∣
∣
∣
∣
∀i,O(xλ,i) = yi

]

· Pr[Zλ = y]

(5)

which, by Lemma 2, is equal to

sup
(Ay )∈OA|Sλ|

∑

y∈Sλ

lim
�→+∞

Pr

[

1 ←$ C
fO

t (λ),AO
y ,�(λ)

Q

∣
∣
∣
∣
∣
∀i,O(xλ,i) = yi

]

· Pr[Zλ = y].

We claim that

E(Q(λ,Zλ)) = sup
A∈OA

lim
�→+∞

Pr
[
1 ←$ C

fO
t (λ),AO

� (λ)
Q

]
.

First, take any unbounded adversary A ∈ OA. Then, by Lemma 5:

lim
�→+∞

Pr
[
1 ←$ C

fO
t (λ),AO

� (λ)
Q

]
(6)

= lim
�→+∞

∑

y∈Sλ

Pr

[

1 ←$ C
fO

t (λ),AO
� (λ)

Q

∣
∣
∣
∣
∣
∀i,O(xλ,i) = yi

]

· Pr[Zλ = y] (7)

=
∑

y∈Sλ

lim
�→+∞

Pr

[

1 ←$ C
fO

t (λ),AO
� (λ)

Q

∣
∣
∣
∣
∣
∀i,O(xλ,i) = yi

]

· Pr[Zλ = y] (8)

≤
∑

y∈Sλ

sup
A∈OA

lim
�→+∞

Pr

[

1 ←$ C
fO

t (λ),AO
� (λ)

Q

∣
∣
∣
∣
∣
∀i,O(xλ,i) = yi

]

· Pr[Zλ = y]

(9)

≤ E(Q(λ,Zλ)). (10)

Then, by definition of supremum we have

E(Q(λ,Zλ)) ≥ sup
A∈OA

lim
�→+∞

Pr
[
1 ←$ C

fO
t (λ),AO

� (λ)
Q

]
.
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On the other hand, let us select any sequence of adversaries (Ay )y∈Sλ
. We

construct an adversary A which first calls the external oracle O on all inputs in
Tλ and given y = (y1, . . . , y|Tλ|), where O(xλ,i) = yi, it runs Ay . Then, we have

∑

y∈Sλ

lim
�→+∞

Pr

[

1 ←$ C
fO

t (λ),AO
y ,�(λ)

Q

∣
∣
∣
∣
∣
∀i,O(xλ,i) = yi

]

· Pr[Zλ = y] (11)

= lim
�→+∞

∑

y∈Sλ

Pr

[

1 ←$ C
fO

t (λ),AO
y ,�(λ)

Q

∣
∣
∣
∣
∣
∀i,O(xλ,i) = yi

]

· Pr[Zλ = y]

(12)

= lim
�→+∞

Pr
[
1 ←$ C

fO
t (λ),AO

� (λ)
Q

]
. (13)

Consequently, E(Q(λ,Zλ)) ≤ supA∈OA lim�→+∞ Pr
[
1 ←$ C

fO
t (λ),AO(λ)

Q

]
and

the claim holds. In particular,

E(Q(λ,Zλ)) = CorrQ(M)(ft)(λ) ∈ UBnegl.

Thus, by Theorem 1, E(P (λ,Zλ)) ∈ UBnegl. Note that E(P (λ,Zλ)) ∈ [0, 1] for all
λ, and consequently this function is also negligible. By arguing similarly as before,
we get that E(P (λ,Zλ)) = CorrQ(M)(Gft)(λ) and thus, Gf is an implementation
of P (M) by Lemmas 8 and 9. �

6.2 Reduction Theorem

Theorem 4. Let (G,S) be a fully black-box reduction from P to Q in the stan-
dard model and M be an external oracle. Then, for every implementation f (·)

of Q(M) and every adversary A(·), if A(·) P (M)-breaks Gf (·) then SA(·)
Q(M)-

breaks f (·).

Proof. We prove the statement by contrapositive. First, we will need an extension
of Lemma 9.

Lemma 10. For any implementation f (·) of Q(M) and adversary A(·), there
exists t : N → N such that for all λ ∈ N:

– f
(·)
t is an implementation of Q(M).

– |AdvP (M)

Gf ,A [(λ)] − Adv
P (M)

Gft ,At
[(λ)]| < 1

2λ .

– |AdvQ(M)

f,SA [(λ)] − Adv
Q(M)

ft,SAt
[(λ)]| < 1

2λ .

Proof. We prove the statement by construction. Let f (·) and A(·) be any imple-
mentation of Q(M) and adversary respectively, and λ ∈ N. First, the proof of
Lemma 9 says that there exists N0 ∈ N such that for all n ≥ N0:

|CorrQ(M) (fn) (λ) − CorrQ(M) (f) (λ)| <
1
2λ

.
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On the other hand, by definition of the advantage and Lemma 4

Adv
Q(M)

f,SA [(λ)] = lim
k→+∞

Pr
[

1 ←$ R
fO

k ,SAO
k

Q

]

− σQ(λ)

= lim
k→+∞

ck (14)

where σQ(λ) is the security threshold for Q and

ck = Pr
[

1 ←$ R
fO

k ,SAO
k

Q

]

− σQ(λ) = Adv
Q(M)

fk,SAk
[(λ)]

for k ∈ N. This means there exists N1 ∈ N such that for all n ≥ N1:

|cn − Adv
Q(M)

f,SA [(λ)]| < 1/2λ.

One can similarly compute such N2 for Gf . Let us set t(λ) = max{N0, N1, N2}.
Then, the statement holds by construction. �

Fix an implementation f (·) of Q(M) and adversary A(·) such that
Adv

Q(M)

f,SA [(λ)] ∈ UBnegl is bounded by a negligible function. Let us select t as in

the lemma above. Then, f
(·)
t is an implementation of Q(M) and Adv

Q(M)

ft,SAt
[(λ)] ∈

UBnegl as well.
Define the “relevant tape” as a sequence of sets T1, T2, . . . as:

Tλ = Xt(λ) = {x ∈ Xλ : φλ(x) ≤ t(λ)}.

For simplicity, we write Tλ = {xλ,1, . . . , xλ,|Tλ|}. Denote

Sλ = Y |Tλ|
λ and S =

⋃

λ∈N

Sλ.

Then, we define the distribution Dλ : Sλ → [0, 1] as

Dλ(y1, . . . , y|Tλ|) := Pr[∀i ∈ [|Tλ|],O(xλ,i) = yi : O ←$ Mt(λ),λ].

Since |Tλ| is finite, the distribution is discrete. As before, consistency of a setup
assumption implies that for all � ≥ t(λ):

Dλ(y1, . . . , y|Tλ|) = Pr[∀i ∈ [|Tλ|],O(xλ,i) = yi : O ←$ M�,λ].

Next, we introduce the following functions:

Q1(λ,y) =

⎧
⎪⎨

⎪⎩

Pr

[

1 ←$ R
fO

t ,SAO
t

Q

∣
∣
∣
∣
∣
∀i ∈ [|Tλ|],O(xλ,i) = yi

]

− σQ(λ) if y ∈ Sλ

0 otherwise

,
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Q2(λ,y) =

⎧
⎪⎨

⎪⎩

supB∈OA lim�→+∞ Pr

[

1 ←$ C
fO

t (λ),BO
� (λ)

Q

∣
∣
∣
∣
∣
∀i,O(xλ,i) = yi

]

if y ∈ Sλ

0 otherwise

and similarly

P (λ,y) =

⎧
⎪⎨

⎪⎩

Pr

[

1 ←$ R
GfO

t ,AO
t

P

∣
∣
∣
∣
∣
∀i ∈ [|Tλ|],O(xλ,i) = yi

]

− σP (λ) if y ∈ Sλ

0 otherwise

.

Clearly, for any λ ∈ N and y ∈ S we have

−1 ≤ Q1(λ,y), Q2(λ,y), P (λ,y) ≤ 1.

Let g : N → S. In order to apply Theorem 1 we need to prove that

Qi(λ, g(λ)) ∈ UBnegl for i = 1, 2 =⇒ P (λ, g(λ)) ∈ UBnegl.

Similarly as before, we define the function fg
t with hardwired oracle queries g

in the following way. Given a security parameter λ, it behaves identically as
in f

(·)
t but when f “queries an oracle” on input xλ,i ∈ Tλ, it gets yi where

g(λ) = (y1, . . . , y|Tλ|) ∈ Sλ. However, for λ so that g(λ) �∈ Sλ, we set fg
t to

simply abort. Similarly, we define Ag
t . It is easy to see that

Q1(λ, g(λ)) = Adv
Q(M)

fg
t ,SAg

t
[(λ)].

Suppose Qi(λ, g(λ)) ∈ UBnegl for i = 1, 2. This implies that (i)
Adv

Q(M)

fg
t ,SAg

t
[(λ)] is upper-bounded by a negligible function and (ii) fg

t is an imple-

mentation of Q in the standard model because

Q2(λ, g(λ)) = CorrQ(M)(f
g
t )(λ) ∈ UBnegl

and CorrQ(M)(f
g
t )(λ) ∈ [0, 1] for all λ. Since (G,S) is a fully black-box reduc-

tion from P to Q in the standard model, we have that Adv
Q(M)

Gf
g
t ,Ag

t

[(λ)] is upper-

bounded by a negligible function as well – this is indeed equal to P (λ, g(λ)).
We can now apply Theorem 1 for k = 2 with functions defined above. We

observe that by the Law of Total Probability, E(Q1(λ,Zλ)) is equal to

∑

y∈Sλ

(

Pr

[

1 ←$ R
fO

t ,SAO
t

Q

∣
∣
∣
∣
∣
∀i ∈ [|Tλ|],O(xλ,i) = yi

]

− σQ(λ)

)

· Pr[Zλ = y].

Hence, we get

E(Q1(λ,Zλ)) = Pr
[

1 ←$ R
fO

t ,SAO
t

Q

]

− σQ(λ) = Adv
Q(M)

ft,SAt
[(λ)].
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Since Adv
Q(M)

ft,SAt
[(λ)] is upper-bounded by a negligible function, then so is

E(Q1(λ,Zλ)). Similarly as in the proof of Theorem 3, one argues that

E(Q2(λ,Zλ)) = CorrQ(M)(ft)(λ).

Since f
(·)
t is an implementation of Q(M), this function is negligible. Hence,

by Theorem 1, we have E(P (λ,Zλ)) ∈ UBnegl which directly implies that
Adv

P (M)

Gft ,At
[(λ)] is upper-bounded by a negligible function. Finally, AdvP (M)

Gf ,A [(λ)] ∈
UBnegl by Lemma 10 and thus the statement holds.
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A Supporting Proofs

A.1 Proof of Lemma 2

Firstly, we observe that for all (as)s∈S ∈ A|S| we have:
∑

s∈S

fs(as) ≤
∑

s∈S

sup
a∈A

fs(a)

and by definition of supremum we have

sup
(as)s∈S∈A|S|

∑

s∈S

fs(as) ≤
∑

s∈S

sup
a∈A

fs(a).

Now, suppose there exists ε > 0 such that
∑

s∈S

sup
a∈A

fs(a) = sup
(as)s∈S∈A|S|

∑

s∈S

fs(as) + ε.

Let φ : S → N be an injective map. Then, by definition of supremum, for each
s ∈ S we can find an element as ∈ A such that:

sup
a∈A

fs(a) < fs(as) + εφ(s)

where εi is defined as εi = (ε/2) · (1/2)i for i ∈ N. Hence, we get:
∑

s∈S

sup
a∈A

fs(a) <
∑

s∈S

fs(as) +
∑

s∈S

εφ(s)

< sup
(as)s∈S∈A|S|

∑

s∈S

fs(as) +
∑

i∈N

εi (15)

< sup
(as)s∈S∈A|S|

∑

s∈S

fs(as) + ε

which leads to a contradiction.
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A.2 Proof of Lemma 3

Let ε > 0. Then, there exists α ∈ A such that

sup
a∈A

lim
k→+∞

fa(k) ≤ lim
k→+∞

fα(k) + ε/2.

Next, there exists N ∈ N so that for all n ≥ N :

| lim
k→+∞

fα(k) − fα(n)| < ε/2.

Since fα is non-decreasing, we get

0 ≤ lim
k→+∞

fα(k) − fα(n) < ε/2.

Therefore:

sup
a∈A

lim
k→+∞

fa(k) − ε/2 ≤ lim
k→+∞

fα(k) < fα(n) + ε/2 ≤ sup
a∈A

fa(n) + ε/2.

On the other hand, for any n, supa∈A limk→+∞ fa(k) ≥ supa∈A fa(n) since fa is
non-decreasing for all a ∈ A. Hence, for n ≥ N we have:

0 ≤ sup
a∈A

lim
k→+∞

fa(k) − sup
a∈A

fa(n) < ε/2 + ε/2 = ε

and consequently, limk→+∞ supa∈A fa(k) = supa∈A limk→+∞ fa(k).

A.3 Proof of Lemma 4

Denote ak = lim�→+∞ f(k, �) and b� = limk→+∞ f(k, �). The monotonocity
property and the fact that f(k, �) ≤ 1 for all k, � ∈ N implies that sequences
(ak), (b�) are well-defined and they are non-decreasing. Moreover, ak, b� ≤ 1 for
all k, �. Thus, a = limk→+∞ ak and b = lim�→+∞ b� do exist. Then, for all
k, � ∈ N we have f(k, �) ≤ ak ≤ a and hence

b� = lim
k→+∞

f(k, �) ≤ a

for all �. In particular, b = lim�→+∞ b� ≤ a. One similarly proves that a ≤ b.
Lastly, we need to show that c = a where c := limk→+∞ f(k, k). It is easy

to see that for k ∈ N we have f(k, k) ≤ ak and thus c = limk→+∞ f(k, k) ≤
limk→+∞ ak = a. On the other hand, for every k and � we have f(k, �) ≤ c. Thus,
ak = lim�→+∞ f(k, �) ≤ c for all k and consequently, a ≤ c. Hence, a = b = c.

A.4 Proof of Lemma 5

The statement is easy to prove when S is finite. Hence, suppose there is a
bijective map φ : N → S and define a function g : N × N → [0, 1] as
g(k, �) =

∑�
i=0 f(k, φ(i)). Note that for all k, � we have g(k, �) ≤ g(k + 1, �)
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and g(k, �) ≤ g(k, � + 1). Then, by Lemma 4 and the fact that the limit of a
finite sum is a sum of limits, we have:

lim
k→+∞

∑

s∈S

f(k, s) = lim
k→+∞

lim
�→+∞

g(k, �)

= lim
�→+∞

lim
k→+∞

g(k, �)

= lim
�→+∞

lim
k→+∞

�∑

i=0

f(k, φ(i)) (16)

= lim
�→+∞

�∑

i=0

lim
k→+∞

f(k, φ(i))

=
∑

s∈S

lim
k→+∞

f(k, s).

A.5 Proof of Lemma 7

Clearly, F (k, �) ∈ [0, 1]. We just need to show that for all k, � ∈ N we have
F (k, �) ≤ F (k, � + 1) and F (k, �) ≤ F (k + 1, �). Then, the statement follows
directly from Lemma 4.

Let us fix k, � ∈ N. Let us define B�+1 which behaves exactly as A�+1 but
when it queries x ∈ S such that φ(x) = � + 1, it also aborts. Hence, we have

Pr
[
1 ←$ Rfk

O,BO
�+1

]
≤ Pr

[
1 ←$ Rfk

O,AO
�+1

]
= F (k, � + 1).

Now, by the consistency property of the setup assumption, the view of
B�+1 given an oracle O ←$ Mmax{k,�+1},λ is exactly the same as A� given
O ←$ Mmax{k,�},λ. Therefore

F (k, �) = Pr
[
1 ←$ Rfk

O,AO
�

]
= Pr

[
1 ←$ Rfk

O,BO
�+1

]
.

Similarly, one proves F (k, �) ≤ F (k + 1, �).
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5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

6. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054117

7. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
Cryptology ePrint Archive, Report 1998/011 (1998). http://eprint.iacr.org/1998/
011

9. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 7

10. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of
a non-malleable encryption scheme from any semantically secure one. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78524-8 24

11. Coron, J.-S., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How
to build an ideal cipher: the indifferentiability of the Feistel construction. J. Cryptol.
29(1), 61–114 (2016)

12. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1–20. Springer, Heidelberg (2008)

13. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 18

14. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 3

15. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

16. Hofheinz, D., Nguyen, N.K.: On tightly secure primitives in the multi-instance
setting. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 581–611.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 20

17. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8 6

18. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permu-
tations. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, pp. 44–61 (1989)

19. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989

https://doi.org/10.1007/0-387-34799-2_20
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
http://eprint.iacr.org/1998/011
http://eprint.iacr.org/1998/011
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-540-78524-8_24
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-030-17253-4_20
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-540-28628-8_6


160 N. K. Nguyen et al.

20. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4 7

21. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2), 256–
267 (1983)

22. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 1

23. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),
656–715 (1949)

24. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions
be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054137

https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137


Encryption



Efficient Lattice-Based Inner-Product
Functional Encryption

Jose Maria Bermudo Mera1, Angshuman Karmakar1, Tilen Marc2,3(B),
and Azam Soleimanian4,5

1 imec -COSIC, KU Leuven, Leuven, Belgium
{Jose.Bermudo,Angshuman.Karmakar}@esat.kuleuven.be

2 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
tilen.marc@xlab.si

3 XLAB d.o.o, Ljubljana, Slovenia
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Abstract. In the recent years, many research lines on Functional
Encryption (FE) have been suggested and studied regarding the func-
tionality, security, or efficiency. Nevertheless, an open problem on a
basic functionality, the single-input inner-product (IPFE), remains: can
IPFE be instantiated based on the Ring Learning With Errors (RLWE)
assumption?

The RLWE assumption provides quantum-resistance security while
in comparison with LWE assumption gives significant performance and
compactness gains. In this paper we present the first RLWE-based IPFE
scheme. We carefully choose strategies in the security proofs to optimize
the size of parameters. More precisely, we develop two new results on
ideal lattices. The first result is a variant of Ring-LWE, that we call
multi-hint extended Ring-LWE, where some hints on the secret and the
noise are given. We present a reduction from RLWE problem to this vari-
ant. The second tool is a special form of Leftover Hash Lemma (LHL)
over rings, known as Ring-LHL.

To demonstrate the efficiency of our scheme we provide an optimized
implementation of RLWE-based IPFE scheme and show its performance
on a practical use case.

We further present new compilers that, combined with some existing
ones, can transfer a single-input FE to its (identity-based, decentralized)
multi-client variant with linear size of the ciphertext (w.r.t the number
of clients).
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1 Introduction

Functional Encryption (FE) [11,29] is an extended form of traditional public-
key encryption, which can overcome the all-or-nothing access, inherent to the
public-key encryption. It allows an authorized user holding a functional-key skf

to get a function of the message as f(m), by applying skf to the encryption of the
message m. The functionality provided by this primitive can be useful in practical
scenarios such as cloud computing and computation over encrypted data without
interactions. The FE schemes supporting general computation circuits either are
secure only against a bounded numbers of collusions [19,20], or rely on strong
primitives [16]. More importantly, they all suffer from severe inefficiency.

For these reasons a research area emerged with the goal of designing FE
with limited but still wide classes of functionalities that are efficient enough to
be implemented and used in practice. Particularly, FE for Inner-Product (IP)
functionality [4,7], is one of the most popular special cases of FE.
Inner-Product FE (IPFE) [4,7] is a special case of FE supporting the inner-
product functionality. In an IPFE scheme the message is a vector x ∈ Mn

encrypted as ctx and the decryption-key sky is associated with a n-dimensional
vector y. The decryption (of ctx using sky) gets 〈x,y〉, i.e. the inner-product.

IPFE is a well studied problem which is already instantiated based on differ-
ent assumptions such as the Decisional Diffie-Helman (DDH), Decisional Com-
posite Reminder (DCR), and Learning With Errors (LWE) [4,7] assumption.
Despite of all the progress in this field, it has still remained an open problem
to present an efficient IPFE based on quantum-secure assumptions. The only
quantum-secure assumption that an IPFE has been realized on, is LWE assump-
tion [4,7] with the resulting public key IPFE construction being computationally
demanding.

Security of FE. Indistinguishability (IND) [11] is the standard security notion
for FE. Informally, it says that an adversary given a ciphertext ctmb , for b R←
{0, 1}, cannot distinguish between challenges m0 and m1, even if it has access to
decryption-keys skf1 , . . . , skfk

, for k = poly(κ), conditioned on fi(m0) = fi(m1).
One can further consider two kinds of IND-security: selective and adaptive.

In selective-IND (sel-IND), the adversary is restricted to submit its challenges
m0 and m1 at the very beginning of the game and before seeing the public-key,
while in adaptive-IND there is no such restriction.

Multi-Client FE (MCFE) is a stronger form of FE where the data comes
from different sources and therefore each client should be able to encrypt its
data individually and without thrusting other clients [14]. This means that the
security definition of multi-client FE considers corruptions of users as well. Multi-
client is usually defined w.r.t to a label set, which brings more flexibility, in
the sense that ciphertexts can be combined if and only if they are encrypted
under the same label. This is necessary for many applications since otherwise
an adversary could mix ciphertexts that were not intended so. In fact, in many
applications data may have already been defined w.r.t a label, such as a time-
stamp (e.g. monthly data) or others.
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Decentralized MCFE (DMCFE) avoids the need for a trusted authority
who has access to all the secret keys in the system in order to generate the func-
tional keys [3,14]. Particularly, in DMCFE, the clients take the role of authority
together, without trusting each other.

Lattice-Based IPFE. Informally, a lattice L is a discrete subset of Rn which
can be generated by (integer) linear combinations of several vectors, known as
the basis. In this setting, the nice variety of computationally-hard problems
against quantum adversaries make it interesting for the cryptography purpose
[8].

The problem of Learning With Errors (LWE) [32] discusses solving a system
of noisy equations and is known to be as hard as standard hard lattice-problems
in the worst case. This problem is usually used as a bridge between cryptosystems
and standard hard lattice-problems. Agrawal et al. [7] proposed an IPFE relying
on hardness of LWE problem. Unfortunately, due to the large-dimension matrices
in the LWE problem (leading to the large keys and slow operations), the resulting
construction is not truly practical. The scheme of [4] suffers from similar issues
while it is only selectively-secure. In [35], authors tried to improve the standard
deviation of error term (by using re-randomization technique of [22] instead of
using multi-hint extended LWE assumption), but the size of the public key still
grows quadratically w.r.t the length of the message and the LWE-parameter n.

RLWE. The Ring-LWE (RLWE) problem, introduced by Lyubashevsky
et al. [26], is the problem of distinguishing between two distributions in a special
ring of polynomials Rq:

(a, as + e) and (a, u)

with a, u R← Rq, the secret s ← χ, and noise e ← χ, where χ is a special
distribution over the ring, and all the samples share the same secret s. It was
introduced as a more efficient and compact version of LWE problem, which can
be defined in a similar way, but simply over Zq (i.e., a, s ∈ Z

n
q ,e, u ∈ Zq) rather

than Rq.
Note that the hardness of RLWE depends on the choice of ring Rq and dis-

tribution χ. In [26] it was shown that RLWE, with properly chosen parameters,
is as hard as standard hard lattice problems.

Due to its compact form, relying on RLWE usually leads to practical encryp-
tion systems with smaller keys. Thanks to the Fast Fourier Transform, multipli-
cation in rings can be further accelerated. Moreover, the ring structure allows
to encrypt multiple messages in parallel allowing SIMD type of calculations
on encrypted data. These properties make RLWE one of the most interesting
and competitive assumptions to develop a post-quantum cryptosystem based on
[13,34].

Challenges and Contributions

Although RLWE can provide significant efficiency gains, reducing the security
of an encryption systems to RLWE assumption is usually more complicated and
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tricky, compared with the ones based on LWE. The main obstacles here are:
either the lack of common cryptographic-tools compatible with the ring struc-
ture, or the lack of variants of RLWE (which are as hard as RLWE) compatible
with certain encryption systems. In comparison, LWE is a better understood
problem with several variants, and thanks to its matrix-based structure in Zq, it
can be more easily combined with other tools and assumptions during security
proofs.

Primary Task: In this work, we study the IPFE cryptosystem and the required
tools for the security reduction from IPFE to RLWE.

Secondary Task: We optimize, implement and further extend the scheme to
make it applicable to real-world use cases. This includes extending the IPFE
scheme to its MCFE and DMCFE versions through new general compilers, imple-
menting it in a highly optimized way, and demonstrating its benefits (including
SIMD processing) on a machine learning task.

The first IPFE scheme based on quantum-secure assumption was developed
in [4]. This scheme is based on the LWE assumption and proved to be selectively
secure. In [7], authors presented an adaptively secure IPFE scheme relying on
the same assumption. To extend the security to the adaptive case, they used
a variant of LWE assumption, named multi-hint extended-LWE (mhe-LWE) in
which some hints on the noise terms are considered. The mhe-LWE says that
samples are still indistinguishable from uniform, even given these hints. They
proved a reduction from mhe-LWE to LWE problem, for a proper choice of
parameters. This variant of LWE is then used directly in the security proof of
their IPFE scheme, where hints help to simulate the queries. In the first step, by
mhe-LWE, they manage to insert a uniformly random vector in the ciphertext.
But as this randomness is multiplied by another vector, in the second step, they
still need to apply the Leftover Hash Lemma (LHL) to get a uniform term in
the ciphertext.

In this work we follow a somewhat similar approach, while due to the alge-
braic structure of RLWE and the mentioned obstacles, the details need to be
crafted carefully. We build our required tools step by step, namely we extend the
similar variants of mhe-LWE and LHL over rings (called mhe-RLWE and Ring-
LHL respectively). Our mhe-RLWE assumption not only supports the hints over
the error but also over the secret. This property gives special flexibility in the
security proof to still improve the size of the parameters. We then construct two
IPFE schemes based on RLWE assumption: an adaptively secure whose security
proof employs mhe-RLWE and Ring-LHL, and a more efficient but just selec-
tively secure scheme relying only on mhe-RLWE. Thanks to the extra property
of our mhe-RLWE, we can remove the need for the Ring-LHL in the security
proof of our selective IPFE. Our security proof for the adaptive IPFE avoids
the complex entropy discussion appeared in the previous works [4,7,35] and
consequently improves the size of the public key.

Contribution 1. We present a ring version of mhe-LWE that we call mhe-
RLWE. The mhe-RLWE problem is to distinguish two RLWE samples, given
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additional information on the secret and noise term through some hints of a
special form. More precisely:

◦ The task of mhe-RLWE is to distinguish between the distributions

(a, ar+f, (ei, si, eir+gi, sif +hi)i∈[�]) and (a, u, (ei, si, eir+gi, sif +hi)i∈[�]).

where a, u are uniformly sampled from Rq, polynomials r, f, gi, hi are sampled
from Gaussian distributions, and si, ei with ‖si‖∞ , ‖ei‖∞ ≤ C are arbitrary
polynomials with bounded coefficients.

In comparison with mhe-LWE, where hints are scalar products 〈si, f〉 with
(high dimensional) vectors si sampled from a specific distribution τ , in mhe-
RLWE hints are ring products of the form sif + hi with si arbitrary bounded
elements of Rq and additional noise hi is introduced. An important observation
is that our mhe-RLWE not only includes hints over the noise but also over
the secret, which makes it of independent interest and flexible to be used in
more complex cryptosystems. Moreover, the reduction from mhe-LWE to LWE
requires m = Ω(n log n) samples, which directly affects the performance and
the size of the keys in IPFE scheme, while no such requirement is needed in
mhe-RLWE.

Intuitively, to prove the reduction from mhe-RLWE to RLWE, the main idea
is that for a given RLWE sample (a, b = ar + f) one can sample additional
randomnesses r′, f ′, g′

i, h
′
i from specific distributions, so that (a, b′ = b + ar′ +

f ′, (ei, si, eir
′ + g′

i, sif
′ + h′

i)) has the right distribution to be submitted to the
mhe-RLWE solver.

To show that the distribution obtained in this way is statistically close to
the the one in the real game, we generalize a lemma expressing that the sum of
two particular discrete Gaussian distributions (one on Z

n and the other one on a
sub-lattice) is (close to) Gaussian. Intuitively, we define these distributions based
on values ei, jointly sample polynomials r′, g′

i and use the mentioned lemma to
show that hints eir

′ + g′
i and simulated secret r + r′ have the right distribution

(similarly for the hints over the error). The reduction is not trivial by itself as
one needs to build the correct lattice allowing to apply the mentioned lemma.

The second required tool (to develop our RLWE-based IPFE scheme) is a ring
version of LHL (Ring-LHL). Informally, in Ring-LHL the main goal is to show
that the distribution

∑k
i=1 aiti ∈ Rq is close to uniform when a = (a1, . . . , ak)

is fixed with ai uniformly sampled from the ring and t = (t1, . . . , tk) is sam-
pled from a distribution with high min-entropy over the ring. In [34], authors
presented a special case of Ring-LHL where t is sampled from a Gaussian dis-
tribution and no extra information is available.

For our RLWE-based IPFE, Ring-LHL is needed to show that
∑k

i=1 aiti is
close to uniform even in the presence of additional information leaking on t
through the public-key. While the result from [34] enjoys small entropy demands
on values ti and small value k, it can not handle the information leakage. On
the other hand, the result from [23] is theoretically sufficient and can handle the
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leakage, however, it suffers from large parameters, specially the size of k (length
of vector a) is of order of the security parameter. There are still similar versions
of Ring-LHL (such as [27]) but due to the need for clear and efficient choice of
parameters, we propose a special version of Ring-LHL which manages to handle
the information leaking from the public-key and still enjoys small parameters. In
fact, we generalize the Ring-LHL version of [34] from (a, 〈a, t〉) to the matrix-
coefficient (A,At), which is enough for our aim in the security proof of IPFE.

Contribution 2. Apart from relying on LWE, both schemes [4] and [7] require
LHL to insert a uniform term in the ciphertext. We present two IPFE con-
structions based on RLWE, our first IPFE scheme is selectively-secure with
smaller parameters, while our second scheme is adaptively-secure. The compact-
ness of RLWE brings two benefits to our schemes: it not only improves the effi-
ciency of encryption in general, but also allows for parallel encryptions while the
computational-complexity does not grow by the number of encryptions. Tech-
nically, this means a single decryption returns a matrix-multiplication, rather
than an inner-product value.

For each of our schemes we follow a somehow different proof technique. Par-
ticularly, in our first construction, for the sake of a higher efficiency, we avoid the
use of Ring-LHL in the security proof. More precisely, in our selectively-secure
IPFE (sel-IPFE) scheme, at the first step, we use mhe-RLWE which leads to
the appearance of a term u · si in the ciphertext associated with the i-th slot,
where u ∈ Rq is uniform and si ∈ R is the secret-key sampled from Gaussian
distribution. Then in the second step, we change the structure of the secret-key
in an indistinguishable way, which is only possible in the selective setting. This
new structure allows us to remove the secret si from the functional-key, while
it is still present in the public-key pki = asi + ei. Having the noise term in the
public-key and an extra noise in the ciphertext allow us to see si as the secret
for two samples of RLWE in the public-key and in the ciphertext . Thus we rely
on two samples of RLWE rather than relying on Ring-LHL.

For our adaptively secure IPFE, the first step is similar to the one in sel-IPFE
while here u and si belong to Rm

q (vector-of-polynomials). Then we step back to
the selective-game and change the structure of si to get rid of it in the functional-
key. Interestingly, we have the freedom to come back to the adaptive-game via a
mechanism similar to the Complexity Leveraging (CL) and without losing any
factor of the security. The prominent observation here is that after stepping
back to the selective-security, all of our upcoming games (in the sequence of the
games) are statistically-indistinguishable, thanks to the use of Ring-LHL rather
than RLWE assumption (unlike how we proceeded in our sel-IPFE). This means
all these games can be upgraded to their adaptive versions by the correct setting
of the parameters in the statistical arguments. The approach is similar to the one
in [35] based on LWE assumption. But we manage to avoid a rather complicated
entropy discussion, needed for their version of leftover hash lemma, since it
results in a big parameter m reflected in the size of the public key. Instead, we
indistinguishably change the generation of the secret key and remove it from the
functional key.
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This simplifies the proof, since we can use our simple extension of Ring-

LHL for A = (
[
a
u

]

) to replace asi and usi with uniform values, respectively,

in the public-key and in the ciphertext. In Ring-LHL with A ∈ Rk×m
q , the only

condition on m is that m ≥ k+1, where in our case k = 2. Thus, we can consider
m = 3, which means that in comparison with our sel-IPFE the size of the key
increases only by a constant size. The use of Ring-LHL demands the variance
of secrets to be greater than the one in the selective case, but still giving a
reasonable efficiency.

In Fig. 1 we present a general comparison of our scheme with related works.

Contribution 3. We provide an efficient implementation to substantiate our
claims of efficiency. Our scheme needs large polynomials where each coefficient
can span multiple machine words. Further, the number of polynomial multipli-
cations required in our inner-product functional scheme increases linearly with
the length of the vectors. To overcome this, we provide a residue number system
based implementation using Chinese remainder theorem and number theoretic
transform based multiplication. We further show how the construction of the
functional encryption scheme can be exploited to speed-up the multiplication.
To reduce the risk of side-channel attacks we avoid all secret dependent branching
and use a state-of-the-art constant-time discrete Gaussian sampler to generate
error and secret polynomials. Finally, we show using a real-world use case that
our work can be helpful for providing practical solutions for privacy-preserving
machine learning applications.

Fig. 1. Complexity comparison with related works. Upper and bottom part of the
table respectively present the space and time complexity where the operations are in
Zq. Value � is the length of the message-vector, n and q are LWE or RLWE parameters.
Since in our adaptively-secure FE scheme m = 3, all the above complexity arguments
are the same for both of our schemes. However, other parameters, such as the choice
of standard deviations, are different.

Contribution 4. In order to bring our IPFE scheme closer to the practical use,
we extend our scheme to a (D)MCFE scheme without significantly increasing
its complexity. In [6], the authors presented a general compiler to transfer a
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single-input IPFE to a multi-input IPFE1. Later in [3] it was argued that the
resulting scheme is also secure against corruptions (removing the trust among
the users), while still it does not support labels. In practice labels are needed
to prevent undesired mixing of ciphertexts. Hence in this paper, we additionally
develop a compiler which can transfer a multi-input FE supporting corruptions
(but not labels) to a multi-client scheme (supporting labels). Similar outcome
can be achieved with a compiler from [2], but with the ciphertext-size growing
quadratically w.r.t the number of clients. On the other hand, one can built a
MCFE based on RLWE in a non black-box way, similar to the MCFE scheme in
[5] which is based on LWE problem. More precisely, the construction is based on
LWE with rounding, which, intuitively, needs a bigger modulus q. Our compiler
would not change the size of the modulus or the ciphertext.

The main idea of the construction in [6] is that, to encrypt a message xi one
indeed encrypts the message xi + ui by the single-input IPFE scheme, where
ui is the secret key of user i. The functional key skf has two main parts one
to apply the decryption of IPFE and the other one to remove terms involved
with ui. Our compiler extends this idea to the labeled multi-client setting (in RO
model) by adding another secret key H(u′

i, γ) such that the client i now encrypts
xi + ui + H(u′

i, γ). This leads to what is known as identity-based MCFE where
each functional key is associated with a label (or identity) γ as skf,γ . Let � be
the number of clients, L be the number of issued labels and m be the number of
different vectors y for which the functional key is issued. Then our scheme results
in a joint ciphertext of size �L and a functional key of size mL, while the general
compiler of [2] generates ciphertexts of size �2L and functional key of size m.
This means for the applications which � is big, our scheme obtains a much better
efficiency. This can include the applications such as aggregation and analyse of
data from thousands of clients (health centers, data servers, etc.) during one year
such that the data is processed daily (i.e., n = 10000 and L = 365)). Moreover,
the fact that the functional key depends on γ can be seen as a kind of fine-
grained access control, that can be use even data encrypted in parallel in one
ciphertext.

In [3], authors present a general compiler to transfer a MCFE to a decen-
tralized MCFE scheme, when the underlying scheme satisfies a special form of
the functional key. More in details, at the setup phase the vector 0 is shared
among the clients such that vi is the secret key of the client i and

∑
vi = 0.

Then the functional key skf , which has a inner-product form skf =
∑

i〈ui,yi〉,
is decentralized via generating 〈ui,yi〉+〈vi,y〉 by the i-th client. For our MCFE
scheme, since the secret key H(u′

i, γ) depends on γ we can not directly apply
their compiler over our scheme. To go around this problem we present a gener-
alized distributed sum (GDSum) protocol which allows us to generate functions
Hi(γ) (depending on a label γ) such that

∑
Hi(γ) = 0. We use GDSum as

a building block to extend the compiler of [3] to an identity-based DMCFE.
Finally, we show that our RLWE-based IPFE scheme has all the required

1 Multi-input FE can be seen as a weaker version of MCFE where it may not support
labels or corruptions.
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properties to be used in our compilers, and so be extended to a identity-based
MCFE or DMCFE scheme based on RLWE assumption.

2 Preliminaries

2.1 Notations

In this paper we shall denote with R a polynomial ring R = Z[x]/Φ where Φ is an
irreducible polynomial. For the sake of simplicity (and implementation) Φ will
be equal to xn + 1, where n is a power of 2. We shall use a standard notation
Rq to denote R/qR = Zq[x]/Φ. The modulus q is chosen such that polynomial
Φ of degree n factors into n distinct linear polynomials over Zq, i.e. Φ =

∏
i φi,

where each φi is linear. Therefore, by Chinese Remainder Theorem (CRT), the
ring Rq factors into n ideals and can be written as Rq

∼= ∏
i Rq/φi. Since each

Rq/φi is isomorphic to Zq, this gives an isomorphism between Rq and Z
n
q . The

latter is specifically useful in the Ring-LHL argument, and consequently for
our adaptively secure IPFE scheme. Moreover, if Φ factors as explained, then
the multiplication of elements in Rq can be implemented particularly eficient in
time O(n log n) using so called Fast Fourier Transform, which is important for a
practical performance.

For a ∈ R (or a ∈ Rq) a polynomial of degree less than n, we shall denote
a ∈ Z

n (or a ∈ Z
n
q ) the vector of the coefficients of a, and vice versa. When the

coefficients of a are sampled from some distribution χ we write a ← χ. In this
paper, [�] stands for the set {1, . . . , �} and ‖v‖∞ and ||v|| stand for the infinity
and Euclidean norm, respectively. We write x R← X to show that the element
x is sampled uniformly at random from the set X. The security parameter is
denoted by κ (which is independent from parameters for RLWE problem).

2.2 Discrete Gaussian Distribution

In this section we give a definition of the discrete Gaussian distribution and
present some results regarding it that will be used latter in the paper.

Definition 1. A discrete Gaussian distribution DΛ,
√

Σ,c , for c ∈ R
n, Σ a pos-

itive semi-definite matrix in R
n×n, and Λ ⊂ Z

n a lattice, is a distribution with
values in Λ and probabilities

Pr(X = x) ∝ exp(−1
2
(x − e)T Σ+(x − e)).

Note that Σ+ denotes the pseudoinverse of a matrix. If Λ = Z
n we shall write just

D√
Σ,c . Furthermore, if c = 0, then we shall write just D√

Σ , and if
√

Σ = σIn

for σ ∈ R
+ and In an identity matrix, we write Dσ.

We define ρB(x) = exp(−xT (BBT )−1x). It follows directly from the defi-
nition that for any invertible matrix β it holds ρ√

Σ(β−1x) = ρβ
√

Σ(x). For a
lattice Λ we shall write ρB(Λ) =

∑
x∈Λ ρB(x).

We have the following useful fact showing that values from a discrete Gaus-
sian distribution can be bounded.
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Lemma 1 ([24]). For any k > 0, Prx←Dσ
[|x| >

√
kσ] ≤ 2e−k/2. (one dimension

Gaussian)

For any lattice L and positive real ε > 0, the smoothing parameter ηε(L) is the
smallest real s > 0 such that ρs−1I(L̂ \ {0}) ≤ ε where L̂ := {w : 〈w,L〉 ⊂ Z}
is the dual of L.

Lemma 2 ([4,18]). Let Σ be a positive semi-definite matrix. For every c ∈ R
n

in the span of Σ it holds ρ√
Σ(c + Z

n) = ρ√
Σ(Zn)μc, for some μc ∈ [1−ε

1+ε , 1], as
long as

√
Σ ≥ ηε(Zn).

Discrete Gaussian distribution has many nice properties, for example: its
samples can be easily bounded, and sampling from it is computationally feasi-
ble. It is well known that the sum of continuous independent Gaussian distribu-
tions is also Gaussian. The following lemma discusses that the sum of discrete
Gaussian variables is (close to) Gaussian under certain conditions over Gaussian
parameters. A special case of this lemma was proved and used in [4].

Lemma 3. Let L(B) ⊆ Z
n be a sub-lattice with dimension k whose basis is

given by the columns of (n × k)-matrix B. Let Σ ∈ R
n×n be a positive definite

matrix and define Σ′ = σ′2BBT . Then sampling e from a discrete Gaussian
distribution D√

(Σ+Σ′) is indistinguishable from sampling e = e1 + e2, where

e1 is sampled from D√
Σ and e2 ∈ L(B) is independently sampled from D√

Σ′ ,
as long as the eigenvalues of ΓΣ,Σ′ :=

√
σ′2Ik − σ′4BT (Σ + Σ′)−1B are greater

than the smoothing parameter ηε(Zk).

Proof. Define

Σ′′ =
[
Σ 0
0 σ′2Ik

]

, β =
[
In B

]
, β′ =

[
In B
XT Ik + XT B

]

,X = −σ′2(Σ + Σ′)−1B

Defining Σ′′′ = (β′√Σ′′)(β′√Σ′′)T we have by a simple calculation

Σ′′′ =
[
Σ + Σ′ 0

0 σ′2Ik − σ′4BT (Σ + Σ′)−1B

]

.

Let e1 be sampled from D√
Σ and e2 be sampled from Dσ′Ik

. Let e = e1 +
Be2. Notice that sampling e3 ∈ L(B) from D√

Σ′ is by definition equivalent to

sampling Be2 where e2 is sampled from Dσ′Ik
. Let e′ =

[
e1

e2

]

, and notice that

e′ is sampled from D√
Σ′′ . Now
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Pr(e = z) = Pr(βe′ = z)

=
∑

s∈Zk

Pr(β′e′ =
[

z
XT z + s

]

=
∑

s∈Zk

Pr(e′ = β′−1

[
z

XT z + s

]

∝
∑

s∈Zk

ρ√
Σ′′(β′−1

[
z

XT z + s

]

) ∝
∑

s∈Zk

ρβ′√Σ′′(
[

z
XT z + s

]

)

∝
∑

s∈Zk

ρ√
Σ+Σ′(z)ρ√

σ′2Ik−σ′4BT (Σ+Σ′)−1B
(XT z + s)

∝ ρ√
Σ+Σ′(z)ρ√

σ′2Ik−σ′4BT (Σ+Σ′)−1B
(XT z + Z

k)

∝ ρ√
Σ+Σ′(z)ρ√

σ′2Ik−σ′4BT (Σ+Σ′)−1B
(Zk)μz by Lemma 2

∝ ρ√
Σ+Σ′(z)μz, for μz ∈ [

1 − ε

1 + ε
, 1]

where Lemma 2 can be applied as long as the eigenvalues of matrix ΓΣ,Σ′ >

ηε(Zk), where ΓΣ,Σ′ :=
√

σ′2Ik − σ′4BT (Σ + Σ′)−1B. ��
We shall be using Lemma 3 in the following cases. We will have Σ = σ2In −

σ′2BBT , Σ′ = σ′2BBT so that Σ + Σ′ = σ2In. Then

√
σ′2Ik − σ′4BT (Σ + Σ′)−1B = σ′

√

Ik − σ′2

σ2
BBT

which is > ηε(Zk) for example if σ2 = 2||σ′2BBT || and σ′ > 2ηε(Zk), but more
specific bounds can be derived as well.

2.3 RLWE Problem

In the seminal work [26], the authors introduced RLWE problem and study its
hardness. In the following we define RLWE problem, while one can consult [26]
for the choice of the parameters in the reduction from SIVP, a standard hard
lattice-problem, to RLWE.

Definition 2 ((Decisional) RLWE2). The Ring Learning With Errors prob-
lem, w.r.t the ring Rq and the distribution Dσ, is to distinguish between two
following distributions with the secret s ← Dσ fixed for all the samples,

D = {(a, as + e) : a R← Rq, e ← Dσ}, D′ = {(a, u) : a, u R← Rq}

2.4 Functional Encryption

This section discusses the syntax of a FE scheme and its security notion.

Definition 3 (Functional Encryption scheme). A FE scheme parameter-
ized by ρ = (X,Y,Z, f) for functionality f : X × Y → Z, is defined by four
following algorithms.
2 Here we have considered a special form of RLWE which would be used in this paper.
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– (mpk,msk) ← Setup(1κ): where Setup receives security parameter κ, and
returns a pair of master public and secret key. The public-key implicitly defines
the functionality-parameter ρ.

– ct ← Enc(mpk,x): where Enc receives the master public-key mpk and a mes-
sage x ∈ X, and it returns a ciphertext ct.

– sky ← KeyGen(msk,y): where KeyGen receives the master secret-key msk and
function y ∈ Y , then it returns a functional-key sky.

– Y := Dec(ct, sk): it receives a ciphertext ct and a functional-key sk, and
returns ⊥ or a value in the range of f .

Correctness. For a correct execution of the above encryption system,
Dec(ct, skF ) would return fy(x) with overwhelming probability, where ct ←
Enc(mpk,x) and sky ← KeyGen(msk,y). For the inner-product functionality we
have fy(x) = 〈x,y〉 =

∑
i∈[�] xiyi, where x ∈ M�

1,y ∈ M�
2 for some M�

1,M�
2

message and function space.

Security Notion. Following the standard security notion for FE [4,11], the
game INDb

A(1κ) between the adversary A and challenger is defined as follows,
where b R← {0, 1}.

– Initialize: The challenger runs (msk,mpk) ← Setup(1κ) and send mpk to A.
– Query : The adversary adaptively submits queries y and receives the response
sky = KeyGen(msk,y) from the challenger.

– Challenge: The adversary submits messages x0,x1, the challenger runs ct ←
Enc(mpk,xb) and returns it to A. The challenge should satisfy the constraint
fy(x0) = fy(x1) for all the previously issed queries y.

– Query : The adversary adaptively submits queries y and receives the response
sky = KeyGen(msk,y), where the queries y should satisfy the constraint
fy(x0) = fy(x1).

– Finalize: The adversary outputs a bit b′ as its guess for the bit b.

We say a FE scheme is (adaptively) indistinguishable-secure (IND-secure), if for
any PPT adversary A there is a negligible function negl such that,

AdvFEA (INDb
A) = |Pr[IND1

A(1κ) = 1] − Pr[IND0
A(1κ) = 1]| ≤ negl(κ)

Moreover, we say that a FE scheme is selectively secure, if the adversary sub-
mits its challenges (x0,x1) at the very beginning of the game before seeing the
public-key.

2.5 Multi-Client FE

In a MCFE scheme data comes from different clients and each client encrypts
its data individually. Here we present the standard syntax of MCFE scheme and
then clarify its identity-based version.

Definition 4 (Multi-Client Functional Encryption). Let f be a function-
ality (indexed by ρ), and Labels = {0, 1}∗ or {⊥} be a set of labels. A multi-client
functional encryption scheme (MCFE) for the functionality f and the label set
Labels is a tuple of four algorithms MCFE = (Setup,KeyGen,Enc,Dec):
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Setup(1κ, 1�, 1k): Takes as input a security parameter κ, the number of clients �,
vectors dimension k and generates public parameters pp. The public param-
eters implicitly define the functionality-index ρ. It outputs � secret-keys
{eki}i∈[�], the master secret-key msk = {eki}i∈[�] and pp (all other algorithms
take public parameters pp).

KeyGen(msk,y): Takes the master secret-key msk and a function y, and outputs
a functional-key sky.

Enc(eki,xi, γ): it receives the secret key eki and a label γ ∈ Labels and the message
xi ∈ Mk to encrypt, it outputs the ciphertext cti,γ .

Dec(sky, ct1,γ , . . . , ct�,γ): Takes as input a functional-key sky and � ciphertexts
cti,γ under the same label γ and outputs ⊥ or a value in range f .

A MCFE scheme is correct, if for all κ, �, k ∈ N, functionality f , γ ∈
Labels, messages xi, when (pp, {eki}i∈�,msk) ← Setup(1κ, 1�, 1k), sky ←
KeyGen(msk,y),and cti,γ ← Enc(eki,xi, γ) we have

Pr[Dec(sky, {cti,γ}i∈[�]) = fy(x1, . . . ,x�)] = 1.

If the algorithm KeyGen receives the label γ as input, we call the scheme an
identity-based MCFE scheme, where the functional key can be applied only over
the ciphertexts which share the same identity used in the functional key. Indeed,
here the identity is the label.3

The security notion allows encryption queries on each individual slot i and
the adversary can corrupt chosen clients, while the privacy of uncorrupted clients
is still preserved.

3 New Results on Ideal Lattices

In this section we present our new results on lattices which are used in the
security proof of our IPFE constructions and might be of independent interest.

3.1 Multi-hint Extended RLWE Problem

We define a variant of the RLWE problem where additional information about
the secrets and the noise is given through some hints. These hints are of the
form eir + gi and sif + hi, where ei, si ∈ R are arbitrary, but with bounded
norm ||si||∞, ||ei||∞ ≤ C for some C > 0, and gi, hi are sampled from the same
distribution as r and f . We give a formal definition below.

Definition 5 (multi-hint extended RLWE (mhe-RLWE)). Let si, ei ∈
R be arbitrary such that ||si||∞, ||ei||∞ ≤ C for some C > 0, and fixed by
the adversary in advance. Assume that a, u ∈ Rq are uniformly sampled, and
r, f, gi, hi ∈ Rq sampled from DδIn

for i ∈ [l], all by the challenger. The multi-
hint extended RLWE problem is to distinguish the tuples

(a, ar + f, (ei, si, eir + gi, sif + hi)i∈[l]) and (a, u, (ei, si, eir + gi, sif + hi)i∈[l]).

3 The syntax of MIFE without label is defined similarly removing the labels from the
syntax of MCFE.
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We prove that, for properly chosen parameters, mhe-RLWE problem is at
least as hard as the standard RLWE problem. Note that its hardness depends
on the choice of Rq (implicitly on n and q), bound C and Gaussian parameter
δ. Values si, ei can be chosen arbitrary and if si = ei = 0 for all i ∈ [l], then the
problem corresponds to the standard RLWE problem.

Theorem 1. Let Rq, σ be such that the RLWE problem in Rq is hard, assuming
the secret and errors are sampled from DσIn

. Then mhe-RLWE problem with

bound C and Gaussian parameter δ is hard, when σ
√

1 − 1
δ2 (σnC

√
l + 2)2 >

ηε(Zn+nl).

Proof. We start by analyzing the distributions of the variables in the definition.
Let Δ be a (n+nl)×(n+nl) diagonal matrix with values δ2 on the diagonal, i.e.
Δ = δ2In+ln. Sampling r, gi from DδIn

is by definition indistinguishable from
sampling a vector (r, g1, . . . , gl) from D√

Δ.
Each multiplication Tei

(x) = eix ∈ R for ei, x ∈ R (as a linear function from R
to R) can be represented as a matrix multiplication Eix (and thus a liner function
from Z

n to Z
n) for some matrix Ei of dimension n × n, independent of x. Let Λ̄

be a subspace of Rn+nl defined on all the vectors v = (r,−E1r, . . . ,−Elr) for
arbitrary r ∈ R. Then Λ = Z

n+nl ∩ Λ̄ is precisely the sub-lattice of all vectors
(r, g1, . . . , gl) for which the hints eir + gi = 0.

Then elements of Λ can be written as Lr for r ∈ R, where L is a matrix of
dimension (n + nl) × n as follows:

L =

⎡

⎢
⎣

I
−E1
−E2

...
−El

⎤

⎥
⎦

When r is sampled from a Gaussian distribution DσIn
, the distribution of vector

Lr is DΛ,
√

B , where the positive semi-definite matrix associated with Λ is defined
as B = σ2LLT .

Now we define matrix A = Δ−B, that will be later used as a Gaussian param-
eter. We claim that matrix A is positive semi-definite, assuming the bounds from
the theorem hold.

We use the following result to prove A is positive semi-definite for a proper
choice of parameters. Recall that a matrix is X = [xij ] is diagonally dominated
if |xii| ≥ ∑

j 	=i |xij | for any i. By a classical result from linear algebra, if a
symmetric matrix X with real components is diagonally dominated, then A is
positive semi-definite. Since A is symmetric with real components, it is enough
to prove that A is diagonally dominated and the claim follows. Note that by the
condition ‖ei‖∞ ≤ C we have ‖EiEj‖∞ ≤ nC2, meaning that each component
of EiEj is bounded by nC2. By the definition of A = Δ−B, we have |Aii| ≥ δ2−
σ2nC2 and

∑
j 	=i |Aij | ≤ σ2(l−1)n2C2+σ2(n−1)nC2+σ2nC ≤ σ2n2 C2(l+1).

Thus if δ ≥ σnC
√

l + 2 the matrix A is a diagonally dominated matrix. The

assumption σ
√

1 − 1
δ2 (σnC

√
l + 2)2 > ηε(Zn+nl) implies the latter.
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A similar analysis can be made for vectors (f ,h1, . . . ,hl) that are also chosen
from a Gaussian distribution with matrix parameter Δ. We would get positive
semi-definite matrices A′ and B′ such that A′ = Δ − B′ and elements sampled
from B′ are in the sub-lattice of vectors of the form (f ,−S1f , . . . ,−Slf) with
probability as if f was sampled from DσIn

, where Si is a matrix representation
of si.

Now, we are ready to reduce the security of mhe-RLWE to the security of the
RLWE problem. Let A and B be the adversary respectively to the problem mhe-
RLWE and RLWE. Assume the adversary B is given a RLWE sample (a, b),
where b is either uniformly sampled or calculated as b = ar + f , where r, f are
sampled from DσIn

. We show how the adversary B uses the adversary A to win
its game.

The adversary A chooses arbitrary ei, si such that ‖ei‖∞ , ‖si‖∞ ≤ C, i ∈ [l]
and gives them to B. Based on ei, si, the adversary B samples (r′, g′

1, . . . , g
′
l)

from D√
A and (f ′,h′

1, . . . ,h
′
l) from D√

A′ (as described above). Then it calcu-
lates b′ = b + ar′ + f ′ as the sample and eir

′ + g′
i, and sif

′ + h′
i as hints, for

i ∈ [l] and sends them to A. When A outputs a bit β as its guess, B outputs the
same bit β.

If b was chosen uniformly at random, the distribution of b′ is uniformly ran-
dom. In the other case, b′ = a(r + r′) + (f + f ′). To finish the proof we need to
confirm that the distributions of b′ and the hints are indistinguishable from the
ones defined for mhe-RLWE.

Define r∗ = r+r′, f∗ = f +f ′, gi = −eir+g′
i, and hi = −sif +h′

i. Note that
this values are needed only to argue about the distributions of secrets and hints
and are not known to B, since r and f were chosen by the RLWE challenger. More
precisely, if b in RLWE challenge was chosen uniformly at random, one can think
of r and f as arbitrary sampled from DδIn

. Since r is sampled from DσIn
, the

distribution of vector (r,−e1r, . . . ,−elr) is as if it was sampled from D√
B . On

the other hand, the vector (r′, g′
1, . . . , g

′
l) is sampled from D√

A. Since A and B
are positive semi-definite and A+B = Δ, Lemma 3 implies that the distribution
of (r + r′, g1, . . . , gl) is indistinguishable from being sampled from DΔ, which
is the same as the distribution we have in the assumption. In fact, Lemma 3

can be applied since ΓA,B = σ
√

In+nl − σ2

δ2 LLT ≥ σ
√

1 − 1
δ2 (σnC

√
l + 2)2 >

ηε(Zn+nl), by assumption.
A similar arguments show that (f + f ′, h1, . . . , hl) are also indistinguishable

from being sampled from DΔ.
Since b′ = a(r + r′) + (f + f ′) = ar∗ + f∗ this shows that b′ has the right

distribution. On the other hand,

eir
∗ + gi = ei(r + r′) − eir + g′

i = eir
′ + g′

i

sif
∗ + hi = si(f + f ′) − sif + h′

i = sif
′ + h′

i.

Thus also the hints have the right distribution, and even though gi and hi are
defined w.r.t. r and f , the hints are independent of r and f . This finishes the
proof. ��
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3.2 Leftover Hash Lemma in Rings

Let A ∈ Rk×m
q be a k×m matrix with elements from Rq. The goal of this section

is to show that, with properly chosen parameters, the distribution of values
At ∈ Rk

q , where t ∈ Rm
q comes from a discrete Gaussian distribution, is close

to uniform. This will be an important building block in designing an adaptively
secure IPFE scheme in Sect. 5, but might as well be of an independent interest.
Our result generalizes the result in [34], from k = 1 to an arbitrary k. We follow
closely the ideas as well as notation used in [34].

Theorem 2. Let n be a power of 2 such that Φ = xn + 1 splits into n linear
factors modulo a prime q. Let k ≥ 1,m ≥ 1 + k, ε > 0, δ ∈ (0, 1/2) and t ∈ Rm

q

sampled from DZmn,σ with σ ≥ √
n ln(2mn(1 + 1/δ))/πq

k
m+ ε

k . Then except for
at most a fraction of 2nq−εn( qmk

(qm−1)(qm−q)···(qm−qk−1)
)n of all A ∈ (Rk×m

q )∗ the
distance to the uniformity of At = (

∑m
i=1 a1,iti, . . . ,

∑m
i=1 ak,iti) is ≤ 2δ. This

implies,

Δ
[
A,At;U((Rk×m

q )∗,Rk
q )

] ≤ 2δ + 2nq−εn(
qmk

(qm − 1)(qm − q) · · · (qm − qk−1)
)n

4 Selectively-Secure IPFE Based on RLWE

Our IPFE construction is inspired by the LWE-based IPFE schemes from [4,7],
but here we rely on the RLWE assumption to improve the efficiency. Our con-
struction allows to encrypt �-dimensional non-negative vectors, where infinity
norms of the message x and the function y are bounded by Bx and By, respec-
tively. We let K be greater than the maximal value of the resulting inner prod-
uct i.e., K > �BxBy. We first describe the construction and postpone the
parameters-setting, required for the correctness and the security, to Sect. 4.2.

Construction:

– Setup: We sample uniformly at random a ∈ Rq and elements {si ∈ R | i ∈
[�]}, {ei ∈ R | i ∈ [�]} from Dσ1 . Then msk = {si | i ∈ [�]} is the master secret-
keys and the public-key is mpk = (a, {pki | i ∈ [�]}), where pki = asi+ei ∈ Rq.

– Encryption: To encrypt a vector x = (x1, . . . , x�) ∈ Z
� with ‖x‖∞ ≤ Bx we

sample polynomials r and f0 ∈ Rq from Dσ2 , and polynomials {fi ∈ Rq | i ∈
[�]} independently from Dσ3 . We fix 1R to be the identity element of Rq (or
it can be a polynomial of degree n − 1 with all coefficients equal 1 ∈ Zq) and
calculate: ct0 = ar + f0 ∈ Rq, cti = pkir + fi + �q/K�xi1R ∈ Rq.
Then (ct0, {cti}i∈[�]) is the encryption of x.

– KeyGen: To generate a decryption key associated with y = (y1, . . . , y�) ∈ Z
�

such that ‖y‖∞ < By, we calculate sky =
∑�

i=1 yisi ∈ R.
– Decryption: To decrypt (ct0, {cti}i∈[�]) using sky and y we calculate d =

(
∑�

i=1 yicti) − ct0sky mod Rq. Then d should be close to �q/K�〈x,y〉1R (a
bit perturbed coefficients) and we can extract 〈x,y〉.
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Correctness. We can write d as follows, by replacing ciphertexts and the func-
tional key.

d =
∑

i

(yieir + yifi + f0yisi) + �q/K�xiyi1R = noise + �q/K�〈x, y〉1R

For the correctness we need ‖noise‖∞ < �q/2K�. By Lemma 1, for the security
parameter κ, with overwhelming probability we have, ‖ei‖∞ , ‖si‖∞ ≤ √

κσ1,
also ‖r‖∞ , ‖f0‖∞ ≤ √

κσ2 and ‖fi‖∞ ≤ √
κσ3. Thus,

∥
∥
∥
∥
∥

∑

i

yi(eir + fi + f0si)

∥
∥
∥
∥
∥

∞
< �(2nκσ1σ2 +

√
κσ3)By

Meaning that for the correctness we need �(2nκσ1σ2 +
√

κσ3)By < �q/2K�.

Fig. 2. Overview of games for selectively-secure IPFE.

4.1 Security Proof

The following theorem proves the selective security of our construction. For
the proof, we first rewrite cti based on ct0 simply by replacing pki with its
value asi + ei. This leads to the appearance of the term ct0si in the ciphertext,
alongside some leakages on r and f0. We try to formulate these leakages as the
hints in the mhe-RLWE assumption, which from there by applying mhe-RLWE,
we manage to replace ct0si with usi for a uniform polynomial u. Note that si is
appearing in the public-key, ciphertext and also the functional-key. To remove
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this term in the public-key and the ciphertext, one can see si as the secret
for RLWE samples (with a, u as the coefficients) together with the noise terms
present in the public-key and the ciphertext. Thus intuitively, all we need is to
remove si from the functional-key (mainly because there is no error term in the
functional-key, we cannot see si as the secret for RLWE samples here). For this,
we (indistinguishably) change the structure of si to s∗(x1

i − x0
i ) + s′

i allowing to
remove s∗ from the functional-key (thanks to the constraint 〈y,x1−x0〉 = 0) and
looking at s∗ as the secret for two samples of RLWE appearing in the ciphertext
and in the public-key. This means a uniform term appears in the ciphertext
which hides the bit b.

Theorem 3. The IPFE scheme from Sect. 4 is sel-IND secure, for a proper
choice of parameters (see Sect. 4.2). More precisely,

AdvFEA (sel-INDb
A) ≤ AdvmheRLWE

B (κ) + AdvRLWE
B′ + negl(κ).

where negl comes from a statistical arguments.

Proof. We define the following sequence of the games which are also summarized
in Fig. 2. The first game is the real game associated with bit b, while the last
game is independent of bit b. We will show that each two adjacent games are
indistinguishable. Then since the last game is independent of b, the advantage
of the adversary in the real game is negligible. The formal descriptions of games
is given as follows.

G0 : is the real game associated with the bit b R← {0, 1}.

G1 : is the same as game G0 when cti is computed using ct0 (by replacing pki

with asi + ei). Namely, cti = ct0si − f0si + eir + fi + �q/K�xb
i1R.

Clearly, AdvFEA,G0
(κ) = AdvFEA,G1

(κ)

G2 : is similar to the game G1 except that ct0 = ar + f0 is replaced with
ct0 = u + ar + f0 for a uniformly sampled u ∈ Rq.
Here we rely on the mhe-RLWE assumption. The hints of the mhe-RLWE prob-
lem are leaked through values cti where we replace fi with gi−hi where hi and gi

are sampled from the same distribution DδIn
. This is possible if in Lemma 3 the

positive definite matrices Σ = Σ′ = δIn satisfy the condition ΓΣ,Σ′ ≥ ηε(Zn)
for ε = 2−k. Meaning that we should set σ3 =

√
2δ where δ is such that the

mhe-RLWE assumption holds and also satisfies ΓδIn,δIn
≥ ηε(Zn). So, by these

conditions,

|AdvFEA,G2
(κ) − AdvFEA,G1

(κ)| ≤ AdvmheRLWE
B (κ) + 2ε.

G3 : is the same as game G2 when cti is computed using pki (instead of ct0).
Namely, cti = pkir + usi + fi + �q/K�xb

i1R, ct0 = u + ar + f0.
Obviously, AdvFEA,G3

(κ) = AdvFEA,G2
(κ)

To proceed to the next game, we first define the matrices S, E and F .
Recall that the master secret-key is a vector of polynomials (s1, . . . , s�) where
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each polynomial is in Rq. This means one call represent the master secret-key via
a matrix S of dimension � × n, where the i-th row is the vector-representation

of polynomial si i.e., S =

⎛

⎜
⎝

⎡

⎢
⎣

s1

...
s�

⎤

⎥
⎦

⎞

⎟
⎠. We shall call s̄j the j-th column of matrix

S. Similarly matrices E and F are defined corresponding to the noise vectors
(e1, . . . , e�) and (f1, . . . , f�). Consequently, ēj and f̄ j can be defined as the j-th
columns of E and F (res.). Now we define the next game as follows.

G4 : is similar to the game G3, except that, s̄j = (s1j , . . . , slj), ēj =
(e1j , . . . , elj) (note that sij is the j-th coordinate of polynomial si when si is
seen as a vector) and f̄ j = (f1j , . . . , flj) for sij , eij ← Dσ1 and fij ← Dσ3 , are
respectively replaced with s∗

jααα + s̄′
j , e∗

jααα + ē′
j and f∗

j ααα + f̄
′
j where ααα = x1 − x0,

such that scalars s∗
j , e

∗
j , f

∗
j are sampled as s∗

j , e
∗
j ← Dσ′ , f∗

j ← Dσ′′ and vectors
s̄′

j , ē
′
j , f̄

′
j are sampled as s̄′

j , ē
′
j ← DΣ , and f̄

′
j ← DΣ′ where Σ = σ2

1I�−σ′2αααTααα,
Σ′ = σ2

3I� − σ′′2αααTααα and σ′, σ′′ are positive values.
To show that this game is indistinguishable from its previous game, we apply

Lemma 3. Note that since ‖ααα‖∞ ≤ 2Bx, if σ1 >
√

�2Bxσ′ and σ3 >
√

�2Bxσ′′,
then matrices Σ and Σ′ are positive definite which is the only requirement in
Lemma 3. Thus we have,

|AdvFEA,G4
(κ) − AdvFEA,G3

(κ)| ≤ 2n(2ε + ε′)

where ε, ε′ = 2−κ/n come from applying Lemma 3 respectively for s̄j , ēj and f̄ j

with parameters σ1, σ3, σ
′, σ′′ satisfying ΓΣ,σ′2αααT ααα ≥ ηε(Zn) and ΓΣ′,σ′′2αααTααα ≥

ηε(Zn) for j = 1, . . . , n.
Now note that with the mentioned changes in the game G4, one can rewrite si

(i.e., i-th row of S) as si = s∗αi + s′
i where s∗ = (s∗

1, . . . , s
∗
n), s′

i = (s′
i1, . . . , s

′
in)

and s′
ij is the i-th component of vector s̄′

j . Similarly we have, ei = e∗αi +e′
i and

f i = f∗αi + f ′
i. In the next game, we will use the polynomial representation of

the above vectors.

G5 : is the same as game G4 where in pki, cti and sky, we have replaced si, ei

and fi with their new values from game G4. Thus,

pki = (as∗ + e∗)αi + as′
i + e′

i, sky =
∑

i

yis
′
i

cti = (as∗ + e∗)r + (us∗ + f∗)αi + (as′
i + e′

i)r + us′
i + f ′

i + �q/K�xb
i1R.

Since the adversary can query only for y, with 〈y,α〉 = 0, the key sky can be
rewritten without the term s∗. We have, AdvFEA,G5

(κ) = AdvFEA,G4
(κ)

G6 : is similar to the game G5 except that, in pki and cti values as∗ + e∗ and

us∗ + f∗ are respectively replaced with uniform polynomials u′ and u′′. Thus,

pki = u′αi + as′
i + e′

i, sky =
∑

i

yis
′
i

cti = u′r + u′′αi + (as′
i + e′

i)r + us′
i + f ′

i + �q/K�xb
i1R
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We claim that relying on RLWE assumption G6 is indistinguishable from G5.
Let B be the attacker to the RLWE problem with two samples (a, b) and (u, b′),
it can simply simulate game G6 when it has received uniform samples b = u′

and b′ = u′′, and it simulates game G5 when it has received samples with RLWE
structures b = as∗ + e∗ and b = us∗ + f∗. This is due to the fact that s∗, e∗

and f∗ have not appeared anywhere else (individually) and the adversary B can
simulate all other required variables by herself simply by sampling from proper
distributions. Therefore,

|AdvFEA,G6
(κ) − AdvFEA,G5

(κ)| ≤ AdvRLWE
B (κ)

Note that here f∗ and e∗ need to be from the same distribution i.e., σ′′ = σ′.

Adversary-advantage in GameG6. Now we show that in game G6 the advan-
tage of the adversary is zero. This complete the proof. Note that,

u′′αi + �q/K�xb
i1R = u′′(x1

i − x0
i ) + �q/K�xb

i1R
= �q/K�(�q/K�−1u′′(x1

i − x0
i ) + x0

i 1R + b(x1
i − x0

i )1R)

= �q/K�((�q/K�−1u′′ + b1R)(x1
i − x0

i ) + x0
i 1R)

= �q/K�(û(x1
i − x0

i ) + x0
i 1R),

where �q/K�−1 is the inverse of �q/K� in Zq and û is uniformly sampled from
Rq. The last equality (which is due to the uniformity of u′′) shows that in the
game G6, the values ct = (ct0, cti)i do not depend on the bit b and consequently
the advantage of the adversary in this game is 0.

Remark 1. Note that if one wants to encrypt a matrix X rather than a vec-
tor x, a trivial solution is to run the encryption separately for each row of the
matrix. This means that the encryption of a matrix with m rows needs O(mT )-
computations, where O(T ) is the computational-complexity of one encryption-
run. An interesting property of our scheme is that one can use the provided com-
pactness in the encryption to encrypt a matrix X only by O(T ) computational-
complexity. For this we just need to define vector 1k

R for k ∈ [n] as the polynomial
of degree k−1 in Rq with all the coefficients zero except (k−1)th coefficient equals
1. Then cti would be as cti = pkir + fi + �q/K� ∑

k∈[n] x
k
i 1k

R, where xk = (xk
i )i

is the kth row of X and X has � columns and maximum n rows. The security
proof is still working with some small editions: we define αααk = x1

k −x0
k associated

with kth row of X. Then in G4, we define the new structure of matrices S,E,F
w.r.t all the vectors αααk. More precisely, jth column of S would be replaced with∑

k∈[n] s
∗
j,kααα

k + s̄′
j,k where s∗

j,k, s̄′
j,k are sampled independently for each index k.

4.2 Parameters Setting for Selectively-Secure IPFE

Here we overview the requirement for the parameters for our selectively-secure
IPFE scheme, where κ and n are two separate security parameters (theoretically,
one can consider them equal, but we aimed for the efficient implementation).
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Correctness. Needs �(2nκσ1σ2 +
√

κσ3)By < �q/2K� and q > K > lBxBy.
Transition from G1 to G2. Needs σ3 =

√
2σ2, Γσ2In,σ2In

≥ ηε(Zn) with ε =
2−κ (where matrix Γ is defined in Lemma 3) and also all the parameter setting
from mhe-RLWE assumption i.e., σ

√
1 − 1

σ2
2
(σnC

√
� + 2)2 > ηε(Zn+n�) where

‖si‖∞, ‖ei‖∞ ≤ C and σ is the parameter for the hardness of RLWE. By Lemma
1, one can set C =

√
κσ1.

Transition from G3 to G4. Needs σ1 >
√

�2Bxσ′ and σ3 ≥ √
�2Bxσ′′ for

non-negatives σ′ and σ′′ where σ1, σ3, σ
′, σ′′ satisfy ΓΣj ,σ′2αT α ≥ ηε(Zn) and

ΓΣ′
j ,σ′′2αT α ≥ ηε(Zn) with ε, ε′ = 2−κ/n.

Transition from G5 to G6. Needs the parameter for the hardness of RLWE
where the secret and error are from the distribution Dσ′In

and σ′ = σ′′.
Hardness of RLWE. As we saw we need the parameters q, R, σ and σ′ to
satisfy the conditions for the hardness of RLWE. We use the bounds from [26]
(Theorem 3.6 of [26]), thus set R = Z[x]/(xn+1), n is a power of 2, q = 1 mod 2n
and σ = αq(n/ log n)1/4 and σ′ = α′q(2n/ log(2n))1/4 where α ≤ √

log n/n,
α′ ≤ √

log n/n and
√

αq ≥ ω(log n),
√

α′q ≥ ω(log n).

5 Adaptively Secure IPFE Based on RLWE

Here we modify the construction to lift the security to the adaptive case. The
main difference from our selectively-secure construction is that here each secret
key si and the public parameter a are vectors-of-polynomials rather than two sin-
gle polynomials. Again the non-negative messages x and functions y are bounded
by Bx and By, respectively, and let K be greater than the maximum value of
the inner-product i.e., K > �BxBy.

Construction:

– Setup: Let R,Rq be as before. For each i ∈ [�] sample si = (si1, . . . , sim) ∈ Rm

where each sij ∈ R is sampled from Dσ1In
. Sample a = (a1, . . . , am) ∈ Rm

q

uniformly at random. Check if at least one ai is invertible in Rq; if not, refuse
a and sample it again4. Finally, msk = {si | i ∈ [�]} is the secret-key and the
public-key is mpk = (a, {pki | i ∈ [�]}), where pki = 〈a, si〉 =

∑
j ajsij .

– Encrypt: To encrypt a vector x = (x1, . . . , x�) ∈ Z
� with ‖x‖∞ ≤ Bx sample

r ∈ Rq from Dσ2In
and f0 = (f01, . . . , f0m) ∈ Rm

q from Dσ2Inm
, and {fi ∈

Rq | i ∈ [�]} each from Dσ3In
. Then

ct0 = ar + f0 = (a1r + f01, . . . , amr + f0m), cti = pkir + fi + �q/K�xi1R.

Check if at least one element of ct0 is invertible in Rq and that ct0 is not a
multiple of a (over Rq); if this is not the case, resample r,f0 and recompute
ct0, cti until the latter holds. The ciphertext is (ct0, {cti}i∈[�]).

4 This step would be done efficiently, since the probability that ai is invertible, is
non-negligible.
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– KeyGen: To generate the decryption key associated with y = (y1, . . . , y�) ∈
Z

� where ‖y‖∞ < By, we calculate

sky =
�∑

i=1

yisi = (
�∑

i=1

yisi1, . . . ,

�∑

i=1

yisim) ∈ Rm

– Decryption: To decrypt the ciphertext (ct0, {cti}i∈[�]) by the decryption
key sky, compute: d = (

∑�
i=1 yicti) − 〈ct0, sky〉. Then d should be close to

�q/K�〈x,y〉1R (a bit perturbed coefficients) and we can extract 〈x,y〉.

Correctness. Similar to the correctness proof in our sel-IPFE, one can verify
that we need

∥
∥
∑

i

(
yifi − yi〈f0, si〉

)∥
∥

∞ < �q/2K� or equivalently, �By(
√

κσ3 +
mnκσ1σ2) < �q/2K�.

We claim that this modified version of our IPFE scheme is adaptively-secure.
For the proof we use an extended version of mhe-RLWE assumption associated
with polynomially-many samples (rather-than a single sample). We also use The-
orem 2 which provides us with the required variant of Ring-LHL.

The first steps of the proof are similar to the security proof of our sel-IPFE,
namely, we follow a similar sequence of the games from G0 to G4. But in the
next games instead of using two samples of RLWE, we use Ring-LHL. The
reason for this is that the indistiguishability of proceeding games relies only on
statistical arguments and so one can upgrade the security to the adaptive version
by a technique similar to the complexity leveraging (CL) even for a large value
(Bx)� (while applying CL on the computational arguments needs polynomial-size
(Bx)�).

Theorem 4. Our modified IPFE scheme is adaptively-secure, for proper choice
of parameters.

Similarly as in the selective case, also the adaptively secure scheme can simply
be extended to allow encrypting vectors in parallel.

6 Multi-client IPFE

In this section we present all the needed results to lift our scheme to a multi-
client setting. In particular, we present a compiler built upon the compiler of
multi-input IPFE (MIFE) scheme of [6], supporting corruptions [3], to transfer
a IPFE to its identity-based MCFE version. First, we recall the compiler of [6].
here FE is a single-input IPFE scheme.
Compiler of [6] (MIFE-Compiler): From Single-Input to Multi-Input
IPFE.

– Setup(1κ, 1�, 1k): it chooses u i
R← Z

k
q and runs (mpk′

i,msk′
i) ←

FE.Setup(1κ, 1k) for each i ∈ [�]. It outputs mski = (msk′
i,ui) as the secret

key of user i, msk = (mski)i as the master key and pp = (mpk′
i)i.
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– KeyGen(msk,y): for y = (y1, . . . ,y�) where yi ∈ Z
k
q , it runs ski,y ←

FE.KeyGen(msk′
i,yi) for i ∈ [�] and sets sk′

y =
∑

i uiyi. Then it outputs
sky = ((ski,y)i, sk

′
y).

– Enc(mski,xi): for xi ∈ Z
k
q , it runs cti ← FE.Enc(msk′

i,xi + ui) and outputs
cti.

– Dec((cti)i, sky): it runs Di ← FE.Dec1(cti, ski,y) for i ∈ [�]. Then it outputs
FE.Dec2(

∑
i Di + E(−sk′

y, 0)).

The compiler can be used on any IPFE scheme with the following properties:

Property 1 (2-step decryption with a linear encoding). The decryption algo-
rithm of IPFE is a 2-step decryption (i.e., Dec(ct, sk) = Dec2(Dec1(ct, sk)), where
Dec1(ct, sk) = E(〈x, y〉,noise)). That is, the first step outputs an encoding of
inner-product and in the second step it extracts the inner-product from the
mentioned encoding. Additionally, the encoding also has a linear property.5

Property 2 (linear encryption). Let Enc be the encryption algorithm of IPFE
scheme. Then there exists a deterministic algorithm Add, such that the two fol-
lowing distributions of Enc(msk,x1+x2) and Add(Enc(msk,x1),x2) are identical.
Informally, given the message x2 and the encryption of x1, one can compute the
encryption of x1 + x2:

In our RLWE-based IPFE scheme, Dec1 outputs the inner-product added by
a noise term, then Dec2 removes the noise. Encoding is defined as adding the
noise which is linear. It is easy to see that the encryption is linear.

We now present our compiler to build an identity-based MCFE (from MIFE
allowing corruptions). In the following construction H : (U, Labels) → Z

k
q is a

hash function (later modeled as a random oracle).

Our Compiler (MCFE-Compiler): From Multi-Input to identity-based
Multi-Client IPFE.

– Setup(1κ, 1�, 1k): it chooses u ′
i

R← U and runs (mpk′
i,msk′

i)i∈[�] ←
MIFE.Setup(1κ, 1�, 1k). It outputs mski = (msk′

i,u
′
i) as the secret key of user

i, msk = (mski)i as the master key and pp = (mpk′
i)i.

– KeyGen(msk,y, γ): it runs sky = ((ski,y)i, sk
′
y) ← MIFE.KeyGen(msk,y) and

sets sk′′
y,γ = sk′

y +
∑

i H(u′
i, γ)yi. Then it outputs sky,γ = ((ski,y)i, sk

′′
y,γ).

– Enc(mski,xi, γ): it runs cti,γ ← MIFE.Enc(mski,xi + H(u′
i, γ)) and outputs

cti,γ .
– Dec((cti,γ)i, sky,γ): it runs Dγ ← MIFE.Dec((cti,γ)i, ({ski,y}i, sk

′′
y,γ)) and out-

puts Dγ

In the security proof of the above compiler, we use Property 2, used also for
the compiler of [6].
5 For the sake of simplicity, here we gave an informal description of this property. An

interested reader can see [6] for the formal one. The formal description guarantees
the correctness of the MIFE scheme w.r.t the general IPFE, and is not used in the
proof of security.
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Theorem 5. In the above compiler (from MIFE with corruptions to identity-
based MCFE), if MIFE is secure, then our construction is a secure MCFE
against static corruptions.6

The proof proceeds through a sequence of games defined w.r.t to the labels issued
by the adversary. For a fixed label γ we change the messages x0

i,γ encrypted under
the label γ to x1

i,γ for all i. To ensure that such changes are indistinguishable,
we rely on the security of MIFE. For encryption queries w.r.t γ the simulator
answers by relaying them to the MIFE-challenger, and it programs the random
oracle queries as H(u′

i, γ
′) = ri,γ′ − ui, for γ′ �= γ, while ri,γ′ is randomly

chosen. This allows to remove the term ui from the encryption, which is the
only unknown part to the simulator, and simulate the queries correctly.

Finally, we argue that our RLWE based scheme can be used in the above
compilers.

Proposition 1. The MIFE-compiler and the MCFE-compiler applied on our
IPFE schemes in Sect. 4 or Sect. 5 result in a secure and correct MCFE scheme.

We further can extend our identity-based MCFE scheme to its decentralized
version, where we use the compiler of [3], but we modify the compiler and the
security proof for the case that the secret key is involved with the label as well
(which is the case in our scheme). One can see that our IPFE scheme has the
required properties to be used in this compiler as well.

Batching in (D)MCFE: As stated in Remark 1, our RLWE scheme sup-
ports encrypting multiple messages in parallel. This property is preserved with
(D)MCFE compilers described in this section. To be precise, each encrypted row
needs to be masked (as described above) separately. Furthermore, identity-based
(D)MCFE allows us to derive functional keys depending on a chosen label. If
one encrypts multiple rows in parallel with different labels, a functional key will
decrypt only the ones with the matching label. This allows fine-grained control
on a batch of messages.

7 Practical Instantiation

In this section, we demonstrate the efficiency and practicality of our scheme with
concrete instantiations. We provide different parameter sets with different levels
of security and strategies for a very efficient implementation. Finally, we apply
our scheme for a privacy preserving machine learning application of identify-
ing digits from encrypted images. The implementation is publicly available at
https://github.com/fentec-project/IPFE-RLWE.

6 Note that we are specifically using MIFE scheme of [6] and it is not any possible
MIFE scheme in RO model.

https://github.com/fentec-project/IPFE-RLWE
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7.1 Implementation

Similar to other RLWE based schemes, the two major components of our scheme
are polynomial multiplication and noise sampling. However, from the computa-
tional point of view the most challenging task here is to efficiently implement
multiple polynomial multiplications and multiple sampling of secret and error
polynomials which grow linearly with �. Here, we describe our approach for effi-
cient implementation of these components, all running in constant-time.

Discrete Gaussian Sampling: Our scheme uses discrete Gaussian distribu-
tion to sample error and secret vectors. A non-constant-time sampler leaks sen-
sitive information about these secret vectors that can break the cryptosystem.
There are three choices for constant time sampling i) linear-searching of CDT
(Cumulative Distribution Table) table [12], ii) bit-sliced sampler [21], and iii)
constant-time binary sampling [37]. The first two methods are very efficient for
smaller (< 10) standard deviations but do not scale very well for larger standard
deviations. Moreover, they need different tables or minimized Boolean expres-
sions for different samplers. One can use convolutions to first sample from smaller
distributions and then combine them to generate a sample from a distribution
with larger standard deviation [30]. However, this method is less efficient com-
pared to the constant-time binary sampling described by Zhao et al. [37]. In this
method, to generate a sample from Dσ, first a sample from a base distribution
x R← D+

σ0
is generated. Next, an integer k is fixed such that σ = kσ0 and a inte-

ger y is sampled uniformly from [0, · · · , k − 1]. Finally, a rejection sampling on

z = kx+ y with the acceptance probability p = exp(
−y(y + 2kx)

2σ2
) is performed.

It can be easily shown that the samples generated in this way are statistically
close to discrete Gaussian distribution with Gaussian parameter σ. To generate
a sample from Dσ a randomly generated sign bit is applied on z. The rejection
sampling is performed using a Bernoulli sampler. If the base sampling algorithm
D+

σ0
and the Bernoulli sampler are constant-time this method runs in constant-

time. In our implementation to generate samples from σ1 = k1σ0, σ2 = k2σ0,
and σ3 = k3σ0, we use the constant-time Bernoulli sampler proposed by Zhao
et al. [37] for different values of k and σ. The uniform sampler has also been
updated for different values of k. Finally, a linear-search based CDT sampling
algorithm has been used for the constant-time base sampler. Using the bit-sliced
algorithm to instantiate the base sampler might improve the efficiency to some
extent but we leave this as future work.

CRT Representation: Due to the correctness and security constraints of our
scheme, the modulus q required in all variants of our scheme is quite large (≥ 64
bits). Similar to homomorphic encryption implementations [33] we adapted the
residual number system based polynomial arithmetic using Chinese remainder
theorem to avoid the naive and relatively slow multi-precision arithmetic. We
choose a chain of moduli q0, q1, . . . , qnp−1 such that q = q0 · q1 · · · qnp−1. All
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the inputs, outputs, and intermediate values are stored as elements in rings Rqi

instead of Rq. As all the qi are less than 32 bits long this replaces the expensive
multi-precision polynomial arithmetic with simple and efficient single-precision
arithmetic. We only need to revert to Rq while extracting the value d at the end
of decryption operation. We use Garner’s algorithm and GNU multi-precision
library to accomplish this.

Polynomial Arithmetic: We use Number theoretic transform (NTT) based
polynomial multiplication in our scheme since it is an in-place algorithm and
runs in O(n log n) time complexity where n is the length of the polynomial.
Specifically, we used the NTT with negative wrapped convolution [25] which
produces the result of the multiplication reduced by 1 + xn without any extra
memory.

For a power-of-two n and prime modulus qi, such that qi ≡ 1 mod 2n,
the multiplication of two polynomials a, b ∈ Rqi

can be calculated as
NTT−1(NTT (a) ◦ NTT (b)) where NTT and NTT−1 are forward and inverse
NTT transformations respectively and ◦ denotes the component-wise multiplica-
tion of two vectors. Computationally, the forward and the inverse NTT transfor-
mation are the prevalent components of the whole O(n log n) time multiplication.
We observe that one of the multiplicands, i.e. a in Setup and r in Encrypt stays
same for all the � + 1 multiplications, Hence we precompute and store NTT(a)
and NTT(r). This saves � NTT transformations in each case. Also, the public
polynomial a is random in Rqi

. As NTT transformation of a random vector is
also random, we can assume the a is already in the NTT domain.

NTT or NTT−1 transformation algorithms require applying bit-reversal per-
mutations before or after each transformation. As our polynomials are quite
large and the number of multiplications is linear in �, this requirement induces
a significant overhead. To overcome this problem we followed the same strat-
egy as Pöppelman et al. [31]. We used the decimation-in-time NTT based on
Cooley-Tukey [15] butterfly which requires input in normal ordering but pro-
duces output in bit-reversed ordering. For the inverse transformation we switch
to decimation-in-frequency NTT based on Gentleman-Sande [17] butterfly, which
accepts the input in bit-reversed ordering and produces the output in normal
ordering. Hence, applying these transformations in conjunction eliminates the
need for bit-reversal step.

Other: There are two common strategies to generate pseudo-random numbers
in cryptographic implementations: using extended output function like Kec-
cak [10] or using block ciphers in counter mode. Since our target platform is
equipped with AES-NI (Advanced Encryption Standard New Instructions), we
decided to use AES in CTR mode for fast generation of cryptographically secure
pseudo-random numbers. Further, we have chosen our NTT friendly primes
qi, i ∈ [0, np − 1] of the form 2i − 2j + 1. Due to their special structure it is
possible to perform fast modular reduction similar to Mersenne primes with
these primes.
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7.2 Parameters and Performance

We propose three sets of parameters in Table. 1 depending with different val-
ues of �, Bx, and By. Here we have considered the selectively secure scheme
described in Sect. 4.2. We calculate the concrete security of our scheme based
on the underlying hardness of a RLWE instance. That is, we deduce our func-
tional encryption with parameters (n, q, σ1, σ2, σ3, �, Bx, By) scheme offers S bits
of security if the the underlying RLWE instance with (n, q, σ) offers S bits of
security. Here, the parameters (n, q, σ1, σ2, σ3, �, Bx, By) and (n, q, σ) are related
to satisfy the security constraints delineated in Sect. 4.2.

Performance: Table. 1 also lists the performance of different operations of
our scheme. We benchmarked on a single core of an Intel i9-9880H processor
running at maximum 4.8GHz frequency. The code has been compiled using
GCC-9.3 with optimization flags -O3 -fomit-frame-pointer -march=native
on Ubuntu 18.04.

7.3 Machine Learning on Encrypted Data and Other Use Cases

To demonstrate the efficiency of our scheme, we use it in a real world applica-
tion of FE. We perform a task of classification with a simple machine learning
model, but on encrypted data using our IPFE. In particular, we evaluate logistic
regression on MNIST dataset, recognizing handwritten digits in images. This
task involves computing 10 linear functions on a 785-dimensional vectors, where
the complexity of computation is bounded with Bx = 4 and By = 16.

Table 1. Parameters and performance of the RLWE based FE scheme. The security
has been calculated using the LWE estimator tool [9].

Security

level

PQ

Security

FE

Bounds

Gaussian

Parameters

Ring

Parameters

CRT

moduli

Time

(ms)

Bx : 2 σ1 : 33
n : 2048


log q� : 66

q1 : 214 − 212 + 1 Setup:26

Enc:16

KG:0.27

Dec:1

Low 76.3 By : 2 σ2 : 59473921 q2 : 223 − 217 + 1

� : 64 σ3 : 118947840 q3 : 229 − 218 + 1

Bx : 4 σ1 : 225.14
n : 4096


log q� : 86

q1 : 224 − 214 + 1 Setup:589

Enc:381

KG:22

Dec:17

Medium 119.2 By : 16 σ2 : 258376412.19 q2 : 231 − 217 + 1

� : 785 σ3 : 516752822.39 q3 : 231 − 224 + 1

Bx : 32 σ1 : 2049
n : 8192


log q� : 101

q1 : 217 − 214 + 1

q2 : 220 − 214 + 1

q3 : 232 − 220 + 1

q4 : 232 − 230 + 1

Setup:1743

Enc:1388

KG:70

Dec:45

High 246.2 By : 32 σ2 : 5371330561

� : 1024 σ3 : 10742661120
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Parameters in Table. 1 for medium level of security (129 bit of PQ Security)
were chosen to fit this use-case. Hence it takes approx. 381 ms to encrypt an
image (vector representation) of this size and only 170 ms to evaluate the model,
i.e. we need to perform 10 decryptions to properly classify an image. In fact,
as explained in Remark 1, one can encrypt with one encryption-run multiple
images simultaneously, in our case up to 4096 images. Evaluating the model
would classify all the images at once, without a major change in the complexity.

Other: We would like to additionally highlight possible practical scenarios where
our scheme excels over other known schemes. On one hand, single-input public
key RLWE based IPFE is particularly useful when multiple data from the same
source is processed with FE, due to its batching property. This could be, for
example, streams of data (e.g. a video, see [1] where a single-input public key
scheme was used) processed in some fixed intervals, or learning a ML model [36]
where IPFE can be used on an encrypted dataset, usually evaluating the same
function on batches. On the other hand, the data itself might be structured as
a matrix. In [28], a DMCFE scheme was proposed for a privacy preserving loca-
tion tracking. Users in a decentralized way, for each possible location, encrypt
0 or 1 indicating their presence. Using IPFE, averages (heatmaps) can be com-
puted, where RLWE batching can be used to cover, say, 4096 locations with one
ciphertext, outperforming known FE schemes.
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Abstract. We introduce a new definition for key updates, called
backward-leak uni-directional key updates, in updatable encryption
(UE). This notion is a variant of uni-directional key updates for UE. We
show that existing secure UE schemes in the bi-directional key updates
setting are not secure in the backward-leak uni-directional key updates
setting. Thus, security in the backward-leak uni-directional key updates
setting is strictly stronger than security in the bi-directional key updates
setting. This result is in sharp contrast to the equivalence theorem by
Jiang (Asiacrypt 2020), which says security in the bi-directional key
updates setting is equivalent to security in the existing uni-directional
key updates setting. We call the existing uni-directional key updates
“forward-leak uni-directional” key updates to distinguish two types of
uni-directional key updates in this paper.

We also present two UE schemes with the following features.
– The first scheme is post-quantum secure in the backward-leak

uni-directional key updates setting under the learning with errors
assumption.

– The second scheme is secure in the no-directional key updates setting
and based on indistinguishability obfuscation and one-way functions.
This result solves the open problem left by Jiang (Asiacrypt 2020).

Keywords: updatable encryption · key update · lattice

1 Introduction

1.1 Background

Updatable Encryption. Updatable encryption (UE) is a variant of secret key
encryption (SKE) where we can periodically update a secret key and a ciphertext.
More specifically, a secret key ke is generated at each period, called epoch. Here,
e denotes an index of an epoch. We can generate a conversion key Δe+1 that
converts a ciphertext under ke (key at epoch e) to one under ke+1 (key at epoch
e + 1). Such a conversion key is called update token and generated from two
successive secret keys ke, ke+1. Roughly speaking, UE security guarantees that
confidentiality holds even after some old (and even new) keys and tokens are
corrupted as long as trivial winning conditions are not triggered. Adversaries
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13178, pp. 194–224, 2022.
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trivially win if a target secret key is corrupted or a target ciphertext can be
converted into a ciphertext under a corrupted secret key. In this study, we focus
on ciphertext-independent updates UE, where we can generate an update token
only from two secret keys [LT18,KLR19,BDGJ20,Jia20].1

A serious threat to encryption is key leakage. In that case, no security is guar-
anteed by standard encryption. Key updating is a standard solution to guarantee
security even after key leakage. However, the issue is how to update a cipher-
text generated by an old key. A naive solution is decrypting all ciphertexts by
the old key and re-encrypt them by a new key. However, it incurs significant
efficiency loss. Moreover, if we save encrypted data in outsourced storage such
as cloud servers, we need to download all ciphertexts from the server, decrypt
and re-encrypt them, and upload them again to keep the new key secret. Update
tokens of UE solve this problem since if we provide the server with an update
token, it can directly convert old ciphertexts into new ones without the new key.

Confidentiality is the primary concern in UE. Confidentiality of UE has been
improved to capture realistic attack models [EPRS17,LT18,KLR19,BDGJ20,
CLT20] since after UE was introduced [BLMR13]. In particular, Lehman and
Tackmann formalized trivially leaked information from corrupted keys and
tokens as the direction of key updates [LT18]. Although previous works proposed
UE schemes with improved confidentiality, most do not focus on preventing infor-
mation leakage from corrupted keys and tokens. We will explain the detail of
the information leakage below. In this work, we focus on the direction of key
updates and try to minimize leaked information from update tokens to improve
UE confidentiality.

Direction of Key and Ciphertext Updates. Directions of key updates describe
information leakage that UE schemes cannot avoid. If an adversary has Δe+1 and
ke, it might be able to obtain ke+1. Most existing UE schemes cannot prevent this
attack. In particular, in all existing (ciphertext-independent) UE schemes, we
cannot avoid leaking a secret key from both directions [LT18,KLR19,BDGJ20,
Jia20]. That is, we can extract ke+1 (resp. ke) from Δe+1 and ke (resp. ke+1).
This setting is defined as bi-directional key updates [EPRS17,LT18]. Lehman
and Tackmann also defined uni-directional key updates, where we can extract
ke+1 from ke and Δe+1 (forward direction inference). In other words, this set-
ting means adversaries might not be able to infer ke from ke+1 and Δe+1. Uni-
directional key updates are more preferable than bi-directional ones since a token
leaks less information. More information leakage triggers more trivial winning
conditions in confidentiality games for UE.

At first glance, secure UE with uni-directional key updates is stronger than
one with bi-directional key updates. However, Jiang proved that secure UE
with bi-directional key updates is equivalent to one with uni-directional key
updates [Jia20] (we call Jiang’s equivalence theorem in this paper). Jiang also pre-
sented the first post-quantum UE scheme with bi-directional key updates [Jia20].

1 The other variant is ciphertext-dependent updates UE, where we need not only two
secret keys but also a part of ciphertext (called header) to generate a token [BLMR13,
EPRS17,BEKS20]. Ciphertext-independent updates UE is more efficient.
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A natural question is: Why do we consider only one-way uni-directional key
updates? That is, we can consider a variant of uni-directional key updates where
we can extract ke from ke+1 and Δe+1 (backward direction inference). To distin-
guish two versions of uni-directional key updates, we call the existing definition
forward-leak uni-directional key updates and our new one backward-leak uni-
directional key updates. The backward-leak uni-directional key updates setting
has never been studied in the UE literature, but it seems to be a valid set-
ting. It is natural to think the latest key is the most important since the reason
why we update keys is that the current and older keys might be leaked. In the
forward-leak setting, we must protect older keys to protect newer keys even if
older ciphertexts are deleted. This is undesirable. However, in the backward-leak
setting, we need to protect only the latest key if older ciphertexts are properly
deleted. Therefore, the backward-leak key updates are more suitable for UE than
the forward-leak key updates.

A related issue is the direction of ciphertext updates. It describes whether
we can convert ciphertext into one in an older epoch (downgrading ciphertext)
by using an update token or not. If we can both update and downgrade cipher-
texts by using a token, we say a UE scheme provides bi-directional ciphertext
updates. If we can update but cannot downgrade ciphertexts by using a token,
we say a UE scheme provides uni-directional ciphertext updates. UE with uni-
directional ciphertext updates is more desirable since older epoch keys might
be leaked, and downgrading ciphertexts leaks more information. However, all
existing (ciphertext-independent) UE schemes provide bi-directional ciphertext
updates.

Thus, the first main question of this study is as follows.

Q1. Is UE with backward-leak uni-directional key updates strictly stronger than
UE with bi-directional key updates?

We affirmatively answer the first question in this work. Then, the next natural
question is as follows.

Q2. Can we achieve a (post-quantum) UE scheme with backward-leak
uni-directional key updates and uni-directional ciphertext updates?

We also affirmatively answer the second question.
Another natural question is whether we can prevent adversaries from infer-

ring secret keys from both directions or not. That is, even if adversaries have
ke+1 (resp. ke) and Δe+1, they cannot infer ke (resp. ke+1). Such key updates
are called no-directional key updates [Jia20]. Jiang left this question as an open
problem. Thus, the last question in this work is as follows.

Q3. Can we achieve a UE scheme with no-directional key updates (and
uni-directional ciphertext updates)?

We solve this open question in this work.
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1.2 Our Contribution

The first contribution of our work is a definitional work. We define a new
definition of key updates, which we call backward-leak uni-directional key
updates. In addition, we prove that UE with backward-leak uni-directional
key updates is strictly stronger than bi-directional key updates (and forward-
leak uni-directional key updates). More specifically, we show that there are UE
schemes with bi-directional key updates that are not secure in the backward-leak
uni-directional key updates setting. This is in sharp contrast to Jiang’s equiva-
lence theorem [Jia20] explained above.

The second contribution is that we present two new constructions of UE. The
features of our UE schemes are as follows.

– The first scheme is a UE scheme with backward-leak uni-directional key
updates and secure under the learning with errors (LWE) assumption, which
is known as a post-quantum assumption. This scheme satisfies confidentiality
against CPA and ciphertext updates are randomized.

– The second scheme is a UE scheme with no-directional key updates and based
on one-way functions (OWFs) and indistinguishability obfuscation (IO). This
scheme satisfies confidentiality against CPA and ciphertext updates are ran-
domized.

These are the first UE schemes with stronger key updates. Note that all
our schemes provide uni-directional ciphertext updates (i.e., cannot downgrade
ciphertext into older epoch ones). The first scheme is implementable since it is
directly constructed from lattices. Although the second scheme is a theoretical
construction,2 it solves the open question left by Jiang [Jia20].

Both schemes satisfy r-IND-UE-CPA security, which was defined by Boyd,
Davies, Gjøsteen, and Jiang [BDGJ20]. However, we consider the backward-leak
uni-directional or no-directional settings. See Sect. 2 for the definitions.

1.3 Related Work

We often use “forward-leak uni-/backward-leak uni-/bi-/no-directional UE” to
refer to UE with forward-leak uni-/backward-leak uni-/bi-/no-directional key
updates in this paper.

Ciphertext-independent Updates UE. Lehman and Tackmann introduce post-
compromise security for UE and refine previous security notions. Those are
close to the definitions in this paper. They also present an efficient bi-directional
UE scheme based on the DDH assumption [LT18]. Klooß, Lehmann, and Rupp
present a CCA-secure bi-directional UE scheme based on the DDH assumption
in the ROM and RCCA-secure bidirectional UE schemes based on the SXDH

2 Note that Jain, Lin,and Sahai achieve IO from well-founded assumptions, the SXDH,
LWE, a variant of LPN, and PRG in NC0 [JLS21]. See their paper for the detail of
the assumptions.
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assumption [KLR19]. Boyd et al. integrate and refine previous security notions
and present CCA-secure bi-directional UE schemes with deterministic ciphertext
updates based on the DDH assumption in the ideal cipher model [BDGJ20].
Jiang studies relationships among various models for UE and presents a bi-
directional UE scheme based on the LWE assumption [Jia20]. All these schemes
provide bi-directional ciphertext updates (a token enables us to update and
downgrade a ciphertext).

Ciphertext-dependent Updates UE. Boneh, Lewi, Montgomery, and Raghu-
nathan introduce the notion of UE in the ciphertext-dependent updates set-
ting and present a bi-directional UE scheme based on key homomorphic
PRFs [BLMR13]. Everspaugh, Paterson, Ristenpart, and Scott define stronger
security notions for UE and present bi-directional UE schemes that satisfy those
notions [EPRS17]. Chen, Li, and Tang introduce a stronger CCA security notion
by considering malicious re-encryption attacks and present bi-directional UE
schemes that satisfy the stronger CCA security [CLT20]. Boneh, Eskandarian,
Kim, and Shih improve security notions by Everspaugh et al. [EPRS17] and
present efficient bi-directional UE schemes [BEKS20].

UE in Constructive Cryptography. Levy-dit-Vehel and Roméas study security
notions for UE in the constructive cryptography framework and explore the
right security notion for UE [LR21]. Fabrega, Maurer, and Mularczyk also study
security notions for UE in the constructive cryptography framework, generalize
previous definitions, and discover new security-efficiency trade-offs. [FMM21].

Concurrent and Independent Work. Slamanig and Striecks [SS21] concurrently
and independently proposed a UE scheme.3 Their scheme is a pairing-based no-
directional scheme. They define a stronger model for UE, where we can set an
expiry epoch e⊥ to a ciphertext. If we update a ciphertext with expiry epoch
e⊥ by using a token Δe+1 such that e + 1 > e⊥, the updated ciphertext can
no longer be decrypted. Due to this stronger model, Jiang’s equivalence theo-
rem [Jia20] does not necessarily hold. The scheme provides uni-directional cipher-
text updates. The sharp differences between their work and ours are as follows.
Let T be the maximum number of epochs.

– Their no-directional scheme is secure in the expiry model under the SXDH
assumption, and the ciphertext and key size are O(log2 T ) and O(log2 T ),
respectively. Our no-directional scheme is secure if IO exists, but the cipher-
text and key size do not depend on T . Our no-directional scheme is not prac-
tical since it relies on IO. Our uni-directional scheme is post-quantum secure
with backward-leak key updates, and the ciphertext and key size do not depend
on T .

3 Their paper [SS21] appeared on Cryptology ePrint archive right after the initial
version of this paper (https://eprint.iacr.org/2021/221/20210311:210911) appeared
on Cryptology ePrint archive. The comparison here is based on the latest versions
of their and our papers.

https://eprint.iacr.org/2021/221/20210311:210911
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1.4 Technical Overview

In this section, we present a high-level overview of our technique.

Direction of Key Updates. As we introduce in Sect. 1.1, we can consider two
types of uni-directional tokens, forward-leak and backward-leak uni-directional
tokens. If we can infer in both directions, we call bi-directional token. In the
definitions of confidentiality for UE, trivial winning conditions of adversaries
depend on those token variations.

We show the following adversary against existing bi-directional UE schemes:
(1) s/he triggers the trivial winning condition of the forward-leak uni-directional
key updates setting. (2) s/he does not trigger the trivial winning condition of
the backward-leak uni-directional key updates. (3) s/he trivially breaks confiden-
tiality of the schemes in the backward-leak uni-directional key updates. There-
fore, existing bi-directional UE schemes are not secure in the backward-leak
uni-directional key updates setting. The best way to understand the separation
result is looking at an example described in Sect. 3.3.

In this section, we explain the source of the difference between the two set-
tings. First, we recall that UE needs the power of public key encryption (PKE)
such as the DDH assumption. We can find this fact in all existing ciphertext-
independent UE schemes [LT18,KLR19,BDGJ20,Jia20]. Alamati, Montgomery,
and Patranabis [AMP19] prove that ciphertext-independent UE implies PKE.
By this fact, we can assume that an epoch key ke consists of a secret part ske and
a public key part pke. As an example, in RISE scheme [LT18], ske = xe ∈ Zp,
pke = gxe ∈ G, and Δe+1 = xe+1/xe where g is a generator of a prime-order
group G. It is easy to see the token is a bi-directional token.

The direction of key updates depends on how to generate a token. A simple
but crucial observation is that we must use ske to generate Δe+1. Otherwise,
Δe+1 does not have the power of decrypting and converting a ciphertext at
epoch e. On the other hand, we do not necessarily need ske+1 to generate Δe+1

since we can generate a ciphertext at epoch e + 1 by using pke+1.
The relation between the direction types and how to generate a token is as fol-

lows. A forward-leak uni-directional token means Δe+1 explicitly contains infor-
mation about ske+1. By combining the observation above, Δe+1 should contain
information about ske and ske+1 in the forward-leak uni-directional key updates
setting. In addition, we can update an older epoch ciphertext into a newer epoch
ciphertext and attack the new one if the newer epoch key is revealed. In other
words, we can attack older epoch ciphertext even if older epoch keys are not
revealed (backward-leak inference is not possible in this setting). The key infer-
ence direction could be the same as the ciphertext update direction. By this
observation, it is natural that Jiang’s equivalence theorem holds.

On the other hand, a backward-leak uni-directional token means Δe+1 explic-
itly contains information about ske. It is possible to generate Δe+1 from ske and
pke+1 based on the observations so far. Thus, a backward-leak uni-directional
token could hide information about ske+1 and prevent the forward inference. In
addition, this property prevents downgrading a ciphertext into an older epoch
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ciphertext. Thus, even if an older epoch key is revealed, we cannot necessarily
attack the newer epoch ciphertexts since downgrading ciphertext and forward-
leak inference are impossible. The key inference direction is opposite to the
ciphertext update direction. This property is in sharp contrast to the forward-
leak setting. Therefore, triggers of trivial winning conditions are different in these
two settings. An intuition behind our separation result is based on those obser-
vations. See Sect. 3.3 for the detail. Those observations are the starting points
of our UE scheme in the backward-leak uni-directional key updates setting. See
the next paragraph for an overview.

Our Backward-Leak Uni-Directional Key Updates Scheme. Roughly speak-
ing, a token Δe+1 is a homomorphic encryption of ske under a public key
pke+1 in our backward-leak uni-directional UE scheme. To update a cipher-
text cte ← Enc(pke, μ) at epoch e, we homomorphically decrypt cte by using
Δe+1 = Enc(pke+1, ske) and obtain Enc(pke+1, μ). It is easy to see that if we have
Δe+1 and ske+1, we can obtain ske by decryption. However, it is difficult to infer
ske+1 from Δe+1 and ske since ske+1 is not used to generate Δe+1. By the security
of PKE, it is difficult to obtain ske+1 from pke+1. To achieve confidentiality for
UE, we need to re-randomize tokens and updated ciphertext. This is also possible
by using the homomorphic property. Although we use the homomorphic property
of lattice-based encryption in our construction, we do not need fully homomor-
phic encryption (FHE). We use the key-switching technique [BV14,BV11] and
the noise smudging technique [AJL+12] to directly achieve secure UE from the
LWE assumption. This idea is inspired by uni-directional proxy re-encryption
schemes based on lattices [Gen09,ABPW13,CCL+14,NX15].

To prove confidentiality, we need to erase information about ske∗ where e∗

is the target epoch (otherwise, we cannot use confidentiality under pke∗). How-
ever, secret keys are linked to update tokens. Thus, we need to gradually erase
secret keys in update tokens from new ones to old ones. That is, we change
Enc(pke+1, ske) into Enc(pke+1, 0|ske|). Once this change is done, we can change
Enc(pke, ske−1) into Enc(pke, 0|ske−1|), and so forth. Note that there exists an
epoch er where Δer+1 is not corrupted such that e∗ ≤ er as long as adversaries
do not trigger the trivial winning conditions. We can start the erasing process
from er since sker is not used anywhere. This proof outline is reminiscent of the
proof technique for multi-hop universal proxy re-encryption [DN21].

Our No-Directional Key Updates Scheme. A no-directional token leaks informa-
tion about neither ke nor ke+1. To protect ke and ke+1, we obfuscate an update
circuit. We consider a secret key encryption (SKE) scheme SKE.(Gen,Enc,Dec)
and the following circuit R. Two different secret keys ske, ske+1 ← SKE.Gen(1λ)
are hard-coded in R. R takes a ciphertext cte ← SKE.Enc(ske, μ) as an input,
computes μ = SKE.Dec(ske, cte), and outputs cte+1 ← SKE.Enc(ske+1, μ). A
token is an obfuscated circuit of R[ske, ske+1] (notation [ske, ske+1] denotes that
(ske, ske+1) are hard-coded). This scheme works as a UE scheme. Intuitively, a
token does not leak information about hard-coded secret keys due to obfuscation
security. However, we do not know how to prove confidentiality of the scheme
above.
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To prove security, we instantiate the SKE scheme and obfuscation above
with puncturable pseudorandom functions (PRFs) and IO [SW21], respectively.
That is, a secret key is a PRF key K, and a ciphertext is (t, y ⊕ μ) :=
(PRG(r),PRF(K,PRG(r)) ⊕ μ) where PRG is a pseudorandom generator (PRG)
and r ← {0, 1}τ . We slightly modified the update circuit above so that it takes
not only a ciphertext at epoch e but also randomness re+1 for a ciphertext at
the next epoch. That is, we use a circuit Cre[Ke,Ke+1]((t, c), re+1) that decrypts
(t, c) by Ke and encrypts the result by Ke+1 and re+1. By using this particular
scheme and the punctured programming technique with IO security [SW21], we
can prove confidentiality of our no-directional UE scheme.

The issue is how to simulate update tokens in security proofs. Note that
a UE secret key at epoch e is linked only to UE tokens Δe and Δe+1 in the
construction above. In our no-directional scheme, to change target ciphertexts
into random ones, we use pseudorandomness of a PRF key Ke∗ , which is a UE
key ke∗ at epoch e∗. In the security game of pseudorandomness at punctured
points, the adversary is given y∗ and a punctured key Ke∗{t∗} where t∗ is chosen
by the adversary and tries to distinguish y∗ is PRF(Ke∗ , t∗) or random. The
punctured key enables us to evaluate the PRF at all inputs except the punctured
point t∗. By using Ke∗{t∗}, we can simulate tokens Δe and Δe+1 for all inputs
except (r, y) such that t∗ = PRG(r). The issue is that we cannot evaluate the
PRF at t∗. However, we can overcome this issue by the standard exception
handling technique since t∗ can be randomly chosen by the reduction due to
PRG security and y∗ = PRF(Ke∗ , t∗) is given as a target in the pseudorandomness
game. We can construct functionally equivalent circuits by using Ke∗{t∗}, t∗, y∗,
and exceptional handling. The exceptional handling cannot be detected by IO
security. Thus, we can simulate update tokens and use pseudorandomness to
prove confidentiality.

Organization. In Sect. 2, we review the syntax and security definitions of UE.
Sect. 3 defines a new definition of uni-directional key updates (backward-leak
uni-directional key updates) and shows that it is strictly stronger than those
of bi-directional and forward-leak uni-directional key updates. In Sect. 4, we
present our UE scheme with backward-leak uni-directional key updates based
on the LWE problem and prove its security. In Sect. 5, we present our UE scheme
with no-directional key updates. Due to space limitations, we omit many details
in this version. Please see the full version [Nis21] for them.

2 Updatable Encryption

In this section, we briefly review the syntax and definitions of UE.

Syntax

Definition 2.1. An updatable encryption scheme UE for message space M
consists of a tuple of PPT algorithms (UE.Setup,UE.KeyGen,UE.Enc,UE.Dec,
UE.TokGen,UE.Upd).
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UE.Setup(1λ) → pp: The setup algorithm takes as input the security parameter
and outputs a public parameter pp. (This algorithm is an option for UE.)

UE.KeyGen(pp) → ke: The key generation algorithm takes as input the public
parameter and outputs an epoch key ke.

UE.Enc(k, μ) → ct: The encryption algorithm takes as input an epoch key and a
plaintext μ and outputs a ciphertext ct.

UE.Dec(k, ct) → μ′: The decryption algorithm takes as input an epoch key and a
ciphertext and outputs a plaintext μ′ or ⊥.

UE.TokGen(ke, ke+1) → Δe+1: The token generation algorithm takes as input two
keys of successive epochs e and e + 1 and outputs a token Δe+1.

UE.Upd(Δe+1, cte) → cte+1: The update algorithm takes as input a token Δe+1

and a ciphertext cte and outputs a ciphertext cte+1.

Let T be the maximum number of the epoch.

Security Experiments. We review security definitions for UE in this section.

Definition 2.2 (Correctness). For any μ ∈ M, for 0 ≤ e1 ≤ e2 ≤ T , it holds
that

Pr[UE.Dec(ke2 , cte2) �= μ] ≤ negl(λ),

where pp ← UE.Setup(1λ), ke1 , . . . , ke2 ← UE.KeyGen(pp), cte1 ←
UE.Enc(ke1 , μ), and Δi+1 ← UE.TokGen(ki, ki+1), cti+1 ← UE.Upd(Δi+1, cti)
for i ∈ [e1, e2 − 1].

Definition 2.3 (Confidentiality for Updatable Encryption [BDGJ20,
Jia20]). For x ∈ {d, r}, atk ∈ {cpa, cca}, the game Expx-ind-ue-atkΣ,A (λ, b) is for-
malized as follows.

– Invoke Setup and set phase := 0.
– Let O := O.{Enc,Next,Upd,Corr,Chall,Upd˜C} if atk = cpa. If atk = cca,

O.Dec is also added in O.
– Run coin′ ← AO(1λ).
– If ((K∗ ∩ C∗ �= ∅) ∨ (x = d ∧ (e∗ ∈ T ∗ ∨ O.Upd(ct) is invoked))) then twf := 1
– If twf = 1 then coin′ ← {0, 1}
– return coin′

We say a UE scheme is x-IND-UE-atk secure if it holds

Advx-ind-ue-atkΣ,A (λ) := |Pr[Expx-ind-ue-atkΣ,A (λ, 0) = 1] − Pr[Expx-ind-ue-atkΣ,A (λ, 1) = 1]| ≤ negl(λ).

The definitions of oracles are described in Fig. 1.

The prefix d and r in the definition above indicate that we consider UE
schemes with deterministic and randomized update algorithms, respectively.

Leakage Sets. We introduce leakage sets. Adversaries can obtain secret keys,
update tokens, challenge-equal ciphertexts from oracles. We record epochs in
the following sets to maintain which epoch key/token/challenge-equal-ciphertext
was given to adversaries.
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– K: Set of epochs where A corrupted the epoch key via O.Corr.
– T : Set of epochs where A corrupted the update token via O.Corr.
– C: Set of epochs where A obtained a challenge-equal ciphertext via O.Chall

or O.Upd˜C.

Fig. 1. The behavior of oracles in security experiments for updatable encryption.
Leakages sets L, ˜L,L∗, ˜L∗, C,K,K∗, T , T ∗,Q,Q∗, ˜Q∗ are defined in Sect. 2.
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We also record ciphertexts given via oracles to maintain which (updated)
ciphertexts adversaries obtained.

– L: Set of non-challenge ciphertexts (cnt, ct, e;μ) returned via O.Enc or O.Upd,
where cnt is a query index incremented by each invocation of O.Enc, ct is the
given ciphertext, e is the epoch where the query happens, and μ is the queried
plaintext or the plaintext in the queried ciphertext.

– ˜L: Set of challenge-equal ciphertexts (ct∗e , e) returned via O.Chall or O.Upd˜C,
where ct∗e is the given challenge-equal ciphertext and e is the epoch where the
query happens.

In the deterministic update setting, where algorithm Upd is deterministic, an
updated ciphertext is uniquely determined by a token and a ciphertext. Thus, we
consider extended ciphertext sets L∗ and ˜L∗ inferred from L and ˜L, respectively,
by using T . Regarding L∗, we only need information about the ciphertext and
epoch. That is, L∗ consists of sets of a ciphertext and an epoch index.

In the randomized update setting, where algorithm Upd is probabilistic, an
update ciphertext is not uniquely determined. Thus, we consider sets of plain-
texts of which adversaries have ciphertexts.

– Q∗: Set of plaintexts (μ, e) such that the adversary obtained or could generate
a ciphertext of μ at epoch e.

– ˜Q∗: Set of challenge plaintexts {(μ, e), (μ1, e)}, where (μ, ct) is the query to
O.Chall and μ1 is the plaintext in ct. The adversary obtained or could generate
a challenge-equal ciphertext of μ or μ1 at epoch e.

Inferred Leakage Sets. Lehman and Tackmann [LT18] presented the bookkeeping
technique to analyze the epoch leakage sets. We maintain leaked information by
the technique in security games.

Key Leakage. Adversaries can infer some information from leakage sets K and T .
Here, “infer” means that adversaries can trivially extract some secret information
from given keys and tokens. For example, in the ElGamal-based UE scheme by
Lehman and Tackmann (called RISE) [LT18], a secret key at epoch e is ke ∈ Zp

where p is a prime and a token is Δe+1 = ke+1/ke ∈ Zp. Thus, we can easily
extract ke from Δe+1 and ke+1 (and vice versa).

Inferred information depends on the direction of key updates. In previous
works on UE, there are three types of directions of key updates, called bi/uni/no-
directional key updates. Formally, for kk ∈ {no, uni, bi}, we consider the following
kk-directional key update setting.

Definition 2.4 (Direction of Key Update). We define inferred leakage key
sets. The sets depend on the setting of key updates.

– No-directional key updates: K∗
no := K.

– Uni-directional key updates:

K∗
uni := {e ∈ [0, �] | CorrK(e) = true}

where CorrK(e) = true ⇔ (e ∈ K) ∨ (CorrK(e − 1) ∧ e ∈ T )
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– Bi-directional key updates:

K∗
bi := {e ∈ [0, �] | CorrK(e) = true}

where CorrK(e) = true ⇔ (e ∈ K)∨(CorrK(e−1)∧e ∈ T )∨(CorrK(e+1)∧e+1 ∈
T )

Token Leakage. If two successive keys are leaked, a token generated from those
keys is also inferred.

Definition 2.5 (Inferred Token Sets). For kk ∈ {no, uni, bi},

T ∗
kk := {e ∈ [0, �] | (e ∈ T ) ∨ (e ∈ K∗

kk ∧ e − 1 ∈ K∗
kk)}

Challenge-Equal Ciphertext Leakage. We can update ciphertexts by using tokens.
That is, we can obtain updated ciphertexts generated from a challenge ciphertext
via leaked tokens. To check whether a challenge ciphertext can be converted
into a ciphertext under a corrupted key, we maintain challenge-equal ciphertext
epochs defined below.

Definition 2.6 (Direction of Ciphertext Update). We define two types of
challenge-equal ciphertext epoch sets. For kk ∈ {no, uni, bi},

– Uni-directional ciphertext updates:

C∗
kk,uni := {e ∈ [0, �] | ChallEq(e) = true}

where ChallEq(e) = true ⇔ (e ∈ C) ∨ (ChallEq(e − 1) ∧ e ∈ T ∗
kk)

– Bi-directional ciphertext updates:

C∗
kk,bi := {e ∈ [0, �] | ChallEq(e) = true}

where ChallEq(e) = true ⇔ (e ∈ C) ∨ (ChallEq(e− 1) ∧ e ∈ T ∗
kk) ∨ (ChallEq(e+

1) ∧ e + 1 ∈ T ∗
kk)

By considering directions of key/ciphertext updates, we can consider variants
of security notions for UE [Jia20].

Definition 2.7 ((kk, cc)-variant of confidentiality [Jia20]). Let UE be a UE
scheme. Then the (kk, cc)-notion advantage, for kk ∈ {no, uni, bi}, cc ∈ {uni, bi}
and notion ∈ {r-ind-ue-cpa, d-ind-ue-cpa, r-ind-ue-cca, d-ind-ue-cca}, of an adver-
sary A against UE is defined as

Adv(kk,cc)-notionUE,A (1λ) := |Pr[Exp(kk,cc)-notionUE,A (λ, 0) = 1] − Pr[Exp(kk,cc)-notionUE,A (λ, 1) = 1]|,

where Exp
(kk,cc)-notion
UE,A (λ, b) is the same as the experiment ExptnotionUE,A (λ, b) in Def-

inition 2.3 except for all leakage sets are both in the kk-directional key updates
and cc-directional ciphertext updates.
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Trivial Winning Condition. Adversaries trivially win the security game if we can
convert a challenge ciphertext into a ciphertext under a corrupted key. Thus, we
need to define trivial winning conditions.

For all confidentiality games in Definition 2.3, the trivial winning condition
K∗ ∩C∗ �= ∅ is checked since if the condition holds, adversaries can win the game
by decrypting a challenge-equal ciphertext by using a corrupted key.

For all confidentiality games for deterministic update UE, the trivial winning
condition ẽ ∈ T ∗ ∨“O.Upd(ct) is queried” is checked since if the condition holds,
adversaries can win the game by checking the challenge ciphertext is equal to
an updated ciphertext generated from the token and a queried ciphertext to
O.Chall.

We need to consider other trivial winning conditions in the CCA setting (both
for randomized and deterministic updates) and integrity setting. However, we
do not consider these settings in this work. We do not explain those conditions.
See the paper by Jiang [Jia20] for the detail.

Firewall and Insulated Region

Definition 2.8 (Firewall [LT18,KLR19,BDGJ20,Jia20]). An insulated region
with firewalls fwl and fwr is a consecutive sequence of epochs [fwl, fwr] for which:

– No key in the sequence of epochs [fwl, fwr] is corrupted. That is, it holds
[fwl, fwr] ∩ K = ∅.

– The tokens Δfwl and Δfwr+1 are not corrupted if they exist. That is, it holds
fwl, fwr + 1 /∈ T .

– All tokens (Δfwl+1, . . . ,Δfwr) are corrupted. That is, [fwl + 1, fwr] ⊆ T .

Definition 2.9 (Insulated Region [LT18,KLR19,BDGJ20,Jia20]). The
union of all insulated regions is defined as IR :=

⋃

[fwl,fwr]∈FW [fwl, fwr], where
FW is the set of insulated region with firewalls.

On Security Definitions. Boyd et al. prove that r-IND-UE-CPA implies both the
standard CPA security for UE and unlinkability of updated ciphertext. See their
paper [BDGJ20] for the detail.

3 Backward-Leak Uni-Directional Key Update
and Relations

3.1 Definition

We introduce a new notion for the direction of key updates in this section. The
notion is categorized in uni-directional key updates, but the direction is the
opposite of the uni-directional key updates in Definition 2.4.

Definition 3.1 (Uni-Directional Key Update (revisited)). We define two
types of uni-directional key updates. One is the same as that in Definition 2.4.
To distinguish two types of uni-directional key updates, we rename the original
one in Definition 2.4 to forward-leak uni-directional key updates. The definitions
of two notions are as follows.
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– forward-leak uni-directional key updates: K∗
f-uni := K∗

uni.
– backward-leak uni-directional key updates:

K∗
b-uni := {e ∈ [0, �] | CorrK(e) = true}

where CorrK(e) = true ⇔ (e ∈ K) ∨ (CorrK(e + 1) ∧ e + 1 ∈ T )

By using the definition above, we can consider Definition 2.5 and 2.6 for
kk ∈ {no, f-uni, b-uni, bi}. We illustrate leaked information in the setting of
forward/backward-leak uni-directional key updates settings in Fig. 2.

Fig. 2. Inferred keys in the forward-leak/backward-leak uni-directional key updates
settings. Symbol � means the key/token was given via O.Corr. Symbol × means we
cannot trivially obtain the information. The text “inferred” means we can trivially
extract the information from given values.

3.2 Observations on Definitions

On the Meaningfulness of Backward-Leak Uni-Directional Key Updates. First of
all, all ciphertext-independent UE schemes rely on public key encryption power
in some sense [LT18,BDGJ20,Jia20].4 This fact is endorsed by the result by
Alamati, Montgomery, and Patranabis [AMP19], which shows any ciphertext-
independent UE scheme that is forward and post-compromise secure implies
PKE. Thus, we can assume that an epoch key consists of a secret key part ske
and a public key part pke.

To achieve the ciphertext update mechanism of UE, a token Δe+1 must
include information about ske since an update algorithm essentially decrypts
a ciphertext at epoch e and generates a ciphertext for epoch e + 1. The ques-
tion is: “Do we really need ske+1 for updating a ciphertext from e to e + 1?”.
The answer is no. The point is that we need only the public key part of an
epoch key to generate a ciphertext in most existing ciphertext-independent UE
schemes. Thus, we might be able to construct an update token by using only
ske and pke+1. More specifically, we might be able to transform a ciphertext for
epoch e by using encryption of ske under pke+1 and homomorphic properties.

4 Everspaugh et al. [EPRS17] presented a ciphertext-independent UE scheme from
authenticated encryption (AE). However, they assume an AE scheme is secure
against related key attacks. So far, it seems that we need the power of public key
encryption (such as DDH) to achieve related key secure AE [HLL16]. In addition,
Everspaugh et al. retracted the ciphertext-independent construction in their full
version paper (https://eprint.iacr.org/2017/527/20180903:192110).

https://eprint.iacr.org/2017/527/20180903:192110
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This is what we do in Sect. 4. This insight comes from a few constructions of
uni-directional proxy re-encryption [Gen09,ABPW13,CCL+14,NX15].

Based on the observations above, we can say the backward-leak uni-
directional key updates setting is natural. If a token Δe+1 is generated by using
(ske, pke+1), it is likely we can infer ske from Δe+1 and ske+1 (our backward-leak
uni-directional scheme is an example). However, it might be difficult to extract
information about ske+1 from ske and Δe+1 since only pke+1 is embedded in
Δe+1. In fact, it is difficult in our backward-leak uni-directional scheme.

In the forward-leak uni-directional key updates setting, we assume that it is
easy to infer ske+1 from Δe+1 and ske. In some sense, this says ske+1 is directly
embedded in Δe+1. We might be able to execute bi-directional key/ciphertext
updates if a token enables us to update a ciphertext (in the forward direction).
Here, “directly embedded” means that a secret key is not encrypted. In fact,
in all existing UE schemes bi-directional (and forward-leak uni-directional) key
updates, ske+1 is directly embedded in Δe+1 [LT18,KLR19,BDGJ20,Jia20]. In
addition, generating a token Δe+1 from ske+1 and pke is unnatural since it is
unlikely such Δe+1 can update a ciphertext under pke.

Note that the argument above does not consider obfuscation [BGI+12]. If we
can somehow obfuscate secret keys in a token, it could be difficult to infer secret
keys in the token even if we use those secret keys to generate the token. This is
what we do in Sect. 5 to achieve a no-directional key updates scheme.

As we argue in Sect. 1.1, backward-leak uni-directional key updates are more
suitable than forward-leak ones in practice. In fact, we prove that confidentiality
in the backward-leak uni-directional key updates setting is strictly stronger than
that in the forward-leak uni-directional key updates setting.

On Meaningful Combination with Bi/Uni-Directional Ciphertext Updates. For
ciphertext updates, it is natural to consider only the uni-directional ciphertext
updates in Definition 2.6 since updating ciphertext should go forward direction
due to the nature of UE. Of course, we can define another uni-directional cipher-
text updates (called “backward uni-directional” or “downgrade-only” ciphertext
updates), but it is not meaningful.

Jiang considered a setting where key updates are uni-directional (this is
forward-leak uni-directional by our definition) and ciphertext updates are bi-
directional. This is meaningful only in the forward-leak uni-directional key
updates since forward-leak uni-directional and bi-directional key updates are
equivalent by Jiang’s result. However, it is unnatural to consider bi-directional
ciphertext updates with backward-leak uni-directional key updates. This is
because we show that backward-leak uni-directional key updates are strictly
stronger than bi-directional key updates. In addition, it is difficult to use Δe+1

to convert a ciphertext under ke+1 into one under ke in the backward-leak uni-
directional key updates setting. This observation affects a theorem proved by
Jiang [Jia20, Theorem 3.2 in the ePrint ver.] (Theorem 3.5 in this paper), which
we explain later.
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Relaxed Firewall. As we observed above, it is natural to consider uni-directional
ciphertext updates in the backward uni-directional key updates setting. In this
setting, adversaries cannot convert a ciphertext at the challenge epoch into a
ciphertext at an older epoch by using tokens. Thus, even if a token Δfwl at a left
firewall fwl is given to adversaries when a challenge epoch is in between fwl and
fwr, adversaries cannot obtain a challenge-equal ciphertext at an epoch whose
secret key is corrupted. We define this modified firewall notion as relaxed firewall
below.

Definition 3.2 (Relaxed Firewall). A relaxed insulated region with relaxed
firewalls fwl and fwr is a consecutive sequence of epochs [fwl, fwr] for which:

– No key in the sequence of epochs [fwl, fwr] is corrupted. That is, it holds
[fwl, fwr] ∩ K = ∅.

– The token Δfwr+1 is not corrupted if they exist. That is, it holds fwr+ 1 /∈ T .
– All tokens (Δfwl, . . . ,Δfwr) can be corrupted. That is, [fwl, fwr] ⊆ T .

The difference from Definition 2.8 is that Δfwl can be corrupted.

Definition 3.3 (Relaxed Insulated Region). The union of all relaxed insu-
lated regions is defined as rIR :=

⋃

[fwl,fwr]∈rFW [fwl, fwr], where rFW is the set
of relaxed insulated region with relaxed firewalls.

As we will see in the proof of Theorem 3.4, there exists an epoch such that
it is set as the challenge ciphertext epoch (does not trigger the trivial winning
condition), but not in a firewall area under Definition 2.8 (the original definition
of firewall). In the example in Fig. 3, which will appear later, epoch {5} is such
an area. Therefore, we introduce the modified notion.

Summary of Observations. We summarize possible combinations for token gen-
eration and directions of key and ciphertext updates in Table 1. Note that we
do not consider using obfuscation in this table. In each field, possible types are
written. In the key update column, “forward-leak? or bi?” means that it can be
forward-leak, but in this case, it might not be able to update a ciphertext in
the forward direction. If it can update, it essentially includes ske and should be
bi-directional. In the ciphertext update column, “backward-leak? or bi?” means
that it can be backward, but it does not fit the nature of UE, and if it can
be forward, it essentially has the power of bi-directional updates. That is, the
second-row case could collapse to the first-row case in Table 1 if the second case
works as UE (ciphertext updates are in the forward direction). Lastly, “?” means
that we do not know whether this type can update a ciphertext or not (or it is
unlikely that the type can update a ciphertext).

All previous ciphertext-independent updates UE schemes fall into the first
row category. Our scheme in Sect. 4 falls into the third row category. There might
be a hope that we can achieve a no-directional UE scheme by using obfuscation-
like techniques (but without obfuscation) in the third row case. It is an interesting
open question.
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Table 1. Possible combinations for token generation from pk or sk and its relationship
to possible directions of key updates and ciphertext updates.

use pk or sk key update type ct update type

TokGen(ske, ske+1) bi bi

TokGen(pke, ske+1) forward-leak? or bi? backward? or bi?

TokGen(ske, pke+1) backward-leak forward

TokGen(pke, pke+1) no ?

3.3 Relationships

We show that bi-directional key updates does not imply backward-leak uni-
directional key updates in this section. More precisely, we prove the following

Theorem 3.1. There exist secure r-IND-UE-CPA UE schemes in the bi-
directional key updates setting that are not r-IND-UE-CPA in the backward-leak
uni-directional key updates setting.

On the Equivalence Between Bi-Directional and Uni-Directional Key Updates.
First, we review a simple fact. It is easy to see that the following theorem holds
by the definition of confidentiality (Definition 2.3).

Theorem 3.2. If a UE scheme is r-IND-UE-CPA in the backward-leak uni-
directional, forward-leak uni-directional, or no-directional key updates setting, it
is also r-IND-UE-CPA secure in the bi-directional key updates setting.

Next, we review Jiang’s equivalence theorem.

Theorem 3.3 ([Jia20, Theorem 2]). Let UE be an UE scheme and notion ∈
{d-ind-ue-cpa, r-ind-ue-cpa, d-ind-ue-cca, r-ind-ue-cca, int-ctxt, int-ptxt}. For any
kk, kk′ ∈ {f-uni, bi}, cc, cc′ ∈ {uni, bi}, and any (kk, cc)-notion adversary A
against UE, there exists a (kk′, cc′)-notions adversary B against UE such that

Adv
(kk,cc)-notion
UE,A (1λ) = Adv

(kk′,cc′)-notion
UE,B (1λ).

The key lemma for proving Jiang’s theorem (Theorem 3.3) for the confiden-
tiality case is the following.

Lemma 3.1 ([Jia20, Lemma 6]). For any K, T , C, we have K∗
f-uni ∩ C∗

f-uni,uni �=
∅ ⇔ K∗

bi ∩ C∗
bi,bi �= ∅.

See Definition 2.6 and 3.1 for the sets in the lemma. Note that this lemma
holds for forward-leak uni-directional key updates. We show a counterexample to
this lemma (for confidentiality) in the case of the backward-leak uni-directional
key updates setting.
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Fig. 3. Example of leakage sets in the setting of bi/forward/backward-leak uni-
directional key updates where K := {0, 4, 8}, T := {3, 4, 5, 7}, IR = {1, 6, 7}. Here, ×
and � indicates an epoch key or token is not corrupted and corrupted, respectively.
The boldface check mark � indicates an epoch key or token is inferred from other
corrupted keys/tokens.

Counterexample in Backward-Leak Uni-Directional Key Updates Setting. Look-
ing at an example is the best thing to understand relationships. We consider an
example of epoch key leakage sets in Fig. 3.

In the example in Fig. 3, the firewall area is IR = {1, 6, 7}. The differ-
ence between the bi-directional setting and forward-leak uni-directional setting
is the epochs 2 and 3. The difference between the bi-directional setting and
backward-leak uni-directional setting is the epoch 5. (Both differences are under-
lined in Fig. 3.) We investigate each difference in the forward/backward-leak
uni-directional settings.

The case of bi/forward-leak uni-directional key updates: First, we consider the
bi/forward-leak uni-directional key updates settings. If we set C = {3},
it holds C∗

bi,bi = {2, 3, 4, 5} and C∗
f-uni,uni = {3, 4, 5}. Thus, K∗

bi ∩ C∗
bi,bi =

{2, 3, 4, 5} �= ∅ and K∗
f-uni ∩ C∗

f-uni,uni = {4, 5} �= ∅. If we set C = {5}, it
holds that K∗

bi ∩ C∗
bi,bi = {2, 3, 4, 5} �= ∅ and K∗

f-uni ∩ C∗
f-uni,uni = {5} �= ∅. This

is consistent with Lemma 3.1 (Jiang’s Lemma 6 [Jia20]). Note that if we set
C = {2}, we obtain a similar result to C = {3}.

The case of bi/backward-leak uni-directional key updates: Next, we consider
the bi/backward-leak uni-directional key updates settings. If we set C = {3},
it holds C∗

bi,bi = {2, 3, 4, 5} and C∗
b-uni,uni = {3, 4, 5} since Δ5 is given even

though k5 is not given in the backward-leak uni-directional setting. Thus, it
holds K∗

bi ∩C∗
bi,bi = {2, 3, 4, 5} �= ∅ and K∗

b-uni ∩C∗
b-uni,uni = {3, 4} �= ∅. However,

if we set C = {5}, the difference between forward/backward directional key
updates is clear. Now, K∗

bi ∩ C∗
bi,bi = {2, 3, 4, 5} �= ∅, but K∗

b-uni ∩ C∗
b-uni,uni = ∅

since we cannot infer k5 (the key at epoch 5) due to the definition of backward-
leak uni-directional key updates (we cannot go to forward direction even if
we are given k4 and Δ5.). This means that even if we set C = {5}, the trivial
winning condition is not triggered in the backward-leak uni-directional set-
ting. However, the trivial winning condition in the bi-directional setting is
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triggered. Therefore, this is a counterexample to Lemma 3.1 (Jiang’s Lemma
6 [Jia20]) when we use the definition of backward-leak uni-directional key
updates.

By using the example above, we immediately obtain the following theorem.

Theorem 3.4. The ciphertext-independent UE schemes Lehman and Tack-
mann [LT18], Boyd et al. [BDGJ20], and Jiang [Jia20] do not satisfy confi-
dentiality in the backward-leak uni-directional setting.

Proof. We use the leakage sets example K and T in Fig. 3 and set C = {5}.
This does not trigger the trivial winning condition in the backward-leak uni-
directional setting. However, an adversary can infer k5 by using k4 and Δ5 in
the bi-directional key updates schemes described in the theorem statement. Thus,
the adversary trivially wins the confidentiality game in the backward-leak uni-
directional setting since a challenge ciphertext is encrypted under k5. �

By Theorem 3.4 and the results by Lehman and Tackmann [LT18], Boyd
et al. [BDGJ20], and Jiang [Jia20], we immediately obtain Theorem 3.1 since
they show that their schemes satisfy confidentiality in the bi-directional key
updates setting. Therefore, surprisingly (or unsurprisingly), UE with backward-
leak uni-directional (and no-directional) key updates is strictly stronger than
UE with bi-directional key updates by Theorems 3.1 and 3.2.

On Equivalence Between No/Uni/Bi-Directional Key Updates in Bi-Directional
Ciphertext Update Setting. We give an observation on the equivalence theorem
about no-directional key updates. Jiang also proves the following theorem.

Theorem 3.5 ([Jia20, Theorem 3.2 in the ePrint ver.]). Let UE be an
UE scheme and notion ∈ {d-ind-ue-cpa, r-ind-ue-cpa, d-ind-ue-cca, r-ind-ue-cca}.
For any (no, bi)-notion adversary A against UE, there exists a (f-uni, bi)-notions
adversary B against UE such that

Adv
(no,bi)-notion
UE,A (1λ) = Adv

(f-uni,bi)-notion
UE,B (1λ).

This theorem seems to contradict our conclusion above, which says UE with
no-directional key updates is strictly stronger than UE with forward-leak uni-
directional key updates. Recall that no-directional key updates is stronger than
backward-leak uni-directional key updates. We also note that bi-directional key
updates and forward-leak uni-directional key updates are equivalent.

The source of the puzzle above comes from the fact that the theorem holds
for bi-directional ciphertext updates. The key lemma for proving Jiang’s theorem
above (Theorem 3.5) is the following.

Lemma 3.2 ([Jia20, Lemma 3.15 in the ePrint ver.]). For any K, T , C, we
have K∗

f-uni ∩ C∗
f-uni,bi �= ∅ ⇒ K∗

no ∩ C∗
no,bi �= ∅.
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The proof of the lemma above heavily relies on the bi-directional cipher-
text update setting. As we argued in Sect. 3.2, it is unnatural to consider
bi-directional ciphertext updates with backward-leak uni-directional (and no-
directional) key updates. Thus, if we exclude such an unnatural or artificial
setting, the equivalence theorem above (Theorem 3.5), which is counterintuitive,
does not hold in the case of the backward-leak uni-directional key updates set-
ting.

4 Construction with Backward-Leak Uni-Directional Key
Update

In this section, we present a backward-leak uni-directional key update scheme
from the LWE assumption.

4.1 Scheme Description and Design Idea

We present a UE scheme with backward-leak uni-directional key updates based
on the Regev PKE scheme [Reg09], and denoted by RtR. A proxy re-encryption
scheme by Nishimaki and Xagawa [NX15] inspired this construction idea.

The ciphertext update technique is based on the key-switching tech-
nique [BV14,BV11,BGV14]. In particular, we use that for multi-bit plain-
texts [BGH13]. In the following, we denote a plaintext by µ ∈ {0, 1}� and error
distributions by χ and χns.

A Variant of Regev PKE Scheme. We review a variant of Regev PKE
scheme [Reg09] in the multi-user settings.

– Setup(1λ): Choose A ← Z
m×n
q and output pp := (A, 1λ, 1n, 1m, 1�, q, χ, χns).

– Reg.Gen(pp): Choose S ← Z
n×�
q and X ← χm×�, compute B := AS + X ∈

Z
m×�
q , and outputs pk = B and sk = S.

– Reg.Enc(pk,µ): Choose r ← {−1,+1}m and e′ ← χ�
ns and output (u, c) :=

(rA, rB + e′ + �q/2�µ).
– Reg.Dec(sk, (u, c)) Compute d := c − uS and output µ := �(2/q)d� mod 2.

Key-switching Technique. We review the key-switching technique in the multi-
bit version for our update algorithm. Let η := �lg q�. We give the definitions of
the binary-decomposition algorithm BD(·) and the powers-of-2 algorithm P2(·).

– BD(x ∈ Z
n
q ): It decomposes x =

∑η
k=1 2k−1uk, where uk ∈ {0, 1}n, and

outputs (u1,u2, . . . ,uη) ∈ {0, 1}nη.
– P2(s ∈ Z

n×1
q ): It outputs [1, 2, . . . , 2η−1]� ⊗ s = [s; 2s; . . . ; 2η−1s] ∈ Z

nη×1
q ,

where ⊗ denotes the standard tensor product. We extend the domain of P2
by setting P2([s1 . . . s�] ∈ Z

n×�
q ) = [P2(s1) . . . P2(s�)] ∈ Z

nη×�
q .
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By the definition, it holds that BD(x) · P2(S) = x · S ∈ Z
�
q for any x ∈ Z

n
q and

S ∈ Z
n×�
q .

Let Se,Se+1 ∈ Z
n×�
q be two secret keys at epoch e, e + 1, respectively. The

key-switching technique enables us to homomorphically decrypt a ciphertext
at epoch e and obtain a ciphertext at epoch e + 1 by using encryption of Se

under the key at epoch e + 1. More formally, the key-switching matrix M e+1

is [A′ | A′Se+1 + Y ] + [O | −P2(Se)], where A′ ← Z
nη×n
q , Y ← χnη×�. To

update a ciphertext (u, c) under Se to one under Se+1, we compute (u′, c′) =
(0, c) + BD(u)M e+1. By simple calculation, we have that

(u′, c′) = (0, c) + BD(u)
(

[A′ | A′Se+1 + Y ] + [O | −P2(Se)]
)

= (BD(u)A′, c − uSe + BD(u)A′Se+1 + BD(u) · Y ).

To decrypt ciphertext by secret key Se+1, we compute

c′ − u′Se+1 = c − uSe + BD(u)A′Se+1 + BD(u) · Y − BD(u)A′Se+1

= c − uSe + BD(u) · Y .

Thus, the decryption is correct if the magnitude of additional noises BD(u) · Y
is small.

Backward-Leak Uni-Directional Update. In fact, we do not need the secret key
Se+1 at epoch e + 1 for update. We set Be+1 = ASe+1 + Y e+1, which we call
the public key part of the key at epoch e+1. We choose Re+1 ← {−1,+1}nη×m

and compute an update token

M e+1 = Re+1[A | Be+1] + [O | −P2(Se)]
= [A′ | A′Se+1 + Y ′] + [O | −P2(Se)],

where A′ = Re+1A and Y ′ = Re+1Y j . By using M e+1, we can update cipher-
text (u, c) at epoch e. Thus, even if given the key Se at epoch e and the token
M e+1, we cannot infer Se+1 since only the public key part Be+1 (this is pseudo-
random by the LWE assumption) of the key at epoch e+1 is embedded in M e+1.
Note that Se and Se+1 are independently chosen. However, if given the key Se+1

at epoch e+1 and the token M e+1, we can easily infer Se since Se is encrypted
under Se+1. Thus, this update mechanism is a backward-leak uni-directional key
update and uni-directional ciphertext update.

How to Achieve Randomized Update. The update algorithm above is determin-
istic. To re-randomize an updated ciphertext, we set the update token as M e+1

and Be+1, which is the public key part at epoch e+ 1. First, we convert cipher-
text (u, c) at epoch e into (u′, c′) using M e+1 as above and masking (u′, c′) with
a new ciphertext (ũ, ṽ) := r̃[A | Be+1] of the plaintext 0. This is not enough for
confidentiality since it includes information about Be+1 and is not random. To
overcome this issue, we randomize [A | Be+1] into N e+1 = R′

e+1 · [A | Be+1],
where R′

e+1 ← {−1,+1}m×m and add it to Δe+1. Since the matrix N e+1 con-
sists of m ciphertexts of the message 0, this is pseudorandom. The update token
consists of key-switching matrix M e+1 and randomized matrix N e+1.
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Backward-Leak Uni-Directional Key Update Scheme. A UE scheme, RtR, is
defined as follows:

Setup(1λ):
1. Choose A ← Z

m×n
q .

2. Output pp := (A, 1λ, 1n, 1m, 1�, q, χ, χns).
Gen(pp):

1. Generate (Be,Se) ← Reg.Gen(1λ).
2. Output ke := (ske, pke) := (Se,Be).

Enc(ke,µ ∈ {0, 1}�):
1. Parse ke = (Se,Be).
2. Generate (u, c) ← Reg.Enc(Be,µ).
3. Output ct := (u, c) ∈ Z

n
q × Z

�
q.

Dec(ke, ct):
1. Parse ke = (Se,Be) ct = (u, c).
2. Compute and output µ ← Reg.Dec(Se, ct).

TokGen(ke, ke+1):
1. Parse ke = (Se,Be) and ke+1 = (Se+1,Be+1).
2. Compute M e+1 := Re+1 · [A | Be+1] + [O | −P2(Se)], where Re+1 ←

{−1,+1}nη×m.
3. Compute N e+1 := R′

e+1 · [A | Be+1], where R′
e+1 ← {−1,+1}m×m.

4. Output Δe+1 := (M e+1,N e+1).
Upd(Δe+1, cte):

1. Parse Δe+1 = (M e+1,N e+1) and cte = (ue, ce).
2. Compute (u′, c′) := BD(ue)M e+1;
3. Compute (ũ, ṽ) := r̃ · N e+1, where r̃ ← {−1,+1}m;
4. Output cte+1 := (ū, c̄) := (u′ + ũ, ce + c′ + ṽ).

For notational convenience, we call pke = Be and ske = Se public key and secret
key of epoch e, respectively. Note that we can run Enc without ske = Se (we
need only pke = Be). We also note that we can run TokGen(ke, ke+1) without
ske+1 (we need only pke+1 and ske).

The scheme is correct and r-IND-UE-CPA secure. We prove the following
theorems in Sects. 4.2 and 4.3. Let T be the maximum number of the epoch.

Theorem 4.1. Let χ and χns be B-bounded and B′-bounded distributions,
respectively, such that B/B′ = negl(λ) and m = 2n lg q + ω(

√
lg λ). Suppose

that (1 + nη + m)mB + B′ ≤ q/4T . Then RtR is correct.

Theorem 4.2. Suppose that m ≥ (n + �) lg q + ω(lg λ). Under the LWE(n, q, χ)
assumption, RtR is r-IND-UE-CPA secure in the backward-leak uni-directional
setting. That is, Adv(b-uni,uni)-r-ind-ue-cpaRtR,A (1λ) ≤ negl(λ).
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4.2 Correctness

We give rough estimations on B-bounded and B′-bounded distributions χ and
χns, respectively, for simplicity. However, if we set χ = Ψ̄α or DZ,s, we can obtain
tighter bounds.

Proof of Theorem. 4.1. The theorem follows from Prop. 4.1 and 4.2 below. �
Proposition 4.1. The scheme is correct for the encryption algorithm if mB +
B′ < q/4.

Proposition 4.2. The scheme is correct for the update algorithm if (1 + nη +
m)mB + B′ < q/4T .

Those correctness easily follows from the proof by Regev [Reg09]. We omit
them due to space limitations. See the full version for the proofs.

4.3 Confidentiality

We show RtR is r-IND-UE-CPA in the backward-leak uni-directional setting.
Although it is trivial that RtR satisfies uni-directional ciphertext updates from
its security, we confirm it below.

Lemma 4.1. If (Setup,Reg.Gen,Reg.Enc,Reg.Dec) is IND-CPA secure PKE,
adversaries cannot convert a ciphertext under a public key pke+1 into one under
a public key pke even if they are given Δe+1.

Proof. We construct an algorithm B that breaks IND-CPA security under pke+1

by using an adversary D that converts a ciphertext under pke+1 into one under
pke by using (pke, ske), pke+1, and Δe+1.

First, B is given pke+1. B generates (pke, ske) and Δe+1 ← TokGen(ske, pke+1),
selects any (m0,m1), sends (m0,m1) to its challenger, and receives a tar-
get ciphertext ct∗ ← Reg.Enc(pke+1,mb) where b ← {0, 1}. Next, B sends
((pke, ske),Δe+1, ct

∗) to D. D outputs a ciphertext ct′ under pke. Then, B com-
putes m′ ← Reg.Dec(ske, ct′) by using ske and if m′ = mb′ , it outputs b′.

It is easy to see that if D can convert ct∗ into a ciphertext under pke, B
outputs b′ = b. This completes the proof. �

Second, we look at the detail of the update procedure again. By simple cal-
culation, we obtain

(ū, c̄) = (0, ce) + BD(ue) · M e+1 + r̃ · N e+1

= (r†A, r†Be+1 + e′
e + rX e + �q/2�µ) where r† := BD(ue)Re+1 + r̃R′

e+1

s≈ (r†A, r†Be+1 + e′
e + �q/2�µ). (1)

The last equation (statistical indistinguishability) holds by the noise smuding
lemma [AJL+12]. This equation shows that we can simulate an update ciphertext
by using the original ciphertext, its plaintext and randomness, the new epoch
public key, and randomness for generating the token Δe+1 (not the token itself).

To show the security, we define auxiliary algorithms for simulation.
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Hyb.Upd(cte,Be+1,µ;e′
e, (Re+1,R

′
e+1)):

– Parse cte = (ue, ce).
– Choose r̃ ← {−1,+1}m and set r† := BD(ue)Re+1 + r̃R′

e+1.
– Set cte+1 := (ū, c̄) := (r†A, r†Be+1 + e′

e + �q/2�µ).
– Output (cte+1;e′

e).
Sim.Gen(pp):

– Choose and output pke := B+
e ← Z

m×�
q .

Sim.TokGen(pp):
– Choose and output Δ+

e+1 := (M+
e+1,N

+
e+1) ← Z

nη×(n+�)
q × Z

m×(n+�)
q .

Sim.Upd(pp):
– Choose and output cte+1 := (ū, c̄) ← Z

n
q × Z

�
q.

Sim.Enc(pp):
– Choose and output cte := (ū, c̄) ← Z

n
q × Z

�
q.

Lemma 4.2. Upd(Δe+1, cte)
s≈ Hyb.Upd(cte,Be+1,µ;e′

e, (Re+1,R
′
e+1))

By Eq. (1), Lemma 4.2 immediately holds. That is, we can simulate
O.Upd(cte) by using Hyb.Upd(cte,Be+1,µ;e′

e, (Re+1,R
′
e+1)).

We follow the firewall technique [LT18,KLR19,BDGJ20,Jia20] to prove secu-
rity, but we use the relaxed firewall notion in Definition 3.2.

Proof of Theorem 4.2. Let T be the upper bound of the number of epoch. We
consider a sequence of hybrid games. First, we define the following hybrid game:

Hybi(b): This is the same as Exp
(b-uni,uni)-r-ind-ue-cpa
RtR,A (λ, b) except the following

difference: When the adversary sends a query (μ, ct) to O.Chall or an empty
query to O.Upd˜C at epoch j,

– for j < i, return an honestly generated challenge-equal ciphertext. That
is, if b = 0, UE.Enc(kẽ, μ) else UE.Upd(Δẽ, ct).

– for j ≥ i, return a random ciphertext.

It is easy to see that HybT+1(b) is the same as the original r-INE-UE-CPA
game in the backward-leak uni-directional setting Exp

(b-uni,uni)-r-ind-ue-cpa
RtR,A (λ, b).

Let U(λ) be a random variable distributed uniformly in [0, T ], by the standard
hybrid argument, we have

Adv(b-uni,uni)-r-ind-ue-cpaRtR,A (λ) ≤ (T + 1)|Pr[HybU(λ)+1(1) = 1] − Pr[HybU(λ)(1) = 1]|
+ (T + 1)|Pr[HybU(λ)+1(0) = 1] − Pr[HybU(λ)(0) = 1]|,

where we use Pr[U(λ) = i] = 1/(T + 1). Note that Hyb0(0) = Hyb0(1) trivially
holds since all challenge-equal ciphertexts are random ciphertexts. Thus, our goal
is to prove |Pr[HybU(λ)+1(b) = 1] − Pr[HybU(λ)(b) = 1]| ≤ negl(λ) for b ∈ {0, 1}.

Hereafter, we write Hybi(b) instead of HybU(λ)(b) for simplicity. Next, we
define the following hybrid game:
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Hyb′
i(b): This is the same as Hybi(b) except that the game chooses fwl, fwr ←

[0, T ]. If the adversary corrupts kj such that j ∈ [fwl, fwr] or Δfwr+1, the game
aborts.

The guess is correct with probability 1/(T + 1)2. We have

|Pr[Hybi(b) = 1]−Pr[Hybi−1(b)]| ≤ (T+1)2|Pr[Hyb′
i(b) = 1]−Pr[Hyb′

i−1(b) = 1]|.

If |Pr[Hyb′
U(λ)+1(b) = 1] − Pr[Hyb′

U(λ)(b) = 1]| ≤ negl(λ), we complete the
proof of Theorem 4.2. �

Lemma 4.3. If the LWE assumption holds, it holds that |Pr[Hyb′
i+1(b) = 1] −

Pr[Hyb′
i(b) = 1]| ≤ negl(λ).

Proof. Note that the difference between these two games appears when the chal-
lenge query is sent at epoch i, so we can assume ẽ = i. We start from Hyb′

i+1(b)
and gradually change it to Hyb′

i(b). We define another sequence of games.

Hybri(b): This is the same as Hyb′
i(b) except that we use the hybrid update

algorithm Hyb.Upd to simulate O.Upd. More precisely, O.Upd(cte−1) act as
follows:

– If (·, cte−1, e − 1;e′
e−1;µ) /∈ L, then return ⊥

– Otherwise, (cte,e′
e) ← Hyb.Upd(cte−1,Be,µ;e′

e−1, (Re,R
′
e)).

– L := L ∪ {(·, cte, e;e′
e,µ)}.

Note that Re and R′
e are randomness used in TokGen, so anyone can choose

them. Simulators internally choose and record them.

Proposition 4.3. |Pr[Hyb′
i(b) = 1] − Pr[Hybri(b) = 1]| ≤ negl(λ).

It is easy to see Prop. 4.3 holds by Lemma 4.2. The next goal is proving
|Pr[Hybri+1(b) = 1] − Pr[Hybri(b) = 1]| ≤ negl(λ). We define the following games.

Gj(i, b): This is the same as Hybri(b) except the following difference.
– For i ≤ k < j, pkk and Δk are honestly generated as in the real.
– For fwr ≥ k ≥ j, pkk and Δk are uniformly random.

That is, we gradually erase information about UE secret keys from newer epochs
to older epochs. We note that j ∈ [i, fwr+1] and i is fixed. By the definition, we
have

Gfwr+1(i + 1, b) = Hybri+1(b) and Gfwr+1(i, b) = Hybri(b). (2)

We prove that

|Pr[Gj+1(i + 1, b) = 1] − Pr[Gj(i + 1, b) = 1]| ≤ negl(λ) for j ∈ [i, fwr] (3)
|Pr[Gi(i + 1, b) = 1] − Pr[Gi(i, b) = 1]| ≤ negl(λ) (4)
|Pr[Gj+1(i, b) = 1] − Pr[Gj(i, b) = 1]| ≤ negl(λ) for j ∈ [i, fwr]. (5)
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From these equations, we immediately obtain

|Pr[Gfwr+1(i + 1, b) = 1] − Pr[Gfwr+1(i, b)]| ≤ negl(λ).

By combining this with Prop. 4.3 and Eq. (2), we obtain what we want to prove
(Lemma 4.3). Thus, all we must do is proving Eqs. (3) to (5).

First, we prove Eq. (3). We define a few hybrid games as follows.

– Game-0(b): This is the same as Gj+1(i + 1, b). At this point, public keys and
tokens of epochs in [i, j] are real values while those at epochs in [j + 1, fwr]
are already random values.

– Game-1(b): This is the same as Game-0(b) except that we modify the public
key part of epoch j. We use B+

j ← Z
m×�
q instead of Bj such that (Sj ,Bj) ←

Reg.Gen(1λ). Note that we do not use the secret key Sj of epoch j anywhere
in this game since Δj+1 is already a random value.

– Game-2(b): This is the same as Game-1(b) except that we modify the token
generation algorithm for token Δj . We use Δj := (M+

j ,N+
j ) ← Z

nη×(n+�)
q ×

Z
m×(n+�)
q instead of (M j ,N j) ← TokGen(kj−1, kj).

Obviously, Game-2(b) is the same as Gj(i + 1, b). It is easy to see if we prove the
following, we complete the proof of Eq. (3).

Proposition 4.4. If the LWE assumption holds, it holds that |Pr[Game-1(b) =
1] − Pr[Gj+1(i + 1, b) = 1]| ≤ negl(λ).

Proposition 4.5. It holds that |Pr[Game-2(b) = 1] − Pr[Game-1(b) = 1]| ≤
negl(λ).

We will prove these propositions above later.
Next, we prove Eq. (4). The only difference between Gi(i + 1, b) and Gi(i, b)

is the challenge-equal ciphertext at epoch i. That is, Gi(i, b) is the same as
Gi(i + 1, b) except that we modify the challenge-equal ciphertext for b at epoch
i. We use (ū, c̄) ← Z

n
q × Z

�
q instead of (ū, c̄) ← Upd(Δ+

i , ct) (the case b = 1) or
(ū, c̄) ← Enc(ki, μ0) (the case b = 0). We prove the following proposition later.

Proposition 4.6. It holds that |Pr[Gi(i+1, b) = 1]−Pr[Gi(i, b) = 1]| ≤ negl(λ).

Lastly, we prove Eq. (5). Once the challenge-equal ciphertext at epoch i
becomes random, we need to go back to games where public keys and tokens
are real. In Gj(i, b) for j ∈ [i, fwr], publics keys and tokens (from epochs j to
fwr) are also random. We need to change them from random to real since we
need to arrive at Hybr

i , where public keys and tokens are real (but ciphertext at
epoch i is random). Thus, we need to prove Eq. (5). These backward transitions
are possible by using the proof of Eq. (3) in a reverse manner. We summarize
how public keys, update tokens, and challenge-equal ciphertexts at epoch i are
generated in Fig. 4.

Thus, we complete the proof of Lemma 4.3 if we prove Prop. 4.4 to 4.6. We
write those proofs below. �
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Fig. 4. The differences of public keys, update tokens, challenge-equal ciphertexts at
epoch i in hybrid games. We focus the case where i = ẽ.

Proofs of Core Propositions. We give the proofs of Prop. 4.4 to 4.6.

Proof of Prop. 4.4. We construct a reduction B that solves the LWE problem by
using the distinguisher A for the two games.

Recall that the key kj of epoch j consists of (skj , pkj). B is given an LWE
instance (A,B) and set Bj := B. That is, B is used as the public key pkj of
epoch j. Note that B can simulate all values in epoch k ∈ [0, T ] \ [fwl, fwr] since
all values in epoch k (outside the firewall) are independent of the secret key
of epoch j. (Note that such values may be related to the public key of epoch
j via tokens.) That is, B can choose the secret key Sk. We also note that B
can simulate O.Upd by using Hyb.Upd. In [fwl, fwr], values are related to the
secret key S behind B. However, in Gj+1(i + 1, b) (and Game-1(b)), all values
in [j + 1, fwr] are uniformly random values. Note that the original update token
Δj+1 needs skj and pkj+1. However, Δj+1 was already changed to Δ+

j+1, which
is uniformly random value, and we do not need skj .

Thus, the issue is how to simulate values in epoch j′ such that j′ ∈ [fwl, j]
(including the case where fwl = j). As we see in the definition of TokGen, we
do not need skj to generate Δj and B can simulate Δj . Therefore, B can also
simulate ct∗j,b for both b = 0, 1. For j′′ ∈ [fwl, j−1], public keys and tokens are not
related to skj . Thus, B chooses Sj′′ and can simulate all values (pkj′′ ,Δj′′ , ct∗j′′,b)
by using the normal algorithms.

If B = AS + X where S ← Z
n×�
q and X ← χm×�, the distribution is the

same as Gi+1(i + 1, b). If B is uniformly random, the distribution is the same
as Game-1(b). Therefore, B distinguish the instance if A distinguishes the two
games. This completes the proof. �

Proof of Prop. 4.5. The difference between these two games is as follows:

Game-1(b): Δj = (M j ,N j):

M j := Rj · [A | Bj ] + [O | −P2(Sj−1)],N j := R′
j · [A | Bj ],

where Rj ← {−1,+1}nη×m,R′
j ← {−1,+1}m×m.

Game-2(b): Δ+
j = (M+

j ,N+
j ): (M+

j ,N+
j ) ← Z

nη×(n+�)
q × Z

m×(n+�)
q .

In Game-1(b) and Game-2(b), the public key Bj ← Z
m×�
q is uniformly random.

Thus, we can apply the leftover hash lemma and these differences are statistically
indistinguishable. This completes the proof. �
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Proof of Prop. 4.6. The difference between these two games is as follows: For
b = 1,

Gi(i+1, 1): ct∗i,1 = (ū, c̄): (u′+ũ, ci−1+c′+ ṽ) = (0, ci−1)+BD(ui)M+
i + r̃N+

i ,
where r̃ ← {−1,+1}m. where r̃ ← {−1,+1}m.

Gi(i, 1): ct∗i,1 = (ū, c̄): (ū, c̄) ← Z
n
q × Z

�
q.

In Gi(i + 1, b) and Gi(i, b), N+
i is uniformly random. Thus, we can apply the

leftover hash lemma and these differences are statistically indistinguishable. For
b = 0,

Gi(i + 1, 0): ct∗i,0 = (u, c): (rAi, rB
+
i + e′ + �q/2�µ0), where A ← Z

m×
q , r ←

{−1,+1}m, e′ ← χ�
ns, and B+

i ← Z
m×�
q . where A ← Z

m×
q , r ← {−1,+1}m,

e′ ← χ�
ns, and B+

i ← Z
m×�
q .

Gi(i, 0): ct∗i,0 = (u, c): (u, c) ← Z
n
q × Z

�
q.

In Gi(i + 1, b) and Gi(i, b), the public key B+
i ← Z

m×�
q is uniformly random.

Thus, we can apply the leftover hash lemma and these differences are statistically
indistinguishable. This completes the proof. �

5 Construction with No-Directional Key Update

5.1 Scheme Description

We present a no-directional key update scheme UEio from puncturable PRFs and
IO. Let PRF : {0, 1}λ × {0, 1}n → {0, 1}� and PRG : {0, 1}τ → {0, 1}n. We will
set τ := λ, n := 2λ.

Setup(1λ) : Does nothing.
KeyGen(1λ) :

– Generate K ← PRF.Gen(1λ) and output ke := K.
TokGen(ke, ke+1)

– Generate and output Δe+1 ← iO(Cre[ke, ke+1]) where circuit Cre is
described in Fig. 5.

Enc(ke, μ ∈ {0, 1}�) :
– Choose r ← {0, 1}τ and compute t := PRG(r).
– Compute y := PRF(K, t) and output ct := (t, y ⊕ μ).

Dec(ke, ct) :
– Parse ke = K ct = (t, c).
– Compute μ′ := c ⊕ PRF(K, t) and output μ′.

Upd(Δe+1, cte)
– Parse Δe+1 = iO(Cre[ke, ke+1]) and choose re+1 ← {0, 1}τ .
– Compute and output (t, c) := iO(Cre[ke, ke+1])(cte, re+1).

Theorem 5.1. UEio is an r-IND-UE-CPA secure UE scheme in the no-
directional key updates setting.

We omit the proof due to space limitations. See the full version.
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Fig. 5. The description of Cre
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Abstract. We derive the first adaptively secure IBE and ABE for t-CNF,
and selectively secure ABE for general circuits from lattices, with 1 − o(1)
leakage rates, in the both relative leakage model and bounded retrieval
model (BRM).

To achieve this, we first identify a new fine-grained security notion for
ABE – partially adaptive/selective security, and instantiate this notion
from LWE. Then, by using this notion, we design a new key compress-
ing mechanism for identity-based/attributed-based weak hash proof sys-
tem (IB/AB-wHPS) for various policy classes, achieving (1) succinct secret
keys and (2) adaptive/selective security matching the existing non-leakage
resilient lattice-based designs. Using the existing connection between
weak hash proof system and leakage resilient encryption, the succinct-key
IB/AB-wHPS can yield the desired leakage resilient IBE/ABE schemes with
the optimal leakage rates in the relative leakage model. Finally, by further
improving the prior analysis of the compatible locally computable extrac-
tors, we can achieve the optimal leakage rates in the BRM.

1 Introduction

Leakage-resilient cryptography aims to create crypto systems that maintain secu-
rity even when partial information of the secret key is leaked. This line of studies
is motivated by both theoretic curiosities and perhaps more importantly, real-
world scenarios, where some secure crypto systems might be completely broken
if some partial key leakage is given to the attackers. One famous example is
the side-channel attacks where the adversary can obtain leakage from measur-
ing some physical behavior of an implementation, e.g., [1,27]. Another source of
leakage comes from imperfect erasure where the attacker can obtain partial infor-
mation before the content is completely erased, e.g., the cold boot attacks [23].
On the other hand, leakage resilience can be used to achieve security for other
more complicated systems. For example, in the design of non-malleable codes,
c© International Association for Cryptologic Research 2022
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the work [17,26,31] leveraged leakage resilience to prove non-malleability. There-
fore, leakage resilience has been an active research subject for the community,
e.g., [4–6,8,16,25,33], to name a few.

Main Goal. As motivated above, we aim to determine how to derive encryp-
tion schemes with better leakage rates, stronger security, and more expressive
access control functionalities. More specifically, our goal is to construct leakage
resilient encryption schemes in both the relative leakage model and the bounded
retrieval model (BRM) with (1) optimal leakage rates, i.e., 1 − o(1), (2) post-
quantum security and (3) more fine-grained access control, i.e., IBE and ABE for
various classes of policy functions.

The Leakage Models. Various leakage models have been studied in the lit-
erature, capturing information leaked to the adversary. This work focuses on a
simple yet general model called the bounded-leakage model (also known as the
memory leakage model), allowing the attacker to learn arbitrary information
about the secret key sk, as long as the number of leaked bits is bounded by
some parameter �. This model has drawn a lot of attentions (e.g., [4,5,25,33])
for its elegance and simplicity, and can be used as a building block towards more
sophisticated and realistic models, such as the continual leakage model [9,14]
(see [25]). Thus, understanding this model is not only of theoretic interests but
also a necessary step towards realizing security for broader physical attacks.

The bounded leakage model would require � < |sk|, as otherwise, the attacker
can trivially obtain the whole secret key, and thus no meaningful security can
be attained. To further characterize this requirement, there are two important
models studied in the literature that treat the relation between � and sk in a
different way: (1) relative leakage model, and (2) bounded retrieval model (BRM).

In the former, the secret key and public-key are chosen in the same way as
a standard crypto system (not necessary leakage resilient), and then the leakage
parameter � would be determined. The latter model generalizes the former by con-
sidering � as an independent parameter whose growth (essentially) only goes with
|sk|, but would barely affect the other parameters, such as the public-key size,
encryption running time, and ciphertext size. Basically, both models can scale up
� to allow an arbitrarily long leakage. But their difference is that the former would
require to scale up the security parameter and thus all the other parameters, while
the latter would only scale up the secret-key size and keep the other parameters
essentially the same. Thus, constructions in the BRM is more desirable yet more
challenging.

Leakage rate, i.e., the ratio �/|sk|, is an important measure of efficiency for
crypto systems in these two models. Particularly, rate 1−o(1) is the best we can
hope for – in order to tolerate � bits of leakage, the system only needs to scale
|sk| slightly larger than �, optimizing the security/efficiency tradeoff.

Current State of the Arts and Challenges. We first notice that for the pre-
quantum settings, leakage resilience can be achieved via the beautiful framework
– dual system encryption, even for IBE/ABE and with optimal leakage rates,
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e.g., [28]. However, current instantiations of the dual system encryption are
all group-based [11,20,28,29,41,42], and thus cannot defend against quantum
algorithms. It is an interesting yet extremely challenging open question how to
instantiate a dual system from a post-quantum candidate, such as LWE or LPN.

For post-quantum leakage resilient encryption schemes, we notice that there
are some limitations of the current techniques in achieving the optimal leakage
rate beyond the basic PKE. In prior work, there have been constructed LWE/LPN-
based PKE schemes with leakage rates 1−o(1), e.g., [10,13], but their ideas do not
generalize to more advanced settings, such as IBE and ABE. In a subsequent work,
Hazay et al. [25] proposed a unified framework, showing that (1) PKE implies
leakage resilient PKE in the relative leakage model, and (2) IBE implies leakage
resilient PKE/IBE in the BRM. Moreover, the leakage resilient IBE achieves the
same level of adaptive/selective security as that of the underlying IBE. Their
idea can be generalized to construct leakage resilient ABE, but this approach
inherently yields a very low leakage rate (i.e., 1/O(λ)).

A recent work [35] somewhat mitigated this issue by improving the leakage
rates, yet at the cost of weaker security guarantees for the post-quantum instan-
tiations. Particularly, they construct LWE-based leakage resilient IBE schemes in
both the relative leakage model and the BRM, achieving 1 − o(1) leakage rate
in the former and 1 − O(1) (for any arbitrarily small constant) in the latter.
Their improvement relies on a novel key-compression mechanism that shortens
the secret key length required in the framework of Hazay et al. [25]. Due to
some technical limitation in the mechanism, their IBE scheme however, can only
achieve the selective security. From these works [25,35], we see a tradeoff between
security and leakage rate, i.e., either we have an adaptively secure IBE with a
low leakage rate, or a selectively secure IBE with a higher leakage rate.

Main Question. In this work, we aim to further determine whether the tradeoff
between (selective/adaptive) security and leakage rates as above is inherent.
Particularly, we ask the following:

Can we achieve the optimal leakage rate ( 1− o(1)) for IBE (and ABE ) in
both relative and bounded retrieval models with security matching existing
non-leakage resilient IBE (ABE ), under LWE?

1.1 Our Contributions

In this work, we give positive answers in many settings of the main question.
Our central idea is a refinement of the framework of [25,35] by designing a new
key compression mechanism from ABE with succinct keys. Below we describe our
contributions in more details.

– As a warm-up, we propose a new leakage model for ABE that incorporates
parameters � and ω, where � is the number of bits allowed to leak per key and
ω is the number of keys the adversary can leak. We note that for PKE and
IBE, there is only one possible secret key corresponding to the challenge id.
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In this case, it is without loss of generality to just consider ω = 1. However,
for the ABE setting, there could be many possible secret keys corresponding
to the challenge attribute, so specifying ω is natural and necessary in the
leakage model. We call a scheme (�, ω)-leakage resilient if the scheme can
tolerate leakage on ω keys, each within � bits.

– Next, we design improved instantiations of attribute-based weak hash proof
system (AB-wHPS), which generalizes (identity-based) weak hash proof sys-
tem [5,25] by associating each ciphertext with an attribute and each secret
key with a policy function. Particularly, we construct lattice-based AB-wHPS
from ABE for various function classes, achieving two important new features:
(1) succinct secret keys, i.e., the secret key length is |f | + o(|f |) where f
is the policy function, and (2) security matching currently the best known
lattice-based ABE schemes (not necessarily leakage resilient). More specif-
ically, we construct adaptively secure AB-wHPS for the class of comparison
functions (which is the IB-wHPS) and the class t-CNF∗1, and selectively secure
AB-wHPS for general circuits.

– By using AB-wHPS for class F with succinct keys, we are able to construct
(�, 1)-leakage resilient ABE for F , with leakage rate �/|sk| = (1 − o(1)) in the
relative leakage model.
We view AB-wHPS with succinct key as an improved key compression mecha-
nism from prior works [25,35] in the following two aspects: (1) AB-wHPS has
better expressibility of policy function (the prior work [35] can only express
the comparison function), and (2) we can derive adaptively secure AB-wHPS
with succinct keys for classes which we have adaptively secure (non-leakage
resilient) ABE. Prior to our work, for lattice-based schemes, we only had either
a selectively secure IB-wHPS with succinct secret keys [35] or an adaptively
secure IB-wHPS with non-succinct keys [25].

– From our AB-wHPS, we can further derive (�, 1)-leakage resilient ABE in the
BRM, via an amplification and a connection with locally computable extrac-
tors as pointed out by [25]. However, prior compatible locally computable
extractors [5] can only achieve 1 − O(1) leakage rate for an arbitrarily small
constant. To achieve 1 − o(1) leakage rate, we improve the prior analysis [5]
by refining their proof technique via the framework of Vadhan [40].

– Finally, we present a bootstrapping mechanism that generalizes our prior
(�, 1)-leakage resilient ABE schemes to (�, ω)-leakage resilient schemes for any
bounded polynomial ω, in both relative leakage model and bounded retrieval
model. The resulting leakage rate is still optimal (i.e., 1− o(1)) against block
leakage functions, a slightly more restricted class.

1.2 Overview of Our Techniques

Our central insight is a new key-compression mechanism for the framework in
[25]. To illustrate our new idea, we first briefly review the prior framework [25]
1 This is the dual class of t-CNF where the function is an assignment x and attribute

is a description of t-CNF. We use the dual class as we are working on Key-policy
ABE while the prior work [38] worked on Ciphertext-policy ABE.
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and point out the barrier of their leakage rates. Then we will describe our new
ideas for the improvement.

(Weak) Hash Proof System. A hash proof system can be described
as a key encapsulation mechanism that consists of four algorithms (Setup,
Encap,Encap∗,Decap): (1) Setup outputs a key pair (pk, sk), (2) Encap(pk) out-
puts a pair (CT, k) where k is a key encapsulated in a “valid” ciphertext CT, (3)
Encap∗(pk) outputs an “invalid” ciphertext CT∗, and (4) Decap(sk,CT) outputs
a key k′. A (weak) hash proof system requires the following:

– Correctness. For a valid ciphertext CT, Decap always outputs the encapsu-
lated key k′ = k, i.e., Decap(sk,CT) = k, where (CT, k) $←− Encap(pk).

– Ciphertext Indistinguishability. Valid ciphertexts and invalid ciphertexts
are computationally indistinguishable, even given the secret key. This condi-
tion is essential for achieving leakage resilience [5,33].

– Universality. The decapsulation of an invalid ciphertext has information
entropy, even for unbounded adversaries. Here, the randomness of invalid
decapsulation comes from randomness in generating secret keys. A weak
HPS (wHPS) only requires this property to hold for a random invalid cipher-

text, i.e. CT∗ $←− Encap∗(pk), while a full-fledged HPS requires this to hold for
any invalid ciphertext.

As noted in prior work [5], a wHPS already suffices to achieve leakage resilience,
though it is not sufficient for the CCA2 security, for which the HPS was originally
intended to design [12]. Roughly speaking, the leakage resilient scheme derived
from wHPS [5,25,33] can tolerate � ≈ |k| − λ bits of leakage, i.e., the length
of encapsulated key minus security parameter, and thus the leakage rate of the
derived encryption scheme would be �/|wHPS.sk| ≈ |k|−λ

|wHPS.sk| .
Moreover, the idea can be generalized to IB-wHPS and AB-wHPS where an

additional id or attribute x is associated with the ciphertext, and id or a policy
function f is associated with the secret key. In the same way [25], IB-wHPS and
AB-wHPS suffice to derive leakage resilient IBE and ABE.

wHPS from Any PKE and Generalizations [25]. While there were several
instantiations of wHPS from specific assumptions [5,33], Hazay et al. [25] showed
somewhat surprisingly, any PKE implies wHPS. Their construction [25] can be
thought as the following two steps: (1) construct a basic wHPS that only outputs
1 bit (or log λ-bits), (2) amplify the output of the wHPS via parallel repetition.
As pointed out in the work [25], parallel repetition might not amplify HPS in
general, yet it does for wHPS as required in the application of leakage resilience.

The basic wHPS is simple: given any PKE = (Enc,Dec), the wHPS.pk consists
of two public keys pk0, pk1 from PKE, and wHPS.sk is (b, skb) for a random bit
b where skb corresponds to pkb. The Encap algorithm outputs a valid ciphertext
CT = (Encpk0(k),Encpk1(k)) to encapsulate a uniformly random key k ∈ {0, 1}.
The Encap∗ algorithm outputs an invalid ciphertext CT∗ = (Encpk0(k),Encpk1(1−
k)) for a uniformly random bit k. With a parallel repetition of n times, i.e.,
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wHPS‖.pk := {pki,0, pki,1}i∈[n] and wHPS‖.sk := {(i, bi), ski,bi
}i∈[n], we can get

a wHPS‖ with |k| = n for an arbitrarily large n � λ, and thus a leakage resilient
encryption that tolerates � = n − λ ≈ n − o(|wHPS‖.sk|).

Naturally, this elegant approach can be generalized to construct IB-wHPS and
AB-wHPS for class F from any IBE and ABE for F , and the (adaptive/selective)
security of the IB-wHPS and AB-wHPS matches the underlying IBE and ABE.
Therefore, this framework provides a powerful way to design leakage resilient IBE
and ABE from any IBE and ABE that can tolerate an arbitrarily large leakage �.

Technical Challenges from Prior Work. This technique of [25] achieves
almost everything one would desire, except for the leakage rate. The main reason
comes from the secret key size of wHPS‖, which is also scaled up by the paral-

lel repetition, resulting in a low leakage rate as �
|wHPS‖.sk| = n−o(|wHPS‖.sk|)

|wHPS‖.sk| ≈
n−o(n|PKE.sk|)

n|PKE.sk| ≈ 1
|PKE.sk| . To further improve the rate, it suffices to decrease

|wHPS.sk| as observed by [35]. In particular, if we can shrink the secret key
size of the wHPS to roughly |wHPS‖.sk| ≈ n + |PKE.sk|, then the leakage rate

would be n−o(|wHPS‖.sk|)
|wHPS‖.sk| ≈ n−o(n+|PKE.sk|)

n+|PKE.sk| ≈ 1 − o(1), for sufficiently large n.
Therefore, now the goal becomes to design a compact form of wHPS‖.sk that
can encode n possible keys in a succinct way.

The work [35] achieved this goal and the more general IB-wHPS by proposing
a novel key compression mechanism from a new primitive called multi -IBE. Then
they instantiated the required multi-IBE from inner-product encryption (IPE) [3,
11,42] with succinct keys. However, for lattice-based IPE schemes [3], only the
selective security can be achieved under currently known techniques. Thus, the
work [35] can only derive selectively secure leakage resilient IBE from lattices.

At this point, we summarize two limitations from the prior key compression
mechanism [35]: (1) the approach is tied to IBE/IB-HPS, and it is unclear whether
we can further generalize the technique for further expressive policies, i.e., ABE;
(2) the lattice-based instantiations are only selectively secure under currently
known techniques. Below we show our new ideas to break these limitations.

Our New Key Compression Mechanism. We first present a new key com-
pression mechanism that can be generalized to more expressive policy functions,
i.e., ABE. To illustrate our core insight, we first describe how to use the tech-
nique of key-policy (KP)-ABE to encode wHPS‖.sk succinctly. The idea can be
naturally generalized to compress IB-wHPS and AB-wHPS. To facilitate further
discussions, we first recall the concept of KP-ABE.

In a KP-ABE scheme, a secret key is associated with a policy function f :
{0, 1}∗ → {0, 1}, and a ciphertext is associated with an attribute x. The secret
key can decrypt and recover the encrypted message if and only if f(x) = 1.

Now we explain our key compression mechanism. Let us describe the for-
mat of a valid ciphertext of wHPS‖ as CT :=

{
Encpki,0

(ki),Encpki,1
(ki)

}
i∈[n]

,

and a secret key is of the form {(i, bi), ski,bi
}i∈[n]. From another angle looking
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at the ciphertext, we can view the indices (i, b)’s as attributes in an ABE, i.e.
CT := {ABE.Enc(mpk, (i, 0), ki),ABE.Enc(mpk, (i, 1), ki)}i∈[n]. Then we can use
a single ABE secret key to encode the set of keys {(i, bi), ski,bi

}i∈[n] as fol-
lows. Let b = (b1, b2, . . . , bn) ∈ {0, 1}n be a binary vector, and define the
following policy function gb(i, z) = 1 iff bi = z for each i ∈ [n]. In this way,
only this set of attributes {(i, bi)}i∈[n] satisfies the policy function gb , so the
ABE decryption algorithm with skgb

can successfully recover the encrypted
messages from {ABE.Enc(mpk, (i, bi), ki)}i∈[n]. The other part of the cipher-
text, i.e., {ABE.Enc(mpk, (i, 1 − bi), ki)}i∈[n] is hidden by the security of the
ABE. This approach can be naturally extended to the setting of IB-wHPS and
AB-wHPS by adding an additional string x ∈ {0, 1}∗ (either an ID or gen-
eral attribute) to the existing attributes as above, resulting in ciphertexts of
the form CT := {ABE.Enc(mpk, (x, i, 0), ki),ABE.Enc(mpk, (x, i, 1), ki)}i∈[n]. It
is not hard to check these designs satisfy the requirements of (IB/AB)-wHPS.

Here we can conclude: (1) skgb
is functionally equivalent to the set of secret

keys {(i, bi), ski,bi
}i∈[n], and (2) as long as skgb

has a succinct representation,
i.e., |skgb

| only depends on the depth but not the size of the function gb when
gb is given, we can achieve the optimal leakage rate. We can instantiate the
desired ABE by the lattice-based schemes [7,22], and consequently derive a
PKE/IBE/ABE with the optimal rate in the relative leakage model.

Adaptive Security for Various Function Classes. A careful reader may
already observe that the underlying ABE schemes of [7,22] do not achieve adap-
tive security, and neither do the IB-wHPS and AB-wHPS as constructed above.
Moreover, it seems that lattice-based ABE that supports the computation gb(·)
with succinct keys (e.g., general circuits [7,22]) can only achieve selective secu-
rity. Thus, existing techniques plus the above approach do not suffice for our
goal on adaptive security.

To overcome the limitation, we further observe that our constructions of
IB-wHPS and AB-wHPS above actually do not require the full adaptive security
of the whole attribute (x, (i, b)) from the underlying ABE. We only need the
selective security over the second part (i, b), as this part is generated by the
honest key generation algorithm, instead of being challenged by the adversary.

With this insight, we define a more fine-grained security notion that consid-
ers partially adaptive/selective security over partitioned attributes (x, (i, b)).
Intuitively, if the underlying ABE is adaptively (or selectively) secure over
x and selective secure over (i, b), then we can prove the AB-wHPS is adap-
tively (resp. selectively) secure. Furthermore we instantiate the required par-
tially adaptive-selective ABE for various function classes. As a result, we obtain
an adaptively secure IB-wHPS and AB-wHPS for t-CNF∗, and selectively secure
AB-wHPS for general circuits. This matches the function classes for which we
know how to construct adaptively secure ABE without leakage.
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Application. Our AB-wHPS with succinct keys immediately yields a (�, 1)-
leakage resilient ABE with leakage rate 1 − o(1) in the relative leakage model,
followed from the framework [25]. More specifically, by using our adaptively
secure AB-wHPS for the comparison function (i.e., IB-wHPS) and the t-CNF∗

functions, we get leakage resilient and adaptively secure ABE for these classes
with optimal leakage rates. Additionally, we can have selectively secure leakage
resilient ABE for general circuits, with leakage rate 1 − o(1).

Extension I. As pointed out by [25], we can further derive (�, 1)-leakage resilient
ABE in the BRM from AB-wHPS, via an amplification and a connection with
locally computable extractors [40]. However, the analysis from prior compatible
locally computable extractors only yields 1 − O(1) rate for the leakage resilient
encryption scheme. It was left as an interesting open question by [35] how to
improve the analysis of the extractor. We solve this open question by improving
the analysis of the sampler [5] required by the general construction of Vad-
han [40]. With our improved analysis, we are able to achieve 1 − o(1) leakage
rate in the BRM.

Extension II. Finally, we show how to derive (�, ω)-leakage resilient ABE with
the optimal leakage rate in the block leakage setting for both relative model and
BRM, for any bounded polynomial ω. Inspired by the work [21], we derive a new
bootstrapping mechanism by connecting secret sharing with our AB-wHPS. We
leave it as an interesting open question how to achieve leakage resilient ABE even
for an unbounded polynomial ω.

1.3 Other Related Work

AB-wHPS has been studied to construct leakage resilient ABE schemes in [43,44].
Particularly, in [43], the authors focus on AB-wHPS supporting linear secret
sharing schemes as the policy function class, from the pre-quantum decisional
bilinear Diffie-Hellman assumption. The work in [44] constructed an AB-wHPS
from a post-quantum, i.e., LWE, assumption. However, the constructions only
achieve selective security for linear secret sharing schemes. And both of these
related work only consider security in the relative leakage model. Compared
with the prior works, our design/analysis approach is more modular, supporting
broader function classes and/or stronger (adaptive) security.

2 Preliminaries

We use several standard mathematical notations, whose detailed descriptions
are deferred to the full version of this paper, due to space limit.
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2.1 Attribute-Based Encryption (ABE)

Definition 2.1 (ABE [37]). An attribute-based encryption (ABE) scheme for a
function class Fλ = {f : Xλ → {0, 1}} consists of four algorithms
ABE.{Setup,KeyGen,Enc,Dec} as follows.

– Setup. ABE.Setup(1λ) takes a security parameter λ as input, and generates
a pair of master public key and master secret key (mpk,msk), where mpk
contains the attribute space Xλ, message space M and ciphertext space CT .

– Key generation. ABE.KeyGen(f,msk) takes as input a function f ∈ Fλ and
the master secret key msk, and generates a secret key (f, skf ). Without loss of
generality, we think the secret key contains two parts, the function description
f , and an extra skf . The secret key is succinct if |skf | = o(|f |). When the
context is clear, we often omit the description of f .

– Encryption. ABE.Enc(mpk,x, μ) takes as input the master public key mpk,
an attribute x ∈ Xλ and a message μ ∈ M, and outputs a ciphertext ct ∈ CT .

– Decryption. ABE.Dec(skf , ct) takes as input a secret key skf and a cipher-
text c, and outputs μ ∈ M if f(x) = 1 and ⊥ if f(x) = 0, where x is the
corresponding attribute used to generate ct.

Correctness. We require that for all f ∈ F , x ∈ Xλ, μ ∈ M, for correctly
generated (mpk,msk) $←− ABE.Setup(1λ), skf

$←− ABE.KeyGen(msk, f) and ct
$←−

ABE.Enc(mpk,x, μ), it holds that

– if f(x) = 1, Pr [ABE.Dec(skf , ct) = μ] ≥ 1 − negl(λ).
– if f(x) = 0, Pr [ABE.Dec(skf , ct) = ⊥] ≥ 1 − negl(λ).

Leakage Resilience in the Relative Leakage Model
Next, we give the formal definition of leakage-resilient key-policy ABE.

Definition 2.2 (Leakage-Resilient ABE). A leakage-resilient ABE with
attribute space Xλ for a class of functions Fλ = {f : Xλ → {0, 1}} in the rel-
ative leakage model consists of four algorithms ABE.{Setup,KeyGen,Enc,Dec},
which are parameterized by a security parameter λ and leakage parameters �, ω.
In particular, (�, ω)-leakage-resilient security can be defined by the following
experiment.
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Experiment ExpLR
ABE,A(λ, �, ω)

Attribute Challenge: In the setting of selective case, A chooses an challenge

attribute x∗ ∈ Xλ before the Setup stage and sends it to C; In the setting of
adaptive case, A chooses an challenge x∗ ∈ Xλ in the challenge stage, and
sends it to C.

Test Stage 1: A adaptively queries the challenger C with function f ∈ Fλ. For each
query, C responds with (f, skf ) if f(x∗) �= 1 and ⊥ otherwise.

ω-Leakage Queries Stage: A adaptively queries the challenger C with q pairs
(fi, hi) for i ∈ [ω], where fi is a policy function such that fi(x

∗) = 1, and

hi : {0, 1}∗ → {0, 1}� is a leakage function. The adversary gets hi(skfi
) from C.

Challenge Stage: A chooses two messages μ0, μ1 ∈ M and sends them to C. Then

C chooses b
$←− {0, 1} and computes ctb

$←−ABE.Enc(mpk,x∗, μb). Finally, C returns
ctb to A.

Test Stage 2: A adaptively queries the challenger C with function f ∈ Fλ. Then C
responds with (f, skid,f ) if f(x∗) �= 1 and ⊥ otherwise.

Output: The adversary A outputs a bit b′ ∈ {0, 1}.

We define the advantage of A in the above experiment2 to be

AdvLR
ABE,A(λ, �, ω) = |Pr[b = b′] − 1/2| .

The scheme is (�, ω)-leakage resilient if for any ppt adversary A, we have
AdvLR

ABE,A(λ, �, ω) ≤ negl(λ), and the leakage rate of this ABE is �
|sk| .

Furthermore, the scheme is abbreviated as �-leakage resilient if ω = 1 in the
above experiment.

Remark 2.3. We use the parameter ω to denote the number of different chal-
lenge keys that can be conducted leakage queries. For PKE and IBE, we have
ω = 1 as for these two settings, there is a unique challenge key corresponding to
the challenge attribute. For the more general ABE, there might be many different
“1”-keys corresponding to the challenge attribute. Thus, this parameter ω would
be an important specification for the leakage resilient ABE.

Remark 2.4. In our security model, the adversary can obtain leakage on ω
secret keys adaptively one after another. The secret keys would then form a
block-source under the leakage.3 We note that it is possible to generalize the
model where the leakage function takes inputs all the ω secret keys. In this work,
we focus mainly on the block-source setting, as it already captures many useful
scenarios.

2 Notice that in the above experiment ExpLR
ABE,A(λ, �, ω), we allow the adversary to

interleave key queries in Test Stage 1 and leakage queries in ω-Leakage queries Stage,
in an arbitrary way.

3 For the case that sk := S = (S1, . . . , Sm) is an m × e block source as in [39], we
define leakage functions fi : {0, 1}∗ → {0, 1}� independently for each block Si with
all i ∈ [m]. We say (f1, . . . , fm) are block leakage functions, if the min-entropy of
Si is still large enough even given leakage (f1(S1), . . . , fi−1(Si−1)) for any i ∈ [m].
Clearly, when m = 1, this is the trivial case in Definition 2.2. Here, we call m�

|sk| the
block leakage rate of the corresponding scheme.
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Leakage Resilience in the BRM.
Below, we generalize to the setting of ABE the definition of leakage-resilience in
the BRM by Alwen et al. [5].

Definition 2.5. (ABE in the BRM). An ABE for attribute space Xλ and policy
function class F := {Xλ → {0, 1}} is (�, ω)-leakage resilient in the BRM if its
master public-key size, ciphertext size, encryption time and decryption time (and
the number of secret-key bits used by decryption) are independent of the leakage-
bound �. Besides, in the leakage resilient experiment, the adversary is allowed
to conduct key leakage attacks on ω secret keys corresponding to the challenge
attribute. More formally, there exist polynomials mpksize, ctsize, encT, decT, such
that, for any polynomial � and any (mpk,msk) $←− ABE.Setup(1λ, 1�(λ)), x ∈ Xλ,

μ ∈ M, ct $←− ABE.Enc(mpk,x, μ), the scheme satisfies:

1. Master public-key size is |mpk| ≤ O(mpksize(λ)), ciphertext size is |ct| ≤
O(ctsize(λ, |μ|)).

2. Run-time of ABE.Enc(μ, pk) is bounded by O(encT(λ, |μ|)).
3. Run-time of ABE.Dec(ct, skf ) and the number of bits of skf used in this

decryption bounded by O(decT(λ, |μ|)), where skf
$←− ABE.KeyGen(msk, f)

with f ∈ F such that f(x) = 1. Here we assume that the secret key skf

is stored in a random access memory (RAM), and the decryption algorithm
ABE.Dec(ct, ·) only needs to read partial bits of skf to decrypt.

The leakage rate of this scheme is defined as �
|skf | . Furthermore, the scheme is

abbreviated as �-leakage resilient if the parameter ω = 1 in the experiment.

Policy Function Classes. This work considers three function classes: (1) ID
comparison functions, (2) t-CNF∗ formulas, and (3) general circuits. (1) and (3)
are clear from the literature. We elaborate on (2). First we present the definition
of the function class t-CNF.

Definition 2.6 (t-CNF [38]). A t-CNF policy f : {0, 1}� → {0, 1} is a set of
classes f = {(Ti, fi)}i, where for all i, Ti ⊆ [�], |Ti| = t and fi : {0, 1}t → {0, 1}.
For all x ∈ {0, 1}� the value of f(x) is computed as f(x) =

∧
i fi(xTi

), where xT

is the length-t bit-string consisting of the bits of x in the indices T . A function
class F is t-CNF if it consists only of t-CNF policies for some fixed � ∈ N and a
constant t ≤ �. If F is a t-CNF class, we say that t is the CNF locality of F .

In this paper, we use the “dual” form of t-CNF, called t-CNF∗. The use of
the dual version is because the prior work [38] worked on the ciphertext-policy
ABE for t-CNF, and this work presents the result in the key-policy setting.

Definition 2.7 (t-CNF∗). For any x ∈ {0, 1}� (the domain of t-CNF), let Ux(·)
denote the function for which x is hardwired into Ux(·), and Ux(·) takes f ∈ t-
CNF as input and outputs Ux(f) such that Ux(f) = f(x). Ux(·) is uniquely
determined by x. We denote the function class {Ux(·)} as t-CNF∗.
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2.2 Entropy and Extractors

Definition 2.8 (Min-Entropy). The min-entropy of a random variable X,

denoted as H∞(X) is defined as H∞(x) = − log
(

max
x0∈X

Pr[x = x0]
)

.

Definition 2.9 (Average-Conditional Min-Entropy [15]). The average-
conditional min-entropy of a random variable X conditioned on a correlated
variable Z, denoted as H∞(X|Z) is defined as

H∞(X|Z)=− log
(
Ez←Z [max

x
Pr[X = x|Z = z]]

)
=− log

(
Ez←Z [2H∞[X|Z=z]]

)
.

This notion of conditional min-entropy measures the best guess for X by an
adversary that may observe an average-case correlated variable Z.

Lemma 2.10 ([15]). Let X,Y,Z be arbitrarily correlated random variables where
the support of Y has at most 2� elements. Then H∞(X|(Y,Z)) ≥ H∞(X|Z)− �.
In particular, H∞(X|Y ) ≥ H∞(X) − �.

We also give the definition of randomness extractors [34], which is somewhat
stronger than the average-case strong extractor [15].

Definition 2.11 (Randomness Extractor). An efficient function Ext : X ×
S → Y is a (v, ε)-extractor if for all (correlated) random variable X,Z such that
the support of X is X and H∞(X|Z) ≥ v, we have Δ((Z, S,Ext(X;S)), (Z, S, Y ))
≤ ε, where S (also called the seed) and Y are distributed uniformly and inde-
pendently over their domains S,Y respectively.

Theorem 2.12 ([15]). Let H = {hs : X → Y}s∈S be a universal family of hash
functions meaning that for all x = x′ ∈ X we have Prs←S [hs(x) = hs(x′)] ≤ 1

|Y| .

Then Ext(x, s)
def
= hs(x), is a (v, ε)-extractor for any parameter v ≥ log |Y| +

2 log(1/ε).

3 Attribute-Based Weak Hash Proof Systems

In this section, we first present a generalization of the weak hash proof system
called attribute-based weak hash proof system (AB-wHPS). This notion associates
attributes and policy functions to the system following the spirit of attribute-
based encryption. Next, we show how to construct AB-wHPS from ABE that
achieves the property of succinct keys, which is the key to leakage resilience
with the optimal rate. With a new fine-grained approach, we are able to achieve
AB-wHPS with selective security for general circuits, adaptive security of identity
comparison functions (i.e., identity-based wHPS), and adaptive security for t-
CNF∗ functions4, from lattices. This would imply lattice-based leakage resilient,
adaptively secure PKE, IBE, ABE for t-CNF∗, and selectively secure ABE for
general circuits, all with the optimal rate, matching the best known non-leakage
resilient selectively/adaptively secure constructions.
4 We use a “dual” variant of the CNF functions as we discussed in the introduction.

The formal definition is presented in Sect. 2.1.



Leakage-Resilient IBE/ABE with Optimal Leakage Rates from Lattices 237

3.1 Formal Definition of Attribute-Based wHPS

We first present the formal definition of an AB-wHPS.

Definition 3.1 (AB-wHPS). An attribute-based weak hash proof system
(AB-wHPS) for an attribute space Xλ = {0, 1}∗ and a class of functions Fλ =
{f : Xλ → {0, 1}} consists of five algorithms AB-wHPS.{Setup,KeyGen,Encap,
Encap∗,Decap}:

– Setup. AB-wHPS.Setup(1λ) takes a security parameter λ as input, and gen-
erates a pair of master public key and master secret key (mpk,msk). The
attribute space Xλ and the encapsulated key space K are determined by mpk.

– Key generation. AB-wHPS.KeyGen (f,msk) takes as input a function f ∈
Fλ and the master secret key msk, and generates a secret key (f, skf ). Without
loss of generality, we think the secret key contains two parts, the function
description f , and an extra skf . The secret key is succinct if |skf | = o(|f |).
When the context is clear, we often omit the description of f .

– Valid encapsulation. AB-wHPS.Encap(mpk,x) takes as input the master
public key mpk and an attribute x ∈ Xλ, and outputs a valid ciphertext CT
and its corresponding encapsulated key k ∈ K.

– Invalid encapsulation. AB-wHPS.Encap∗(mpk,x) takes as input the master
public key mpk and x ∈ Xλ, and outputs an invalid ciphertext CT∗.

– Decapsulation. AB-wHPS.Decap(skf ,CT) takes as input a secret key skf

and a ciphertext CT, and deterministically outputs k ∈ K if f(x) = 1 and ⊥
if f(x) = 0, where x is the corresponding attribute used to generate CT.

Furthermore, an AB-wHPS needs to satisfy three properties: correctness,
ciphertext indistinguishability, and universality.

Correctness. For (mpk,msk) $←− AB-wHPS.Setup(λ), any x ∈ Xλ and any f ∈
Fλ such that f(x) = 1, we have

Pr
[
k = k′

∣∣∣skf
$←− AB-wHPS.KeyGen(f,msk),

(CT, k)
$←− AB-wHPS.Encap(mpk,x), k′ = AB-wHPS.Decap(skf , c)

]
= 1.

Ciphertext Indistinguishability.For any challenge attributex∗, valid/in-valid
ciphertexts output by AB-wHPS. Encap(mpk,x∗) and AB-wHPS.Encap∗(mpk, x∗)
are indistinguishable, even given one secret “1-key” skf such that f(x∗) = 1 and
perhaps many “0-keys” skf ′ such that f ′(x∗) = 0. More formally, this indistin-
guishability is always described by the experiment between an adversary A and a
challenger C in Table 1.

We define the advantage of A in the above game to be AdvAB-wHPS
Π,A,Fλ

(λ) =
|Pr[A wins] − 1/2| . The indistinguishability means that AdvAB-wHPS

Π,A,Fλ
(λ) ≤

negl(λ).
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Remark 3.2 In this definition, we require ciphertext indistinguishability to hold
even given a single skf such that f(x∗) = 1. This suffices to achieve leak-
age resilient PKE, IBE, and (�, 1)-leakage resilient ABE directly, and (�, ω)-
leakage resilient ABE for any bounded-polynomial ω via a bootstrapping procedure
(ref. Sect. 6), where � ≈ (1 − o(1))|skf |.

Universality. We need one additional information theoretic property, requiring
that for any adversary with public parameters, the decapsulation of an invalid
ciphertext has information entropy. We define this property in as follow.

Definition 3.3. (Universal AB-wHPS). We say that an AB-wHPS is (l, w̄)-

universal, if for any attribute x ∈ Xλ, (mpk,msk) $←− AB-wHPS.Setup(1λ), and

CT∗ $←− AB-wHPS.Encap∗(mpk,x), it holds

H∞(AB-wHPS.Decap(CT∗, skf )|mpk,msk,CT∗,x) ≥ w̄,

where skf = AB-wHPS.KeyGen(f,msk) with f(x) = 1, and l is the bit-length of
the decapsulated value from AB-wHPS.Decap(CT∗, sk).

Table 1. X

Valid/Invalid Ciphertext Indistinguishability Experiment

Attribute Challenge: In the setting of selective case, A chooses an challenge

attribute x∗ ∈ Xλ before the Setup stage and sends it to C; In the setting of

adaptive case, A chooses a challenge x∗ ∈ Xλ in any arbitrary stage before

the challenge stage, and sends it to C.
Setup: The challenger C gets a pair of (mpk,msk) by running AB-wHPS.Setup(1λ),

and sends mpk to A.

Test Stage 1: A adaptively queries the challenger C with f ∈ Fλ, and C responds

with (f, skf ).

Challenge Stage: C selects b
$←− {0, 1}.

If b = 0, C computes (CT, k)
$←−AB-wHPS.Encap(mpk,x∗).

If b = 1, C computes CT $←−AB-wHPS.Encap∗(mpk,x∗).
Then C returns CT to A.

Test Stage 2: A adaptively queries the challenger C with f ∈ F . Then C responds

with (f, skf ).

Output: A outputs a bit b′ ∈ {0, 1}. A wins the experiment, if b = b′ and at most

one of A’s key queries f satisfies f(x∗) = 1.



Leakage-Resilient IBE/ABE with Optimal Leakage Rates from Lattices 239

3.2 Fine-Grained Security Notions and General Construction
of AB-wHPSfrom ABE

In this section, we present how to construct AB-wHPS from ABE. To achieve
adaptive security for several subclasses of policy functions, we present a more
fine-grained approach as follows. We first define a notion called partially selec-
tive/adaptive security over partitioned attributes. Next we show for a specific
class G, if an ABE is (X, sel)-secure for class F∧‖G for X ∈ {sel, ada}, then we can
construct an X-secure AB-wHPS for F . Moreover, suppose the underlying ABE
has succinct keys, so does the AB-wHPS. In the next section, we show instanti-
ations of (ada, sel)-secure ABE for various function classes. Below we elaborate
on the notations and the new security definition.

Definition 3.4. Let F1 = {f1 : X1 → {0, 1}} and F2 = {f2 : X2 → {0, 1}}
be two function classes. We define the operator ∧‖ over two function classes as
follow: F := F1∧‖F2 is a function class that consists of function maps X1×X2 →
{0, 1}, where each function ff1,f2 ∈ F is indexed by two functions f1 ∈ F1 and
f2 ∈ F2 such that on input x = (x1,x2) ∈ X1 × X2, ff1,f2(x) = f1(x1) ∧ f2(x2).

Using this composed function class in Definition 3.4, we can naturally con-
sider any combination of selective/adaptive security for ABE as follows.

Definition 3.5. (Partial Selective/Adaptive Security). For any ABE with
the attribute space X1 × X2 for the policy function class F := F1 ∧‖ F2 defined
as in Definition 3.4, we define partial selective/adaptive security as follows:

– ada-sel security: For any challenge attribute x∗ = (x∗
1,x

∗
2) ∈ X1 × X2, x∗

1 is
chosen adaptively but x∗

2 is chosen selectively in the corresponding indistin-
guishability experiment.

– sel-ada security: For any challenge attribute x∗ = (x∗
1,x

∗
2) ∈ X1 × X2, x∗

1 is
chosen selectively and x∗

2 is chosen adaptively in the corresponding indistin-
guishability experiment.

This notion also captures the standard selective (or adaptive) security as sel-
sel (or ada-ada) security, where both parts of the challenge attribute are chosen
selectively (or adaptively).

Remark 3.6. In this work, we need a slightly weaker version of the partial selec-
tive/adaptive security from ABE – the adversary is only allowed to query one key
(f, g) such that f(x∗

1) = 1 and g(x∗
2) = 0. The other keys are of the form (f ′, g′)

such that f ′(x∗
1) = 0. Therefore, throughout this work we will use this slightly

weaker version by default.

Remark 3.7. In the same way, we can define the partial selective/adaptive
ciphertext indistinguishability for AB-wHPS.

Remark 3.8. This definition can be defined recursively. For example, the first
part F1 can also consists of two parts, i.e., F1 = F1,1 ∧‖ F1,2. In this case, we
can consider (X-Y)-Z security for any combination of X,Y,Z ∈ {sel, ada}.
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To construct our desired AB-wHPS for F , we need an ABE for F ∧‖ G for this
specific G as we describe below.

Definition 3.9. Let m = m(λ) and n = n(λ) be two integer parameters, and
we define a function class G = {g : [n]× [m] → {0, 1}} as follows. Each function
gy ∈ G is indexed by a vector y = (y1, . . . , yn)	 ∈ [m]n, and gy (x1, x2) = 1 if
and only if x2 = yx1 .

Remark 3.10. The class G can be captured by boolean circuits with input length
log n + log m, and depth within O(log(n + m)), i.e.,

∨
i∈[n](i

?= x1) ∧ (yi
?= x2).

Given this particular class G (with parameters m,n) defined in Definition 3.9
and a class F , we show how to use ABE for F ∧‖ G to construct AB-wHPS for
F . For different classes F ’s, the AB-wHPS can be used to further derive leakage
resilient PKE, IBE, and ABE.

Construction 3.11 (AB-wHPS from ABE). Let ΠABE = ABE.{Setup,
KeyGen,Enc,Dec} be an ABE scheme with attribute-space X̄λ = Xλ × X ′

λ =
{0, 1}∗ × {[n] × [m]}, message-space M = Zm and ciphertext space CT for the
policy-function class F ∧‖ G for the class G as in Definition 3.9 with parameters
m,n. Then, an AB-wHPS ΠAB-wHPS with attribute space Xλ = {0, 1}∗ and the
encapsulated-key-space K = Z

n
m for the policy-function class F = {f : {0, 1}∗ →

{0, 1}} can be constructed as follows:

– AB-wHPS.Setup(1λ): Given the security parameter λ as input, the algorithm

runs ABE.Setup to generate (mpkABE,mskABE) $←− ABE.Setup(1λ), and outputs
mpk := mpkABE and msk := mskABE.

– AB-wHPS.KeyGen(msk, f): Given a master secret-key msk := mskABE and a

function f ∈ F as input, the algorithm first chooses a random vector y
$←−

[m]n, and sets f̂ := f̂f,gy
∈ F ∧‖ G. Then the algorithm runs ABE.KeyGen to

generate skABE
f̂

$←− ABE.KeyGen(mskABE, f̂), and outputs skf := (f̂ , skABE
f̂

) as

the secret key for f . Note that the description of f̂ can be expressed as (f,y)
– AB-wHPS.Encap(mpk,x): Given a master public-key mpk and an attribute

x ∈ {0, 1}∗ as input, the algorithm first samples a random vector k =
(k1, . . . , kn)	 ∈ Z

n
m, and then runs ABE.Enc mn times with attributes

xi,j = (x, i, j) ∈ {0, 1}∗ × [n] × [m] to set

CT := {cti,j $←− ABE.Enc(mpk,xi,j , ki)}(i,j)∈[n]×[m] ∈ CT n×m, i.e.,

CT :=

⎡
⎢⎣
ABE.Enc(x1,1, k1) . . . ABE.Enc(x1,j , k1) . . . ABE.Enc(x1,m, k1)

...
. . .

...
. . .

...
ABE.Enc(xn,1, kn) . . . ABE.Enc(xn,j , kn) . . . ABE.Enc(xn,m, kn)

⎤
⎥⎦ .

Finally, the algorithm outputs (CT,k).
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– AB-wHPS.Encap∗(mpk,x): Given a master public-key mpk and an attribute
x ∈ {0, 1}∗ as input, the algorithm first samples a random vector k =
(k1, . . . , kn)	 ∈ Z

n
m, and then runs ABE.Enc mn times with attributes

xi,j = (x, i, j) to set

CT∗ := {ct∗i,j
$←− ABE.Enc(mpk,xi,j , ki + j)}(i,j)∈[n]×[m] ∈ CT n×m, i.e.,

CT∗ :=

⎡
⎢⎣
ABE.Enc(x1,1, k1+1) . . . ABE.Enc(x1,j , k1+j) . . . ABE.Enc(x1,m, k1+m)

...
. . .

...
. . .

...
ABE.Enc(xn,1, kn+1) . . . ABE.Enc(xn,j , kn+j) . . . ABE.Enc(xn,m, kn+m)

⎤
⎥⎦,

where the addition ki + j is performed over Zm. The algorithm outputs CT∗.
– AB-wHPS.Decap(skf ,CT): Given a secret key skf := (y, skABE

f̂
) and CT :=

{cti,j}(i,j)∈[n]×[m] as input, the algorithm runs ABE.Dec to compute ki =
ABE.Dec(skABE

f̂
, cti,yi

) for all i ∈ [n], and then outputs k = (k1, . . . , kn)	, if

f̂(x, i, yi) = f(x) ∧ gy (i, yi) = 1 for all i ∈ [n], and ⊥ otherwise.

Intuitively, our attribute design (the class G) allows the secret key to open
one ciphertext per row while keeps the others secret. For the valid encapsulation,
all ciphertexts in a row encrypts the same element, while for the invalid encap-
sulation, they encrypt different elements. As the secret key can only open one
per row, an adversary cannot distinguish a valid from an invalid encapsulation,
even given the secret key.

Our AB-wHPS secret key would be of length |f̂f,gy
| + s(f̂f,gy

) = |y| + |f | +
s(f̂f,gy

) = n log m + |f | + s(f̂f,gy
), where s(·) is the key-size function (of the

extra part, excluding the function description) of the underlying ABE. If the
underlying ABE has succinct keys, i.e., s(f) = o(|f |), then our AB-wHPS secret
would have size n log m + |f | + s(f̂f,gy

) = n log m + |f | + o(n log m + |f |). By
setting sufficiently large n,m, we can achieve ABE with the optimal leakage rate,
ref. Sect. 4.

Next we present the following theorem. Due to space limit, we defer the full
proof to the full version, due to space limit.

Theorem 3.12. (AB-wHPS from ABE). SupposeΠABE is a secureABEscheme
with attribute space X̄λ = Xλ × X ′

λ = {0, 1}∗ × {[n] × [m]} for the function
class F ∧‖ G, where G is the class as in Definition 3.9 with parameters m,n,
then the construction ΠAB-wHPS described above is an (n log m,n log m)-universal
AB-wHPS with the attribute space Xλ and the encapsulated-key-space K = Z

n
m,

for the function class F . Furthermore,

– if the ABE is X-sel secure for X ∈ {sel, ada}, then the AB-wHPS is X secure;
– if the key-size (of the extra part, excluding the function description) of the

ABE scheme for policy function f is s(f), then the key size of the AB-wHPS
for f is n log m + |f | + s(f̂f,gy

), where s(·) is the key-size function (of the
extra part, excluding the function description) of the underlying ABE.
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3.3 Instantiations of AB-wHPSfrom Lattices

Now we show how to instantiate the required underlying ABE. By combining the
work [7] with [2] or [38], we get ABE for the following three classes.

Theorem 3.13. Assuming LWE, then there exist:

1. ada-sel-secure ABE for I ∧‖ G, where I is the comparison function (IBE).
2. ada-sel-secure ABE for t-CNF∗ ∧‖ G, where t-CNF∗ is the dual of the t con-

junctive normal form formula. (Ref. Sect. 2.1.)
3. sel-sel secure ABE for F ∧‖ G, where F is the general boolean circuits.

In all three cases, the size of the secret keys (excluding the function description)
depends only on the depth of the circuit but not the size.

We present the constructions in full version for completeness. As a direct
corollary of this theorem, we obtain the following AB-wHPS from lattices.

Corollary 3.14. Assuming LWE, there exists AB-wHPS that is

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions.
3. selectively secure for general circuits.

Moreover, the secret key size (excluding the function description) of the
AB-wHPS only depends on the depth of the function, but not the size.

4 Optimal-Rate Leakage-Resilient Encryption Schemes
in the Relative Leakage Model

Prior work (e.g., Naor and Segev [33], Alwen et al. [5], and Hazay et al. [25])
showed how to construct leakage resilient PKE/IBE from wHPS/IB-wHPS in the
relative model. The construction can be generalized to construct leakage resilient
ABE from AB-wHPS in the same spirit. To further achieve the optimal leakage
rate, we observe that all we need is an AB-wHPS with succinct keys (which do
not depend on the function size). This is what we construct in Sect. 3.2, i.e., Con-
struction 3.11, Theorem 3.12, AB-wHPS and the underlying ABE instantiations
in Corollary 3.14.

Construction 4.1. Let Π =AB-wHPS.{Setup,KeyGen,Encap,Encap∗,Decap}
be a (log |K|, log |K|)-universal AB-wHPS with the encapsulated-key-space K and
attribute space X = {0, 1}∗ for a class of policy functions F = {f : {0, 1}∗ →
{0, 1}}. Let Ext : K × S → M be a (log |K| − �, ε)-extractor, where three sets
K,S,M are efficient ensembles, � = �(λ) is some parameter and ε = ε(λ) =
negl(λ) is negligible. Furthermore, assume that M is an additive group. Then, a
leakage-resilient ABE scheme ΠF = ΠF .{Setup,KeyGen,Enc,Dec} with message
space M and policy function class F can be constructed as follows:
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– ΠF .Setup(1λ): The algorithm runs (mpkΠ ,mskΠ) $←− Π.Setup(1λ), and out-
puts mpk := mpkΠ , and msk := mskΠ .

– ΠF .KeyGen(msk, f): Given a master secret-key msk and a function f ∈ F as
input, the algorithm runs AB-wHPS.KeyGen to generate and output (f, skΠ

f ),

where skf := skΠ
f

$←− AB-wHPS.KeyGen(msk, f).
– ΠF .Enc(mpk,x, μ): Given a master public-key mpk, an attribute x ∈ X =

{0, 1}∗, and a message μ ∈ M as input, the algorithm runs AB-wHPS.Encap

to generate (CT′, k) ←AB-wHPS.Encap(mpk,x), and then samples s
$←− S.

Furthermore, the algorithm computes and outputs

ct = (s, ct0, ct1) = (s,CT′, μ + Ext(k, s)).

– ΠF .Dec(skf , ct): Given a ciphertext ct = (s, ct0, ct1) and a secret key skf as
input, the algorithm runs AB-wHPS.Decap to generate
k = AB-wHPS.Decap(skf , ct0), and then output μ = ct1 − Ext(k, s).

Our construction achieves a leakage resilient ABE, and can be re-calibrated into
a leakage resilient PKE/IBE. We summarize the results in the following theorem,
and defer the full proof to the full version, due to space limit.

Theorem 4.2. Assume Π is a selectively (or adaptively, resp.) secure (log |K|,
log |K|)-universal AB-wHPS for the policy function class F , and Ext : K × S →
M be a (log |K| − �, negl(λ))-extractor. Then the above ABE scheme ΠF =
ΠF .{Setup,KeyGen,Enc,Dec} for F is a selectively (or adaptively, resp.) �(λ)-
leakage resilient attribute-based encryption scheme for the policy function class
F in the relative-leakage model. Particularly, ΠF is aslo

– an �(λ)-leakage-resilient PKE in the relative-leakage model, if F contains only
a single function that always outputs 1.

– an �(λ)-leakage-resilient IBE in the relative-leakage model, if F contains the
following comparison functions, i.e., each function fy ∈ F is indexed by a
vector y, and fy (x) = 1 if and only if y = x.

Combining Theorem 3.12 and Theorem 4.2, we obtain the following results.
Assume there exists a sel-sel (or ada-sel) secure ABE scheme with the message
space Zm for the function class F ∧‖ G, where G is the class as in Definition 3.9
with parameters m,n, and the key-length (of the extra part, excluding the func-
tion description of f) of this underlying ABE scheme for policy function f is
s(f). Then the allowed leakage length of the above leakage resilient ABE (or
IBE or PKE) scheme ΠF for the function class F is � = (n log m − 2λ) and the
key-length of ΠF for f is |skf | = n log m + |f | + s(f̂f,gy

).
Furthermore, if the secret key size s(f̂f,gy

) is succinct, i.e., s(f̂f,gy
) =

o(|f̂f,gy
|) = o(n log m + |f |), then we can set sufficiently large n,m such

that n log m = ω(|f |). Consequently, the leakage rate of this scheme ΠF is
n log m−2λ

n log m+|f |+s(f̂f,gy )
=

1− 2λ
n log m

1+
s(f̂f,gy

)+|f|
n log m

≈ 1 − o(1), achieving the desired optimal

leakage rate.
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Finally, by combining Corollary 3.14 and Theorem 4.2, we obtain the follow-
ing Corollary.

Corollary 4.3. Assuming LWE, for all polynomial S = poly(λ), there exist 1 −
o(1) leakage resilient ABE schemes in the relative leakage model, which are

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions of size up to S;
3. selectively secure for general circuits of size up to S.

Remark 4.4. We note that our ABE schemes are leakage resilient even if the
policy function goes beyond the size bound S. The leakage rate would still be
1 − o(1) for a slightly restricted class that leaks n log m − 2λ on the part y,
the whole description of f , and the extra part of skΠ

f (excluding the function
description) of the underlying AB-wHPS. This is more restrictive than functions
that leak n log m − 2λ + |f | from the whole secret key.

5 Extension I: Optimal-Rate Leakage-Resilient
Encryption Schemes in the BRM

In this section, we present how to use AB-wHPS to construct optimal-rate leakage
resilient ABE in the BRM. We follow the structure of [5,25] by first amplifying
the hash proof system and then combining it with a locally computable extrac-
tor [40]. In particular, we first amplify AB-wHPS through parallel repetition and
random sampling in Sect. 5.1. Then, in Sect. 5.2, we generalize the notion of
locally computable extractor by Vadhan [40] into one with larger alphabets, and
show that a refined analysis of this tool can be used to derive 1 − o(1) leakage
rate in the BRM, improving the prior analysis [5,35] that can only achieve a
constant leakage rate. Finally in Sect. 5.3, we present the overall construction of
our leakage resilient ABE in the BRM with the optimal leakage rate.

5.1 Amplification of AB-wHPS

Definition 5.1. Let n′ be a positive integer, and H = {h : [n′] → {0, 1}} be a
function class where each function hy ∈ H is indexed by a value y ∈ [n′], and
hy(x) = 1 if and only if x = y.

Construction 52. (Construction of Amplified AB-wHPS.). Let Π =
AB-wHPS.{Setup,KeyGen,Encap,Encap∗,Decap} be an AB-wHPS with the
encapsulated-key-space K and attribute space X = {0, 1}∗ × [n′] for a class of
functions F∧‖H, and let t ≤ n′ be a positive integer. Then a new AB-wHPS Πn′,t

‖
with attribute space {0, 1}∗ and the encapsulated-key-space Kt for the function
class F can be constructed.

– Πn′,t
‖ .Setup(1λ): The algorithm runs (mpkΠ ,mskΠ) $←− Π.Setup(1λ), and out-

puts mpk := mpkΠ , and msk := mskΠ .
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– Πn′,t
‖ .KeyGen(msk, f): Given a function f ∈ F , the algorithm first sets f̂ i =

f̂ i
f,hi

∈ F ∧‖ H for every i ∈ [n′], and runs AB-wHPS.KeyGen n′ times to

generate skf̂i

$←− Π.KeyGen(mskΠ , f̂ i) for i ∈ [n′]. The algorithm outputs

skf :=
(
skf̂1 , skf̂2 , . . . , skf̂n′

)
.

– Πn′,t
‖ .Encap(mpk,x): Given mpk and an attribute x ∈ {0, 1}∗ as input, the

algorithm chooses a random subset r := {r1, . . . , rt} ⊆ [n′] and computes

(CTi, ki)
$←− Π.Encap(mpk, (x, ri)) for all i ∈ [t].

The algorithm finally outputs CT := (r,CT1, . . . ,CTt) and k = (k1, . . . , kt)	.
– Πn′,t

‖ .Encap∗(mpk,x): Given mpk and an attribute x ∈ {0, 1}∗ as input, the
algorithm chooses a random subset r := {r1, . . . , rt} ⊆ [n′] and computes

CTi
$←− Π.Encap∗(mpk, (x, ri)) for all i ∈ [t].

Finally, the algorithm outputs CT := (r,CT1, . . . ,CTt).
– Πn′,t

‖ .Decap(skf ,CT): Given a ciphertext CT := (r,CT1, . . . ,CTt) and a

secret key skf :=
(
skf̂1 , skf̂2 , . . . , skf̂n′

)
, the algorithm runs Π.Decap to

generate ki = Π.Decap(skf̂ri
,CTi) for i ∈ [t], and outputs k = (k1, . . . , kt)	

if f̂ri(x, ri) = 1 for all i ∈ [t]. Otherwise, the algorithm outputs ⊥.

Next, we present the following amplification theorem, which is essential an
extension of the work [5]. Due to space limit, we defer the full proof to the full
version of this paper.

Theorem 5.3. Assume Π is an (l, w)-universal AB-wHPS with the encapsulated-
key-space K for F ∧‖ H. Then the above amplified construction of Πn′,t

‖ is an (t ·
l, t · w)-universal AB-wHPS with the encapsulated-key-set Kt for F . Furthermore,

– if the underlying Π is selectively (or adaptively) secure, then the Πn′,t
‖ is also

selectively (or adaptively) secure;
– if the secret-key-size of Π scheme for the policy function f is (|f | + s(f)),5

then the secret-key size of the Πn′,t
‖ for f is n′ × (|f | + log n′ + s(f̂f,h)).

Combining Theorem 3.12 and Theorem 5.3, we obtain the following corollary.

Corollary 5.4. Assume there exists an ABE scheme with the message space
Zm for the function class F ∧‖ H ∧‖ G, where G with parameters m,n and H
with parameter n′ are as Definitions 3.9 and 5.1, then there exists an amplified
AB-wHPS with the encapsulated-key-space Z

t
m for the function class F .

5 Recall that the function s(f) denotes the size of the extra part of the secret key,
excluding the description of the function.
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5.2 Locally Computable Extractor

Definition 5.5 (Locally Computable Extractor, Definition 6 in [40]).
An extractor Ext : {0, 1}n × {0, 1}d → {0, 1}v is said to be t-locally computable
if for every r ∈ {0, 1}d, Ext(x, r) depends only on t-bits of x ∈ {0, 1}n.

For our application (constructing leakage-resilient encryption in the BRM), we
need a generalized variant of the above notion. Let x ∈ {0, 1}nk be a vector.
We can view it as a concatenation of n vectors xi ∈ {0, 1}k for i ∈ [n], i.e.,
x = (x	

1 , . . . ,x	
n )	. In this case, each xi ∈ {0, 1}k can be viewed as a symbol of

some larger alphabet, i.e., Γ = {0, 1}k, and we will need a locally computable
extractor for Γ as follow.

Definition 5.6 (Locally Computable Extractor for Larger Alphabets).
Let Γ = {0, 1}k be some alphabet. An extractor Ext : Γn × {0, 1}d → {0, 1}v is
t-locally computable with respect to Γ if for every r ∈ {0, 1}d, Ext(x, r) depends
only on t symbols of x = (x	

1 , . . . ,x	
n )	 ∈ Γn.

Generally, a locally computable extractor can be obtained in two steps [40]:
(1) the extractor uses part of the seed to select t bits (or symbols) of x, and
(2) the remaining seed is used to apply a standard extractor on the selected
bits/symbols in the previous step. Vadhan [40] showed that as long as the selec-
tion in step (1) achieves an average sampler, then the combined steps would
achieve a locally computable extractor. We summarize the result of Vadhan [40]
below. We first recall the notion of an average sampler.

Definition 5.7 (Average Sampler, Definition 8 in [40]). A function
Samp : {0, 1}r → [n]t is a (μ, θ, γ) average sampler if for every function f :
[n] → [0, 1] with average value 1

n

∑
i f(i) ≥ μ,

Pr
(i1,...,it)

$←−Samp(Ur)

[
1

t

t∑
j=1

f(ij) < μ − θ

]
≤ γ.

Next, we present a theorem by Vadhan in [40] that describes detailed require-
ments for a locally computable extractor.

Theorem 5.8 (Theorem 10 in [40]). Suppose that Samp : {0, 1}r → [n]t is
a (μ, θ, γ) average sampler with distinct samples for μ = (δ − 2τ)/ log(1/τ) and
θ = τ/ log(1/τ), and Ext : {0, 1}t × {0, 1}d → {0, 1}v is a strong ((δ − 3τ)t, ε)
extractor. Define Ext′ : {0, 1}n × {0, 1}r+d → {0, 1}v by

Ext′(x, (y1,y2)) = Ext(xSamp(y1)
,y2).

Then Ext′ is a t-local strong (δn, ε + γ + 2−Ω(τn)) extractor.

As we mentioned above, our application needs a locally computable extractor
for larger alphabets, which may not be implied directly from Theorem 5.8. To
tackle this issue, we define the following sampling procedure Sampler 1 that
outputs t distinct symbols of samples, and then prove that Sampler 1 is in fact
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a good average sampler as needed in Theorem 5.8. This would imply a locally
computable extractor for larger alphabets as required in our application.

Notations for the Sampling. Before describing the algorithm, we set up some
notations as follows. Let Γ = {0, 1}k and x = (x	

1 , . . . ,x	
n )	 ∈ Γn be a vector

of n symbols, where xi = (xi1, xi2, . . . , xik)	 ∈ Γ = {0, 1}k for i ∈ [n]. Let S
denote a subset of [n]× [k], i.e. S contains tuples (i, j) ∈ [n]× [k] as its elements.
In this case, we define xS = {xij}(i,j)∈S . Then, we define Sampler 1 as below.

Sampler 1: Sample a random subset R of [n] that contains t distinct elements,
i.e., R = {r1, . . . , rt}, and output S := {(ri, j)}i∈[t],j∈[k]. Then we derive the
following lemma.

Lemma 5.9. For any λ ∈ Z, μ, θ ∈ (0, 1] and γ = 2λ exp(−tθ2/4) +
(

t(t−1)
2n

)λ

,
Sampler 1 is a (μ, θ, γ) averaging sampler.

Proof. According to the natural bijection between [nk] and [n]×[k], to prove that
Sampler 1 is a good average sampler as Definition 5.7, it suffices to show that
for any f : [n] × [k] → [0, 1] such that 1

nk

∑
i∈[n],j∈[k] f(i, j) ≥ μ, the following

inequality holds:

Pr
S

$←−Sampler 1

⎡
⎣ 1

|S|
∑

(i,j)∈S

f(i, j) < μ − θ

⎤
⎦ ≤ γ. (1)

It might be hard to prove inequality (1) directly, since all blocks output by
Sampler 1 are distinct. To handle this issue, we then define the following Sam-
pler 2 through using “sample with replacement” and rejection sampling. It is
not hard to show that these two procedures are statistically close. Furthermore,
by using use a Chernoff bound argument, we show that Sampler 2 is a good
average sampler as required in Theorem 5.8. Thus, we conclude that Sampler 1
with any strong extractor yields a locally computable extractor for larger alpha-
bets.

Sampler 2:

1. Sample R = {r1, . . . , rt} from [n]t uniformly at random.
– If all elements are distinct, then output S := {(ri, j)}i∈[t],j∈[k] and termi-

nate.
2. Otherwise, i.e., there is a repeated element, discard the whole sample and

redo Step 1.
Note: the algorithm will only redo Step 1 up to λ times. If the algorithm does
not produce an output by then, then output ⊥.

Next we analyze Sampler 1 and Sampler 2 by the following two claims. Due
to space limit, we defer the full proof to the full version of this paper.
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Claim 5.10. For a set X consisting of n = n(λ) different blocks and the param-
eters t = t(λ) such that t(t − 1) < n, the output distributions of Sample 1 and
Sample 2 are statistically close.

Claim 5.11. For any μ, t, θ, n, Sampler 2 is a (μ, θ, γ) average sampler condi-
tioned on non-⊥ output, where γ = 2λ exp(−tθ2/4).

The proof of the lemma follows by the above Claims 5.10 and 5.11. �
Furthermore, by applying the Sample 1 to Theorem 5.8 with the following

parameters setting, we derive the following theorem.

Parameter Setting. Taking λ as the security parameter, we set all the param-
eters in the following way: k = poly(λ), n = poly(λ), t = λ log3(nk), δ =

1
log(nk) , τ = 1

6 log(nk) , μ = 2
3 log(nk) log(6 log(nk)) , θ = 1

6 log(nk) log(6 log(nk)) , γ =

2λ exp(−tθ2/4) +
(

t(t−1)
2n

)λ

, ε = negl(λ).

Theorem 5.12. Let Γ = {0, 1}k, Samp : {0, 1}r → [n]t be the Sampler 1 (as
a (μ, θ, γ) average sampler), and let Ext : Γ t × {0, 1}d → {0, 1}v be a strong
((δ − 3τ)tk, ε) extractor. Define Ext′ : Γn × {0, 1}r+d → {0, 1}v as

Ext′(x, (y1,y2)) = Ext(xSamp(y1)
,y2).

Then Ext′ is a t-block-local strong (δnk, ε + γ + 2−Ω(τn)) extractor, where ε +
γ + 2−Ω(τn) = negl(λ) according to the setting of parameters.

5.3 Leakage-Resilient Encryption in the Bounded-Retrieval Model

In this section, we construct leakage-resilient encryption schemes in the BRM,
through combining an random extractor with an amplified AB-wHPS pre-
sented in Sect. 5.1. Below, we give the specific construction of leakage resilient
ABE scheme in the BRM from an amplified AB-wHPS.

Construction 513. (Construction in the) BRM). Let Π = AB-wHPS.
{Setup,KeyGen,Encap,Encap∗,Decap} be an amplified AB-wHPS with integer
parameters n′, t, the encapsulated-key-space Kt and attribute space X = {0, 1}∗

for a class of policy functions F = {f : {0, 1}∗ → {0, 1}}. Let Ext : Kt ×S → M
be a strong extractor, where three sets K,S,M are efficient ensembles, k denotes
the size of K. Furthermore, assume that M is an additive group. Then, an ABE
scheme ΠF = ΠF .{Setup,KeyGen,Enc,Dec} with message space M and policy
function class F can be constructed as follows:

– ΠF .Setup(1λ): The algorithm runs (mpkΠ ,mskΠ) $←− Π.Setup(1λ), and out-
puts mpk := mpkΠ , and msk := mskΠ .

– ΠF .KeyGen(msk, f): ΠF .KeyGen(msk, f): Given a master secret-key msk and
a function f ∈F as input, the algorithm runs
skΠ

f
$←− AB-wHPS.KeyGen(msk, f) and output skf := skΠ

f .
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– ΠF .Enc(mpk,x, μ): Given a master public-key mpk, an attribute x ∈ {0, 1}∗

and a message μ ∈ M as input, the algorithm runs AB-wHPS.Encap to gen-
erate (CT′,k) ←AB-wHPS.Encap(mpk,x) with k ∈ Kt, and then samples

s
$←− S. Furthermore, the algorithm computes and outputs

ct = (s, ct0, ct1) = (s,CT′, μ + Ext(k, s)).

– ΠF .Dec(skf , ct): Given a ciphertext ct = (s, ct0, ct1) and a secret key skf as
input, the algorithm runs AB-wHPS.Decap to generate k = AB-wHPS.
Decap(skf , ct0) with k ∈ Kt, and then output μ = ct1 − Ext(k, s).

Parameter Setting. For security parameter λ, we set the system parame-
ters as follows: k = poly(λ), n′ = poly(λ), t = λ log3(n′k), δ = 1

log(n′k) , τ =
1

6 log(n′k) , ε = negl(λ). Moreover, for the proof of leakage-resilience in the BRM,
we let Ext : Kt × S → M be a ((δ − 3τ)tk, ε)-extractor.

Next, we prove that the construction is a leakage resilient ABE in the BRM.
Our proof uses a technique of locally computable extractors [40], i.e., Theo-
rem 5.12, in a black-box way. Due to the space limit, we defer the detailed proof
to the full version of this paper.

Theorem 5.14. Assume Π is a selectively (or adaptively, resp.) secure ampli-
fied AB-wHPS with integer parameters n′, t = λ log3(n′k) for the policy function
class F , and Ext : Kt×S → M be a strong extractor. Then the above ABE scheme
ΠF = ΠF .{Setup,KeyGen,Enc,Dec} for F is a selectively (or adaptively, resp.)
�-leakage-resilient attribute-based encryption scheme with message space M in
the BRM where � = kn′ − kn′

log(kn′) .
Particularly, ΠF is also

– an �-leakage-resilient public-key encryption scheme in the BRM with � = kn′−
kn′

log(kn′) , if F contains only a single function that always outputs 1.
– a selectively (or adaptively, resp.) �-leakage-resilient identity-based encryption

scheme in the BRM with � = kn′ − kn′
log(kn′) , if F contains the following com-

parison functions, i.e., each function fy ∈ F is indexed by a vector y, and
fy (x) = 1 if and only if y = x.

Moreover,

1. Public-key (resp. master public-key) size of ΠF is the same as that of Π,
which is not dependent on leakage parameter �.

2. The locality-parameter is t = λ log3(n′k). Thus, the size of secret-key accessed
during decryption depends on t, but not �.

3. The ciphertext-size/encryption-time/decryption-time of ΠF depends on t, but
not �.

Combining Corollary 5.4 and Theorem 5.14, we obtain the following results.
Assume there exists an ABE scheme with the message space Zm for the function
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class F ∧‖ H∧‖ G, where G with parameters m,n and H with parameter n′ are as
defined in Definitions 3.9 and 5.1, and the key-length (of the extra part, excluding
the function description of f) of this underlying ABE scheme for policy function
f is s(f). Then the largest allowed leakage length of the above ABE (or IBE or
PKE) scheme ΠF for the function class F is � = (kn′ − kn′

log(kn′) ) with k = n log m

and the key-length of ΠF for f is |skf | = n′(n log m + log n′ + |f | + s(f̂f,h,gy
)).

Furthermore, if the secret key size s(f̂f,h,gy
))is succinct, i.e., s(f̂f,h,gy

) =
o(|f̂f,h,gy

|) = o(n log m + log n′ + |f |), then we can set sufficiently large n,m, n′

such that (log n′+|f |) = o(n log m). Consequently, the leakage rate of this scheme

ΠF is
kn′− kn′

log(kn′)
n′(n log m+log n′+|f |+s(f̂f,h,gy ))

=
1− 1

log(nn′ log m)

1+
log n′+|f|+s(f̂f,h,gy

)

n log m

≈ 1 − o(1), achieving

the desired optimal leakage rate.
Finally, by combining Corollary 3.14 and Theorem 5.14, we obtain the fol-

lowing Corollary.

Corollary 5.15. Assuming LWE, for all polynomial S = poly(λ), there exist
1 − o(1) leakage resilient ABE schemes in the BRM, which are

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions of size up to S;
3. selectively secure for general circuits of size up to S.

For unbounded polynomial S, our schemes are still leakage resilient with the
optimal rate for a smaller function class. See Remark 4.4 for the discussion.

6 Extension II: Leakage on Multiple Keys

Our prior ABE constructions from AB-wHPS only achieve leakage resilience in
the one-key setting where the adversary can only leak on one of the all possible
decrypting keys with respect to the challenge attribute. In this section, we show
how to achieve leakage resilience in the multiple-key setting where the attacker
can obtain leakage on ω possible decrypting keys for any bounded polynomial ω.
Our construction leverages the normal AB-wHPS (where the ciphertext indistin-
guishability holds when the adversary gets one decrypting key) and a threshold
secret sharing scheme, following the bootstrapping idea of the work [21].

Construction 61. (Extended Leakage Resilient ABE). Let Π = Π.{Setup,
KeyGen,Encap,Encap∗,Decap} be a (log |K|, log |K|)-universal AB-wHPS with the
encapsulated-key-space K and attribute space X = {0, 1}∗ for a class of policy
functions F = {f : {0, 1}∗ → {0, 1}}. Let Ext : K × S → M be a (log |K| − �, ε)-
extractor, where K,S,M are efficient ensembles, � = �(λ) is some parameter
and ε = ε(λ) = negl(λ) is negligible. In addition, let (Share,Rec) be a (t̂ + 1)-
out-of-n threshold secret sharing scheme with respect to secret domain M, an
additive group.

Then, a leakage-resilient ABE scheme ΠF = ΠF .{Setup,KeyGen,Enc,Dec}
with message space M for policy function class F can be constructed as follows:
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– ΠF .Setup(1λ, n): The algorithm runs (mpkΠ
i ,mskΠ

i ) $←− Π.Setup(1λ) for every
i ∈ [n], and outputs mpk := {mpkΠ

i }i∈[n] and msk := {mskΠ
i }i∈[n].

– ΠF .KeyGen(msk, f): Given a master secret-key msk := {mskΠ
i }i∈[n] and a

function f ∈ F as input, the algorithm first chooses a random subset of
cardinality t̂ + 1, i.e., Γ = {r1, . . . , rt̂+1} ⊆ [n], and then runs sk

(ri)
f

$←−
Π.KeyGen(mskΠ

ri
, f) for i ∈ [t̂ + 1]. Finally, the algorithm outputs

skf := (Γ, sk
(r1)
f , . . . , sk

(rt̂+1)

f ).

– ΠF .Enc(mpk,x, μ): Given a master public-key mpk := {mpkΠ
i }i∈[n], an

attribute x ∈ X = {0, 1}∗ and a message μ ∈ M as input, the algorithm

first runs (μ1, . . . , μn) $←− Share(μ). Furthermore, the algorithm runs Π.Encap

to generate (CTi, ki)
$←− Π.Encap(mpkmpki,x) for every i ∈ [n]. Next, the

algorithm samples s1, . . . , sn
$←− S, and outputs

ct = (s1, . . . , sn, ct1, . . . , ctn, ctn+1, . . . , ct2n)
= (s1, . . . , sn,CT1, . . . ,CTn, μ1 + Ext(k1, s1), . . . , μn + Ext(kn, sn)).

– ΠF .Dec(skf , ct): Given a ciphertext ct = ({si}i∈[n], {cti}i∈[2n]) and a secret
key skf = (Γ, {sk(ri)

f }i∈[t̂+1]) as input, the algorithm first runs Π.Decap to

generate kri
= Π.Decap(sk(ri)

f , ctri
) and μri

= ctn+ri
− Ext(kri

, sri
) for every

i ∈ [t̂ + 1]. Then, the algorithm outputs μ = Rec(μr1 , . . . , μrt̂+1
).

Parameter Setting. For security parameter λ, given any ω = poly(λ), we set
t̂ = Θ(ω2λ) and n = Θ(ω2t̂). For details, we refer readers to the full version of
this paper.

Our construction achieves a leakage resilient ABE in the multiple key setting.
We summarize the results in the following theorem, and defer the full proof to
the full version, due to space limit.

Theorem 6.2. Assume Π is a selectively (or adaptively, resp.) secure (log |K|,
log |K|)-universal AB-wHPS for the policy function class F , and Ext : K ×
S → M be a (log |K| − �, negl(λ))-extractor. Then the above ABE scheme
ΠF = ΠF .{Setup,KeyGen,Enc,Dec} for F is a selectively (or adaptively, resp.)
(�(λ), ω(λ))-leakage resilient attribute-based encryption scheme for F in the
relative-leakage model, for any fixed bounded polynomial ω(λ) = poly(λ).

The corresponding leakage rate is �(λ)

(t̂+1)(|skf |+log n)
. Furthermore, when the

underlying secret keys (sk(r1)
f , . . . , sk

(rt̂+1)

f ) form a block source under each leakage

function, the corresponding leakage rate is �(λ)
(|skf |+log n) .

Combining Theorem 3.12 and Theorem 6.2, we obtain the following results.
Assume there exists an sel-ada/sel-sel (or ada-ada/ada-sel) secure ABE scheme
with the message space Zm̄ for the function class F ∧‖ G, where G is the class
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as in Definition 3.9 with parameters m̄, n̄, and the key-length (of the extra part,
excluding the function description of f) of this underlying ABE scheme for policy
function f is s(f). Then the allowed leakage length of the above leakage resilient
ABE scheme ΠF with parameters n, t̂, ω as in the above paragraph setting for
the function class F is � = (n̄ log m̄ − 2λ) and the key-length of ΠF for f is
|skf | = (t̂ + 1)(log n + n̄ log m̄ + |f | + s(f̂f,gy

)).
Furthermore, if the secret key size s(f̂f,gy

) is succinct, i.e., s(f̂f,gy
) =

o(n̄ log m̄+ |f |), then we can set sufficiently large n, m̄, n̄ such that (log n+ |f |) =
o(n̄ log m̄). Consequently, when the underlying secret keys form a block source
under each leakage function, the corresponding leakage rate of this scheme ΠF
is

n̄ log m̄−2λ

log n+n̄ log m̄+|f |+s(f̂f,gy )
=

1− 2λ
n̄ log m̄

1+
log n+|f|+s(f̂f,gy

)

n̄ log m̄

≈ 1 − o(1), achieving the desired

optimal leakage rate.
Finally, by combining Corollary 3.14 and Theorem 6.2, we obtain the follow-

ing Corollary.

Corollary 6.3. Assuming LWE, for any S = poly(λ) and ω = poly(λ), there exist
(�, ω)-leakage resilient ABE’s in the relative leakage model, which are

1. adaptively secure for t-CNF∗ functions of size up to S;
2. selectively secure for general circuits of size up to S.

Moreover, when the underlying secret keys form a block source under the each
leakage function, the corresponding leakage rate is 1 − o(1).

Furthermore, we can also achieve similar results in the BRM. By combining
Corollary 3.14, Theorem 5.3 and Theorem 6.2, we obtain the following corollary.

Corollary 6.4. Assuming LWE, for any polynomial S = poly(λ) and ω =
poly(λ), there exist (�, ω)-leakage resilient ABE schemes in the BRM, which are

1. adaptively secure for t-CNF∗ functions of size up to S;
2. selectively secure for general circuits of size up to S.

Moreover, when the underlying secret keys form a block source under the each
leakage function, the corresponding leakage rate is 1 − o(1).
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Abstract. We build the first sub-linear (in fact, potentially constant-
time) public-key searchable encryption system:

– server can publish a public key PK.
– anybody can build an encrypted index for document D under PK.
– client holding the index can obtain a token zw from the server to

check if a keyword w belongs to D.
– search using zw is almost as fast (e.g., sub-linear) as the non-private

search.
– server granting the token does not learn anything about the docu-

ment D, beyond the keyword w.
– yet, the token zw is specific to the pair (D, w): the client does not

learn if other keywords w′ �= w belong to D, or if w belongs to other,
freshly indexed documents D′.

– server cannot fool the client by giving a wrong token zw.
We call such a primitive Encapsulated Search Index (ESI). Our ESI
scheme can be made (t, n)-distributed among n servers in the best possi-
ble way: non-interactive, verifiable, and resilient to any coalition of up to
(t− 1) malicious servers. We also introduce the notion of delegatable ESI
and show how to extend our construction to this setting.

Our solution — including public indexing, sub-linear search, dele-
gation, and distributed token generation — is deployed as a commercial
application by a real-world company.

1 Introduction

Imagine the user Alice has a powerful but potentially insecure device, which we
call Desktop. Since the Desktop is insecure (at least when not used by Alice),
Alice cannot permanently store any secret keys on the Desktop. Instead, all the
secret keys she will need for her work should be stored on a more secure, but
weaker device, which we call Phone.
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Alice works on the Desktop and periodically generates large documents D1,
D2 . . . , that she might want to index separately.1 Since the documents are sen-
sitive, Alice will always keep the indices encrypted, with the secret key stored
on the Phone (and capable of supporting multiple documents D1,D2, . . . with
the same key). Moreover, when the Phone approves her search request for key-
word w inside the document D, the token zw should only tell if w ∈ D, but will
not reveal anything else: either about different keywords w′ in D, or the same
keyword w for another document D′ (that Alice indexed separately).

Encapsulated Search Index. In order to solve the above motivating appli-
cation, we will introduce a new primitive, which we term Encapsulated Search
Index (ESI). As we will illustrate in Sect. 1.3, ESI is different than previously
studied primitives in the area of searchable encryption. But for now, we infor-
mally summarize the main functionality and security properties of ESI (see also
Definition 1):

– Phone can generate secret key SK, and send public key PK to the Desktop.
– Given PK and document D, Desktop can build an encrypted index E for D,

and a “compact” handle c.
– D is then encrypted and erased (together with any local randomness created

during the process), and Desktop only remembers E, c and PK.
– Desktop can ask the Phone’s permission to search for keyword w in D, by

sending it w and the compact handle c.
– If approved, the Phone will use the secret key SK to grant token z =

z(w, c, SK) to the Desktop.
– The Phone does not learn anything beyond w from the handle c. This should

hold information-theoretically.
– The Desktop can verify that the token z indeed corresponds to w, and, if so,

use E, c, z and PK to correctly learn if w ∈ D. In particular, the Phone cannot
cause the Desktop to output a wrong answer (beyond denial of service).

– The token z is specific to the pair (D,w): the Desktop does not learn if other
keywords w′ �= w belong to D, or if w belongs to other, freshly indexed
documents D′.

– While each tuple (E, c) is specific to the document D, the same (PK,SK)
pair should work for future documents D′, without compromising security.

Remark 1. For simplicity, we had the Desktop serve the role of both index cre-
ator and the storage location with the Phone serving the role of the search
approver. However, the same could be generalized to the setting where the stor-
age location is a company server, a trusted Desktop is the index creator, and
the Phone is the search approver — all three being different parties.

Additionally, in a good ESI, the overall search by the Desktop is much faster
than the number of keywords in D. In fact, ideally, the bulk of the search should
1 In fact, our solution will allow for generating secure indices even outside the Desktop,

possibly by different parties. But for simplicity, we discuss the already interesting
setting where Alice herself generates indices on the Desktop.
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be done by the Desktop using any non-private dictionary structure, while the
interaction between the Phone and the Desktop should have constant size/com-
plexity, independent of |D|. Our main construction will have this property.

Extensions of ESI. For applications, we would also like to consider various
extensions of ESI.

First, to mitigate Alice’s worry that her Phone might be compromised, she
might want to use a secure indexing scheme that is “friendly” to distributed
implementation. For example, she might wish to secretly share her master key
between her Phone, Laptop, and iPad (which we call mobile devices to differ-
entiate them from the Desktop) in a way that she gets the token whenever
two of them approve her search request. Moreover, this process should be non-
interactive. The Desktop will send a request “Do you authorize to search doc-
ument D for keyword w?” to each of the n mobile devices, and gets the token
zw the moment t ≤ n of them respond affirmatively. Moreover, the Desktop can
separately verify the authenticity of each of the shares from the mobile devices
(which is why it does not need to wait for all n to respond). The resulting notion
of threshold ESI is formalized and can be found in the full version of the paper
[3]. This would correspond to the setting of multiple devices serving the role of
the search approver.

Second, Alice might wish to delegate her searching ability to another user
Bob, without the need to re-index the document. (A special case of this scenario
is Bob being “Alice with a new Phone”.) In this case, Alice does not want to
freshly re-index the document, meaning that the encrypted index E should not
change. Instead, she only wants to convert the compact “handle” c corresponding
to her PK to a new compact handle c′ corresponding to Bob’s public key PK ′.
Once this conversion is done, Bob can use the pair (E, c′) with his Phone to
search for keywords in the same document D. We formalize several flavors of
such delegatable ESI in the full version of the paper [3].

Finally, we might want to have the ability to update the index E by adding
and deleting the keyword. In an updatable ESI, formalized in the full version of
the paper [3], the token zw sent by Phone is also sufficient for the Desktop to
update E to E′ accordingly: remove, w if w was in D, or add it if it was not.
This does not affect the handle c.

1.1 Our Main Tool: Encapsulated Verifiable Random Function

Naive Solution. Before introducing our solution approach, it is helpful to start
with the naive solution which almost works. The Phone can generate a (PK,SK)
pair for a chosen-ciphertext-attack (CCA) secure encryption scheme. To index
a document D, the Desktop can choose a seed k for a pseudorandom function
(PRF) Fk, and generate a standard (non-private) index E by replacing each
keyword w ∈ D with the PRF value y = Fk(w). These values are pseudorandom
(hence, also distinct w.h.p.); thus, index E will not reveal any information about
D except the number of keywords N .
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The Desktop will finally generate a ciphertext c encrypting k under PK, and
then erase the PRF key k. To get token for keyword w, the Desktop will send the
tuple (c, w) to the Phone, which will decrypt c to get k, and return y = Fk(w).

This naive solution satisfies our efficiency property and almost all the security
properties. For example, the value c is independent of the document D, so the
Phone does not learn anything about the document (including search results).
Similarly, the Desktop cannot use the token y to learn about other keyword
w′, as y′ = Fk(w′) is pseudorandom given y = Fk(w). The only basic property
missing is verifiability: the Desktop cannot tell if the value y indeed corresponds
to w. This can be fixed by replacing PRF FK with a verifiable random function
(VRF) [35]. A VRF has its own public-secret key pair (pk, sk). For each input
w, the owner of sk can produce not only the function value y = Fsk(w), but also
a “proof” z = z(sk, w). This proof can convince the verifier (who only knows
pk) that the value y is correct, while still leaving other yet “unproven” output
y′ = Fsk(w′) pseudorandom. While initial treatment of VRF focused on the
“standard model” constructions [23,24,34,35], VRFs are quite efficient in the
random oracle model. In particular, several such efficient constructions are given
the CFRG VRF standard [29,30].

Deficiencies of the Naive Solution. While the composition of VRF and
CCA encryption indeed works for the most basic ESI notion — and shows that
sublinear search can be meaningfully combined with public indexing2 — it seems
too inflexible for our two main extensions: threshold ESI and delegatable ESI.

For threshold ESI, achieving “decrypt-then-evaluate-VRF” functionality
non-interactively appears quite challenging with the current state-of-the-art. In
particular, a natural way to accomplish this task would be to combine some
non-interactive threshold CCA-decryption with a non-interactive threshold VRF
implementation. Each of these advanced primitives is highly non-trivial but
exists in isolation. For example, the works of [7,12] show how to achieve non-
interactive CCA-secure decryption in bilinear map groups. Unfortunately (for
our purposes), both of these constructions encrypt elements of the “target bilin-
ear group” G1 (see the full version [3].). Thus, to get a non-interactive threshold
ESI scheme we will need to build a non-interactive threshold VRF in which the
secret key resides in the bilinear target group G1. No such construction is known,
however. In fact, we are aware of only two recent non-interactive threshold VRF
schemes, both proposed by [26].3 Unfortunately, both of these constructions
have the secret key over the standard group Zp, and cannot be composed with
the schemes of [7,12]. Hence, we either need to build a new (threshold) VRF
with secret keys residing in G1, or build a new, non-interactive4 threshold CCA
decryption with keys residing in Zp. Both options seem challenging.

For delegatable ESI, our definitions (and the overall application) require an
efficient procedure S-Check(PK1, c1, PK2, c2) to check that the new handle c2

2 ESI is the first searchable encryption primitive to do so; see Sect. 1.3.
3 As other prior distributed VRFs were either interactive [23,33], or had no verifiabil-

ity [2,36] or offered no formal model/analysis [16,17,21,32,41].
4 E.g., we cannot use the interactive threshold Cramer-Shoup [19] construction of [13].
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was indeed delegated from c1. The naive delegation scheme of decrypting c1 to get
VRF key sk, and then re-encrypting sk with PK2 does not have such efficient
verifiability. We could try to attach a non-interactive zero-knowledge (NIZK)
proof for this purpose, but such proof might be quite inefficient, especially with
chosen ciphertext secure encryptions c1 and c2.

Our New Tool: Encapsulated VRF. Instead of tying our hands with the
very specific and inflexible “CCA-encrypt-VRF-key” solution, we introduce a
general primitive we call encapsulated VRF (EVRF). This primitive abstracts the
core of the naive solution, but without insisting on a particular implementation.
Intuitively, an EVRF allows the Phone to publish a public key PK, keep secret
key SK private so that the Desktop can use PK to produce a ciphertext C and
trapdoor key T in a way that for any input w, the correct VRF value y on w
can be efficiently evaluated in two different ways:

(a) Phone: using secret key SK and ciphertext C.
(b) Desktop: using trapdoor T .

In addition, if the Desktop erased T and only remembers C, PK, and w:

(c) Phone can produce a proof z convincing Desktop that the value y is correct.
(d) Without such proof, the value y will look pseudorandom to the Desktop.

These properties are formalized in Definition 2. It is then easy to see that we
can combine any EVRF with a non-private dictionary data structure, by simply
replacing each keyword w with EVRF output y, just as in the naive solution. See
Construction 2. Moreover, this construction is very friendly to all our extensions.
If the EVRF is a threshold (resp. delegatable) — see Definitions 3, 4, — then we
get threshold (resp. delegatable) ESI. Similarly, if the non-private data structure
allows updates, our ESI construction is updatable.

To summarize, to efficiently solve all the variants of our Encapsulated Search
Index scenario, we just need to build a custom EVRF which overcomes the
difficulties we faced with the naive composition of VRF and CCA encryption.

1.2 Our EVRF Constructions

This is precisely what we accomplish: we build a simple and efficient EVRF under
the Bilinear Decisional Diffie-Hellman (BDDH) assumption [9], in the random
oracle model. Our basic EVRF is given in Construction 1. It draws a lot of
inspiration and resemblance to the original Boneh-Franklin IBE (BF-IBE) [9],
but with a couple of important tweaks. In essence, we observe that BF-IBE
key encapsulation produces the ciphertext R = gr which is independent of the
“target identity”. Hence, we can use this value R as “part of identity” ID =
(R,w), where w is our input/keyword, and still have a meaningful “ID-based
secret key” zw corresponding to this identity. On the usability level, this trick
allows the index generator to produce the value R = gr before any of subsequent
EVRF inputs (keywords in our application) w will be known. On a technical
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level, it allows us to “upgrade” BF-IBE from a chosen-plaintext attack (CPA)
to CCA security for free.

Additionally, in Sect. 6.2 we show that our VRF construction easily lends
itself to very simple, non-interactive threshold EVRF (which gives threshold
ESI), by using Shamir’s Secret Sharing [42], Feldman VSS [25], and the fact
that the correctness of all computations is easily verified using the pairing. The
resulting (t, n)-threshold implementation, given in Construction 3, is the best
possible: it is non-interactive and every share is individually verifiable, which
allows computing the output the moment t correct shares are obtained.

Finally, Sects. 7.2, 7.3, 7.4 extend our basic EVRF to various levels of delegat-
able EVRFs (which yield corresponding delegatable ESIs). All our constructions
have a very simple delegation procedure, including a simple “equivalence” check
to test if two handles correspond to the same EVRF under two different keys
(which was challenging in the naive construction). The most basic delegatable
EVRF in Sects. 7.2 (Construction 4) is shown secure under the same BDDH
assumption as the underlying EVRF. It assumes that all delegations are per-
formed by non-compromised devices.

To handle delegation to/from an untrusted device, we modify our underly-
ing EVRF construction to also include “BLS Signature” [11], to ensure that the
sender “knew” the value r used to generate the original handle R = gr. See
Sect. 7.3 and Construction 5. This new construction is shown to have “unidirec-
tional” delegation security under the same BDDH assumption. Finally, we show
that the same construction can be shown to satisfy even stronger levels of “bidi-
rectional” delegation security, albeit under slightly stronger variants of BDDH
we justify in the generic group model (see Sects. 7.3, 7.4).

1.3 ESI vs Other Searchable Encryption Primitives

The notion of ESI is closely related to other searchable encryption primitives:
most notably, Searchable Symmetric Encryption (SSE) [5,15,20,22,22,28] and
Public-Key Encrypted Keyword Search (PEKS) [1,4,8,10,40,44]. Just like ESI,
SSE and PEKS achieve the most basic property of any searchable encryption
scheme, which we call index privacy: knowledge of encrypted index E and several
tokens zw does not reveal information about keywords w′ for which no tokens
were yet given. I.e., the keywords in the index that have not been searched so
far continue to remain private. Otherwise, the SSE/PEKS primitives have some
notable differences from ESI. We discuss them below, simultaneously arguing
why SSE/PEKS does not suffice for our application.

Setting of SSE. As suggested by its name, in this setting the index creator
is the same party as the search approver, meaning that both parties must know
the secret key SK which is hidden from the Desktop storing the index. On the
positive, this restriction allows for some additional properties which are hard
or even impossible in the public-indexing setting of the ESI (and PEKS; see
below). First, they allow for “universal searching”, where the search approver
can produce the token zw without getting the document-specific handle c: such
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token allows to simultaneously search different indices E1, E2, . . . corresponding
to different documents D1,D2, . . ..5

Second, one can talk about so-called “hidden queries” [22] which essentially
captures the idea of “keyword-privacy”. Specifically, the adversary who knows
the index E and keyword token z should not learn if z corresponds to keywords
w0 or keyword w1.6 With public-key indexing, such a strong semantic-security
guarantee is impossible, at least when combined with universal searching: the
adversary can always generate the index for some document D0 containing w0

and not w1 and then test if z works on this index.
We notice that “keyword privacy” and universal searching are not important

for our motivating application. In fact, w is generated by Alice when using the
Desktop (and will be erased when no longer relevant). Moreover, our verifiability
property of the ESI explicitly requires that the Desktop can check that the token
zw is correct, explicitly at odds with keyword privacy. Additionally, when Alice
sees the prompt on her phone asking if it is OK to search for the keyword w,
she generally wants to know in what context (i.e., to what document D) this
search would apply; and will not want a compromised token zw to search a more
sensitive document D′. Thus, we do not insist on universal searching either in
the ESI setting.

On the other hand, the biggest limitation of SSE — the inability to per-
form public-key indexing, — makes it inapplicable to our motivating applica-
tion. First, at the time of index creation, Alice already has the entire document
D she wants to index on the Desktop, and she does not want to transmit this
gigantic document to the Phone, have the Phone spend hours indexing it (or
possibly run out of memory doing so), and then send the (also gigantic) index
back to the Desktop. Second, even if efficiency was not an issue, Alice is not
willing to fully trust her Phone either. For example, while Alice hopes that the
Phone is more secure than the Desktop, it might be possible that the Phone is
compromised as well. In this case, Alice wants the (compromised) Phone to only
learn which keywords w she is searching for, but not to learn anything else about
the document D (including if her searches were successful!). Moreover, even if
Alice had a secure channel between the Desktop and the Phone, she does not
want to use SSE and send-then-erase the corresponding secret key. Indeed, this
method requires the phone to store a separate secret key for each document and
also does not allow other parties to generate encrypted indexes for different files
— a convenient feature Alice might find handy in the future.

To sum up, Alice wants to generate the entire encrypted index E on her Desk-
top (and then erase/encrypt the document D), without talking to the Phone,
5 From an application perspective, universal and document-specific setting are incom-

parable, as some application might want to restrict which keywords are allowed for
different databases. On a technical level, however, a universal scheme can always be
converted to a document-specific one, by prefixing the keyword with the name of
the document D. Thus, universal searching is more powerful.

6 Unfortunately, as surveyed by Cash et al. [14] and further studied by [20,31] (and
others), all SSE schemes in the literature do not achieve the strongest possible key-
word privacy and suffer from various forms of information leakage.
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and only contact the Phone to help authorize subsequent keyword searches. This
means that SSE is inapplicable, and we must use public-key cryptography.

Setting of PEKS. In a different vein, PEKS allows Alice to publish a public-
key PK allowing anybody to create her encrypted index. Akin to SSE, PEKS
also demand universal searching, meaning that the token zw can be produced
independently of the (handle c for the) document D. This means that strong
keyword privacy is impossible (and, thus, not required) in PEKS.

More significantly for our purposes, this feature makes searching inherently
slow: not as an artifact of the existing PEKS scheme, but as already mandated
even by the syntax of PEKS. Specifically, to achieve universality, the index is
created by indexing each keyword w′ ∈ D one-by-one (using PK), and then
the token zw can only be used to test each such “ciphertext” e separately, to
see whether or not it corresponds to w′ = w. Thus, inherently slow searching
makes PEKS inapplicable as well for our motivating application. In contrast, the
searching in the ESI is (required to be!) document-specific. As a result, we will
be able to achieve the sublinear searching we desire.

Summary Comparison. Summarizing the above discussion (see Table 1), we
can highlight five key properties of a given searchable encryption scheme: public-
key indexing, sublinear search, universal search, keyword privacy, and index pri-
vacy. All of ESI/SSE/PEKS satisfy (appropriate form) of index privacy, and
differ — sometimes by choice (ESI) or necessity (PEKS) — in terms of keyword
privacy. So the most interesting three dimensions separating them are public-key
indexing, sublinear search, and universal search, where (roughly) each primitive
achieves two out of three. For our purposes, however, ESI is the first primitive
which combines public-key indexing and sublinear search, which is precisely the
setting of our motivating example.

Table 1. A comparison of SSE, PEKS, and ESI.

SSE PEKS ESI

Public-Key Indexing ✗ ✓ ✓

Sublinear Search ✓ ✗ ✓

Universal Index ✓ ✓ ✗

Index Privacy ✓ ✓ ✓

Keyword Privacy ✓(partial) ✗(impossible) ✗(by choice!)

2 Preliminaries

Notation. In this paper, we let k be a security parameter. We employ the
standard cryptographic model in which protocol participants are modeled by
probabilistic polynomial (in k) time Turing machines (PPTs). We use poly(k)
to denote a polynomial function, and negl(k) to refer to a negligible function in
the security parameter k. For a distribution X, we use x ← X to denote that
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x is a random sample drawn from distribution X. For a set S we use x ← S
to denote that x is chosen uniformly at random from the set S. Additionally,
we use the equality operator to denote a deterministic algorithm, and the →,←
operation to indicate a randomized algorithm.

Further, our EVRF constructions will use some “cryptographic hash func-
tion(s)” H,H ′ : {0, 1}∗ → G mapping arbitrary-length strings (denoted {0, 1}∗)
to elements of the bilinear group G. We produce a formal discussion about bilin-
ear groups in the full version of our paper [3]. The key property of these groups
are that: for all u, v ∈ G and x, y ∈ Z, we have e(ux, vy) = e(u, v)xy. In our
security proofs, where we reduce EVRF security to an appropriate assumption,
we model the cryptographic hash functions as random oracles.

3 Encapsulated Search Index

We begin by formally introducing the new primitive of standard Encapsulated
Search Index in Sect. 3.1, defining its syntax and security. We also consider exten-
sions to this primitive, adding features such as distribution, delegation, and
update. Due to space constraints, we defer the discussions to the full version of
the paper [3].

3.1 Standard Encapsulated Search Index

We discussed, at length, the motivating application or setting for the primitive
we call as Encapsulated Search Index in Sect. 1.
For visual simplicity, for the remainder of this section we will use upper-case
letters (D,E, Y , etc.) to denote objects whose size can depend on the size of
document D (with the exception of various keys SK,PK, etc.), and by lower-
case letters (c, s, r, z, w, etc.) objects whose size is constant.

In the definition below, we let k be a security parameter, PPT stand for
probabilistic polynomial-time Turing machines, poly(k) to denote a polynomial
function, and negl(k) to refer to a negligible function in the security parameter
k.

Definition 1. An Encapsulated Search Index (ESI) is a tuple of PPT algo-
rithms ESI = (KGen,Prep, Index,S-Split,S-Core,Finalize) such that:

– KGen(1k) → (PK,SK): outputs the public/secret key pair.
– Prep(PK) → (s, c): outputs compact representation c, and trapdoor s.
– Index(s,D) = E: outputs the encrypted index E for a document D using the

trapdoor s.
– S-Split(PK, c′) = r′: outputs a handle r′ from the representation c′.
– S-Core(SK, r′, w) = z′: outputs a partial result z′ from the handle r′.
– Finalize(PK,E′, c′, z′, w) = β ∈ {0, 1,⊥}: outputs 1 if the word w is present

in the original document D, 0 if not present, and ⊥ if the partial output z′ is
inconsistent.
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Before we define the security properties, it is useful to define the following short-
hand functions:

– BldIdx(PK,D) = (Index(s,D), c), where (s, c) ← Prep(PK).
– S-Prove(PK,SK, c, w) = S-Core(SK,S-Split(PK, c), w).
– Search(PK,SK, (E, c), w) = Finalize(PK,E, c,S-Prove(SK, c, w), w).

We require the following security properties from this primitive:

1. Correctness: with prob. 1 (resp. (1 − negl(k))) over randomness of KGen

and Prep, for all documents D and keywords w ∈ D (resp. w �∈ D):

Search(PK,SK,BldIdx(PK,D), w) =

{
1 if w ∈ D

0 if w �∈ D

2. Uniqueness: there exist no values (PK,E, c, z1, z2, w) such that b1 �= ⊥,
b2 �= ⊥ and b1 �= b2, where:

b1 = Finalize(PK,E, c, z1, w); b2 = Finalize(PK,E, c, z2, w)

3. CCA Security: We require that for any PPT algorithm A = (A1,A2) the
following holds, where A does not make the query S-Prove(PK,SK, c∗, w)
with w ∈ (D1\D2)∪(D2\D1) and |D1| = |D2|, for variables SK, c∗,D1,D2, w
defined below:

Pr

⎡
⎢⎢⎢⎢⎣

b = b′

(PK, SK) ← KGen(1k);

(D1, D2, st) ← AS-Prove(PK,SK,·,·)
1 (PK);

b ← {0, 1};
(E∗, c∗) ← BldIdx(PK, Db);

b′ ← AS-Prove(PK,SK,·,·)
2 (E∗, c∗, st)

⎤
⎥⎥⎥⎥⎦

≤ 1

2
+ negl(k)

4. Privacy-Preserving7: We require that for any PPT Algorithm A =
(A1,A2) which outputs documents D1,D2 such that |D1| = |D2| for vari-
ables D1,D2 defined below, the following holds:

Pr

⎡
⎢⎢⎢⎢⎣

b = b′

(PK, SK) ← KGen(1k);
(D1, D2, st) ← A1(PK, SK);

b ← {0, 1};
(E∗, c∗) ← BldIdx(PK, Db);

b′ ← A2(c
∗, st)

⎤
⎥⎥⎥⎥⎦

≤ 1

2
+ negl(k)

Remark 2. We want to ensure that an honest representation c1 will not collide with
another honest representation c2. With this, we can ensure that honestly generated
documents do not conflict. If there is a non-trivial chance of such a collision, then
one can simply generate c2 until collision with the challenge c1. With this collision,
and with knowledge of trapdoor T2, one can trivially break security.
7 It is easy to see that our syntax guarantees that any ESI construction is uncondi-
tionally Privacy-Preserving (even with knowledge of SK), for the simple reason
that Prep that produces c does not depend on the input document D. Thus, we will
never explicitly address this property, but list it for completeness, as it is important
for our motivating application.
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Remark 3. For efficiency, we will want Search to run in time O(log N) or less,
where N is the size of the document D. In fact, our main construction will have
S-Prove run in time O(1), independent of the size of the document, andFinalize

would run in time at most O(log N), depending on the non-cryptographic data
structure we use.

3.2 Extensions to ESI

Threshold ESI. We extend the definition of the standard Encapsulated Search
Index to achieve support for distributed token generation. To do this, we intro-
duce a new algorithm called KG-Verify that aims to verify if the output of the
KGen algorithm is correct, and replace Finalize with two more fined-grained
procedures S-Verify and S-Combine. The formal discussion about the syntax
and security of this primitive can be found in the full version of the paper [3].

Delegatable ESI. We can also extend the definition of the standard Encap-
sulated Search Index to achieve support for delegation. Informally, Encapsu-
lated Search Index is delegatable if there are two polynomial-time procedures
S-Del,S-Check that work as follows: S-Del that achieves the delegation
wherein it takes as input a representation c corresponding to one key pair and
produces a representation c′ corresponding to another key pair; S-Check helps
verify if a delegation was performed correctly. The formal discussion about the
syntax and security of this primitive, including several definitional subtleties,
can be found in the full version of the paper [3].

Updatable ESI. We can further extend the definition of the standard Encap-
sulated Search Index to support a use-case where one might want to remove a
word, or add a word to the document D, without having to necessarily recom-
pute the entire index. To achieve this, we need an additional algorithm called
Update that can produce a new index E′ after performing an action relating
to word w in original index E, using the same token zw used for searching. The
formal discussion about the syntax and security of this primitive can be found
in the full version of the paper [3].

4 Encapsulated Verifiable Random Functions (EVRFs)

As mentioned earlier, we use a new primitive called Encapsulated Verifiable Ran-
dom Function to build the encapsulated search index. In this section, we begin
by introducing this primitive in Sect. 4.1. In Sect. 4.2, we present an overview of
extensions to this primitive. Later sections in paper contained detailed exposi-
tions on the extensions.

4.1 Standard EVRFs

Intuitively, an EVRF allows the receiver Alice to publish a public key PK and
keep secret key SK private so that any sender Bob can use PK to produce a
ciphertext C and trapdoor key T in a way such that for any input x, the correct
VRF value y on x can be efficiently evaluated in two different ways:
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(a) Alice can evaluate y using secret key SK and ciphertext C.
(b) Bob can evaluate y using trapdoor T .

In addition, for any third party Charlie who knows C, PK and x:

(c) Alice can produce a proof z convincing Charlie that the value y is correct.
(d) Without such proof, the value y will look pseudorandom to Charlie.

Definition 2. An Encapsulated Verifiable Random Function (EVRF) is a tuple
of PPT algorithms EVRF = (Gen,Encap,Comp,Split,Core, Post) such
that:

– Gen(1k) → (PK,SK): outputs the public/secret key pair.
– Encap(PK) → (C, T ): outputs ciphertext C and trapdoor T .
– Comp(T, x) = y: evaluates EVRF on input x, using trapdoor T .
– Split(PK,C ′) = R′: outputs a handle from full ciphertext C ′.

Note, this preprocessing is independent of the input x, can depend on the
public key PK, but not on the secret key SK.8

– Core(SK,R′, x) = z′: evaluates partial EVRF output on input x, using the
secret key SK and handle R′.

– Post(PK, z′, C ′, x) = y′∪⊥: outputs either the EVRF output from the partial
output z′, or ⊥.

Before we define the security properties, it is useful to define the following short-
hand functions:

– Prove(PK,SK,C, x) = Core(SK,Split(PK,C), x)
– Eval(PK,SK,C, x) = Post(PK,Prove(SK,C, x), C, x)

We require the following security properties:

1. Evaluation-Correctness: with prob. 1 over randomness of Gen and
Encap, for honestly generated ciphertext C and for all inputs x,

Comp(T, x) = Eval(PK,SK,C, x)

2. Uniqueness: there exist no values (PK,C, x, z1, z2) s.t. y1 �= ⊥, y2 �=
⊥, and y1 �= y2 where

y1 = Post(PK, z1, C, x), y2 = Post(PK, z2, C, x)

8 The algorithm Split is not technically needed, as one can always set R = C. In fact,
this will be the case for our EVRF in Sect. 5.1. However, one could envision EVRF
constructions where the Split procedure can do a non-trivial (input-independent)
part of the overall Prove = Core(Split) procedure, and without the need to know
the secret key SK. This will be the case for some of the delegatable EVRFs we
consider in Sect. 7.1.
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3. Pseudorandomness under Core ($-Core): for any PPT algorithm A =
(A1,A2), where A does not make query (C, x) to Prove(PK,SK, ·, ·), for
variables SK,C, x defined below, the following holds:

Pr

⎡
⎢⎢⎢⎢⎣

b = b′

(PK, SK) ← Gen(1k);
(C, T ) ← Encap(PK);

(x, st) ← AProve(PK,SK,·,·)
1 (PK, C);

y0 = Comp(T, x); y1 ← {0, 1}|y0|;
b ← {0, 1}; b′ ← AProve(PK,SK,·,·)

2 (yb, st)

⎤
⎥⎥⎥⎥⎦

≤ 1

2
+ negl(k)

We present a construction of our EVRF in Sect. 5.1.

Remark 4. We note that any valid ciphertext C implicitly defines a standard
verifiable random function (VRF). In particular, the value z = Prove(SK,C, x)
could be viewed as the VRF proof, which is accepted iff Post(PK, z, C, x) �= ⊥.

Remark 5. We reiterate that our pseudorandomness definition does not give the
attacker “unguarded” access to the Core procedure, but only “Split-guarded”
access to Prove = Core(Split). This difference does not matter when the
Split procedure just sets R = C. However, when Split is non-trivial, the owner
of SK (Alice) can only outsource it to some outside server (Charlie) if it trusts
Charlie and the authenticity (but not privacy) of the channel between Alice and
Charlie.

4.2 Extensions to EVRFs

Threshold EVRF. In the earlier definition, we had a single secret key SK.
With possession of this secret key, one can evaluate the EVRF on any input x.
Therefore, it becomes imperative to protect the key from leakage. Indeed, it is
natural to extend our early definition to cater to the setting of a distributed
evaluation of the EVRF. The key difference in the definition of threshold EVRF
from the earlier definition is that the Post algorithm is now formally split into
the share verification algorithm Shr-Vfy and the final evaluation algorithm
Combine. The formal discussion about the syntax and security of this primitive
can be found in Sect. 6.1.

Delegatable EVRF. Next, we extend the definition of standard EVRFs to the
setting where the EVRF owner could delegate its evaluation power to another
key. Recall that a standard EVRF has the following algorithms: Gen,Encap,
Comp,Split,Core,Post. Delegation, therefore, implies that one can convert
a ciphertext C1 for key pair (PK1, SK1) to ciphertext C2 for a different key pair
(PK2, SK2) which encapsulates the same VRF, i.e.,

∀x,Eval(PK1, SK1, C1, x) = Eval(PK2, SK2, C2, x) (1)

where Eval(PK,SK,C, x) = Post(PK,Prove(SK, c, x), C, x). The formal
discussion about the syntax and security of this primitive can be found in
Sect. 7.1.
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Protocol Standard EVRF

Gen(1k)

Sample a ∈r Z
∗
p

Compute A = ga ∈ G.
return SK = a and PK = (g, A).

Encap(PK)

Parse PK = (g, A).
Sample r ∈r Z

∗
p.

Compute R = gr, S = Ar.
return C = R, T = (R, S).

Comp(T, x)

Parse T = (R, S).
Compute y = e(H(R, x), S).
return y.

Split(PK, C′)

Parse PK = (g, A), C′ = R′.
return R′.

Core(SK, C′, x)

Parse SK = a, C′ = R′.
Compute z = H(R′, x)a.
return z.

Post(PK, z, C′, x)

Parse PK = (g, A), C′ = R′

if e(z, g) �= e(H(R′, x), A) then
return ⊥.

else
Compute y′ = e(z, R′).
return y′.

Construction 1. Standard EVRF = (Gen,Encap,Comp,Split,Core,Post).

5 Our Constructions

We begin by presenting the standard EVRF construction in Sect. 5.1. We then
present a generic construction of our ESI in Sect. 5.2.

5.1 Standard EVRF

We now present the standard EVRF construction, presented in Construction 1.

Security Analysis. To check Evaluation-Correctness, we observe that Ar =
gar = Ra, and by the bilinearity we have:

Comp(T = (R, S), x) = e(H(R, x), S) = e(H(R, x), Ar)

From our earlier observation, we get that:

e(H(R, x), Ar) = e(H(R, x), Ra) = e(H(R, x)a, R) = e(z, R)

This is the same as Post(A,Core(a,Split(A,R), x), R, x) which concludes
the proof.

To prove Uniqueness, consider any tuple (PK = A,C = R, x, z1, z2). Fur-
ther, let y1 = Post(A, z1, R, x) and y2 = Post(A, z2, R, x). If y1 �= ⊥ and
y2 �= ⊥, then we have that e(z1, g) = e(H(R, x), A) = e(z2, g). From definition of
bilinear groups, we get that z1 = z2. Consequently, y1 = e(z1, R) = e(z2, R) = y2.

Finally, we can prove the following result in the full version of the paper [3].

Theorem 1. The standard EVRF given in Construction 1 satisfies the $-Core
property under the BDDH assumption in the random oracle model.

5.2 Generic Construction of Encapsulated Search Index

Non-private Dictionary Data Structure. Our generic construction will
use the simplest kind of non-cryptographic dictionary which allows one to pre-
process some set D into some data structure E so that membership queries
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Protocol Generic ESI Construction

KGen(1k)

Run EVRF.Gen(1k) → (PK, SK).
return PK, SK.

Prep(PK)

Run EVRF.Encap(PK) → (C, T ).
return c = C and s = T .

Index(s, D)

for w ∈ D do
Compute yw=EVRF.Comp(s, w).

Compute Y = {yw|w ∈ D}.
Run DS.Construct(Y ) → E.
return E.

S-Split(PK, c′)

Run EVRF.Split(PK, c′) = r′.
return r′.

S-Core(SK, r′, w)

Run EVRF.Core(SK, r′, w) = z′.
return z′.

Finalize(PK, E′, c′, z′, w)

Run EVRF.Post(PK, z′, c′, w) = y′.
if y′ = ⊥ then

return ⊥.
else

return DS.Find(E′, y′).

Construction 2. Generic ESI = (KGen,Prep, Index,S-Split,S-Core, Finalize).

w ∈ D can be answered in sub-linear time in N = |D|. In particular, a clas-
sic instantiation of such a dictionary could be any balanced search trees with
search time O(log N). If a small probability of error is allowed, we could also
use faster data structures, such as hash tables [18], Bloom filters [6,37,38] or
cuckoo hash [39], whose search takes expected time O(1). The particular choice
of the non-cryptographic dictionary will depend on the application, which is a
nice luxury allowed by our generic composition.

Formally, a non-private dictionary DS = (Construct,Find) is any data
structure supporting the following two operations:

– Construct(D) → E: outputs the index E on an input document D.
– Find(E,w) → {0, 1}: outputs 1 if w is present in D, and 0 otherwise. We

assume perfect correctness for w ∈ D, and allow negligible error probability
for w �∈ D.

Our Composition. We show that Encapsulated Search Index can be easily built
from any such non-cryptographic dictionary DS = (Construct,Find) and and
EVRF = (Gen,Encap,Comp,Split,Core, Post). This composition is given
below in Construction 2.

Efficiency. By design, the Search operation of our composition inherits the
efficiency of the non-cryptographic dictionary DS. In particular, it is O(log |D|)
with standard balanced search trees and could become potentially O(1) with
probabilistic dictionaries, such as hash tables or Bloom filters.

Security Analysis. The Correctness and Uniqueness properties of the
above construction trivially follows from the respective properties of the under-
lying EVRF and DS. In particular, we get negligible error probability for w �∈ D
either due to unlikely EVRF collision between yw and yw′ for some w′ ∈ D,
or a false positive of the DS. In the full version of the paper [3] we prove the
following theorem:

Theorem 2. If EVRF satisfies the $-Core property, then Encapsulated Search
Index is CCA secure. Further, if the EVRF (resp. DS ) is threshold and/or
delegatable, the resulting ESI inherits the same.
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6 Threshold Encapsulated Verifiable Random Functions

In this section, we formally introduce the primitive known as a Threshold EVRF
in Sect. 6.1. We then present a construction of Threshold EVRF in Sect. 6.2 but
defer the security proof due to space constraints. The proof can be found in the
full version of the paper [3].

6.1 Definition of Threshold (or Distributed) EVRFs

Definition 3. A (t, n)-Threshold EVRF is a tuple of PPT algorithms
TEVRF = (Gen,Gen-Vfy,Encap,Comp,Split,D-Core,
Shr-Vfy, Combine) such that:

– Gen(1k, t, n) → (PK,SK = (sk1, . . . , skn),VK = (vk1, . . . , vkn)): outputs
the public key PK, a vector of secret shares SK, and public shares VK.

– Gen-Vfy(PK,VK) = β ∈ {0, 1}: verifies that the output of Gen is indeed
valid.

– Encap(PK) → (C, T ): outputs ciphertext C and trapdoor T .
– Comp(T, x) = y: evaluates EVRF on input x, using trapdoor T .
– Split(PK,n,C ′) = (R′

1, . . . R
′
n): outputs n handles R′

1, . . . , R
′
n from full

ciphertext C ′.
– D-Core(ski, R

′
i, x) = z′

i: evaluates EVRF share on input x, using handle R′
i

and secret key share ski.
– Shr-Vfy(PK, vki, z

′
i, x) = β ∈ {0, 1}: verifies that the share produced by the

party i is valid.
– Combine(PK,C ′, z′

i1
, . . . , z′

it
, x) = y′: uses the partial evaluations z′

i1
, . . . , z′

it

to compute the final value of EVRF on input x.9

Before we define the security properties, it is useful to define the following short-
hand functions:

– Prove(SK, i, C, x) = D-Core(ski, Ri, x), where
(R1, . . . , Rn) = Split(PK,n,C).

– Eval(SK, i1, . . . , it, C, x): For j = 1 . . . t, compute zij
= Prove(SK, ij , C, x).

Output ⊥ if, for some 1 ≤ j ≤ t, Shr-Vfy(PK, vkij
, zij

, x) = 0.
Otherwise, output Combine(PK,C, zi1 , . . . , zit

, x).

We require the following security properties:

1. Distribution-Correctness:
(a) with prob. 1 over randomness of Gen(1k, t, n) → (PK,SK,VK),

Gen-Vfy(PK,VK) = 1
(b) with prob. 1 over randomness of Gen and Encap, for honestly generated

ciphertext C: Eval(SK, i1, . . . , it, C, x) = Comp(T, x)

9 Without loss of generality, we will always assume that all the t partial evaluations z′
i

satisfy Shr-Vfy(PK, vki, z
′
i) = 1 (else, we output ⊥ before calling Combine). See

also the definition of Eval below to explicitly model this assumption.
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2. Uniqueness: there exists no values (PK,VK, C, x, Z1, Z2) where Z1 =
((i1, zi1), . . . , (it, zit

)) and Z2 = ((j1, zj1), . . . , (jt, zjt
)). s.t.

(a) Gen-Vfy(PK,VK) = 1
(b) for k = 1, . . . , t:

– Shr-Vfy(PK, vkik
, zik

, x) = 1.
– Shr-Vfy(PK, vkjk

, zjk
, x) = 1.

(c) Let Zi = (zi1 , . . . , zit
) and Zj = (zj1 , . . . , zjt

). Then,

Combine(PK,C,Zi, x) �= Combine(PK,C,Zj , x)

3. Pseudorandomness under D-Core ($-DCore): for any PPT algorithm
A = (A0,A1,A2), where A does not make query (j, C, x) to Prove(SK, ·, ·, ·),
for j �∈ {i1, . . . , it−1} for variables i1, . . . , it−1,SK, C, x defined below,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b = b′

{i1, . . . , it−1, st} ← A0(1
k, t, n);

(PK,SK,VK) ← Gen(1k, t, n);
(C, T ) ← Encap(PK);

(R1, . . . , Rn) = Split(PK, n, C);

(x, st) ← AProve(SK,·,·,·)
1 (PK, C,VK,SK′, st)

y0 = Comp(T, x); y1 ← {0, 1}|y0|;
b ← {0, 1}; b′ ← AProve(SK,·,·)

2 (yb, st)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 1

2
+ negl(k)

where SK′ = (ski1 , . . . , skit−1).

We present a construction of our threshold EVRF in Sect. 6.2.

Remark 6. For simplicity, in the above definition, we assume honest key gener-
ation and do not explicitly address distributed key generation. Even with this
simplification, the existence of the Gen-Vfy algorithm ensures the users of the
system that the public key (PK,VK) is “consistent”and was generated prop-
erly. Moreover, our construction, given in Sect. 6.2, can easily achieve efficient
distributed key generation using techniques of Gennaro et al. [27].

Remark 7. Note that when t = n = 1, our threshold EVRF implies the the stan-
dard EVRF definition (Definition 2), where Post algorithm first runs Shr-Vfy

on the single share z and then, if successful, runs Combine to produce the final
output y. For n > 1, however, we find it extremely convenient that we can sepa-
rately check the validity of each share, and be guaranteed to compute the correct
output the moment t servers return consistent (i.e., Shr-Vfy’ed) shares zi.

6.2 Construction of Threshold (or Distributed) EVRFs

Our non-interactive threshold EVRF is given in Construction 3. It combines
elements of our standard EVRF from Construction 1 with the ideas of Shamir’s
Secret Sharing [42], Feldman VSS [25], and the fact that the correctness of all
computations is easily verified using the pairing.
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Protocol Non-Interactive Threshold EVRF

Gen(1k)

Sample a random (t − 1) degree polynomial f ∈
Z

∗
p[X].

Compute a = f(0), A0 = ga.
for i = 1, . . . , n do

Compute ai = f(i), Ai = gai .

return PK = (g, A0), SK = (a1, . . . , an), VK =
(A1, . . . , An),
with server i getting secret key ski = ai and verifi-
cation key vki = Ai.

Gen-Vfy(PK,VK)

Parse PK = (g, A0),VK =, (A1, . . . , An)).
for i = t, . . . , n do

Compute Lagrange coefficients λi,0 . . . , λi,t−1

s.t. f(i) =
∑t−1

j=0 λi,j · f(j).
Each λi,j is a fixed constant.

if Ai �= ∏t−1
j=0 A

λi,j

j then
return 0

return 1

Encap(PK)

Parse PK = (g, A0).
Sample r ∈r Z

∗
p.

Compute R = gr, S = Ar
0.

return ciphertext C =R and trapdoor T = (R, S).

Comp(T, x)

Parse T = (R, S).
Compute y = e(H(R, x), S).
return y.

Split(PK, C′)

Parse PK = (g, A0), C′ = R′.
return R′

1 = R′, . . . , R′
n = R′.

D-Core(SKi, R
′
i, x)

Parse SKi = ai, R
′
i = R′.

Compute partial output zi = H(R′
i, x)ai .

return zi.

Shr-Vfy(PK, V Ki, z
′
i, x)

Parse PK = (g, A0), V Ki = Ai.
if e(z′

i, g) �= e(H(R′
i, x), Ai) then

return ⊥.

Combine(PK, C′, z′
i1 , . . . , z′

it
, x)

Parse PK = (g, A0), C′ = R′.
Compute Lagrange coefficients λ1 . . . , λt s.t.
f(0) =

∑t
j=1 λj · f(ij).

Note that these λj ’s only depend on indices i1, . . . , it.
Compute z′ =

∏t
j=1(z

′
ij

)λj .

return y = e(z′, R′).

Construction 3. TEVRF = (Gen, Gen-Vfy, Encap, Comp, Split, D-Core,
Shr-Vfy, Combine).

Security Analysis. To check Distribution-Correctness, we observe that A =
ga, S = gar, and R = gr. Therefore, Comp(T = (R,S), x) = e(H(R, x), S) =
e(H(R, x), g)ar. By definition, we have that:

Eval(PK,SK, i1, . . . , it, R, x) = e(

t∏
j=1

z
λj

ij
, R)

e(

t∏
j=1

z
λj

ij
, R) = e(

t∏
j=1

H(R, x)
aij

·λj , R) = e(H(R, x)
∑t

j=1 aij
·λj , R)

However, we know that a =
∑t

j=1 aij
· λj . Therefore,

e(H(R, x)
∑t

j=1 aij
·λj , R) = e(H(R, x)a

, gr) = e(H(R, x), g)ar

To check Uniqueness, we are given: (PK,VK = (vk1, . . . , vkn), R, x, Z1, Z2)
where Z1 = ((i1, zi1), . . . , (it, zit

)) and Z2 = ((j1, zj1), . . . , (jt, zjt
)).

– Gen-Vfy(PK,VK) = 1 implies that a0, a1, . . . , an where ga0 = PK and
gai = vki all lie on a consistent polynomial f of degree t − 1. Thus, there
exist λ1, . . . , λt ∈ Zp such that f(0) =

∑t
�=1 λ� · f(i�) and λ′

1, . . . , λ
′
t ∈ Zp

such that f(0) =
∑t

�=1 λ� · f(j�). Therefore, we have that:
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A =
t∏

�=1

vki�

λ� =
t∏

�=1

vkj�

λ′
� (2)

– We also know that for � = 1, . . . , t, Shr-Vfy(PK, vki�
, zi�

, x) = 1 and
Shr-Vfy(PK, vkj�

, zj�
, x) = 1. Therefore, we have that for � = 1, . . . , t:

e(zi� , g) = e(H(R, x), vki�); e(zj� , g) = e(H(R, x), vkj�) (3)

– We will now show that the 2 outputs of Combine must be equal. Here we we
will write R = gr for some r,

Combine(PK,R, zi1 , . . . , zit
, x) = e(

t∏
�=1

zλ�
i�

, R) =
t∏

�=1

e(zi�
, g)r·λ�

From Eq. (3):

t∏
�=1

e(zi�
, g)r·λ� =

t∏
�=1

e(H(R, x), vki�
)r·λ� = e

(
H(R, x),

t∏
�=1

vkλ�
i�

)r

From Eq. (2), we have that:

e(H(R, x),
t∏

�=1

vkλ�
i�

)r = e(H(R, x),
t∏

�=1

vk
λ′

�
j�

)r =
t∏

�=1

e(H(R, x), vkj�
)r·λ′

�

We again use Eq. (3) to conclude the proof. Finally, we prove the following result
in the full version of the paper [3].

Theorem 3. If Construction 1 satisfies the $-Core property of standard
EVRF, then Construction 3 satisfies the $-DCore property of threshold EVRF.
By Theorem 1, it follows that Construction 3 satisfies the $-DCore property
under the BDDH assumption in the random oracle model.

7 Delegatable Encapsulated Verifiable Random Functions

In this section, we formally introduce the primitive known as a Delegatable
EVRF in Sect. 7.1. This definition captures different levels of delegatability and
we present constructions that satisfy these levels in Sects. 7.2, 7.3, and 7.4. The
security proofs are deferred to the appendix.

7.1 Definition of Delegatable EVRFs

In this work, we will be interested in a stronger type of delegatable EVRFs where
anybody can check if two ciphertexts C1 and C2 “came from the same place”.
This is governed by the “comparison” procedure Same(PK1, C1, PK2, C2) which
outputs 1 only if Eq. (1) holds. This procedure will have several uses. First, it
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allows the owner of SK2 to be sure that the resulting ciphertext C2 indeed encap-
sulates the same VRF under PK2 as C1 does under PK1. Second, it will allow
us to cleanly define a “trivial” attack on the pseudorandomness of delegatable
EVRFs. See also Remark 9.

We define three levels of pseudorandomness security for delegatable EVRFs.

Definition 4. An EV RF = (Gen,Encap,Comp,Split,Core,Post) is dele-
gatable if there exists polynomial-time procedures Del and Same, such that:

– Del(SK1, C1, SK2) = C2 for the (default) secretly-delegatable variant;
– Del(SK1, C1, PK2) = C2 for the publicly-delegatable variant.
– Same(PK1, C1, PK2, C2) = β ∈ {0, 1}.

Before we define the security properties, it is useful to define the following
shorthand functions:

– Prove(SKi, C, x) = Core(SKi,Split(PKi, C), x)
– Eval(SK,C, x) = Post(PK,Prove(SK,C, x), C, x)

In addition to the standard EVRF properties of Evaluation-Correctness
and Uniqueness , we require the following security properties from a delegatable
EVRF:

1. Delegation-Completeness: for any valid (PK1, SK1), (PK2, SK2), and
ciphertext C1,

Del(SK1, C1, SK2/PK2) = C2 =⇒ Same(PK1, C1, PK2, C2) = 1

2. Delegation-Soundness: for any valid (PK1, SK1), (PK2, SK2), and
ciphertexts C1, C2

Same(PK1, C1, PK2, C2) = 1 =⇒
∀x Eval(SK1, C1, x) = Eval(SK2, C2, x)

Moreover, if we have PK1 = PK2, then C1 = C2.
3. Pseudorandomness under Core ($-Core): for any legal PPT attacker

A = (A1,A2), where legality of A and appropriate delegation oracle(s) O are
defined separately for each notion:

Pr

⎡
⎢⎢⎢⎢⎣

b = b′

(1, PK1) ← Reg(1k);
(C1, T1) ← Encap(PK1);

(x, st) ← AReg,HProve,O
1 (PK1, C1);

y0 = Comp(T1, x); y1 ← {0, 1}|y0|;
b ← {0, 1}; b′ ← AReg,HProve,O

2 (yb, st)

⎤
⎥⎥⎥⎥⎦

≤ 1

2
+ negl(k)

(a) Basic-$-Core: A has 1 delegation oracle O = HDel.
Legality of A: no call to HProve(i, C ′, x) s.t.
Same(PK1, C1, PKi, C

′) = 1.
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(b) Uni-$-Core: A has 2 delegation oracles O = (HDel, OutDel).
Legality of A: no call to HProve(i, C ′, x) or
OutDel(i, C ′, ∗) s.t. Same(PK1, C1, PKi, C

′) = 1.
(c) Bi–$-Core: A has 3 delegation oracles

O = (HDel,OutDel, InDel).
Legality of A: same as that of Uni-$-Core.

Now, we can define the oracles. As alluded to earlier, there are significant
subtleties in both the syntax and security of such a primitive. We defer this
exposition to the appendix for want of space. This discussion can be found in
the full version of the paper [3].

To adequately capture these nuances, we define the following oracles to the
attacker:

1. Reg(1k): registration oracle. It maintains a global variable q, initially 0,
counting the number of non-compromised users. A call to Reg: (a) increments
q; (b) calls (PKq, SKq) ← Gen(1k), (c) records this tuple (q, PKq, SKq) in
a global table not accessible to the attacker; (d) returns (q, PKq) to the
attacker.

2. HProve(i, C, x): honest evaluation oracle. Here 1 ≤ i ≤ q is an index, C
is a ciphertext, and x in an input. The oracle returns Prove(SKi, C, x) =
Core(SKi,Split(PKi, C), x).

3. HDel(i, C, j): honest delegation oracle. Here 1 ≤ i, j ≤ q are two indices,
and C is a ciphertext. The oracle returns C ′ = Del(SKi, C, SKj) (or
Del(SKi, C, PKj) in the publicly-delegatable case).

4. OutDel(i, C, SK/PK): “Out” delegation oracle. Here 1 ≤ i ≤ q is an index,
C is a ciphertext, and PK or SK (depending on whether scheme is publicly-
delegatable or not) is any public/secret key chosen by the attacker. The oracle
returns C ′ = Del(SKi, C, SK/PK).

5. InDel(SK,C, i): “In” delegation oracle. Here 1 ≤ i ≤ q is an index, and C
is a ciphertext, and SK is any secret key chosen by the attacker. The oracle
returns C ′ = Del(SK,C, SKi). Notice, this oracle is interesting only in the
secretly-delegatable case.

Remark 8. Delegation-Completeness and Delegation-Soundness easily
imply Delegation-Correctness which was advocated in Eq. (1):

Del(SK1, C1, SK2/PK2) = C2 =⇒ ∀x Eval(SK1, C1, x) = Eval(SK2, C2, x)

Remark 9. The legality condition on the attacker is necessary, as evaluating
EVRF on the “same” ciphertext C ′ as the challenge ciphertext C1 breaks pseu-
dorandomness (by delegation-soundness). However, it leaves open the possibil-
ity for the attacker to find such equivalent ciphertext C ′ without building some
explicit “delegation path” from the challenge ciphertext C1. Indeed, in the full
version of the paper [3], we will give an even stronger legality condition on A,
and some (but not all) of our schemes will meet it. For applications, however,
we do not envision this slight definitional gap to make any difference. Namely,
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the higher-level application will anyway need some mechanism to disallow any
“trivial” attacks. We expect this mechanism will explicitly use our Same proce-
dure, rather than keep track of the tree of “delegation paths” originating from
C1, which could quickly become unmanageable.

Remark 10. It is easy to observe the following implications:

Bi–$-Core =⇒ Uni-$-Core =⇒ Basic-$-Core =⇒ $-Core
Here, the last implication uses the fact that C1 is the only ciphertext equivalent
to C1 under PK1. Thus, bidirectional delegation security is the strongest of all
the notions.

Remark 11. One could also consider EVRFs which are simultaneously threshold
and delegatable. In this case, n1 servers for the sender’s EVRFs will communicate
with n2 servers for the receiver’s EVRF to help convert a ciphertext C1 for the
sender EVRF into a corresponding ciphertext C2 for the receiver EVRF. We
leave this extension to future work.

7.2 Construction of Basic Delegatable EVRF

We now show that our original EVRF Construction 1 can be extended to make
it basic-delegatable. The idea is to separate the role of the “handle” R hashed
under H inside the Core procedure from the one used in the preprocessing.
For technical reasons explained below, we will also hash the public key A when
evaluating the EVRF. The construction is presented as Construction 4.

Observations. We notice that, since R = D initially, the resulting EVRF
before the delegation is the same as the one we defined in Sect. 5.1, except (a)
we also include the public key A under the hash H during both Encap and
Core; and (b) we perform the delegation check e(A′, R′) ?= e(A,D′) in the split
procedure Split, which is trivially true initially, as A′ = A and R′ = D′ = R.
Thus, Evaluation-Correctness trivially holds, as before. For the same reason,
Uniqueness trivially holds as well.

The importance of change (a) comes from the fact that challenge ciphertext
C = (A,R,D) no longer includes only the value R, even though the value R
would be all that is needed to actually evaluate our EVRF, had we not included
A under the hash H. In particular, the attacker A given challenge C = (A,R,R),
can easily produce C ′ �= C by setting C ′ = (A2, R,R2). C ′ passes the delegation
check e(A2, R) = e(A,R2), but clearly produces the same partial output z =
H(R, x)a as the challenge ciphertext, trivially breaking the $-Core property.
Instead, by also hashing the public key, the oracle call Prove(C ′, x) would
return z′ = H(A2, R, x)a, which is now unrelated to z = H(A,R, x)a, foiling the
trivial attack.

The importance of change (b) comes from ensuring that a valid ciphertext
(A′, R′,D′) determines the value D′ information-theoretically from the values
(A′, R′) (and the public key A), because the condition e(A′, R′) = e(A,D′)
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Protocol Basic Delegatable EVRF

Gen(1k)

Sample a ∈r Z
∗
p

Compute A = ga ∈ G.
return SK = a and PK = (g, A).

Encap(PK)

Parse PK = (g, A).
Sample r ∈r Z

∗
p.

Compute R = D = gr, S = Ar.
return ciphertext C = (A, R, D) and trapdoor
T = (A, R, S).

Comp(T, x)

Parse T = (A, R, S).
Compute y = e(H(A, R, x), S).
return y.

Del(SK1, C1, SK2)

Parse SK1 = a1, SK2 = a2, C1 = (A, R, D1).
if e(A, R) �= e(ga1 , D1) then

return ⊥.
else

Compute D2 = D
a1/a2
1 where a1/a2 = a1 ·

(a2)
−1 mod p.
return C2 = (A, R, D2).

Split(PK, C′)

Parse PK = (g, A), C′ = (A, R′, D′).
if e(A′, R′) �= e(A, D′) then

return ⊥.
else

return (A′, R′).

Core(SK, C′, x)

Parse SK = a, C′ = (A′, R′, D′).
Compute partial output z = H(A′, R′, x)a.
return z.

Post(PK, z′, C′, x)

Parse PK = (g, A), C′ = (A′, R′, D′)
if e(z′, g) �= e(H(A′, R′, x), A) then

return ⊥.
else

Compute full output y′ = e(z′, D′).
return y′.

Same(PK1, C1, PK2, C2)

Parse PK1 = (g, A1), PK2 = (g, A2), C1 =
(A, R, D1), C2 = (A′, R′, D2).
if (A, R) �= (A′, R′) or e(A1, D1) �= e(A2, D2) then

return ⊥.

Construction 4. Basic Delegatable DEVRF1 = (Gen,Encap,Comp, Split, Core,
Post,Del,Same).

uniquely determines D′. Thus, it is OK that the Core procedure only passes
the values (A′, R′) under the random oracle H.

Delegation. To check Delegation-Completeness, notice that valid dele-
gation of (A,R,D1) outputs (A′, R′,D2), where (A′, R′) = (A,R) and D2 =
D

a1/a2
1 , which implies that

e(A2, D2) = e(ga2 , D
a1/a2
1 ) = e(ga1 , D1) = e(A1, D1)

which means Same(A1, (A,R,D1), A2, (A′, R′,D2)) = 1 indeed.
For Delegation-Soundness, given C1 = (A,R,D1) and C2 = (A′, R′,D2)

satisfying (A′, R′) = (A,R) and e(A1,D1) = e(A2,D2), we can see that the
delegation checks e(A,R) ?= e(A1,D1) and e(A′, R′) ?= e(A2,D2) are either both
false or true simultaneously. Moreover, by writing A1 = A

a1/a2
2 , the second

equation implies that D2 = D
a1/a2
1 . In particular, if A1 = A2, we have C1 = C2;

and, in general, when (A′, R′) = (A,R) and D2 = D
a1/a2
1 , for any x, we know:

Eval(a2, (A,R,D2), x) = e(H(A,R, x)a2 ,D2).
However, that can be rewritten as

e(H(A,R, x)a2 ,D
a1/a2
1 ) = e(H(A,R, x)a2 ,D

a1/a2
1 ) = e(H(A,R, x)a1 ,D1)

which concludes the proof.
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We reiterate that though our delegation is secretly-delegatable, as D2

depends on a2, in practice the owner Alice of a1 will simply send the trapdoor
value T1 = Da1

1 to the owner Bob of a2 over secure channel (say, encrypted under
a separate public key), and Bob can then compute D2 = T

1/a2
1 . In particular,

this does not leak any extra information beyond (D2, a2) to Bob, as T1 = Da2
2

is efficiently computable from D2 and a2. Also, the delegation check does not
require any of the secret keys. Despite that, it ensures that only properly del-
egated ciphertexts can be securely re-delegated again. We will critically use to
prove the following:

Theorem 4. The basic delegatable EVRF, given in Construction 4, satisfies
the Basic-$-Core property under the BDDH assumption in the random oracle
model.

The proof of the above theorem is deferred to full version of paper [3].

Delegation Attack on Stronger Legality. We briefly mentioned in
Sect. 7.1 that one could require a stronger legality condition to say that the
only way to distinguish the evaluation of C on x from random is to honestly
delegate C to some honest user (possibly iteratively), getting ciphertext C ′, and
then ask this user to evaluate EVRF on x.

Here we show that our construction does not satisfy this notion. Consider
challenge ciphertext C1 = (A1, R1, R1) under public key A1. Construct C ′

1 =
(A1, R

2
1, R

2
1). C ′

1 will satisfy the delegation check, so we could ask to delegate
C ′ to public key A2. We get C ′

2 = (A1, R
2
1, (R

2
1)

a1/a2) = (A1, R
2
1, (R

a1/a2
1 )2). By

taking square roots from the last two components, we get C2 = (A1, R1, R
a1/a2
1 ).

Notice, Same(A1, C1, A2, C2) = 1 is true, so our original definition does not per-
mit the attacker to evaluate HProve(2, C2, x) (which clearly breaks the scheme).
However, since we obtained C2 without asking the delegate C1 itself (instead, we
asked a different ciphertext C ′

1), the stronger notion would have allowed the
attacker to call HProve(2, C2, x) and break the scheme.

7.3 Construction of Uni- And Bidirectional Delegatable EVRF

Next, we extend the construction from the previous EVRF construction to
also handle delegation to (and, under a stronger assumption, from) potentially
untrusted parties. The idea is to add a “BLS signature” [11] σ in the Encap

procedure which will prove that the initial ciphertext was “well-formed”. This
makes it hard for the attacker to maul a valid initial ciphertext C into a related
ciphertext C ′, whose delegation might compromise the security of C. The public
verifiability of the signature σ will also make it easy to add a “signature check”
to the “delegation check” we already used in our scheme, to ensure that the
appropriate pseudorandomness property is not compromised. This is presented
as Construction 5.
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Protocol Delegatable EVRF

Gen(1k)

Sample a ∈r Z
∗
p

Compute A = ga ∈ G.
return SK = a and PK = (g, A).

Encap(PK)

Parse PK = (g, A).
Sample r ∈r Z

∗
p.

Compute R = D = gr, S = Ar, σ = H ′(A, R)r.
return ciphertext C = (A, R, D, σ) and trapdoor T =
(A, R, S).

Comp(T, x)

Parse T = (A, R, S).
Compute y = e(H(A, R, x), S).
return y.

Del(SK1, C1, SK2)

Parse SK1 = a1, SK2 = a2, C1 = (A, R, D1, σ).
if e(A, R) �= e(ga1 , D1) or e(H ′(A, R), R) �= e(σ, g) then

return ⊥.
else

Compute D2 = D
a1/a2
1 where a1/a2 = a1 · (a2)

−1

mod p.
return C2 = (A, R, D2).

Split(PK, C′)

Parse PK = (g, A), C′ = (A′, R′, D′, σ′).
if e(A′, R′) �= e(A, D′) or e(H ′(A′, R′), R′) �=
e(σ′, g) then

return ⊥.
else

return (A′, R′).

Core(SK, C′, x)

Parse SK = a, C′ = (A′, R′, D′, σ′).
Compute partial output z = H(A′, R′, x)a.
return z.

Post(PK, z′, C′, x)

Parse PK = (g, A), C′ = (A′, R′, D′, σ′)
if e(z′, g) �= e(H(A′, R′, x), A) then

return ⊥.
else

Compute full output y′ = e(z′, D′).
return y′.

Same(PK1, C1, PK2, C2)

Parse PK1 = (g, A1), PK2 = (g, A2), C1 =
(A, R, D1, σ), C2 = (A′, R′, D2, σ

′).
if (A, R, σ) �= (A′, R′, σ′) or e(A1, D1) �=
e(A2, D2) then

return ⊥.

Construction 5. DEVRF2 = (Gen,Encap,Comp, Split, Core, Post,Del,Same).

Security Analysis. Since DEVRF2 is essentially the same as DEVRF1, its cor-
rectness follows the same argument. In particular, we notice that the original
signature σ indeed satisfies our signature check:

e(H ′(A,R), R) = e(H ′(A,R), gr) = e(H ′(A,R)r, g) = e(σ, g)

Similar to the delegation check, the signature check, e(H ′(A′, R′), R′) ?= e(σ′, g),
is important to ensure that the value σ′ is information-theoretically determined
from the value (A′, R′), so it is fine to not include σ under H.

Also, since the delegation procedure Del simply copies the values A,R
and σ, and only modifies the value D1, the Delegation-Completeness and
Delegation-Soundness of DEVRF2 holds as it did for DEVRF1, since the
signature check is not affected by changing D1 to D2 = D

a1/a2
1 . In particular,

similar to the delegation checks, both signature checks are either simultaneously
true or false.

More importantly, in the full version of the paper [3], we also show how the
addition of the “BLS signature” σ and the new signature check allow us to prove
the following theorem:

Theorem 5. The delegatable EVRF given in Construction 5 satisfies the Uni-
$-Core property under the BDDH assumption in the random oracle model.

Finally, we also show that the same construction also satisfies the strongest
bidirectional-delegation security, but now under a much stronger iBDDH
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assumption. In fact, for this result, we will even show a stronger legality con-
dition mentioned earlier: the only way to break DEVRF2 is to trivially delegate
it “out” to the attacker, or delegate it to the honest user, and then ask the user
to evaluate on challenge x. We define this formally in the full version of the
paper [3], where we also show the following result:

Theorem 6. The delegatable EVRF given in Construction 5 satisfies the Bi–
$-Core property under the interactive iBDDH assumption in the random ora-
cle model. It satisfies the strongest possible legality condition for the attacker
(see [3]).

7.4 Construction of One-time Delegatable EVRF

Note that the bidirectional-delegation security of Construction 5 relied on a
very strong inversion-oracle BDDH (iBDDH) assumption, which is interactive
and not well studied. For applications where we only guarantee security after
a single delegation, we could prove bidirectional-delegation under a much rea-
sonable extended BDDH (eBDDH) assumption. More precisely, any party P is
“safe” to do any number of “out-delegations” to other, potentially untrusted
parties P ′, but should only accept “in-delegation” from such an untrusted P ′

only if the delegated ciphertext C ′ was created directly for P ′ (and not delegated
to P ′ from somewhere else).

More formally, the one-time delegation scheme we present here is identical to
the unidirectional-delegation scheme from the previous section, except we replace
the “delegation check” (e(A,R) ?= e(A1,D1)) by a stricter “equality check”(
(A,R) ?= (A1,D1)) which means that the ciphertext C1 was directly created
for public key A1 = A. We call the resulting 1-time-delegatable construction
DEVRF3. In the full version of the paper [3] we show that DEVRF3 satisfies
bidirectional-delegation security, but now under a much weaker (non-interactive)
eBDDH assumption:

Theorem 7. The one-time delegatable DEVRF3 above satisfies the Bi–$-Core
property under the eBDDH assumption in the random oracle model. It satisfies
the strongest possible legality condition for the attacker (see [3]).

We stress that our 1-time delegatable scheme could in principle be delegated
further, if the stricter delegation check (A,R) ?= (A1,D1) is replaced by the
original check e(A,R) ?= e(A1,D1). However, by doing so the party receiving the
EVRF from some untrusted source must rely on the stronger iBDDH complexity
assumption.

8 Conclusion and Final Thoughts

In this work we introduce the idea of an encapsulated search index (ESI) that
offers support for public-indexing and where the search takes sub-linear time.
We also presented a generic construction of ESI from another primitive known as
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encapsulated verifiable random functions (EVRF). We further detailed meaning-
ful extensions to both ESI and EVRF with support for delegation and distribu-
tion. We presented constructions of a standard EVRF and its various extensions.
Indeed, obtain the following Theorem as a corollary of Theorem 2, and by using
any updatable sub-linear DS with an appropriate (delegatable and/or threshold)
EVRF from the earlier sections, we get:

Theorem 8. We have an updatable ESI (see [3]) which

(a) maintains the efficiency of the non-cryptographic DS;
(b) has non-interactive (t, n) threshold implementation for token generation (by

using TEVRF); and
(c) achieves either of the following delegation security levels in the random oracle

model:
– Basic CCA secure under BDDH assumption (by using DEVRF1)
– Uni CCA secure under BDDH assumption (by using DEVRF2)
– Bi CCA secure under iBDDH assumption (by using DEVRF2)
– One Time CCA secure under eBDDH assumption (by using

DEVRF3)

Commercial Product. This theorem forms the backbone of a commercially
available product that has been in the market since 2020. It serves over two-dozen
enterprise customers, with the largest having over 100 users. At a high level, the
commercial application is essentially the motivating application described in the
Introduction, but with a few pragmatic extensions.

The code is production quality and has been deployed without any noticeable
performance degradation, even for large files. Note that a typical mobile device
has the capability to compute 10,000 elliptic curve multiplications (which is
needed in our partial decryption step) per second, with the help of multiple cores.
This number is only expected to go up with further technological advancements
such as the growth of mobile GPUs. In the search functionality, a user can enter
one or several keywords. The system then sequentially searches each file using the
ESI that has been built leading to a total complexity proportional to the product
of the number of keywords, the number of files, and the ESI search time. By using
a blinded bloom filter as the data structure, the application achieves a constant
time search dictionary.10 Currently, searching 1000 files with up to 4 keywords
(or 2000 files with a maximum of 2 keywords) can be accomplished in about
2 s on a standard mobile phone. The application already uses the distributed
token generation and the search delegation capabilities of our underlying ESI.
We present additional details in the full version of the paper [3].
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Abstract. Key dependent message (KDM) security is a security notion
that guarantees confidentiality of communication even if secret keys are
encrypted. KDM security has found a number of applications in practi-
cal situations such as hard-disk encryption systems, anonymous creden-
tials, and bootstrapping of fully homomorphic encryption. Recently, it
also found an application in quantum delegation protocols as shown by
Zhang (TCC 2019).

In this work, we investigate the KDM security of existing practical
public-key encryption (PKE) schemes proposed in the quantum ran-
dom oracle model (QROM). Concretely, we study a PKE scheme whose
KEM is constructed by using Fujisaki-Okamoto (FO) transformations
in the QROM. FO transformations are applied to IND-CPA secure
PKE schemes and yield IND-CCA secure key encapsulation mechanisms
(KEM). Then, we show the following results.

– We can reduce the KDM-CPA security in the QROM of a PKE
scheme whose KEM is derived from any of the FO transformations
proposed by Hofheinz et al. (TCC 2017) to the IND-CPA security of
the underlying PKE scheme, without square root security loss. For
this result, we use one-time-pad (OTP) as DEM to convert KEM
into PKE.

– We can reduce the KDM-CCA security in the QROM of a PKE
scheme whose KEM is derived from a single variant of the FO trans-
formation proposed by Hofheinz et al. (TCC 2017) to the IND-CPA
security of the underlying PKE scheme, without square root security
loss. For this result, we use OTP-then-MAC construction as DEM to
convert KEM into PKE. Also, we require a mild injectivity assump-
tion for the underlying IND-CPA secure PKE scheme.

In order to avoid square root security loss, we use a double-sided one-
way to hiding (O2H) lemma proposed by Kuchta et al. (EUROCRYPT
2020). In the context of KDM security, there is a technical hurdle for
using double-sided O2H lemma due to the circularity issue. Our main
technical contribution is to overcome the hurdle.

1 Introduction

1.1 Background

Post-quantum security is emerging as a de facto standard since quantum technol-
ogy has been making rapid progress. In particular, since the NIST post-quantum
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13178, pp. 286–315, 2022.
https://doi.org/10.1007/978-3-030-97131-1_10
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cryptography standardization project started, IND-CCA security in the quan-
tum random oracle model (QROM) have been extensively studied to design prac-
tical and post-quantum secure public-key encryption (PKE) [BHH+19,AHU19,
HKSU20,JZM19a,HHK17,JZC+18,SXY18,TU16,KSS+20]. IND-CCA [RS92,
DDN00] is the gold standard security notion for PKE since chosen-ciphertext
attacks are realistic in many practical applications [Ble98]. The random oracle
model (ROM) [BR93] is an idealized model where hash functions are modeled
as ideal random functions in security proofs. This idealized model helps us to
design extremely efficient cryptographic primitives. In the QROM [BDF+11], a
random oracle query is a superposition query since adversaries are modeled as
quantum polynomial-time algorithms and hash functions are locally computable.

Although IND-CCA is suitable for many practical applications, a stronger
security goal than standard confidentiality is required in some settings. Key-
dependent message (KDM) security [BRS03] is such an example. KDM security
guarantees that adversaries cannot distinguish encryption of f0(sk) from encryp-
tion of f1(sk) where sk is a secret key and f0, f1 are arbitrary functions. The KDM
situation is realistic in hard disk encryption systems like BitLocker [BHHO08]
and bootstrapping fully homomorphic encryption [Gen09]. We also use KDM
secure encryption as a building block of cryptographic primitives and protocols
such as anonymous credentials [CL01]. In particular, (non-adaptive) KDM secure
secret-key encryption (SKE) against quantum adversaries is used to achieve del-
egation of quantum computation [Zha19]. The KDM situation also naturally
arises in formal verification of cryptographic protocols [AR02].

Thus, a natural question is:

Can we achieve practical KDM-CPA/CCA secure PKE in the QROM?
or

Do existing practical IND-CPA/CCA secure PKE satisfy KDM security in the
QROM?

The difficulty of this question depends on what level of security and efficiency
we achieve.

Security analysis in the QROM usually deviates from one in the classical
ROM. One significant issue is that, in the QROM, we cannot directly use the
observability of the classical ROM, which says reduction algorithms can observe
input points where adversaries make random oracle queries. In the QROM,
reduction algorithms need to measure superposition queries to observe random
oracle queries, but this prevents reduction since adversaries can detect mea-
surement. Superposition queries also prevent us from straightforwardly applying
the adaptive programming technique. These problems make it more challenging
to achieve CCA and KDM security in the QROM since each property is one
of the crucial properties in the proofs for CCA and KDM [FO13,KMHT16].
New techniques have been proposed to solve the security-proof problems
in the QROM. The one-way to hiding (O2H) lemma [Unr15] and its vari-
ants [AHU19,BHH+19,KSS+20] are the most well-known useful tools to solve
the problem above and achieve secure encryption in the QROM.
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Roughly speaking, the (original) O2H lemma is as follows. A quantum distin-
guisher A is given oracle access to an oracle O, which is either a random function
H : X → Y or G : X → Y such that ∀x /∈ S, H(x) = G(x). Let z be a random
classical string or quantum state ((G,H, S, z) may have an arbitrary distribu-
tion). Let D be a quantum algorithm that is given input z and oracle access to H,
measures A’s query, and outputs the result. The distinguishing advantage of A,
εA , is bounded by the square root of the search advantage of D, εD , that finds an
element in S.1 All O2H lemmas except the variant by Kuchta, Sakzad, Stehlé,
Steinfeld, and Sun [KSS+20] incur a square root security loss. A square root
security loss significantly degrades the performance of cryptographic primitives
since we need to use much longer security parameters for building blocks to guar-
antee a reasonable security level, say, 128-bit security.2 Thus, to achieve practical
KDM secure PKE schemes, we should avoid a square root loss. When we focus
on tight security, both security advantages and the running time of reductions
are crucial factors. However, in most PKE schemes (and all our schemes), the
overhead of running time of reductions is only additive and is not a dominant
factor. Thus, we focus on security loss.

At first glance, the O2H lemma by Kuchta et al. [KSS+20] (denoted by O2H
with MRM) seems to immediately answer our question since it does not incur
a square root security loss. However, this is not the case. O2H with MRM is
a variation of the double-sided O2H lemma by Bindel, Hamburg, Hövelmanns,
Hülsing, and Persichetti [BHH+19], where D is given oracle access to both H and
G. Thus, in O2H with MRM, D is given oracle access to a random oracle H and
a modified random oracle G. This is not an issue for proving IND-CPA/CCA
security. However, it is a serious issue for proving KDM security because corre-
lated information about secret keys could remain in the modified random oracle
G in known proofs for KDM in the classical ROM. See Sect. 1.4 for the detail.
Kuchta et al. [KSS+20] left relaxing their double-sided O2H with MRM to a
single-sided variant as an open question. However, that question remains elu-
sive. In the KDM setting, we cannot directly apply a double-sided type O2H
lemma. Achieving KDM security with a double-sided O2H lemma is of indepen-
dent interest. Thus, our question is more precisely described as follows.

Can we achieve practical KDM-CPA/CCA secure PKE without a square root
security loss in the QROM?

or
Do existing practical IND-CPA/CCA secure PKE satisfy KDM security

without a square root security loss in the QROM?

1.2 Our Result

In this work, we affirmatively answer the question above. We prove the following.
1 Here, we ignore security loss by the number of queries and constants for simplicity.
2 Saito, Xagawa, and Yamakawa [SXY18] estimate that we need 376-bit security of

underlying trapdoor functions for 128-bit security of the IND-CCA KEM scheme by
Boneh et al. [BDF+11] if the number of queries is 260 due to a square root security
loss.
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– We can obtain KDM-CPA secure PKE without a square root security loss by
applying a Fujisaki-Okamoto transformation (denoted by FO) [FO13,HHK17]
to IND-CPA secure PKE and combining one-time pad (OTP) as DEM.

– We can obtain KDM-CCA secure PKE without a square root security loss
by applying an FO [FO13,BHH+19] to IND-CPA secure PKE and combining
OTP and strong one-time MAC3 (that is, OTP-then-MAC) as DEM.

Note that our goal is PKE (not KEM) since we can consider the KDM set-
ting only in PKE. We need OTP to achieve PKE since FO yields KEM [FO13,
HHK17]. Our results are extremely versatile since we can convert IND-CPA
secure PKE to KDM-CPA/CCA secure PKE by the well-known general trans-
formations. FO yields practical KEM/PKE schemes and is employed in many
candidates of the NIST PQC standardization to achieve CCA security. Note that
we do not need the perfect correctness of the building block PKE. However, for
the result on KDM-CCA secure PKE, we require that a derandomized version
of the building block PKE is injective as in the CCA schemes in some previous
works [BHH+19,KSS+20]. Bindel et al. argue that injectivity is commonly sat-
isfied by many practical IND-CPA secure lattice based schemes [BHH+19]. We
also note that we use PKE in the multi-user setting [BBM00] as the building
block PKE in the transformation since the KDM setting is the multi-user setting
by default.4

To explain our result more precisely, we recall that an FO can be decom-
posed into two transformations T and U. This was first observed by Hofheinz,
Hövelmanns, and Kiltz [HHK17]. In this work, we adopt variants of T and U
defined by Bindel et al. [BHH+19]. The only difference between the transforma-
tions by Hofheinz et al. and those by Bindel et al. is that the validity check by
encryption in the decryption algorithm is performed as a part of T in the former
while it is performed as a part of U in the latter. Thus, the resulting FO is the
same regardless of which definitions of T and U we use.

T transformation transforms an IND-CPA secure PKE scheme into an OW-
CPA secure deterministic PKE scheme. U transformation transforms an OW-
CPA secure deterministic PKE scheme into an IND-CCA secure KEM. Regard-
ing U, there are six variants, U⊥, U�⊥, U⊥,keyconf, U⊥

m, U�⊥
m, and U⊥,keyconf

m . Here,
⊥ and �⊥ mean explicit and implicit rejection in decryption, respectively, and no
subscript and subscript m mean a hash function takes a ciphertext as a part of
the input or not. Superscript keyconf (key confirmation) means that we add a
hash value of a plaintext to a ciphertext and check the hash value in decryption.
Bindel et al. [BHH+19] prove that U⊥, U�⊥, and U⊥,keyconf yield IND-CCA KEM
if and only if U⊥

m, U�⊥
m, and U⊥,keyconf

m yield IND-CCA KEM, respectively. It does
not matter whether a hash function takes a ciphertext as the input or not. This
is also the case in the context of KDM security since the prove can be done via
simple mappings between random functions. Thus, in this work, we focus on U⊥

m,
U�⊥

m, and U⊥,keyconf
m .

3 Strong one-time MAC unconditionally exists.
4 We can achieve PKE in the �-user setting with advantage ε′ from standard PKE

with advantage ε such that ε′ ≈ � · ε.
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Table 1. Summary of our results. Here, U⊥
m,OTP and U⊥,keyconf

m,OTP+MAC denote U⊥
m with OTP and

U⊥,keyconf
m with OTP-then-MAC, respectively. Let εΣ and dF be the attacker advantage

in scheme Σ and the query depth of queries to random oracle F , respectively. Note that
dF ≤ qF where qF is the number of random oracle queries. We use PKE in the multi-
user setting for the building block PKE (denoted by PKE). Open Q. means that it is an
open question whether we can achieve KDM-CCA security by using U �⊥

m,OTP[PKE1, H]
transformation.

Transformation Security implication Security bound Condition

PKE1 := THKG[PKE, G] (Sect. 5) IND-CPA ⇒ SDM-OW-RSA O(dG · εPKE) none

U⊥
m,OTP[PKE1, H] (Sect. 4) SDM-OW-RSA ⇒ KDM-CPA O(dH · εPKE1 ) none

U⊥
m,OTP[T [PKE, G], H] (Sect. 6) IND-CPA ⇒ KDM-CPA O(dH · dG · εPKE)

a none

U�⊥
m,OTP[T [PKE, G], H] IND-CPA ⇒ KDM-CPA O(dH · dG · εPKE)

a none

U⊥,keyconf
m,OTP+MAC[PKE1, H] ([KN21]) SDM-OW-RSA ⇒ KDM-CCA O(dH · εPKE1 ) injectivity

U⊥,keyconf
m,OTP+MAC[T [PKE, G], H] ([KN21]) IND-CPA ⇒ KDM-CCA O(dH · dG · εPKE)

a injectivity

U�⊥
m,OTP[PKE1, H] open Q. ⇒ KDM-CCA open Q open Q

a This is a simplified bound. See Sect. 6 for the detail.

To solve the correlated information problem above, we introduce a new
security notion called seed-dependent message one-wayness against related seed
attacks (SDM-OW-RSA). This notion is a technical contribution and plays a cru-
cial role in this work (defined in Sect. 2.3). Then, we show that if we apply the
U⊥

m transformation to SDM-OW-RSA deterministic PKE, the resulting scheme
is KDM-CPA secure by combining OTP as DEM. We also show that if we
apply U⊥,keyconf

m to SDM-OW-RSA secure deterministic PKE with injectivity, the
resulting scheme is KDM-CCA secure by combining OTP-then-MAC as DEM.
Although we need O2H with MRM in this part to avoid a square root secu-
rity loss, we can overcome the double-sided oracle issue due to SDM-OW-RSA
security.

In order to complete the proof for the KDM security of FO transformations,
we go to the following path. We first introduce a variant of T that we call T
transformation with hash key generation THKG, and show that if we apply THKG

to IND-CPA PKE, the resulting deterministic PKE scheme satisfies SDM-OW-
RSA without square root security loss. Combined with the above, we see that
U⊥

m (resp. U⊥,keyconf
m ) together with THKG can be used to obtain a KDM-CPA

(resp. KDM-CCA) secure PKE scheme from an IND-CPA secure PKE scheme
without square root loss. Finally, we show that THKG in those constructions can
be replaced with T, thus prove the KDM security of FO transformations.

Although we omit in this paper, we can see that we can prove the KDM-
CPA security without a square root security loss even if we use U�⊥

m instead of
U⊥

m. Interestingly, if we use U�⊥
m instead of U⊥,keyconf

m , it is not clear whether we
can prove the KDM-CCA security without a square root loss. In the IND-CCA
case, U�⊥

m provides us with IND-CCA security without a square root security
loss [KSS+20,BHH+19]. See Sect. 1.4 for the detail. We summarize these results
in Table 1.
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1.3 Related Work

Our work is the first study on KDM secure PKE in the QROM. Our work also
focuses on tighter reductions. Zhang constructs a non-adaptive KDM-CPA SKE
scheme in the QROM to achieve delegation of quantum computation [Zha19].

Backes, Dürmuth, and Unruh [BDU08] study the KDM security of the OAEP
transformation [BR95] in the classical ROM. They prove that OAEP is KDM-
secure in the classical ROM if the underlying trapdoor permutation is partial-
domain one-way. Note that there is no post-quantum secure trapdoor permuta-
tion so far. Davies and Stam [DS14] study the KDM security in the KEM/DEM
framework. They prove that if a key derivation function (KDF) is used in between
the KEM and DEM part and the KDF function is modelled as a classical ran-
dom oracle, the resulting PKE scheme is KDM-secure. See the reference for secu-
rity requirements. Kitagawa, Matsuda, Hanaoka, and Tanaka [KMHT16] prove
that the FO transformation [FO13] satisfies KDM-CCA security in the classical
ROM.5 These works studied KDM security in the classical ROM basically prove
KDM security by eliminating key dependency of plaintexts by random oracle
programming.

We also briefly introduce previous works on IND-CCA secure PKE/KEM
in the QROM. Let ε and εbb be the advantages of IND-CCA PKE/KEM and
the building block, respectively. Let qH be the number of random oracle queries
(and we set dH := qH for simplicity). Below, we omit “IND-CCA” and “in the
QROM” since all results are about them. We also ignore the differences between
FO and FO variants.

Boneh et al. [BDF+11] use a KEM variant of Bellare-Rogaway transforma-
tion [BR93] to obtain their KEM from trapdoor functions and ε ≈ qH

√
εbb.

Targhi and Unruh [TU16] use FO to obtain their PKE from OW-CPA PKE
and ε ≈ q1.5

H
4
√

εbb. They also use an OAEP variant to obtain their PKE from
partial domain trapdoor injective OWFs and ε ≈ poly(qH) 8

√
εbb. Hofheinz et

al. [HHK17] present modular analysis for FO, but their KEM does not improve
the construction by Targhi and Unruh. Saito et al. [SXY18] use FO to obtain
their KEM from disjoint simulatable deterministic PKE and ε ≈ εbb. They also
obtain their KEM from IND-CPA PKE with perfect correctness and ε ≈ qH

√
εbb.

Jiang, Zhang, Chen, Wang, and Ma [JZC+18] use FO and obtain their KEM
from OW-CPA PKE and ε ≈ qH

√
εbb. Jiang, Zhang, and Ma [JZM19a] achieve

the same bound as those by Jiang et al. [JZC+18] and Saito et al. [SXY18]
by using the same assumptions and FO with explicit rejection. Ambainis, Ham-
burg, and Unruh [AHU19] prove an improved variant of the original O2H lemma
(semi-classical O2H lemma) and its bound is εA ≈ √

qH
√

εD (the query loss is
improved). The semi-classical O2H lemma leads to KEM with improved bounds
in the query part [AHU19,HKSU20,JZM19b]. Bindel et al. [BHH+19] prove the
double-sided O2H lemma whose bound is εA ≈ √

εD . They use FO to obtain their
KEM from IND-CPA PKE with injectivity, but its bound is essentially the same
as that of schemes using the semi-classical O2H lemma. Kuchta et al. [KSS+20]
5 Precisely speaking, the FO transformations studied in the context of QROM are

somewhat different from the original FO transformation [FO13].
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prove O2H with MRM and obtain their KEM from IND-CPA PKE with injec-
tivity via FO, and ε ≈ q2Hεbb.

1.4 Technical Overview

We provide the technical overview of this work. Our goal here is to show that the
KDM security in the QROM of the PKE scheme U⊥

m,OTP(T(PKE, Genc),H)6 can
be reduced to the IND-CPA security of the underlying PKE without square root
security loss. Roughly speaking, the difficulty is that in the setting of KDM secu-
rity, double-sided O2H lemmas [BHH+19,KSS+20] cannot be applied straight-
forwardly, which is currently the only tool that enables us to circumvent square
root security loss in the QROM.

We first explain how we circumvent square root security loss and prove the
KDM security in the QROM of the PKE scheme U⊥

m,OTP = U⊥
m,OTP(dPKE,H)

whose ciphertext is described as

(dEnc(pk, s),H(s) ⊕ m),

where dEnc is the encryption algorithm of a deterministic PKE scheme dPKE
with the message space M, s ← M, and H is a random oracle. We iden-
tify that the KDM security in the QROM of U⊥

m,OTP can be reduced without
square root loss to the security notion of dPKE that we call seed-dependent
message one-wayness (SDM-OW security). Then, we explain that the SDM-
OW security in the QROM of a tweaked version of T = T(PKE, Genc) can be
reduced to the IND-CPA security of the underlying PKE scheme PKE without
square root security loss. We call the tweaked version T transformation with
hash key generation THKG = THKG(PKE, (Gkg, Genc)) where Gkg and Genc are ran-
dom oracles. From these facts, we see that the KDM security in the QROM of
U⊥

m,OTP(THKG(PKE, (Genc, Gkg)),H) can be reduced to the IND-CPA security of
PKE without square root security loss. Finally, we state that the KDM secu-
rity of U⊥

m,OTP(T(PKE, Genc),H) immediately follows from the KDM security of
U⊥

m,OTP(THKG(PKE, (Genc, Gkg)),H).
Below, we start with how to prove the KDM security of U⊥

m,OTP in the classical
ROM. For simplicity, in this overview, we consider the following simplified KDM
security. Given a ciphertext of fb(sk), any adversary cannot predict b correctly
better than random guessing, where b ← {0, 1} is the challenge bit and f0
and f1 are any a-priori fixed two functions. The actual KDM security requires
indistinguishability holds for multiple pairs of functions adaptively chosen by an
adversary under multiple public and secret key pairs.
KDM Security of U⊥

m,OTP in the Classical ROM. Let A be an adversary. A is given
the challenge ciphertext and the random oracle access, which are described as

CT : (dEnc(pk, s),H(s) ⊕ fb(sk)) and RO : H(x).

6 We again note that we use variants of T and U transformations defined by [BHH+19]
in this work.
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We first make a conceptual change to the security game so that the challenge
ciphertext and the random oracle are described as

CT : (dEnc(pk, s), u) and RO : V (x) =

{
u ⊕ fb(sk) (if x = s)
H(x) (otherwise),

where u is a uniformly chosen value independent of H and fb(sk). We can con-
firm that this is a purely conceptual change since V behaves as a random func-
tion and the challenge ciphertext is computed as (dEnc(pk, s), V (s) ⊕ fb(sk)) =
(dEnc(pk, s), u). Therefore, it does not change A’s advantage. Then, we further
change the security game so that A gets access to H instead of V , but the chal-
lenge ciphertext is still generated using V . Thus, the challenge ciphertext is not
changed from (dEnc(pk, s), u). In other words, except for the generation of the
challenge ciphertext, we program the output value of the random oracle at point
s from V (s) = u ⊕ fb(sk) into H(s). The view of A is now

CT = (dEnc(pk, s), u) and RO : H(x).

We see that in the final game, the challenge bit b is completely hidden from
the view of A, and thus A’s advantage is 0. Therefore, we must estimate how
much the advantage of A is changed by the above programming of the random
oracle. From the difference lemma7, this can be bounded by the probability
that A queries s to H in the final security game. In the final game, information
of fb(sk) is completely eliminated from the view of A. Thus, we can use the
security of dPKE in order to estimate the probability. Concretely, the probability
is estimated by using the OW-CPA security of dPKE. This completes the proof.
Of course, square root security loss does not occur in this proof.

KDM Security of U⊥
m,OTP in the QROM? When we try to prove KDM secu-

rity of U⊥
m,OTP in the QROM, we need a different tool from the difference lemma.

This is because “the probability that A queries s to H” is not well-defined in
this case since A can make a query to the random oracle in super-position. In the
QROM, in many cases, we can use one-way to hiding (O2H) lemma [Unr15] and
its variants [AHU19,BHH+19,KSS+20] as drop-in replacements of the differ-
ence lemma in the security proof done in the classical ROM. Roughly speaking,
the O2H lemma guarantees that there exists an extractor D such that the distin-
guishing gap caused by a programming of a quantumly-accessible random oracle
can be bounded by the probability that D extracts the programmed point. O2H
lemma is classified into two categories. The first one is a single-sided O2H lemma
where D gets access to either pre-programmed or post-programmed random ora-
cles. The other one is a double-sided O2H lemma where D gets access to both of
them. In order to circumvent the square root security loss, we currently need to
use double-sided O2H lemma proposed in [KSS+20] called O2H with measure-
rewind-measure (MRM) lemma.

7 The lemma states that if Pr[A ∧ ¬C] = Pr[B ∧ ¬C], |Pr[A] − Pr[B]| ≤ Pr[C] holds
for any events A,B, and C.
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Suppose to prove KDM security of U⊥
m,OTP in the QROM, we follow the same

strategy as the case of the classical ROM (i.e., make a conceptual change and
program V into H) and use O2H lemma instead of the difference lemma. Since
our goal here is to prove the KDM security of U⊥

m,OTP in the QROM without
square root security loss, we use O2H lemma with MRM. By doing so, we can
say that there exists a QPT extractor D such that∣∣∣Pr

[
1 ← A |V 〉(z)

]
− Pr

[
1 ← A |H〉(z)

]∣∣∣ ≤ 4d · Pr
[
s ← D|V,H〉(z)

]
,

where z = (dEnc(pk, s), u) and d is the query depth of A to the random oracle.8

Thus, if we can in turn bound the probability Pr
[
s ← D|V,H〉(z)

]
by using the

security of the underlying dPKE, we can complete the entire security proof.
However, it turns out that it cannot be done straightforwardly using the OW-
CPA security of dPKE as before. The reason is that since D has access to not
only H but also V that has information of fb(sk), it is not clear whether we
can use the OW-CPA security of dPKE. Recall that in the proof in the classical
ROM case, when estimating “the probability that A queries s to H” using the
OW-CPA security of dPKE, information of fb(sk) is eliminated from the view of
A since A does not have access to V .

In summary, in the proof in the classical ROM, we can successfully reduce
the KDM security of U⊥

m,OTP to the OW-CPA security of dPKE by eliminating
information of fb(sk) using programming of the random oracle. However, in
the case of the QROM, if we use O2H with MRM lemma, it seems difficult to
eliminate the information of fb(sk) by programming the random oracle. This
is because we finally need to handle the extractor D who gets access to both
pre-programmed and post-programmed random oracles.

Note that even if V does not have information of fb(sk), it might not be clear
whether an OW-CPA adversary can simulate two random oracles V and H at
the same time for D. The reason is that the differing point s of the two random
oracles is the solution of the OW-CPA game itself. This problem can be handled
by using the correctness of dPKE. As shown by [LW21], the correctness of dPKE
implies that under a randomly generated key (pk, sk), a randomly generated
message m does not have a collision, that is another message m′ such that
dEnc(pk,m) = dEnc(pk,m′), with overwhelming probability. If ct = dEnc(pk, s)
has unique pre-image s, the OW-CPA adversary can check the condition “if
x = s” by checking “if dEnc(pk, x) = ct” (in super-position), thus can simulate
V and H at the same time if V does not have information of fb(sk).

Reduction to SDM-OW Security. Although it seems difficult to bound the prob-
ability Pr

[
s ← D|V,H〉(z)

]
using the OW-CPA security of dPKE, we show that

it can be bounded if dPKE satisfies SDM-OW security introduced in this work.
Hereafter, we assume that the message space M of dPKE is an abelian group
with the operation “+” and the random coin space of the key generation algo-
rithm dKG of dPKE is contained in M. Then, SDM-OW security is a security
8 The notation A |O〉 indicates that A is allowed to make a query to O in super-position.

Also, for the definition of query depth, see Sect. 3.
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notion that guarantees that given (s, dEnc(pk, r + s)), an adversary cannot com-
pute r + s, where s ← M, and r ∈ M is the random coin used to generate
(pk, sk) (i.e., (pk, sk) ← dKG(1λ; r)).

The estimation is done after adding the following changes to z and V that
do not affect the view of D. First, we replace s in z and V with r + s, where
r ∈ M is the random coin used to generate (pk, sk). Namely, we change z and
V as

z = (dEnc(pk, r + s), u) and V (x) =

{
u ⊕ fb(sk) (if x = r + s)
H(x) (otherwise).

(1)

This change does not affect the view of D since s is chosen uniformly at random
and independently of r. Then, we further replace V with the following

V (x) =

{
u ⊕ f̂b(x) (if x = r + s)
H(x) (otherwise),

(2)

where f̂b is a function that is given x as an input, computes (pk, sk) ←
KG(1λ;x − s), and outputs fb(sk). We can check that V in Eq. (1) and V in
Eq. (2) are functionally equivalent. Thus, this change also does not affect the
view of D. Moreover, we finally replace the condition “if x = s+r” in V with “if
dEnc(pk, x) = dEnc(pk, r + s)”. As noted before, this can be justified from the
correctness of dPKE.

We see that by the above changes, z and V (i.e., the entire view of D) can now
be simulated by an SDM-OW adversary B who is given (s, dEnc(pk, r+s)). More-
over, B can break the SDM-OW security if the simulated D successfully extracts
the differing point of V and H, that is, r+s. This means that Pr

[
s ← D|V,H〉(z)

]
can be bounded by using the SDM-OW security of dPKE.

From the above arguments, we see that the KDM security of U⊥
m,OTP in the

QROM can be reduced to the SDM-OW security of dPKE without square root
security loss.
SDM-OW Security of a Variant of T. We next explain the SDM-OW security
of THKG = THKG(PKE, (Gkg, Genc)) can be reduced to the IND-CPA security of the
underlying PKE scheme PKE without square roof security loss, where Gkg and
Genc are random oracles. THKG is a tweaked version of T = T (PKE, Genc) transfor-
mation. T transformation converts a (randomized) IND-CPA secure PKE scheme
into an OW-CPA secure deterministic PKE scheme. The encryption algorithm of
T is described as Enc(pk,m;Genc(m)), where Enc is the encryption algorithm of
the underlying PKE. The key generation and decryption algorithms of T are those
of PKE themselves. In THKG, we also generate a key pair (pk, sk) by using a ran-
dom coin generated by the random oracle Gkg, that is, (pk, sk) ← KG(1λ;Gkg(r)),
where r ← M.

Bindel et al. [BHH+19] showed that the OW-CPA security of T can be
reduced to the IND-CPA security of PKE without square root security loss. The
important thing is that the target security notion is one-wayness (not indistin-
guishability) here. Essentially, Bindel et al. avoided the square root security loss
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by relying on the fact that if the target security notion is one-wayness and the
starting security notion is indistinguishability, we can avoid square root security
loss by using single-sided O2H lemma called semi-classical O2H lemma [AHU19].
In this work, we show that such a reduction to IND-CPA security without square
root loss is possible even when we prove THKG’s SDM-OW security, which can be
seen as one-wayness for a kind of key dependent messages. In fact, there is no
difficulty based on the circularity issue as before since we use single-sided O2H
lemma in this step, not double-sided one. Roughly speaking, when we use single-
sided O2H lemma, we can eliminate correlations between keys, encryption ran-
dom coins, and plaintexts by random oracle programming in the security proof
even in the context of QROM. We give the overview of this proof in Sect. 5.2.
More specifically, we provide a high-level idea of how to solve the correlations
after we describe a few hybrid games for the proof, and complete the proof.
The KDM Security of U⊥

m,OTP(T(PKE, Genc),H). From the discussions so far, we
see that the KDM security of U⊥

m,OTP(THKG(PKE, (Gkg, Genc)),H) can be reduced
to the IND-CPA security of PKE without square root security loss. This immedi-
ately implies the same holds for U⊥

m,OTP(T(PKE, Genc),H). This is because adver-
saries cannot detect whether the public and secret key pair is generated using
a random oracle or not. The KDM security of U⊥

m,OTP(T(PKE, Genc),H) can be
reduced to that of U⊥

m,OTP(THKG(PKE, (Gkg, Genc)),H).

Remarks.

– In the actual security game of KDM security, an adversary can choose a pair
of functions (f0, f1) adaptively and obtain a ciphertext of fb(sk) multiple
times under the existence of multiple key pairs. Also, to capture a wide range
of usage scenarios, we allow those functions to get access to random oracles.
We handle these issues by using the adaptive reprogramming technique for
QROM [Unr14] and introducing a security notion we call SDM-OW-RSA
security which is an extension of SDM-OW security.

– Our proof technique is also compatible with KDM-CCA security. Concretely,
we can prove the KDM-CCA security of a PKE scheme constructed by using
U⊥,keyconf

m = U⊥,keyconf
m (dPKE,H) [BHH+19] as KEM and OTP-then-MAC

as DEM without square root security loss. We assume the underlying dPKE
is SDM-OW-RSA secure and additionally satisfies injectivity. The security
proof is a combination of our proof for the KDM security of U⊥

m,OTP and the
proof for the IND-CCA security of U⊥,keyconf

m by [BHH+19,KSS+20]. Thus,
we mainly focus on KDM-CPA security in this version, and we provide the
results on KDM-CCA security in [KN21].
As shown by [BHH+19], U⊥,keyconf

m and U�⊥
m are IND-CCA secure KEMs that

are compatible with double-sided O2H lemma such as O2H lemma with MRM.
To use U⊥,keyconf

m as the KEM part in the above construction is essential.
If we use U�⊥

m as the KEM part, it seems difficult to prove the KDM-CCA
security of the construction. U�⊥

m returns a random value generated by using
pseudo-random functions (PRF) if the decryption algorithm detects a given
ciphertext is not valid to make it possible to simulate the decryption oracle
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without using secret keys. In the KDM-CCA security game of a PKE scheme
whose KEM part is U�⊥

m, the keys of PRF are also encrypted. In that case, we
cannot use the security of PRF and cannot simulate the decryption oracle. It
is an interesting open problem to prove KDM-CCA security of a PKE scheme
whose KEM part is U�⊥

m without square root security loss.
– Our proof strategy explained so far can be realized more easily for SKE where

the secret key is used for encryption. A ciphertext of a simple SKE scheme
is (s,H(sk‖s) ⊕ m), where H is a random oracle. The simple scheme has
a good structure to apply our proof strategy because the secret key sk can
be recovered from the differing point sk‖s when programming the random
oracle in the security proof. Zhang [Zha19] showed the non-adaptive KDM

security of the SKE scheme with security bound
√

poly(q,qkdm,qf ,�)
2λ , where q is

the number of random oracle queries, qkdm is the number of KDM queries, qf

is the number of random oracle queries by KDM functions, � is the number
of secret keys, and λ is the length of sk. Using our proof strategy, we can
prove the non-adaptive KDM security of the SKE scheme with security bound
roughly poly(q,qkdm,qf ,�)

2λ . We formally prove it in [KN21]. The proof of this is
much easier than the proof of our main construction U⊥

m,OTP. The former can
be a warming-up for the latter.

– We do not directly prove the KDM security of U⊥
m,OTP(T(PKE, Genc),H), and

first prove that of U⊥
m,OTP(THKG(PKE, (Gkg, Genc)),H). If we directly prove the

former in a modular way, we think we would need to introduce a more com-
plicated security notion for deterministic PKE schemes. We believe that the
introduction of THKG makes our presentation simpler and more modular.

– In this work, we focus on PKE schemes whose DEM is OTP for a technical
reason. As we saw above, for our strategy, it is important that DEM has a non-
committing property in the sense that we can move an encrypted plaintext
from the ciphertext to the key. Although our technique can be used to not only
OTP but also any DEM with non-committing property, it is an interesting
open question to prove KDM security of FO transformation with any DEM
without square root security loss.

2 Preliminaries

2.1 Notations

In this paper, for a finite set X and a distribution D, x ← X denotes selecting
an element from X uniformly at random, x ← D denotes sampling an element x
according to D. Let y ← A(x) denotes assigning to y the output of a probabilistic
or deterministic algorithm A on an input x. When we explicitly show that A uses
randomness r, we write y ← A(x; r). When A is allowed to get access to an oracle
O, we write y ← AO(x). Let [a] and [a, b] denote the sets of integers {1, · · · , a}
and {a, · · · , b}, respectively. λ denote a security parameter. PPT and QPT algo-
rithms stand for probabilistic polynomial-time algorithms and polynomial-time
quantum algorithms, respectively. Let negl denote a negligible function.
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2.2 Public-Key Encryption

A public-key encryption (PKE) scheme PKE is a three tuple (KG,Enc,Dec) of
PPT algorithms. Let M be the message space of PKE. The key generation algo-
rithm KG, given a security parameter 1λ, outputs a public key pk and a secret key
sk. The encryption algorithm Enc, given a public key pk and message m ∈ M,
outputs a ciphertext CT. The decryption algorithm Dec, given a secret key sk
and ciphertext CT, outputs a message m̃ ∈ {⊥} ∪ M.

Definition 2.1 (Correctness of PKE). We say that PKE is δ-correct if

E

[
max
m∈M

Pr[Dec(sk,Enc(pk, m; r)) �= m]

∣∣∣∣ (pk, sk) ← KG(1λ), r ← R
]

≤ δ ,

where R is the random coin space of Enc. If PKE is constructed in the random
oracle model, the expectation is taken over the choice of (pk, sk) ← KG(1λ) and
the random oracle.

We say that PKE is deterministic PKE if Enc(pk, ·) is a deterministic func-
tion. We introduce the correctness notion that is specific to deterministic PKE.
In addition to the ordinary correctness above, it requires that under a randomly
generated key (pk, sk), a randomly generated message m does not have a collision,
that is another message m′ such that dEnc(pk,m) = dEnc(pk,m′). This correct-
ness notion is useful when we use double-sided O2H lemmas [BHH+19,KSS+20].

Definition 2.2 (Correctness of deterministic PKE). We say that a deter-
ministic PKE scheme dPKE = (dKG, dEnc, dDec) with the message space M is
(δ1, δ2)-correct if it is δ1-correct and it holds that

Pr
[
∃m′ ∈ M : dEnc(pk, m′) = dEnc(pk, m)|(pk, sk) ← dKG(1λ), m ← M

]
≤ δ2 .

If dPKE is constructed in the random oracle model, the probability is taken
over the choice of (pk, sk) ← dKG(1λ), m ← M, and the random oracle.

We introduce a multi-instance and multi-challenge version of IND-CPA secu-
rity for PKE that we denote as IND-m-CPA security.

Definition 2.3 (IND-m-CPA security for PKE). Let PKE = (KG,Enc,

Dec) be a PKE scheme. We define Expind-m-cpa
PKE,�,A (1λ) for an adversary A as follows.

Initialize: First, the challenger chooses a challenge bit b ← {0, 1}. Next, the
challenger generates (pkk, skk) ← KG(1λ) for every k ∈ [�]. The challenger
executes b′ ← AOIND((pkk)k∈[�]).

OIND: On the i-th call with input (ki,mi,0,mi,1), where ki ∈ [�] and |mi,0| = |mi,1|,
it returns cti ← Enc(pkki ,mi,b).

Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

We say that PKE is IND-m-CPA secure if for any polynomial � = �(λ) and
QPT adversary A, we have Advind-m-cpa

PKE,�,A (λ) =
∣∣∣Pr

[
1 ← Expind-m-cpa

PKE,�,A (1λ)
]

− 1
2

∣∣∣ =
negl(λ).
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We introduce the definition of KDM-CPA security for PKE.

Definition 2.4 (KDM-CPA security for PKE). Let PKE = (KG,Enc,Dec)
be a PKE scheme. We define Expkdm-cpa

PKE,�,A (1λ) for an adversary A as follows.

Initialize: First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the

challenger generates (pkk, skk) ← KG(1λ) for every k ∈ [�]. The challenger
sets sk := (sk1, . . . , sk�), and executes b′ ← AOKDM((pkk)k∈[�]).

OKDM: On the i-th call with input (ki, fi,0, fi,1), where ki ∈ [�] and fi,0 and fi,1

are efficiently computable functions with the same output length, it returns
cti ← Enc(pkki , fi,b(sk)).

Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

We say that PKE is KDM-CPA secure if for any polynomial � = �(λ) and
QPT adversary A, we have

Advkdm-cpa
PKE,�,A (λ) =

∣∣∣∣Pr
[
1 ← Expkdm-cpa

PKE,�,A (1λ)
]

− 1
2

∣∣∣∣ = negl(λ).

Remark 2.1 (KDM security in QROM). In order to capture a wide variety of
situations, we allow KDM functions to get access to random oracles if the scheme
is constructed in the (quantum) random oracle model. We allow only classical
access random oracles for KDM functions, while adversaries get access to ran-
dom oracles in super-position. This setting is sufficient when honest entities are
classical.

2.3 SDM-OW-RSA Security

We introduce a new security notion seed-dependent message one-wayness against
related seed attacks (SDM-OW-RSA security). This notion plays a crucial role
in achieving KDM security from IND-m-CPA security in the QROM without
square roof security loss.

Definition 2.5 (SDM-OW-RSA security for PKE). Let PKE = (KG,
Enc,Dec) be a PKE scheme such that the message space M is an abelian
group with the operation +, and the random coin space of KG is M. We define
Expsdm-ow-rsa

PKE,�,qsdm,A(1λ) for an adversary A as follows.

Initialize: The challenger first generates r ← M. The challenger then gen-
erates Δk ← M and (pkk, skk) ← KG(1λ; r + Δk) for every k ∈ [�].
Next, for every k ∈ [�] and i ∈ [qsdm], the challenger generates si,k ← M
and computes cti,k ← Enc

(
pkk, r + si,k

)
. Finally, the challenger executes

T ← A((pkk,Δk)k∈[�], (si,k, cti,k)i∈[qsdm],k∈[�]).
Finalize:The challenger outputs 1 if and only if T contains r′ such that r′ =

r + si,k holds for some i ∈ [qsdm] and k ∈ [�].

We say that PKE is SDM-OW-RSA secure if for any polynomial � = �(λ)
and qsdm = qsdm(λ) and QPT adversary A, we have

Advsdm-ow-rsa
PKE,�,A (λ) = Pr

[
1 ← Expsdm-ow-rsa

PKE,�,A (1λ)
]

= negl(λ).
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3 Quantum Random Oracle and Useful Lemmas

Given a function H : X → Y , a quantum-accessible oracle O of H is modeled
by a unitary transformation UH operating on two registers in and out, in which
|x〉 |y〉 is mapped to |x〉 |y ⊕ H(x)〉, where ⊕ denotes XOR group operation on
Y . Following [AHU19,BHH+19,KSS+20], we model a quantum algorithm A
making parallel queries to a quantum oracle O as a quantum algorithm making
d ≤ q queries to an oracle O⊗n consisting of n = q/d parallel copies of oracle
O. Given an input state of n pairs of in/out registers |x1〉 |y1〉 · · · |xn〉 |yn〉, the
oracle O⊗n maps it to the state |x1〉 |y1 ⊕ H(x1)〉 · · · |xn〉 |yn ⊕ H(xn)〉. We call
d the algorithm’s query depth, n the parallelization factor, and q = n · d the
total number of oracle queries. We write A |O〉 to denote that the algorithm A’s
oracle O is a quantum-accessible oracle.

Simulation of Quantum Random Oracles. In this paper, following many previ-
ous works in the QROM, we give quantum-accessible random oracles to reduc-
tion algorithms if needed. This is just a convention. We can efficiently simulate
quantum-accessible random oracles perfectly by using 2q-wise independent hash
function [Zha12], where q is the number of queries to the quantum-accessible
random oracles by an adversary.

3.1 One-Way to Hiding (O2H) Lemma

Definition 3.1 (Punctured oracle). Let F : X → Y be any function, and
S ⊂ X be a set. The oracle F \ S(“F punctured by S”) takes as input a value
x ∈ X. It first computes whether x ∈ S into an auxiliary register and measures
it. Then it computes F (x) and returns the result. Let Find be the event that any
of the measurements returns 1.

Lemma 3.1 (Semi-classical O2H [AHU19, Theorem 1]). Let G,H : X → Y
be random functions, z be a random value, and S ⊆ X be a random set such
that G(x) = H(x) for every x /∈ S. The tuple (G,H, S, z) may have arbitrary
joint distribution. Furthermore, let A be a quantum oracle algorithm. Let Ev be
any classical event. Then we have

∣∣∣∣
√

Pr
[
Ev : A|G〉(z)

] −
√

Pr
[
Ev ∧ ¬Find : A|H\S〉(z)

]∣∣∣∣ ≤
√

(d + 1) · Pr[Find : A|H\S〉(z)
]

,

where d is the query depth of A for G and H \ S.

Lemma 3.2 (Search in semi-classical oracle [AHU19, Theorem 2]). Let
H : X → Y be a random function, let z be a random value, and let S ⊂ X be a
random set. (H,S, z) may have arbitrary joint distribution. Let A be a quantum
oracle algorithm. If for each x ∈ X, Pr[x ∈ S] ≤ ε (conditioned on H and z),
then we have

Pr
[
Find : A |H\S〉(z)

]
≤ 4qε ,

where q is the number of queries to H \ S by A.
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Note that the above lemma is originally introduced in [AHU19], but we use
a variant that is closer to Lemma 4 in [BHH+19].

Lemma 3.3 (Adapted version of O2H with MRM [KSS+20, Lemma 3.3]).
Let G,H : X → Y be functions, and S ⊆ X be a set such that G(x) = H(x)
for every x /∈ S. Also, let z be a value and Oaux be a function. The tuple
(G,H, S, z,Oaux) may have arbitrary joint distribution. Furthermore, let A be
a quantum oracle algorithm. Then we can construct an algorithm D such that

– The running time of D is roughly three times longer than that of A. Moreover,
if A makes at most q queries to G and H with query depth d, D makes at
most O(q) queries to each of those oracles with query depth O(d), and outputs
a list T ⊆ X of size at most O(q).

– It holds that ∣∣∣Pr
[
1 ← A |G,Oaux〉(z)

]
− Pr

[
1 ← A |H,Oaux〉(z)

]∣∣∣
≤4d · Pr

[
T ∩ S �= ∅ : T ← D|G,H,Oaux〉(z)

]
,

where d is the query depth of A for the first oracle.

Remark 3.1 (On the difference from the original version). There are some dif-
ferences between Lemma 3.3 and the original O2H lemma with MRM [KSS+20,
Lemma 3.3]. First, in Lemma 3.3, we allow the algorithm A to get access to an
additional oracle Oaux, which is not explicitly appeared in the original version.
Second, in Lemma 3.3, we explicitly state the size of D’s output T is at most
O(q) while the original lemma does not refer to the size of T . For the first one,
it is easy to see that even if we introduce such an additional oracle, the lemma
still holds. (This extension is used in also [LW21].) For the second, the concrete
extractor D constructed in [KSS+20] satisfies this condition. Since we need the
upper bound on the size of T in order to estimate the security bound in our
proof, we place the requirement.

3.2 Additional Lemma

The following lemma is a multi-point version of adaptive reprogramming of QRO
used in the proof of adaptive O2H lemma [Unr14, Lemma 14 in the eprint ver-
sion]. We need it to handle KDM queries that are adaptively made. We provide
the proof of it in [KN21].

Lemma 3.4 (Adaptive reprogramming of QRO). We consider the follow-
ing Expadp-progqprog,A (1λ).

Initialization: The challenger first generates the challenge bit b ← {0, 1} and
a fresh random oracle V0 : X → Y . Then, the challenger executes b′ ←
A |V0〉,Oprog(1λ), where Oprog is defined as follows.
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Oprog: On the i-th call, it first generates si ← X. If b = 0, it just returns
(si, V0(si)). Otherwise, it generates ui ← Y , updates the random oracle A
gets access into Vi defined as

Vi(x) =

{
uj (if x = sj holds for some j ≤ i)
H(x) (otherwise),

and returns (si, Vi(si)) = (si, ui).
Finalization: The challenger outputs 1 if b = b′ and 0 otherwise.

Then, for any integer qprog and an oracle algorithm A that makes at most q

queries to Ob, we have
∣∣∣Pr

[
1 ← Expadp-progqprog,A (1λ)

]
− 1

2

∣∣∣ ≤ 2q·qprog√
|X| .

4 KDM-CPA Security of U⊥
m with OTP as DEM

In this section, we show that the KDM-CPA security in the QROM of a PKE
scheme U⊥

m,OTP = U⊥
m,OTP(dPKE,H) can be reduced to the SDM-OW-RSA security

of the underlying dPKE without square root security loss. U⊥
m,OTP is constructed

by using U⊥
m(dPKE,H) [BHH+19] as KEM and OTP as DEM. Since we focus

on KDM-CPA security here, U⊥
m,OTP omits the ciphertext validity check by re-

encryption in the decryption algorithm, which is performed in U⊥
m.

4.1 Construction

Construction 4.1. Let dPKE = (dKG, dEnc, dDec) be a deterministic PKE scheme
whose message space is M. We assume that M is an abelian group and denote
the operation in M as +. Let H : M → {0, 1}∗ be a hash function. We construct
U⊥

m,OTP = (KG,Enc,Dec) as follows.

KG(1λ): Return (pk, sk) ← dKG(1λ).
Enc(pk,m): Generate s ← M and compute ct ← dEnc(pk, s) and t = H(s) ⊕ m.

Return CT = (ct, t).
Dec(sk,CT′): Parse CT′ = (ct′, t′), compute s′ ← dDec(sk, ct′), and return ⊥ if

s′ = ⊥. Otherwise, return t′ ⊕ H(s′).

We see that if dPKE is (δ1, δ2)-correct, then U⊥
m,OTP is δ1-correct for any δ1.

4.2 Security Proof

We prove the following theorem.

Theorem 4.2. Let � = �(λ) be a polynomial and dPKE be a (δ1, δ2)-correct
deterministic PKE. Let A be a QPT adversary against the KDM-CPA security
of U⊥

m,OTP = U⊥
m,OTP(dPKE,H) making q (superposition) random oracle queries

to H with query depth d and qkdm (classical) queries to OKDM. Also, let qf be the
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upper bound of the total number of (classical) random oracle queries made by
KDM functions. Then, there exists a QPT adversary B such that

Advkdm-cpa
U⊥

m,OTP,�,A
(1λ) ≤ 4d · Advsdm-ow-rsa

dPKE,�,qkdm,B(1λ) +
4(q + qf )qkdm√|M| + (4d + 1) · qkdm · δ2 .

(3)

Proof. We complete the proof using hybrid games. Let SUCX be the event that
the final output is 1 in Game X. We assume that A makes at least one KDM
query before the first set of random oracle queries and between d∗-th set of
random oracle queries and (d∗ + 1)-th set of random oracle queries for every
d∗ ∈ [d − 1]. This assumption is without loss of generality in the sense that any
adversary can be transformed into one satisfying this condition without changing
the number and depth of random oracle queries.

Game 1: This is Expkdm-cpa
U⊥

m,OTP,�,A
(1λ).

Initialize: First, the challenger chooses a challenge bit b ← {0, 1}. The chal-
lenger also generates a fresh random oracle H. Next, the challenger gen-
erates (pkk, skk) ← dKG(1λ) for every k ∈ [�]. The challenger sets sk :=
(sk1, . . . , sk�) and pk := (pk1, . . . , pk�), and executes b′ ← A |H〉,OKDM(pk).
OKDM behaves as follows.

OKDM: On the i-th call with input (ki, fi,0, fi,1), it returns CTi generated as
follows.
1. Generate si ← M and compute cti ← dEnc(pkki , si).
2. Compute ti = H(si) ⊕ fH

i,b(sk).
3. Set CTi ← (cti, ti).

Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

Game 2: This is the same as Game 1 except the behavior of OKDM. In this game,
OKDM adaptively reprograms the random oracle that A (and functions queried
by A) gets access every time it is invoked. The detailed description is as
follows.
OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.

1. Generate si ← M and compute cti ← dEnc(pkki , si).
2. Generate ui ← {0, 1}∗ and compute ti = ui ⊕ f

Vi−1
i,b (sk).

3. Set CTi ← (cti, ti).
Also, it updates the random oracle into

Vi(x) =

{
uj (if ∃j ≤ i : x = sj)
H(x) (otherwise),

From Lemma 3.4, we have |Pr[SUC1] − Pr[SUC2]| = 4(q+qf )qkdm√M .

Game 3: This game is the same as Game 2 except that ui is replaced with
ui ⊕ f

Vi−1
i,b (sk) for every i ∈ [qkdm]. More concretely, the behavior of OKDM is

changed as follows.
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OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.
1. Generate si ← M and compute cti ← dEnc(pkki , si).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Also, it updates the random oracle into

Vi(x) =

{
uj ⊕ f

Vj−1
j,b (sk) (if ∃j ≤ i : x = sj)

H(x) (otherwise),

This change does not affect the view of A since ui is chosen uniformly at
random and independently of f

Vi−1
i,b (sk) for every i ∈ [qkdm]. Thus, we have

|Pr[SUC2] − Pr[SUC3]| = 0.

Game 4: This game is the same as Game 3 except for the following. The chal-
lenger first generates r ← M. The challenger then generates Δ1, . . . ,Δ� ← M
and generates (pkk, skk) ← dKG(1λ; r + Δk) for every k ∈ [�].

The above change does not affect the view of A since the distribution of
(pkk, skk)k∈[�] does not change. Thus, we have |Pr[SUC3] − Pr[SUC4]| = 0.

Game 5: This game is the same as Game 4 except that si is replaced with r+si.
More concretely, the challenger generates cti as cti ← dEnc(pkki , r + si) for
every i ∈ [qkdm]. Also, the challenger sets Vi as

Vi(x) =

{
uj ⊕ f

Vj−1
j,b (sk) (if ∃j ≤ i : x = r + sj)

H(x) (otherwise)

for every i ∈ [qkdm].

We have |Pr[SUC4] − Pr[SUC5]| = 0 since this change also does not affect the
view of A.

From the next game, we use the function f̂i,b described in Fig. 1. f̂i,b is
designed so that it computes f

Vi−1
i,b (sk) if it has oracle access to H and is given

r+si as an input. For this aim, f̂H
i,b sequentially computes Vj from V1, V2, ..., Vi−1

using H. They are denoted as V̂j in the description of f̂H
i,b. Here, the computation

of V̂j by f̂H
j,b is local, and thus f̂H

j,b does not perform the updates of the random
oracle that A gets access.

Game 6: For every i ∈ [qkdm], we define a function . Then, Game 6 is the same
as Game 5 except that the challenger sets Vi as

Vi(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i : x = r + sj)

H(x) (otherwise)

for every i ∈ [qkdm].
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Fig. 1. The description of f̂H
i,b.

Since f̂i,b correctly computes f
Vi−1
i,b (sk) if it has oracle access to H and

is given r + si as an input for every i ∈ [qkdm], the functionality of Vi does
not change between Game 5 and 6 for every i ∈ [qkdm]. Therefore, we have
|Pr[SUC5] − Pr[SUC6]| = 0.

Game 7: This game is the same as Game 6 except that for every i ∈ [qkdm], Vi

is defined as

Vi(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i : dEnc(pkkj , x) = ctj)
H(x) (otherwise).

If cti has a unique pre-image r + si under pkki for every i ∈ [qkdm], the
functionality of Vi does not change for every i ∈ [qkdm] between Game 6 and 7.
Thus, from the correctness of dPKE, we have |Pr[SUC6] − Pr[SUC7]| ≤ qkdm · δ2.

At Game 7, A can obtain information of the challenge bit b only through d
sets of random oracle queries. Below, we use d more hybrid games and remove
information of b from those d sets of random oracle queries one by one.

Game 7+d∗ (d∗ = 1, . . . , d): This is the same game as Game 7 except OKDM defers
updating the random oracle. Concretely, OKDM does not update the random
oracle until A makes the d∗-th set of random oracle queries. The detailed
description of OKDM is as follows.
OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.

1. Generate si ← M and compute cti ← dEnc(pkki , r + si).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
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3. Set CTi ← (cti, ti).
Also, if A already makes d∗-th set of queries to the random oracle, it
updates the random oracle into

Vi(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i : dEnc(pkkj , x) = ctj)
H(x) (otherwise).

We have
∣∣Pr[SUC7+d] − 1

2

∣∣ = 0 since in Game 7+d, the view of A is completely
independent of b. In order to estimate |Pr[SUC7+d∗−1] − Pr[SUC7+d∗ ]| for every
d∗ ∈ [d], we consider the following procedure Setupd∗ .

Setupd∗ : First, the challenger chooses a challenge bit b ← {0, 1}. The chal-
lenger also generates a fresh random oracle H. Next, the challenger gener-
ates (pkk, skk) ← dKG(1λ; r + Δk), where r ← M and Δk ← M for every
k ∈ [�]. The challenger sets pk := (pk1, . . . , pk�), and executes A |H〉,OKDM(pk)
just before A makes the d∗-th set of random oracle queries. OKDM behaves as
follows.
OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.

1. Generate si ← M and compute cti ← dEnc(pkki , r + si).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Let A makes i∗ KDM queries before d∗-th set of random oracle queries. Then,
the challenger sets Vi∗ as

Vi∗(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i∗ : dEnc(pkkj , x) = ctj)
H(x) (otherwise)

and Si∗ = {x|∃j ∈ [i∗] : dEnc(pkkj , x) = ctj}. The challenger also generates
si,k ← M and generates cti,k ← dEnc(pkk, r + si,k) for every i ∈ [i∗ + 1, qkdm]
and k ∈ [�]. The challenger then sets

z = (|st〉 , b,pk, (Δk)k∈[�], (ki, fi,b, si, cti, ui)i∈[i∗], (si,k, cti,k)i∈[i∗+1,qkdm],k∈[�]),
(4)

where |st〉 is the internal state of A at this point. The challenger outputs
(Vi∗ ,H, Si∗ , z, Oaux = H).

Also, we consider the following QPT algorithm Ad∗ that has oracle access to
O ∈ {Vi∗ ,H} and Oaux = H.

Ad∗ : Given an input z, Ad∗ parse it as Eq. (4) and executes A |O〉,OKDM from A’s
d∗-th set of random oracle queries using |st〉 as the internal state of A at that
point. Ad∗ simulates OKDM as follows.
OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.

1. Set cti ← cti,ki
(and set si ← si,ki

).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
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3. Set CTi ← (cti, ti).
Also, it updates the random oracle that A gets access into

Vi(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i : dEnc(pkkj , x) = ctj)
H(x) (otherwise).

When A terminates with output b′, Ad∗ outputs 1 if b = b′ and 0 otherwise.

Suppose we execute Setupd∗ and Ad∗ successively. They simulate the view of
A in Game 7 + d∗ − 1 (resp. Game 7 + d∗) if O = Vi∗ (resp. O = H). Also,
Ad∗ outputs 1 if and only if the output of the simulated games is 1. Thus, we
have Pr[SUC7+d∗−1] = Pr

[
1 ← A |O=Vi∗ ,Oaux=H〉

d∗ (z) : Setupd∗

]
and Pr[SUC7+d∗ ] =

Pr
[
1 ← A |O=H,Oaux=H〉

d∗ (z) : Setupd∗

]
. From Lemma 3.3, there exists a QPT algo-

rithm Dd∗ such that

|Pr[SUC7+d∗−1] − Pr[SUC7+d∗ ]| ≤ 4 · Pr
[
T ∩ Si∗ �= ∅

∣∣∣ T ← D|Vi∗ ,H,Oaux=H〉
d∗ (z), Setupd∗

]
.

Note that Ad∗ makes queries to O ∈ {Vi∗ ,H} with depth 1 by the following
reason. Ad∗ is supposed to simulate Game 7 + d∗ − 1 (resp. Game 7 + d∗) for A
from the point that A makes d∗-th set of random oracle queries when Ad∗ gets
access to O = Vi∗ (resp. O = H). The answers to A’s (d∗ + 1) to d-th set of
random oracle queries are identical between Game 7+d∗ −1 and 7+d∗. (Here, A
makes at least one KDM query between the d∗-th and (d∗ +1)-th set of random
oracle queries due to the assumption. Thus, they are answered using an updated
random oracle.) Ad∗ can simulate them by using Oaux = H and information
included in z. Therefore, Ad∗ uses its oracle O only for answering to A’s d∗-th
set of random oracle queries, and thus Ad∗ ’s query depth to O is 1.

We bound the right-hand side probability. Using Dd∗ , we construct the fol-
lowing adversary Bd∗ against the SDM-OW-RSA security of dPKE.

Bd∗ : Given pk = (pk1, . . . , pk�), (Δk)k, and (si,k, cti,k)i∈[qkdm],k∈[�], Bd∗ first sim-
ulates Setupd∗ . Bd∗ chooses a challenge bit b ← {0, 1} and prepares a fresh
random oracle H. Bd∗ then executes A |H〉,OKDM(pk) just before A makes the
d∗-th set of random oracle queries, where OKDM is simulated as follows.
OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.

1. Set cti ← cti,ki
(and set si ← si,ki

).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Let A makes i∗ KDM queries before d∗-th set of random oracle queries. Then,
Bd∗ sets Vi∗ as

Vi∗(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i∗ : dEnc(pkkj , x) = ctj)
H(x) (otherwise).

Bd∗ also sets

z = (|st〉 , b,pk, (Δk)k∈[�], (ki, fi,b, si, cti, ui)i∈[i∗], (si,k, cti,k)i∈[i∗+1,qkdm],k∈[�]),

where |st〉 is the internal state of A at this point. Finally, Bd∗ outputs T ←
D|Vi∗ ,H,Oaux=H〉

d∗ (z).
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Bd∗ perfectly simulates a successive execution of Setupd∗ and Dd∗ . Also, in
the simulated execution, if T ∩ Si∗ �= ∅ occurs and cti has a unique pre-image
r + si under pkki for every i ∈ [qkdm], Bd∗ wins. Thus, we have

Pr[T ∩ Si∗ �= ∅ : T ← D|Vi∗ ,H,Oaux=H〉
d∗ (z),Setupd∗ ] ≤ Advsdm-ow-rsadPKE,�,qkdm,Bd∗ (1

λ) + qkdm · δ2.

By setting B as Bd∗ such that Advsdm-ow-rsa
dPKE,�,qkdm,Bd∗ (1λ) ≤ Advsdm-ow-rsa

dPKE,�,qkdm,B(1λ) for
every d∗ ∈ [d], we see that there exists a QPT B that satisfies Eq. (3). �
(Theorem 4.2)

5 SDM-OW-RSA Secure Deterministic PKE

In this section, we show that the SDM-OW-RSA security in the QROM of a
tweaked version of T transformation [BHH+19] can be reduced to the IND-CPA
security of the underlying PKE scheme.

5.1 Construction

Construction 5.1. Let PKE = (KG,Enc,Dec) be a PKE scheme whose message
space is an abelian group M with the operation +. We also let the random
coin space of KG and Enc be Rkg and Renc, respectively. Let G = (Gkg, Genc)
be a pair of hash functions, where Gkg : M → Rkg and Genc : M → Renc. We
construct T transformation with hash key generation THKG = THKG(PKE, G) =
(dKG, dEnc, dDec) as follows.

dKG(1λ; r): Return (pk, sk) ← KG(1λ;Gkg(r)).
dEnc(pk,m): Return ct ← Enc(pk,m;Genc(m)).
dDec(sk,CT): Return m ← Dec(sk, ct).

Recall that we define a deterministic PKE scheme is (δ1, δ2)-correct if it is δ1-
correct, and under a randomly generated key (pk, sk), the probability that a
randomly generated message m has a collision, that is, another message m′ such
that dEnc(pk,m) = dEnc(pk,m′) is bounded by δ2. Under this definition, as
shown by [LW21, Lemma 4], T (PKE, Genc) is (δ, 2δ)-correct if PKE is δ-correct
for any δ. We can easily see that the correctness of THKG(PKE, G) can be reduced
to that of T(PKE, Genc), and thus THKG(PKE, G) is (δ, 2δ)-correct if PKE is δ-
correct for any δ.

5.2 Security Proof

We prove the following theorem.
Theorem 5.2. Let � = �(λ) and qsdm = qsdm(λ) be polynomials and PKE be
a PKE scheme. Let A be a QPT adversary against SDM-OW-RSA security of
THKG = THKG(PKE, G) making total q (superposition) random oracle queries to
Gkg and Genc with query depth d, and outputs a list of size at most t as the final
output. Then, there exists a QPT adversary B such that

Advsdm-ow-rsaTHKG,�,qsdm,A(λ) ≤ (d + 2) ·
(
2 · Advind-m-cpaPKE,�,B (1λ) +

4(q + t)�(qsdm + 1)

|M|
)

+
�qsdm(�qsdm − 1)

2|M| .

(5)
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Proof. Without loss of generality, we assume that A makes random oracle queries
to a single random oracle G = Gkg×Genc instead of separate two random oracles
Gkg and Genc in the security games. Let Â be a QPT adversary that runs in the
same way as A except that before it terminates, Â computes and discards G(r′)
for all r′ contained in A’s final output T. Then, Â makes at most q + t queries
to G with query depth d + 1, and we have Advsdm-ow-rsa

THKG,�,qsdm,A(λ) = Advsdm-ow-rsa
THKG,�,qsdm̂A

(λ).
We estimate the latter using hybrid games. Let SUCX be the event that the final
output is 1 in Game X.

Game 1: This is Expsdm-ow-rsa
THKG,�,qsdm,̂A

(1λ).

Initialize: The challenger generates r ← M and generates (pkk, skk) ←
KG(1λ;Gkg(r + Δk)), where Δk ← M for every k ∈ [�]. Then, for every
k ∈ [�] and i ∈ [qsdm], the challenger generates si,k ← M and computes
cti,k ← Enc(pkk, r + si,k;Genc(r + si,k)). The challenger executes T ←
Â |G〉((pkk,Δk)k∈[�], (si,k, cti,k)i∈[qsdm],k∈[�]).

Finalize: The challenger outputs 1 if and only if T contains r′ such that
r′ = r + si,k holds for some i ∈ [qsdm] and k ∈ [�].

Game 2: This game is the same as Game 1 except the followings. First, if there
exists a pair (si,k, si′,k′) such that si,k = si′,k′ , the challenger immediately
outputs 0 as the final output of the game. Also, G = Gkg × Genc is replaced
with

V (x) =

⎧⎪⎨
⎪⎩

uk (if ∃k ∈ [�] : x = r + Δk)
vi,k (if ∃i ∈ [qkdm] and k ∈ [�] : x = r + si,k)
G(x) (otherwise),

where uk, vi,k ← Rkg × Renc for every k ∈ [�] and i ∈ [qkdm].

We have |Pr[SUC1] − Pr[SUC2]| = �qsdm(�qsdm−1)
2|M| since Game 1 and 2 are identical

unless there exists a pair (si,k, si′,k′) such that si,k = si′,k′ . Below, we let S =
{r + Δk}k∈[�] ∪ {r + si,k}i∈[qsdm],k∈[�].

Before proceeding the hybrid games, We provide the high level overview of
the rest of games. In Game 2, the key generation randomness Gkg(r + Δk) and
encryption randomness Genc(r+si,k) correlate with the encrypted plaintexts r+
si,k. Thus, next, at transition from Game 2 to 3, we eliminate the correlation by
programming the random oracle. Concretely, in Game 3, the above randomnesses
are generated by using V , but Â gets access to only the punctured oracle G \ S,
not V . In order to justify the programming, we use semi-classical O2H lemma
(Lemma 3.1). By doing so, we can justify the programming without square root
security loss, and obtain Pr[SUC2] ≤ (d+2)Pr[Find3], where FindX be the event
that the punctured oracle G\S returns 1 in Game X. Thus, all we have to do is to
bound Pr[Find3]. At Game 3, from the view of A, the key generation randomness
and encryption randomness are uniformly random strings that are independent
of r, that is, uk and vi,k. Namely, the correlation issue above are solved. Thus,
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at transition from Game 3 to 4, we use the IND-m-CPA security of PKE, and
eliminate information of r from cti,k. In Game 4, except the punctured oracle
G\S, r is completely hidden from the view of Â. Therefore, by using Lemma 3.2,
we can bound Pr[Find4] and complete the proof.

Game 3: This game is the same as Game 2 except that Â gets access to the
punctured oracle G \ S. (pkk, skk) and cti,k are still generated using V for
every k ∈ [�] and i ∈ [qsdm].

Let FindX be the event that the punctured oracle G \ S returns 1 in Game
X. From the definition of Â, we have Pr [SUC3 ∧ ¬Find3] = 0. Thus, we have

√
Pr[SUC2] =

∣∣∣√Pr[SUC2] −
√

Pr [SUC3 ∧ ¬Find3]
∣∣∣ .

By applying Lemma 3.1, we obtain∣∣∣√Pr[SUC2] −
√

Pr [SUC3 ∧ ¬Find3]
∣∣∣ ≤

√
(d + 2) · Pr[Find3] .

Therefore, we also obtain Pr[SUC2] ≤ (d + 2)Pr[Find3].

Game 4: This game is the same as Game 3 except that cti,k is generated as
cti,k ← Enc(pkk, 0) for every k ∈ [�] and i ∈ [qsdm].

In order to estimate |Pr[Find3] − Pr[Find4]|, using Â, we construct the fol-
lowing QPT adversary B against the IND-m-CPA security of PKE. In the descrip-
tion, a function Test takes a value x and a set X as inputs and outputs 1 if x ∈ X
and 0 otherwise.

Initialize: Given (pkk)k, B first generates r ← M. B then generates Δk ← M
for every k ∈ [�], si,k ← M for every i ∈ [qsdm] and k ∈ [�], and a fresh
random oracle G. If there exists a pair (si,k, si′,k′) such that si,k = si′,k′ , B
outputs 0 and terminates. Next, for every i ∈ [qsdm] and k ∈ [�], B queries
(k, r + si,k, 0) to its oracle OIND and obtains cti,k. Finally, B sets b′ = 0 and
executes T ← Â |G\S〉((pkk,Δk)k∈[�], (si,k, cti,k)i∈[qsdm],k∈[�]), where G \ S is
simulated as follows.

G \ S:When Â makes a (superposition) query |x〉 |y〉 to G \ S, B first com-
putes |x〉 |y〉 |Test(x, S)〉 and measures |Test(x, S)〉. If the result is 0, B just
returns |x〉 |y ⊕ G(x)〉 to Â. Otherwise, B set the value of b′ to 1, and returns
|x〉 |y ⊕ G(x)〉 to Â.

Finalize: If Â terminates, B terminates with output b′.

Let the challenge bit in Expind-m-cpa
PKE,�,B be b. B perfectly simulates Game 3 and

4 for A when b = 0 and b = 1, respectively. Also, B outputs b′ = 1 if and only if
Find3 and Find4 occur in the simulated Games. Thus, we have
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Advind-m-cpa
PKE,�,B (1λ) =

1
2
|Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]|

=
1
2
|Pr[Find3] − Pr[Find4]| .

Finally, we bound Pr[Find4]. In Game 4, conditioned on (pkk,Δk)k∈[�] and
(si,k, cti,k)i∈[qsdm],k∈[�], we have Prr←M[m ∈ S] ≤ �(qsdm+1)

|M| for any m ∈ M. Thus,

from Lemma 3.2, we obtain Pr[Find4] ≤ 4(q+t)�(qsdm+1)
|M| .

Overall, we see that there exists a QPT B that satisfies Eq. (5). �
(Theorem 5.2)

6 Conclusion: KDM Security of FO Transformations

In the conclusion, we show that the KDM security in the QROM of FO transfor-
mations can be reduced to the IND-CPA security of the underlying PKE scheme
without square root security loss.

We first provide the security bound for the KDM-CPA security of the PKE
scheme U⊥

m,OTP(THKG(PKE, G),H) in terms of the IND-m-CPA security of the
underlying PKE. In order to capture the most general setting, we allow adver-
saries for the KDM-CPA security of U⊥

m,OTP(THKG(PKE, G),H) and KDM func-
tions queried by them to get access to not only H but also G. The access to G
by an adversary does not affect the security proof provided in Sect. 4.2 since H
and G are independent random oracles. Then, the following theorem holds.

Theorem 6.1. Let � = �(λ) be a polynomial and PKE be a δ-correct
PKE scheme. Let Akdm be an adversary for the KDM-CPA security of
U⊥

m,OTP(THKG(PKE, G),H) making qkdm KDM queries. Suppose Akdm makes at most
qG (resp. qH) super-position random oracle queries to G (resp. H) with query
depth dG (resp. dH). Also, suppose KDM functions queried by Akdm makes at
most qG

f (resp. qH
f ) classical random oracle queries to G (resp. H). Then, there

exists a QPT adversary Aind such that

Advkdm-cpa
U⊥

m,OTP(THKG(PKE,G),H),�,Akdm
(1λ)

≤ 4dH · O(dG + dH · qG
f )

(
2 · Advind-m-cpaPKE,�,Aind

(1λ) +
O(qG + qH · (� + qG

f )) · � · (qkdm + 1)

|M|

)

+
2dH�qkdm(�qkdm − 1)

|M| +
4(qH + qH

f )qkdm√|M| + 2(4dH + 1) · qkdm · δ . (6)

Proof. We estimate the number of queries to G made by Bd∗ appeared in the
proof of Theorem 4.2 when Akdm is used inside of it. First, Bd∗ make O(qG) queries
with depth O(dG) in order to simulate queries to G made by Dd∗ . Also, every
time Dd∗ makes a query to Vi∗ , Bd∗ needs to make at most O(� + qG

f ) queries
to G with depth O(qG

f ) in order for the computation of f̂i,b. Since Dd∗ makes
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at most O(qH) queries to Vi∗ with depth O(dH), to simulate Dd∗ ’s queries to
Vi∗ , Bd∗ needs to make at most O(qH · (� + qG

f )) queries to G with query depth
O(dH · qG

f ). Therefore, Bd∗ makes at most O(qG + qH · (� + qG
f )) queries to G

with query depth O(dG + dH · qG
f ). This holds for every d∗ ∈ [d]. Also, Since Dd∗

outputs a list of size O(qH), so does Bd∗ for every d∗ ∈ [d]. From this fact and
Theorem 4.2 and 5.2, we see that there exists a QPT Aind that satisfies Eq. (6).

� (Theorem 6.1)

Remark 6.1 (On the value of qG
f and qH

f .). Note that the values of qG
f and qH

f

are determined depending on usage scenarios and independent of the adversary’s
behavior. For example, in the usage scenario where we need only circular security
such as anonymous credential [CL01], we can set qG

f = qH
f = 0. In that case, the

multiplicative term of Advind-m-cpa
PKE,�,Aind

(1λ) in Eq. (6) is roughly the square of the
query depth of Akdm to the random oracles. It is asymptotically the same as the
multiplicative term appeared in the proof of IND-CCA secure KEM using O2H
lemma with MRM [KSS+20]. In order to capture a wide range of applications,
we allow KDM functions to get access to the random oracles in this work, but
we think qG

f and qH
f are not large in many applications.

Let FO⊥
m,OTP(PKE, Genc,H) be a PKE scheme constructed by combining the

KEM U⊥
m(T(PKE, Genc),H) with OTP as DEM. From Theorem 6.1, we can

show that FO⊥
m(PKE, Genc,H) satisfies KDM-CPA security with asymptotically

the same security loss with respect to the underlying IND-m-CPA secure PKE
as Eq. (6). Concretely, we have the following theorem.

Theorem 6.2. Let � = �(λ) be a polynomial and PKE be a PKE scheme. Let
Akdm be an adversary for the KDM-ATK security of FO⊥

m,OTP(PKE, Genc,H) where
ATK ∈ {CPA,CCA}. Then, for atk ∈ {cpa, cca}, there exists an adversary A ′

kdm

such that

Advkdm-atk
FO⊥

m,OTP(PKE,Genc,H),�,Akdm
(1λ) ≤ Advkdm-atk

U⊥
m,OTP(THKG(PKE,G),H),�,A′

kdm
(1λ) +

�(� − 1)
2|M| .

Proof. Suppose we modify the security game Expkdm-atk
FO⊥

m,OTP,�,Akdm
(1λ) so that the

k-th key pair (pkk, skk) is generated by using Gkg(rk) as the random coin for
KG for every k ∈ [�], where Gkg : M → Rkg is a random oracle and rk ← M
for every k ∈ [�]. If r1, . . . , r� are mutually different, then the distribution of
� key pairs does not change from the view of Akdm by this modification. We
emphasize that Akdm does not have access to Gkg. By the modification, Akdm’s
advantage is changed at most �(�−1)

2|M| . We can see that we can easily construct an

adversary A ′
kdm such that Advkdm-atk

U⊥
m,OTP(THKG(PKE,G),H),�,A′

kdm
(1λ) is exactly the same as

Akdm’ advantage in the modified game. Therefore, we obtain the theorem. �
(Theorem 6.2)

Thus, we see that the KDM-CPA security of FO⊥
m,OTP(PKE, Genc,H) is

reduced to that of U⊥
m,OTP(THKG(PKE, G),H) with additional security loss �(�−1)

2|M|
which is absorbed by the additive term of Eq. (6).
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Extension to KDM-CCA Security. In the main body of this paper, we focused
on KDM-CPA security. Our proof technique is also compatible with KDM-CCA
security. Concretely, we can prove the KDM-CCA security of a PKE scheme
constructed by using a variant of U⊥

m called U⊥,keyconf
m = U⊥,keyconf

m (dPKE,H)
as KEM and OTP-then-MAC as DEM without square root security loss if
the underlying dPKE is SDM-OW-RSA secure and additionally satisfies injec-
tiveness. The security proof is a combination of our proof for the KDM-
CPA security of U⊥

m,OTP and the proof for the IND-CCA security of U⊥,keyconf
m

by [BHH+19,KSS+20]. We provide the formal description of this construction
and security proof for the KDM-CCA security of it in [KN21].

By following a similar argument as the case of KDM-CPA security, we can
show that the KDM-CCA security of the KEM FO⊥,keyconf

m (PKE, Genc,H) =
U⊥,keyconf

m (T (PKE, Genc),H) combined with OTP-then-MAC as DEM, can be
reduced to the IND-CPA security of PKE. The multiplicative term in the security
bound with respect to the underlying PKE is roughly the same as Eq. (6) though
some additive terms are added to the security bound.

Acknowledgments. The authors thank Takashi Yamakawa for helpful comments.
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Abstract. Encryption satisfying CCA2 security is commonly known to
be unnecessarily strong for realizing secure channels. Moreover, CCA2
constructions in the standard model are far from being competitive
practical alternatives to constructions via random oracle. A promising
research area to alleviate this problem are weaker security notions—
like IND-RCCA secure encryption or IND-atag-wCCA secure tag-based
encryption—which are still able to facilitate secure message transfer
(SMT) via authenticated channels.

In this paper we introduce the concept of sender-binding encryption
(SBE), unifying prior approaches of SMT construction in the universal
composability (UC) model. We furthermore develop the corresponding
non-trivial security notion of IND-SB-CPA and formally prove that it
suffices for realizing SMT in conjunction with authenticated channels.
Our notion is the weakest so far in the sense that it generically implies
the weakest prior notions—RCCA and atag-wCCA—without additional
assumptions, while the reverse is not true. A direct consequence is that
IND-stag-wCCA, which is strictly weaker than IND-atag-wCCA but
stronger than our IND-SB-CPA, can be used to construct a secure chan-
nel.

Finally, we give an efficient IND-SB-CPA secure construction in the
standard model from IND-CPA secure double receiver encryption (DRE)
based on McEliece. This shows that IND-SB-CPA security yields simpler
and more efficient constructions in the standard model than the weakest
prior notions, i.e., IND-atag-wCCA and IND-stag-wCCA.
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1 Introduction

The construction of secure channels is one of the main goals of cryptography.
Among the milestones that have been reached to this end are public-key cryp-
tosystems by Diffie and Hellman [18], semantic security by Goldwasser and
Micali [22] (today referred to as chosen plaintext attack (CPA)), and the stronger
adaptive chosen ciphertext attack (CCA2) by Rackoff and Simon [29].

Nowadays, CCA2 secure public key encryption (PKE) is a cornerstone of
many protocols realizing secure channels for our daily life applications. One of
the most typical applications is the encryption of e-mails. This is usually realized
by implementations of either the S/MIME [32] or OpenPGP [7] standard. Both
standards utilize a public key infrastructure (PKI) and digital signatures to
realize authenticated channels. Hence we see that widespread applications of
secure message transfer (SMT) integrally use authenticated channels and a PKI
in addition to encryption. secure message transfer (SMT) is an abstraction of
authenticated and encrypted communication in the universal composability (UC)
model. How secure message transfer (SMT) can be utilized in practical real world
scenarios can be seen for example in [30].

It is widely known that CCA2 is unnecessarily strong to construct SMT when
authenticated channels are already present [11]. In addition many concrete CCA2
constructions either lack efficiency to be considered practical constructions or
were only proven secure within the random oracle model (ROM), which has
inherent problems, e.g., that some constructions which can be proven secure
in the ROM are insecure with any implementation of the random oracle [10].
We would like to point out that we do not question the usefulness of the ROM
despite its shortcomings. However, we consider the exploration of alternatives
just as important and therefore focus on constructions proven secure in the
standard model in this work. Hence the following question arises:

What is the weakest security definition in order to establish a secure chan-
nel in the standard model if we assume existing authenticated channels?

In an attempt to answer this question we find a non-trivial relaxation of the
weakest prior notions of replayable chosen ciphertext attack (RCCA) from [11]
and adaptive-tag weakly chosen ciphertext attack (atag-wCCA) from [26], which
were both shown to be weaker than CCA2 and used to construct secure channels.
While this work does not provide an ultimate answer to this question—i.e., we
do not prove that our definition, labeled indistinguishability under senderbind-
ing chosen plaintext attack (IND-SB-CPA), is the weakest possible and hence
necessary—we show IND-SB-CPA to be sufficient in the sense that any encryp-
tion protocol satisfying this security can be used directly to UC-realize SMT
using authenticated channels.

Although this is an interesting theoretic result, we argue that for more rele-
vancy the previous question needs to be accompanied by the following:

Can weaker security notions lead to simpler and more efficient construc-
tions of a secure channel in the standard model?
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In the current state of affairs, tag-based encryption (TBE) is an attractive
choice for constructing efficient CCA2 secure PKE in the standard model as
already the weakest established TBE security notion, indistinguishability under
selective-tag weakly chosen ciphertext attack (IND-stag-wCCA), was shown by
Kiltz [23] to yield a transformation to CCA2 secure PKE by adding one-time
signatures for example. We show that IND-stag-wCCA secure TBE does not
actually require prior transformation to CCA2 secure PKE in order to construct
secure channels: By deriving the new concept of sender-binding encryption (SBE)
from TBE we are able to construct secure channels directly from IND-stag-
wCCA secure encryption. The intuition behind SBE is to tie ciphertexts not
only to the receiver as with classic PKE notions, but to the sending/encrypting
party as well.

Somewhat surprisingly, via IND-SB-CPA secure SBE we are also able to
construct secure channels from double receiver encryption (DRE) which only
satisfies CPA security and soundness. CPA secure DRE was initially introduced
by Diament et al. [17] to facilitate message transmission from one sender to
two different receivers and allows for interesting applications such as security
puzzles for denial of service countermeasures. Subsequently, Chow et al. [14]
introduced the property of soundness for DRE, and proved it to be crucial for
some applications such as plaintext awareness (PA). Our DRE-based protocol
allows for a much simpler and more efficient encryption than IND-stag-wCCA
secure TBE for constructing secure channels and hence allows us to answer the
second question in the positive.

One caveat of the construction via DRE is that we require an extended
PKI that realizes the key registration with knowledge (KRK) functionality. This
guarantees that users of the PKI have knowledge of their private keys. While
this is not a common functionality of PKIs in use today, there are first protocol
drafts like OTRv41 which utilize deniable authenticated key exchange protocols
that rely on the KRK functionality. In this case those are DAKEZ and XZDH
due to Unger and Goldberg [33].

As discussed in the next section the two questions we raise have partially
been considered in prior works. In this paper we make considerable headway
towards answering both of them.

1.1 Related Work

In this section we firstly analyze the current scientific landscape of security
notions for SMT construction with authenticated channels. We then discuss the
most promising prior constructions to efficiently achieve these security notions.

A PKE satisfying CCA2 security was already shown by Canetti in [9] to
realize SMT in the UC framework by communicating confidentially over authen-
ticated channels. On the other hand CCA2 was also shown by Canetti et al.
[11] to be unnecessarily strong for this purpose. Hence relaxations of CCA2
came into focus. Among these relaxations is indistinguishability under replayable

1 https://github.com/otrv4/otrv4/blob/master/otrv4.md.

https://github.com/otrv4/otrv4/blob/master/otrv4.md
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chosen ciphertext attack (IND-RCCA), introduced by Canetti, Krawczyk and
Nielsen in [11] where they show that IND-RCCA suffices to UC-realize SMT
using authenticated channels. IND-RCCA differs from CCA2 in the characteris-
tic that the ability to generate ciphertexts, which decrypt to the same plaintext
as the test ciphertext, does not help the adversary to win the game. We provide
the formal notions of IND-RCCA in Appendix B.1 of the full version of this
paper [3]. Recently, Badertscher et al. [1] examined IND-RCCA and variations
of it using the constructive cryptography framework to construct a confidential
channel—a strictly weaker notion than SMT. They concluded that IND-RCCA
is not sufficient to realize confidential channels when using the authenticated
channel for public key transfer only. They introduce a stronger security defi-
nition to solve this problem whereas we, like the original IND-RCCA paper,
assume authentication for every message transfer.

Another direction to achieve weaker security definitions is that of TBE which
was introduced by MacKenzie, Reiter and Yang [26]. They introduced the notion
of tag-based non-malleability, which is nowadays known as indistinguishability
under adaptive-tag weakly chosen ciphertext attack (IND-atag-wCCA) security
for TBE. The authors show that an IND-atag-wCCA secure TBE scheme is also
sufficient to realize SMT when provided with authenticated channels. A relax-
ation, IND-stag-wCCA, has been shown to facilitate CCA2 constructions with
the additional usage of a one-time signature scheme [5] or a message authen-
tication code combined with a commitment scheme [6]. Both constructions are
originally meant for identity based encryption (IBE), but Kiltz showed in [23]
how to adapt these for the TBE setting. So far IND-stag-wCCA secure TBE has
not been shown, however, to directly facilitate SMT.

Let us now look at how efficiently these security notions can be achieved
without employing the ROM. The most efficient general construction paradigms
nowadays are the lossy trapdoor functions by Peikert and Waters [28], the cor-
related products by Rosen and Segev [31] and the very similar k-repetition by
Döttling et al. [19]2, the Cramer-Shoup-like constructions [15] and the adap-
tive trapdoor functions [25]. More efficient constructions of SMT can be built
upon TBE. The—to the best of our knowledge—most efficient code-based TBE
schemes nowadays are due to Kiltz [23], Kiltz, Masny and Pietrzak [24], Cheng
et al. [13] and Yu et al. [34]. In their schemes, the notion of IND-stag-wCCA
security for TBE is required, which can be used to construct CCA2 schemes by
adding one-time signatures or message authentication codes and commitments
as mentioned above.

Regarding both of our research questions we see that although some progress
was made in previous works there is still a lot of room for improvement. In the
following section we highlight this paper’s contribution towards closing this gap.

2 In spite of being a generic paradigm this work was applied only to McEliece so far.
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1.2 Our Contribution

In this paper we develop the new security notion of IND-SB-CPA, which is the
weakest so far to UC-realize SMT in conjunction with authenticated channels.
We also give a concrete efficient construction of an IND-SB-CPA secure SBE
scheme in the standard model. An overview of this five-part contribution is
illustrated in Fig. 1. The five contribution parts correspond to the Sects. 2 to 6:

Fig. 1. Overview of our contribution

• In Sect. 2 we firstly provide the unifying definition of SBE, capturing all
prior ways to construct SMT from authenticated channels and some form of
encryption. A direct consequence is that all of the TBE notions, reformu-
lated as SBE, directly construct SMT from authenticated channels. We then
go on to develop the new game-based security notion of IND-SB-CPA. This is
explicitly tailored to be as weak as possible while still only requiring authen-
ticated channels to facilitate SMT. We achieve this by binding ciphertexts to
sending parties.

• Section 3 presents a generic transformation from an indistinguishability
under chosen plaintext attack (IND-CPA) secure DRE scheme with key reg-
istration to an IND-SB-CPA secure SBE scheme. To the extent of our knowl-
edge it was not previously known how CPA secure DRE could be used to
realize SMT. Appendix E of the full version of this paper [3] presents fur-
ther generic transformations based on IND-RCCA secure PKE and indistin-
guishability under selective identity chosen plaintext attack (IND-sID-CPA)
secure IBE.

• In Sect. 4 we construct an IND-CPA secure and sound DRE scheme from a
McEliece variant. In conjunction with Sect. 3 this can be used to implement
SMT in a more efficient and simpler way than known so far. To the extent
of our knowledge we are the first to construct a McEliece-based DRE with
soundness. Moreover, we show an improvement of a factor 5 regarding the
size of the public key, which is mostly due to the avoidance of relying solely
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on the (low-noise) learning parity with noise (LPN) assumption. Additionally,
we provide another (2-repetition) McEliece construction and one from LWE-
based binding encryption in Appendix F of the full version of this paper [3].
All our constructions are proven secure in the standard model.

• In Sect. 5 we finally construct a protocol which combines IND-SB-CPA secu-
rity with authenticated channels. This protocol is subsequently proven to
UC-realize SMT under static corruption by a malicious adversary.

• Section 6 highlights the theoretical relation between IND-SB-CPA and TBE
security notions—in particular that the new notion of IND-SB-CPA is implied
by the weakest known TBE security. Appendix G.2 of the full version of this
paper [3] expands on this theoretic classification by comparing IND-SB-CPA
to classic PKE indistinguishability notions from CPA to CCA2.

1.3 Preliminaries

Firstly, let us note that all notations and abbreviations we use can be looked up
in Appendix A. We talk about different game-based security notions for various
types of encryption schemes throughout this paper. While we would expect the
reader to be familiar with the standard definitions of IND-CPA/-CCA2 etc.,
we provide formal definitions of all notions for your convenience in Appendix
B of the full version of this paper [3]—in particular the more involved ones
pertaining, e.g., to DRE, TBE and IBE schemes including security, correctness
and soundness definitions.

In this work we use DRE as a building block for our construction. DRE
encrypts a plaintext to two ciphertexts using two different public keys with
the guarantee, that these ciphertexts decrypt to the same plaintext. Formally a
DRE scheme consists of three probabilistic polynomial time (PPT) algorithms
(gen, enc, dec) and the function fKey, which checks if the key pair (sk , pk) is
well-formed.

gen : 1λ �→ (sk , pk)
enc : (pk1, pk2,m) �→ c

dec : (sk i, pk1, pk2, c) �→ m where i ∈ {1, 2}

fKey : (sk , pk) �→
{
true

false.

TBE extends public key encryption by adding a tag to the encryption and
decryption algorithms. This tag contains additional information and is a simple
string. Formally a TBE scheme with message space M and tag space T consists
of three PPT algorithms (gen, enc, dec).

gen : (1λ) �→ (sk , pk)
enc : (pk , t,m) �→ c

dec : (sk , t, c) �→ m ∈ M ∪ {⊥}
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The weakest security notion of TBE so far is IND-stag-wCCA introduced by
Kiltz [23]. This and further definitions of TBE security can be found in the full
version of this paper [3]. The TBE notion IND-gtag-wCCA—which we start from
to develop our notion of IND-SB-CPA security—is explicitly given in Sect. 2.

For readers who are not intimately familiar with the concept of simulation-
based security or universal composability we also briefly recap the ideal/real-
paradigm as well as UC in Appendix C of the full version of this paper [3].
More detailed explanations can be found, for instance, in [8,9]. As there have
been conflicting definitions, we explicitly state formal definitions for the ideal
functionalities of FAUTH, FM-SMT and FKRK. For FAUTH and FM-SMT these
can be found in Sect. 5 and additionally with further discussion in Appendix D
of the full version of this paper [3]. The definition for FKRK can be found in
Appendix D of the full version as well.

2 IND-SB-CPA Security

SMT is commonly realized by combining an IND-CCA2 secure PKE or an IND-
atag-wCCA secure TBE scheme with authenticated channels. As highlighted in
Sect. 1, however, both of those security notions seem to be unnecessarily strong
and restrictive for this application. In this observation we are hardly the first
(cp. Sect. 1.1) as there are previous efforts to relax security notions with the
aim to facilitate SMT—like the RCCA relaxation of CCA2 and efforts to use
IND-stag-wCCA secure TBE.

In this section we introduce the concept of SBE and our new security notion
of IND-SB-CPA. It is even weaker than the IND-atag-wCCA relaxation IND-
stag-wCCA but still captures the security needed for secure message transfer via
authenticated channels. Although the term SBE has not previously been defined,
all prior realizations of SMT via authenticated channels (based on CCA2, RCCA,
atag-wCCA or selective-tag weakly chosen ciphertext attack (stag-wCCA)) work
by constructing an SBE scheme from the underlying encryption scheme. We
therefore regard this as a long overdue unifying definition which is central for
the topic of SMT construction.

Definition 1 (Sender-binding encryption (SBE)). The interface of an
SBE scheme is given by a set of three PPT algorithms (gen, enc, dec):

gen : 1λ �→ (sk , pk)
enc : (pk , S,m) �→ c

dec : (sk , S, c) �→ m.

We expect an SBE scheme to fulfill the notion of correctness, i.e. that when-
ever (sk , pk) ← gen(1λ), then

m = dec(sk , S, enc(pk , S,m)).
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Some remarks are in order about this use case definition of SBE.
In addition to the inputs present in any common PKE scheme, encryption

and decryption algorithms use the encrypting party’s ID S3 as well. The ID of
a party represents the identification information used within the system. This
might be the public key itself, the party’s actual name, their e-mail address etc.
This does not only bind a ciphertext to the receiving party who holds the secret
key and is able to decrypt the ciphertext—as any PKE scheme does—but also
to the party who created the encryption.

However, binding a ciphertext to the ID of a sending/encrypting party alone
does not yet yield obvious benefits. Even if a specific party ID is specified by the
protocol, party IDs are public knowledge and malicious parties can insert any ID
they want. SBE starts to unfold its benefit when used in conjunction with IDs
that are associated with authenticated channels. This channel reliably indicates
the true sender S of a message. Checking this against the sender ID bound to the
received ciphertext prevents (honest sender) replay attacks, i.e., that this mes-
sage was just copied from another (unwitting) sender. The terminology “sender-
binding” stems from the example application of SMT via authenticated channels
where this is taken to be the encrypting/sending party. Of course there might
be other use cases for SBE where the encrypting party does not constitute a
“sender”. But throughout this paper (whenever we talk about SBE) we use R
and “receiver” to denote the party owning the keys (skR, pkR) := (sk , pk), and
S and the term “sender” for the party whose ID is input on encryption and
decryption.

Given the definition of an SBE scheme we still need to arrive at a meaningful
corresponding security notion. The intuitive way to construct an SBE scheme
is to use a TBE scheme where the tag space T is chosen to be the set of party
IDs P. Even a TBE scheme with arbitrary tag space T can easily be used for

Fig. 2. The IND-gtag-wCCA TBE game.

3 For the encryption mechanism we will sometimes omit the explicit input of the ID
S if it is clear from the context which party S is conducting the encryption.
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SBE as long as the tag space is as least as large as the set P of participating
parties. To do so a public and injective function P ↪→ T is chosen to translate
party IDs into tags. Hence to develop a security notion for SBE we start from the
TBE notion indistinguishability under given-tag weakly chosen ciphertext attack
(IND-gtag-wCCA). This is an intuitive weakening of the previously considered
IND-stag-wCCA, with the only difference being that the adversary is not allowed
to choose the challenge tag but is instead given a random tag by the challenger:

Definition 2 (IND-gtag-wCCA). A TBE scheme (gen, enc, dec) satisfies
IND-gtag-wCCA security, if and only if for any PPT adversary Agtag-CCA the
advantage to win the IND-gtag-wCCA game shown in Fig. 2 is negligible in λ.

Using party IDs as tags in TBE provides a special meaning to these tags. It is
this additional meaning which induces the changes we make to IND-gtag-wCCA
to arrive at our new notion of IND-SB-CPA for SBE: We now additionally have a
connection between tags and key pairs, as any party ID (tag) is associated to the
key pair of this party. Hence there is another ID/tag R corresponding to the key
pair (skR, pkR) = (sk , pk) and another key pair (skS , pkS) corresponding to the
party S = t∗. As we are aiming towards the weakest possible notion from which
to construct SMT we let both of those be chosen by the challenger instead of
giving the adversary any more power. Depending on the underlying encryption
scheme it is possible that keys may not be generated independently of the ID
(think, e.g., of IBE schemes) or that public keys are used as IDs themselves.
Hence we assume the challenger to randomly generate/draw keys and IDs in

Fig. 3. The IND-SB-CPA game for SBE
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a consistent fashion. With the additional key pair (skS , pkS) we also need to
define how much decryption power the adversary gets for these keys in the two
oracle phases. We choose this intuitively to be symmetric with the challenge keys
(skR, pkR). Because this gives a weaker notion and is still enough for SMT we
restrict decryption not only for the challenge tag S but for R as well. All in all
this adjustment of IND-gtag-wCCA to SBE yields the following definition:

Definition 3 (IND-SB-CPA). An SBE scheme (gen, enc, dec) satisfies IND-
SB-CPA security, if and only if for any PPT adversary ASB-CPA the advantage
to win the IND-SB-CPA game shown in Fig. 3 is negligible in λ.

Within this context of SBE, the new security notion of IND-SB-CPA has
a very straight forward intuition: If it was possible to alter a ciphertext c ←
enc(pk , S,m) to some c′ which successfully decrypted under another sender ID
S′ (i.e. dec(skR, S′, c′) �= ⊥), replay attacks would be possible. Let us look at
this in a bit more detail. From Fig. 3 we see that the adversary is provided with
perfect knowledge (via oracle or its own power) about any ciphertext which
involves any other party than just S and R. About communication between
S and R, on the other hand, the adversary learns nothing—with the natural
exception that encryption only requires public knowledge and can therefore be
conducted by the adversary as well. A directed version—where the adversary
can additionally decrypt messages from R to S (but not from S to R)—would
also naturally suggest itself. But as mentioned before our choice of a symmetric
version is strictly weaker as well as sufficient for SMT construction. Having
no decryption possibilities for the channel (S to R) along which the challenge
ciphertext is sent justifies classifying IND-SB-CPA as some form of CPA security.
For more thoughts on these classifications see Appendix G.3 of the full version
of this paper [3].

We thoroughly investigate the relationships between IND-SB-CPA and other
game-based notions in Sect. 6 and Appendix G.2 of the full version of this paper
[3]. In the next section we show that IND-SB-CPA is not merely of academic
interest by giving a generic example construction for IND-SB-CPA secure SBE
via DRE.

3 Transformation from DRE to SBE

In this section we generically construct an IND-SB-CPA secure SBE scheme
from DRE. Further generic constructions as well as more involved discussions of
this DRE construction—particular about the use of KRK—can be found in the
full version of this paper [3].

Originally meant to encrypt a message to two receivers, we use DRE in such a
way, that one of those ciphertexts is encrypted using the public key of the sender.
This, together with the usage of PKIs using KRK results in an encryption where
the sender is aware of the plaintext. Without KRK there is no guarantee that
the sender has knowledge of the private key corresponding to his public key,
so this awareness could not be guaranteed. A possible realization of the KRK
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functionality is that the PKI demands a zero-knowledge proof of knowledge
about the secret key when registering the public key. While this is a possibly
expensive operation it only needs to be done once while registering.

We require the underlying DRE scheme to be sound, IND-CPA secure and
compatible with the key registration functionality FKRK. For the definition of
DRE, its soundness, and the definition of FKRK we refer the reader to Appendices
B.4 and D of the full version of this paper [3] respectively. This transformation
will broaden our intuitive understanding of the new notion as well as provide
a background for the concrete DRE construction we discuss in Sect. 4. We fur-
thermore use the transformation in Sect. 6 to show that IND-SB-CPA does not
in fact imply IND-gtag-wCCA but is a strictly weaker security notion.

Although DRE was initially devised to facilitate message transmission from
one sender to two different receivers, choosing one of the receivers to be the
sender itself provides a way to bind the ciphertext to the sender and to achieve
an IND-SB-CPA secure SBE scheme.

One small caveat of using DRE is the need for key registration with knowl-
edge: If we can not make sure the sender knows a key pair, ciphertexts encrypted
under this key will not establish a reliable connection between ciphertext and
sender. Hence we employ the ideal functionality FKRK. To do so, however, we
need to make sure the underlying DRE scheme is compatible:

Remark 1. Throughout this section we will assume DRE schemes to permit effi-
ciently computable boolean functions fKey. On input of a (possible) key pair
(sk , pk) this function decides whether the keys “belong together”, i.e., whether
they could have been output by the encryption scheme’s key generation algo-
rithm or might just be an unrelated pair of values:

fKey : (sk , pk) �→
{
true, (sk , pk) ← gen(1λ)
false, else.

This is necessary for the scheme to be used in conjunction with the registration
functionality FKRK. In Appendix D of the full version of this paper [3] we discuss
FKRK a bit more and also see that we can easily dispose of the need for a function
fKey if we are happy for the registration functionality to (partially) generate the
keys for the registering parties.

Let (gen, enc, dec) be an IND-CPA secure DRE scheme which admits a func-
tion fKey. We define a new encryption scheme (Gen, Enc, Dec):
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Gen(1λ) executed by party P :
• (sk , pk) ← gen(1λ).
• Register (sk , pk) with FfKey

KRK.
↪→ Return (SK ,PK ) := ((sk , pk), P ).

Enc(PKR, S,m) = Enc(R,S,m) executed by party S:
• Retrieve pkR and pkS from FfKey

KRK.
↪→ Return c ← enc(pkR, pkS ,m).

Dec(SKR, S, c) = Dec((skR, pkR), S, c) executed by party R:
• Retrieve pkS from FfKey

KRK.
↪→ Return m := dec(skR, pkR, pkS , c).

Let us give some intuition about the construction before we move on to
formalities. Choosing one of the receivers for DRE to be the sender itself and
having them encrypt a message under its own key might seem counterintuitive
at first, but has one crucial benefit: It guarantees to the other (actual) receiver
that even if the sender might not have constructed the ciphertext themselves but
rather copied it from somewhere else, they have knowledge about the plaintext
since they are able to decrypt as well. This is guaranteed by the registration
with FfKey

KRK in conjunction with the soundness property of the underlying DRE
scheme. In addition to showing that this construction does in fact satisfy IND-
SB-CPA security, we provide a discussion in Appendix E of the full version of
this paper [3] on what properties exactly we need from DRE and how this is
related to registration-based plaintext awareness (RPA).

Lemma 1. In the FfKey
KRK hybrid model (Gen, Enc, Dec) is an IND-SB-CPA secure

SBE scheme.

Proof. Assuming that (gen, enc, dec) is a sound DRE scheme with key function
fKey and assuming we have an adversary ASB-CPA who has non-negligible success
probability in winning the IND-SB-CPA game with respect to (Gen, Enc, Dec),
we construct an adversary ADRE-CPA with non-negligible success probability in
winning the DRE IND-CPA game with respect to (gen, enc, dec). Note that in
this case, ADRE-CPA not only fields ASB-CPA’s queries to OSB-CPA but also plays
the role of FfKey

KRK and has therefore access to registered keys. In the reduction
shown in Fig. 4 we do not explicitly state this, but all interactions with FfKey

KRK are
handled exactly as the functionality itself would. The only exceptions are that an
instantaneous ok is assumed whenever the functionality would ask the adversary
for some permission and that in the first phase the adversary ADRE-CPA itself
“registers” the keys pkS and pkR for S and R respectively without providing
corresponding secret keys.

Since ADRE-CPA has access to the internal state of FfKey
KRK, they can look up

the keys (skS′ , pkS′) for any oracle query (R′, S′, c). If no such keys have been
registered, decryption of the ciphertext would result in ⊥. If keys have been
registered, they can be used to correctly decrypt the ciphertext as the soundness
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Fig. 4. Reduction for DRE construction

of DRE (see Appendix B.4 of the full version of this paper [3] for definition)
guarantees

dec(skS′ , pkS′ , pkR′ , c) = dec(skR′ , pkR′ , pkS′ , c).

Hence it is no problem for ADRE-CPA to respond with correct decryptions exactly
as OSB-CPA would. This gives ADRE-CPA the same non-negligible success proba-
bility as ASB-CPA. 	


This newfound utility for IND-CPA secure DRE schemes provides the moti-
vational background for the next section, which in turn shows the relevance of
our theoretical construction for the efficient construction of SMT in the standard
model.

4 Efficient DRE Construction from McEliece and LPN

In this section we present an efficient way to construct an IND-CPA secure and
sound DRE scheme from the McEliece and LPN assumptions and discuss how
our construction improves the state of the art of SMT realizations in the standard
model based on the McEliece and LPN assumptions. Moreover, to the extent of
our knowledge we are the first to construct a DRE based on these assumptions.
More details on our construction as well as further constructions via 2-repetition
McEliece and learning with errors (LWE)-based binding encryption can be found
in Appendix F of the full version of this paper [3].
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Construction. Our DRE scheme can be seen as an augmentation of a construc-
tion from Kiltz et al. [24]. In this the authors propose a creative construction
of a low-noise LPN-based TBE scheme, which they show to be IND-stag-wCCA
secure. In the appendix of [24] the authors introduce a simplified variant of their
IND-stag-wCCA secure construction, which is only IND-CPA secure. We use this
simplified variant as a basis for our own construction. In order to establish the
soundness property we add a second encryption of the randomness and exploit
the randomness recovery to perform the consistency check. Moreover, we change
the trapdoor mechanism to the one from the McEliece cryptosystem over Goppa
codes. Hence we define our DRE scheme (gen, enc, dec) as follows:

gen Generate the McEliece secret key sk := (S ,G ′,P) and corresponding public
key pk := (G ,C ) where G := SG ′P and C is a random binary matrix.

enc Sample a fresh random vector s, fresh error vectors e, eR, eS and encrypt s
for both sender S and receiver R, i.e., cS := s ·GS ⊕eS and cR := s ·GR ⊕eR.
Mask the encoded message m with the noisy product s · CS ⊕ e, i.e. c ′ =
s · CS ⊕ e ⊕ Encode(m) and output c := (cR, cS , c ′) as the ciphertext.

dec The receiver recovers the randomness s from cR with textbook McEliece
decryption, verifies the hamming weight wgt(s · GS ⊕ cS) < t and unmasks
Encode(m) ⊕ e = c ′ ⊕ s · CS . Finally, the receiver decodes and outputs the
message m.

For the encoding and decoding we propose to use a suitable Goppa code, which is
fixed for all parties. More details can be found in Appendix F of the full version
of this paper [3].

Theorem 1. The DRE scheme (gen, enc, dec) is IND-CPA secure, given that
both the McEliece indistinguishability assumption and the learning parity with
noise decisional problem (LPNDP) hold. In particular, let A be an IND-CPA
adversary against the cryptosystem. Then there is a distinguisher B for Goppa
codes and a distinguisher D for the LPNDP, such that for all λ ∈ N

AdvCPA
A (λ) ≤ Adv

LPNDPθ(3n,l)
D (λ) + 2 × AdvIND

BR,GR
(λ).

Theorem 2. The DRE scheme (gen, enc, dec) satisfies DRE soundness.

The proofs and formal definitions of assumptions and experiments can be
found in Appendix F of the full version of this paper [3] as well. Note also, that
this DRE scheme admits an efficiently computable function fKey as required for
the use with FKRK (cp. Sect. 3):

fKey : ((S ,P,G ′), (G ,C )) �→
{
true, G = SG ′P
false, else.

In conjunction with Theorems 1 and 2 our DRE scheme satisfies all requirements
for the generic transformation to IND-SB-CPA given in Sect. 3. Hence we can
use it to efficiently achieve SMT if combined with authenticated channels.
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Discussion. Considering that one of the third round finalists of the post-
quantum cryptography (PQC) standardization by the NIST4 is a McEliece vari-
ant based on Goppa codes we expect this mechanism to have significantly better
parameters than cryptosystems that are based solely on the (low noise) LPN
assumption. We argue, however, that our construction may as well be realized
with the sole (low noise) LPN assumption or the Niederreiter cryptosystem [27].
Also, a similar augmentation of the randomness recovering variant of the dual
Regev [21] cryptosystem may yield a very similar construction of DRE based
on LWE. Currently, the Niederreiter cryptosystem seems the most promising
as it was already shown in [20] that the trapdoor function is one-way under
k-correlated input. The tightness loss is expected to be a factor of 3 regarding
the number of LPNDP samples and a factor of 2 regarding the indistinguishabil-
ity assumption. Therefore, we expect our construction of DRE to have roughly
the same parameters as their single receiver IND-CPA counterparts without the
soundness. An algebraic comparison of the public keys and the ciphertext from
our work and the current state of the art in [24] and [34] can be found in Table 1.

Table 1. Comparison of public keys and ciphertext between [24,34] and this work.

Construction Public Key Ciphertext

Kiltz et al. [24] (A,B0,B1,C) ∈ (Zm×n′
2 )3 × Z

l′×n′
2 (c, c0, c1, c2) ∈ (Zm

2 )3 × Z
l′
2

Yu et al. [34] (A,B0,B1,C) ∈ Z
n×n
2 × (Zq×n

2 )2 × Z
l×n
2 (c, c0, c1, c2) ∈ (Zn

2 ) × (Zq
2)

2 × Z
l
2

This Work (G ,C) ∈ Z
l×n
2 × Z

l×n
2 (cR, cS , c′) ∈ (Zn

2 )
3

At this point some remarks are necessary to understand the comparisons
more thoroughly. For the sake of simplicity we will give rough estimations of
the respective public key sizes. Kiltz et al. [24] require for their dimensions that
m ≥ 2n′ and l′ ≥ m, where n′ is the dimension of the low-noise LPN secret.
Current estimations suggest that cryptosystems based on low-noise LPN to have
rather large dimensions, e.g., [16] suggest for 80 bits of security n′ = 9000 when
the noise is μ = 0.0044. Therefore, setting n′ = 9000 leads to the smallest
possible m = 18000 and l′ = 18000 and results in a public key size of roughly 77
megabyte.

Yu et al. [34] improved the construction of [24] in such a way that it may
be based on constant noise LPN assuming sub-exponential hardness. Current
estimations of concrete constant noise LPN hardness suggest much smaller
dimensions than in the low-noise variant, e.g., [4] suggest for 80 bits of secu-
rity n = 1280 and noise level of μ = 0.05, which meets the restriction from [34]
that μ ≤ 0.1. The crucial parameter is, however, the choice of an α > 0 as this
parameter controls the dimension q = O(n6·α+1), which means that minimizing
α will minimize the size of the public key. In order to estimate α as small as
possible we take the formula β = 1

2 − 1
n3·α , which controls the number β · q

of bit flipping errors that a suitable error correcting code will correct. For the
4 National Institute of Standards and Technology.



IND-SB-CPA 331

sake of simplicity we set α = 0.04, which is almost the minimal possible α for
an n = 1280, and get approximately q = 7127. Finally, fixing the remaining
dimension l = n we get a public key size of roughly 2.5 megabyte, which is a
substantial improvement compared to [24].

For classic McEliece constructions Bernstein et al. [2] suggests for 80 bits of
security to utilize [1632, 1269] Goppa codes. Setting n = 1632 and l = 1269 in
this work leads to a public key size of roughly 505 kilobyte, which is roughly
factor 5 smaller than previous works.

We would like to point out that constructions from [24] and [34] are not
directly comparable to our construction because we rely on the additional indis-
tinguishability assumption of Goppa codes from random linear codes. However,
all three constructions are code-based and implement a secure channel such that
(rough) estimations of concrete sizes regarding the same security level may help
to understand the improvement.

5 Realizing FM-SMT from IND-SB-CPA and FAUTH

In this section we show that IND-SB-CPA secure SBE suffices in conjunction
with authenticated channels to realize SMT. We prove this in the universal
composability (UC) model of Canetti [9] (which is explained in more detail in
Appendix C of the full version of this paper [3]) using static corruptions only.
This means that the adversary chooses which parties to corrupt at the start
of the protocol execution and not adaptively as the computation proceeds. We
provide the formal definitions of the UC functionalities FAUTH for authenticated
channels and FM-SMT for SMT to clarify which exact definitions we use. The lat-
ter deals with multiple receivers, multiple senders and multiple messages rather
than working with a multi-session extension (cp. [12]) of a functionality FSMT

which only transmits a single message. Note that this is just a technical differ-
ence but essentially equivalent to the base of many arisen different definitions for
SMT over the past. For more detailed discussions on these ideal functionalities
see Appendix D of the full version of this paper [3].

FAUTH

Provides:
Single-receiver single-message single-sender authenticated message transfer
with constant message size.
Behaviour:

• Upon invocation with input (send, sid , R,m) from some party S, send
backdoor message (send, sid , S,R,m) to the adversary A.

• Upon receiving (send ok, sid) from adversary A: If not yet generated
output, then output (sent, sid , S,R,m) to R.

• Ignore all further inputs.
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FM-SMT

Provides:
Multi-receiver multi-message multi-sender secure message transfer with con-
stant message size.
State:
Function pMsg : SID × MID → M × P2 of pending messages.
Behaviour:

• Upon receiving (send, sid , R,m) from some party S, draw fresh mid ,
send (send, sid ,mid , S,R) to the adversary A and append (sid ,mid) �→
(m,S,R) to pMsg.

• Upon receiving (send ok, sid ,mid) from the adversary, look up
(m,S,R) := pMsg(sid ,mid). If it exists, output (sent, sid , S,m) to R.

We will proceed towards the goal of realizing SMT in three stages: Firstly, we
define a candidate protocol πFAUTH

M-SMT in the FAUTH-hybrid model which utilizes
an IND-SB-CPA secure SBE scheme. Secondly, we construct a simulator SM-SMT

aiming to provide indistinguishability between the candidate protocol and the
SMT functionality FM-SMT. The last step is formally proving that in the FAUTH-
hybrid model indistinguishability from FM-SMT is actually achieved by πFAUTH

M-SMT

in conjunction with SM-SMT.

Protocol πFAUTH

M-SMT Let (gen, enc, dec) be an IND-SB-CPA secure SBE scheme.
From this we define a secure message transfer protocol πFAUTH

M-SMT as follows: When-
ever a party S wants to securely transmit a message m to some party R, they
essentially send the encryption c ← enc(pkR, S,m) over an authenticated chan-
nel to R. When a party R receives a ciphertext c over an authenticated channel
from some party S, they decrypt it via m := dec(skR, S, c). Although this gen-
eral principle is very simple, many details—e.g. regarding key generation—need
to be taken into account. The formal definition looks as follows:

πFAUTH

M-SMT
Realizes:
Multi-receiver multi-message multi-sender secure message transfer with constant
message size.

Parameters:
• IND-SB-CPA secure SBE scheme (gen, enc, dec) with message size l and

ciphertext length l′.
• Functionality FAUTH.
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State of Party P :

• Function pCred : SID → SK × PK of own credentials.
• Function pPk : SID × P → PK of known public keys.
• Function pSend : SID × P → M∗ of pending messages.

Behaviour of Party P :

\\ Being asked to initialize

• Upon receiving output (sent, sidAUTH, S, P, (init, sid)) from FAUTH, if there
is no entry pCred(sid) yet:
(1) (sk , pk) ← gen(1λ).
(2) Append sid �→ (sk , pk) to pCred.
(3) For each party P ′ �= P : Draw fresh sid ′

AUTH and call FAUTH with input
(send, sid ′

AUTH, P ′, (inited, sid , pk)).

\\ Receiving keys and sending stored messages

• Upon receiving output (sent, sidAUTH, P ′, P, (inited, sid , pkP ′)) from
FAUTH, if there is no entry pPk(sid , P ′) yet:
(1) Append (sid , P ′) �→ pkP ′ to pPk.
(2) For any m ∈ pSend(sid , P ′):

(1) Remove m from pSend(sid , P ′).
(2) c ← enc(pkP ′ , P, m).
(3) Draw fresh sidAUTH.
(4) Call FAUTH with input (send, sidAUTH, P ′, (sid , c)).

\\ Sending messages

• Upon receiving input (send, sid , R, m) with m ∈ {0, 1}l from environment Z:
◦ If R = P report output (sent, sid , P, m) to the environment.
◦ Else if no entry pPk(sid , R) exists yet:

(1) Append m to pSend(sid , R).
(2) Draw fresh sidAUTH.
(3) Call FAUTH with input (send, sidAUTH, R, (init, sid)).

◦ Else:
(1) pkR := pPk(sid , R).
(2) c ← enc(pkR, P, m).
(3) Draw fresh sidAUTH.
(4) Call FAUTH with input (send, sidAUTH, R, (sid , c)).

\\ Receiving messages

• Upon receiving output (sent, sidAUTH, S, R, (sid , c)) from FAUTH:
(1) Look up pkS := pPk(sid , S). If this does not exist, abort.
(2) m ← dec(sk , S, c).
(3) Report output (sent, sid , S, m) to the environment Z.

Simulator SM-SMT. According to the real/ideal paradigm explained in
Appendix C of the full version of this paper [3], our protocol πFAUTH

M-SMT realizes
secure message transfer if and only if for any (dummy) adversary A interact-
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ing with the real protocol, there exists a simulator S interacting with the ideal
functionality FM-SMT such that no environment Z can distinguish between exe-
cutions in the real and ideal world. We now construct such a simulator SM-SMT

which we will later show to achieve indistinguishability for πFAUTH
M-SMT and FM-SMT.

The main idea of the simulator SM-SMT is that it simulates the protocol
behaviour of all parties and the hybrid functionality FAUTH in its head. It takes
inputs to and reports messages and outputs from these in-the-head parties to
Z on the one hand and uses them on the other hand to interface with the
ideal functionality FM-SMT. The only case in which the simulator does not have
sufficient knowledge to perfectly simulate the protocol in their head is when an
honest party S sends a message m to another honest party R: The simulator
has no way of knowing the actual message m. In this case SM-SMT reports an
encryption c ← enc(pkR, S, 0) of zero to have been send instead.

Fig. 5. Overview of Simulator S

The overall construction of SM-SMT is shown in Fig. 5. Again there are some
more details to keep track of (especially regarding the box labeled “Behaviour”
in Fig. 5) so we provide a more formal definition as well:

SM-SMT

Realizes:
Multi-receiver multi-message multi-sender secure message transfer with constant
message size.

Parameters:

• Security parameter λ.
• IND-SB-CPA secure SBE scheme (gen, enc, dec).
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In-the-head Parties:

• Functionality FAUTH. This functionality communicates in-the-head with all
honest in-the-head parties as well as with the environment Z as adversary.

• Copies of honest parties running the protocol πFAUTH
M-SMT , which we will denote as

P π. These parties communicate in-the-head with the in-the-head functionality
FAUTH. Their interface to the environment is played by the simulator (defined
in “Behaviour” below).

• Dummy corrupted parties. Whenever the simulator is asked by the environ-
ment to call the functionality FAUTH in the name of a corrupted party, this
in-the-head dummy calls the in-the-head functionality correspondingly and
reports all outputs back to the environment Z.

State:

• Everything the in-the-head parties store in their states.

Behaviour:

\\ Self-communication

• Upon receiving (send, sid ,mid , P, P ) from FM-SMT to A for honest party P ,
call FM-SMT with input (send ok, sid ,mid).

\\ Message from honest to honest party

• Upon receiving (send, sid ,mid , S, R) from FM-SMT to A for honest parties
S �= R:

◦ Start in-the-head party Sπ with input (send, sid , R, 0) from the environ-
ment Z.

◦ If in-the-head party Rπ at some point reports output (sent, sid , S, 0), call
FM-SMT with input (send ok, sid ,mid).5

\\ Message from honest to corrupted party

• Upon receiving (send, sid ,mid , S, R) from FM-SMT to A for honest party S
and corrupted party R:
1. Call FM-SMT with input (send ok, sid ,mid).
2. Receive output (sent, sid , S, m) from FM-SMT to R.
3. Start in-the-head party Sπ with input (send, sid , R, m) from the environ-

ment Z.

\\ Message from corrupted to honest party

• Upon in-the-head honest party Rπ reporting output (sent, sid , S, m) for cor-
rupted party S:
1. Call FM-SMT with input (send, sid , R, m) in the name of S.
2. Receive output (send, sid ,mid , S, R) from FM-SMT to A.
3. Call FM-SMT with input (send ok, sid ,mid).

5 At this point we assume the simulator to track the protocol executions in their
head so they know which mid to use. For readability purposes we refrained from
introducing notation to explicitly store this.



336 W. Beskorovajnov et al.

Security Theorem and Proof. The last thing left to do is to prove that under
static corruption the simulator SM-SMT does in fact achieve indistinguishability
between πFAUTH

M-SMT and FM-SMT in the FAUTH-hybrid model. To do so we will
reduce this indistinguishability to the IND-SB-CPA security of the underlying
SBE scheme. I.e. assuming there is an environment Z which can efficiently dis-
tinguish a real execution of πFAUTH

M-SMT from an ideal experiment with FM-SMT and
SM-SMT (with non-negligible probability) we construct an adversary ASB-CPA

who can win the IND-SB-CPA game with non-negligible probability.
To achieve this let us first take a closer look at what a successfully distin-

guishing environment needs to do:

Remark 2. From the definition of the simulator SM-SMT we immediately see that
if an environment Z is able to distinguish executions of FM-SMT and πFAUTH

M-SMT,
it can only do so by messages between honest parties S �= R. In this case the
simulator prompts its in-the-head sender Sπ to send a message 0 to R instead
of the actual message m (which the simulator does not know). The environment
will therefore receive from FAUTH (played by SM-SMT) a message(

send, sidAUTH, S,R,
(
sid , enc(pkR, S, 0)

))
in the ideal execution, while it receives in the protocol execution the message(

send, sidAUTH, S,R,
(
sid , enc(pkR, S,m)

))
.

In all other cases the simulator can perfectly mimic the protocol execution by
playing the relevant parties and functionalities in its head.6

Let us restrict the distinguishing possibilities even more by introducing a
sequence of hybrid games and showing that we only need to consider distin-
guishability of two consecutive hybrids:

Definition 4 (Hybrids Hk). Let k ∈ N0 be a natural number. The hybrid Hk

represents the execution set-up where almost all interactions are handled as in
the real world execution of πFAUTH

M-SMT. Note that Remark 2 guarantees that these
are the same as in the ideal world, apart from encryptions of messages between
honest parties. Now the only difference between an execution of πFAUTH

M-SMT and Hk

is the following: For the first k messages mi (i ≤ k) between two honest parties
Ri �= Si, the output from FAUTH to the environment Z(

send, sidAUTH, Si, Ri,
(
sid , enc(pkRi

, Si, 0)
))

contains an encryption of zeros—as it would in the ideal execution with simulator
SM-SMT—instead of an encryption of the real message mi.
Note that H0 is equal to the real world execution of πFAUTH

M-SMT and H∞ (where
encryptions of zeros are used for all messages mi, i ∈ N) is equal to the ideal
world execution of FM-SMT with SM-SMT.
6 Please convince yourself from the definition of the simulator SM-SMT that it has all

the knowledge required for simulation and that activations/outputs of FM-SMT will
actually occur at the right times.
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Lemma 2. Let there be an environment Z which distinguishes real and ideal
world. Then there is a κ ∈ N and an environment Zκ which distinguishes hybrids
Hκ−1 and Hκ.

Proof. By definition Z distinguishes executions in hybrids H0 and H∞. Since
Z is PPT, there is a polynomial pZ which bounds its runtime, i.e. Z takes at
most pZ(λ) steps. In particular Z can request no more than pZ(λ) messages to
be sent between honest parties, and hence executions of Z in H∞ and Hk are
the same for all k > pZ(λ). Hence by transitivity of indistinguishability (here we
require the chain from H0 to H∞ to actually be finite by the argument before),
there is an κ ∈ N such that Hκ and Hκ−1 are not indistinguishable. 	


With this preparatory work, we are finally ready to prove that our protocol
πFAUTH
M-SMT does in fact realize secure message transfer:

Theorem 3. Under static corruption, πFAUTH
M-SMT is a UC-realization of FM-SMT

in the FAUTH-hybrid model, if the underlying SBE scheme satisfies IND-SB-CPA
security. I.e.

πFAUTH
M-SMT ≥UC FM-SMT.

Proof. Assume there is an environment Z which distinguishes between execu-
tions of πFAUTH

M-SMT and FM-SMT. By Lemma 2 there is a κ ∈ N such that Z distin-
guishes hybrids Hκ−1 and Hκ with non-negligible probability. We now construct
and adversary ASB-CPA from Z which has non-negligible probability to win the
IND-SB-CPA game. First ASB-CPA receives (S, pkS , R, pkR) from CSB-CPA. Then
it starts Z in it’s head, playing all other parties. Again by Remark 2, Z needs
to register at least two honest parties (and send a message between them) to
distinguish. For the two honest parties R and S (randomly chosen by the chal-
lenger), ASB-CPA does not generate fresh credentials as the honest parties would
do, but rather uses pkS and pkR from CSB-CPA.

It is no problem that ASB-CPA does not know skR, skS . The only case they
are used is when a corrupted party sends a message to R or S, i.e. when one of
them receives output (sent, sidAUTH, P,R/S, (sid , c)) for some corrupted party
P from the functionality FAUTH. In this case ASB-CPA promts the oracle OSB-CPA

with input (pkS , P, c). Note that it is P �∈ {S,R}. Hence OSB-CPA by definition
responds with the decryption m := dec(skS/R, P, c) and ASB-CPA can let the
simulator call FM-SMT with input (send, sid , S/R,m) in the name of P as usual.

For the first κ − 1 messages which are sent between two honest parties, we
report encryptions of 0 instead, when Z asks the adversary to see the content of
the communication channel. When Z asks for the κ-th message mκ to be sent,
ASB-CPA does the following:

• If mκ is not a message from S to R, give up.
• If mκ is to be sent from S to R, hand messages 0 and mκ to CSB-CPA and

receive challenge c∗. Report c∗ as communication channel content to Z.

From now on, when a message m is sent between two honest parties, always
report an encryption of m as channel content instead of 0 as before. When Z
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stops and reports it has run in the hybrid Hκ, report bit b = 0 to CSB-CPA, if Z
decides on Hκ−1, report b = 1. 	


6 Relation Between IND-SB-CPA and TBE Notions

We have presented the new notion of IND-SB-CPA for SBE in Sect. 2, given some
intuition on what this notion implies and broadened the intuitive understanding
by a generic example construction in Sect. 3. What is still missing from the
picture is a formal classification of how this notion directly relates to other
security notions. To fill this gap we firstly examine the connection between IND-
SB-CPA and TBE security notions in this section.

In Appendix G.2 of the full version of this paper [3] we also look at the
implications between IND-SB-CPA and classical PKE IND notions ranging from
CPA to CCA2.

Fig. 6. Relationship to TBE notions

First note that although the notion
of IND-gtag-wCCA has not been defined
prior to this work it is an obvious relax-
ation of IND-stag-wCCA security—which
was the weakest TBE notion considered so
far. The proofs for the (non-)implications
between IND-gtag-wCCA and IND-stag-
wCCA can be found in Appendix G.1 of
the full version of this paper [3].

In this section we concentrate on the
relationship between IND-SB-CPA and
IND-gtag-wCCA. To compare the two notions we assume the tag space T con-
sidered for IND-gtag-wCCA to be equal to a set P of party IDs. Of course a
bijection between the two is sufficient as well, but we compare the notions for
tag and ID spaces of the same size. An overview is shown in Fig. 6.

Lemma 3. IND-SB-CPA ⇐ IND-gtag-wCCA.

Proof. Let (gen, enc, dec) be a TBE scheme. Under assumption of an efficient
adversary ASB-CPA with non-negligible probability to win the IND-SB-CPA secu-
rity game, we will construct an efficient adversary Agtag-wCCA who has the same
success probability in the IND-gtag-wCCA game. An overview of the construc-
tion can be found in Fig. 7.

After being handed an ID S as the challenge tag and a public key pk , the
adversary Agtag-wCCA determines an ID R matching the public key pk = pkR

and generates a key pair (skS , pkS) matching the ID S. Depending on the specific
scheme, these might, e.g., involve some key registration or be completely inde-
pendent of one another. The IDs and public keys (S, pkS , R, pkR) are handed on
to ASB-CPA. Any valid oracle queries (pkR′ , S′, c) from ASB-CPA (i.e., those with
S′ �∈ {S,R} and pkR′ ∈ {pkS , pkR}) are answered in one of two ways: If pk ′

R is
equal to the challenge key pkR, the query (S′, c) is forwarded to Agtag-wCCA’s
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Fig. 7. Reduction for IND-SB-CPA ⇐ IND-gtag-wCCA

own oracle Ogtag-wCCA. Otherwise, Agtag-wCCA uses it’s secret key skS to per-
form the decryption itself. In both cases the challenge is answered exactly like an
oracle OSB-CPA would. After forwarding the messages m0,m1 and the challenge
ciphertext c∗ between ASB-CPA and Cgtag-wCCA, the oracle phase is repeated
exactly as before. Finally, the bit b∗ which ASB-CPA outputs is forwarded as
well. If the adversary ASB-CPA wins, so will Agtag-wCCA. 	

Lemma 4. IND-SB-CPA � IND-gtag-wCCA.

Proof. Let us consider the DRE-based example (Gen, Enc, Dec) from Sect. 3
again. In Lemma 1 we have already shown that this scheme is IND-SB-CPA
secure. To prove our current claim it remains to be shown that (Gen, Enc, Dec)
does not satisfy IND-gtag-wCCA security. We do so by constructing an efficient
adversary Agtag-wCCA which has non-negligible probability of winning the IND-
gtag-wCCA security game. Firstly the challenger Cgtag-wCCA chooses a random
party ID S ∈ P, generates the challenge key pair (SKR,PKR) and registers it
for some party R. On input of S,PKR, the adversary Agtag-wCCA generates a
fresh key pair (SKS ,PKS), and register this key pair with FKRK in the name of
S. Now the adversary chooses random messages m0 �= m1 for the challenge and
receives c∗ = Enc(PKR, S,mb). Due to DRE soundness the adversary can now
decrypt the challenge as mb = Dec(SKS , R, c∗) and win the IND-gtag-wCCA
game with probability one. 	


Although this proof is instructing for the intuitive understanding of SBE
schemes since it relies on the fact that there is a connection between tags and
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party keys, it also relies on the party whose ID is randomly chosen as the chal-
lenge tag to be corruptible by the adversary. I.e. the adversary needs to be able
to register keys for this party. Due to this caveat let us give a second proof of
the lemma:

Proof (Alternative version). Let (gen, enc, dec) be an IND-SB-CPA secure SBE
scheme. We use this to construct an SBE/TBE scheme (Gen, Enc, Dec) which is
still IND-SB-CPA secure but does not satisfy IND-gtag-wCCA security:

Gen := gen

Enc := enc

Dec(sk , S, c) :=

{
dec(sk , S, c)||sk , sk = skS

dec(sk , S, c)||0 · · · 0 , else.

It is obvious that this modified scheme does still satisfy IND-SB-CPA security,
as we have (Gen, Enc) = (gen, enc) everywhere and Dec = dec on the domain
where OSB-CPA answers queries. It is not, however, IND-gtag-wCCA secure, as
any adversary can query Ogtag-wCCA with input (R, c) where R is the party ID
corresponding to challenge key pkR and c is an arbitrary ciphertext. The oracle
will hand back skR which can be used to decrypt the challenge ciphertext c∗ and
win the security game every time. 	


7 Conclusion

In this work we have introduced the concept of sender-binding encryption and
developed the corresponding new security notion of IND-SB-CPA. We showed
IND-SB-CPA security to be sufficient for UC-realizing secure message trans-
fer (SMT) when combined with authenticated channels. Furthermore the direct
implication from Sect. 6 and generic transformations from Appendix E of the full
version of this paper [3] show that it is currently the weakest known notion with
this property. Additionally we provided a generic transformation for IND-SB-
CPA via IND-CPA secure double receiver encryption (DRE) in conjunction with
key registration with knowledge. In particular this construction from DRE yields
an efficient practical instantiation based on McEliece in the standard model.

For future work we see several directions to further this line of research.
Although we know IND-SB-CPA to be weaker than prior notions which realize
SMT via authenticated channels, it remains to be shown whether it constitutes
the weakest possible notion to do so. It is also far from obvious that our current
practical constructions are the most efficient to satisfy IND-SB-CPA security.
More effort in this direction might prove fruitful as well.
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A Notations and Abbreviations

This section can be used to look up all notations and abbreviations employed
throughout this paper.

A.1 Notations

R← Uniformly randomly drawn from

↪→ Output

≥UC Securely UC-realizes

⊥ Invalid/failed

A Adversary

Adv Advantage

aux Auxiliary input/output

b Bit from {0, 1}
C Challenger

c Ciphertext

c∗ Challenge ciphertext

c Vectors

dec/Dec Decryption algorithm

E Encryption scheme

enc/Enc Encryption algorithm

Exp Experiment

ext Key extraction algorithm

F Ideal functionality

fID/FID ID function

fKey/FKey Boolean key function

fPK Key function sk �→ pk
G Matrices

gen/Gen Key generation algorithm

goal Goal of the adversary

id/ID Protocol party ID

ID Set of all IDs

init Asking to initialize

inited Initialization done

k Binary key length

λ Security parameter

l Message length

l′ Ciphertext length

m Message

M Message space

message F message variable

mid Message ID

MID Set of all message IDs

mpk IBE master public key

msk IBE master secret key

n Security parameter for McEliece

O Oracle

π Protocol

π
FAUTH
M-SMT M-SMT protocol

P Party

P Set of all parties

P Probability

pk/PK Public key

PK Set of all public keys

pow Power of the adversary

pr Boolean prefix function

R Receiver

R Set of all registered parties

receiver Message receiver
register Asking to be registered

register ok Registration allowed

registered Registration done

retrieve Asking to retrieve credentials

retrieve ok Retrieval allowed

retrieved Retrieval done

resp Oracle response

S Sender

S Simulator

SM-SMT Simulator for π
FAUTH
M-SMT

scp Scope of adversary’s power

send Asking to send message

send ok Transmission allowed

sent Message sent

set Setting of security game

sid Session ID

SID Set of all session IDs

sk/SK Secret key

SK Set of all secret keys

stray Message stray
test Special response of ORCCA

usk User secret key

Z Environment
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A.2 Abbreviations

CCA2 adaptive chosen ciphertext attack
CPA chosen plaintext attack
DAKEZ Deniable authenticated key exchange with zero-knowledge
DRE double receiver encryption
IBE identity based encryption
IF ideal functionality
IND indistinguishability
IND-CCA2 indistinguishability under adaptive chosen ciphertext attack
IND-CPA indistinguishability under chosen plaintext attack
IND-gtag-wCCA indistinguishability under given-tag weakly chosen ciphertext attack
gtag-wCCA given-tag weakly chosen ciphertext attack
IND-stag-wCCA indistinguishability under selective-tag weakly chosen ciphertext attack
stag-wCCA selective-tag weakly chosen ciphertext attack
IND-RCCA indistinguishability under replayable chosen ciphertext attack
IND-sID-CPA indistinguishability under selective identity chosen plaintext attack
IND-SB-CPA indistinguishability under sender-binding chosen plaintext attack
IND-atag-wCCA indistinguishability under adaptive-tag weakly chosen ciphertext attack
atag-wCCA adaptive-tag weakly chosen ciphertext attack
KRK key registration with knowledge
LPN learning parity with noise
LPNDP learning parity with noise decisional problem
LWE learning with errors
M-SMT multiple secure message transfer
OTR Off-the-Record
PA plaintext awareness
PKE public key encryption
PKI public key infrastructure
PPT probabilistic polynomial time
PQC post-quantum cryptography
RCCA replayable chosen ciphertext attack
ROM random oracle model
RPA registration-based plaintext awareness
SBE sender-binding encryption
SMT secure message transfer
TBE tag-based encryption
UC universal composability
XZDH Extended Zero-knowledge Diffie-Hellman
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Abstract. We construct the first tightly secure signature schemes in the
multi-user setting with adaptive corruptions from lattices. In stark con-
trast to the previous tight constructions whose security is solely based on
number-theoretic assumptions, our schemes are based on the Learning
with Errors (LWE) assumption which is supposed to be post-quantum
secure. The security of our scheme is independent of the numbers of users
and signing queries, and it is in the non-programmable random oracle
model. Our LWE-based scheme is compact, namely, its signatures con-
tain only a constant number of lattice vectors.

At the core of our construction are a new abstraction of the existing
lossy identification (ID) schemes using dual-mode commitment schemes
and a refinement of the framework by Diemert et al. (PKC 2021) which
transforms a lossy ID scheme to a signature using sequential OR proofs.
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1 Introduction

Tight Security. Security of modern cryptographic constructions is established
by security reductions. A reduction is an efficient algorithm R that uses an efficient
algorithm A against the security of scheme X as a subroutine, and if A can break
the security of X, then R can solve the computational problem Y. Thus, the hard-
ness of Y implies the security of X. More precisely, we obtain εA/tA ≤ L · εR/tR,
where A runs in time tA and has success probability εA, and R runs in time tR
and has success probability εR. Here L is a polynomial in the security parameter
λ, which we call the security loss. Asymptotically, any polynomial L is sufficient to
show security. However, when we instantiate the scheme in a theoretically sound
manner, the concrete L has impact on the setup of the system parameters. In par-
ticular, the smaller L is, the shorter the parameters will be. If L is a small constant,
we call the reduction tight (e.g. [8,9]). Many works (e.g. [12,16,26]) also consider a
relaxed tightness notion, called “almost tight”, where L depends at most linearly
on the security parameter λ. We do not distinguish these two notions, but are pre-
cise about the security loss of our scheme in our security theorem and when we
compare it with the related work.

Signatures in Multi-user Setting. Digital Signatures play a central role in
modern public-key cryptography. The standard security notion is unforgeabil-
ity against chosen-message attacks [32] (denoted by CMA security) which states
that no efficient adversary can forge a signature on a new message after adap-
tively asking signatures for arbitrary messages. This is defined in a single-user
setting where only one public key is involved. A seemingly more realistic notion
is CMA security in the multi-user setting with adaptive corruptions (denoted by
MU-CMA-Corr security). Here, adversary A receives N public keys, can adap-
tively ask for signatures and additionally can corrupt some of the corresponding
secret keys, and in the end it outputs a forgery for an uncorrupted user. This is
also named MU-EUF-CMAcorr security in [6,31]. We note that there is a weaker
notion of multi-user security considered in [41,49] (MU-CMA security) where
secret key corruptions are not allowed.

MU-CMA-Corr security is an interesting notion to consider. The most impor-
tant reason is that MU-CMA-Corr security captures the actual security require-
ments of many applications that use digital signatures as a building block. A
well-known example is authenticated key exchange (AKE) protocols which use
signatures to authenticate protocol transcripts. Standard AKE security models
(such as the Bellare-Rogaway [10] and Canetti-Krawczyk [14] models) are in
multi-user settings and allow adversaries to corrupt signing keys of some hon-
est users. In particular, the work of Bader et al. [6] proposed the first tightly
MU-CMA-Corr secure signature schemes and used it to construct the first tightly
secure AKE protocol. The notion of MU-CMA-Corr has been used in many of
its subsequent works [31,38,43] for constructing more efficient AKE protocols,
and the notion is also used to prove the tight security of real-world protocols
[20,22]. Tight security is of particular interest for these protocols, since they
often have massive amount of users involved. Nevertheless, understanding and
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constructing efficient tightly MU-CMA-Corr secure signature schemes are funda-
mental research questions.

On Achieving Tight MU-CMA-Corr Security. In general, CMA security can
only non-tightly imply MU-CMA-Corr security by a guessing argument. The
resulting reduction will lose a factor linear in the number of users, N . This
is similar for the implication from MU-CMA to MU-CMA-Corr.

Many of the tightly secure signature schemes in the literature established
their tightness in the weaker sense, namely, either tight CMA security (for
instance, [11,26]) or tight MU-CMA security (for instance, [41,49]). None of
them will lead to a tightly MU-CMA-Corr secure scheme. Furthermore, Bader
et al. [7] even proved that tight MU-CMA-Corr is impossible to achieve if the
signature satisfies certain properties. These properties are satisfied by most sig-
nature schemes, and thus constructing tightly MU-CMA-Corr secure signature
schemes is very challenging.

To the best of our knowledge, signature schemes in [1,5,6,21,31,35] are the
only exceptions with tight MU-CMA-Corr security. They all base their security on
number-theoretic assumptions (such as the Diffie-Hellman assumption in pairing
groups and ϕ-Hiding assumption), which leads to insecurity in the presence of
a powerful quantum adversary. It is also worth mentioning that very recently
Han et al. [35] identified a gap in the security proof of the compact and tightly
MU-CMA-Corr-secure scheme in [6] and closed this gap by following the blueprint
of the pairing-based HIBE scheme in [42].

We highlight that the tight lattice-based signature schemes in [2,11,12] and
isogeny-based scheme in [24] are only in the single-user setting. It is not clear
how to translate them tightly to the multi-user setting with adaptive corruptions.
Hence, currently, there is no tightly MU-CMA-Corr secure signature scheme from
post-quantum assumptions.

Our Goal and Its Difficulties. We aim at constructing compact lattice-
based signature schemes with tight MU-CMA-Corr security. In this paper, “com-
pact” means that the signature contains only a small constant number of lattice
vectors and has size independent of the message length, which is in contrast to
less efficient tree-based constructions.

As remarked above, there exist tight constructions of MU-CMA-Corr secure
signature schemes. However, we argue why it is inherently difficult to extend
them in realizing our goal:

– First, generic constructions in [5,6] and [1, Section 9.2] require some
extractability of the underlying proof system. Such a proof system is hard to
construct in a compact and tightly secure manner using lattices. For instance,
one can use the Unruh proof system [55] that is tightly secure and extractable,
but its proof size is at least linear in the security parameter. This can only
give us a scheme with linear-size signatures.

– Second, the tree-based construction from one-time signatures in [1,
Section 9.3] can give us a tight lattice-based construction, but it is not com-
pact and has signature size linear in the message length.



350 J. Pan and B. Wagner

– Third, in [21] a generic construction was proposed by transforming a lossy
identification (ID) scheme [2] to a tightly MU-CMA-Corr secure signature
scheme using the sequential OR proof technique [4,25]. As pointed out by
the authors, this transformation requires additional properties of the lossy
ID scheme which are not obvious how to achieve using lattices.

– Last, the specific schemes in [31,35] crucially rely on number-theoretic
assumptions and the underlying algebraic structure. More precisely, [31]
requires the Decisional Diffie-Hellman (DDH) assumption and a proof sys-
tem for the equality of discrete logarithms, and the compact scheme in [35]
requires an algebraic MAC with affine structures.

1.1 Our Contributions

We construct the first compact lattice-based signature schemes with tight
MU-CMA-Corr security in the random oracle model. Their security is based on
the Learning with Errors (LWE) assumption, and their security loss is indepen-
dent of the number of users and signing queries. Furthermore, our security proofs
do not program a random oracle. We also give an instantiation of our approach in
the isogeny setting to show its flexibility. Unfortunately, the resulting signature
scheme in the isogeny setting is not compact.

We have three tight lattice-based schemes, and they are all constructed from
our generic approach. One of them is almost tight, and the other two are fully
tight. All three schemes have public key size and signature size independent of
the message length. We note that our fully tight schemes (see our full version)
contain linearly (in λ) many lattice vectors in signatures, but independent of
the message length. In Table 1 we compare the efficiency and concrete security
of our schemes with some well-known efficient signature schemes in the random
oracle model. Asymptotically, the signature size of our almost tight scheme is
comparable to non-tight constructions, such as Lyubashevsky [44] and Ducas
et al. [23], which require the rewinding technique. Due to the tightness of our
scheme, it may have shorter signatures than these schemes. We stress that the
main purpose of this work is taking the first theoretical step to study whether
and how a tightly MU-CMA-Corr secure compact signature scheme from lattices
is possible. We are optimistic that the efficiency of our schemes can be further
improved.

Our schemes are constructed by a generic transformation that tightly turns
a dual-mode commitment scheme into a MU-CMA-Corr secure signature. Our
transformation contains two technical contributions, an abstraction of the exist-
ing lossy ID schemes and a refinement of the framework of Diemert et al. [21]
which used the sequential OR proofs of Abe et al. [4] and Fischlin et al. [25]. The
abstraction is a generic transformation from dual-mode commitment to lossy ID,
and the existing lossy ID schemes [1,2,15,34] are concrete instantiations of our
transformation. More importantly, this yield a new construction based on the
LWE assumption using a conceptually new approach. Together with our refine-
ment of the Diemert et al. framework, our tight lattice-based signature schemes
are obtained.
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Table 1. Overview of lattice-based signature schemes in the random oracle model.
Here, Q denotes an upper bound on the number of signature and random oracle queries
and λ is the security parameter. The security loss is up to constants and with respect to
N -MU-CMA-Corr security. The modulus is denoted by q = poly(n) and M = n·m·�log q�
denotes the size of an n × m matrix, m = Θ(n log q), T denotes the size of a trapdoor
for such a matrix and z the size of an element in Zq.

Scheme Assumption Loss |sk| |pk| |σ|
GPV [29] SIS N T M mz

Lyu [44] SIS QN/AdvA mn n2z + M ω(log λ) + mz

DDLL [23] SIS QN/AdvA M mn + M m + n + mz

AFLT [2] RLWE N 2nz nz 3nz

KLS [40] MLWE N 2knz k2nz 3knz

Ours (Fig. 6) LWE λ 1 + T 4M (4n + 2m)z
Ours (full version) LWE 1 1 + T 2M (2n2 + 2nm)z
Ours (full version) LWE 1 1 + T 2M 2n(M + T )

We stress that our approach is more general than Diemert et al.. To show
this, we implement our approach with isogenies. For readability, we present our
scheme using the (general) Group Action Diffie-Hellman assumption, which cap-
tures the post-quantum secure isogeny-based assumption used in [24,54], Deci-
sional CSIDH. We detail our technical approach and show how it improves the
existing literature in Sect. 1.2. We will mostly focus on the lattice-based con-
struction for simplicity.

Limitation of Parallel OR Proofs. Complementing these positive results,
we show the advantage of sequential OR proofs by formally proving the limitation
of its natural counterpart, parallel OR proofs of Cramer et al. [18], in construct-
ing tightly secure signatures. More precisely, we prove that it is impossible to
tightly turn an ID scheme into a MU-CMA-Corr secure signature using parallel
OR proofs Cramer et al., if the underlying ID scheme satisfies some mild proper-
ties. We note that these properties are satisfied by many ID schemes, including
the DDH-based lossy ID scheme [15]. We establish this impossibility result using
meta-reduction techniques [1,7,17]. We note that our impossibility result does
not apply to more generic but less efficient OR-proof-based tight construction
in [6], since they use the OR-proof ideas in a different manner.

Our result is very different to the previous impossibility results [7,17,37,39]
about tight signatures, and it enriches our understanding on constructing tight
signature schemes. More precisely, Bader et al. [7] show that, if a signature
scheme has signatures that are either unique or rerandomizable over the whole
signature space, it will not have a tight reduction. Here we note that the work of
Bader et al. [7] summarized results [17,37,39]. Clearly, signature schemes from
parallel OR proofs are neither unique nor rerandomizable. Thus, their approach
cannot be directly applied here, while our work is the first tightness impossibility
result applicable to non-unique and non-rerandomizable signatures.
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1.2 Technical Details

We provide more details about our generic construction of tightly MU-CMA-Corr
secure signatures. Our generic construction has two steps: It first transforms a
dual-mode commitment scheme to a lossy ID scheme, and then from a lossy ID
scheme to a MU-CMA-Corr secure signature scheme via sequential OR proofs.
Both steps are tight. Figure 1 gives an figurative overview of this framework.

Fig. 1. Overview of our construction. All implications are tight. New implications
are marked with red, and new implications that implicitly exist in previous work are
marked with blue. The assumption GADH is a generic assumption about group actions,
capturing isogeny-based assumptions. (Color figure online)

Our Starting Point: The Diemert et al. (DGJL) Approach [21]. The
DGJL approach transforms a lossy ID scheme into a tightly MU-CMA-Corr secure
signature scheme using sequential OR proofs. A lossy ID scheme is a canonical
three-move ID scheme (or, equivalently, a Σ protocol [19]). Additionally, a lossy
ID scheme has two sets of public keys, lossy keys and normal ones. It requires
that under a lossy public key even an unbounded adversary cannot impersonate
an honest user. For tight MU-CMA-Corr security, the DGJL approach required
that, given multiple keys of a lossy ID scheme, it is hard to tell whether they all
are lossy or normal. This is a property can be tightly satisfied by the random self-
reducibility of DDH- and ϕ-Hiding-based schemes in [15,34], but not the lattice-
based ones. It is the main reason why their approach cannot be implemented
from lattices. We call this property multi-key lossiness. Our main technical goal
is to find a lattice-based lossy ID scheme with tight multi-key lossiness.

From Dual-Mode Commitment to Lossy ID. We take a closer look at the
existing lattice-based lossy ID schemes, and they are based on the Ring-LWE
[2] and Module-LWE [40] assumptions. To tightly achieve multi-key lossiness,
we need the random self-reducibility (RSR) of these structured LWE assump-
tions. Unfortunately, it is not known how to rerandomize these structured LWE
instances. We suppose this is inherent, since if the RSR was possible then the
hardness of Ring-LWE would not depend on the number of samples in the current
worst-case to average-case reduction [46]. However, for plain LWE assumption
the number of samples does not influence security [13,27,50,52], i.e. we have
RSR. Hence, we want to construct a lossy ID scheme based on the (plain) LWE
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assumption. A natural direction is to take the idea of these Ring-LWE and
Module-LWE schemes and implement them directly using the plain LWE assump-
tion. We suppose this cannot work, since in these schemes the ring structure is
crucial for proving lossiness1.

Instead, our approach uses a dual-mode commitment scheme which can be
constructed from the plain LWE assumption. Roughly speaking, a dual-mode
commitment scheme has two indistinguishable modes, hiding and binding. In
the hiding mode, there exists a (private) trapdoor that can open a commitment
to any message. In the binding mode, a commitment can be opened to only one
message, which is a statistical property and similar to public-key encryption.

Our high-level idea can be described in a simple manner: The commitment
key is the public key of the lossy ID scheme. The hiding commitment key is the
normal public key of our lossy ID scheme, and the binding commitment key is
the lossy key. In the protocol, a prover P holds the commitment trapdoor and
its first move to the verifier V is a random commitment. After that, V returns
a random message and asks P to open the previous commitment to the given
message. If P sends back a valid opening for that in the third move, V will accept.

The correctness is implied by the hiding mode of the commitment scheme.
In the binding mode (which is the lossy mode of the ID scheme), a commit-
ment can only be opened to only one message, and thus even an unbounded
adversary cannot successfully complete the interaction, since our message space
is exponentially large.

We modify the Regev encryption scheme [52] to construct this dual-mode
commitment scheme. In particular, we are able to show that multiple hiding
commitment keys are tightly indistinguishable from the binding ones, which
implies tight multi-key lossiness of the resulting ID scheme. Interestingly, the
resulting lossy ID scheme is the first lattice-based lossy ID scheme without using
the rejection sampling technique [44].

Moreover, we show that many well-known lossy ID schemes [1,2,15,24,34]
are obtained from dual-mode commitment schemes. In particular, we give a new
analysis of the isogeny-based scheme in [24] to show that it is tightly multi-key
lossy. It will give us the first tightly MU-CMA-Corr secure signature scheme from
isogenies. We remark that this scheme is non-compact, since it requires parallel
repetitions for soundness of the underlying ID scheme.

From Lossy ID to Signatures. Equipped with our lattice-based lossy ID
scheme, we can transform it to a tightly MU-CMA-Corr secure signature scheme
using sequential OR proofs. We note that this cannot be done using parallel OR
proofs by our impossibility result.

Our transformation follows the blueprint of the DGJL framework, but we
adapt it to be suitable for our ID schemes. An important modification is our

1 A trivial solution to argue lossiness with plain LWE is to have an ID scheme with
single bit challenges, but that will result in a non-compact scheme with linear-size
signatures, since for such an ID scheme we need to repeat O(λ) times to get soundness
(where λ is the security parameter).
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transformation requires universal honest-verifier zero-knowledge (uHVZK) prop-
erty of the underlying lossy ID, instead of injective simulators as in [21]. This
is more natural, as lossy ID schemes from dual-mode commitments do not nec-
essarily have an injective simulator, but uHVZK. Our work shows that injec-
tive simulator is not necessary for tight MU-CMA-Corr security, but uHVZK is
enough. Further, in contrast to [21], we allow the lossy keys to be correlated,
which is necessary for the analysis of the isogney-based scheme. Another (minor)
adaptation is to tolerate correctness errors. This is a property which lattice-based
constructions always have. Thus, our refinements make it possible to instantiate
the DGJL framework based on a wider class of assumptions.

Similar to the DGJL framework, our security proof does not program the
random oracle. Different to them, our resulting signature scheme does not have
strong MU-CMA-Corr security, but it can be tightly turned into a strongly secure
scheme using one-time signatures [45] and the known transformation [53].

Open Problems. We leave further improving the efficiency of our schemes as
an open problem. Random oracles used in our proofs are classical, and it is
an interesting direction to extend our approach in the quantum random oracle
model, or even without random oracles. We also leave constructing tight and
compact signatures from isogenies as an open problem.

2 Preliminaries

We denote the security parameter by λ ∈ N. All algorithms will get 1λ implicitly
as input. A probabilistic algorithm A is said to be PPT (probabilistic polynomial
time) if its running time T(A) can be bounded by a polynomial in its input size.
We make use of standard asymptotic notation for positive functions such as ω
and O. A function ν : N → R is negligible in its input λ if ν ∈ λ−ω(1). The term
negl(λ) always denotes a negligible function. If a function ν is at least 1−negl(λ),
we say that it is overwhelming. If D is a distribution, we write x ← D to state
that x is sampled from D. If S is a finite set, the notation x ←$ S states that
x is sampled uniformly random from S. The statistical distance of distributions
D1, D2 on support X is defined as 1

2
∑

x∈X |Pr [D1 = x] − Pr [D2 = x]|. If it is
negligible in λ, we say the distributions are statistically close. The notation
y ← A(x) means that the variable y is assigned to the output of algorithm A on
input x. Sometimes we make the randomness used by an algorithm explicit by
writing y = A(x; r) if r ∈ {0, 1}∗ is A′s randomness. If we want to state that y is
a possible output of A on input x, we write y ∈ A(x). In all code-based security
games, numerical values are assumed to be implicitly initialized as 0, sets and
lists as ∅. If G is a game, we write GA

Π(1λ) ⇒ b to state that the game G outputs
b ∈ {0, 1} considering the adversary A and the scheme Π. Whenever we deal
with statistically negligible terms, we denote them by Greek letters, e.g. εA. For
computationally negligible terms we use notation like AdvGA,Π(λ). Throughout
the paper, we always denote the number of users or keys in a scheme by N . We
implicitly assume that it is bounded by a polynomial in the security parameter.
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Matrices and (column) vectors are written in bold letters. The Euclidean norm
of a vector v is denoted by ‖v‖, and the spectral norm of a matrix A is denoted by
s1(A). By [n] := {1, . . . , n} we denote the set of the first n natural numbers.

We present the standard background on lattices in the full version.

Commitment Schemes. A dual-mode commitment scheme is a commitment
scheme with two indistinguishable key generation modes, inducing statistically
binding and hiding commitments, respectively. Additionally, the latter mode
outputs a trapdoor that allows to open commitments to arbitrary messages.

Definition 1 (Dual-Mode Commitment Scheme). A dual-mode (εb, εt,
N)-commitment scheme is a tuple of PPT algorithms CMT = (Setup,
TSetup,Gen,TGen,Com,TCom,Open,TCol) with the following syntax:

– Setup(1λ) outputs global system parameters par. We assume that par implicitly
defines sets K, M, C, D of keys, messages, commitments and decommitments,
respectively. All algorithms related to CMT take at least implicitly par as input.

– Gen(par, 1N ) outputs N commitment keys ck1, . . . , ckN ∈ K.
– Com(ck,m) outputs a commitment c ∈ C and a decommitment dc ∈ D.
– Open(ck,m, dc, c) is deterministic and outputs b ∈ {0, 1}.
– TSetup has the same output types as Setup and additionally implicitly defines

a set T of trapdoors.
– TGen(par) outputs a commitment key ck ∈ K and a trapdoor td ∈ T .
– TCom(ck, td) outputs a commitment c ∈ C and a state St.
– TCol(ck, td, St,m) outputs dc′ ∈ D.

We say that CMT is ρ-complete if for all par ∈ TSetup(1λ), (ck, td) ∈
TGen(par),m ∈ M we have that Pr

[
Open(ck,m, dc, c) = 1 | (c, dc) ←

Com(ck,m)
]

≥ ρ.
Finally, the following security properties should hold:

– Key Indistinguishability: The following advantage is negligible for all PPT
algorithms A:

AdvN-keydist
A,CMT (λ) :=

|Pr
[

A(par, ck1, . . . , ckN ) = 1 | par ← Setup(1λ),
(ck1, . . . , ckN ) ← Gen(par, 1N )

]

−Pr
[

A(par, ck1, . . . , ckN ) = 1 | par ← TSetup(1λ),
(cki, tdi) ← TGen(par), i ∈ [N ]

]

|.

– εt-Trapdoor Property: For all par ∈ TSetup(1λ), (ck, td) ∈ TGen(par),m ∈
M the following distributions have statistical distance at most εt:

{(c,m, dc) | (c, dc) ← Com(ck,m)}

and

{(c,m, dc) | (c, St) ← TCom(ck, td), dc ← TCol(ck, td, St,m)}.
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– (εb, N)-Statistically Binding: The following probability is at most εb:

Pr
[

∃i ∈ [N ], c ∈ C,m �= m′ ∈ M : ∃dc ∈ D : Open(cki,m, dc, c) = 1
∧ ∃dc′ ∈ D : Open(cki,m′, dc′, c) = 1

]

,

where the probability is taken over

par ← Setup(1λ), (ck1, . . . , ckN ) ← Gen(par, 1N ).

Signature Schemes. We define the standard notion of signature schemes and
their security.
Definition 2 (Digital Signature Scheme). A signature scheme is a tuple of
PPT algorithms SIG = (Setup,Gen,Sig,Ver), where
– Setup(1λ) outputs global system parameters par. We assume that par implicitly

defines sets Kp, Ks, M, S of public keys, secret keys, messages and signatures,
respectively. All algorithms related to SIG take at least implicitly par as input.

– Gen(par) outputs public and secret key (pk, sk) ∈ Kp × Ks.
– Sig(sk,m) returns a signature σ ∈ S.
– Ver(pk,m, σ) is deterministic and returns b ∈ {0, 1}.
We say that SIG is ρ-complete, if for all par ∈ Setup(1λ), all (pk, sk) ∈ Gen(par),
all m ∈ M we have Pr [Ver(pk,m, σ) = 1 | σ ← Sig(sk,m)] ≥ ρ.

Definition 3 (Multi-user Security). Consider a signature scheme SIG =
(Setup,Gen,Sig,Ver), let N ∈ N be a natural number and consider the game
N -MU-CMA-Corr given in Fig. 2. We say that SIG is N -MU-CMA-Corr secure,
if for every PPT adversary A the following advantage is negligible in λ:

AdvN-MU-CMA-Corr
A,SIG (λ) := Pr

[
N -MU-CMA-CorrA

SIG(λ) ⇒ 1
]
.

In addition, the notion N -MU-CMA is defined similarly, but A does not get
access to the oracle Key.

Fig. 2. The games MU-CMA,MU-CMA-Corr for a signature scheme SIG and an
adversary A. The shaded statement is only executed in game MU-CMA-Corr.

Identification Schemes. Here, we introduce identification schemes and their
properties, where we extend the notions of [2,40] to the multi-user setting.
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Definition 4 (Canonical Identification Scheme). A canonical identifica-
tion scheme ID is defined as a tuple of PPT algorithms ID := (ISetup, IGen,P :=
(P1,P2),V), with the following properties:
– ISetup(1λ) outputs global system parameters par. We assume that par implic-

itly defines a set ChSet, the set of challenges and sets CmtSet,RspSet. All
algorithms related to ID take at least implicitly par as input.

– IGen(par) returns public and secret key (pk, sk).
– P := (P1,P2) is split into two algorithms. P1(sk) returns a commitment cmt ∈

CmtSet and a state St; P2(sk, ch, St) returns a response rs ∈ RspSet.
– V(pk, cmt, ch, rs) is deterministic and outputs b ∈ {0, 1}.
Given ID as above, we define transcript generation as follows:

Alg Tran(pk, sk, ch)
01 (cmt, St) ← P1(sk), rs ← P2(sk, ch, St)
02 if rs =⊥: (cmt, ch) = (⊥, ⊥)
03 return (cmt, ch, rs)

We say that ID is ρ-complete, if for all par ∈ ISetup(1λ), all (pk, sk) ∈ IGen(par)
we have

Pr
[

V(pk, cmt, ch, rs) = 1
∣
∣
∣
∣

ch ←$ ChSet
(cmt, ch, rs) ← Tran(par, pk, sk, ch)

]

≥ ρ.

From now on, without loss of generality, we assume that V accepts an honestly
generated transcript if and only if P2(sk, ch, St) �=⊥. This can be assumed as the
algorithm P2 can call V to check the transcript itself before returning rs.
For the following definitions, we let ID = (ISetup, IGen,P = (P1,P2),V) be a
canonical identification scheme.
Definition 5 (Special Honest Verifier Zero-Knowledge). We say that ID
is εzk-special honest verifier zero-knowledge (HVZK) if there is a PPT algorithm
Sim such that for all par ∈ ISetup(1λ), all (pk, sk) ∈ IGen(par) the following
distributions have statistical distance at most εzk:

{(cmt, ch, rs) ← Tran(pk, sk, ch) | ch ←$ ChSet}

and
{(cmt, ch, rs) | ch ←$ ChSet, (cmt, rs) ← Sim(pk, ch)}.

We also introduce a slightly stronger version of HVZK, called universal special
honest verifier zero-knowledge (uHVZK), where the distributions should be the
same for every challenge. Clearly, uHVZK implies HVZK.
Definition 6 (Universal Special Honest Verifier Zero-Knowledge). We
say that ID is εzk-universal special honest verifier zero-knowledge (uHVZK) if
there is a PPT algorithm Sim such that for all par ∈ ISetup(1λ), all (pk, sk) ∈
IGen(par) and all ch ∈ ChSet the following distributions have statistical distance
at most εzk:

{(cmt, ch, rs) ← Tran(pk, sk, ch)} and {(cmt, ch, rs) | (cmt, rs) ← Sim(pk, ch)}.
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Definition 7 (Multi-Key Lossiness). Let N be a natural number. We say
that ID is (εmkl, N)-multi-key lossy, if there exists a PPT algorithm LIGen which
takes the number of users 1N as input and returns system parameters par and
public keys pk1, . . . , pkN such that the following holds:

– For every PPT algorithm D, the following advantage is negligible in λ:

AdvN-keydist
D,ID (λ) :=

| Pr
[

D(par, pk1, . . . , pkN ) = 1
∣
∣
∣
∣

par ← ISetup(1λ)
(pki, ski) ← IGen(par), i ∈ [N ]

]

− Pr
[
D(par, pk1, . . . , pkN ) = 1

∣
∣(par, pk1, . . . , pkN ) ← LIGen(1N )

]
|.

– The following inequality holds:

E

[

max
i∈[N ]

max
cmt

Pr
ch

[∃rs ∈ RspSet : V(pki, cmt, ch, rs) = 1]
]

≤ εmkl,

where we take the expectation, maximum and probability over

(par, pk1, . . . , pkN ) ← LIGen(1N ), cmt ∈ CmtSet, ch ←$ ChSet,

respectively. That is, if the keys are generated in this lossy way, for every
unbounded adversary the advantage of successfully completing the protocol
with respect to any user is bounded by εmkl.

Note that N -multi-key lossiness for N = 1 is just lossiness as defined in [2].

Remark 1 (Correlation of Lossy Keys). Note that in our definition of multi-key
lossiness, we define one algorithm that outputs N lossy keys, whereas the def-
inition in [21] is with regards to N keys that are generated via N independent
invocations of the lossy key generator. We claim that our definition is more
general, as it also captures the possibility that the N lossy keys are somehow
correlated. As long as the expectation in our definition is bounded, this correla-
tion is not a problem. In fact, in some cases it is only possible to tightly achieve
key indistinguishability if the lossy keys are correlated, see our instantiation from
group actions in the full version.

3 Tight Signatures from Sequential or Proofs, Revisited

In this section we will generically construct a signature scheme with tight security
in presence of adaptive corruptions. First, we show that sequential OR proofs
can be used to construct signatures with this strong form of security from lossy
identification schemes. Then, we introduce a new generic construction of lossy
identification schemes from dual-mode commitments.
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3.1 Generic Construction of Signatures in the Multi-user Setting

Let ID := (ISetup, IGen,P := (P1,P2),V) be a canonical identification scheme
with challenge set ChSet. We use � ∈ N to model multiple attempts to com-
pute a signature for schemes with non-perfect completeness. Assuming that ID
is uHVZK, we construct a signature scheme SIGs[ID,H, �] with random oracle
H : {0, 1}∗ → ChSet and message space {0, 1}∗ using the sequential OR proof
technique as defined in Fig. 3.

Intuitively, in the sequential OR proof signature, the challenge of one instance
is computed as the hash of the commitment of the other instance. To break the
circularity, the HVZK simulator is used on the instance for which the signer
does not know a secret key. Note that the construction is a combination of the
constructions in [2,25], in a sense that we combine the sequential OR proof
from [25] with the lossy identification framework and the repetition as in [2].
Completeness is straight-forward.

Fig. 3. The signature scheme SIGs[ID,H, �] = (Setup,Gen, Sig,Ver) for a canonical iden-
tification scheme ID := (ISetup, IGen,P := (P1,P2),V) with HVZK simulator Sim, where
Setup := ISetup.

Theorem 1. Let ID be a canonical identification scheme. If ID is εzk-uHVZK
and (εmkl, N)-multi-key lossy for negligible εzk, εmkl, then SIGs[ID,H, �] is N -
MU-CMA-Corr secure, with a tight reduction. More precisely, for any adversary A
making at most QS signing queries, QC secret key queries and QH hash queries
(including the indirect ones induced by signing queries), there exists an adversary
D such that T(D) ≈ T(A) and

AdvN-MU-CMA-Corr
A,SIGs[ID,H,�] (λ) ≤ 2 · AdvN-keydist

D,ID (λ) + 2 · (QH + 2)2 · εmkl + 3 · � · QS · εzk.
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Due to space limitation and its similarities with [21] we postpone the proof to
the full version.

Similar to the above result, we can show that the Fiat-Shamir transformation
applied to a multi-key lossy identification scheme leads to a tightly secure sig-
nature scheme in the multi-user setting without corruptions. We postpone this
result to the full version.

3.2 Generic Construction of Lossy Identification Schemes

In this section we show a relation between (multi-key) lossy identification
schemes and dual-mode commitments. Note that it is well-known how to use
canonical identification schemes to build standard commitment schemes [36].
This section shows that this can be used to understand lossy identification in a
novel way. In combination with the result from the previous section, we obtain
an N -MU-CMA-Corr secure signature scheme from a dual-mode commitment
in a tight way. Let CMT = (Setup,TSetup,Gen,TGen,Com,TCom,Open,TCol)
be a dual-mode commitment with message space M. We construct a canonical
identification scheme ID[CMT] in Fig. 4.

The intuition is that the prover sends a random commitment and is chal-
lenged with a random element from the message space. Then the prover needs
to open the commitment for the challenge message. If the prover knows the trap-
door of the dual-mode commitment, this is no problem. On the other hand, if the
commitment key is in binding mode, opening the commitment for the challenge
message is infeasible.

Fig. 4. The identification scheme ID[CMT] = (ISetup := TSetup, IGen := TGen,P,V)
with challenge set ChSet := M and related algorithms Sim, LIGen for a given dual-mode
commitment CMT = (Setup,TSetup,Gen,TGen,Com,TCom,Open,TCol) with message
space M.

Lemma 1 (uHVZK and Completeness). If CMT is a ρ-complete dual-
mode (εbind, εtrap, N)-commitment scheme, then ID[CMT] is εzk-uHVZK and ρ′-
complete, where εzk ≤ εtrap and ρ′ ≥ ρ − εtrap.
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Proof. By definition of a dual-mode commitment scheme, the following distri-
butions have statistical distance at most εtrap for any m ∈ M:

{(c,m, dc) | (c, dc) ← Com(ck,m)}

and
{(c,m, dc) | (c, St) ← TCom(ck, td), dc ← TCol(ck, td, St,m)},

and the former is exactly the distribution output by Sim on input ch = m,
and the latter is exactly the distribution of a real transcript using m as the
challenge. The completeness of CMT now implies that V accepts a simulated
transcript output by Sim with probability at least ρ. Thus, a real transcript will
be accepted with probability at least ρ − εtrap, which finishes the proof. ��

Lemma 2 (Multi-Key Lossiness). If CMT is a dual-mode (εbind, εtrap, N)-
commitment scheme, then ID[CMT] is (εmkl, N)-multi-key lossy, where

εmkl ≤ εbind + 1/|M|.

In particular, for every PPT algorithm A there exists a PPT algorithm B, such
that T(B) ≈ T(A) and

AdvN-keydist
A,ID[CMT](λ) ≤ AdvN-keydist

B,CMT (λ).

Proof. As (ISetup, IGen) = (TSetup,TGen) and LIGen combines the outputs
of Setup and Gen, distinguishing lossy and honest keys of ID[CMT] is exactly
equivalent to distinguishing commitment keys generated via Setup,Gen and
TSetup,TGen. Thus, the reduction B is trivial. It remains to show the state-
ment about εmkl. To this end, let (par, pk1, . . . , pkN ) ← LIGen(1N ), which is the
same as writing

par ← Setup(1λ), (ck1, . . . , ckN ) ← Gen(par, 1N ).

Define the event E of finding a collision for some i ∈ [N ] as

E := (∃i ∈ [N ],c ∈ C,m,m′ ∈ M, dc, dc′ ∈ D :
m �= m′ ∧ Open(cki,m, dc, c) = 1 ∧ Open(cki,m′, dc′, c) = 1).

By definition of the (multi-key) binding property, we know that Pr [E] ≤ εbind.
We can rewrite this event E in terms of ID[CMT]:

∃i ∈ [N ],cmt ∈ CmtSet, ch, ch′ ∈ ChSet, rs, rs′ ∈ RspSet :
ch �= ch′ ∧ V(pki, cmt, ch, rs) = V(pki, cmt, ch′, rs′) = 1.

Define the random variable W as

W := max
i∈[N ]

max
cmt∈CmtSet

Pr
ch ←$ ChSet

[∃rs ∈ RspSet : V(pki, cmt, ch, rs) = 1].
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Then, note that ¬E implies that for any i ∈ [N ] and cmt ∈ CmtSet there is at
most one challenge such that there is a valid response for it (with respect to
pki). Hence

E [W | ¬E] ≤ 1/|M|.
To finish our proof, we need to bound the expectation of W:

E [W] = E [W | E]Pr [E] + E [W | ¬E]Pr [¬E] ≤ 1 · εbind + E [W | ¬E] · 1
≤ εbind + 1/|M|.

��

4 Instantiations

In the previous sections we showed how to tightly transform any (multi-key)
dual-mode commitment scheme into a signature scheme with security in presence
of corruptions. We will now construct such dual-mode commitment schemes
based on a variety of assumptions, including LWE and isogenies.

4.1 Instantiation Based on LWE

Our scheme CMTLWE based on the LWE assumption is presented in Fig. 5. It is
inspired by the classical lattice cryptosystem by Regev [52] and its extension to
multiple bits from [51]. It makes use of parameters n, m ∈ N and q ∈ P and
a parameter k ∈ N, k ∈ Θ(λ), as well as Gaussian widths s0, s > 0. For the
trapdoor algorithms (see [47]2) to work, we need to ensure that

m ≥ 3(n + k)�log q�

s ≥ C1 ·
√

s2
0C2

0 (
√

m − w +
√

w)2 + 1 · ω(
√

log(n + k)),

where w = (n + k)�log q�. Additionally, we need a parameter 0 < α < 1 with
α < 1/(4sm) and αq ≥ 2

√
n, which is used for setting up statistically binding

keys.

Lemma 3 (Completeness, Trapdoor Property). The scheme CMTLWE is
ρ-complete and satisfies the εt-trapdoor property with ρ ≥ 1 − negl(λ) and εt ≤
negl(λ).

Proof. Let (ck = A, td = TA) ← TGen(par). First, we show that commitments
and decommitments generated using the trapdoor are accepted with overwhelm-
ing probability, then we show the trapdoor property. In combination, this also
implies completeness.

First, let (u, St) ← TCom(ck, td),m ∈ {0, 1}k
,TCol(ck, td, St,m). The prop-

erties of GenTrap ensure that A is statistically close to uniform. By the definition
2 For the exact statements we use, we refer to the full version of our paper.
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Fig. 5. The dual-mode commitment CMTLWE = (Setup,TSetup,Gen,TGen,Com,
TCom,Open,TCol) with message space M = {0, 1}k, where Setup = TSetup sets
parameters par as in the text.

of algorithm TCol and algorithm SampleD we have that z is distributed statisti-
cally close to DΛ⊥

y
(A),s, where y = u − [0t|�q/2� · mt]t. It follows by definition

of Λ⊥
y (A) that we have

Az = y = u −
[

0
�q/2� · m

]

=⇒ Az +
[

0
�q/2� · m

]

= u,

and with overwhelming probability (see [28,48]) ‖z‖ ≤ s · √
m (implying that

the transcript is not ⊥), which makes Open accept.
For the second part, note that the aborting condition ‖z‖ > s · √

m is given
in Com and in the execution of TCom,TCol, hence we only have to show that
for every m the distributions

D1 :=
{

(u,m, z)
∣
∣
∣
∣u ←$

Z
n+k
q , z ← SampleD(A,TA,u −

[
0

�q/2� · m

]

, s)
}

and
D2 :=

{

(u,m, z)
∣
∣
∣
∣u := Az +

[
0

�q/2� · m

]

, z ← DZm,s

}

are statistically close. Notice that in both distributions, u is uniquely determined
by m and y := u − [0t|�q/2� · mt]t and y by m and u, which means we can
instead bound the statistical distance between

D′
1 :=

{
(y, z)

∣
∣y ←$

Z
n+k
q , z ← SampleD(A,TA,y, s)

}
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and
D′

2 := {(y, z) |y := Az, z ← DZm,s } .

Standard lattice trapdoor techniques (see [28,48]) imply that these are statisti-
cally close, which finishes the proof. ��

Lemma 4 (Key Indistinguishability). Let N = poly(λ) be a natural number.
Then CMTLWE satisfies key indistinguishability, under the LWEn,q,DZ,αq

assump-
tion, where for every PPT algorithm A there exists a PPT algorithm B, such
that T(B) ≈ T(A) and

AdvN-keydist
A,CMTLWE

(λ) ≤ k · AdvLWEn,q,D
Z,αq

B (λ) + negl(λ).

Due to space limitations, we postpone the proof to the full version.

Lemma 5 (Binding Property). For any N = poly(λ) the scheme CMTLWE is
(εb, N)-statistically binding, with εb ≤ negl(λ).

Proof. Consider the random experiment

par ← Setup(1λ), (ck1, . . . , ckN ) ← Gen(par, 1N ).

Fix some user i ∈ [N ] and some commitment u. We show that with high prob-
ability, there is at most one challenge m for which there is a decommitment z
that makes Open accept: Consider the matrix S̄ ∈ Z

n×k
q used in Gen and set

S := [−S̄t | Ik] ∈ Z
k×(n+k)
q . Then we have SAi = Ēt

i. Now consider accept-
ing pairs (u,m, z), (u,m′, z′) of commitment, message and decommitment and
denote A := Ai,E := Ēi for simplicity. Let ej denote the j-th column of E for
j ∈ [k]. By definition of Open, we have ‖z‖, ‖z′‖ ≤ s

√
m and

Az +
[

0
�q/2� · m

]

= u = Az′ +
[

0
�q/2� · m′

]

.

Multiplying with S from the left this implies

Etz + �q/2� · m = Etz′ + �q/2� · m′ =⇒ �q/2� · m − �q/2� · m′ = Et(z′ − z).

Looking at the absolute value of each coordinate j ∈ [k] of this equality individ-
ually we see that

{�q/2�, 0} �
∣
∣�q/2� · mj − �q/2� · m′

j

∣
∣ =

∣
∣et

j(z′ − z)
∣
∣ ≤ 2s

√
m‖ej‖ ≤ 2sαqm,

where the last inequality holds with overwhelming probability, as ej ← Dm
Z,αq.

By our assumption α < 1/(4sm), this term is less than q/2, hence it is 0. This
means that mj = m′

j . In summary, we have that with overwhelming probability
there is only one message m for which there exists a decommitment z that makes
Open accept. This holds for any i and any u and the claim follows. ��
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To satisfy all the requirements of the previous analysis, we can set

k := n, m := 6n�log q�, α := 1
5C∗ m−3/2 · ω(

√
log n)−2,

4n3 ≤ q ≤ n4, s0 = ω(
√

log n), s := C∗ ·
√

m · ω(
√

log n)2,

where C∗ :=
√

8 · C0 · C1 is chosen such that s satisfies the requirement. Then
especially the hardness of LWE is supported by worst-case to average case reduc-
tions, i.e. αq ≥ 2

√
n. Also, Bertrand’s postulate implies that there is such a

prime number q between 4n3 and 8n3, which is upper bounded by n4 for all
reasonable n.

Remark 2 (On Complete Tightness). Let us sketch two variants of turning the
above ideas into a completely tight scheme. The first variant is to start with the
single bit version of the above scheme, i.e. use k = 1. Unfortunately, with such a
constant message space, the statement of Lemma 2 becomes useless and lossiness
is not guaranteed anymore. The solution is to repeat Θ(n) many instances with
the same key in parallel and to accept only if all of the instances accept. Then
uHVZK can be seen for each instance independently and our message space
is large enough to apply Lemma 2. The second variant is to use commitments
resulting from [30,33] instead of the Regev-based construction we used here.
In this variant a commitment for x ∈ {0, 1}k with decommitment R is C :=
AR+xt⊗G. It can be proven that this is also a dual-mode commitment scheme,
using the same ideas we used here. We postpone a formal description of these
variants to the full version.

We will now instantiate our generic construction in Sect. 3 with the dual-mode
commitment scheme CMTLWE. As it has negligible completeness error, � = 1 rep-
etition of the sequential OR proof is sufficient. The final tightly N -MU-CMA-Corr
secure signature scheme is presented in Fig. 6. Note that signatures contain a lin-
ear number of elements from Zq. The signature schemes based on the completely
tight dual-mode commitments mentioned above are formally presented in the full
version.

4.2 Instantiation Based on Isogenies

We show how to instantiate our approach in the isogeny setting. In [24] a lossy
identification scheme is based on an isogeny assumption is presented. Our new
analysis shows that this can be obtained from a dual-mode commitment scheme.
More importantly, we are able to show tight multi-user security. Here, we use
the subtle fact that our definition allows lossy keys to be correlated. Applying
our approach leads to the first tightly MU-CMA-Corr secure signature scheme
based on isogenies.

We can also show that the previously known lossy ID schemes [2,15,34,
41] are concrete instantiations of our transformation in Sect. 3.2. Due to space
limitations, we postpone these results to the full version.
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Fig. 6. The signature scheme SIGs[ID[CMTLWE],H, 1] = (Setup,Gen, Sig,Ver), where
Setup sets parameters as in Sect. 4.1.

5 Impossibility Result for Parallel or Proofs

In this section, we consider a canonical identification scheme ID = (ISetup,
IGen,P := (P1,P2),V) with challenge set ChSet and a random oracle H :
{0, 1}∗ → ChSet. Recall that sequential OR proofs can be used to construct
MU-CMA-Corr secure signatures in a tight way (see the previous sections). Here,
we show that a similar tight result for parallel OR proofs SIGp[ID,H] defined in
Fig. 7 is unlikely. For simplicity, we assume perfect completeness and hence only
l = 1 repetition of the signing procedure. We will consider reductions without
rewinding that use the adversary as a black box. First, we fix an intermediate
security notion and the assumptions about the underlying identification scheme.
After that we state and prove our impossibility result.

Security Notions and Assumptions. We will now define a security notion
for digital signature scheme, which is weaker than N -MU-CMA-Corr security.
Here, the adversary can only corrupt statically and can not ask for signatures.
To be more precise, for a given signature scheme, the security game picks N
(distinct) public keys pki and corresponding secret keys ski and sends all public
keys to the adversary. Then the adversary can pick an index j ∈ [N ] and gets all
ski, except skj from the game. Finally, the adversary has to return a valid forgery
(m∗, σ∗) for pkj . Note that there is a straightforward tight reduction, showing
that if SIG is N -MU-CMA-Corr secure, then it is also N -MU-CMA-S secure. Thus,
to prove that there is no tight proof of N -MU-CMA-Corr security of a signature
scheme SIG, it is sufficient to show the same for N -MU-CMA-S security.
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Fig. 7. The signature scheme SIGp[ID,H] = (Setup,Gen, Sig,Ver) for a canonical identi-
fication scheme ID := (ISetup, IGen,P := (P1,P2),V) with HVZK simulator Sim, where
Setup := ISetup.

Fig. 8. Game MU-CMA-S for a signature scheme SIG = (Setup,Gen, Sig,Ver), used
in the proof of the impossibility result in Sect. 5. We assume that the keys pk1, . . . , pkN
are pairwise distinct.

Definition 8 (Static Multi-user Security). Let SIG = (Setup,Gen,Sig,Ver)
be a signature scheme and N ∈ N be a natural number. Consider the game
MU-CMA-S given in Fig. 8. We say that SIG is N -MU-CMA-S secure, if for
every PPT adversary A = (A1, A2) the following advantage is negligible in λ:

AdvN-MU-CMA-S
A,SIG (λ) := Pr

[
N -MU-CMA-SA

SIG(λ) ⇒ 1
]
.

Next, we define some properties the underlying identification scheme ID
should have, in order to apply our impossibility result. These are similar to
the ones defined in [7]. However, in our case they need to hold for the underlying
identification scheme and not for the resulting signature scheme as it would be
required for applying the result of [7] directly. For the rest of the section, we
denote the set of secret keys for a given public key pk with respect to some
parameters par, which should be clear from the context, of an identification
scheme by SK(pk). More formally SK(pk) := {sk |(pk, sk) ∈ IGen(par)}.
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Fig. 9. Overview of a typical cryptographic proof, summarized by two games G1,G2,
where G1 is statistically close to the real game. Here, a reduction R to the problem
NIP is used to interpolate between the games. We will show meta-reductions Bi, that
have a high advantage in G1, whereas every adversary has negligible advantage in G2.

Definition 9 (Verifiability). Let ID = (ISetup, IGen,P,V) be a canonical iden-
tification scheme. We say that ID is parameter-verifiable if there is a determin-
istic polynomial time algorithm VerP such that for all par:

VerP(par) = 1 ⇐⇒ par ∈ ISetup(1λ).

Further, we say that ID is key-verifiable if there is a deterministic polynomial
time algorithm VerK such that for all par ∈ ISetup(1λ) and pk, sk:

VerK(par, pk, sk) = 1 ⇐⇒ (pk, sk) ∈ IGen(par).

Definition 10 (Key-Rerandomization). Let ID = (ISetup, IGen,P,V) be a
canonical identification scheme. We say that ID is key-rerandomizable if there
is a PPT algorithm RerandK such that for all par ∈ ISetup(1λ) and all
(pk, sk) ∈ IGen(par) the key sk′ ← RerandK(par, pk, sk) is distributed uniformly
over SK(pk).

We note that these properties are quite natural and are satisfied for example by
the Chaum-Pedersen (CP) lossy identification scheme [15], which is easy to see.

Example 1. The parameters of the CP scheme are the description of a cyclic
group G of prime order p and two generators g1, g2 ∈ G. To check the validity
of these parameters, one simply has to check that g1 and g2 are not the identity
element and that p is prime. Hence, CP is parameter-verifiable. The secret key
is a single exponent x ∈ Zp, sampled uniformly at random, and the public key
is (X, Y ) := (gx

1 , gx
2 ). Given x, g1, g2, X, Y it is trivial to check if this relation

is satisfied, showing key-verifiability. Moreover, such an x is unique for given
X, Y, g1, g2, which implies that CP is also key-rerandomizable.

Reduction Syntax. Before defining reductions, we need to define the undely-
ing problem, where we follow the notation in [3,7].

Definition 11 (Non-Interactive Problem). A non-interactive computa-
tional problem is a triple of algorithms NIP = (T,V,U), where

– T(1λ) takes the security parameter as input and outputs an instance c and a
witness w.



Lattice-Based Signatures with Tight Adaptive Corruptions and More 369

Fig. 10. Syntax of a simple reduction R = (R1, R2, R3, RRO) in an execution with an
adversary A = (A1, A2), used in the proof of the impossibility result in Sect. 5. Here,
R simulates the game N -MU-CMA-SA

SIG for A.

– U(c) takes an instance c as input and outputs a candidate solution s.
– V(c, w, s) takes an instance c, a witness w and a candidate solution s as input

and outputs a bit b ∈ {0, 1}.

For any algorithm A taking z bits of randomness, we define the advantage

AdvNIP
A (λ) := |Pr

[
V(c, w, s) = 1 | (c, w) ← T(1λ), ρA ← {0, 1}z

, s ← A(c; ρA)
]

−Pr
[
V(c, w, s) = 1 | (c, w) ← T(1λ), ρU ← {0, 1}z

, s ← U(c; ρU)
]
|.

Before we formally define simple reductions, we make a convention about
cryptographic proofs. A proof can be presented as a sequence of games Gi,
where typically G0 is the original security game and Gi+1 results from Gi by
making small changes. In the final game it will be clear that the advantage of an
adversary is negligible. If one can show that in every step, changing the game
only changes the advantage of the adversary by a negligible amount, the proof
is complete. This is shown in one of two ways: Either, one can argue that two
subsequent games look statistically close to the adversary, or one uses a reduction
that interpolates between the games to show that the advantages are close under
some computational assumption. Clearly, we can summarize all the steps into
one initial statistical step and one computational step using a reduction R, as it
is presented in Fig. 9. Note that this also captures reductions to search problems,
as one can always define the final game to reject everything. The reduction solves
the computational problem whenever the difference between the advantages in
G1 and G2 is non-negligible. This means that, when we analyze the advantage of
adversaries or meta-reductions, we can focus on G1, as every (even unbounded)
adversary has negligible advantage in G2. Hence, in our analysis we only have
to deal with the case where R’s simulation is statistically close to the real game.
With this convention in mind, we can now move towards the definition.

Definition 12 (Simple Reduction). Let NIP be a non-interactive computa-
tional problem and SIG be a signature scheme. A simple (NIP,SIG)-reduction R
is an algorithm against NIP that has one-time black box-access to an adversary
A = (A1, A2) against the N -MU-CMA-S security of SIG. In this case, R can
be represented by four algorithms (R1, R2, R3, RRO), where R2, R3, RRO are
deterministic polynomial time algorithms and R1 is PPT, such that
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– R1(c) takes as input a NIP challenge c and outputs a state, parameters and
public keys (StR, par, (pki)i∈[N ]).

– R2(StR, j) takes as input a state StR and an index j ∈ [N ] and outputs a
new state and secret keys (StR, (ski)i∈[N ]\{j}).

– R3(StR, j,m∗, σ∗) takes as input a state, an index j ∈ [N ], a message m∗

and a signature σ∗ and outputs a NIP solution s.
– RRO(StR, query) takes as input a state StR and a random oracle query query

and outputs a new state and a hash value (StR, h).

The joint execution of R with adversary A is formally given in Fig. 10. We say
that R is (N, δR, L)-simple, if R’s simulation has statistical distance at most δR
from the game MU-CMA-S and for all A as above, it holds that

AdvNIP
RA(λ) ≥ L(λ, N,AdvN-MU-CMA-S

A,SIG (λ)).

Note that in our definition we can assume that R1 is the only probabilistic
part of the reduction as it can save random coins for R2, R3, RRO in the state
StR.

Our Impossibility Result. We formalize and prove our impossibility result.

Theorem 2. Let ID be a canonical identification scheme, which is εzk-HVZK,
parameter-verifiable, key-verifiable and key-rerandomizable. Define the signa-
ture scheme SIG := SIGp[ID,H]. Then for every (N, δR, L)-simple (NIP,SIG)-
reduction R = (R1, R2, R3, RRO) there is an algorithm B such that

AdvNIP
B (λ) ≥ L(λ, N, 1) − 2(δR + εzk) − 1/N

and T(B) ≤ N · T(R) + N(N − 1)T(VerK) + T(VerP) + T(RerandK) + T(Sig).

Proof. Let R = (R1, R2, R3, RRO) be a reduction as defined above. To prove our
impossibility result, we construct a sequence of adversaries and show that they
can win the MU-CMA-S game with high probability. The first few adversaries will
be inefficient. However, the final adversary is efficient by rewinding the reduction
R. This is a common way to present meta-reductions, although often there is
only one inefficient algorithm [7]. Our main task is to show that the success
probabilities of the reduction do not change significantly when we move from one
adversary to the next. The first adversary A∗ = (A∗

1, A∗
2), formally presented in

Fig. 11, obtains parameters and keys par, (pki)i∈[N ] from the challenger, samples
j∗ ←$ [N ] and gives it to the challenger. After obtaining all secret keys except
skj∗ , A∗ samples a random secret key with bit 0, i.e. a secret key with respect to
ID, par and pkj∗,0. Note that this is why A∗ is inefficient. It then signs a random
message m ←$ M and returns it. In terms of success probability the following
claim is then clear:
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Lemma 6. AdvN-MU-CMA-S
A∗,SIGp[ID,H](λ) = 1.

We will now present and analyze the other adversaries, which are implicitly given
as meta-reductions B1, . . . B5 modeling the adversary and the reduction in their
joint execution. That is, they run in the NIP game and use R as a subroutine.
B5 will be efficient. A formal description can be found in Fig. 13. The changes
can be summarized as follows:

– B1 is as RA∗ except that B1 makes the following steps, summarized in the
subroutine Rewind in Fig. 12: After obtaining StR,1, par and (pki)i∈[N ] from
R1 it runs R2 independently for every j ∈ [N ], stores all secret keys obtained
and uses a flag succ[j] to keep track of those runs in which all secret keys
returned by R2 were valid. Then it samples a random j∗ as A∗ does, continues
with the j∗-th run as A∗ and returns whatever R3 returns.

– B2 additionally checks for an event bad between sampling the index j∗ and
continuing with the j∗-run. The event occurs if succ[j∗] = 1 and succ[j] = 0
for all other j �= j∗, i.e. R could only return valid secret keys for one index
j∗ given to R2. If the event holds, B2 aborts.

– B3 is as B2 but additionally brute forces a random secret key for pkj∗,1 and
then uses both secret keys skj∗,0, skj∗,1 to compute the signature instead of
using the algorithm Sim. The computation of the signature with two keys is
summarized in Fig. 12.

– B4 is as B3, but if bad does not occur, it will have received a valid secret key
(b, skj∗,b) for pkj∗ from some execution of R2 with index j �= j∗. It will use
this secret key (rerandomized) to generate the signature instead of a brute
forced one. The other key skj∗,1−b is still brute forced and Sim is still not
used.

– B5 now uses only the rerandomized skj∗,b and the algorithm Sim to generate
the signature. Note the B5 does not brute force any secret key anymore and
is efficient. We set B := B5.

Fig. 11. The optimal (but inefficient) adversary A∗ = (A∗
1, A∗

2), winning the game
MU-CMA-S for the signature scheme SIGp[ID,H].
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Fig. 12. Subroutines Rewind and FakeSign, used in algorithms Bi given in Fig. 13.

We will now argue, that the success probability of R does not significantly change
when we change our adversaries.

Lemma 7. AdvNIP
RA∗ (λ) = AdvNIP

B1 (λ).

Proof. First, note that the output of B1 does not depend on the executions of
R2(StR,1, j) for j �= j∗. That is, only one iteration of the loop in Fig. 12, Line
05 has an influence on the output of R3 and hence B1. Considering only this
iteration, RA∗ and B1 are exactly the same, where it may be worth mentioning
that Line 06 in Fig. 13 and Line 06 in Fig. 11 are equivalent conditions. ��

Lemma 8.
∣
∣
∣AdvNIP

B1 (λ) − AdvNIP
B2 (λ)

∣
∣
∣ ≤ 1/N.

Proof. Note that B1 and B2 only differ if the event bad occurs, which implies
that succ[j∗] = 1 and succ[j] = 0 for all other j �= j∗. Further, the set of possible
j∗ satisfying this condition is either empty or has one element. This means that

∣
∣
∣AdvNIP

B1 (λ) − AdvNIP
B2 (λ)

∣
∣
∣ ≤ Pr [bad] ≤ 1

N
.

��

Lemma 9.
∣
∣
∣AdvNIP

B2 (λ) − AdvNIP
B3 (λ)

∣
∣
∣ ≤ δR + εzk.
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Proof. Both B2 and B3 return ⊥ if VerP(par) �= 1 (see Fig. 12) and also if
bad = 1. Therefore we can assume that par ∈ ISetup(1λ). As we assume that
the reduction R simulated a game of statistical distance δR to the real game,
the public key pkj∗,1 is of statistical distance at most δR to an honest key.
Hence with probability at least 1 − δR, B3 will be able to successfully sam-
ple a random sk1 such that (pkj∗,1, sk1) ∈ IGen(par). Note that in this case
what R sees is (m∗, σ∗, query) where m∗ ←$ M, σ∗ ← FakeSign((sk0, sk1),m∗)
and query = ((pkj∗,0, pkj∗,1), cmt0, cmt1,m∗) is the random oracle query (observ-
able by RRO) that occurs during the run of FakeSig. Similarly, in the execu-
tion of B2 it sees (m∗, σ∗, query) where m∗ ←$ M, σ∗ ← Sig((0, sk0),m∗) and
query = ((pkj∗,0, pkj∗,1), cmt0, cmt1,m∗). Note that the difference is only the
way how the transcript (cmt1, ch1, rs1), which is part of σ∗, is generated. Fur-
ther, query can be efficiently computed without knowing how that transcript
was generated. Hence by εzk-HVZK, these have statistical distance at most εzk,
which implies that R3’s final output in the execution of B3 is distributed as the
same output in B2, except with probability at most εzk. Note that this is the step
where the entire argument fails for sequential OR proofs, as the additional value
query that R observes would have an order that allows R to distinguish (Recall
that a sequential OR proof makes two random oracle queries during signing). ��

Lemma 10. AdvNIP
B3 (λ) = AdvNIP

B4 (λ).

Proof. The only difference between B3 uses skb sampled uniformly random
from SK(pkj∗,b) to generate the signature via FakeSign and B4 uses skb ←
RerandK(par, pkj∗,b, s̄k). If bad does not occur, then there will be some j �= j∗,
such that succ[j] = 1. Fix the largest such j, then sk[j∗] = (b, s̄k) is defined and
by definition of succ and key-verifiability we have that (pkj∗,b, s̄k) ∈ IGen(par).
By our assumption that ID is key-rerandomizable, we then know that these keys
are distributed skb as used in B4 is distributed uniformly over SK(pkj∗,b), which
proves the claim. ��

Lemma 11.
∣
∣
∣AdvNIP

B4 (λ) − AdvNIP
B5 (λ)

∣
∣
∣ ≤ δR + εzk.

Proof. The proof is exactly the same as for Lemma 9, applying εzk-HVZK to
(pkj∗,1−b, sk1−b). ��

In summary, combining all claims we obtain that

AdvNIP
B5 (λ) ≥ AdvNIP

RA∗ (λ) − 2(δR + εzk) − 1/N,

and B5 is efficient, which proves Theorem 2. ��
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Fig. 13. The (inefficient) algorithms B1, . . . , B4 and the efficient algorithm B5 used in
the proof of Theorem 2. The subroutines Rewind,FakeSign are given in Fig. 12.
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Abstract. Ring signatures enable a signer to sign a message on behalf of
a group anonymously, without revealing her identity. Similarly, thresh-
old ring signatures allow several signers to sign the same message on
behalf of a group; while the combined signature reveals that some thresh-
old t of the group members signed the message, it does not leak any-
thing else about the signers’ identities. Anonymity is a central feature
in threshold ring signature applications, such as whistleblowing, e-voting
and privacy-preserving cryptocurrencies: it is often crucial for signers
to remain anonymous even from their fellow signers. When the genera-
tion of a signature requires interaction, this is difficult to achieve. There
exist threshold ring signatures with non-interactive signing—where sign-
ers locally produce partial signatures which can then be aggregated—but
a limitation of existing threshold ring signature constructions is that all
of the signers must agree on the group on whose behalf they are signing,
which implicitly assumes some coordination amongst them. The need to
agree on a group before generating a signature also prevents others—from
outside that group—from endorsing a message by adding their signature
to the statement post-factum.

We overcome this limitation by introducing extendability for ring sig-
natures, same-message linkable ring signatures, and threshold ring signa-
tures. Extendability allows an untrusted third party to take a signature,
and extend it by enlarging the anonymity set to a larger set. In the
extendable threshold ring signature, two signatures on the same message
which have been extended to the same anonymity set can then be com-
bined into one signature with a higher threshold. This enhances signers’
anonymity, and enables new signers to anonymously support a statement
already made by others.

For each of those primitives, we formalize the syntax and provide a
meaningful security model which includes different flavors of anonymous
extendability. In addition, we present concrete realizations of each primi-
tive and formally prove their security relying on signatures of knowledge
and the hardness of the discrete logarithm problem. We also describe
a generic transformation to obtain extendable threshold ring signa-
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tures from same-message-linkable extendable ring signatures. Finally, we
implement and benchmark our constructions.

Keywords: Threshold ring signatures · Anonymity · Extendability

1 Introduction

Anonymity has become a requirement in many real-world implementations of
cryptographic systems and privacy-enhancing technologies, including electronic
voting [24], direct anonymous attestation [9], and private cryptocurrencies [27].
Another compelling scenario is whistleblowing of organizational wrongdoing. In
this case, an insider publishes a secret in a manner that convinces the public
of its authenticity, while having his/her identity protected [25]. In all of these
applications, a large anonymity set, i.e., set of users who may have performed a
certain action, is crucial in order to not reveal who exactly is behind it.

Group signatures enable any member of a given group to sign a message,
without revealing which member signed. However, group signatures suffer from
the drawback that they require trusted setup for every group. Ring signatures
are a manager-free variant of group signatures. They enable individual users to
sign messages anonymously on behalf of a dynamically chosen group of users,
while hiding the exact identity of the signer(s) [25]. Traditionally, this is enabled
by including a “ring” R of public keys (belonging to all possible signers, includ-
ing the actual signer) as an input to the signing algorithm; a ring signature
does not reveal which of the corresponding secret keys was used to produce it.
There are many ways to construct ring signatures using different building blocks:
classic RSA [13], bilinear pairings [5,12,30], composite-order groups [7,26], non-
interactive zero knowledge [6,20], and, most recently, quantum-safe isogenies and
lattices [4,14,18,19].

Threshold ring signatures are a threshold variant of this primitive [8], which
allow some t signers to sign a message on behalf of a ring R of size larger
than t. The signature reveals that t members of the ring signed the message,
but not the identities of those members. Some threshold ring signature schemes
are flexible [23], meaning that even after the threshold ring signature has been
produced for a given ring R, another signer from that ring can participate,
resulting in a threshold ring signature for the same ring R but with a threshold
of t + 1. However, if a signer from outside the ring wants to participate, existing
constructions do not support this. All existing constructions of ring and threshold
ring signatures have a common limitation: the ring of potential signers is fixed
at the time of signature generation. In particular, it is not possible to have the
added flexibility of publicly “adjusting” the ring, i.e., to extend the initial ring
to a larger one, increasing the anonymity set. Increasing the size of the set of
potential signers not only increases the anonymity provided by the signature,
but also makes threshold systems easier to realize in practice.

To work in practice, standard threshold ring signatures need all of the signers
to independently sign the same message μ with the same ring R, which must
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include the public keys of all t signers. We are interested in relaxing this implicit
synchronization requirement.

1.1 Our Contributions

In this paper, we introduce a new property of (threshold) ring signatures which
we call extendability. A (threshold) ring signature scheme is extendable if it allows
anyone to enlarge the set of potential signers of a given signature. Extendable
threshold ring signatures are fundamental for whistleblowing, where one party
may want to “join the cause” after it becomes public. Extendability, together
with flexibility, enables a signer A to join a threshold ring signature which was
produced using an anonymity ring R that does not contain A. This can be done
by first extending the existing signature to a new ring R′ ⊇ R ∪ {A} which
contains both the ring used by previous signers as well as the new signer. Then,
thanks to flexibility, the new signer can add their own signature with respect to
the new ring R′ (using skA). (Of course, an observer who has seen signatures
under the old ring R and under the new ring R′ will be able to determine R′\R;
this is inherent—since an observer can always tell which ring a signature is
meant for by attempting verification—and can help that observer narrow down
possibilities for the identity of A. However, an observer who has not seen a
signature under the old ring R will learn nothing additional about the identity
of A.)

In addition to drawing formal models, we give the first constructions of
extendable ring signatures, same-message linkable extendable ring signatures and
extendable threshold ring signatures. We provide a proof of concept implemen-
tation of our construction, benchmark the signing and verification running times
as well as the signature size.

Constructions from Signatures of Knowledge and Discrete Log. We
build extendable ring signatures and same-message linkable extendable ring sig-
natures using signatures of knowledge. Each signature will include several ele-
ments of a group, with the property that all of their discrete logs cannot be
known. (This is because the product of the elements gives a discrete log chal-
lenge which is part of the public parameters.) A signer signs the message with
a signature of knowledge that proves that she knows either her own secret key,
or the discrete log of one of the elements. The signer uses her secret key for
this (and so can use the element for which the discrete log is unknown), but
for each of the other signers’ public keys in the ring, she includes a signature
of knowledge using the discrete log of one of the elements. Because all of the
element discrete logs cannot be known, a verifier is convinced that at least one
signature of knowledge is produced using a secret key, and that therefore the
overall signature was produced by one of the members of the ring.

We build extendable threshold ring signatures similarly, but by choosing the
elements in such a way that at least t of their discrete logs cannot be known
without revealing the discrete log of a challenge element in the public parameters.
We enforce this by placing the elements on a polynomial of appropriate degree.
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A Generic Transformation. One might hope to build extendable threshold
ring signatures by concatenating t extendable ring signatures; however, we would
need to additionally prove to the verifier that the t signatures were produced
by t different signers. Building such a proof would require interaction between
the signers, and it would be challenging to maintain the proof as the ring is
expanded. Instead, we solve this problem using a primitive which we call a
same-message linkable extendable ring signatures, where, given two signatures
on the same message, it is immediately clear whether they were produced by
the same signer. Our realizations of this primitive provide linkability without
revealing the signer’s identity or resorting to additional zero knowledge proofs
and can be used to construct extendable threshold ring signatures in a generic
way.

Implementation. We provide an implementation that demonstrates the con-
crete efficiency of our schemes. The benchmarks place our constructions firmly
within the realm of practicality: an extendable ring signature for a ring with
2048 members can be created in 0.45 s.

1.2 Related Work

Ring signatures were first introduced by Rivest, Shamir, and Tauman in [25] as
a mechanism to leak secrets anonymously. This initial construction was based on
trapdoor permutations, but other schemes quickly followed. A threshold version
of their scheme was proposed the following year by Bresson et al. [8], together
with a revised security analysis for the original scheme. By using RSA accumu-
lators and the Fiat-Shamir transform, a ring signature scheme with signature
sizes independent of the ring size was later constructed by Dodis et al. [13]. (A
similar scheme in the threshold setting was described by Munch-Hansen et al.
[22].) In addition to the hardness of integer factorization, pairing groups were
used in early constructions to obtain ring signatures in the conventional [5] and
identity-based [30] settings.

The first ring signature constructions were all based on the random oracle
model, but alternatives proven secure in the common reference string model
were later proposed [12,26], including constructions with sublinear [10] and con-
stant signature size [7]. In the standard model, early constructions were based
on 2-round public coin witness-indistinguishable protocols [1], but more recent
constructions rely on non-interactive zero-knowledge proofs [6,20].

Threshold ring signature schemes come in many flavors, with many construc-
tions based on RSA and bilinear maps and security based on number-theoretic
assumptions [17,28,29]; and post-quantum schemes based both on lattices [3]
and coding theory [21]. The post-quantum schemes have traditionally relied on
the Fiat-Shamir transform, the quantum security of which is not fully deter-
mined. Recent work in threshold ring signatures has provided both improved
security definitions [22] and constructions based on the quantum-safe Unruh’s
transform [15].
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2 Background and Preliminaries

Notation. We denote the set of natural numbers by N and let the computational
security parameter of our schemes to be λ ∈ N. We say that a function is
negligible (in λ), and we denote it by negl, if negl(λ) = Ω(λ−c) for any fixed
constant c > 1. We also say that a probability is overwhelming (in λ) if it
is greater than or equal to 1 − negl. Given two values a < b, we denote the
list of integer numbers between a and b as [a, . . . , b]. For compactness, when
a = 1, we simply write [b] for [1, . . . , b]. We denote empty strings as ε. Unless
otherwise specified, all the algorithms defined throughout this work are assumed
to be probabilistic Turing machines that run in polynomial time (abbreviated
as PPT). When sampling the value a uniformly at random from a set X, we
employ the notation a ←R X. In our constructions, we denote by GroupGen(1λ)
the algorithm that, given in input the security parameter, outputs the tuple
(p, g,G), where p is a 2λ-bit prime; g is a group generator and G is a description
of a group of order p, G = 〈g〉. Through out the paper, we assume solving the
Discrete Logarithm Problem in G is computationally hard.

2.1 Main Primitives

Ring Signatures. A ring signature scheme is defined as a tuple of four proba-
bilistic polynomial time algorithms RS = (Setup,KeyGen,Sign,Verify):

Setup(1λ) → pp: Takes a security parameter λ and outputs a set of public param-
eters pp. The public parameters are implicitly input to all subsequent algo-
rithms.

KeyGen() → (pk, sk): Produces a key pair (pk, sk).
Sign(μ, {pkj}j∈R, ski) → σ: Takes a message μ ∈ {0, 1}∗ to be signed, the set of

public keys of the users within the ring of identifiers R, and the secret key
ski of the signer i ∈ R (i.e., the signer’s public key must appear in the set
{pkj}j∈R). Outputs a signature σ.

Verify(μ, {pki}i∈R, σ) → accept/reject: Takes a message, a set of public keys
of the users within a ring, and a signature σ. Outputs accept or reject,
reflecting the validity of the signature σ on the message μ with respect to the
ring R.

Naturally, a ring signature scheme should satisfy correctness, meaning that
any signature generated by Sign should verify (against the signed message and
the original ring). A secure ring signature scheme RS must additionally satisfy
(a) unforgeability, meaning that no adversary should be able to produce a veri-
fying signature without knowledge of at least one signing key corresponding to a
public verification key in the ring, and (b) anonymity, meaning that no adversary
should be able to tell from a signature which ring member produced it. We refer
to prior work for the formal definitions of a ring signature scheme [8,13,16].
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Threshold Ring Signatures. There are many different ways to formal-
ize the threshold ring signature syntax, which force varying degrees of inter-
action between the t signers. A non-interactive threshold ring signature
scheme is defined as a tuple of five probabilistic polynomial time algorithms
(Setup,KeyGen,Sign,Combisign,Verify). The algorithms Setup,KeyGen,Sign and
Verify are syntactically the same as in a ring signature scheme, with the excep-
tions that (1) Sign now outputs a partial signature σi for signer i, and (2)
Verify now additionally takes the threshold t as input. The algorithm Combisign,
described below, combines t partial signatures into a single threshold signature.
It may be run by any third party, as it does not require any signers’ secrets.

Combisign({σi}i∈S⊆R) → σ: Takes partial signatures {σi}i∈S from |S| = t sign-
ers, and outputs a combined signature σ.

There are also interactive threshold ring signature schemes. In this case Sign
(which in this case also subsumes Combisign) is an interactive protocol run
between the signers, which implicitly requires the signers to be aware of one
another’s identities.

Finally, there is a solution in between, where one signer produces the initial
signature, and then the remaining signers pass the signature around, and each
“joins” the signature before passing it on. In such a syntax, each signer must
only receive (at most) one message from one other signer, and send (at most)
one message to one other signer. Instead of Combisign, in such a syntax we have
a Join algorithm, described below.

Join(μ, {pkj}j∈R, sk, σ) → σ′: Takes a message μ, a set of public keys {pkj}j∈R,
which includes the public key of the new signer, the new signer’s secret key
sk, and a signature σ produced by a subset of R (with threshold level t′).
Outputs a modified threshold ring signature σ′ with threshold t′ + 1.

2.2 Main Building Blocks

Signatures of Knowledge. Signatures of Knowledge (SoKs) [11] generalise
digital signatures by replacing the public key with an instance, or statement, in
a NP language. A signer can generate a valid signature for a message only if she
has a valid witness for the statement.

Syntax. A SoK for an efficiently decidable binary relation R is defined as a
tuple of PPT algorithms SoK = (Setup,Sign,Verify,SimSetup,SimSign):

Setup(1λ,R) → pp: Takes a security parameter λ and a binary relation R and
returns public parameters pp. The input pp is implicit to al subsequent algo-
rithms.

Sign(μ, φ,w) → σ: Takes as input a message μ ∈ {0, 1}∗, a statement φ, and a
witness w. Outputs a signature σ.

Verify(μ, φ, σ) → accept/reject: Takes as input a message μ, a statement φ, and
a signature σ. Outputs accept if the the signature is valid, reject otherwise.
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SimSetup(1λ,R) → (pp, td): A simulated setup which takes as input a relation
R and returns public parameters pp and a trapdoor td.

SimSign(td, μ, φ) → σ′: A simulated signing algorithm that takes as input a
trapdoor td, a message μ and a statement φ and returns a simulated signature
σ′.

A SoK scheme should satisfy correctness, simulatability and extractability as
formally defined in the full version of this paper.

3 Extendable Ring Signatures

Ring signatures enable a signer to generate a signature while hiding her identity
within a ring of potential signers. Even though the ring of potential signers R
can be arbitrary1—realizing ad-hoc anonymity sets—existing constructions do
not let a third party increase the size of R after the signature is produced. Once
a signature is generated, it is not possible to “extend” it to a larger anonymity
set; in other words, ring signatures do not allow one to modify a signature and
obtain a new signature for the same message but with a wider set of potential
signers. Our notion of extendability aims to allow exactly this, while preserving
signer anonymity.

3.1 Syntax

An extendable ring signature scheme (ERS) is a ring signature scheme that has
an additional algorithm, Extend, that allows any third party to enlarge the ring
of potential signers of a given signature:

Extend(μ, {pki}i∈R, σ, {pkj}j∈R′) → σ′: Takes a message, a set of public keys
(indexed by the ring R), a signature σ, and a second ring of public keys
(indexed by R′). It outputs a modified signature σ′ which verifies under R ∪
R′.

Remark 1. Consider an ERS scheme where Extend can be repeatedly applied to
extend a signature a polynomial number of times. In this case, we can have a very
simple instantiation where Sign always produces a signature for the singleton
ring {pk} containing only the signer’s public key pk, and Extend is called only
on singleton extension rings, i.e., |R′| = 1. A signature for the singleton ring
can be extended to any ring by having the signer iteratively apply Extend with
a single additional public key.

For the following definitions, we use ladders of rings, i.e., tuples lad =
(i,R(1),R(2), . . . ,R(l)), where i is a signer identity, and the rings R(1),R(2),
. . . ,R(l) are all sets of signer identifiers. In addition, we make use of an algo-
rithm Process(μ, Lkeys, lad), that we describe in Fig. 1. As the name suggests,

1 The ring R should of course contain the signer’s identity.
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this algorithm processes a ladder lad on a given message μ using keys from Lkeys
(the list of generated keys). Process signs μ using ski under the ring R(1), and
extends the signature to all the subsequent rings (using keys stored in the list
Lkeys). Process returns an extendable ring signature σ, which is the output of the
last operation.

Fig. 1. The Process algorithm for extendable ring signatures.

For correctness, we require that any—possibly extended—signature σ output by
Process verifies for the given message, under the final ring R(l).

Definition 1 (Correctness for ERS). An extendable ring signature scheme
ERS is said to be correct if, for all security parameters λ ∈ N, for any message
μ ∈ {0, 1}∗, for any ladder lad = (i,R(1),R(2), · · · ,R(l)) where i ∈ R(1) and
l > 0, it must hold that:

Pr

⎡
⎢⎣ERS.Verify(μ, {pkj}j∈R, σ)

= accept OR σ = ⊥

∣∣∣∣∣∣∣

R = R(1) ∪ · · · ∪ R(l)

pp ← ERS.Setup(1λ)
Lkeys ← {(pkj , skj) ← ERS.KeyGen()}j∈R
σ ← ERS.Process(μ, Lkeys, lad)

⎤
⎥⎦ = 1

3.2 Security Model

Definition 2 (Secure ERS). An extendable ring signature scheme is secure
if it satisfies correctness (Definition 1), unforgeability (Definition 3), anonymity
(Definition 4), and some notion of anonymous extendability (described below).
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Unforgeability. Extendable ring signatures inherit their unforgeability require-
ment from regular ring signatures: no adversary should be able to produce a sig-
nature unless they know at least one secret key belonging to a party in the ring.
Notably, the unforgeability experiment for ERS (cmEUF, detailed in Figure 2)
needs to take into account that the adversary can arbitrarily expand the ring
associated to a signature. To rule out trivial attacks derived with this strategy,
the adversary does not break unforgeability if the candidate forgery could be
generated by extending the outcome of a signing query (line 5 in ExpcmEUF

A,ERS(λ)).
Additionally, to account for the key duplication attack (where an adversary reg-
isters an existing public key to a new identity), instead of simply checking if
the identities in the output ring are among the corrupted ones, the experiment
checks if the public keys belonging to the parties involved in the adversary’s
output ring are among the corrupted ones (line 7, Fig. 2).

Fig. 2. Existential unforgeability under chosen message attack for (extendable) ring
signatures (security experiment and oracles). Our key generation oracle allows A to
register signers with arbitrary public keys (i.e., it also acts as a registration oracle).
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Definition 3 (Unforgeability for ERS). An extendable ring signature
scheme ERS is said to be unforgeable if for all PPT adversaries A taking part
in the unforgeability experiment ( cmEUF in Fig. 2), the success probability is
negligible, i.e.: Pr

[
ExpcmEUF

A,ERS(λ) = win
]

≤ negl.

Anonymous Extendability. For extendability, we consider security notions
related to anonymity (thus the name anonymous extendability). We define an
experiment that is general enough to support three different flavors of anony-
mous extendability: the standard anonymity notion, where no extension hap-
pens; weak extendability, where it is not possible to identify the original subring
of an extended signature; and strong extendability, where it is not possible to
tell what sequence of extensions a signature has undergone.

Fig. 3. Anonymity and anonymous extendability for extendable ring signatures. The
oracles OSign, OKeyGen and OCorrupt are defined in Fig. 2.

For standard anonymity we consider adversaries that output ladders
(lad∗

0, lad
∗
1 in line 5 of ExpANEXT

A,ERS in Fig. 3) each containing only one ring. To
avoid making the game trivial to win, the two rings need to be identical (line
7 of Chalb). Moreover since the extension algorithm is never called (l0 = l1 = 1
in this case), it is clear that—with this restriction on the adversary’s input to
the challenger—our ANEXT experiment is the same as the standard anonymity
one.
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Definition 4 (Anonymity for ERS). An extendable ring signature scheme
is said to be anonymous if for all PPT adversaries A taking part in the
anonymous extendability experiment (ANEXT in Figure 3) and submitting to
the challenger ladders of the type lad∗

0 = (i0,R), lad∗
1 = (i1,R), it holds

that the success probability of A is negligibly close to random guessing. i.e.,:
Pr

[
ExpANEXT

A,ERS (λ) = win
]

≤ 1
2 + negl.

For strong anonymous extendability, we consider adversaries that output
any type of ladders that culminate in the same ring. In particular, we could
have l0 
= l1. Notice that strong anonymous extendability implies both weak
anonymous extendability and standard anonymity.

Definition 5 (Strong Anonymous Extendability for ERS). An extend-
able ring signature scheme is said to be strongly anonymous extendable if for
all PPT adversaries A taking part in the anonymous extendability experiment
(Fig. 3), it holds that: Pr

[
ExpANEXT

A,ERS (λ) = win
]

≤ 1
2 + negl.

We remark that strong extendability implies that the act of extending a ring
signature is seamless, i.e., an adversary is not able to distinguish between a fresh
ring signature (returned by Sign), and an extension of it (returned by Extend).
This is covered in the strong extendability game for l0 = 1 and l1 > 1.

3.3 ERS from Signatures of Knowledge and Discrete Log

In what follows, we exhibit an efficient realization of extendable ring signature
scheme from prime order groups and signatures of knowledge.

Our Construction in a Nutshell. The setup generates a prime-order group
G = 〈g〉, a random group element H ←R G and public parameters for a SoK
scheme for the relation

RG (φ = (h, pk), w = x) = {gx = h ∨ gx = pk} .

Intuitively, RG requires that the witness be either the discrete log of pk (which
is the corresponding secret key), or the element h. The signing procedure simply
samples a random value td ←R Zp, creates an element h := H · g−td (which
implies that h · gtd = H), and computes a signature of knowledge π for (h, pk)
using her secret key sk. The signature σ contains td, and a set P = {(h, pk, π)}.
Extending works essentially like signing, except that the extender uses the other
kind of witness. Concretely, the extender samples a new td′, computes h′ = gtd

′

and a signature of knowledge π′ for the pk′ she wishes to add to the ring, using
td′ as the witness. The tuple (h′, pk′, π′) is added to P , and td is replaced by
td− td′. The verification checks that H = gtd · ∏ hi for all hi present in P , and
that all πi verify. This ensures that at least one of the πi was produced using
ski as a witness (otherwise we would be able to extract dlog(H)). A formal
description of this construction is given in Fig. 4.
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Fig. 4. Extendable ring signatures from signature of knowledge and discrete log.
The relationusedbytheSoKscheme isR G =

{
(φ, w) = (h, pk, x) ∈ G × G × Zp : gx = h ∨ gx = pk

}
.

Theorem 1. Assuming that SoK is a secure signature of knowledge scheme,
and that the discrete log problem is hard in the group G, then the scheme
ERS = (Setup,KeyGen,Sign,Verify,Extend) described in Fig. 4 is an extendable
ring signature scheme that satisfies correctness (Definition 1), unforgeability
(Definition 3), and strong anonymous extendability (Definition 5).

Proof. The correctness of the construction follows by inspection.

Unforgeability. To prove unforgeability, we present a sequence of hybrid games
at the end of which the reduction is able to extract a solution to a discrete
logarithm challenge from A’s forgery with high-enough probability. Essentially
this involves: embedding a discrete logarithm into H; moving to the simulatable
setup for the SoK; replacing all signatures of knowledge with simulated ones; and
using the witness extracted from π∗ to learn dlog(H). Due to space limitation
all details are deferred to the full version of this paper.

Anonymous Extendability. To prove the strong anonymous extendability of
our construction it suffices to show that if an adversary A can successfully break
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anonymous extendability, we can build a reduction B that breaks the security of
the signature of knowledge. Imagine that B, playing the role of the challenger,
runs the simulated setup for the signature of knowledge, instead of the real setup.
This gives B a trapdoor that allows it to simulate signatures without knowledge
of a witness. B uses this trapdoor to simulate all signatures of knowledge in
response to signing queries from A. B generates the challenge signature with no
reference to the ladders. It simply chooses td at random, generates the hi’s as
random values such that gtd · ∏

hi = H, and uses the trapdoor to simulate all
signatures of knowledge. If A can distinguish B from an honest challenger, B
can use A to break the simulatability property of the signature of knowledge. If
A cannot distinguish B from an honest challenger, since B’s behavior does not
depend on choice of b, A cannot possibly win the anonymous extendability game
with probability non-negligibly more than half. �

4 Same-Message Linkable Extendable Ring Signatures

A same-message linkable ring signature scheme (SMLRS) is a ring signature
scheme that additionally allows any third party to publicly identify (link)
whether two signatures were generated by the same signer for the same mes-
sage. This means that if the same party signs the same message twice, even for
different rings, the two signatures can be linked by any third party.

In what follows, we introduce the notion of extendable same-message linkable
ring signatures (ESMLRS). We give a security model for this new primitive, and
describe an instantiation that builds on our ERS construction from Sect. 3.3.

4.1 Syntax

A same-message linkable extendable ring signature scheme is a tuple of six
algorithms SMLERS = (Setup,KeyGen,Sign,Verify,Extend, Link). The first five
algorithms are inherited from extendable ring signatures. The Link algorithm
(described below) allows any verifier to determine whether two signatures on a
particular message were produced by the same signer.

Link(μ, (σ0, {pkj}j∈R0), (σ1, {pkj}j∈R1)) → {linked, unlinked}: An algorithm
that takes a message μ, two signatures (σ0, σ1) and two sets of public keys
belonging to members of the rings R0,R1. It outputs linked if σ0 and σ1

were produced by the same signer, and unlinked otherwise.

We remark that Link does not necessarily reveal the identity of the common
signer if signatures are linked. Next we discuss correctness for extendable same-
message linkable ring signature schemes, which encompasses two statements:
extended signatures verify, which is inherited from correctness for extendable
ring signatures (Definition 1); and extended signatures from different signers are
unlinked, which we formalize in the following definition.
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Definition 6 (Cross-Signer Correctness for SMLERS). For all security
parameters λ ∈ N, for any message μ ∈ {0, 1}∗, for any two ladders lad0 =
(i0,R(1)

0 , . . . ,R(l0)
0 ), lad1 = (i1,R(1)

1 , . . . ,R(l0)
1 ) where i0 ∈ R(1)

0 , i1 ∈ R(1)
1 ,

l0 > 0, l1 > 0 and i0 
= i1, it must hold that:

Pr

⎡
⎢⎢⎢⎣

Link(μ, (σ0, {pkj}j∈R0 ),
(σ1, {pkj}j∈R1 )) → unlinked

∣∣∣∣∣∣∣∣∣

R0 = R(1)
0 ∪ · · · ∪ R(l0)

0

R1 = R(1)
0 ∪ · · · ∪ R(l1)

1
pp ← Setup(1λ)
Lkeys ← {KeyGen()}j∈R0∪R1
σ0 ← Process(μ, Lkeys, lad0)
σ1 ← Process(μ, Lkeys, lad1)

⎤
⎥⎥⎥⎦=1 − negl

where Process is the algorithm described in Fig. 1 except that the ERS algorithms
are replaced with the corresponding SMLERS ones.

Remark 2. To build some intuition that may come in handy for understanding
the security model, the reader might consider the following natural strategy
for constructing an extendable same-message linkable ring signature scheme:
ensuring that (part of) the signature is unique for every public key and message
pair. In other words, the signer’s public key and the signed message uniquely
determine a part of the ring signature; we will refer to this part as the linkability
tag. This tag is not modified by ring extensions and can be used to identify if
two ring signatures, on the same message, were produced by the same signer
simply by checking whether they share the same tag.

4.2 Security Model

A same-message linkable extendable ring signature scheme is an extendable ring
signature that additionally satisfies the following properties:

Same-Message One-More Linkability: no set of (t − 1) corrupt signers can
produce t signatures for the same message which appear pairwise unlinked.
(We present this property in Definition 8).

Cross-Message Unlinkability: no adversary can determine whether two sig-
natures for different messages were produced by the same signer. (We present
this property in Definition 9).

Definition 7 (Secure SMLERS). A same-message linkable extendable ring
signature scheme (ESMLRS) is secure if it satisfies correctness, same-message
one-more linkability (Definition 8, which implies unforgeability), and cross-
message unlinkability (Definition 9).

Definition 8 (Same-Message One-more Linkability for SMLERS). A
same-message linkable extendable ring signature scheme ESMLRS is said to be
one-more linkable if for all PPT adversaries A taking part in the same-message
one-more linkability experiment (Expomlink

A,SMLERS(λ) depicted in Fig. 5), it holds
that: Pr[Expomlink

A,SMLERS(λ) = win] ≤ negl.
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Fig. 5. Security experiment for same-message one-more linkability. The signing, key
generation and corruption oracles are as defined in Fig. 2, except that the algorithms
for ERS are replaced with the corresponding algorithms for SMLERS. We recall that
the list Lsign of sign-queries contains elements of the form (μ, R, i).

Definition 9 (Cross-Message Unlinkability for SMLERS). A same-
message linkable extendable ring signature scheme ESMLRS is said to be cross-
message unlinkable if for all PPT adversaries A taking part in the cross-
message unlinkability experiment (Expcmunlink

A,SMLERS(λ) depicted in Fig. 6), it holds
that the success probability of A is negligibly close to random guessing, i.e.,:
Pr[Expcmunlink

A,SMLERS(λ) = win] ≤ 1
2 + negl.

4.3 SMLERS from Signatures of Knowledge and Discrete Log

Our ESMLRS construction builds on the ERS construction in Fig. 4. Since the
nuance is limited, we only briefly describe the tweaks needed to transform our
ERS into an ESMLRS.

First, we adopt a slightly different relation RSMLERS:

RSMLERS (φ = (h, pk, g′, τ), w = x) = {gx = h ∨ (gx = pk ∧ (g′)x = τ)}

Notably, the last AND not only requires a signer to prove knowledge of the
secret key, but it also enforces that the same secret key is used to generate the
linkability tag τ . The signatures of knowledge for ESMLRS are with respect to
the new relation RSMLERS.
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Fig. 6. Cross-message unlinkability. The signing, key generation and corruption oracles
are as defined in Fig. 2, except that the ERS algorithms are substituted with the
respective SMLERS variants.

Second, we modify the Sign algorithm of our ERS in Figure 4 so that it
additionally computes g′ := H(μ) and τ := (g′)sk for some hash function H, and
it includes the linkability tag τ as part of the signature. Finally, the algorithm
Link simply compares the linkability tags in the two signatures. It returns linked
if they are equal, and unlinked otherwise.

This scheme can be shown to be same-message one-more linkable (resp. cross-
message unlinkable) with only minor modifications to the proof of unforgeability
(resp. anonymous extendability) of the extendable ring signature scheme.

5 Extendable Threshold Ring Signatures

Like a traditional threshold ring signature scheme, an extendable threshold ring
signature scheme enables parties to produce a signature on a message μ for a
ring R showing that at least t of the |R| potential signers in the ring partici-
pated, without revealing which. An extendable threshold ring signature scheme
additionally has the following properties:

Flexibility: Given any two threshold signatures σ0 and σ1 that verify for the
same message μ and for the same ring R, anyone can non-interactively com-
bine the signatures to obtain σ. The new signature σ is also a threshold ring
signature and its threshold is equal to the total number of unique signers
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who contributed to at least one of the two signatures. This functionality is
provided by the Combine algorithm (below).

Extendability: Given a signature σ on a message μ for the ring R with thresh-
old t, anyone can non-interactively transform σ into a signature σ′ on the
same message with the same threshold , but for a larger ring R′ ⊇ R. This
functionality is provided by Extend (see below).

5.1 Syntax

A non-interactive extendable threshold ring signature scheme (ETRS) is defined
as a tuple of six PPT algorithms ETRS = (Setup,KeyGen,Sign,Verify,Combine,
Extend), where the public parameters pp produced by Setup are implicitly avail-
able to all other algorithms:

Setup(1λ) → pp: Takes a security parameter λ and outputs a set of public param-
eters pp.

KeyGen() → (pk, sk): Generates a new public and secret key pair.
Sign(μ, {pki}i∈R, sk) → σ: Returns a signature with threshold t = 1 using the

secret key sk corresponding to a public key pki with i ∈ R.
Verify(t, μ, {pki}i∈R, σ) → accept/reject: Verifies a signature σ for the message

μ against the public keys {pki}i∈R with threshold t.
Combine(μ, σ0, σ1, {pki}i∈R) �→ σ′: Combines two signatures σ0, σ1 for the same

ring R into a signature σ′ with threshold t = |S0 ∪ S1| where S0, S1 is the
set of (hidden) signers for σ0 and σ1 respectively.

Extend(μ, σ, {pki}i∈R, {pki}i∈R′) �→ σ′: Extends the signature σ with threshold
t for the ring R into a new signature σ′ with threshold t for the larger ring
R ∪ R′.

For a somewhat more interactive syntax, we can replace ‘Sign&Combine’ exe-
cutions with a Join operation (described in Sect. 2.1). For the sake of formalism,
we present our security model only for schemes with Combine and defer the dis-
cussion on how to handle Join operations to the Sect. 5.4, where we present a
construction that uses the Join operation from signatures of knowledge and the
discrete log problem.

For the following definitions, we use ladders lad in a slightly different way
than we did in the context of extendable ring signatures (Sect. 3). We generalize
lad to support arbitrary sequences of actions that could lead to a valid threshold
ring signature (on some fixed message). lad will contain a sequence of tuples of
the form (action, input). The first component, action, can take on the values
Sign,Combine, or Extend. If action = Sign, we expect input = (R, i), where
R and i are the ring and signer identity with which the signature should be
produced. If action = Combine, we expect input = (l1, l2,R), where l1 and l2
are indices of two signatures under the same ring R. If action = Extend, we
expect input = (l′,R), where l′ is the index of an existing signature which we
will extended to R.

For use in our definitions, we define an algorithm Process(μ, Lkeys, lad), which
processes all of the operations in lad on the message μ (using keys stored in the
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list Lkeys) and returns (σ, t,R): the signature returned by the last operation of
lad, the corresponding threshold, and the ring that σ verifies under. We define
lad.sr to be the union of all identities and rings in lad. (sr stands for super-
ring.)

We give a formal description of Process in the full version of this paper.

Definition 10 (Correctness for ETRS). For correctness, we require that for
all ladders lad, the signature returned by Process(lad) verifies. Formally: for all
security parameters λ ∈ N, for any message μ ∈ {0, 1}∗, for any ladder lad of
polynomial size identifying a ring R := lad.sr of public-key identifiers, for any
chosen threshold value 1 ≤ t ≤ |R|, it holds:

Pr

[
Verify(t, μ, {pki}i∈R, σ)

= accept OR σ = ⊥

∣∣∣∣∣
pp ← Setup(1λ)
Lkeys ← {KeyGen()}j∈lad.sr

(σ, t, R) ← Process(μ, Lkeys, lad)

]
= 1.

5.2 Security Model

Our security definitions are loosely based on the ones given for threshold ring
signatures by Munch-Hansen et al. [22].

Definition 11 (Secure ETRS). An extendable threshold ring signature scheme
is secure if it satisfies correctness (Definition 10), unforgeability (Definition 12),
anonymity (Definition 13), and some notion of anonymous extendability.

Fig. 7. Existential unforgeability under chosen message attack for (extendable) thresh-
old ring signatures. The key generation, corruption and signing oracles are as in Fig. 2,
with the difference that the ERS algorithms are substituted with the ETRS variants,
and the signing oracle now returns partial signatures.
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Definition 12 (Unforgeability for ETRS). An extendable threshold ring
signature scheme ETRS is said to be unforgeable if for all thresholds t, for all
PPT adversaries A the success probability in the cmEUF experiment in Fig. 7
is Pr

[
ExpcmEUF

A,ETRS(λ) = win
]

≤ negl.

Just like for extendable ring signatures, the notion of anonymity for extend-
able threshold ring signatures captures scenarios where the adversary distin-
guishes fresh (not-extended) signatures, i.e., the challenge will be a threshold
ring signature which has not be extended.

Fig. 8. Anonymity and anonymous extendability for extendable threshold ring signa-
tures. The key generation, corruption and signing oracles are exactly as described in
the unforgeability experiment (Fig. 7).

Definition 13 (Anonymity for ETRS). An extendable threshold ring sig-
nature scheme is said to be anonymous if for all PPT adversaries A taking part
in the anonymous extendability experiment (ANEXT in Figure 8) and submit-
ting to the challenger two ladders with the structure explained below, it holds
that the success probability of A is negligibly close to random guessing, i.e.:
Pr

[
ExpANEXT

A,ETRS(λ) = win
]

≤ 1
2 + negl.

For anonymity, the ladders submitted by the adversary to the challenger have
the following structure (here t denotes the threshold of the scheme): the first t
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instructions are of the type (Sign, (R, i)), where R is the same for all instructions
in both ladders, and the signer indexes i are all distinct within the same ladder;
the last (t − 1) instructions are of the type (Combine, (l1, l2,R)), where R is the
same for all instructions in both ladders, l1 = 1, 2, . . . , t − 1, and l2 = t, t +
1, . . . , 2t − 2.

Our notion of anonymous extendability follows the gist of strong anonymity
introduced in Sect. 3.2 for extendable ring signatures, but adapted to the thresh-
old setting.

Definition 14 (Strong Anonymous Extendability for ETRS). An
extendable threshold ring signature scheme ETRS is said to be strongly anony-
mous extendable if for all PPT adversaries A taking part in the anonymous
extendability experiment (ANEXT in Fig. 8) and submitting to the challenger
ladders with the structure specified below, it holds that the success probability of A
is negligibly close to random guessing, i.e.: Pr

[
ExpANEXT

AsAnon,ERS(λ) = win
]

≤ 1
2 +

negl.
For strong anonymous extendability the adversary submits ladders that have the
with the following structure: the first t instructions are of the type (Sign, (i,R)),
where the signer identities are pairwise distinct within a ladder, and the ring R
is the same within the ladder (but possibly different for each ladder); the subse-
quent t−1 instructions are of the form (Combine, (l1, l2,R)) or (Extend, (l′,R′)),
where l1, l2 and l′ denote indexes.

Notably, in strong anonymous extendability each ladder may contain an arbi-
trary (polynomial, and possibly different for each ladder) number of subsequent
Extend instructions, so long the final one of each ladder culminates in the same
ring.

5.3 A Generic Compiler for ETRS from SMLERS

In what follows, we formalize the intuition given in Remark 2 (Section 4.1) on
how to generically derive an extendable threshold ring signature scheme from
any given same-message linkable extendable ring signature scheme. The compiler
is detailed in Fig. 9.

Theorem 2. Assuming that SMLERS is a secure same-message linkable
extendable ring signature scheme, then the scheme ETRS = (Setup,KeyGen,
Sign,Verify,Extend,Combine) described in Fig. 9 is an extendable threshold ring
signature scheme that satisfies correctness (Definition 10), unforgeability (Def-
inition 12), and anonymity (Definition 13).

We prove Theorem 2 in the full version of this paper.

5.4 ETRS from Signatures of Knowledge and Discrete Log

In what follows we present a somewhat more interactive Extendable Threshold
Ring Signature Scheme that supports Join operations and enjoys more compact
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Fig. 9. Generic compiler for extendable threshold ring signatures from extendable
same-message linkable ring signatures.

signatures. Concretely, the size of extended threshold signatures is independent
of the threshold t, instead it grows linearly with n′ (an upper bound on the
ring size). This is an improvement compared to the compiler presented in Fig. 9,
which if instantiated using our SMLERS from Signatures of Knowledge and
Discrete Log of Sect. 4.3, returns signatures of size linear in t · |R|.

Our Construction in a Nutshell. Similarly to the ERS construction of Fig. 4,
we work with a prime order group G, with two public elements g,H ∈ G and a
signature of knowledge for a relation RG for knowledge of the discrete logarithm
either of a given value h or of a pk.

Let n′ ∈ N be an upper bound on the ring size. We achieve the threshold func-
tionality by leveraging features of polynomials in a similar way to Shamir secret
sharing. Intuitively, the signer samples n′ > 0 pairs of values (xi, tdi) ∈ Zp × G.
These pairs of values define a unique polynomial f(x) of degree n′ such that
f(0) = dlogg(H) and f(xi) = tdi for every i ∈ [n′]. Of course, since dlogg(H)
is unknown, our signers don’t know the coefficients of this polynomial. How-
ever, since polynomial interpolation involves only linear operations (when the
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x-coordinates are fixed and known), the signers can interpolate this polynomial
in the exponent to learn additional points (x̂, y = gf(x̂)) for any given x̂. In order
to sign, and later to endorse a statement (Join a signature), the signer is required
to produce a signature of knowledge for RG for a random point (x̂, y = gf(x̂))
on the polynomial such that x̂ 
∈ {xi}i∈[n′]. Crucially, the signer does not know
the discrete log of y (i.e., (x̂, y) is not among the ‘trapdoored’ values (xi, g

tdi)),
and thus must satisfy the second clause of the relation (proving knowledge of
their secret key). On the other hand, to extend a signature, anyone can pick one
of the (remaining) ‘trapdoored’ points (xi, tdi), and generate a proof for RG by
satisfying the first clause (proving knowledge of tdi), to include any pk in the
ring. The pair (xi, tdi) is then removed from the list of trapdoors. (In case the
owner of pk later wants to join the signature, the Extend algorithm encrypts tdi

to pk; later, the owner of pk can recover tdi and return it to the list of trapdoors
before producing a fresh signature of knowledge using her secret key.)

The key idea of our construction is detailed in Fig. 10 (the PolySign subroutine
employed in Sign and Join–where this is called using the signer’s secret key as
w and on a random value x̂– and in Extend–where an evaluation point and its
corresponding trapdoor are used as x̂and w respectively).

For any field F (often implicit) and X ⊆ F, j ∈ X , define the degree |X | − 1
Lagrange polynomial L(X ,j)(X) :=

∏
m∈X\{j}

X−m
j−m ∈ F[X].

Theorem 3. Assuming that SoK is a secure signature of knowledge scheme,
and that the discrete log problem is hard in the group G, then the scheme

Fig. 10. Subroutine used in our ETRS construction depicted in Fig. 11.
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Fig. 11. Extendable threshold ring signatures from signature of knowledge and hard-
ness of discrete log. The Setup algorithm is the same as in the ERS construction
of Fig. 4 (with RG = {(φ, w) = (h, pk, x) ∈ G × G × Zp : gx = h ∨ gx = pk}). In the
description, n′ > 0 denotes the maximum amount of times a signature can be extended
(it can be set in pp, or chosen upon signing). We always let pk denote the public key
corresponding to sk; any algorithm that is given sk as input implicitly has access to
pk. The parsing of pk into (pks, pke) (or of pki into (pks,i, pke,i)), of sk into (sks, ske)
and of σ into (T, P ) is done implicitly.

ETRS = (Setup,KeyGen,Sign,Verify,Extend, Join) described in Fig. 11 is an
extendable threshold ring signature scheme that satisfies correctness (Defini-
tion 10), unforgeability (Definition 12), and strong anonymous extendability
(Definition 13).
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We give a proof of Theorem 3 in the full version of this paper. We also describe
how we modify the security model to account for the Join there.

Remark 3. Note that a malicious extender can prevent the newly added members
of the ring from later joining a signature, simply by not encrypting the correct
trapdoor under that new member’s public key. This is not captured by our
security definitions, but precluding such attacks would be an interesting and
valuable extension. We can modify our construction to disallow this by adding
a zero knowledge proof that the encrypted value is in fact the discrete log of the
h in question.

6 Implementation Results

We have implemented the ERS, SMLERS and ETRS constructions, respec-
tively from Sects. 3, 4.3 and 5, at the 128-bit security level within the RELIC2

library. The choice of underlying group is the conservative edwards25519 ellip-
tic curve used in the Ed25519 signature scheme [2]. The benchmarking platform
is an Intel Core i7-6700K Skylake @ 4 GHz, with HyperThreading and Turbo-
Boost disabled. Each operation was executed 104 times for the smaller rings
and 102 times for the larger ones. The average times for signature generation
and verification, and signature sizes (without point compression) are shown in
Figs. 12, 13 and 14, respectively. For ease of exposition, we combined the wall
time for the initial signature generation and subsequent joinings or extensions
in the plots. A specific binary built by running make in relic/demo/ers-etrs
allows to reproduce our results.

ERS Benchmark. We benchmark our ERS implementation for ring sizes of 1 to
211. The performance depends on the ring size only, so the number of extensions
is always the number of keys. We instantiate the SoK for the relation RERS as a
non-interactive Sigma protocol combining an OR-proof with proof of knowledge
of the discrete logarithm embedding the message to be signed in the challenge
computation.

ETRS Benchmark. We benchmark our ETRS implementation for thresholds
of 1, 2, 4, 8 and ring sizes of 1 to 211. For the ETRS construction, the quadratic
cost of interpolation clearly dominates the signing, joining and verification steps;
and explains the additional computational overhead in comparison to the ERS
scheme.

ETRS from SMLERS Benchmark. Finally, we include the benchmarks of
our generic compiler applied to our SMLERS scheme. We instantiate the SoK
for the relation RSMLERS as another non-interactive Sigma protocol combining
OR-proofs and discrete logarithm proofs by slightly rewriting the statement as
{(gx = h ∨ gx = pk) ∧ (gx = h ∨ (g′)x = τ)}, which allows us to share code with

2 https://github.com/relic-toolkit/relic

https://github.com/relic-toolkit/relic
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Fig. 12. Clock time for Sign in the three implemented schemes for different thresholds.
The signature generation time includes the initial signature generation and subsequent
joinings/extensions.

Fig. 13. Clock time for Verify in the three implemented schemes for different thresholds.
The verification time is that of verifying the final extended signature.

the ERS implementation. In comparison with the ETRS scheme, the signature
sizes are much larger; but the signature and verification times are more efficient
for larger rings due to the cost of interpolation in the ETRS scheme.



404 D. F. Aranha et al.

Fig. 14. Signature sizes for all the three implemented schemes, with varying thresh-
olds. In the ETRS scheme, the signature size is independent of the threshold, while in
ESMLRS there is a linear dependence.
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Abstract. This work revisits the security of classical signatures and
ring signatures in a quantum world. For (ordinary) signatures, we focus
on the arguably preferable security notion of blind-unforgeability recently
proposed by Alagic et al. (Eurocrypt’20). We present two short signa-
ture schemes achieving this notion: one is in the quantum random oracle
model, assuming quantum hardness of SIS; and the other is in the plain
model, assuming quantum hardness of LWE with super-polynomial mod-
ulus. Prior to this work, the only known blind-unforgeable schemes are
Lamport’s one-time signature and the Winternitz one-time signature,
and both of them are in the quantum random oracle model.

For ring signatures, the recent work by Chatterjee et al. (Crypto’21)
proposes a definition trying to capture adversaries with quantum access
to the signer. However, it is unclear if their definition, when restricted to
the classical world, is as strong as the standard security notion for ring
signatures. They also present a construction that only partially achieves
(even) this seeming weak definition, in the sense that the adversary can
only conduct superposition attacks over the messages, but not the rings.
We propose a new definition that does not suffer from the above issue.
Our definition is an analog to the blind-unforgeability in the ring sig-
nature setting. Moreover, assuming the quantum hardness of LWE, we
construct a compiler converting any blind-unforgeable (ordinary) signa-
tures to a ring signature satisfying our definition.

Keywords: Blind-Unforgeability · Quantum · Ring Signatures

1 Introduction

Recent advances in quantum computing have uncovered several new threats
to the existing body of cryptographic work. As demonstrated several times in
the literature (e.g., [1,15,64,65]), building quantum-secure primitives requires
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more than taking existing constructions and replacing the underlying assump-
tions with post-quantum ones. It usually requires new techniques and analy-
sis. Moreover, for specific primitives, even giving a meaningful security notion
against quantum adversaries is a non-trivial task (e.g., [5,17,18,61,67]). This
work focuses on post-quantum security of digital signature schemes, namely, clas-
sical signatures schemes for which we want to protect against quantum adver-
saries.

Post-quantum Unforgeable Signatures. To build post-quantum secure sig-
nature schemes, the first step is to have a notion of unforgeability that protects
against adversaries with quantum power. Probably the most natural attempt is
to take the standard existential unforgeability (EUF) game, but require unforge-
ability against all quantum polynomial-time (QPT) adversaries (instead of all
probabilistic polynomial-time (PPT) adversaries). We emphasize that the com-
munication between the EUF challenger and the QPT adversary is still classical.
Namely, the adversary is not allowed to query the challenger’s circuit in a quan-
tum manner. Herein, we refer to this notion as PQ-EUF. Usually, PQ-EUF can
be achieved by existing constructions in the classical setting via replacing the
underlying hardness assumptions with quantum-hard ones (e.g., hard problems
on lattice or isogeny-based assumptions).

The (Quantum) Random Oracle Model. In the classical setting, the random ora-
cle model (ROM) [11] has been accepted as a useful paradigm to obtain efficient
signature schemes. When considering the above PQ-EUF notion in the ROM,
two choices arise—one can either allow the adversary classical access to the RO
(as in the classical setting)1, or quantum access to the RO. The latter was first
formalized as the quantum random oracle model (QROM) by Boneh et al. [15],
who showed that new techniques are necessary to achieve unforgeability against
QPT adversaries in this model. Then, a large body of literature has since inves-
tigated the PQ-EUF in QROM [6,32,33,42,48,52,62].

One-More Unforgeability vs Bind Unforgeability. Starting from [65], people real-
ize that the definitional approach taken by the above PQ-EUF may not be
sufficient to protect against quantum adversaries. The reason is that quantum
adversaries may try to attack the concerned protocol/primitive by executing it
quantumly, even if the protocol/primitive by design is only meant to be executed
classically. As argued in existing literature (e.g., [31,36]), such an attack could
possibly occur in a situation where the computer executing the classical proto-
col is a quantum machine, and an adversary somehow manages to observe the
communication before measurement. Other examples include adversaries man-
aging to trick a classical device (e.g., a smart card reader) into showing full or
partial quantum behavior by, for example, cooling it down and shielding it from
any external electromagnetic or thermal interference. Moreover, this concern
may also arise in the security reduction (even) w.r.t. classical security games
but against QPT adversaries. For example, some constructions may allow the

1 To avoid confusion, we henceforth denote this model as CROM (“C” for “classical”).
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adversary to obtain an indistinguishability obfuscation of, say, a PRF; the QPT
adversary can then implement it as a quantum circuit to conduct superposi-
tion attacks. Recently, this issue has received an increasing amount of attention
[4,5,9,17,18,23,28,30,36,43–46,59,61,67].

To address the aforementioned security threats to digital signatures, it is
reasonable to give the QPT adversary A quantum access to the signing oracle in
the EUF game. This raises an immediate question—How should the game decide
if A’s final forgery is valid? Recall that in the classical setting (or the PQ-EUF
above), the game records all the signing queries made by A; to decide if A wins,
it needs to make sure that A’s final forgery message-signature pair is different
from the ones A learned from the signing oracle. However, this approach does
not fit into the quantum setting, since it is unclear how to record A’s quantum
queries without irreversibly disturbing them.

Boneh and Zhandry [18] proposed the notion of one-more unforgeability. This
requires that the adversary cannot produce sq+ 1 valid message-signature pairs
with only sq signing queries (an approach previously taken to define blind signa-
tures [57]). When restricted to the classical setting, this definition is equivalent
to the standard unforgeability of ordinary signatures, by a simple application of
the pigeonhole principle. [18] shows how to convert any PQ-EUF signatures to
one-more unforgeable ones using a chameleon hash function [49]; it also proves
that the PQ-EUF signature scheme by Gentry, Peikert, and Vaikuntanathan [38]
(henceforth, GPV) is one-more unforgeable in the QROM, assuming the PRF
in that construction is quantum secure (i.e., being a QPRF [65]).

As argued in [5,37], one-more unforgeability does not seem to capture all that
we can expect from quantum unforgeability. For example, an adversary may pro-
duce a forgery for a message in a subset A of the message space, while making
queries to the signing oracle supported on a disjoint subset B. Also, an adversary
may make multiple quantum signing queries, but then must consume, say, all of
the answers in order to make a single valid forgery. This forgery might be for a
message that is different from all the messages in all the superpositions of pre-
vious queries. This clearly violates what we intuitively expect for unforgeability,
but the one-more unforgeability definition may never rule this out.

To address these problems, Alagic et el. [5] propose blind-unforgeability (BU).
Roughly, the blind-unforgeability game modifies the (quantum-accessible) sign-
ing oracle by asking it to always return “⊥” for messages in a “blinded” subset
of the message space. The adversary’s forgery is considered valid only if it lies in
the blinded subset. In this way, the adversary is forced to forge a signature for
a message she has not seen a signature before, consistent with our intuition for
unforgeability. [5] shows that blind-unforgeability, when restricted to the classi-
cal setting, is also equivalent to PQ-EUF; Moreover, it does not suffer from the
above problems for one-more unforgeability2.

In terms of constructions, [5] show that Lamport’s one-time signature [50]
is BU in the QROM, assuming the OWF is modeled as a (quantum-accessible)

2 [5] also claimed that blind-unforgeability implies one-more unforgeability. But their
proof was flawed [29]. The relation between these two notions is an open problem.
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random oracle. Later, [54] show that the Winternitz one-time signature [55]
is BU in the QROM, assuming the underlying hash function is modeled as a
(quantum-accessible) random oracle. To the best of our knowledge, they are the
only schemes known to achieve BU. This gives rise to the following question:

Question 1: Is it possible to build (multi-time) signature schemes achiev-
ing blind-unforgeability, either in the QROM or the plain model?

Post-quantum Secure Ring Signatures. In a ring signature scheme [12,58], a
user can sign a message with respect to a ring of public keys, with the knowledge
of a signing key corresponding to any public key in the ring. It should satisfy
two properties: (1) Anonymity requires that no user can tell which user in the
ring actually produced a given signature; (2) Unforgeability requires that no
user outside the specified ring can produce valid signatures on behalf of this
ring. In contrast to its notional predecessor, group signatures [27], no central
coordination is required for producing and verfying ring signatures. Due to these
features, ring signatures (and their variants) have found natural applications
related to whistleblowing, authenticating leaked information, and more recently
to cryptocurrencies [56,60], and thus have received extensive attention (see, e.g.,
[26] and related work therein).

For ring signatures from latticed-based assumptions, there exist several con-
structions in the CROM [3,10,13,34,51,53,60,63], but only two schemes are
known in the plain model [21,26]. The authors of [26] also initiate the study of
quantum security for ring signatures. They propose a definition where the QPT
adversary is allowed quantum access to the signing oracle in both the anonymity
and unforgeability game, where the latter is a straightforward adaption of the
aforementioned one-more unforgebility for ordinary signatures. As noted in their
work, this approach suffers from two disadvantages: (1) Their unforgeability def-
inition seems weak in the sense that, when restricted to the classical setting, it
is unclear if their unforgeability is equivalent to the standard one (see Sect. 2.3).
This is in contrast to ordinary signatures, for which one-more unforgeability is
equivalent to the standard existential unforgeability. (2) Their construction only
partially achieves (even) this seemingly weak definition. In more detail, their
security proof only allows the adversary to conduct superposition attacks on
the messages, but not on the rings. As remarked by the authors, this is not a
definitional issue, but rather a limitation of their technique. Indeed, [26] leave
it as an open question to have a construction protecting against superposition
attacks on both the messages and the rings.

The outlined gap begs the following natural question:

Question 2: Can we have a proper unforgeability notion for ring signa-
tures that does not suffer from the above disadvantage? If so, can we have
a construction achieving such a notion?

Our Results. In this work, we resolve the aforementioned questions:

1. We show that the GPV signature, which relies on the quantum hardness of
SIS (QSIS), can be proven BU-secure in the QROM. Since our adversary has
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quantum access to the signing oracle, we also need to replace the PRF in the
original GPV scheme with a QPRF, which is also known from QSIS. As will
be discussed later in Sect. 2.1, our security proof is almost identical to the
proof in [18] for the one-more unforgeability of GPV, except how the desired
contradiction is derived in the last hybrid. Interestingly, our proof for BU
turns out to be simpler than that in [18] (for one-more unforgeability). We
remark that the GPV scheme is short (i.e., the signature size only depends
on the security parameter, but not the message size).

2. We also construct a BU-secure signature in the plain model, assuming quan-
tum hardness of Learning with Errors (QLWE) with super-polynomial modu-
lus. Our construction is inspired by the signature (and adaptive IBE) scheme
by Boyen and Li [20]. This signature scheme is also short.

3. We present a new definition of post-quantum security for ring signatures,
by extending blind-unforgeability from [5]. We show that this definition,
when restricted to the classical setting, is equivalent to the standard secu-
rity requirements for ring signatures.

4. We build a ring signature satisfying the above definition. Our construction
is a compiler that converts any BU (ordinary) signature to a ring signature
achieving the definition in Item 3., assuming QLWE.

2 Technical Overview

2.1 BU Signatures in the QROM

We show that the GPV signature scheme from [38] is BU-secure in the QROM.
The GPV signature scheme follows the hash-and-sign paradigm and relies cru-
cially on the notion of preimage sampleable functions (PSFs). As the name indi-
cates, these functions can be efficiently inverted given a secret inverting key
in addition to being efficiently computable. Further, the joint distribution of
image-preimage pairs is statistically close, no matter whether the image or the
preimage is sampled first. PSFs also provide collision resistance, as well as pre-
image min-entropy: given any image, the set of possible preimages has ω(log λ)
bits of min-entropy, meaning that a specific preimage can only be predicted with
negligible chance.

The GPV scheme uses a hash function H modeled as a random oracle. It first
hashes the message m using H to obtain a digest h. The signing key includes the
PSF secret key, and the signature is a preimage of h (the signing randomness is
generated using a quantum secure PRF over the message). To verify a signature,
one simply computes its image under the PSF and compares it with the digest.

Notice that in the proof of (post-quantum) blind-unforgeability, the adver-
sary has quantum access to both H and the signing algorithm. To show blind-
unforgeability, we will move to a hybrid experiment where the H and the signing
algorithm Sign are constructed differently, but their joint distribution is statis-
tically close to that in the real execution. To do so, the hybrid will set the
signature for a message m to a random preimage from the domain of the PSF
(note that this procedure is “de-randomized” using the aforementioned PRF).
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To answer an H-oracle query on m, the hybrid will first compute its signature
(i.e., the PSF preimage corresponding to m), and then return the PSF evalu-
ation on this signature (aka preimage) as the output of H(m). Observe that,
in this hybrid, the (H,Sign) oracles are constructed by first sampling preimages
for the PSF, and then evaluating the PSF in the “forward” direction; in con-
trast, in the real game, the (H,Sign) oracles can be interpreted as sampling a
image for PSF first, and then evaluating the PSF in the “reverse” direction using
the inverting key. From the property of PSFs given above, these two approaches
induce statistically-close joint distributions of (H,Sign) on each (classical) query.
A lemma from [18] then shows that these are also indistinguishable to adversaries
making polynomially-many quantum queries.

So far, our proof is identical to that of [18], where GPV is shown to be one-
more unforgeable. This final part is where we differ. In the final hybrid, if the
adversary produces a successful forgery for a message in the blind set, only two
possibilities arise. Since the image of the signature under the PSF must equal
the digest, the signature must either (i) provide a second preimage for h to the
one computed by the challenger, creating a collision for the PSF, or (ii) equal
the one the challenger itself computes, compromising preimage min-entropy of
the PSF. This latter claim requires special attention in [18]. A reduction to
the min-entropy condition is not immediate, since it is unclear if the earlier
quantum queries of A already allow A information about the preimages for the
q + 1 forgeries it outputs. To handle this, [18] prove a lemma ([18, Lemma 2.6])
showing q quantum queries will not allow A to predict q + 1 preimages, given
the min-entropy condition. In contrast, this last argument is superfluous in our
case, since the blind unforgeability game automatically prevents any information
for queries in the blindset from reaching the adversary. We can therefore directly
appeal to the min-entropy condition for case (ii) above.

Since our overall construction and proof for the QROM scheme is similar to
that in [18], we provide this construction and the corresponding proof in the full
version [25] due to space constraints.

2.2 BU Signatures in the Plain Model

We make use of the signature template introduced in [20], which in turn
relies on key-homomorphic techniques as used in [22]. We will refer to their
homomorphic evaluation procedure as Evalbv. The scheme uses the ‘left-right
trapdoor’ paradigm. Namely, the verification key contains a matrix A sam-
pled with a ‘trapdoor’ basis TA, and A0,C0,A1,C1, which can be inter-
preted as BV encodings of 0 and 1 respectively, as well as similar encod-
ings {Bi}i∈[|k|] of the bits of a key k for a bit-PRF (the use of this PRF is
the key innovation in [20]). The corresponding signing key contains TA. To
sign, one computes BV encodings CM1 , . . . ,CMt

of a t-bit message M , then
computes Aprf,m = Evalbv({Bi}i∈[|k|], {Cj}j∈[t],PRF). Two signing matrices
FM,b = [A | Ab −Aprf,m] (∀b ∈ {0, 1}) are then generated (crucially, the adver-
sary cannot tell these apart because of the PRF). A signature is a short non-zero
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vector σ ∈ Z
2m satisfying FM,b ·σ = 0 for any one of the FM,b’s. As pointed out,

TA allows the signer to produce a short vector for either FM,b.
To show unforgeability, one constructs a reduction that (i) replaces the left

matrix with an SIS challenge (thus losing TA), and (ii) replaces the other matri-
ces used to generate the right half with their ‘puncturable’ versions (e.g., Ab now
becomes ARb+G, where Rb is an uniform low-norm matrix and G is the gadget
matrix), with the end result being that the matrix Aprf,m becomes AR′ + G
and FM,b now looks like [A | AR+(b−PRFk(M))G] (with R,R′ being suitable
low-norm matrices). The crucial point is this: having sacrificed TA, the reduc-
tion cannot sign like a normal signer. However it still retains a trapdoor for the
gadget matrix G, and for exactly one of the FM,b, a term in G survives in the
right half. This suffices to obtain a ‘right trapdoor’, and in turn, valid signa-
tures for any M . On the other hand, a forging adversary lacks the PRF key and
so it cannot tell apart FM,0 from FM,1. Thus the forgery must correspond to
FM,PRFk(M) with probability around 1/2, and the reduction can use this solution
to obtain a short solution for the challenge A.

However, the blind-unforgeability setting differs in several meaningful ways.
Here we no longer expect a forgery for any possible message, so the additional
machinery to have two signing matrices for every message becomes superfluous.
Indeed, for us the challenge is to disallow signing queries in the blindset (even
if they are made as part of a query superposition) and to prevent forgeries in
the blindset. Accordingly, we interpret the function of the PRF in a different
manner. We simply have the bit-PRF act as the characteristic function for the
blindset. Then we can extend the approach above to the blind-unforgeability
setting very easily: we use a single signing matrix Fm = [A | A′ −Aprf,m] (where
A′ ‘encodes 1’). In the reduction, after making changes just as before, we obtain
that Fm =

[
A | AR−

(
1−PRFk(M)

)
G

]
. For messages where the PRF is not 1,

we can answer signing queries using the trapdoor for G; For messages where it
is 1, we cannot, and further we can use a forgery for such a message to break the
underlying SIS challenge. In effect, the reduction enforces the requisite blindset
behavior naturally.

A caveat is that the bit-PRF based approach may not correctly model a
blindset, which is a random ε-weight set of messages. Indeed, we require a slight
modification of a normal bit-PRF to allow us the necessary latitude in approxi-
mating sets of any weight ε ∈ [0, 1]. Moreover, due to the adversary’s quantum
access to the signing oracle, this PRF must be quantum-access secure; and to
allow the BV homomorphic evaluation, the PRF must have NC1 implementa-
tion. Fortunately, such a biased bit-PRF can be built by slightly modifying the
PRF from [8], assuming QLWE with super-polynomial modulus.

2.3 Post-quantum Secure Ring Signatures

Defining Post-quantum Security. To reflect the quantum power of an QPT
adversary A, one needs to give A quantum access to the signing oracle in the
security game. While this is rather straightforward for anonymity, the challenge
here is to find a proper notion for unforgeability (thus, here we only focus on the
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latter). Let us first recall the classical unforgeability game for a ring signature.
In this game, A learns a ring R from the challenger, and then can make two
types of queries: (1) by a corruption query (corrupt, i), A can corrupt a member
in R to learn its secret key; (2) by a signing query (sign, i,R∗,m), A can create
a ring R∗, specify a member i that is contained in both R and R∗, and ask the
challenger to sign a message m w.r.t. R∗ using the signing keys of member i.
Notice that R∗ may contain (potentially malicious) keys created by A; but as
long as the member i is in both R∗ and R, the challenger is able to sign m w.r.t.
R∗. The challenger also maintains a set C recording all the members in R that
are corrupted by A. To win the game, A needs to output a forgery (R∗,m∗, Σ∗)
such that R∗ ⊆ R \ C, RS.Verify(R∗,m∗, Σ∗) = 1, and that A never made a
signing query of the form (sign, ·,R∗,m∗).

To consider quantum attacks, we first require that corruption queries should
remain classical. In practice, corruption queries maps to the attack where a ring
member is totally taken over by A. Since ring signatures are a de-centralized
primitive, corrupting a specific party should not affect other parties in the sys-
tem. This situation arguably does not change with A’s quantum power. One
could of course consider “corrupting a group of users in superposition”, but the
motivation and practical implications of such corruptions is unclear, and thus
we defer it to future research. In this work, we restrict ourselves to classical ring
member corruptions.

We will allow A to conduct superposition attacks over the ring and message.
That is, a QPT A can send singing queries of the form (sign, i,

∑
ψR,m |R,m〉),

where the identity i is classical for the same reason above. Given the argument
above, one may wonder why we allow superpositions over R in the signing query.
The reason is that unlike for corruption queries, each signing query specifies a
specific member i to run the signing algorithm for. No matter what R is, this
member will only sign using her own signing key (and this is the only signing key
that she knows), and this has nothing to do with other parties in the system3.
Therefore, superposition attacks over R can be validated just as superposition
attacks over m, thus should be allowed.

The next step is to determine the winning condition for QPT adversaries
in the above quantum unforgeability game. The approach taken by [26] is to
extend the one-more unforgeability from [18] to the ring setting. Concretely,
it is required that the adversary cannot produce (sq + 1) valid signatures by
making only sq quantum sign queries. However, there is a caveat. Recall that the
R∗ in A’s forgery should be a subset of uncorrupted ring members (i.e., R\C). A
natural generalization of the “one-more forgery” approach here is to require that,
with sq quantum signing queries, the adversary cannot produce sq + 1 forgery
signatures, where all the rings contained are subsets of R \ C. This requirement
turns out to be so strict that, when restricted to the classical setting, this one-
more unforgeability seems to be weaker than the standard unforgeability for ring
signatures (more details in Sect. 5.1).

3 Indeed, R may even contain “illegitimate” or “non-existent” members faked by A.
Note that we do not require R ⊆ R.
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Our idea is to extend the blind-unforgeability definition to our setting. Specif-
ically, the challenger will create a blind set BRS

ε by including in each ring-message
pair (R,m) with probability ε. It will then blind the signing algorithm such that
it always returns ⊥ for (R,m) ∈ BRS

ε . In contrast to one-more unforgeability, we
will show that this definition, when restricted to the classical setting, is indeed
equivalent to the standard unforgeability notion for ring signatures.

Our Construction. Our starting point is the LWE-based construction by
Chatterjee et al. [26]. We first recall their construction: the public key consists of
a public key for a public-key encryption scheme PKE and a verification key for a
standard signature scheme Sig, as well as the first round message of a (bespoke)
ZAP argument. To sign a message, one first computes an ordinary signature σ
and then encrypts this along with a hash key hk for a specific (SPB) hash. Two
such encryptions (c1, c2) are produced, along with the second-round message π
of the ZAP proving that one of these encryptions is properly computed using a
public key that is part of the presented ring. The hash key is extraneous to our
concerns here; suffice it to say that it helps encode a ‘hash’ of the ring into the
signature and is a key feature in establishing compactness of their scheme.

To show anonymity, one starts with a signature for i0, then switches the
ciphertexts c1 and c2 in turn to be computed using the public key for i1 while
changing the ZAP accordingly. Semantic security ensures that ciphertexts with
respect to different public keys are indistinguishable, and WI of the ZAP allows
us to switch whichever ciphertext is not being used to prove π, and also to switch
a proof for a ciphertext corresponding to i0 to one corresponding to i1.

Unforgeability in [26] follows from a reduction to the unforgeability of Sig.
Even though their construction uses a custom ZAP that only offers soundness
for (effectively) NP ∩ coNP, they develop techniques in this regard to show that
even with this ZAP, one can ensure that if an adversary produces a forgery with
non-negligible probability, then it also encrypts a valid signature for Sig in one
of c1 or c2 with non-negligible probability. The reduction can extract this using
a corresponding decryption key (which it can obtain during key generation for
the experiment) and use this as a forgery for Sig.

The [26] construction can thus in fact be seen as a compiler from ordinary to
ring signatures assuming LWE. We use their template as a starting point, but
there are significant differences between security notions for standard (classical)
ring signatures, and our (quantum) blind-unforgeability setting. We discuss these
and how to accomodate them next. The very first change that we require here
is to use a blind-unforgeable signature scheme in lieu of Sig, since we reduce
unforgeability to that of Sig.

Next, let us discuss post-quantum anonymity. Here, the adversary can make a
challenge query that contains a superposition over rings and messages. We would
like to use the same approach as above, but of course computational indistigu-
ishability is compromised against superposition queries. Two clear strengthen-
ings are needed compared to the classical scheme: first, we need to use pairwise-
independent hashing to generate signing randomness (to apply quantum oracle
similarity techniques from [18]). Second, we want to ensure statistical similarity
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of the components c1, c2, π (in order to use an aforementioned lemma from [18]
which says that pointwise statistically close oracles are indistiguishable even with
quantum queries). In particular, PKE needs to be statistically close on different
plaintexts, and the WI guarantee for the ZAP needs to be statistical. Fortu-
nately, we can use lossy encryption for the constraint on ciphertexts, and the
ZAP from [26] is already statistical WI.

Finally we turn to blind-unforgeability. Here, the things that change are that
firstly, we need to switch to injective public keys (instead of lossy ones) to carry
over the reduction from the classical case. Further, we forego using SPB hashing,
because our techniques require that we sign the message along with the ring, i.e.
Sig.Sign(sk,R‖m). Thus we end up compromising compactness and using an
SPB would serve no purpose. The reason that we need to sign the ring too has
to do with how we define the blindset and how the challenger must maintain it
in the course of the unforgeability game; this turns out to be more delicate than
expected (see related discussion in [25, Section 6.5]). With the modifications
above, we can eventually reduce the blind-unforgeability to that of Sig.

3 Preliminaries

Notation. For a set X , let 2X denote the power set of X (i.e., the set of all
subsets of X . Let λ ∈ N denote the security parameter. A non-uniform QPT
adversary is defined by {QCλ, ρλ}λ∈N, where {QCλ}λ is a sequence of polynomial-
size non-uniform quantum circuits, and {ρλ}λ is some polynomial-size sequence
of mixed quantum states. For any function F : {0, 1}n → {0, 1}m, “quantum
access” will mean that each oracle call to F grants an invocation of the (n+m)-
qubit unitary gate |x, t〉 
→ |x, t⊕F (x)〉; we stipulate that for any t ∈ {0, 1}∗,
we have t⊕⊥ = ⊥. Symbols

c≈,
s≈ and i.d.== are used to denote computational,

statistical, and perfect indistinguishability respectively. Computational indistin-
guishability in this work is by default w.r.t. non-uniform QPT adversaries.

Quantum Oracle Indistinguishability. We will need the following lemmata.

Lemma 1 ([66]). Let H be an oracle drawn from a 2q-wise independent distri-
bution. Then, the advantage of any quantum algorithm making at most q queries
to H has in distinguishing H from a truly random function is 0.

Lemma 2 ([18]). Let X and Y be sets, and for each x ∈ X , let Dx and D′
x be

distributions on Y such that |Dx − D′
x| ≤ ε for some value ε that is independent

of x. Let O : X → Y be a function where, for each x, O(x) is drawn from
Dx, and let O′(x) be a function where, for each x, O′(x) is drawn from D′(x).
Then any quantum algorithm making at most q queries to either O or O′ cannot
distinguish the two, except with probability at most

√
8C0q3ε.

Blind-Unforgeable Signatures. We recall in Definition 1 the definition for
blind unforgeable signature schemes in [5]. The authors there provide a formal
definition for MACs. We extend it in the natural way to the signature setting.
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Definition 1 (Blind-Unforgeable Signatures). For any security parameter
λ ∈ N, let Mλ denote the message space and Tλ denote the signature space. A
blind-unforgeable signature scheme Sig consists of the following PPT algorithms:

– Gen(1λ) outputs a verification and signing key pair (vk, sk).
– Sign(sk,m; r) takes as input a signing key sk, a message m ∈ Mλ, and

a randomness r (which we avoid specifying unless pertinent). It outputs a
signature σ ∈ Tλ.

– Verify(vk,m, σ) takes as input a verification key vk, a message m ∈ Mλ and
a signature σ ∈ Tλ. It outputs a bit signifying accept (1) or reject (0).

These algorithms satisfy the following requirements:

1. Completeness: For any λ ∈ N, any (vk, sk) in the range of Gen(1λ), and
any m ∈ Mλ, it holds that Pr

[
Verify

(
vk,m,Sign(sk,m)

)
= 1

]
= 1 − negl(λ).

2. Blind-Unforgeability: For any non-uniform QPT adversary A, it holds
w.r.t. Experiment 1 that PQAdvλ

bu(A) := Pr
[
PQExpλ

bu(A) = 1
]

≤ negl(λ).

Experiment 1: Blind-Unforgeability Game PQExpλ
bu(A)

1. A sends a constant 0 ≤ ε ≤ 1 to the challenger;
2. The challenger generates (vk, sk) ← Gen(1λ) and provides vk to A.
3. The challenger defines a blindset BSig

ε ⊆ Mλ as follows: every m ∈ Mλ is put
in BSig

ε independently with probability ε.
4. A is allowed to make poly(λ) quantum queries. For each query, the challenger

samples a (classical) random string r and performs the following mapping:

∑

m,t

ψm,t|m, t〉 �→
∑

m,t

ψm,t|m, t⊕BSig
ε Sign(sk, m; r)〉,

where BSig
ε Sign(sk, m; r) =

{
⊥ if m ∈ BSig

ε

Sign(sk, m; r) otherwise
.

5. Finally, A outputs (m∗, σ∗); the challenger checks if: (1) m∗ ∈ BSig
ε ; (2)

Verify(vk, m∗, σ∗) = 1. If so, the experiment outputs 1; otherwise, it outputs 0.

3. Shortness (Optional):The signature scheme is short if the signature size
is at most a polynomial on the security parameter and the logarithm of the
message size.

Remark 1 (One randomness to rule them all). 4The signing algorithm in our
definition samples signing randomness once per every query, as opposed to sam-
pling signing randomness for every classical message in the superposition. This
was established as a reasonable definitional choice in [18], where they observed
that one could “de-randomize” the signing procedure by simply using a quantum
PRF to generate randomness for each possible message in superposition, and use
this for signing. We stick with this convention when defining post-quantum secu-
rity for both ordinary signatures (Definition 1) and ring signatures (Definitions
4 and 5).
4 Inspired by J. R. R. Tolkien. Indeed, this is a “ring” signature paper.
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Remark 2. We let the adversary choose ε. This is equivalent to quantifying over
all values of ε as in the definition in [5].

4 Blind-Unforgeable Signatures in the Plain Model

Building Blocks. We assume familiarity with standard lattice-based crypto-
graphic notions and procedures. Here we will recall certain techniques and prop-
erties to be directly used in our plain model construction. For standard lattice-
related concepts (e.g., parameters, hardness, trapdoors), see the full version [25,
Appendix A.1].

We denote the Gram-Schmidt ordered orthogonalization of a matrix A ∈
Z

m×m by Ã. For a vector u, we let ||u|| denote its 
2 norm. For a matrix
R ∈ Z

k×m, we define two matrix norms: ||R|| denotes the 
2 norm of the largest
column of R. Correspondingly, ||R||2 denotes the operator norm of R, defined
as ||R||2 = supx∈Rm+1 ||Rx||. For a prime q, a modular matrix A ∈ Z

n×m
q and

vector u ∈ Z
n
q , we define the m-dimensional (full rank) lattice Λu

q (A) = {e ∈
Z

m : Ae = u (mod q)}. In particular, Λ⊥
q (A) denotes the lattice Λ0

q (A).

Lattice Sampling Algorithms. Our construction uses the ‘left-right trapdoors’
framework introduced in [2,19] which uses two sampling algorithms SampleLeft
and SampleRight. The algorithm SampleLeft works as follows:

– Inputs: A full-rank matrix A ∈ Z
n×m
q and a short basis TA of Λ⊥

q (A), along
with a matrix B ∈ Z

n×m1
q , a vector u ∈ Z

n
q , and a Gaussian parameter s.

– Output: Let F = [A | B]. SampleLeft outputs a vector d ∈ Z
m+m1 in Λu

q (F).

Theorem 1 (SampleLeft Closeness [2,24]). Let q > 2, m > n and s >

||T̃A|| ·ω(
√

log(m + m1)). Then SampleLeft(A,B,TA,u, s) outputs d ∈ Z
m+m1

distributed statistically close to DΛu
q (F),s.

The algorithm SampleRight works as follows:

– Inputs: Matrices A ∈ Z
n×k
q and R ∈ Z

k×m
q , a full-rank matrix B ∈ Z

n×m
q , a

short basis TB of Λ⊥
q (B), a vector u ∈ Z

n
q , and a Gaussian parameter s.

– Output: Let F = [A | AR + B]. It outputs a vector d ∈ Z
m+m1 in Λu

q (F).

Theorem 2 (SampleRight Closeness [2]). Let q > 2, m > n and s > ||T̃B|| ·
ω(

√
log m). Then SampleRight(A,B,R,TB,u, s) outputs d ∈ Z

m+k distributed
statistically close to DΛu

q (F),s.

Random Sampling Related. The following is a simple corollary of [2, Lemma 4]
(see the full version [25, Appendix A.2] for more details).

Corollary 1. Suppose that m > (n + 1) log2 q + ω(log n) and that q > 2 is
a prime. Let R be an m × k matrix chosen uniformly from {−1, 1}m×k mod q
where k = k(n) is polynomial in n. Let A′ ∈ Z

n×m
q be sampled from a distribution

statistically close to uniform over Z
n×m
q . Let R be an m × k matrix chosen



a Note on the Post-quantum Security of (Ring) Signatures 419

uniformly from {−1, 1}m×k mod q where k = k(n) is polynomial in n. Let B
be chosen uniformly in Z

n×k
q . Then for all vectors w ∈ Z

m
q , the distributions

(A′,A′R,R�w) and (A′,B,R�w) are statistically close.

Key-Homomorphic Evaluation. We briefly recall the matrix key-homomorphic
evaluation algorithm, as found in [16,22,39] (see the full version [25, Appendix
A.3] for more details). This template evaluates NAND circuits, gate by gate,
in a homomorphic manner. For a NAND gate g(u, v;w) with input wires u, v
and output wire w, we have (inductively) matrices Au = ARu + xuG, and
Av = ARv + xvG where xu and xv are the input bits of u and v, and the
evaluation algorithm computes:

Aw = G − Au · G−1(Av) = G − (ARu + xuG) · G−1(ARv + xvG) = ARg + (1 − xuxv)G,

where 1 − xuxv := NAND(xu, xv), and Rg = −Ru · G−1(Av) − xuRv has low
norm if both Ru and Rv have low norm.

Biased Bit-QPRF. We need a quantum-access secure PRF having a biased single-
bit output. It should also be implementable by NC1 circuits. Let us first present
the definition.

Definition 2 (Biased Bit-QPRFs). A biased bit-QPRF on domain {0, 1}n(λ)

consists of:

– Gen(1λ, ε): takes as input a constant ε ∈ [0, 1], outputs a key kε;
– PRFkε

(x): takes as input x ∈ {0, 1}n(λ), outputs a bit b ∈ {0, 1},
such that for any ε ∈ [0, 1] and any QPT A having quantum access to its oracle,

∣
∣Pr

[
kε ← Gen(1λ, ε) : APRFkε (·) = 1

] − Pr
[
F

$←− F(
n(λ), ε

)
: AF (·) = 1

]∣
∣ ≤ negl(λ),

where F
(
n(λ), ε

)
is the collection of all functions from {0, 1}n(λ) to {0, 1} that

output 1 with probability ε.

It is known that the NC1 PRF from [8] is quantum-access secure (i.e., a
QPRF) [65]. It can be made biased by standard techniques (e.g., using the stan-
dard QPRF to “de-randomize” a ε-biased coin-tossing circuit). Note that the [8]
PRF relies on the quantum hardness of LWE with super-polynomial modulus.

Our Construction. Our signature scheme uses a biased bit QPRF PRF
whose input space X corresponds to our message space M, and the algorithms
SampleLeft, SampleRight given as in Theorem 1 and Theorem 2 respectively, and
TrapGen that can sample matrices in Z

n×m
q statistically close to uniform, along

with a corresponding ‘short’ or ‘trapdoor’ basis for the associated lattice. The
construction is as follows:

Construction 1: Blind-Unforgeable Signatures in the Plain Model
Set message length t(λ) and row size n(λ) as free parameters (polynomial in λ). PRF
key size is set as k(λ), and the depth for CPRF is given by d(λ). We set m = n1+η for
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proper running of TrapGen, and sigsizeλ = s
√

2m for the validity of SampleLeft output
(to ensure completeness). Set s = O(4dm3/2)ω(

√
log m) to ensure statistical closeness

of SampleLeft and SampleRight, and correspondingly set β = O(16dm7/2)ω(
√

log m)

and q = O(16dm4)
(
ω(

√
log m)

)2
to have an overall reduction to an appropriately

hard instance of SIS. For further details about these choices, see the full version [25,
Section 5.3].

Gen(1λ):

1. Sample a matrix A along with a ‘trapdoor’ basis TA for Λ⊥
q (A) using TrapGen.

2. Sample a matrix A′, ‘PRF key’ matrices B1, . . . ,Bk, and ‘PRF input’ matrices
C0,C1 uniformly from Z

n×m
q (k is the PRF key length).

3. Fix the Gaussian width parameter s as given in parameter selection.
4. Fix a Boolean circuit description CPRF of the algorithm PRF(·)(·).
5. Output vk = (A,A′, {Bi}k

i=1, {C0,C1},PRF, s,CPRF) and sk = TA.

Sign(sk, vk, M): let (M1, . . . , Mt) ∈ {0, 1}t be the bit-wise representation of M .

1. Run the [22] evaluation algorithm Evalbv to homomorphically evaluate the circuit
CPRF using the ‘encoded’ PRF key bits {Bi}i∈[k] and message bits {CMj }j∈[t].
This yields Aprf,m := Evalbv(CPRF, {Bi}i∈[k], {CMj }j∈[t]) ∈ Z

n×m
q .

2. Set Fm := [A | A′ − Aprf,m]; Use SampleLeft to obtain dm ← DΛ⊥
q (Fm),s

.

3. Output σ = dm ∈ Z
2m
q .

Verify(vk, M, σ):

1. Compute Aprf,m, Fm as before.
2. Check that σ ∈ Z

2m
q , σ �= 0, and ||σ|| ≤ sigsizeλ. If it fails, output 0.

3. If Fm · σ = 0 mod q, output 1, otherwise output 0.

Proof of Security. Completeness follows straightforwardly from the correctness
of SampleLeft (Theorem 1) for DΛ⊥

q (F),s. In the following, we prove BU-security.

Theorem 3. Let λ denote the security parameter, and PRF be a biased bit
QPRF as defined in Definition 2 above. If the parameters n,m, q, β, s, d are
picked as discussed above, and the SISq,β,n,m problem is hard for QPT adver-
saries, then our signature scheme Sig constructed as above, with the indicated
parameters, satisfies Blind-Unforgeability as in Definition 5.

Proof. Consider a QPT A that is able to produce forgeries w.r.t. Sig in the blind-
unforgeability challenge. Our proof proceeds using a series of hybrid experiments.
In the final hybrid we show a reduction from an adversary producing succesful
forgeries to the hardness of SISq,β,n,m. The hybrids are as follows:

Hybrid H0: This is the blind-unforgeability game (Experiment 1). Namely, for
an adversary-specified ε, the challenger manually samples an ε-weight set Bε

over messages, and does not answer queries in Bε. Signing and verification keys
are chosen just as in the ordinary signing procedure.
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Hybrid H1: This hybrid is identical to the previous one, except that we change
the ordinary key generation into the following:

1. Sample A with a ‘trapdoor’ basis TA for Λ⊥
q (A) using TrapGen as before.

2. Sample ‘low-norm’ matrices: R′
A, {RBi

}k
i=1,RC0,RC1

$←− {−1, 1}m×m.
3. Let PRF and CPRF be as before.
4. Sample a PRF key kε ← PRF.Gen(1λ, ε), where kε = s1, . . . , sk (i.e. has length

k).
5. Set A′ = ARA′ + G, where G the gadget matrix G, which has a publicly-

known trapdoor T̃G.
6. Set Cb = ARCb

+bG for b ∈ {0, 1}, and sample Bi
$←− Z

n×m
q for every i ∈ [k].

7. Fix the Gaussian width parameter s as before.
8. Output vk = (A,A′, {Bi}k

i=1, {C0,C1}, s,PRF,CPRF), and sk = (TA, kε).

Note that while this hybrid generates a key kε, it never uses it.

H0
s≈ H1: The only thing that changes (w.r.t. A) is the distribution of the various

components (A′,C0,C1) of the verification key handed out by the challenger.
However, by Corollary 1 these distributions are all statistically close to the corre-
sponding distributions in H0. Note that the verification key is picked at the start
of the challenge and provided to A, so there is no scope for A to have quantum
access to these component distributions. Thus the outputs in these hybrids are
statistically close.

Hybrid H2: This hybrid is identical to the previous one, except that we change
how the challenger picks the blindset—Instead of manually sampling Bε as a
random ε-weight set, it now sets Bε to be the set of messages M where PRFkε

(M)
is 1 (note that the challenger now possesses kε as part of sk, and can compute
PRFkε

(·)). Observe that the challenger in this hybrid is now efficient.

H1
c≈ H2: Note that setup and key generation in H2 is identical to that in H1—In

particular, the adversary learns no information about the key kε. The indistin-
guishability between H1 and H2 then follows immediately from the security of
the biased bit-QPRF (Definition 2).

Hybrid H3: This hybrid is identical to the previous one, except that we change
how the matrices Bi’s (in Step 6) are generated. Namely, we now set

∀i ∈ [k], Bi := ARBi
+ si · G.

(Recall that si is the i-th bit of the kε generated in Step 4.)

H2
s≈ H3: The only things that change between these hybrids are the matrices

{Bi}i∈[k]. Again, using Corollary 1 the distributions for Bi for each i ∈ [k] are
all statistically close to the corresponding distributions in H2, and just as in the
similarity argument between H2 and H3, we can conclude that these hybrids too
have indistinguishable outputs.
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Hybrid H4: Observe that, starting from H1, we have:

Fm = [A | A′ − Aprf,m] =
[
A | A′ − Evalbv(CPRF, {Bi}i∈[k], {CMj

}j∈[t])
]

=
[
A | A′ −

(
ARprf,m + PRFkε

(M) · G
)]

=
[
A | A(RA′ − Rprf,m) +

(
1 − PRFkε

(M)
)

· G
]
.

In this hybrid, we switch to using SampleRight to answer signing queries, instead
of using SampleLeft. That is, we run SampleRight using TG, the publicly available
trapdoor for G. Note this means that now the challenger cannot answer queries
where the ‘right half’ of Fm does not include G, i.e., PRFkε

(M) = 1. But due to
the way H2 generate the blindset, such a query is anyway answered with “⊥”.

H3
c≈ H4: We first show that these two hybrids answer signature queries for

any classical query M in a statistically indistinguishable manner. For any query
M , there are two cases: (1) if PRFkε

(M) = 1, the challengers in both H3 and
H4 return ⊥. In this case, these distributions are identical. (2) Else, we have
PRFkε

(M) = 0. Since FM is computed identically in both hybrids, and by The-
orem 1 and 2 both SampleLeft and SampleRight sample from distributions sta-
tistically close to DΛ⊥

q (Fm),s, i.e., they are also statistically close to each other.
Thus overall the distributions of signatures returned in H3 and H4 are statisti-
cally close to each other, say with less than distance Δ(λ) (which is negligible
in λ). Now since A is a quantum machine making at most polynomially (say
q(λ)) many quantum queries. Then, we can use Lemma 2 to conclude that A
distinguishes between H3 and H4 with probability at most

√
8C0q3Δ, which is

negligible.

Hybrid H5: In this hybrid, the challenger no longer samples A using TrapGen.
Instead, it samples A uniformly from Z

n×m
q .

H4
s≈ H5: This follows immediately from the property of the lattice trapdoor

algorithm TrapGen.

Reduction to QSIS. We can now describe our reduction R in this hybrid:

1. Asks for and recieves a uniform matrix in Z
n×m
q as the SISq,β,n,m challenge.

2. Sets A to be this matrix (instead of sampling A by itself).
3. When the adversary returns a forgery (M∗, σ∗), R checks if this is valid, i.e.,

that (i) M∗ ∈ Bε, (ii) σ∗ ∈ Z
2m
q , (iii) σ∗ �= 0, (iv) Fm∗ · σ∗ = 0 mod q and

(v) ||σ|| ≤ sigsizeλ. If any of these checks fail, it aborts.
4. Represent σ∗ as [d�

1 | d�
2 ]�, with d1,d2 ∈ Z

m
q . R computes e = d1 + Rd2

where R = RA′ − Rprf,m (we will use this shorthand going forward), and
presents e as its solution to the SIS challenge A.

Now we can prove that e is indeed an SIS solution with non-negligible probability
by an argument very similar as in the final reduction for [20, Theorem 3.1]. Due
to space constraints, we present it in the full version [25, Section 5.4]. �
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5 Post-quantum Ring Signatures

5.1 Definitions

Classical Ring Signatures. We start by recalling the classical definition of
ring signatures [7,12].

Definition 3 (Ring Signature). A ring signature scheme RS is described by
a triple of PPT algorithms (Gen,Sign,Verify) such that:

– Gen(1λ, N): on input a security parameter 1λ and a super-polynomial5 N

(e.g., N = 2log
2 λ) specifying the maximum number of members in a ring,

output a verification and signing key pair (VK,SK).
– Sign(SK,R,m): given a secret key SK, a message m ∈ Mλ, and a list of

verification keys (interpreted as a ring) R = (VK1, · · · ,VK�) as input, and
outputs a signature Σ.

– Verify(R,m,Σ): given a ring R = (VK1, . . . ,VK�), message m ∈ Mλ and a
signature Σ as input, outputs either 0 (rejecting) or 1 (accepting).

These algorithms satisfy the following requirements:

1. Completeness: for all λ ∈ N, 
 ≤ N , i∗ ∈ [
], and m ∈ Mλ, it holds
that ∀i ∈ [
] (VKi,SKi) ← Gen(1λ, N) and Σ ← Sign(SKi∗ ,R,m) where
R = (VK1, . . . ,VK�), we have Pr[RS.Verify(R,m,Σ) = 1] = 1, where the prob-
ability is taken over the random coins used by Gen and Sign.

2. Anonymity: For any Q = poly(λ) and any PPT adversary A, it holds w.r.t.
Expr. 2 that Advλ,Q

Anon(A) :=
∣
∣ Pr

[
Expλ,Q

Anon(A) = 1
]
− 1/2

∣
∣ ≤ negl(λ).

Experiment 2: Classical Anonymity Expλ,Q
Anon(A)

1. For each i ∈ [Q], the challenger generates key pairs (VKi, SKi) ←
Gen(1λ, N ; ri). It sends {(VKi, SKi, ri)}i∈[Q] to A;

2. A sends a challenge to the challenger of the form (i0, i1,R, m).a The challenger
checks if VKi0 ∈ R and VKi1 ∈ R. If so, it samples a uniform bit b, computes
Σ ← Sign(SKib ,R, m), and sends Σ to A.

3. A outputs a guess b′. If b′ = b, the experiment outputs 1, otherwise 0.

——————
a We stress that R might contain keys that are not generated by the challenger in
the previous step. In particular, it might contain maliciously generated keys.

3. Unforgeability: for any Q = poly(λ) and any PPT adversary A, it holds
w.r.t. Experiment 3 that Advλ,Q

Unf(A) := Pr
[
Expλ,Q

Unf(A) = 1
]

≤ negl(λ).

5 The N has to be super-polynomial to support rings of arbitrary polynomial size.
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Experiment 3: Classical Unforgeability Expλ,Q
Unf(A)

1. For each i ∈ [Q], the challenger generates (VKi, SKi) ← Gen(1λ, N ; ri), and
stores these key pairs along with their corresponding randomness. It then sets
VK = {VK1, . . . ,VKQ} and initializes a set C = ∅.

2. The challenger sends VK to A.
3. A can make polynomially-many queries of the following two types:

– Corruption query (corrupt, i): The challenger adds VKi to the set C
and returns the randomness ri to A.

– Signing query (sign, i,R, m): The challenger first checks if VKi ∈ R. If
so, it computes Σ ← Sign(SKi,R, m) and returns Σ to A. It also keeps a
list of all such queries made by A.

4. Finally, A outputs a tuple (R∗, m∗, Σ∗). The challenger checks if: (1) R∗ ⊆
VK \ C; (2) A never made a signing query of the form (sign, ·,R∗, m∗); (3)
Verify(R∗, m∗, Σ∗) = 1. If so, the experiment outputs 1; otherwise, 0.

We mention that the unforgeability and anonymity properties defined in
Definition 3 correspond respectively to the notions of unforgeability with insider
corruption and anonymity with respect to full key exposure presented in [12].

Defining Post-quantum Security. We aim to build a classical ring signature
that is secure against adversaries making superposition queries to the signing
oracle. Formalizing the security requirements in this scenario is non-trivial. An
initial step toward this direction has been taken in [26]. But their definition
has certain restrictions (discussed below). In the following, we develop a new
definition building on ideas from [26].

Post-quantum Anonymity. Recall that in the classical anonymity game (Exper-
iment 2), the adversary’s challenge is a quadruple (i0, i1,R,m). To define post-
quantum anonymity, a natural attempt is to allow the adversary to send a super-
position over components of quadruple, and to let the challenger respond using
the following unitary mapping6:

∑

i0,i1,R,m,t

ψi0,i1,R,m,t |i0, i1,R, m, t〉 	→
∑

i0,i1,R,m,t

ψi0,i1,R,m,t

∣∣i0, i1,R, m, t ⊕ Sign(SKib
, m,R; r)

〉
.

However, as observed in [26], this will lead to an unsatisfiable definition due
to an attack from [18]. Roughly speaking, the adversary could use classical values
for R, m, and i1, but she puts a uniform superposition of all valid identities in the
register for i0. After the challenger’s signing operation, observe that if b = 0, the
last register will contain signatures in superposition (as i0 is in superposition); if
b = 1, it will contain a classical signature (as i1 is classical). These two cases can
be efficiently distinguished by means of a Fourier transform on the i0’s register
followed by a measurement. Therefore, to obtain an achievable notion, we should
not allow superpositions over (i0, i1).

6 Of course, the challenger also needs to check if VKi0 ∈ R and VKi1 ∈ R. But we can
safely ignore this for our current discussion.
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Now, A only has the choice to put superpositions over R and m. The definition
in [26] further forbids A from putting superpositions over R. But this is only
because they fail to prove security if superposition attacks on R is allowed.
Indeed, they leave open the problem to construct a scheme that protects against
superposition attacks on R. In this work, we solve this problem: our definition
allows superposition attacks on both R and m.

Definition 4 (Post-quantum Anonymity). Consider a triple of PPT algo-
rithms RS = (Gen,Sign,Verify) that satisfies the same syntax as in Definition
3. RS achieves post-quantum anonymity if for any Q = poly(λ) and any QPT
adversary A, it holds w.r.t. Experiment 4 that

PQAdvλ,Q
Anon(A) :=

∣
∣ Pr

[
PQExpλ,Q

Anon(A) = 1
]
− 1/2

∣
∣ ≤ negl(λ).

Experiment 4: Post-quantum Anonymity PQExpλ,Q
Anon(A)

1. For each i ∈ [Q], the challenger generates key pairs (VKi, SKi) ←
RS.Gen(1λ, N ; ri). The challenger sends {(VKi, SKi, ri)}i∈[Q] to A;

2. A sends (i0, i1) to the challenger, where both i0 and i1 are in [Q];
3. A’s challenge query is allowed to be a superposition of rings and messages. The

challenger picks a random bit b and a random string r. It signs the message using
SKib and randomness r, while making sure that VKi0 and VKi1 are indeed in the
ring specified by A. Formally, the challenger implements the following mapping:

∑

R,m,t

ψR,m,t |R, m, t〉 �→
∑

R,m,t

ψR,m,t |R, m, t⊕f(R, m)〉 ,

where f(R, m) :=

{
RS.Sign(SKib , R, m; r) if VKi0 ,VKi1 ∈ R

⊥ otherwise
.

4. A outputs a guess b′. If b′ = b, the experiment outputs 1, otherwise 0.

Post-quantum Unforgeability. In the classical unforgeability game (Experiment
3), A can make both corrupt and sign queries. As discussed in Sect. 2.3, we do
not consider quantum corrupt queries, or superposition attacks over the identity
in A’s sign queries. We also remark that in the unforgeability game, [26] does not
allow superpositions over the ring. Instead of a definitional issue, this is again
only because they are unable to prove the security of their scheme if superposition
attacks on the ring is allowed. In contrast, our construction can be proven secure
against such attacks; thus, this restriction is removed from our definition.

To define quantum unforgeability, [26] adapts one-more unforgeability [18]
to the ring setting: they require that, with sq quantum signing queries, the
adversary cannot produce sq + 1 signatures, where all the rings are subsets of
VK \ C. This definition, when restricted to the classical setting, seems to be
weaker than the standard unforgeability in Definition 3. That is, in the classical
setting, any RS satisfying the unforgeability in Definition 3 is also one-more
unforgeable; but the reverse direction is unclear (we provide more discussion in
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[25, Appendix B]). Instead, our definition extends the blind-unforgeability for
ordinary signatures (Definition 1) to the ring setting. We present this version
in Definition 5. In contrast to the “one-more” unforgeability, we will show in
Lemma 3 that, when restricted to the classical setting, this blind-unforgeability
for ring signatures is indeed equivalent to the standard existential unforgeability
in Definition 3. Its proof is almost identical to [5, Proposition 2]. Due to space
constraints, we put it in [25, Section 6.1.2].

Definition 5 (Post-quantum Blind-Unforgeability). Consider a triple of
PPT algorithms RS = (Gen,Sign,Verify) that satisfies the same syntax as in
Definition 3. For any security parameter λ, let Rλ and Mλ denote the ring
space and message space, respectively. RS achieves blind-unforgeability if for any
Q = poly(λ) and any QPT adversary A, it holds w.r.t. Experiment 5 that

PQAdvλ,Q
bu (A) := Pr

[
PQExpλ,Q

bu (A) = 1
]

≤ negl(λ).

Experiment 5: Post-quantum Blind-Unforgeability PQExpλ,Q
bu (A)

1. A sends a constant 0 ≤ ε ≤ 1 to the challenger;
2. For each i ∈ [Q], the challenger generates (VKi, SKi) ← Gen(1λ, N ; ri), and stores

these key pairs along with their corresponding randomness. It then sets VK =
{VK1, . . . ,VKQ} and initializes a set C = ∅; The challenger sends VK to A;

3. The challenger defines a blindset BRS
ε ⊆ 2Rλ ×Mλ: every pair (R, m) ∈ 2Rλ ×Mλ

is put in BRS
ε with probability ε;

4. A can make polynomially-many queries of the following two types:
– Classical corruption query (corrupt, i): The challenger adds VKi to the set

C and returns the randomness ri to A.
– Quantum Signing query (sign, i,

∑
ψR,m,t |R, m, t〉): That is, A is allowed

to query the signing oracle on some classical identity i and superpositions over
rings and messages. The challenger samples a random string r and performs:

∑

R,m,t

ψR,m,t |R, m, t〉 �→
∑

R,m,t

ψR,m,t

∣∣∣R, m, t⊕BRS
ε f(R, m)

〉
,

where BRS
ε f(R, m) :=

{
⊥ if (R, m) ∈ BRS

ε

f(R, m) otherwise
, and

f(R, m) :=

{
RS.Sign(SKi, m,R; r) if VKi ∈ R

⊥ otherwise
.

5. Finally, A outputs (R∗, m∗, Σ∗). The challenger checks if: (1) R∗ ⊆ VK \ C; (2)
Verify(R∗, m∗, Σ∗) = 1; (3) (R∗, m∗) ∈ BRS

ε . If so, it outputs 1; otherwise, 0.

Lemma 3. Restricted to (classical) QPT adversaries, a ring signature RS
scheme is blind-unforgeable (Definition 5) if and only if it satisfies the unforge-
ability requirement in Definition 3.

To conclude, we present the complete definition for quantum ring signatures.
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Definition 6 (Post-quantum Secure Ring Signatures). A post-quantum
secure ring signature scheme RS is described by a triple of PPT algorithms
(Gen,Sign,Verify) that share the same syntax as in Definition 3. Moreover, they
also satisfy the completeness requirement in Definition 3, the post-quantum
anonymity in Definition 4, and the post-quantum blind-unforgeability as in Def-
inition 5.

5.2 Building Blocks

Lossy PKEs with Special Properties. We need the following lossy PKE.

Definition 7 (Special Lossy PKE). For any security parameter λ ∈ N, let
Mλ denote the message space. A special lossy public-key encryption scheme LE
consists of the following PPT algorithms:

– MSKGen(1λ, Q), on input a number Q ∈ N, outputs
(
{pki}i∈[Q],msk

)
. We

call pki’s the injective public keys, and msk the master secret key.
– MSKExt(msk, pk), on input a master secret key msk and an injective public

key pk, outputs a secret key sk.
– KSamls(1λ) outputs key pkls, which we call lossy public key.
– Valid(pk, sk), on input a public pk and a secret key sk, outputs either 1 (accept-

ing) or 0 (rejecting).
– RndExt(pk) outputs a r which we call extracted randomness.
– Enc(pk,m), on input a public key pk, and a message m ∈ Mλ, outputs ct.
– Dec(sk, ct), on input a secret key sk and a ciphertext ct, outputs m.

These algorithms satisfy the following properties:

1. Completeness. For any λ ∈ N, any (pk, sk) s.t. Valid(pk, sk) = 1, and any
m ∈ Mλ, it holds that Pr

[
Dec

(
sk,Enc(pk,m)

)
= m

]
= 1.

2. Lossiness of lossy keys. For any pkls in the range of KSamls(1λ) and any
m0,m1 ∈ Mλ, it holds that

{
Enc(pkls,m0)

}
λ∈N

s≈
{
Enc(pkls,m1)

}
λ∈N

.
3. Completeness of Master Secret Keys: for any Q = poly(λ), it holds that

Pr

[
({pki}i∈[Q],msk

) ← MSKGen(1λ, Q) :
∀i ∈ [Q],Valid(pki, ski

)
= 1,

where ski := MSKExt
(
msk, pki)

]

≥ 1 − negl(λ).

4. IND of MSKGen/KSamls mode: For any Q = poly(λ), the following two
distributions are computationally indistinguishable:
– ∀i ∈ [Q], sample pki ← KSamls(1λ; ri), then output {pki, ri}i∈[Q];
– Sample

(
{pki}i∈[Q],msk

)
← MSKGen(1λ, Q) and output{

pki,RndExt(pki)
}

i∈[Q]
.

5. Almost-Unique Secret Key: For any Q = poly(λ), it holds that

Pr

[
({pki}i∈[Q], msk

) ← MSKGen(1λ
, Q) :

There exist i ∈ [Q] and sk′
i such that

sk′
i �= MSKExt(msk, pki) ∧ Valid(pki, sk′

i) = 1

]
= negl(λ).
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We propose an instantiation of such a lossy PKE using dual mode LWE
commitments [41]. In lossy (statistically hiding) mode, the public key consists
of a uniformly sampled matrix A and a message m is encrypted by computing
AR + mG, where R is a low-norm matrix and G is the gadget matrix. Note
that the random coins used to sample A simply consists of the matrix A itself.
Furthermore, we can switch A to be an LWE-matrix (using some secret vector
s) to make the encryption scheme injective. Such a modification is computation-
ally indistinguishable by an invocation of the LWE assumption. Note that this is
true also in the presence of the output of RndExt(A), since the algorithm simply
returns A. Furthermore, by setting the dimensions appropriately, the secret s is
uniquely determined by A with overwhelming probability. Finally, we note that
we can define a master secret key for all keys in injective mode using a simple
trick: sample a PRF key k and sample the i-th key pair using PRF(k, i) as the
random coins. It is not hard to see that the distribution of public/secret keys
is computationally indistinguishable by the pseudorandomness of PRF. Further-
more, given k one can extract the i-th secret key simply by recomputing it.

ZAPs for Super-Complement Languages. As mentioned in Sect. 2.3, [26]
uses a ZAP (for NP ∩ coNP) to prove a statement that the (ring) signature
contains a ciphertext of a valid signature w.r.t. the building-block signature
scheme. Let us denote this language as L. In the security proof, they need to
argue that the adversary cannot prove a false statement x∗ /∈ L. However, this
L is not necessarily in coNP; thus, there may not exist a non-witness w̃ for the
fact that x∗ /∈ L. Therefore, it is unclear how to use a ZAP for NP ∩ coNP
here. To address this issue, the authors of [26] propose the notion of super-
complement languages. This notion considers a pair of NP languages (L, L̃) such
that (x ∈ L̃) ⇒ (x /∈ L). Their ZAP achieves soundness such that the cheating
prove cannot prove x ∈ L (except with negligible probability) once there exists
a “non-witness” w̃ s.t. (x, w̃) ∈ RL̃. The L̃ is set to the language the captures
some necessary conditions for any valid forgery. Thus, a winning adversary will
break the soundness of the ZAP, leading to a contradiction.

In the following, we present the original definition of super-complement lan-
guages. But we will only need a special case of it (see Remark 3).

Definition 8 (Super-Complement [26]). Let (L, L̃) be two NP languages
where the elements of L̃ are represented as pairs of bit strings. We say L̃ is
a super-complement of L, if L̃ ⊆ ({0, 1}∗ \ L) × {0, 1}∗. I.e., L̃ is a super com-
plement of L if for any x = (x1, x2), x ∈ L̃ ⇒ x1 �∈ L.

Notice that, while the complement of L might not be in NP, it must hold that
L̃ ∈ NP. The language L̃ is used to define the soundness property. Namely,
producing a proof for a statement x = (x1, x2) ∈ L̃, should be hard. We also
use the fact that L̃ ∈ NP to mildly strengthen the soundness property. In more
detail, instead of having selective soundness where the statement x ∈ L̃ is fixed
in advance, we now fix a non-witness w̃ and let the statement x be adaptively
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chosen by the malicious prover from all statements which have w̃ as a witness
to their membership in L̃.

Remark 3. Our application only needs a special case of the general form given
in Definition 8—we will only focus on L̃ where the x2 part is an empty string.
Formally, we consider the special case where L̃ ⊆ {0, 1}∗\L (i.e., x ∈ L̃ ⇒ x /∈ L).

We now define ZAPs for super-complement languages. We remark that the
original definition (and construction) in [26] captures the general (L, L̃) pairs
defined in Definition 8. Since we only need the special case in Remark 3, we will
define the ZAP only for this case.

Definition 9 (ZAPs for Special Super-Complement Languages). Let
L, L̃ ∈ NP be the special super-complement language in Remark 3. Let R and R̃
denote the NP relations corresponding to L and L̃ respectively. Let {Cn,�}n,� and
{C̃n,�̃}n,�̃ be the NP verification circuits for L and L̃ respectively. Let d̃ = d̃(n, 
̃)

be the depth of C̃n,�̃. A ZAP for (L, L̃) is a tuple of PPT algorithms (V,P,Verify)
having the following interfaces (where 1n, 1λ are implicit inputs to P, Verify):

– V(1λ, 1n, 1�̃, 1D̃): On input a security parameter λ, statement length n for L,
witness length 
̃ for L̃, and NP verifier circuit depth upper-bound D̃ for L̃,
output a first message ρ.

– P
(
ρ, x, w

)
: On input a string ρ, a statement x ∈ {0, 1}n, and a witness w

such that (x,w) ∈ R, output a proof π.
– Verify

(
ρ, x, π

)
: On input a string ρ, a statement x, and a proof π, output

either 1 (accepting) or 0 (rejecting).

The following requirements are satisfied:

1. Completeness: For every x ∈ L, every 
̃ ∈ N, every D̃ ≥ d̃(|x|, 
̃), and every
λ ∈ N, it holds that

Pr
[
ρ ← V(1λ, 1|x|, 1�̃, 1D̃);π ← P(ρ, x, w) : Verify

(
ρ, x, π

)
= 1

]
= 1.

2. Public coin: V(1λ, 1n, 1�̃, 1D̃) simply outputs a uniformly random string.
3. Selective non-witness adaptive-statement soundness: For any non-

uniform QPT machine P ∗
λ , any n, D̃ ∈ N, and any non-witness w̃ ∈ {0, 1}∗,

Pr
[

ρ ← V(1λ, 1n, 1|w̃|, 1D̃);(
x, π∗) ← P ∗

λ (ρ)
:
Verify(ρ, x, π∗) = 1 ∧
D̃ ≥ d̃(|x|, |w̃|) ∧ (x, w̃) ∈ R̃

]
≤ negl(λ).

4. Statistical witness indistinguishability: For every (possibly unbounded)
“cheating” verifier V ∗ = (V ∗

1 , V ∗
2 ) and every n, 
̃, D̃ ∈ N, the probabilities

Pr[V ∗
2 (ρ, x, π, ζ) = 1 ∧ (x,w) ∈ R ∧ (x,w′) ∈ R]

in the following two experiments differ only by negl(λ):
– in experiment 1, (ρ, x, w,w′, ζ) ← V ∗

1 (1λ, 1n, 1�̃, 1D̃), π ← P(ρ, x, w);
– in experiment 2, (ρ, x, w,w′, ζ) ← V ∗

1 (1λ, 1n, 1�̃, 1D̃), π ← P(ρ, x, w′).

Lemma 4. ([26]). Assuming QLWE, there exist ZAPs as per Definition 9 for
any super-complement language as per Definition 8.
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5.3 Construction

Our construction, shown in Construction 2, relies on the following building
blocks: (1) pair-wise independent functions; a Sig satisfying Definition 1; a LE
satisfying Definition 7; a ZAP satisfying Definition 9.

We remark that the RS.Sign algorithm runs ZAP on a special super-
complement language (L, L̃), whose definition will appear after the construc-
tion in Sect. 5.4. This arrangement is because we find that the language
(L, L̃) becomes easier to understand once the reader has slight familiarity with
Construction 2.

Construction 2: Post-quantum Ring Signatures

Let D̃ = D̃(λ, N) be the maximum depth of the NP verifier circuit for language L̃
restricted to statements where the the ring has at most N members, and the security
parameter for Sig and LE is λ. Let n = n(λ, log N) denote the maximum size of the
statements of language L where the ring has at most N members and the security
parameter is λ. Recall that for security parameter λ, secret keys in LE have size

̃ = 
sk(λ). We now describe our ring signature construction:

Key Generation Algorithm Gen(1λ, N):

– sample signing/verification key pair: (vk, sk) ← Sig.Gen(1λ);
– sample obliviously an injective public key of LE: pk ← LE.KSamls(1λ);

– compute the first message ρ ← ZAP.V(1λ, 1n, 1�̃, 1D̃) for ZAP;
– output the verification key VK := (vk, pk, ρ) and signing key SK := (sk, vk, pk, ρ).

Signing Algorithm Sign(SK,R, m):

– parse R = (VK1, . . . ,VK�); and parse SK = (sk, vk, pk, ρ);
– compute σ ← Sig.Sign(sk,R‖m);
– let VK := VKi ∈ R be the verification key corresponding to SK;
– sample two pairwise-independent functions PI1 and PI2, and compute

rc1 = PI1(R‖m), rc2 = PI2(R‖m).

– compute c1 ← LE.Enc(pk, (σ, vk); rc1) and c2 ← LE.Enc(pk, 0|σ|+|vk|; rc2);
– let VK1 = (vk1, pk1, ρ1) denote the lexicographically smallest member of R (as a

string; note that this is necessarily unique);
– fix statement x = (R, m, c1, c2) and witness w = (vk, pk, σ, rc1). We remark that

this statement and witness correspond to a super-complement language (L, L̃)
that will be defined in Sect. 5.4. Looking ahead, x with witness w is a statement
in the L defined in Eq. (1); x constitutes a statement that is not in the L̃ defined
in Eq. 4.

– sample another pairwise-independent function PI3 and compute rπ = PI3(R‖m);
– compute π ← ZAP.P(ρ1, x, w; rπ);
– output Σ = (c1, c2, π).

Verification Algorithm Verify(R, m, Σ):

– identify the lexicographically smallest verification key VK1 in R;
– fix x = (R, m, c1, c2); read ρ1 from VK1;
– compute and output ZAP.Verify(ρ1, x, π).



a Note on the Post-quantum Security of (Ring) Signatures 431

5.4 The Super-Complement Language Proven by the ZAP

We now define the super-complement language (L, L̃) used in Construction 2.
This deviates from the (L, L̃) defined in [26, Section 5], to accommodate Con-
struction 2.

For a statement of the form x1 = (R,m, c) and witness w =
(
VK =

(vk, pk, ρ), σ, rc

)
, define relations R1, R2, and R3 as follows:

(x1, w) ∈ R1 ⇔ VK ∈ R, (x1, w) ∈ R2 ⇔ LE.Enc
(
pk, (σ, vk); rc

)
= c,

(x1, w) ∈ R3 ⇔ Sig.Verify(vk,R‖m,σ) = 1.

Next, define the relation R′ as R′ := R1 ∩ R2 ∩ R3. Let L′ be the language
corresponding to R′. Define language L as

L :=
{
x = (R,m, c1, c2)

∣
∣ (R,m, c1) ∈ L′ ∨ (R,m, c2) ∈ L′}. (1)

Now, we define another language L̃ and prove that it is a super-complement
of L in Claim 1. Let x1 = (R,m, c) as above, but let w̃ := msk. Define the
following relations:

(x1, w̃) ∈ R4 ⇔ ∀j ∈ [
] : LE.Valid
(
pkj , LE.MSKExt(msk, pkj)

)
= 1 (2)

(x1, w̃) ∈ R5 ⇔

⎧
⎪⎪⎨

⎪⎪⎩

∃VK ∈ R : VK = (vk, pk, ρ) such that:
LE.Valid

(
pk, LE.MSKExt(msk, pk)

)
= 1 ∧

LE.Dec
(
LE.MSKExt(msk, pk), c

)
= (σ, vk) ∧

Sig.Verify(vk,R‖m,σ) = 1

(3)

where, for each j ∈ [
], VKj = (vkj , pkj , ρj) is the j-th member in R. Let L4 and
L5 be the languages corresponding to R4 and R5, respectively. Define further the
relation R̂ according to R̂ := R4 \ R5, and let L̂ be the corresponding language.
Define L̃ as follows:

L̃ :=
{
x = (R,m, c1, c2)

∣
∣ (R,m, c1) ∈ L̂ ∧ (R,m, c2) ∈ L̂

}
. (4)

Following a similar proof as for [26, Lemma 5.1], we can show that L̃ is indeed
a super-complement of L. (The full proof is provided in [25, Section 6.3.1].)

Claim 1. If LE satisfies the completeness defined in Item 1, then L̃ as defined
in Eq. (4) is a super-complement of L defined in Eq. (1).

5.5 Proof of Security

The security of Construction 2 can be established following the idea illustrated
in Sect. 2.3. Due to space constraints, we refer the reader to [25, Section 6.4] for
the formal security proof.
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Abstract. A 1-out-of-N ring signature scheme, introduced by Rivest,
Shamir, and Tauman-Kalai (ASIACRYPT ’01), allows a signer to sign
a message as part of a set of size N (the so-called “ring”) which are
anonymous to any verifier, including other members of the ring. Thresh-
old ring (or “thring”) signatures generalize ring signatures to t-out-of-N
parties, with t ≥ 1, who anonymously sign messages and show that they
are distinct signers (Bresson et al., CRYPTO’02).

Until recently, there was no construction of ring signatures that both
(i) had logarithmic signature size in N , and (ii) was secure in the plain
model. The work of Backes et al. (EUROCRYPT’19) resolved both these
issues. However, threshold ring signatures have their own particular prob-
lem: with a threshold t ≥ 1, signers must often reveal their identities to
the other signers as part of the signing process. This is an issue in situa-
tions where a ring member has something controversial to sign; he may
feel uncomfortable requesting that other members join the threshold, as
this reveals his identity.

Building on the Backes et al. template, in this work we present the
first construction of a thring signature that is logarithmic-sized in N , in
the plain model, and does not require signers to interact with each other
to produce the thring signature.

We also present a linkable counterpart to our construction, which sup-
ports a fine-grained control of linkability. Moreover, our thring signatures
can easily be adapted to achieve the recent notions of claimability and
repudiability (Park and Sealfon, CRYPTO’19).

1 Introduction

Ring signatures, first introduced by Rivest, Shamir, and Tauman-Kalai [30],
allow a member of a set (known as the ring) to anonymously sign on behalf
of the ring. A verifier can check that a signature comes from one of the ring
members, but cannot learn who the actual signer is, a property known as (signer)
anonymity. Bresson, Stern, and Szydlo [6] generalized ring signatures to t-out-of-
N ring signatures (aka threshold ring signatures or thring signatures), in which
t ≥ 1 distinct members of an ad-hoc set participate to produce a signature.
c© International Association for Cryptologic Research 2022
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In a (th)ring signature, the ring should be set-up free, i.e., members can
join at will by publishing a public key. Anyone can then sign with respect to a
ring assembled from available public keys. Despite this open setting, many ring
signature schemes need a trusted setup and rely on heuristic assumptions (e.g.,.
the random oracle). However, the most desirable setting for an ad-hoc primitive
like ring signatures is the plain model. In the plain model, security is based on
standard and falsifiable hardness assumptions and no trusted setup is allowed.
Also, most ring signature schemes are linear in the size of the ring, which is
an issue when ring sizes are large. Recently, Backes et al. (BDH+ for short) [3]
presented an elegant construction of the first logarithmic-sized ring signatures
in the plain model.

While the issues of model and signature size appear in ring signatures (see
the full version for a discussion on related previous work), thring signatures with
t > 1 have another issue. In a thring signature, t-out-of-N signers compute a
signature with the property that any verifier can check that t distinct parties
signed the message without revealing exactly which t members signed. While the
t signers are anonymous to anyone outside their set, these signers may need to
interact to create the signature. Thus, signers are not necessarily anonymous to
each other. Importantly, concatenating t instances of 1-out-of-N ring signatures
does not guarantee distinct signers – the same signer may have signed t times in
a row.

Two works avoid interaction among the signers but have other drawbacks.
First, Okamoto et al. [27] designed a linear-sized scheme in the random oracle
model. Here, ring members can create a 1-out-of-N ring signature themselves,
while also showing that they are a new signer. Thus, a list of 1-out-of-N ring
signatures forms a threshold ring signature. However, their solution requires a
fully trusted party who issues short-term keys to all signers. This is a strong
assumption for such an ad-hoc distributed primitive. Second, Liu, Wei, and
Wong [23] introduced linkable ring signatures, which allow a verifier to pub-
licly check whether two signatures were produced by the same signer. This could
be extended to produce threshold ring signatures. With a list of 1-out-of-N link-
able ring signatures on a message, the signature verification algorithm checks
pairwise that no two signatures in the list are linked to the same ring member
without learning the identity of the signers. This approach is generic, but only
yields a one-time thring signature scheme.

1.1 Our Contribution

In this work we construct thring signatures which are: (i) logarithmic-sized in
the number of ring members; (ii) in the plain model from standard assumptions;
(iii) and non-interactive, where specifically signers need not know each other.

In more detail:

– We present and prove the first construction of thring signatures where the
signature size is logarithmic in the number of ring members and in the plain
model. Our construction is instantiable from falsifiable standard assumptions
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without the need for the random oracle heuristic or trusted setup assumptions.
Our construction is inspired by the recent results by BDH+ [3] but requires
novel ideas and techniques.

– We create a thring signature scheme in a setting where there is no interaction
among the mutually anonymous signers. Signers need not know the other
signers that participate in a threshold signing, meaning our scheme achieves
strong inter-signer anonymity. Every signer locally computes a signature and
the thring signature is just the collection of the individual signatures. Addi-
tionally, our thring signature scheme allows each signer to select their own
threshold. We will discuss our solution in Sect. 1.2.

We also adapt the current model of linkability of ring signatures and make this
model more flexible and fine-grained by using the concept of a scope to support
scoped linkability. We describe scoped linkability in more detail in Sect. 5. We
discuss a potential post-quantum instantiation and future directions in Sect. 6.

1.2 Overview of Our Techniques

To give context to our approach and techniques, we describe the approach used
by BDH+ [3], which is inspired by the construction of linear-size ring signatures
in the plain model due to Bender, Katz, and Morselli [5].

Outline of BDH+ Approach. In BDH+, the ring is P = (V K1, . . . , V KN ).
To join the ring, a user s ∈ [N ] generates key pairs (vks

σ, sks
σ) and (pks, sks) of a

signature scheme and a public-key encryption (PKE) scheme, respectively, and
sets the verification and signing key to V Ks := (vks

σ, pks) and SK := (sks
σ, sks).

To produce a signature for a message m with respect to R, a signer s computes
a signature σ on m using sks

σ and encrypts σ under pks resulting in a ciphertext
ct. The signer samples a random ciphertext ct′ (representing another user i of
the ring) and generates two hashing keys hk and hk′ of a somewhere perfectly
binding (SPB) hashing scheme [28] that are perfectly binding at position s and i
respectively. It computes the hash of the ring R under both hk and hk′, obtaining
hash values h and h′. SPB hashing allows the signer to collapse a ring R of N
verification keys into a ring of just two keys and membership witnesses are
of size O(log(N)). Finally, signer s computes a perfectly sound NIWI proof π
using an OR-statement which proves that either (hk, h) binds to a key V Ks

and that ct encrypts a signature of m for V Ks or (hk′, h′) binds to a key V Ki

and that ct′ encrypts a signature of m for V Ki. A signature has the form Σ =
(ct, ct′, hk, hk′, π) and verification is straightforward.

For a non-interactive threshold variant, one needs to guarantee that a specific
signer cannot contribute more than one signature to a thring signature, but at
the same time keep other signatures from the same signer unlinkable. As BDH+

encrypt the conventional signatures (which would identify the actual signer) for
anonymity, one signer can sign repeatedly on the same message. While BDH+

do have a linkable version, but as soon as a signer issues two signatures, even on
different messages, they can be linked together, which contradicts the anonymity
of thring signatures.
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Outline of Our Approach. To achieve inter-signer anonymous thring signa-
tures, we follow the BDH+ template, but our approach requires novel ideas.
First, instead of using a signature scheme, we use a verifiable random function
(VRF) [25], inspired by the recent work by Park and Sealfon [29].1 A VRF is a
function which outputs a pseudorandom value v and a proof p so that given the
input m, the values (v, p) and the corresponding verification key vk everyone can
check correctness of the evaluation. However, an output v is still pseudorandom if
the proof p is not known. Because the VRF yields a deterministic value v, using
v in the signature ensures distinctness of the signers. Meanwhile, we encrypt
the proof p. Our approach now enables non-interactive thring signatures, where
the signatures are a collection of single 1-out-of-N ring signatures. A verifier can
inspect the VRF values for inequality to determine if the signers are distinct. We
need an assumption called key collision resistance on the VRF, which requires
that if the VRF is evaluated under different (honestly generated) verification
keys and the same message, the evaluations will not collide. This is a reasonable
assumption. Indeed, VRF candidates such as the Dodis-Yampolskiy VRF [13]
satisfy this assumption (where key-collision can be seen to be unconditional).

Suppose the only change we make to BDH+ is replacing a ciphertext with
a VRF evaluation v and encrypted proof, and the other one with a random
value ṽ in the VRF range with an encryption of a random value. Intuitively,
anonymity holds as the values v and ṽ are (pseudo)random and do not leak
the signer’s identity. Meanwhile, unforgeability is based on the unpredictability
of the VRF. However, we cannot use the same proof technique as BDH+. In
BDH+, the proof of anonymity goes by hybrid game and indistinguishably hops
between two OR-clauses to switch from an encrypted signature from user s to
an encryption signature from user i. If we use this strategy in our hybrids, we
end up at a point where the VRF evaluations of users s and i are at the same
time present as values v and ṽ in one signature. Unfortunately, this immediately
gives a distinguisher as the adversary can query signatures for the same message
and ring both s and i and in the real game one “evaluation” in each signature
will be a random string, but here it finds a pair that contains two values from
queried signatures at the same time. Such an event is negligible in the real game.

Thus, our second change to change the NIWI to include a third OR clause.
This third clause allows us in the anonymity proof to simulate the first two
clauses of the OR language and switch the witnesses in the hybrids of the
anonymity proof.

Being in the plain model precludes us from using a common reference
string (CRS), which would allow us to embed a simulation trapdoor for the
anonymity proof. To avoid a CRS, we use the following trick. Each signer s
adds an extra secret key sks

F into her overall secret key and encrypts it, i.e.,
E ← Enc(pks, sks

F; r), and the ciphertext is added to the public key V Ks. Our

1 We note that in a concurrent and independent work in [21], Lin and Wang propose a
modification of BDH+ that use VRFs instead of signatures to achieve repudiability.
We note that their ideas do not extend to thring signatures and thus their approach
cannot be directly compared to our work.
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third clause in the OR language now proves that for two non-revealed users s
and i (i.e., s and i from the first two OR-clauses) in the ring, it holds that
F(sks

F) = ski
F, where F is a one-way function (OWF)2 , i.e., the clause shows

that one of the two keys is the image of the other key under F. For honestly
generated keys this relation will never be satisfied. However, in the simulation
we can now set up user-keys in a way that they satisfy this relationship (without
requiring a CRS). We can then use the witness for this clause of the OR proof
to switch out the VRF witnesses to random.

Our Approach to Linkable Thring Signatures. With scoped linkability,
one may control linking in a fine-grained way. An arbitrary string (the scope)
used for signing allows one to link multiple signatures issued with respect to the
same scope. While using the compiler by Liu et al. [23] on the linkable version
of the BDH+ scheme yields linkable thring signatures, it is not clear how to
extend this to scoped linkability. One would need to fix the scopes beforehand
and make the public keys linear in the number of used scopes. Thus, it would
not be possible to support a potential unbounded number of scopes. Besides,
the “tagging trick” in BDH+ makes their linkable version rather involved.3 Our
linkable thring signatures support an unbounded number of scopes and are a
simple modular extension of our basic thring signatures.

We get scoped linkability by adding another VRF key pair to the user’s keys
and use the evaluation of the VRF on the scope for linking purposes (and fixing
the scope in the scheme yields the conventional notion of linkability). We extend
the language of the NIWI used for the OR proof to account for this additional
VRF.

We use a variant of the folklore technique of extending the language of the
proof system to obtain simulation-sound NIZKs [19,31], but use VRFs instead of
PRFs or signatures. The additional VRF “signs” a verification key of a strongly
unforgeable one-time signature scheme and the corresponding one-time signing
key signs the respective partial signature. The signature and the verification key
are attached to the respective 1-out-of-N ring signature.

Claimability and Repudiability. Recently, Park and Sealfon in [29] intro-
duced the notions of (un-)repudiability and (un-)claimability for ring signatures
and are the first to formalize such definitions. Our constructions satisfy both
notions of repudiability and claimability. Details are discussed in the full ver-
sion.

Flexibility. Okamoto et al. [27] introduced the notion of flexibility. Flexibility
means ring members can sign a message themselves and add themselves to a
previously computed ring signature if they wish to sign on the same message
and ring. However, in [27] the new signers must cooperate with a trusted dealer
to achieve this. The way we construct our threshold ring signatures also allows

2 The restriction is that the domain and range of F is the same.
3 The evaluation of their JointVerify algorithm which they need to prove with their

NIWI, when unrolled gives 480 clauses, where each clause is a conjunction of 5
verification statements of a commitment scheme.
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us to achieve flexibility in that new signers can add themselves to an already-
created threshold ring signature at any time and thus the threshold t can be
extended dynamically (see the full version for a discussion).

Applications. We briefly describe some potential applications for non-
interactive thring signatures with inter-signer anonymity and scoped linkability.
One interesting practical application for thring signatures is to share cryptocur-
rency wallets that require no setup and that allow users to have a single key
(even if they have multiple wallets) as discussed in [26].

Secondly, linkable ring signatures are a solution to e-voting [32]. Our scheme
features scoped linkability, so signers can use the same verification key to vote for
candidates in different offices. For example, votes cast under the scope ‘mayor’
are linkable, so that nobody can double vote for mayor. Meanwhile, votes cast
for different scopes remain unlinkable, such as between scopes ‘governor’ and
‘mayor’. As a result, thrings with scoped linkability might be a valuable tool for
e-voting.

Finally, one can consider an extension of the whistleblower example from
Rivest et al. [30] to the “parliament’s problem”. Suppose that a member of
a national parliament (an MP) would like to submit a controversial bill for
a law. The bill is controversial enough that the MP could lose his standing
among his own party. However, if enough other members agree to the bill, it will
be submitted for an official law. The MP cannot use a ring signature because
another MP, wishing to attach their name, can neither add themselves nor submit
a new ring signature while still showing that they are a distinct member. It would
not be easy for this MP to discover other interested parties. Otherwise, a thring
signature with interaction would do. The solution, then, is for the first MP to
publish their bill using a thring signature with strong inter-signer anonymity.
Now, he need not interact with other members, and any other MP can add
themselves by contributing to the thring signature.

Due to lack of space, we defer a discussion of related work to the full version.

2 Preliminaries

We denote the main security parameter by λ. We write [N ] = {1, . . . , N}, and
a = (a1, . . . , aN ). � denotes disjoint union and � denotes symmetric difference.
We denote algorithms by, e.g., A, and write out ← A(in) to denote that out is
assigned the output of the probabilistic algorithm A with input in; Sometimes
we make the used random coins r explicit and write out ← A(in; r). A function
negl : N → R is negligible if ∀k ∈ N ∃n0 ∈ N ∀n > n0 : negl(n) ≤ n−k.

For the formal definition properties of the primitives discussed below, we
refer the reader to the full version.

Non-Interactive Witness-Indistinguishable Proof Systems. Feige and
Shamir [15] first introduced witness-indistinguishable proof systems. We recap
the basic notions of non-interactive witness-indistinguishable proofs (NIWIs).

Let R ⊆ X × Y be an effective relation, i.e., X , Y, R are all efficiently
computable. For (x,w) ∈ R, x is a statement, and w is the witness. The language
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LR is defined as all statements that have a valid witness in R, i.e., LR := {x | ∃w :
(x,w) ∈ R}.

Definition 1 (Non-interactive Proof System). Let R be an effective rela-
tion and LR be the language accepted by R. A non-interactive proof system for
LR is a pair of algorithms (Prove,Vfy) where:

– π ← Prove(1λ, x,w). On input a statement x and a witness w, outputs a proof
π or ⊥.

– b ← Vfy(x, π). Given a statement x and a proof π, outputs a bit b.

NIWIs must satisfy the following three properties. First, perfect completeness
guarantees that correct statements can always be successfully proven. Second,
perfect soundness ensures that it is impossible to generate valid proofs for false
statements. Finally, witness indistinguishability says that, given two valid wit-
nesses for a statement, no efficient adversary can decide which witness was used
to compute a proof.

Following BDH+ [3], we only consider NIWIs with bounded proof-size. That
is, if we require that for any valid proof π generated by Prove(1λ, x,w), it holds
that |π| ≤ |Cx|poly(λ) for a fixed polynomial poly(·), where Cx is the verification
circuit for the statement x, i.e., (x,w) ∈ R iff Cx(w) = 1.

Verifiable Random Functions. A verifiable random function (VRF) is a
pseudo-random function that enables the owner of the secret key to compute
a non-interactively verifiable proof for the correctness of its output [25].

Definition 2 (Verifiable Random Function (VRF)). A verifiable random
function is 4-tuple (Gen,Eval,Prove,Vfy) where:

– (vk, sk) ← Gen(1λ). On input the security parameter λ in unary, this PPT
algorithm outputs a public verification key vk and corresponding secret key
sk.

– v ← Eval(sk, x). On input the secret key sk and an input value x ∈ {0, 1}a(λ),
this deterministic algorithm outputs a value v ∈ {0, 1}b(λ).

– p ← Prove(sk, x). On input the secret key sk and an input value x, this PPT
algorithm outputs a proof p.

– b ← Vfy(vk, x, v, p). On input a verification key vk, an input value x, a value
v, and a proof p, this deterministic algorithm outputs a single bit b.

Here, a(λ) and b(λ) are polynomially bounded and efficiently computable func-
tions in λ.

VRFs must satisfy the following six properties. First, complete provability
guarantees that, if an output v and a proof p have been honestly computed on
consistent inputs, then p will verify for v. Second, unique provability ensures that
for all inputs x, a valid proof can only be computed for a unique output value
v. Third, residual pseudorandomness says that no efficient adversary that sees
arbitrarily many VRF evaluations can distinguish outputs on fresh inputs from
uniform. Fourth, residual unpredictability requires that no efficient adversary
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that sees arbitrarily many VRF evaluations can compute a correct input and
output pair; this is implied by residual pseudorandomness. Fifth, key privacy
requires that no efficient adversary, only having access to an output but not the
corresponding proof, can decide for which public key the output was computed.
Finally, we introduce the notion of key collision resistance which guarantees that
Eval, on input the same message but two different secret keys, will never return
the same output value. We note that all required properties are for instance
satisfied by the Dodis-Yampolskiy VRF [13]. Other instantiations in the standard
model have been proposed by Lysyanskaya [24] and Hofheinz and Jager [20].

Somewhere Perfectly Binding Hashing. Somewhere statistically binding
hashes were first introduced by Hubáček and Wichs [28]. Intuitively, such
schemes allow one to efficiently commit to a vector (or database). Furthermore,
one can generate short openings for individual positions of the vector.

Originally, it was only required that such schemes be statistically binding
at a single position [28]. BDH+ [3] strengthened this to perfectly binding. Fur-
thermore, they introduced private openings to require a secret hashing key to
compute a valid opening.

As shown in [3,28] SPB hashes with private local openings in the stan-
dard model can be efficiently obtained from any 2-message private information
retrieval scheme with fully efficient verifier and perfect correctness. Also, we refer
to [3] for DCR and DDH based instantiations of SPB based on [28].

Definition 3 (Somewhere Perfectly Binding (SPB) Hash). A somewhere
perfectly binding hash with private local opening is a tuple of algorithms (Gen,
Hash, Open, Vfy) where:

– (hk, shk) ← Gen(1λ, n, i). On input the security parameter λ in unary, a
maximum database size n, and an index i, this PPT algorithm outputs public
hashing key hk and corresponding secret hashing key shk.

– h ← Hash(hk, db). On input a hashing key hk and a database db of size n,
this deterministic algorithm outputs a hash value h.

– τ ← Open(hk, shk, db, j). On input a public and private hashing key hk and
shk, a database db, and index j, this algorithm outputs witness τ .

– b ← Vfy(hk, h, j, x, τ). On input a hash key hk, a hash value h, an index j, a
value x and witness τ , this algorithm outputs a single bit b.

SPBs must satisfy the following three properties. First, correctness guar-
antees that for honestly generated keys, hashes, and openings, verification will
allows succeed. Second, somewhere perfectly binding ensures that if for a specific
index i and value x verification succeeds, all valid openings on this position must
open to x. Finally, index hiding says that no efficient adversary can infer the
index i from the public hashing key.

Definition 4 (Public Key Encryption). A public key encryption scheme is a
triple (Gen,Enc,Dec) of algorithms over a message space M(λ), ciphertext space
C(λ), and randomness space Rnd(λ):
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– (pk, sk) ← Gen(1λ). On input the security parameter λ in unary, this PPT
algorithm computes a public key pk and a corresponding secret key sk.

– ct ← Enc(pk,m). On input a public key pk and a message m ∈ M(λ), this
PPT algorithm outputs a ciphertext ct.

– m ← Dec(sk, ct). On input a secret key sk and a ciphertext ct, this determin-
istic algorithm outputs a message m.

We require PKE schemes to satisfy the following three properties. First,
perfect correctness guarantees that for honestly generated keys and ciphertexts,
decryption will always yield the original plaintext. Second, IND-CPA security
ensures that knowing only the public key, it is computationally infeasible to
decide which message is contained in a ciphertext. Finally, key privacy says that
no efficient adversary, not knowing the secret keys, can decide for which public
key a ciphertext has been computed.

Definition 5 (Strong One-Time Signature Scheme). A strong one-time
signature scheme is a triple (Gen,Sign,Vfy) of algorithms over a message space
M(λ):

– (vk, sk) ← Gen(1λ). On input the security parameter λ in unary, this PPT
algorithm computes a verification key vk and a corresponding signing key sk.

– ς ← Sign(sk,m). On input a signing key sk and a message m ∈ M(λ), this
PPT algorithm outputs a signature ς.

– b ← Vfy(vk,m, ς). On input a verification key vk, a message m and a signa-
ture ς, this deterministic algorithm outputs a single bit b.

sOTS schemes must satisfy these two properties: First, correctness guarantees
that for honestly generated keys and signatures, verification will always succeed.
Second, strong unforgeability ensures that no efficient adversary that can obtain
one signature for a given key can produce another valid signature on any message.

Definition 6 (One-Way Function). A one-way function F is defined such
that:

– y ← F(1λ, x). On input the security parameter λ in unary and an input value
x ∈ {0, 1}λ, this deterministic algorithm computes an output y ∈ {0, 1}λ.

OWFs must satisfy the following two properties. First, it must be efficiently
computable, meaning that there is a polynomial-time algorithm to evaluate the
function. Second, it must be hard to invert, so that given only an output value
y, it is computationally infeasible to find a preimage x∗ mapping to this output.
Note that there can be multiple x∗ for which F(x∗) = y, but it is hard to find
any such x∗. One additional requirement that we put on our OWFs is that the
range must be a subset of the domain4.

We define a concept of a few fixed points function. We have not seen this
particular property in the literature, however a one-way function F is naturally

4 A one-way permutation where the domain and range are equal can be used here.



446 A. Haque et al.

a few fixed points function. If not, given x ← {0, 1}λ, it would be likely that
F(x) = x and an adversary could find a pre-image. This property helps clarity
in the unforgeability proof.

Definition 7 (Few fixed points). A function F is a few fixed points function
if F : {0, 1}∗ → {0, 1}∗ if Pr[x ← {0, 1}λ, F (x) = x] ≤ negl(λ).

We also introduce a lemma that helps in the unforgeability proof. We provide
a lemma that shows that the probability of finding random values that happen
to be pre-images in a polynomially-sized list is negligible.

Lemma 1. If F : {0, 1}∗ → {0, 1}∗ is a one-way function, then the probability
that the process: s = 1, . . . , N xs ← {0, 1}λ generates a pair (xi, xj) such that
F(xi) = xj is negligible in λ (where N is at most poly(λ)).

Proof. Given a list x1, . . . , xN , where each xs ← {0, 1}λ (with replacement) we
want to find the probability that there exists i, j ∈ [N ] such that F (xi) = xj .

Because F is a function, for each value xi, there is one image: F (xi) = y. Thus,
given two values (xi, xj), which are chosen uniformly at random, the probability
that xj = y is 1

2λ .
There are N(N − 1) pairs where i = j.

Pr[xi, xj ← D,F (xi) = xj ] ≤ negl′(λ).

Where if xi = xj , from the few fixed points property we know it’s less than
negl(λ) and if xi = xj it is 1

2λ , which is still a negligible function in λ.
Then we look at the case where i = j. There are N such pairs and by

definition of few fixed points:

Pr[xi ← {0, 1}λ, F (xi) = xj ] ≤ negl(λ).

Adding together, he overall probability of success is T (λ) = N
negl′(λ) + N(N−1)

2λ .
Because N is polynomial in λ, it is much smaller than 2λ. So we conclude that
T (λ) is negligible in λ as well.

3 Framework and Security Definitions

3.1 Syntax

We extend the basic ring signature notation of Bender et al. [5] to a thring
signature. The notation is summarized in Table 1. Assuming an ordering of all
public keys (e.g., lexicographic), we denote the sequence of all public keys as P
as a ring. A subring is a subsequence R ⊆ P . Regardless of which members are
part of the subring, we always enumerate the subring as R = (V K1, . . . , V KN ).
A set of signers is S ⊆ [N ], where R[S] = {V Ks}s∈S . In a thring signature
scheme, a set of signers S ⊆ [N ] signs a message msg ∈ M with respect to a
subring R. The secret keys of signers are denoted as T .
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Table 1. Notation used in the algorithms.

Symbol Meaning

ts Individual threshold of signer s§

t = (ti1 , . . . , ti|S| )

tV Verification threshold

N Number of members of the ring. Indexed by s.

P Ordered list of public keys P = (V K1, . . . , V KN ).

R Subring R ⊆ P .

S Set of signers where S ⊆ [N ].

T Secret keys to signers in S, T = {sks}s∈S .

NS Non-signers where NS ⊆ [N ]

M Message space.

λ Security parameter.
§ By convention, indices used to distinguish between signers
are written as superscripts

Each signer s ∈ S chooses the minimum number of total signers ts they
require for a valid signature, and the verifier can choose a threshold as well.
The sequence of all individual signer thresholds is denoted as t. We denote the
verification threshold by tV , e.g., tV ≤ |{s : ts ≤ tV }| for ts ∈ t. The different
thresholds are there to make the scheme as general as possible. This allows for
different levels of signatures in different contexts (e.g., a signer may not want
her signature to be used if there’s not enough support, a verifier might be a
potential signer who wants to see that there’s enough support before adding her
own signature to the set).

For generality, our syntax also considers system parameters pp generated by
a Setup algorithm (which in our security definitions is always assumed to be
honestly executed) allowing one to also model schemes requiring trusted setup
in our framework. However, we stress that our instantiations given in Sect. 4
and Sect. 5 do not require such a Setup and are in the plain model.

Definition 8 (Threshold Ring Signature Scheme). A threshold ring sig-
nature (thring) scheme is a 4-tuple of algorithms (Setup,KGen,Sign,Vfy). A sub-
set of signers S from ring P signs the message msg ∈ M with respect to a subring
R and thresholds t.

– pp ← Setup(1λ). On input the security parameter λ in unary, this PPT
algorithm generates public parameters pp. The public parameters are implicit
input to all other algorithms and will be omitted when clear from context.

– (V K,SK) ← KGen(pp). On input the public parameters pp, this PPT algo-
rithm generates a public verification key V K and a corresponding secret key
SK for a signer.

– σ ← Sign(msg, T,R, t). On input a message msg, a set of secret keys T , a
subring R, and a vector of individual thresholds t, this potentially interactive
PPT procedure outputs a signature σ on msg.
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– b ← Vfy(msg, R, σ, t). On input a message msg, a subring R, a signature σ,
and a verification threshold t, this deterministic algorithm outputs a bit b.

3.2 Security Definitions

In this section, we define the security properties for a thring signature scheme:
correctness, unforgeability with respect to insider corruption, and inter-signer
anonymity with respect to adversarial keys. Our paper is the first feasibility
result for non-interactive thrings entirely in the plain model. Because of these
requirements, it does not seem easy to achieve the strongest notions of unforge-
ability and anonymity (as shown in [5]). Namely, we avoid malicious users to
satisfy unforgeability and we have anonymity for honest users only.

We first describe a set of oracles. In our security definitions, the adversary
may access these oracles in arbitrary interleaf during the corresponding experi-
ments. All oracles have access to the following initially empty sequences or sets:
P, Pcorr,Lsigners, and Q. The first sequence P is the ring, and Pcorr ⊆ P is the
subset of corrupted (or malicious) members in the ring. The sequence Lsigners is
the triple of the signer, the public key, and the private key. The set Q is the set
of signing queries.

– OKGen(s). On input a signer s, this oracle first checks whether there exists
(s, ·, ·) ∈ L and returns ⊥ if so. Otherwise, it generates a fresh key pair
(V Ks, SKs) ← KGen(pp), adds (s, V Ks, SKs) to Lsigners, V Ks to P , and
returns V Ks to the adversary.

– OSign(msg, S,R, t). On input a message msg, a list of signers S, a subring R,
and a vector of individual thresholds t, this oracle first checks whether R ⊆ P
and returns ⊥ if this is not the case. The oracle then decomposes S to S =
Scorr �Shon, where Scorr denotes corrupted users (i.e., corrupted or registered
by A) and Shon denotes honest users. The oracle then engages in an execution
of Sign(msg, T,R, t). The oracle mimics the behavior of honest parties using
the secret keys corresponding to Shon, and the adversary participates using
Scorr. For all honest signers s, the oracle adds (msg, R, s, ts) to Q.

– OCorr(s). On input a signer s, if there exists (s, V Ks, sks) ∈ Lsigners, the
oracle returns SKs to the adversary. The oracle adds V Ks to Pcorr.

– OReg(s, V Ks). On input a signer s and a public key V Ks, the oracle checks
if there exists (s, ·, ·) ∈ Lsigners and returns ⊥ if so. Otherwise, it adds V Ks

to Pcorr and (s, V Ks, ·) to Lsigners.

Correctness. Correctness guarantees that a signature generated by sufficiently
many honest users will always pass the verification algorithm. In our definition,
the verification algorithm will check whether the individual thresholds are less
than or equal to the verification threshold. This supports the concept of flexibility
(see the full version).

Definition 9 (Correctness). A thring signature scheme is correct if there
exists a negligible function negl(λ) such that for every msg ∈ M, any subring
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Fig. 1. Unforgeability Fig. 2. Inter-signer anonymity

and ring such that R ⊆ P (with |P | being polynomially bounded in λ), any set
of signers S ⊆ R, any vector of individual thresholds t = (t1, . . . , tN ), and any
verification threshold t such that t ≤ |{i : ti ≤ t}|, it holds that:

Pr

⎡
⎢⎢⎣

pp ← Setup(1λ)
{(V Ks, SKs) ← KGen(pp)}s∈[|P |]
T = {SKs}s∈[|P |]
σ ← Sign(msg, T,R, t)

:
R[S] ⊆ P =⇒
Vfy(msg, R, σ, t) = 0

⎤
⎥⎥⎦ = negl(λ)

The scheme is called perfectly correct iff negl(λ) = 0.

Unforgeability. Intuitively, unforgeability guarantees that an adversary who has
corrupted up to t − 1 signers will not be able to generate a valid signature for
threshold t. More precisely, the adversary can adaptively corrupt an arbitrary
number of signers and engage in the signing protocol on arbitrary messages with
honest users with respect to any thresholds and subrings. The adversary finally
outputs a valid message, signature, subring, and threshold msg∗, σ∗, R∗, and t∗.
The adversary wins if (1) he did not request OSign for too many honest parties
on msg∗ and R∗ for thresholds less than t∗, and (2) he corrupted fewer than t∗

members in R.
Note, we can tolerate corrupted but not malicious parties in our scheme.

This is since we get inter-signer anonymity by having unique signatures. While
this requirement is weaker, it is not unusual among the ring signature definitions
(many schemes do not consider malicious parties). The experiment is described
in Fig. 1.

Definition 10 (Unforgeability wrt Insider Corruption). A thring signa-
ture scheme satisfies unforgeability wrt insider corruption if for all PPT adver-
saries A there is a negligible function negl(λ) such that Pr[SigForgeA(λ) = 1] ≤
negl(λ).

Anonymity. Anonymity says that it is infeasible to infer from a valid signature
which honest users contributed to the signature generation, or in general to link
a signer across different signatures. We protect honest signers’ identities even
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from other signers (inter-signer anonymity). We can tolerate malicious keys,
even in the challenge sets, so long as both sets have the same malicious parties.

In the anonymity game, the adversary has access to all the oracles. He then
requests a signature on the sets S∗

0 or S∗
1 . He may continue to make OSign and

OCorr requests, but the oracle will not respond to queries in the set difference
between S∗

0 and S∗
1 . The experiment is in Fig. 2.

In our scheme, users signing the same message msg with respect to the same
subring R but potentially different thresholds are linkable among these signa-
tures. We ensure the threshold by preventing signers from signing the same
(msg, R) twice. Thus, in the challenge phase we require new message-ring pairs.

Moreover, a signer who has already signed with respect to a message/ring
cannot sign again because the signature needs to be completely distinct for new
users, which is not possible due to the deterministic part. Thus, if the adversary
requests a signature from a specific user in the training phase, he could pinpoint
from whom that signature originated. Thus, in the challenge phase we require
either that the signature is different from previous signatures or that it verifies
for a different message-ring pair.

In some ring signature schemes, an adversary A cannot identify which user
a signature came from even with knowledge of their secret key. However, in our
scheme, the signature is an output of the VRF, and A can learn which signer
signed a message if he knows all the keys. Thus, we do not achieve this more
robust definition.

We also note that the anonymity security definition does not hide the set
sizes, but this is usually the case with threshold ring signatures. Unlike in other
threshold ring signatures (where after the signature is created, it is not possible
to remove signers), here the signature can be modified for a lower threshold by
removing signatures from the total concatenation.

Due to how we use the VRF in our construction, we cannot achieve the
strongest notion of anonymity from Bender et al. [5] (i.e., anonymity against
attribution attacks/full key exposure), where the adversary sees all the random
coins for generating all the honest keys. However, we do achieve anonymity with
respect to adversarially chosen keys [5], which still allows an adversary to join the
ring with maliciously generated keys and corrupt users. Although an adversary
can de-anonymize corrupt or malicious users, our definition allows us to protect
honest users’ identities.

Definition 11 (Anonymity wrt adversarial Keys). A threshold ring sig-
nature scheme satisfies inter-signer anonymity with respect to adversarial keys
if for every PPT adversary A there exists a negligible function negl(λ) such that

∣∣∣∣Pr[AnonymityA(λ) = 1] − 1
2

∣∣∣∣ ≤ negl(λ) .

4 Our Construction of Threshold Ring Signatures

In this section, we provide an overview of our construction. The formal descrip-
tion of our threshold ring signature scheme TRS is in Fig. 3.
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Signing. Suppose that t members of a ring R = (V K1, . . . , V KN ) wish to sign
a message msg. We identify a signer index s ∈ [N ]. Then each signer s locally
evaluates the VRF using her private key on the inputs msg||R and ts||msg||R.
The latter is needed because we allow each signer to choose its own threshold.
The signer then encrypts the proofs of these VRF evaluations in ct and ct′. Next,
it samples two SPB hashing keys hks and hki for i ∈ [N ] where i = s, binding at
positions s and i respectively. Next, it calculates hi = HashSPB(hki, R) and hs =
HashSPB(hks, R). Then (hks, hs) and (hki, hi) are commitments to V Ks and
V Ki respectively. Finally, the signer computes a NIWI proof (discussed below).
Signer s then outputs its signature σs as a tuple containing the VRF evaluations,
the ciphertexts, hashing keys, the NIWI proof, and its individual threshold. A
threshold signature is now a plain concatenation of individual signatures, i.e.,
σ = (σ1, . . . , σt).
Verification. To verify a signature for a target threshold t, the verifier on σ =
(σ1, . . . , σt) checks each σi for each 1 ≤ i ≤ t. It checks to see if the VRF value
is different than all previously verified signatures. Then the verifier will check if
the NIWI verifies and whether the threshold is less than or equal to his threshold
t. The verifier will keep track of how many valid signatures it sees in a list LV .
At the end, if LV contains at least t signatures, the verifier will accept.

NIWI. The signer needs to show that one of the following claims is true:

(i) The computations are correct for signer s, i.e., hks is binding at position
s and commits to R, V Ks and the corresponding secret key was used to
evaluate the VRF on msg||R and ts||msg||R resulting in v and v′, and the
corresponding proofs have been encrypted as ct and ct′ under pks

† . This is
the branch for which an honest signer has all necessary keys; OR

(ii) the same computations have been performed correctly for signer i; OR
(iii) the secret keys skF of signer s and i satisfy F(sks

F) = ski
F, that hks and

hki have been computed for positions s and i, and that the skF are those
corresponding to the public keys of s and i. As discussed in Sect. 1.2 this
is needed in the anonymity proof (as publishing the VRF evaluations in
the plain does no longer work with the technique of [3]) but will never be
satisfied for honest keys.

More formally, we denote this language as: L′ := LR|V K
∨ LR|V K′ ∨ LF ,

where R|V K indicates the following relation R for a specific key V Ks =
(vks, pks

† , pks
‡ , Es). Statements and witnesses have the form:

R|V K : x = (msg, R, ts, v, v′, ct, ct′, hks, hs)
w = (V Ks, s, p, p′, rct, rct′ , τ)

RF : x = (R, hs, hi, hks, hki)
w = (s, i, V Ks, V Ki, τs, τ i, sks

F, sk
i
F, rEs

, rEi
)
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The relations are then defined as follows:
(x, w) ∈ R|V K if and only if:

VfySP B(hks, hs, s, V Ks, τ) = 1 ∧
EncP KE(pks

†, p; rct) = ct ∧
EncP KE(pks

†, p′; rct′ ) = ct′ ∧
VfyV RF (vks, msg||R, v, p) = 1 ∧
VfyV RF (vks, ts||msg||R, v′, p′) = 1

(x, w) ∈ RF if and only if:

F(sks
F ) = ski

F ∧
EncP KE(pks

‡, sks
F ; rEs ) = Es ∧

EncP KE(pki
‡, ski

F; rEi
) = Ei ∧

VfySP B(hks, hs, s, V Ks, τs) = 1 ∧
VfySP B(hki, hi, i, V Ki, τi) = 1

Note that an honest signer does not use (pk‡, sk‡) for the NIWI proof. As
mentioned above, our final language L′ is the OR of two LR|V K

and LF . State-
ments and witnesses for L′ are of the form:

x =
(
msg R v v′ ct ct′

t hs hi hks hki

)
w =

⎛
⎝

V Ks V Ki s i τs τ i

p p′ sks
F ski

F
rct rct′ rEs

rEi

⎞
⎠

As our instantiation does not rely on any trusted setup, there is no need for
Setup to generate joint parameters. The verifier must know a description of the
ring to check the signature. The input of the VRF includes the description of the
ring. Thus, it seems that the ring signature must always be linear in the size of
the ring. However, if the verifier knows the ring beforehand, the signature need
not include the ring description. Alternatively, we can change the domain of the
VRF to compute on the hash of the ring instead (this was also noted by Park
and Sealfon [29]). For simplicity, we include the ring as input everywhere in our
scheme.

4.1 Security of Our Construction

In this section, we provide the formal proofs of each property correctness,
unforgeability, and anonymity for the construction TRS.

Theorem 1 (Correctness). If the underlying NIWI, VRF, PKE, and SPB
schemes are correct, and the VRF is key collision free, TRS is correct.

Proof. By construction, all individual signatures are valid. Also, we require that
σi.v = σj .v for all i = j, which follows directly as otherwise we would have that
EvalV RF (ski,msg||R) = EvalV RF (skj ,msg||R) contradicting to the assumed key
collision freeness. ��
Theorem 2 (Unforgeability). If F is a one-way function, VRF has residual
unpredictability and unique provability, NIWI has perfect soundness, SPB is
somewhere perfectly binding and PKE is perfectly correct, then TRS is unforge-
able.

To prove unforgeability, we need to show that a forger F who knows up to
t − 1 secret keys cannot forge a signature that verifies for t signers. At a high
level, because F needs to provide a valid NIWI proof in the signature, and the
NIWI is perfectly sound, the claimed statement must indeed be true. We do
not give F access to the OReg oracle so it is not possible for it to produce keys
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Fig. 3. Our threshold ring signature scheme. For notation refer to Table 1.

which satisfy RF. F can, however, corrupt honest users. One possible winning
strategy is for F to find a pair ski

F, sk
j
F such that F(ski

F) = skj
F. Because F is

one-way, such a pair will exist with only negligible probability in the set of users
(by Lemma 1).

Then for the other strategy, as F needs to hold a witness to either R|V K (or
R|V K′) due to the somewhere perfect binding property of the SPB, the forgery
must have used the identity of a signer who is a member of the ring. Due to
the perfect correctness of the PKE scheme, ct (or ct′) contains a valid proof for
the respective VRF. Due to the unique provability of the VRF we know that
an uncorrupted signer must have generated such a value. Finally, we can reduce
unforgeability to the residual unpredictability of the VRF.

Proof. We prove unforgeability via hybrid arguments and a reduction to residual
unforgeability.

H0 to H1: H0 is the unforgeability experiment SigForge from Fig. 1. In H1, the
challenger will pick one index i∗ ahead of time. We abort on an OCorr request
of i∗. When the adversary provides a forgery, he must have used honest keys
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(created via OKGen queries) in his chosen ring. Since i∗ was picked at random,
i∗ is in the forgery’s ring with probability at least 1

qKG
with qKG the number

of users generated by OKGen. Suppose there is an adversary F who forges in
H0 with some probability. Then F can forge in H1 with the same probability
(except with a loss of 1

qKG
).

H1 to H2: All keys skF generated via OKGen are chosen in a way that for none
of the pairs (skj

F, sk
k
F) it holds that either skj

F = F(skk
F) or skk

F = F(skj
F).

Such a pair existed in H1 with only negligible probability (Lemma 1), thus
the probability of distinguishing between H1 and H2 is negligible as well. As the
ski

F are chosen uniformly at random in the original game, here OKGen need only
re-sample at random if a collision is found.

Now RF can never be satisfied among all the honest keys. In H2, the forgery
σ∗ = {(v, v′, ct, ct′, hks, hki, π, ti)}t

i=1 needs to use a witness for R|V K or R|V K′ .
Due to symmetry of these both cases let us w.l.o.g. assume that F uses a witness
for R|V K . Now by the perfect soundness of the NIWI we know that

(msg, R, t, v, v′, ct, ct′, hki0 , hi0) ∈ L|V K .

As the SPB is somewhere perfectly binding, we have that hi0 = Hash(hki0 , R)
and VfySPB(hki0 , hi0 , i0, V Ks0 , τ i0) = 1 implies that R[i0] = V Ki0 . If we have
i0 = i∗, due to the perfect correctness of PKE we have that (pki∗

† , ski∗
† ) are cor-

rect for all messages. Then for p := Dec(ski∗
† , ct) and p′ := Dec(ski∗

† , ct′) the VRF
verifications VfyV RF (vki∗

,msg∗||R∗, v, p) = 1 and VfyV RF (vki∗
, t∗||msg∗||R∗, v′,

p′) = 1. Finally, due to the unique provability of the VRF we know that the
values (v, p) and (v′, p′) are the unique pairs under vki∗

corresponding to inputs
msg∗||R∗ and t∗||msg∗||R∗.

Reduction to Residual Unpredictability.
We present a reduction A to the residual unpredictability of the VRF, which

uses F (as in H2) as a subroutine.

– A from challenger CV RF receives vk which we embed into V Ki∗
.

– On each request from F : OKGen, OCorr, OSign are as in H2. But for each VRF
evaluation at i∗ A queries COEval(sk,·)

V RF . Remember that if F requests OCorr on
either i∗ then Abort.

– From a valid forgery σ∗ of F , we obtain p and p′ for inputs msg∗||R∗ and
t∗||msg∗||R∗.

– Output one of (msg∗||R∗, v) and (t∗||msg∗||R∗, v′) as forgery to CV RF .

If F made a valid forgery, then with probability 1
qKG

he picked the index i∗.
Because the relationship for F does not hold, the NIWI has perfect soudness,
the SPB is somewhere perfectly binding, and the PKE is perfectly correct, F
can make a valid forgery by violating the residual unpredictability of the VRF.
Consequently, we can just forward all VRF evaluations for this key in calls
to the OSign oracle to the challenger of the VRF and given that the winning
condition for the forgery output by the thrings forger are valid, we need to have a
fresh evaluation of the VRF, which allows A to break residual unpredictability.
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As A can break residual unpredictability with at most negligible probability,
we see that F can win in H2 with at most negligible probability as well. By
hybrid argument, we see that F cannot win in H0 either except with negligible
probability.

��
Theorem 3 (Anonymity). If SPB is index hiding, PKE has key-privacy
and CPA-security, NIWI is computationally witness-indistinguishable, and VRF
has residual pseudorandomness and key-privacy then TRS is anonymous.

Recall the anonymity experiment in Fig. 2. In the training phase, the adver-
sary Aanon queries on OKGen, OSign, OCorr, and OReg. Then in the chal-
lenge phase, Aanon submits a message msg, a subring R, and two signing sets
S0, S1 ⊂ R. The challenger picks one of the signing sets Sb and computes a
signature σ. On σ, Aanon guesses which of S0, S1 signed the message.

For us, a t-out-of-N thring signature is a collection of t ring signatures, and
signatures are independent of each other. Thus, it suffices to show anonymity for
a single signer and one can use a hybrid argument to show anonymity for larger
thresholds. The probability of distinguishing between two sets of signatures is
negligible if distinguishing between two signatures is negligible. Then for the
challenge phase, Aanon will produce two indices s0, s1, message msg, and ring R.

Over a sequence of hybrids, we transform the signature element by element
from one under s0 to a signature under s1. By showing that each hybrid is
computationally indistinguishable from its predecessor, we see that signatures
under s0 and s1 are indistinguishable to Aanon.

We make changes over the hybrids and justify them in the proofs by using the
following properties: (i) Changes to hk: the SPB is index-hiding. (ii) Changes
to ct: the PKE has key-privacy and CPA-security. (iii) Changes to the witness
used for π: the NIWI is computationally witness-indistinguishable. (iv) Changes
to the value v: the VRF has residual pseudorandomness.

Proof. Consider the following hybrids:

H0 to H1: H0 is the anonymity experiment in Fig. 2 with challenge bit b = 0.
The challenger knows ahead of time qKG, the number of queries Aanon will make
to OKGen and picks two indices i0, i1 ← [qKG] (i0 = i1). If on either i0, i1, Aanon

requests OCorr (or chooses these for OReg) then Abort. Finally, we require that
Aanon picks indices i0, i1 equal to the two indices the challenger picked ahead of
time. Because i0, i1 were picked randomly, with 1

qKG
probability these will be the

right two indices. An adversary playing in H1 wins with the same probability as
in H0, except for a multiplicative loss of 1

(qKG)2 .

H1 to H2: In this step, the challenger always chooses i1 as the ‘other index’
when computing the final challenge signature. As i1 was uniformly random, this
is indistinguishable.

H2 to H3: In this step, for OKGen on i0, i1 make sure the secret keys ski0
F and

ski1
F are such that F(ski0

F ) = ski1
F holds. This change affects only ski0

F and ski1
F ,

which are hidden in Ei0 and Ei1 and are never revealed.
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H3 to H4: Calculate (v1, p1) ← (EvalV RF (ski1 ,msg||R),ProveV RF (ski1 ,msg||R))
and (v′1, p′1) ← (EvalV RF (ski1 , t||msg||R),ProveV RF (ski1 , t||msg||R)),

and τ i1 = OpenSPB(hki1 , shki1 , R, i1). Then change the witness w:

H3 w0 = (V K i0 , V K i1 , i0, i1, τ
i0 , τ ′ , p , p′ , ski0

F , sk′
F , rct, rct′ , rE0 , rE1)

H4 ŵ0 = (V K i0 , V K i1 , i0, i1, τ
i0 , τ i1 , p1 , p′1 , ski0

F , ski1
F , rct, rct′ , rE0 , rE1)

Note that this only makes changes in the witness of the NIWI. The values in
the signature are only changed in subsequent games. Since the NIWI is wit-
ness indistinguishable, these changes are indistinguishable to any adversary. We
construct AWI which uses Aanon.

1. AWI activates Aanon. He chooses i0, i1.
2. For each query, he answers as the challenger would.
3. On a challenge (s0, s1,msg, R), if s0 = i0 and s1 = i1, he calculates w0,w0

as above and sends to the challenger. He gets back π∗.
4. AWI forwards π∗ as part of the signature to Aanon.
5. AWI outputs the same as Aanon.

In H3, the witness is w0, and in H4, it is ŵ0. Then if Aanon wins H3 and H4

with different probabilities, then AWI can win the witness-indistinguishability
game with the same probability. Thus, H3 and H4 are indistinguishable.

H4 to H5: ct := EncPKE( pki0
† , p; rct) → ct1 := EncPKE( pki1

† , p; rct)

To show that this change is indistinguishable, we construct an adversary to
PKE key privacy APKE

KP .

1. APKE
KP receives two public keys pk0, pk1 from his challenger.

2. APKE
KP activates Aanon. He picks i0, i1. APKE

KP answers every query as the
challenger would have done, except for KGen at i0 and i1, where he gives
pki0 = pk0 and pki1 = pk1.

3. Finally, Aanon will request a signature on msg, R.
4. APKE

KP computes using ski0 , p ← ProveNIWI(sk
i0 ,msg||R). He sends p to

his challenger.
5. The challenger will pick b ← {0, 1}. If b = 0, returns ct∗ = ct and if b = 1,

returns ct∗ = ct1.
6. APKE

KP uses ct∗ for the signature he gives Aanon.
7. Output the same as Aanon.

If the challenger picks pk0, this is the anonymity game as in H4, but if he
picks pk1 then this is the game as in H5. Thus, if Aanon wins H4 and H5 with
different probabilities, then this is the advantage of APKE

KP winning the PKE key
privacy experiment.

H5 to H6: ct′ := EncPKE( pki0
† , p′; rct′) → ct′1 := EncPKE( pki1

† , p′; rct′)

The argument is identical to the transition from H4 to H5 with a reduction
to PKE key privacy. The only difference is that p′ ← ProveV RF (ski0 , t||msg||R)
and thus we omit details.
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H6 to H7: ct1 := EncPKE(pki1
† , p ; rct) → ĉt

1
:= EncPKE(pki1

† , p1 ; rct), where
p1 ← ProveV RF (ski1 ,msg||R).

We construct ACPA which uses Aanon as a subroutine to break CPA security.

1. ACPA receives pk. ACPA picks i0, i1, activates Aanon.
2. For each query by Aanon, ACPA answers as a challenger would, except for

OKGen at i0, where he gives pki0
† = pk.

3. When Aanon queries on (s0, s1,msg, R) then ACPA calculates both p ←
EvalV RF (ski0 ,msg||R) and p1 ← EvalV RF (ski1 ,msg||R). He gives p, p1 to
his challenger.

4. Challenger flips b ← {0, 1}. If b = 0 he encrypts p, if b = 1 he encrypts p1.
He returns ct∗ to ACPA.

5. ACPA uses ct∗ for the signature he gives to Aanon.
6. ACPA outputs the same as Aanon.

If the challenger picks p, we are in H6, if p1 then H7. Thus, ACPA wins the
CPA-security experiment with the same advantage as the difference of Aanon

winning in H6 versus winning in H7.

H7 to H8: ct′1 := EncPKE(pki1
† , p′ ; rct) → ĉt

′1
:= EncPKE(pki1

† , p′1 ; rct),
where p′1 ← ProveV RF (ski1 , t||msg||R). The argument is identical to the transi-
tion from H6 to H7 and thus we omit details.

H8 to H9: σ = ( v , v′, ĉt
1
, ĉt

′1
, hki0 , hki1 , π, t) →

σ = ( v1 , v′, ĉt
1
, ĉt

′1
, hki0 , hki1 , π, t)

where v1 ← EvalV RF (ski1 ,msg||P ).
We show that the change between H8 and H9 is indistinguishable using the

following reduction to the VRF key privacy.

1. AV RF
KP gets a vk0, vk1 from his challenger.

2. AV RF
KP picks i0, i1 and activates Aanon.

3. AV RF
KP answers every query from Aanon. At index i0 he sets the VRF

vki0 = vk0 and at i1 he sets vki1 = vk1.
4. On an OSign query for msgi, Ri, at i0: AV RF

KP asks the challenger to return
v ← EvalV RF (skb,msgi||Ri)

5. When Aanon makes his challenge, (s0, s1,msg, R), then AV RF
KP submits

msg||R to the challenger as his challenge and gets back v∗. He uses this
in the signature σ = (v∗, ct, hk, h, π).

If b = 0, then the AV RF
KP uses vki0 to answer queries. If b = 1, then AV RF

KP

uses vki1 . By the VRF’s key privacy property, AV RF
KP cannot distinguish between

a v from vki0 and vki1 . Thus, H8 and H9 are indistinguishable.

H9 to H10: σ = (v1, v′ , ĉt
1
, ĉt

′1
, hki0 , hki1 , π, t) → (v1, v′1 , ĉt

1
, ĉt

′1
, hki0 ,

hki1 , π, t). The challenger replaces v1 by v′1 ← EvalPRF (ski1 , t||msg||P ). The
argument is as in H8 to H9.

H10 to H11: (hk, shk) ← GenSPB(1λ, N, i0 ) → hk1, shk1 ← GenSPB(1λ,

N, i1 ).
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Because of the SPB’s index-hiding property we can next change the index for
which hk is generated from i0 to i1. We construct AIH as an adversary against
SPB index hiding which uses Aanon as a subroutine.

1. AIH picks (N, i0, i1, ∅) (where N is the maximum ring size).
2. AIH activates Aanon as a subroutine. On each query AIH answers as the

challenger would.
3. Eventually, Aanon requests a signature on i0, i1.
4. AIH produces the signature as described in H10, except for he gives

(N, i0, i1) to the challenger. He uses (hk, shk) from the challenger to create
the signature for Aanon.

5. AIH outputs same as Aanon.

If Aanon wins with non-negligibly different probabilities in H10 and H11, then
AIH could win the index hiding experiment. We see then that H10 and H11 must
be indistinguishable.

H11 to H12: Using τ1 ← OpenSPB(hk1, shk1, R, i1), select ski0
F , ski1

F randomly
when requested for OKGen and change the witness:

H11 ŵ0 = ( V K i0 , V K i1 , i0, i1 , τ i0 , τ i1 , p1, p′1, ski0
F , ski1

F , rct1 , rct′
1
, , rE0 , rE1)

H12 w1 = ( V K i1 , V K i0 , i1, i0 , τ i1 , τ i0 , p1, p′1, ski1
F , ski0

F , rct1 , rct′
1
, rE0 , rE1)

and use to compute π1 ← ProveNIWI(x,w1). This change is indistinguishable
because NIWI has witness indistinguishability.

In H12, the challenger is returning a signature for i1. Because each hybrid is
computationally indistinguishable from its predecessor, we see that signatures
under s0 and s1 are indistinguishable to Aanon. ��

5 (Scoped) Linkable Thring Signatures

We extend the techniques in TRS to create a linkable threshold ring signature
scheme LTRS. Linkability [23] means that given two thring signatures for any two
messages, one can verify whether (at least one of) the same signers contributed to
both signatures. The verification is done via a Link algorithm that takes as input
two thring signatures and outputs a bit indicating whether the two signatures
are linked.

The security framework and construction presented in the following sup-
port scoped linkability, where two signatures link if they have been produced by
related sets of signers for the same scope (e.g., context information)5. Scoped
linkability is more fine-grained than linkability: two signatures are linkable if they
have been produced w.r.t the same scope, but across different scopes signatures
cannot be linked. Scope can be an arbitrary string. Using a scope string fixed in
5 We note that this concept is not new and has previously been used within anonymous

credential systems (cf. [9]), direct anonymous attestation [7] and also in context of
traceable ring signatures [16].
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the scheme yields the conventional notion of linking. Like BDH+ [3] recently did
for ring signatures, we present the first construction of a linkable thring signature
scheme in the plain model by building upon our thring signature scheme.

The standard security requirements for (scope-)linkable threshold ring signa-
tures are correctness, unforgeability, scoped linkability, linkable anonymity, and
non-frameability. Scoped linkability requires that even maliciously generated sig-
natures need to link. With linkable anonymity, while it is possible to see that
two signatures come from the same signer, it is not possible to determine which
signer it is. Finally, non-frameability requires that an adversary, even after seeing
many messages and signatures, cannot generate fresh signatures which will link
to signatures that have been generated by honest parties.

Syntax. A linkable threshold ring signature scheme is a 5-tuple of algorithms
(Setup,KGen,Sign,Vfy, Link) and an extension of threshold ring signatures, where
Sign and Vfy take an extra input sc (the scope). Thus, we do not detail the first
four interfaces here. Finally, Link is defined as follows:

– b ← Link(σ1, σ2). On input two valid threshold ring signatures for the same
scope, this deterministic algorithm outputs a single bit b.

5.1 Properties and Definitions

We now formally define the above mentioned properties.
Scoped Linkability. Intuitively, scoped linkability guarantees that signatures from
non-disjoint sets of signers for the same scope will link. This is captured by giving
the adversary access to honestly generated keys for a ring of size q (for any q)
and have the adversary output q + 1 valid signatures for the same scope. The
adversary wins if none of them link to each other. The definition of linkability is
reminiscent of unforgeability (Def. 10): the adversary with only knowledge of q
keys cannot create q +1 signatures. We have a similar limitation with linkability
as we had with unforgeability: our construction has us exclude malicious keys
due to our use of RF . Thus, we miss the situation where the adversary forges
signatures using malicious keys, which could be trivially made to link. As before,
this is inherent in our scheme due to the use of the VRF and the OWF which
allows us to be in the plain model. The formal experiment is provided in Fig. 4.

We note that the proposed signatures will be linkable for different scopes if
the same message/ring is signed.

Definition 12 (Scoped Linkability). A linkable threshold ring signature
scheme satisfies scoped linkability if for every PPT adversary A and every q
polynomially bounded in λ, there exists a negligible function negl(λ) such that

Pr[ScopedLinkabilityA(λ, q) = 1] ≤ negl(λ) .

Non-Frameability. Non-frameability guarantees that no adversary can generate
fresh signatures which will link to signatures that have been generated by honest
parties. The adversary has access to OCorr and OSign and can receive arbitrarily
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Fig. 4. Scoped linkability Fig. 5. Non-frameability

many signatures, and finally outputs a strong forgery, i.e., a fresh signature to a
new message and subring. The adversary then learns all secret keys and wins if it
can generate another signature which links to the former one, if no corrupted user
was in the subring for both signatures (as this would allow for trivial attacks).

Definition 13 (Non-Frameability). A linkable threshold ring signature
scheme satisfies non-frameability if for every PPT adversary A and every q
polynomially bounded in λ, there exists a negligible function negl(λ) such that

Pr[FrameabilityA(λ, q) = 1] ≤ negl(λ) .

In our definition (see Fig. 5 for the formal experiment), we only consider
signature schemes where the threshold signature consists of a list of individual
signatures (as is also the case in the construction). This is because the same mes-
sage can be signed for the same subring and scope, but by two disjoint sets of
signers. Because of non-interactivity and inter-signer anonymity, the individual
contributions of the signature cannot depend on the set of signers, and thus an
adversary could create a fresh overall signature by combining parts from both sig-
natures. The adversary could then to trivially win the frameability experiment,
if the winning condition only excluded that the overall challenge signature σ∗

has not been generated by OSign, while not having a real-world impact. To over-
come this problem, we either must drop inter-signer anonymity or require an
interactive process.

Linkable Anonymity. For linkable anonymity, it is not possible to decide from
which signer in the ring the signatures came from, only what signatures are
linked together. We capture this concept formally in the experiment in Fig. 6.

The adversary picks two signing sets S0, S1 such that |S0| = |S1. We can
assume that S0 ∩S1 = ∅ without loss of generality. By ordering members of each
set, we have a correspondence from user ik and jk in S0, S1 respectively. We say
a key V Ks

0 ∈ S0 is matched with a key V Ks
1 ∈ S1.
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Then in one case, all signature queries with signer ik are signed with ik.
Otherwise, all signature queries of ik are signed with jk (and vice versa). Then
A can use Link for any signature gotten from the challenger. If A requested two
signatures for ik then these two signatures will always link.

Depending on the bit b the challenger generates, the requested signatures on
the sets S0, S1 have this form: If b = 0 then the signers are the ones A asks for.
If b = 1 then each signature on ik ∈ S0 is replaced with jk ∈ S1 (and vice versa).
In the end, A must decide whether the signatures were signed according to what
he requested, or whether they were all flipped.

We note a weakness in our scheme: neither S0 nor S1 can have a corrupted
member in the set. That is, if user ik is corrupted, then it will be easy for A
to learn whether ik’s key was used to create a signature. Therefore, we have
OCorr ignores any calls to users in S0 ∪ S1. This is a rather weak definition in
the context of ring signatures, but seems unavoidable when using a deterministic
function such as VRFs.

Fig. 6. Linkable anonymity.

Definition 14 (Linkable Anonymity). A linkable threshold ring signature
scheme satisfies scope-exclusive linkable anonymity if for every PPT adver-
sary A and every q polynomially bounded in λ, there exists a negligible function
negl(λ) such that

∣∣∣∣Pr[LinkableAnonymityA(λ, q) = 1] − 1
2

∣∣∣∣ ≤ negl(λ) .
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5.2 Our Construction

Our threshold ring signature TRS is modular in the sense that we need only to add
a few elements to TRS to turn it into a linkable thring signature scheme including
the concept of a scope. The full LTRS construction is presented in Fig. 7.

Fig. 7. Linkable threshold ring signature scheme LTRS (changes to TRS highlighted).
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Besides TRS keys, we include two VRF keys (vkL, skL) (for linking) and
(vkmal, skmal) (for achieving non-malleability). For signing, a signer additionally
evaluates the first VRF on the scope sc to get (vL, pL) and encrypts pL into
ctL. The evaluation on scope is necessary to allow for scoped linkability. Then,
it creates a key-pair (vksOTS , sksOTS) for a strong one-time signature (sOTS)
scheme. The signer evaluates another VRF using skmal on vksOTS (i.e., “signs”
the verification key) and encrypts pmal into ctmal. The purpose of the second
VRF is for non-malleability, i.e., sksOTS is used to sign the partial signature
and the final signature also includes the sOTS signature. As before, the signer
evaluates a NIWI:

NIWI. The NIWI consists of the OR of three different languages:

L′
L := (LR|V K

∧ LRLink
) ∨ (LR|V K′ ∧ LRLink′ ) ∨ LRF

The relation RF is identical to the one in TRS and R|V K is a straightfor-
ward adaption of the one in TRS. We added a new language for the relation-
ship RLink, which allows a signer to maintain anonymity and non-frameability:
RLink(x,w) ⇐⇒

ctL = EncPKE(pk†, pL; rL) ∧ ctmal = EncPKE(pk†, pmal; rmal) ∧
VfyV RF (vkL, sc, vL, pL) = 1 ∧ VfyV RF (vkL, vkots, vmal, pmal) = 1

Statements x and witnesses w for L′
L are of the form:

x =

⎛
⎝
msg R v vmal vL

hs hi hks hki vkots

ct ctmal sc ctL ςots

⎞
⎠ w =

⎛
⎝

V Ks V Ks1 s s1 τs τ i

p pmal pL ski0
F ski1

F
rct rct′ rE0 rE1 rL rmal

⎞
⎠

5.3 Security of Our Construction

In the following we state the security claims for our (scope) linkable thring
signature scheme LTRS. The proofs are along the same lines as those for TRS
and therefore omitted; proof sketches can be found inthe full version.

Theorem 4. If F is a OWF, VRF has residual unpredictability and unique prov-
ability, NIWI has perfect soundness, SPB is somewhere perfectly binding and
PKE is perfectly correct, SPB is index hiding then LTRS is unforgeable.

Theorem 5. If F is a one-way function, the NIWI has perfect soundness, PKE
is perfectly correct, SPB is somewhere perfectly binding, VRF has residual unpre-
dictability and key collision resistance, and sOTS is strongly unforgeable then
LTRS is non-frameable.

Theorem 6. If the NIWI is computationally witness-indistinguishable, PKE
has key-privacy and CPA-security, and VRF has key privacy and residual pseu-
dorandomness, then LTRS has linkable anonymity.

Theorem 7. If the NIWI has perfect soundness, SPB is somewhere perfectly
binding, the VRF has unique provability, and PKE is perfectly correct, then
LTRS is linkable.
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6 Instantiations and Future Directions

Our construction is generic but we have made some choices for convenience, i.e.,
the use of PKE instead of commitments as key-privacy is a natural well studied
notion for PKEs. Thus, for a concrete instantiation there may be a number of
choices and possible optimizations, which are outside the scope of this paper.
Also, for asymptotics, the general algebraic circuit for the NIWI will have a poly-
nomial expansion in the size of its input. The input is logarithmic in the number
of users of the ring, and therefore the overall size of the proof is polylogarithmic
in the size of the input. This is a natural limitation when relying on general
building blocks, an issue that is also present in BDH+ [3]. We discuss later how
this could be circumvented.

Towards Post-Quantum Instantiations. If the instantiations of underlying
primitives are post-quantum secure, then our thring signature scheme is also
post-quantum secure. Post-quantum VRFs that rely on LWE [17] exist6 and so
do key-private PKE schemes (e.g., based on LWE [22]). Many PKE schemes have
key privacy, as this property immediately holds if the ciphertexts are pseudo-
random. SPBs can be constructed from somewhere statistically binding hashing
(SSBs). BDH+ show in Appendix A.2 of [2] how to turn two-to-one SSBs into
SPBs. There are SSBs that rely only on the existence of a lossy/injective func-
tions. One natural lossy/injective function is one built from the LWE problem [1].
The other building blocks we require are a post-quantum strong one-time signa-
ture scheme and OWFs. One example for the former is the Winternitz scheme [8]
and for latter there are multiple candidates (e.g., from assumptions such as LWE
or SIS or based on symmetric primitives as in Picnic [10] and related signature
schemes).

The last concern is whether one can construct NIWIs that are post-quantum
secure. While NIWIs in the post-quantum setting are not known, as discussed
in a recent work by Chatterjee et al. [11] and based on an observation in [5], the
NIWI in the BDH+ approach (and also ours) can be replaced with a two-message
public coin argument systems (ZAPs [14]). This can be done by extending veri-
fication keys with the first message of the ZAP (cf. [11]). While ZAPs are known
under the LWE assumption [4,18], one requires to rely on subexponential hard-
ness. To achieve standard polynomial hardness, it though might be possible to
adapt the recent approach in [11], which uses the BDH+ approach along with a
novel ZAPs for a limited class of languages to achieve compact ring signatures
in the plain model from LWE.

Potential Trade-offs. The most challenging part of our approach is proving
that a verification key belongs to the ring of verification keys. Like BDH+ [3],
our thring signature is asymptotically logarithmic but due to the insistence of
being in the plain model, there are technical sticking points that guide our choice
of building blocks. In particular, when we want to use NIWIs we require perfect

6 Though key privacy and key collision resistance seem natural in this approach, a
formal treatment is missing.
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soundness and thus like BDH+ [3] rely on SPBs. Clearly, if we move to knowl-
edge sound NIZKs and thus allow a trusted setup (CRS), then we can move to
computationally sound versions and in particular accumulators, e.g., Merkle-tree
accumulators with log-sized membership witnesses or even ones with constant
size. For the latter ones, the accumulators rely on a trusted setup. Using accu-
mulators was already shown to be useful to get compact ring signatures [12]
and in concurrent and independent work also more compact thring signatures
[26]. However, the latter requires accepting trusted setup and the random oracle
heuristic. We expect that our core idea could also be combined with these prim-
itives when accepting these additional assumptions. Another direction to reduce
the signature size would be replace the NIWI with a zk-SNARG or zk-SNARK.
However, this would again require a trusted setup or the random oracle heuristic
and additionally non-falsifiable assumptions in the latter case.
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Abstract. Studying the security and efficiency of blind signatures is an
important goal for privacy sensitive applications. In particular, for large-
scale settings (e.g., cryptocurrency tumblers), it is important for schemes
to scale well with the number of users in the system. Unfortunately, all
practical schemes either 1) rely on (very strong) number theoretic hard-
ness assumptions and/or computationally expensive pairing operations
over bilinear groups, or 2) support only a polylogarithmic number of
concurrent (i.e., arbitrarily interleaved) signing sessions per public key.
In this work, we revisit the security of two pairing-free blind signature
schemes in the Algebraic Group Model (AGM) + Random Oracle Model
(ROM). Concretely,

1. We consider the security of Abe’s scheme (EUROCRYPT ‘01), which
is known to have a flawed proof in the plain ROM. We adapt the
scheme to allow a partially blind variant and give a proof of the new
scheme under the discrete logarithm assumption in the AGM+ROM,
even for (polynomially many) concurrent signing sessions.

2. We then prove that the popular blind Schnorr scheme is secure under
the one-more discrete logarithm assumption if the signatures are
issued sequentially. While the work of Fuchsbauer et al. (EURO-
CRYPT ‘20) proves the security of the blind Schnorr scheme for con-
current signing sessions in the AGM+ROM, its underlying assump-
tion, ROS, is proven false by Benhamouda et al. (EUROCRYPT
‘21) when more than polylogarithmically many signatures are issued.
Given the recent progress, we present the first security analysis of the
blind Schnorr scheme in the slightly weaker sequential setting. We
also show that our security proof reduces from the weakest possible
assumption, with respect to known reduction techniques.

1 Introduction

Blind signatures, first introduced by Chaum [17], are a fundamental crypto-
graphic building block. They find use in many privacy sensitive applications
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such as anonymous credentials, eCash, and eVoting. Informally, a blind signa-
ture scheme is a interactive protocol between a user and a signer. Here, the
signer holds a secret key sk and the user holds the corresponding public key pk.
The goal of the interaction is for the user to learn a signature σ on a message m
of its choice such that σ can efficiently be verified using pk. The protocol should
ensure two properties [29]: (1) One-More-Unforgeability: if the protocol is run
� times, the user should not be able to create � + 1 or more valid signatures
(2) Blindness: the signer cannot link the transcripts of protocol runs to the sig-
natures that they created. In particular, it does not learn the messages that it
signs. In a practical setting, signer and user might however want a more relaxed
property to include some shared information, e.g. a date when the signature was
issued or an expiration date. To this end, Abe and Fujisaki [2] introduced Partial
Blindness which guarantees that signatures with the same shared information,
the so-called tag, are unlinkable to protocol runs using this tag.

In spite of decades of study, the security guarantees of practical blind and
partially blind signature schemes remain unsatisfactory. Practical constructions
rely on strong number-theoretic hardness assumptions and/or computationally
expensive pairing operations over bilinear groups [9,13,21,24,36]. Other con-
structions rely on weaker assumptions (and no pairings) but allow only for
a very small (polylogarithmic) number of signatures to be issued per public
key [3,15,27,28,38,40–42]. The reason for this is that the homomorphic structure
of these schemes gives rise to the so-called ROS attack (Random inhomogenities
in Overdetermined System of equations) when sufficiently many sessions of the
scheme are executed concurrently (i.e., if session can be interleaved arbitrarily).
Shortly after its discovery by Schnorr [45], Wagner [47] showed how to carry
out the ROS attack in sub-exponential time against the Schnorr and Okamoto-
Schnorr [35] blind signature schemes.1 A recent result of Benhamouda et al. [12]
improved the parameters of Wagner’s attack, presenting the first polynomial-
time attack (assuming that polylogarithmically many signing sessions can be
opened concurrently).

1.1 Our Results

In this work, we revisit the security properties of two classic blind signature
schemes which do not rely on pairings: Schnorr’s blind signature scheme [16,44]
and Abe’s blind signature scheme [1]. Neither of these schemes have meaningful
security guarantees if the number of concurrent signing sessions is beyond poly-
logarithmic (in fact, Abe’s blind signature scheme has no security proof at all
in a non-generic model of computation). Given the popularity of these schemes,
we believe that a reassessment of their security properties is long overdue. We
give a summary of our results below.

1 Although the attack can be formulated for all the aforementioned blind signature
schemes, the algebraic structure in the latter two schemes gives rise to an efficient
attack.
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Abe’s Scheme. In the first part of our work, we study the concurrent security
properties of Abe’s blind signature scheme. This scheme was initially proven
secure under the DL assumption in the ROM (with blindness holding com-
putationally under the DDH assumption). However, a later work by Abe and
Ohkubo [34] pointed out that the original proof contained a flaw and gave a
security proof in the generic group model (GGM)+ROM instead. We general-
ize Abe’s scheme to the partially blind setting and prove security of our new
scheme in the more realistic AGM+ROM under the DL assumption. (We note
that Abe’s scheme can be obtained as a special case of our new scheme and thus
our proof of security thus applies also to Abe’s original scheme). As the work of
Abe and Ohkubo is not publicly available, our proof is inspired by Abe’s orig-
inal proof and does not follow the blue print of a ‘GGM-style proof.’ Instead,
we give a more general (and involved) proof that uses the AGM to avoid the
rewinding step that causes the problem in Abe’s proof. Apart from generalizing
Abe’s scheme to the partially blind setting, avoiding rewinding has the bene-
fit that our reduction is tight, allowing for relatively practical parameter sizes.
We stress that our reduction allows for the scheme to be proven secure with
concurrent signing sessions and for polynomially many signatures per tag.

Schnorr’s Scheme. In the second part of our work, we focus on the security
of Schnorr’s blind signature scheme. As we have already explained, the security
of this scheme is completely broken in the concurrent setting for reasonable
parameters. In spite of this, the Schnorr scheme continues to be one of the most
popular blind signatures due to its simplicity and its efficiency. Hence, it is an
important open question to settle what type of security this scheme actually
does achieve (if any).

We show that the blind Schnorr signature scheme is secure in the algebraic
group model (AGM) [22] + random oracle model (ROM) [10] if signing sessions
are sequential, i.e., if the i-th session is always completed before the (i + 1)-st
session is opened.

In more detail, under the above model assumptions, the blind Schnorr sig-
nature scheme is secure against �-sequential one-more-unforgeability (�-SEQ-
OMUF) under the �-one-more discrete logarithm (�-OMDL) assumption. This
is true even when polynomially many signatures are issued for the same public
key pk. We remark that security under sequential signing sessions is still a very
meaningful security guarantee and has been explored in prior works (see below).
Namely, sequentiality of sessions is easy to ensure (from the signer’s perspective)
at the expense of some efficiency.

Our result improves upon that of Fuchsbauer et al. [23], which proves that
the scheme is secure under the OMDL+ROS assumption (when run concur-
rently). While the ROS problem is known to be information theoretically hard
as long as the number of concurrent signing sessions is polylogarithmic, the
recent work of Benhamouda et al. [12] shows a polynomial-time attack for
super-polylogarithmically many concurrent signing sessions. Therefore, the blind
Schnorr scheme is concurrently secure (in the AGM+ROM) if and only if the
signer issues at most polylogarithmically many signatures.
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Negative Result (Schnorr). As OMDL is a relatively strong assumption (in
fact, [8] showed it is strictly stronger than q-discrete logarithm for known reduc-
tion approaches), a natural question is whether it is actually necessary for prov-
ing Schnorr’s scheme secure. We answer this question by showing that our reduc-
tion for blind Schnorr signatures in the AGM+ROM is optimal in the sense that
it is not possible to reduce �-SEQ-OMUF from (� − 1)-OMDL (or OMDL with
any lower dimension).

We use the meta-reduction technique [18] to rule out reductions in a very
strong sense: we show that any algebraic reduction that reduces �-SEQ-OMUF
from (� − 1)-OMDL in the AGM+ROM, can be turned into an efficient solver
against (� − 1)-OMDL. Our result complements that of Baldimtsi and Lysyan-
skaya [7], which also rules out a certain class of reductions for the blind Schnorr
scheme. Concretely, they show that reductions that program the random oracle
in a certain predictable way, can be turned into an efficient solver against the
underlying hardness assumption. While their approach restricts the type of ran-
dom oracle programming that the reduction may do, ours allows for arbitrary
programming, but restricts the reduction to be algebraic. On the other hand,
our (algebraic) reductions may themselves work in the AGM, which further
strengthens our result.

1.2 Related Work and Discussion

We have already mentioned several works that study the security of blind sig-
natures in the concurrent signer model. In the sequential model, the work of
Baldimtsi and Lysyanskaya [6] proves that an enhanced version of Abe’s scheme
is secure under DL. Pointcheval and Katz et al. [31,39] give a transformations
that apply (among others) to the blind Schnorr and Okamoto-Schnorr scheme.
The resulting schemes remain secure even in the concurrent setting, but require
communication that grows linear in the number of signatures that have been
issued. In terms of practical parameters, these schemes are also significantly less
efficient than the schemes we consider here. Fuchsbauer et al. [23] gave a (con-
currently secure) scheme under the OMDL and modified ROS assumption in
the AGM+ROM. The latter assumption asserts the conjectured hardness of an
(apparently harder) version of the ROS problem, even given unbounded comput-
ing power. Nicolosi et al. [33] use a similar strategy to ours (i.e., by restricting
concurrency) to prove security of a proactive two-party signature scheme. Inter-
estingly, they encounter similar issues as we do in our work, if concurrent session
are permitted. Drijvers et al. [19] show how a ROS based attack can be applied
in the context of multi-signatures (and how it can be overcome at the cost of
some efficiency). Finally, various constructions of blind signatures in the stan-
dard model exist (e.g., [20,25]), but are usually not considered practical.

The Algebraic Group Model. [22] introduced the algebraic group model
(AGM) as a formal model to analyze group based cryptosystems. Previous works
had considered algebraic algorithms, for example [14,37]. In the AGM, any adver-
sary must output an explanation of how it computed its output group elements
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from the group elements in its input. Since its introduction, the AGM has been
readily adopted [5,8,23,26,32] and has served as a useful tool to prove the secu-
rity of schemes that would be too difficult to analyze in the plain model. [43]
have furthermore extended the AGM to decisional assumptions.

While the AGM is a weakening of the GGM, proofs in the AGM are inherently
different from the GGM in the sense that they are reductions from one problem
to another instead of showing information-theoretic hardness. From a qualitative
point of view, proofs in the AGM provide a weaker form of security than proofs
in the plain model, but a much stronger one than proofs in the GGM. The
recent work of Agrikola et al. [4] shows that some results from the AGM can be
transferred to the standard model using strong but falsifiable assumptions. This
suggests that proofs in the AGM indeed hold some meaning for the plain model.

Another benefit of AGM proofs (over GGM proofs) is that they offer more
insight into how secure a scheme actually is when deployed in real-world appli-
cations, as we explain in the following. In the GGM, a proof consists of estab-
lishing bounds on the runtime/success probabilities of an adversary attacking
a particular signature scheme. These bounds often look similar for different
schemes from an asymptotic point of view. Because of this, they do not give
much insight into what computational assumptions are needed for the scheme to
remain secure when run in the real world. By comparison, AGM proofs are by
means of reduction from a computational assumption and thus can be used to
assess the real-world disparities between two schemes that ‘look equally secure’
in the GGM. As a concrete example, our work gives a security proof for Abe’s
scheme under the discrete logarithm assumption. By comparison, we show that
proving Schnorr’s scheme secure (even under sequential signing sessions) requires
the much stronger OMDL assumption. Arguably, this makes Abe’s scheme the
more attractive choice (along with allowing for concurrent sessions) for real world
systems. This insight could not have been gained from proving these schemes
secure in the GGM.

Open Questions. Our work leaves open the question of what can be proven
about both the Abe and Schnorr blind signature schemes in the random oracle
model only. Interestingly, the already mentioned work of Baldimtsi and Lysyan-
skaya [7] rules out a security proof for the blind Schnorr scheme using standard
reduction techniques even in the sequential signing model. Namely, their result
excludes such a reduction from a computational hardness assumption even if the
signer just issues a single signature (which trivially restricts the sessions to being
sequential). Another interesting direction for future work could be a more fine-
grained security analysis (in the AGM+ROM) of the Schnorr scheme in a less
restrictive signing model that allows for a low degree of concurrency. Namely,
the ROS attack requires a polylogarithmic number of signing sessions to be open
at the same time. Thus, it might be possible to prove the security of the scheme
if, say, up to a constant number of signing sessions may be interleaved at any
given point in time. Regarding Abe’s scheme, there might yet be a glimmer of
hope that the original proof can be salvaged (i.e., without requiring the AGM).
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1.3 Organization

We first recall some preliminaries in Sect. 2. In Sect. 3 we introduce our adaption
of Abe’s scheme to the partially blind setting. We provide a proof of partial
blindness under DDH in Sect. 3.1 as well as a proof of one-more-unforgeability
in Sect. 3.2. We then provide the proof of sequential security of blind Schnorr
signatures in the AGM in Sect. 4 and show that this result is optimal in the
number of OMDL-queries in Sect. 4.1.

2 Preliminaries

2.1 Notation and Security Games

Notation. For positive integer n, we write [n] for {1, . . . , n}. We write xj for
the j-th entry of vector −→x and write x $← X to denote that x is drawn uniformly
at random from set X . We denote the security parameter with λ.

Security Games. We use the standard notion of (prose-based) security games
[11,46] to present our proofs. We denote the binary output of a game G with an
adversary A as GA and say that A wins G if GA = 1.

2.2 the Algebraic Group Model

In the following, let pp be public parameters that describe a group G of prime
order q with generator g. (We assume for simplicity that pp also includes the
security parameter λ.) We denote the neutral element by ε and write all other
group elements in bold face. We further write Zq for Z/qZ.

Definition 1 (Algebraic Algorithm). We say that an algorithm A is alge-
braic if, for any group element y ∈ G that it outputs, it also outputs a list of
algebraic coefficients −→z ∈ Z

t
q, i.e.,

(y,−→z ) $← A(−→x )

such that
y =

∏
xzi

i

We denote this representation as [y]−→x . For an adversary A that has access to
oracles during its runtime, we impose the above restriction to all group elements
that it outputs to an oracle. Similarly, all group elements that A receives through
oracle interactions are treated as inputs to A; hence, such group elements become
part of −→x when A outputs group elements (and hence algebraic coefficients) at a
later point.

In the algebraic group model (AGM), all algorithms are treated as algebraic
algorithms. Moreover, we define the running time of an algorithm A in the AGM
as the number of group operations that A performs.
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2.3 Hardness Assumptions

We introduce the two main hardness assumptions that we will use in the sub-
sequent sections. As before, we will tacitly assume that some public parameters
pp are known and describe a group G of prime order q with generator g.

Definition 2 (Discrete Logarithm Problem (DLP)). For an algorithm A,
we define the game DLP as follows:

Setup. Sample x $← Zq and run A on input g,U := gx.
Output Determination. When A outputs x′, return 1 if gx′

= U. Otherwise,
return 0.

We define the advantage of A in DLP as

AdvDLP
A := Pr

[
DLPA = 1

]
.

Definition 3 (One-More-Discrete Logarithm Problem (OMDL)). For
a stateful algorithm A and a positive integer �, we define the game �-OMDL as
follows:

Setup. Initialize C = ∅. Run A on input g.
Online Phase. A is given access to the following oracles:

Oracle chal takes no input and samples a group element y $← G. It sets
C := C ∪ {y} and returns y.

Oracle dlog takes as input a group element y. It returns dlogg y. We
assume that dlog can be queried at most � many times.

Output Determination. When A outputs (yi, xi)�+1
i=1 , return 1 if for all i ∈

[� + 1]: yi ∈ C, gxi = yi, and yi �= yj for all j �= i. Otherwise, return 0.

We define the advantage of A in �-OMDL as

AdvOMDL
A,� := Pr

[
�-OMDLA = 1

]
.

Definition 4 (Decisional Diffie-Hellman Problem (DDH)). For an algo-
rithm A we define the game DDH as follows:

Setup. Sample x, y, z $← Zq and b $← {0, 1}. Run A on input (g,gx,gy,gxy+bz)
Output Determination. When A outputs b′, return 1 if b = b′ and 0 otherwise.

We define the advantage of A in DDH as

AdvDDH
A :=

∣∣∣∣Pr[DDHA = 1] − 1
2

∣∣∣∣ .
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2.4 (Partially) Blind Signature Schemes

In this section, we introduce the syntax and security definitions of partially blind
(three-move) signature schemes [27]. We note that a fully blind signature scheme
is a special case of a partially blind signature scheme where there is only one
tag info, the empty string. We will refer to schemes where the tag is always the
empty string as blind signature schemes.

Definition 5 (Three-Move Partially Blind Signature Scheme). A three-
move partially blind signature scheme is a tuple of algorithms BS =
(KeyGen,Sign := (Sign1,Sign2),User := (User1,User2),Verify) with the following
behaviour.

– The randomized key generation algorithm KeyGen takes as input parameters
pp, and outputs a public key pk and a secret key sk. We assume for conve-
nience that pk contains pp and sk contains pk.

– The signing algorithm Sign := (Sign1,Sign2) is split into two algorithms:
• The randomized algorithm Sign1 takes as input a secret key sk and a tag
info and outputs a commitment C as well as a state stS.

• The deterministic algorithm Sign2 takes as input a secret key sk, a state
stS, and a challenge e. It outputs a response R.

– The user algorithm User := (User1,User2) is split into two algorithms:
• The randomized algorithm User1 takes as input a public key pk, a message

m, a tag info and a commitment C. It outputs a challenge e and a state
stU .

• The deterministic algorithm User2 takes as input a public key pk, a state
stU , and a response R. It outputs a signature σ or ⊥.

– The deterministic verifier algorithm Verify takes as input a public key pk, a
signature σ, and a message m and a tag info. It outputs either 1 (accept) or
0 (reject).

Definition 6 (Correctness). We say that a partially blind signature scheme
BS = (KeyGen,Sign,User,Verify) is correct if for all messages m, all tags info
the following holds:

Pr

⎡

⎢⎢⎢⎢⎣
Verify(pk, sig,m, info) = 1:

(pk, sk) $← KeyGen(pp)
(C, stS) $← Sign1(sk, info)

(e, stU ) $← User1(pk,m, info, C)
R $← Sign2(sk, stS , e)
σ $← User2(pk, stU , R)

⎤

⎥⎥⎥⎥⎦
= 1

Definition 7 (Partial blindness under chosen keys). We define partial
blindness of a three-move partially blind signature scheme BS against an adver-
sary M via the following game:

Setup. Sample b $← {0, 1} and run M on input pp.
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Online Phase. When M outputs messages m̃0 and m̃1, ˜info0 and ˜info1, and a
public key pk, check if pk is a valid2 public key, and ˜info0 = ˜info1. If so, assign
m0 := m̃b, info0 := ˜info0, m1 := m̃1−b, and info1 := ˜info1. If pk is not a valid
public key or info0 �= info1, abort and output 0. M is given access to oracles
User1,User2, which behave as follows.
Oracle User1: On input a bit b′, and a commitment C, if the session b′

is not yet open, the game marks session b′ as open and generates a state
and challenge as (stb′ , e) $← BS.User1(pk,mb′ , C, infob′). It returns e to the
adversary. Otherwise, it returns ⊥.

Oracle User2: On input a response R and a bit b′, if the session b′ is open,
the game creates the signature sigb′ as sigb′ := BS.User2(pk, stb′ , R) to
obtain a signature sigb′ . It marks session b′ as closed and outputs sigb′ .
If both sessions are closed and produced signatures, the oracle outputs the
two signatures sig0, sig1 to the adversary.

Output Determination. If both sessions are closed and produced signatures,
return 1 if the adversary outputs a bit b∗ s.t. b∗ = b. Otherwise, return 0.

We define the advantage of M in game BLINDBS as

AdvBLIND,BS
M :=

∣∣∣∣Pr
[
BLINDM = 1

]
− 1

2

∣∣∣∣ .

Definition 8 (�-(Sequential-)One-More-Unforgeability (�-(SEQ-)OM
UF)). For a stateful algorithm A, a three-move partially blind signature scheme
BS, and a positive integer �, we define the game �-OMUFBS (�-SEQ-OMUFBS)
as follows:

Setup. Sample (pk, sk) $← BS.KeyGen(pp) and run A on input (pk, pp).
Online Phase. A is given access to the oracles Sign1 and Sign2 that behave as

follows.
Oracle Sign1: On input info, it samples a fresh session identifier id (If

sequential, it checks if sessionid−1 = open and returns ⊥ if yes). If info
has not been requested before, it initializes a counter �closed,info := 0. It
sets sessionid := open and generates (Cid, stid) $← BS.Sign1(sk, info).
Then it returns Cid and id.

Oracle Sign2: If
∑

info�closed,info < �, Sign2 takes as input a challenge e and
a session identifier id. If sessionid �= open, it returns ⊥. Otherwise,
it sets �closed,info := �closed,info + 1 and sessionid := closed. Then it
generates the response R via R $← BS.Sign2(sk, stid, e) and returns R.

Output Determination. When A outputs tuples (m1, σ1, info1), . . . , (mk, σk,
infok), return 1 if there exists a tag info such that

∣∣{(mi, σi, infoi)
∣∣infoi =

2 We include this in case the scheme permits such a check - for example, one can think
of schemes where the public key consists of group elements, in which case a user may
be able to check that the public key consists of valid encodings of group elements.
Another example of such a check is in the original version of Abe’s scheme [1] where
z = H1(g,h,y) which a user may check.
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info
}∣∣ ≥ �closed,info + 1 (where by convention �closed,info := 0 for any info

that has not been requested to the signing oracles) and for all i ∈ [k] :
BS.Verify(pk, σi,mi, infoi) = 1 and (mi, σi, infoi) �= (mj , σj , infoj) for all
j �= i. Otherwise, return 0.

We define the advantage of A in OMUFBS as

AdvOMUF
A,BS,� := Pr

[
�-OMUFA

BS = 1
]
.

And, respectively for SEQ-OMUFBS

AdvSEQ-OMUF
A,BS,� := Pr

[
�-SEQ-OMUFA

BS = 1
]
.

3 Adaption of Abe’s Blind Signature Scheme to Allow
Partial Blindness

We begin by describing an adaption of Abe’s blind signature scheme BSA [1] to
the partially blind setting. A figure depicting an interaction between signer and
user can be found in the full version [30]. Let again G be a group of order q
with generator g described by public parameters pp. Let H1 : {0, 1}∗ → G \ {ε},
H2 : {0, 1}∗ → G \ {ε}, H3 : {0, 1}∗ → Zq be hash functions.

– KeyGen : On input pp, KeyGen samples h $← G, x $← Zq and sets y := gx. It
sets sk := x, pk := (g,h,y) and returns (sk, pk).

– Sign1 : On input sk, info, Sign1 samples rnd $← {0, 1}λ and u, d, s1, s2
$← Zq.

It computes z := H1(pk, info), z1 := H2(rnd), z2 := z/z1, a := gu, b1 :=
gs1 · zd

1, b2 := hs2 · zd
2. It returns a commitment (rnd,a,b1,b2) and a state

stS = (u, d, s1, s2, info).
– Sign2 : On input a secret key sk, a challenge e, and state stS =

(u, d, s1, s2, info), Sign2 computes c := e − d mod q, r := u − c · sk mod q
and returns the response (c, d, r, s1, s2).

– User1 : On input a public key pk and a commitment (rnd,a,b1,b2), a tag
info, and message m, User1 does the following. It samples γ $← Z

∗
q and

τ, t1, t2, t3, t4, t5
$← Zq. Then, it computes z := H1(pk, info), z1 := H2(rnd),

α := a · gt1 · yt2 , ζ := zγ , ζ1 := zγ
1 , ζ2 := ζ/ζ1. Next, it sets β1 :=

bγ
1 ·gt3 ·ζt4

1 , β2 := bγ
2 ·ht5 ·ζt4

2 , η := zτ , and ε := H3(ζ, ζ1, α, β1, β2, η,m, info).
Finally, it computes a challenge e := ε − t2 − t4 mod q, the state StU :=
(γ, τ, t1, t2, t3, t4, t5,m) and returns e, StU .

– User2 : On input a public key pk, a response (c, d, r, s1, s2) and a state
(γ, τ, t1, t2, t3, t4, t5,m), User2 first computes ρ := r + t1, ω := c + t2,
σ1 := γ · s1 + t3, σ2 := γ · s2 + t5, and δ := d + t4. Then, it computes
μ := τ − δ · γ and ε := H3(ζ, ζ1,gρyω,gσ1ζδ

1 ,hσ2ζδ
2 , zμζδ,m). It returns the

signature σ := (ζ, ζ1, ρ, ω, σ1, σ2, δ, μ) if δ + ω = ε; otherwise, it returns ⊥.3

3 We note that the check for ε = ω + δ implicitly checks that c + d = e as well as
a = ycgr,b1 = zd

1g
s1 ,b2 = zd

2h
s2 , i.e. it checks that the output of Sign − 2 was

valid.
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– Verify : On input a public key pk, a signature (ζ, ζ1, ρ, ω, σ1, σ2, δ, μ) and
a message m, Verify computes first z := H1(pk, info) and then ε := H3(ζ,
ζ1,gρyω,gσ1ζδ

1 ,hσ2ζδ
2 , zμζδ,m, info). It returns 1 if δ + ω = ε; otherwise, it

returns 0.

We note that the only change we made to Abe’s scheme is that in our variant,
the z part of the public key is derived as a hash of pk and a tag info instead
of as a hash of the other elements of the public key. It is easy to see that by
using an empty info this yields the original scheme and thus our proofs about
the adapted scheme also apply to the original.

We note that Abe refers to z, z1, ζ, ζ1 as the tags of a signing session or
signature. However, as we are considering partial blindness, we will refer to them
as the linking components. By [1], the original scheme is computationally blind
under the Decisional Diffie-Hellman assumption. For completeness, we provide a
detailed proof of the partial computational blindness of our variant in Sect. 3.1.

3.1 Partial Blindness of the Adapted Abe Scheme

We provide a formal proof of partial blindness under chosen keys for the Abe
blind signature scheme. Abe [1] proved the scheme to be blind for keys selected
by the challenger.

Lemma 1. Under the decisional Diffie-Hellman assumption in G, Abe’s blind
signature scheme BSA is computationally blind in the random oracle model.

Proof. We use similar techniques as [6].
Game G1. The first game is identical to the blindness game from Definition 7
for Abe’s blind signature scheme.

Setup. G1 samples b $← {0, 1}.
Simulation of oracle H1. G1 simulates H1 by lazy sampling of group elements.
Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and

m̃1, and tags info0, info1, G1 verifies info0 = info1 assigns m0 = m̃b and
m1 = m̃b−1

Oracle User1. Works the same as described in Definition 7
Oracle User2. Works the same as described in Definition 7
Simulation of H2. H2 is simulated through lazy sampling
Simulation of H3. H3 is simulated through lazy sampling

Output Determination. As described in Definition 7

The second game replaces the signature for m0 by a signature that is independent
of the run with the signer.
Game G2. The second game generates the signature on m0 independently of
the corresponding signing session.

Setup. G2 samples b $← {0, 1}.
Simulation of oracle H1. G2 simulates H1 by lazy sampling of group elements.
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Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and m̃1

and ĩnfo0, ĩnfo1, G2 verifies that the key is well-formed and that ĩnfo0 = ĩnfo1
and aborts with output 0 if this check fails. It further assigns m0 = m̃b and
m1 = m̃b−1 as well as info0 = ĩnfo0 and info1 = ĩnfo1.
Oracle User1. For message m1, the oracle behaves the same as in G1. For

message m0, it checks that session 0 is not open yet and opens session
0. Then the game picks δ, ω, σ1, σ2, ρ, μ uniformly at random from Zq. It
further draws two random group elements ζ and ζ1 and sets ζ2 := ζ/ζ1.
It then sets H3(yω · gρ, ζδ

1 · gσ1 , ζδ
2 · hσ2 , ζδ · zμ,m0, info0) := δ + ω. It

draws e $← Zq uniformly at random and returns e as a challenge to the
adversary.

Oracle User2. For message m1, the oracle behaves the same as in G1. For
message m0, on input c, d, r, s1, s2, the game does the following checks4:
e = d + c, a0 = gr · yc, b1,0 = gs1 · zd

1,0, b2,0 = hs2 · zd
2,0. It considers the

produced signature to be the one generated in User1.
Simulation of H2. H2 is simulated through lazy sampling
Simulation of H3. For values not programmed in User1, G2 simulates H3

via lazy sampling
Output Determination. As described in Definition 7

Claim 1. The advantage of an adversary B to tell the difference between G1 and
G2 is AdvG1,G2

B =
∣∣∣Pr

[
G1

B = 1
]

− Pr
[
G2

B = 1
]∣∣∣ ≤ AdvDDH

B′ .

Proof. We provide a reduction B′ that receives a random-generator DDH chal-
lenge (W,X,Y,Z) and simulates either G1 or G2 to the adversary. During
the first phase of the online phase, the reduction programs the random oracle
H1 to return values Wfi fi ∈ Zq. For simulation of H2, the reduction chooses
exponents gi

$← Zq and returns values Xgi , yielding uniformly random values
from the group G. In User1 for m0, when the adversary sends the commitment
which contains a random string rnd to be queried to the oracle H2, the reduction
identifies the g = gi that was used as the random exponent for z1 = Xg. Denote
further by f the fi used for generation of z = H1(pk, info1). It sets ζ = Yf and
ζ1 = Zf ·g. The reduction then proceeds to generate a signature by programming
the random oracle H3 as described in G2. For m1, the reduction participates
honestly in the signing protocol. In User2, for m0, the reduction checks that
the adversary produces a valid signing transcript as described in G2. If both
interactions yield valid signatures (i.e. the adversary produced a valid transcript
for m0 and a valid signature for m1), the reduction outputs both signatures,
otherwise ⊥. If the adversary outputs it was playing game G1, the reduction
outputs 0, otherwise it outputs 1.

We argue that if the challenge is a Diffie-Hellman tuple, the reduction sim-
ulates G1 perfectly. For a tuple W,Wa,Wb,Wab, the tuple z = Wf , z1 =
Wa·f · g

f , ζ = Wb·f , ζ1 = Wa·b·f ·g is a valid Diffie-Hellman tuple w.r.t generator

4 We note that these checks need to be done explicitly here, as they are no longer
implicitly performed through checking that ε = ω + δ.
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Wf . Furthermore, the user tags ζ and ζ1 can be computed from z and z1 using
blinding factor γ = b. Furthermore, for any c, d, r, s1, s2 and signature compo-
nents ω, δ, ρ, σ1, σ2, μ there are unique choices of t1 = ρ − r, t2 = ω − c, t3 =
σ1 − γ · s1, t4 = δ − d, t5 = σ2 − γ · s2, τ = μ + δ · γ that explain the signature in
combination with the transcript. Thus, the produced combination of signature
and transcript is identically distributed as an honestly generated signature.

If the challenge is not a Diffie-Hellman tuple, then the reduction simulates
G2 perfectly as the linking components ζi, ζ1,i look like random group elements
and the reduction computes the same steps as G2 to generate the signatures
and its outputs to the adversary. ��
We describe the final game G3 where both signatures are independent from the
runs with the signer.

Game G3

Setup. G3 samples b $← {0, 1}.
Simulation of oracle H1. G3 simulates H1 by lazy sampling of group elements.
Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and

m̃1, G3 verifies that the key is well-formed and checks that info0 = info1
and aborts with output 0 if this check fails. It further assigns m0 = m̃b and
m1 = m̃b−1

Oracle User1. For session b′, the game checks that session b′ is not
open yet and opens session b′. It sets z := H1(info). Then the game
picks δ, ω, σ1, σ2, ρ, μ uniformly at random from Zq. It further draws
two random group elements ζ and ζ1 and sets ζ2 := ζ/ζ1. It then sets
H3(yω · gρ, ζδ

1 · gσ1 , ζδ
2 · hσ2 , ζδ · zμ,mb′ , infob′) := δ + ω. It draws e $← Zq

uniformly at random and returns e as a challenge to the adversary.
Oracle User2. For both sessions (denoted by i = 0, 1), on input

ci, di, ri, s1,i, s2,i, the game does the following checks: ei = di + ci,
ai = gri · yci , b1,i = gs1,i · zdi

1,i, b2,i = hs2,i · zdi
2,i. It considers the output

signature to be the one generated for this session in User1.
Simulation of H2. H2 is simulated through lazy sampling
Simulation of H3. For values not programmed in User1, G2 simulates H3

via lazy sampling
Output Determination. As described in Definition 7

Claim 2. The advantage of an adversary B to tell the difference between G1 and
G2 is AdvG2,G3

B′′′ = Pr
[
G2

B′′′
= 1

]
− Pr

[
G3

B′′′
= 1

]
≤ AdvDDH

B′′ .

Proof. Follows along the same lines as Claim 1, embedding the DDH challenge
in the signature for m1 this time. ��
In game G3, the adversary cannot win, as both signatures are completely inde-
pendent from the two runs. As game G3 needs to program the random oracle H3

twice to generate the signatures (this fails with probability at most 2qh

q4·2|m0| , i.e.
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if the adversary has made the exact same requests before), we get the following
overall advantage of

AdvBLINDBSA
M =

2 · qh

q4 · 2|m0| + AdvDDH
B′ + AdvDDH

B′′

��

3.2 One-More-Unforgeability

In the following, we provide a proof for the one-more-unforgeability. Similar to
[1] we do this in two steps. First, we show that it is infeasible for an adversary to
generate a signature that does not use a tag that corresponds to a closed signing
session. (Note that the scheme is only computationally blind, and an unbounded
algorithm can link signatures and sessions since (z, z1, ζ, ζ1) forms a DDH tuple.
We call such tuples linking components, and refer to z, z1 as “signer-side” and
ζ, ζ1 as “user-side”.) This corresponds to Abe’s restrictive blinding lemma. Then,
as the main theorem, we show that it is also infeasible for an adversary to win
�-OMUF by providing two signatures corresponding to the same closed signing
session.

Our Techniques. The main idea for both the lemma and the theorem is to
use the algebraic representations of the group elements submitted to the ran-
dom oracle H3 in combination with the corresponding signature to compute the
discrete logarithm of either y or h or in the tags z. This fails either when the
adversary has not made a hash query for the signature in question, or when the
representation of the hash query does not contain more information than the
signature, i.e., the exponents in the representation already match the signature.
We show that both of these cases only occur with a negligible probability. We
simulate the protocol in two different ways. One way is to use the secret key x
like an honest signer and try to extract the discrete logarithm of h or one of
the z. The other way is to program the random oracles H1 and H2 so that the
reduction can use the discrete logarithms of z, z1, z2 to simulate the other side
of the OR-proof for extraction of the secret key. We also use the programming of
the random oracles to efficiently identify which signature is the “forgery”. This,
in combination with not having to run the protocol twice for forking, renders a
tight proof.

Comparison to the Original Standard Model Proof by Abe [1]. We
briefly recall that similar to our proof, the original proof also shows the restric-
tive blinding lemma first, which, shows that an adversary that wins the OMUF
game and at the same time produces a signature where dlogζ ζ1 �= dlogz z1,i for
all sessions i, can be used to solve the discrete logarithm problem. The proof
uses the forking technique, i.e. it rewinds the adversary to obtain a second set of
signatures with different hash responses to H3. The original proof of the restric-
tive blinding lemma also uses two signers, one that embeds in y and signs using
the z-side witness, another that embeds in h and signs using the secret key x.
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These two signers are indistinguishable for a single run, however, two forking
runs using the same witness reveal the witness being used internally. In partic-
ular, a forking pair of runs using the secret key x to sign, cannot be reproduced
by a signer that does not know the x-side witness. Therefore, the distribution
of signatures obtained from forking runs, in particular the components δ and ω
may depend on which witness was used internally. We note that for example in
‘honestly generated’ signatures (i.e. when the adversary followed the User1 and
User2 algorithms to generate signatures), the a pair of signatures at the forking
hash query reveals exactly the same witness as the signer used to sign while
forking, so it is not clear why a similar thing may not also hold for ‘dishonestly
generated’ signatures.

As our reduction for the restrictive blinding lemma works in the AGM, we can
avoid the rewinding step. The adversary submits representations of all the group
elements contained in a hash query, which gives the reduction information that
would otherwise be obtained from the previous run. As the scheme is perfectly
witness indistinguishable, the representations submitted by the adversary are
independent of the witness used internally. We show in Claim5, that even a
so-called reduced representation that does use factors that are only determined
after all signing sessions were closed, is likely to reveal enough information for
the reduction to be able to solve the discrete logarithm problem.

The Restrictive Blinding Lemma. We first provide a reduction for the
restrictive blinding lemma in the AGM + ROM. We therefore define the game
�-RB-OMUFBSA as follows:

Setup: Sample keys via (sk = x, pk = (g,h,y)) $← BSA.KeyGen(pp).
Online Phase: M is given access to oracles Sign1,Sign2 that emulate the

behavior of the honest signer in BSA. It is allowed to arbitrarily many calls
to Sign1 and allowed to make � queries to Sign2. In addition, it is given access
to random oracles H1,H2,H3. Let �info denote the number of interactions that
M completes with oracle Sign2 in this phase for each tag info.

Output Determination: When M outputs a list L of tuples (m1, sig1, info1),
. . . , (mk, sigk, infok), proceed as follows:

– If the list contains a tuple (m, sig, info) s.t. Verify(pk,m, sig, info) = 0,
or does not contain �info + 1 pairwise-distinct tuples for some tag info,
return 0.

– Let zj , z1,j denote the values of z and z1 used in the j-th invocation
of Sign1. If there exists (m, sig, info) ∈ L with signature components
ζ �= ζ1 (equivalently, ζ2 �= ε), s.t. for all j with H1(pk, info) = zj whose
sessions were closed with an invocation of Sign2, ζ

dlogzj
z1,j �= ζ1, then

return 1. Otherwise, return 0. We call the first signature in L with these
mismatched linking components the special signature.

Define AdvRB-OMUF
M,�,BSA := Pr[�-RB-OMUFM

BSA = 1]. We show that an alge-
braic forger M that wins �-RB-OMUFBSA can be used to solve the discrete
logarithm problem. This reduction is tight and does not require rewinding of the
adversary.
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Lemma 2 (Restrictive Blinding, see Lemma 3 in [1]). Let M be an alge-
braic algorithm that runs in time tM, makes at most � queries to oracle Sign2
in RB-OMUFBSA and at most (total) qh queries to H1,H2,H3. Then, in the
random oracle model, there exists an algorithm B s.t.

AdvDLP
B ≥1

2
AdvRB-OMUF

M,�,BSA − � + 1
2q

− (
3qh

q
+ AdvdlogR1

+ AdvdlogR2
+ AdvdlogR3

+ AdvdlogR4
)

Proof. Let M be as in the lemma statement. As before, we assume w.l.o.g. that
M makes exactly � queries to Sign2 and outputs a list of � + 1 tuples. The proof
goes by a series of games, which we describe below.

Game G0. This is �-RB-OMUFBSA.

Game G1. To define G1, we first define the following event E1. E1 happens if M
returns a list L of �+1 valid signatures on distinct messages m1, ...,m� and there
exists (m, sig, info) = (m, (ζ, ζ1, ρ, ω, σ1, σ2, δ, μ) , info) ∈ L s.t. for all j whose
sessions were closed with an invocation of Sign2, ζ

dlogzj
z1,j �= ζ1 ∧ ζ2 �= ε and M

did not make a query of the form H3(ζ, ζ1,gρyω,gσ1ζδ
1 ,hσ2ζδ

2 , zμζδ,m, info). In
the following, we refer to the first tuple (m, sig, info) ∈ L as the special tuple for
convenience. G1 is identical to game G0, except that it aborts when E1 happens.

Claim 3. Pr[E1] = �+1
q

Proof. The only way for an adversary to succeed without querying H3 for the
signature is by guessing the hash value ε = ω + δ. Since there are � + 1 valid
signatures in L, the probability of guessing ε correctly for one of them is �+1

q . ��

By the claim, we have that AdvG1

M ≥ AdvG0

M − �+1
q .

Game G2. Game G2 is identical to G1, except that it keeps track of the alge-
braic representations of group elements submitted to H3 by M and aborts if a
certain event E2 happens. In the following, we define the event E2 which depends
on these representations.

Simplifying Notations. For each query to H3, the adversary M submits a set
of group elements ζ, ζ1, α, β1, β2, η along with a message m and info.

As M is algebraic, it also provides a representation of these group elements to
the basis of elements g,h,y,−→z ,−→a ,

−→
b1,

−→
b2,

−→z1 that it has previously obtained via
calls to H1,H2,Sign1, or Sign2. We note that by programming the oracles H1

and H2 the reduction knows a representation of its responses zi and z1,i. Any
element a,b1,b2 that was returned as reply to a query to Sign1 can be repre-
sented as a = yc · gr,b1 = zd

1 · gs1 ,b2 = zd
2 · hs2 . Here, z1, z2 = z/z1 correspond

to the call H2(rnd) made as part of answering this query to Sign1. This allows
us to convert any representation provided by M into a reduced representation in
the (simpler) basis g,h,y. For a group element o, we denote this reduced repre-
sentation by [o]−→

I
and its components as g[o]−→

I
, h[o]−→

I
, y[o]−→

I
, respectively, where
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−→
I := (g,h,y). If M wins, we denote the special message/signature pair in its
winning output as (m, info, (ζ, ζ1, ρ, ω, σ1, σ2, δ, μ)). The algebraic coefficients of
this tuple define the following integers which we call “preliminary values”:

ω′ := y[α]−→
I

δ′ :=
g[β2]−→I

+ x · y[β2]−→I
x · y[ζ2]−→I + g[ζ2]−→I

δ′′ :=
h[β1]−→I
h[ζ1]−→I

, δ′′′ :=
h[η]−→

I

h[ζ]−→
I

.

We further define the following non-exclusive boolean variables that describe
when which of the above values is actually well-defined:

C0 := (ω′ �= ω) C1 := (ω′ = ω) ∧ (x · y[ζ2]−→I + g[ζ2]−→I �= 0)

C2 := (ω′ = ω) ∧ (h[ζ1]−→I
�= 0) C3 := (ω′ = ω) ∧ (h[ζ]−→

I
�= 0)

Claim 4.
∨

i Ci = 1.

Proof. Since GM
2 = 1 ⇒ ζ2 �= ε, it follows that x·y[ζ2]−→I +g[ζ2]−→I and h[ζ2]−→I

cannot
both be 0 when GM

2 = 1. Therefore, either x · y[ζ2]−→I + g[ζ2]−→I �= 0 or h[ζ2]−→I
�= 0.

Moreover, since [ζ2]−→I = [ζ]−→
I

− [ζ1]−→I , either h[ζ1]−→I
�= 0 or h[ζ]−→

I
�= 0, whenever

h[ζ2]−→I
�= 0. Therefore, (h[ζ1]−→I

�= 0 ∨ h[ζ]−→
I

�= 0 ∨ x · y[ζ2]−→I + g[ζ2]−→I �= 0) = 1 and
thus C1 ∨ C2 ∨ C3 = (ω′ = ω). The lemma follows immediately. ��

We now define E2 as the following event: ω′ = ω, and for any of δ′, δ′′, δ′′′,
as long as its denominator is not 0 (i.e., it is well-defined), then it is equal to δ.
That is,

E2 :=(C0 = 0) ∧ (C1 = 0 ∨ (C1 = 1 ∧ (δ′ = δ)))
∧ (C2 = 0 ∨ (C2 = 1 ∧ (δ′′ = δ))) ∧ (C3 = 0 ∨ (C3 = 1 ∧ (δ′′′ = δ))).

Claim 5. Pr[E2] ≤ 3qh

q + AdvdlogR1
+ AdvdlogR2

+ AdvdlogR3
+ AdvdlogR4

The proof for this claim can be found in the full version [30].
By the claim, AdvG2

M ≥ AdvG1

M − 3qh

q .
In the following, we explain how the reduction can simulate game G2 to the

adversary M and win the discrete logarithm game.

Simulation of H1,H2,H3. We begin by describing how S0, S1 simulate the
random oracles H1,H2,H3. These simulations are common to both Sι and are
performed in the straightforward way using lazy sampling. We assume that the
oracles keep respective lists Li for bookkeeping, where Li stores input/output
pairs. More specifically.

– H1 and H2: on each fresh input ξ, Hi samples v $← Zq and returns gv. It
stores (ξ,gv, v) in Li.
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– H3 : on each fresh input (ξ, ·), H3 samples ε $← Zq and returns ε. It stores
(ξ,−→rep, ε) in Li.

– On repeated inputs Hi returns whatever it returned the first time that ξ was
queried.

Scheduling of Signing Sessions. We assume that each Si internally schedules
sessions with the oracles Sign1 and Sign2 as required by G2. This can be easily
implemented by using a fresh session identifier for each new session.

Extracting Equations from Forgery. Suppose that M wins game G2, i.e.,
GM

2 = 1. Recall that in this case, M produces a one-more forgery of at least �+1
valid signatures, after having completed at most � sessions with oracle Sign2. In
addition, we have required that one of the returned tuples (m, info, sig) be special,
i.e., that ζ

dlogzj
z1,j �= ζ1 for all zj and z1,j (where again zj and z1,j corresponds

to the value of z and z1, respectively, derived during the j-th interaction with
oracle Sign1).

From the verification equation of the special signature (m, info, sig), one
obtains the equations α = gρ · yω, β1 = ζδ

1 · gσ1 , β2 = ζδ
2 · hσ2 , η = zμ

j · ζδ.
Denoting w0,j := dlog zj , w := dlog h, we obtain the reduced equations

g[α]−→
I
+ x · y[α]−→

I
+ w · h[α]−→

I
= ρ + x · ω (1)

g[β1]−→I
+ x · y[β1]−→I

+ w · h[β1]−→I
= (g[ζ1]−→I

+ w · h[ζ1]−→I
+ x · y[ζ1]−→I ) · δ + σ1 (2)

g[β2]−→I
+ x · y[β2]−→I

+ w · h[β2]−→I
= (g[ζ2]−→I

+ w · h[ζ2]−→I
+ x · y[ζ2]−→I ) · δ + σ2 · w (3)

g[η]−→
I
+ w · h[η]−→

I
+ x · y[η]−→

I
= w0,j · μ + (g[ζ]−→

I
+ w · h[ζ]−→

I
+ x · y[ζ]−→

I
) · δ. (4)

We continue by describing simulators S0 which covers case C0, and S1 which
covers C1, C2, C3. As we will see, the values c, r, d, s1, s2 inside a signature issued
as part of a signing query are all known to Si. Together with the above observa-
tions, it is easy for each simulator to convert a query to H3 into reduced repre-
sentation. Moreover, the winning tuple in M’s output can be identified through
knowledge of the logarithms of all zi and all z1,i efficiently.

Case C0 = 1. We describe simulator S0, which simulates G2 using w. On input
a discrete logarithm instance U := gx, it behaves as follows:

Setup: S0 samples w $← Zq and computes the public key pk as pk := (g,h :=
gw,y := U), which implicitly sets sk := x.

Online Phase. S0 runs M on input pp, pk and simulates the oracles Sign1,
Sign2 as described below. In addition, it simulates the oracles H1,H2,H3 as
outlined above.
Queries to Sign1. When M queries Sign1(info) to open session sid,

S0 checks in L1 if pk, info has been previously requested from H1

and if yes sets w0,sid accordingly, otherwise samples w0,sid and pro-
grams H1(pk, info) := gw0,j . It samples rndsid

$← {0, 1}λ and sets
z1,sid := gw1,sid = H2(rndsid), which places the tuple (rndsid, z1,sid, w1,sid)
into L2. It then sets z2,sid := zsid/z1,sid, w2,sid := w0,sid−w1,sid

w ,
csid, rsid, u1,sid, u2,sid

$← Zq, asid := ycsid · grsid , b1,sid := gu1,sid , b2,sid :=
hu2,sid and returns asid,b1,sid,b2,sid.
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Queries to Sign2. When M queries Sign2(sid, esid), S0 sets dsid := esid −
csid, s1,sid := u1,sid − dsid · w1,sid, s2,sid := u2,sid − dsid · w2,sid and returns
csid, dsid, rsid, s1,sid, s2,sid.

It is straightforward to verify that the above simulation of G2 is perfect.
Solving the DLP Instance. When M returns �+1 message signature pairs, S0

identifies the special signature using the exponents stored in L2. It retrieves
the corresponding hash query to H3 from L3 together with representations
of α, β1, β2, η. S0 uses Eq. (1) and the fact that C0 = 1 ⇔ ω �= y[α]−→

I
, to (effi-

ciently) compute and output the value x as x = (ρ−g[α]−→
I

−w ·h[α]−→
I
)/(y[α]−→

I
−

ω). (In case C0 = 0, or there is no hash query corresponding to the special
signature, it aborts.)

If C0 = 1, then S0’s simulation of G2 is perfect.

Case C0 = 0. We describe simulator S1, which simulates G2 using x. On input
a discrete logarithm instance U := gw, it behaves as follows.

Setup. S1 samples x $← Zq. It sets pk := (g,h := U,y := gx), sk := x.
Online Phase. S1 runs M on input pp, pk and simulates the oracles Sign1,
Sign2 as described below. In addition, it simulates the oracles H1,H2,H3 as
outlined above.
Queries to Sign1. When M queries Sign1(info) to open session sid, S1

checks if info was requested to H1 already and if so sets w0,j accordingly,
otherwise it samples w0,j

$← Zq and sets H1(pk, info) := w0,j . It then
samples rndsid

$← {0, 1}λ and sets z1,sid := gw1,sid = H2(rndsid) (hence
w1,sid is known to S1 from programming H2). It then samples usid, dsid,

s1,sid, s2,sid
$← Zq and sets asid := gusid , b1,sid := gs1,sid · zdsid

1,sid, b2,sid :=
hs2,sid · zdsid

2,sid and returns asid,b1,sid,b2,sid.
Queries to Sign2. When M queries Sign2 on input (sid, esid), S1 sets csid :=

esid − dsid, rsid := usid − csid · x and returns csid, dsid, rsid, s1,sid, s2,sid

Solving the DLP Instance. When M returns �+1 message signature pairs, S1

identifies the special signature using the exponents stored in L2. It retrieves
the corresponding hash query to H3 from L3 together with representations
of α, β1, β2, η. If there is no hash query to H3 corresponding to the special
signature, it aborts. Since C0 = 0 it holds that C1 = 1 ∨ C2 = 1 ∨ C3 = 1. S1

uses one of the following extraction strategies.

If C1 = 1: S1 uses Eq. (3) and the fact that C1 = 1 ⇒ (x · y[ζ2]−→I + g[ζ2]−→I �= 0),
to (efficiently) compute and output the value w as follows. S1 first computes δ′

as δ′ := (g[β2]−→I
+ x · y[β2]−→I

)/(x · y[ζ2]−→I + g[ζ2]−→I ), which gives the equality

δ′ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
= g[β2]−→I

+ x · y[β2]−→I
+ w · h[β2]−→I

. (5)

Equations (5) and (3) yield

δ′ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
= g[β2]−→I

+ x · y[β2]−→I
+ w · h[β2]−→I

= δ · (g[ζ2]−→I + x · y[ζ2]−→I + w · h[ζ2]−→I
) + σ2 · w.
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If h[β2]−→I
− δ·h[ζ2]−→I

− σ2 �= 0, S1 outputs w = ((δ−δ′)·(g[ζ2]−→I +x·h[ζ2]−→I
))/(h[β2]−→I

−
δ · h[ζ2]−→I

− σ2). We prove the following claim.

Claim 6. h[β2]−→I
− δ · h[ζ2]−→I

− σ2 �= 0.

Proof. Since C1 = 1 and event E2 does not happen (since otherwise GM
2 = 0),

we know that δ �= δ′. Hence, it suffices to show that if δ �= δ′, then h[β2]−→I
− δ ·

h[ζ2]−→I
− σ2 �= 0. Due to Eq. (3) we get

δ′ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
= δ · (g[ζ2]−→I + x · y[ζ2]−→I + w · h[ζ2]−→I

) + σ2 · w

= δ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
,

which yields (δ′ − δ) · (g[ζ2]−→I + x · y[ζ2]−→I ) = 0. Since C1 = 1, we have g[ζ2]−→I + x ·
y[ζ2]−→I �= 0, which contradicts the assumption that δ′ �= δ. ��
It is easily verified that whenever C1 = 1, S1’s simulation of G2 is perfect.

If C1 = 0 and C2 = 1: S1 uses Eq. (2) and the fact that C2 = 1 ⇔ (ω =
y[α]−→

I
) ∧ (h[ζ1]−→I

�= 0), to compute and output the discrete logarithm w of the

instance U as follows. S1 first computes δ′′ :=
h[β1]−→

I

h[ζ1]−→
I

which leads to the equality

δ′′ · w · h[ζ1]−→I
+ g[β1]−→I

+ x · y[β1]−→I
= g[β1]−→I

+ x · y[β1]−→I
+ w · h[β1]−→I

. (6)

Equations (6) and (2) yield

δ′′ · w · h[ζ1]−→I
+ g[β1]−→I

+ x · y[β1]−→I
= g[β1]−→I

+ x · y[β1]−→I
+ w · h[β1]−→I

= (g[ζ1]−→I + w · h[ζ1]−→I
+ x · y[ζ1]−→I ) · δ + σ1.

By the same argument as in the previous case, δ �= δ′′, and S1 can compute and
output w as w = (δ ·(g[ζ1]−→I +x ·y[ζ1]−→I )+σ1−g[β1]−→I

+x ·y[β1]−→I
)/((δ−δ′′) ·h[ζ1]−→I

),
as C2 = 1 implies that h[ζ1]−→I

�= 0. Moreover, S1’s simulation of G2 is perfect if
C2 = 1 holds.

If C1 = C2 = 0 and C3 = 1: In this case, S1 uses Eq. (4) and the fact that C3 =
1 ⇔ (ω = y[α]−→

I
) ∧ (h[ζ]−→

I
�= 0), to compute and output the discrete logarithm w

of the instance U as we described below. S1 computes δ′′′ := h[η]−→
I
/h[ζ]−→

I
, leading

to

δ′′′ · w · h[ζ]−→
I

+ g[η]−→
I

+ x · y[η]−→
I

= g[η]−→
I

+ x · y[η]−→
I

+ w · h[η]−→
I
. (7)

Equations (4) and (7) imply that

δ′′′ · w · h[ζ]−→
I

+ g[η]−→
I

+ x · y[η]−→
I

= g[η]−→
I

+ x · y[η]−→
I

+ w · h[η]−→
I

= w0 · μ + (g[ζ]−→
I

+ w · h[ζ]−→
I

+ x · y[ζ]−→
I
) · δ.

As in the previous cases, δ �= δ′′′, so S1 can output w by computing w =
(δ · (g[ζ]−→

I
+x ·y[ζ]−→

I
)+μ ·w0− (g[η]−→

I
+x ·y[η]−→

I
))/((δ′′′ −δ) ·h[ζ]−→

I
), since h[ζ]−→

I
�= 0



488 J. Kastner et al.

due to C3 = 1. Moreover, S1’s simulation of G2 is perfect if C3 = 1 holds. Since
both simulators provide a perfect simulation (in their respective cases) and cover
all cases that can happen whenever GM

2 = 1, B can run the correct simulator to
extract the discrete logarithm with advantage AdvDLP

B ≥ AdvG2

M /2. Moreover,
we have AdvG2

M ≥ AdvG1

M − ( 3qh

q + AdvdlogR1
+ AdvdlogR2

+ AdvdlogR3
+ AdvdlogR4

) ≥
AdvG0

M − ( 3qh

q +AdvdlogR1
+AdvdlogR2

+AdvdlogR3
+AdvdlogR4

)− �+1
q . Hence, tB ≈ tM and

AdvDLP
B ≥1

2
AdvRB-OMUF

M,�,BSA − � + 1
2q

− (
3qh

q
+ AdvdlogR1

+ AdvdlogR2
+ AdvdlogR3

+ AdvdlogR4
)

��

The Main Theorem. In the following, we show that Abe’s blind signature
scheme has full one-more-unforgeability. We make use of the restrictive blinding
lemma to identify the forged signature.

Theorem 1. Let M be an algebraic algorithm that runs in time tM, makes at
most � queries to oracle Sign2 in �-OMUFBSA and at most (total) qh queries
to H1,H2,H3. Then, in the random oracle model, there exists an algorithm B
such that

AdvDLP
B ≥1

4
AdvOMUF

M,�,BSA − 3qh

q
− AdvDLP

R1
− AdvDLP

R2
− AdvDLP

R3

− (AdvDLP
R′
1

+ AdvDLP
R′
2

+ AdvDLP
R′
3

+ AdvDLP
R′
4

)

Proof. The proof is similar to the proof of Lemma2. We give a brief overview,
the full proof can be found in the full version [30].

The reduction embeds the discrete logarithm challenge in either y or all the zj

and z1,j by programming the random oracle H1 and H2. I.e. on input of a discrete
logarithm challenge U, the reduction sets either y = U and generates zj , z1,j ,h
with known discrete logarithms to base gvi for randomly chosen vi

$← Zq, or
the reduction sets y = gx for known x $← Zq, h := gv for a known v ∈ Zq,
and generates all zj , z1,j as Uvi for vi

$← Zq. This allows the reduction to either
generate signatures using its knowledge of the discrete logarithms of zj , z1,j ,
and h, or its knowledge of the secret key x. Due to Lemma 2 we can assume
that there is one session that produces two signatures. As the responses for H2

have been programmed, this session can be identified and a representation of all
group elements to g,y, zj , z1,j is known to the reduction. Similar to the proof of
Lemma 2 the algebraic representations of the group elements submitted in hash
queries to H3 can be used to compute preliminary ω′ and δ′, δ′′, δ′′′ for both
of the special signatures belonging to the same session. As at least one of the
signatures was not created through a run of the honest signing protocol, using
similar arguments as for the special signature in Lemma 2, thus the witness can
be computed by the reduction which yields the statement. ��
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4 Sequential Unforgeability of Schnorr’s Blind Signature
Scheme

In this section we show that Schnorr’s blind signature scheme satisfies sequential
one-more unforgeability under the one-more DL assumption in the AGM. We
first recall Schnorr’s blind signature scheme BSS below. A figure depicting an
interaction can be found in the full version [30].5 Let H : {0, 1}∗ → Zq be a hash
function.

– KeyGen : On input pp, KeyGen samples x $← Zq and sets x := gx. It sets
sk := x, pk := x and returns (sk, pk).

– Sign1 : On input sk, Sign1 samples r $← Zq and returns the commitment
r := gr and the state StS := r.

– Sign2 : On input a secret key sk, a state StS = r and a challenge c, Sign2
computes s := c · sk + r mod q and returns the response s.

– User1 : On input a public key pk, a commitment r, and a message m, User1
does the following. It samples first samples α, β $← Zq. Then, it computes
r′ := r · gα · pkβ and c′ := H(r′,m), c := c′ + β mod q. It returns the
challenge c and the state StU := (r, c, α, β,m).

– User2 : On input a public key pk, a state StU = (r, c, α, β,m), and a response
s, User2 first checks if gs = r ·xc and returns ⊥ if not. Otherwise, it computes
r′ := r · gα · pkβ and s′ := s + α and returns the signature σ := (r′, s′).

– Verify : On input a public key pk, a signature σ = (r′, s′) and a message m,
Verify computes c′ := H(r′,m) and checks whether gs′

= r′ · pkc′
. If so, it

returns 1; otherwise, it returns 0.

Theorem 2. Let M be an algebraic adversary that runs in time tM, makes at
most � queries to Sign2 in �-SEQ-OMUFBSS, and at most qh random oracle
queries to H. Then there exists an adversary B such that

AdvOMDL
B,� ≥ AdvSEQ-OMUF

M,�,BSS − q2h + qh + 2
2q

,

and B runs in time tB = tM + O(� + qh).

Proof. Let M be as in the theorem statement. Without loss of generality, we
assume that M makes exactly � + 1 many Sign1() and exactly � many Sign2

queries, and returns exactly � + 1 valid signatures (r∗
1, s

∗
1), . . . , (r

∗
�+1, s

∗
�+1) of

messages m∗
1, . . . ,m

∗
�+1.

6 We further assume that pairs (m∗
1, r

∗
1), . . . , (m

∗
�+1, r

∗
�+1)

5 We use different letters to denote the variables in the scheme than what we used
in the previous section. Our choices are in line with the standard notation for this
scheme.

6 Since the security game is sequential OMUF, and M can make at most � many Sign2

queries, this implies that M can make at most � + 1 many Sign1 queries. Obviously,
any adversary who makes less than � + 1 many Sign1 queries, or less than � many
Sign2 queries, or returns more than � + 1 valid signatures, can be turned into an
adversary who makes exactly � + 1 many Sign1 and exactly � many Sign2 queries,
and returns exactly �+1 valid signatures, with the same advantage and roughly the
same running time.
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are all distinct; otherwise M could not win �-SEQ-OMUFBSS as we prove in
the following simple claim.

Claim 7. The pairs (m∗
i , r

∗
i ), . . . , (m

∗
j , r

∗
j ) are pairwise distinct for all i, j ∈ [�+1].

Proof. Suppose (m∗
i , r

∗
i ) = (m∗

j , r
∗
j ) for i �= j ∈ [� + 1]. If s∗

i = s∗
j then M

outputs two identical message/signature pairs, violating the winning condition.
Otherwise it cannot be the case that both (r∗

i , s
∗
i ) and (r∗

i , s
∗
j ) are both valid

signatures of m∗
i , since given m∗

i and r∗
i , s∗

i as in the valid signature is uniquely
defined. ��
Let x be the public key, r1, . . . , r�+1 be the group elements returned by Sign1,
and M’s Sign2 queries be Sign2(c1), . . . ,Sign2(c�). The proof goes by a sequence
of games, which we describe below. For convenience, we set AdvGi

M := Pr[GM
i =

1].

Game G0. This is the �-SEQ-OMUF game. We have that

AdvG0

M = AdvSEQ-OMUF
M,�,BSS .

Game G1. In G1 we make the following change. When M returns its final
outputs (m∗

1, (r
∗
1, s

∗
1)), . . . , (m

∗
�+1, (r

∗
�+1, s

∗
�+1)), together with r∗

i ’s algebraic rep-
resentation (γ∗

i , ξ∗
i , ρ∗

i,1, . . . , ρ
∗
i,�+1) based on g,x, r1, . . . , r�+1, for each i ∈ [�+1]

for which H(r∗
i ,m

∗
i ) is undefined, we emulate a query c∗

i := H(r∗
i ,m

∗
i ) via lazy

sampling. (If M has not seen a certain rj when outputting r∗
i , then the game

naturally sets ρ∗
i,j = 0, as M is not allowed to use rj as a base.) After that, we

define χi := c∗
i + ξ∗

i −∑�
j=1 ρ∗

i,jcj , and abort if χi = 0 for all i. (Note that ρ∗
i,�+1

does not appear in the definition of χi.)
G1 and G0 are identical unless χi = 0 for all i ∈ [� + 1]. Call this event E.

Claim 8. Pr[E] ≤ q2
h+qh+2

2q

Proof. If M does not query H(r∗
i ,m

∗
i ) for some i, then c∗

i is a uniformly random
element of Zq in M’s view, so Pr[χi = 0] = 1/q.

Next we assume that M queries H(r∗
i ,m

∗
i ) for all i; call such query the i-th

special query. Since (m∗
i , r

∗
i ) pairs are all distinct, c∗

i = H(r∗
i ,m

∗
i ) is a uniformly

random element in Zq (independent of everything else) when M makes the i-
th special query. Also, r∗

i ’s algebraic representation (γ∗
i , ξ∗

i , ρ∗
i,1, . . . , ρ

∗
i,�+1) is

already determined when M makes its i-th special query. Any special query is
made either during a session which is eventually closed (i.e., between M’s j-th
Sign1 query and j-th Sign2 query for some j ∈ [�]), or between two sessions
(including before the first session), or during the last session which is never closed
(i.e., after M’s (� + 1)-th Sign1 query). We consider these cases separately:

Case C1. Suppose that there is any special query (say the i-th) made (a) between
two sessions (including before the first session); say the i-th special query is
made after the j0-th Sign2 query and before the (j0 + 1)-th Sign1 query, or
(b) after the (� + 1)-th Sign1 query. Consider the time when M makes its i-th
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special query H(r∗
i ,m

∗
i ). In case (a), at this point all group elements M has

seen are g,x, r1, . . . , rj0 , so ρ∗
i,j0+1 = . . . = ρ∗

i,� = 0; furthermore, the algebraic
coefficients (for r∗

i ) ξ∗
i , ρ∗

i,1, . . . , ρ
∗
i,j0

are all fixed. Finally, cj (where j ∈ [j0])
is fixed when M makes its j-th Sign2 query, which happens before M’s i-th
special query. Similarly, in case (b), at this point the algebraic coefficients (for
r∗

i ) ξ∗
i , ρ∗

i,1, . . . , ρ
∗
i,�+1 are all fixed, and c1, . . . , c� are fixed when M makes its

�-th Sign2 query, which happens before M’s i-th special query. This means that
in both cases (a) and (b), all coefficients in χi’s expression, except c∗

i , are fixed
when M makes its i-th special query. On the other hand, c∗

i is a uniformly random
element in Zq. Therefore, Pr[χi = c∗

i + ξ∗
i − ∑j0

j=1 ρ∗
i,jcj = 0] = 1

q , for a single
H(r∗

i ,m
∗
i ) query. Since M makes qh random oracle queries in total, we have that

Pr[χi = 0 ∧ C1] ≤ qh

q , and hence Pr[E ∧ C1] ≤ qh

q .

Case C2. Suppose that all special queries are made during some session which is
eventually closed. Since there are � such sessions and � + 1 special queries, there
is at least one session with at least two special queries during it; say the i-th
and (i + 1)-th special queries are made during the j0-th session. Consider the
time when M makes its (i + 1)-st special query. At this point all group elements
M has seen are g,x, r1, . . . , rj0 , so ρ∗

i,j0+1 = . . . = ρ∗
i,� = 0; furthermore, the

algebraic coefficients (for r∗
i and r∗

i+1) ξ∗
i , ρ∗

i,1, . . . , ρ
∗
i,j0

, ξ∗
i+1, ρ

∗
i+1,1, . . . , ρ

∗
i+1,j0

are all fixed. The output of M’s i-th special query c∗
i is also fixed right after M

makes its i-th special query, which happens before M’s (i + 1)-th special query.
Finally, cj (where j ∈ [j0−1]) is fixed when M makes its j-th Sign2 query, which
again happens before M’s (i+1)-th special query. (This is because M’s (i+1)-th
special query is made during the j0-th session, which is started after the j-th
session is closed.) This means that all coefficients in χi and χi+1’s expressions,
except cj0 and c∗

i+1, are fixed when M makes its (i + 1)-th special query.
Next consider the time when M makes its j0-th Sign2 query (i.e., when the

j0-th session is closed). At this point c∗
i+1 is also fixed, so the only coefficient in

χi and χi+1’s expressions which is not fixed is cj0 (to be chosen by M). In sum,
the last coefficient fixed is cj0 (chosen by M), and the second last coefficient fixed
is c∗

i+1 (uniformly random in Zq).
Consider the linear system with unknown cj0

{
χi = c∗

i + ξ∗
i − ∑j0

j=1 ρ∗
i,jcj = 0,

χi+1 = c∗
i+1 + ξ∗

i+1 − ∑j0
j=1 ρ∗

i+1,jcj = 0.
(8)

Denote A :=

(
ρ∗

i,j0
c∗
i + ξ∗

i − ∑j0−1
j=1 ρ∗

i,jcj

ρ∗
i+1,j0

c∗
i+1 + ξ∗

i+1 − ∑j0−1
j=1 ρ∗

i+1,jcj

)
and B :=

(
ρ∗

i,j0

ρ∗
i+1,j0

)
the

augmented matrix and coefficient matrix, respectively, of (8). We first note that
if ρ∗

i,j0
= ρ∗

i+1,j0
= 0 all factors in Eq. (8) are fixed when M makes his query.

Thus, the probability that χi = χi+1 = 0 is at most 1
q over the choice of c∗

i and
c∗
i+1. In the following we assume that ρ∗

i,j0
�= 0 or ρ∗

i+1,j0
�= 0. Then
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Pr[χi = χi+1 = 0] = Pr[cj0 is the solution of (8)] ≤ Pr[(8) has a solution]
= Pr [rank(A) = rank(B)] ≤ Pr [rank(A) ≤ 1] = Pr [det(A) = 0]

= Pr

[
ρ∗

i,j0
c∗
i+1 + ρ∗

i,j0
(ξ∗

i+1 − ∑j0−1
j=1 ρ∗

i+1,jcj)
−ρ∗

i+1,j0
(c∗

i + ξ∗
i − ∑j0−1

j=1 ρ∗
i,jcj) = 0

]
=

1
q
,

for a single pair of H(r∗
i ,m

∗
i ) and H(r∗

i+1,m
∗
i+1) queries. (The last equation

is true because when M makes its (i + 1)-th special query, c∗
i+1 is a uniformly

random element of Zq, and all other coefficients are fixed.) Since M makes qh

random oracle queries in total, we have that Pr[χi = χi+1 = 0∧C2] ≤ (qh
2 )
q , and

hence Pr[E ∧ C2] ≤ (qh
2 )
q .

In sum, we have that (let case C0 be “M does not make the i-th special query
for some i ∈ [� + 1]”)

Pr[E] = Pr[E ∧ C0] + Pr[E ∧ C1] + Pr[E ∧ C2]

≤ 1
q

+
qh

q
+

(
qh

2

)

q
=

q2h + qh + 2
2q

.

��
By the claim, AdvG1

M ≤ AdvG0

M − q2
h+qh+2

2q .

Reduction to �-OMDL. We now upper bound AdvG1

M via a reduction B from
�-OMDL. B runs on input (G,g, q), and is given oracle access to chal and dlog.
B first queries x := chal() and runs M(G,g, q,x). B runs the code of G1 except
that (1) on M’s j-th Sign1 query (j ∈ [�]), B returns rj := chal(); (2) on M’s j-th
Sign2 query, B returns sj := dlog(g, rj · xcj ). (B answers M’s (� + 1)-th Sign1

query just as in G1, i.e., by sampling r�+1
$← Zq and returning r�+1 := gr�+1 .)

Finally, when M returns its final outputs, if there exists an i ∈ [�+1] s.t. χi �= 0,
B computes

x :=
s∗

i − γ∗
i − ∑�

j=1 ρ∗
i,jsj − ρ∗

i,�+1r�+1

χi

and
rj := sj − cjx,

and outputs (x, r1, . . . , r�). (If χi = 0 for all i, B aborts.)
Clearly, B runs in time tM + O(� + qh). We claim that B wins �-OMDL if M

wins G1. Since M is algebraic, we have that

r∗
i = gγ∗

i · xξ∗
i ·

�∏

j=1

r
ρ∗

i,j

j · rρ∗
i,�+1

�+1 = gγ∗
i +ρ∗

i,�+1r�+1 · xξ∗
i ·

�∏

j=1

r
ρ∗

i,j

j .

On the other hand, since M wins G1, i.e., (r∗
i , s

∗
i ) is a valid forgery on message

m∗
i , we have that

gs∗
i = r∗

i · xc∗
i .
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The two equations above combined yield

xc∗
i +ξ∗

i ·
�∏

j=1

r
ρ∗

i,j

j = gs∗
i −γ∗

i −ρ∗
i,�+1r�+1 . (9)

By definition of sj , we have that

rj =
gsj

xcj
, (10)

substituting (10) into (9), we get

xχi = xc∗
i +ξ∗

i −∑�
j=1 ρ∗

i,jcj = gs∗
i −γ∗

i −∑�
j=1 ρ∗

i,jsj−ρ∗
i,�+1r�+1 ,

so x = dlog x. By (10) again, rj = dlog rj . This means that B wins �-OMDL.
We have that

AdvOMDL
B,� = AdvG1

M .

We conclude that

AdvOMDL
B,� ≥ AdvSEQ-OMUF

M,�,BSS − q2h + qh + 2
2q

,

completing the proof. ��

4.1 Optimality of Our Reduction

In this section, we show an impossibility result which states (roughly) that reduc-
ing �-sequential one-more unforgeability of Schnorr’s blind signature scheme from
�-OMDL (as shown in Sect. 4) is the best one can hope for. Concretely, we show
that any algebraic reduction B that solves (� − 1)-OMDL when provided with
black-box access to a successful algebraic forger A in �-SEQ-OMUFBSS, can be
turned into an efficient adversary M against (� − 1)-OMDL.

Algebraic Black Boxes. We consider a type of algebraic adversary that, apart
from providing algebraic representations for each of its output group elements to
the reduction, does not provide any further access (beyond black-box access). In
particular, the reduction does not get access to the code of the adversary. This
notion was previously put forth and used by Bauer et al. [8].

Theorem 3. 7Let B be an algebraic reduction that satisfies the following: if
algorithm A is an algebraic black-box algorithm that runs in time tA then

AdvOMDL
B,�−1 = εB

(
AdvSEQ-OMUF

A,�,BSS

)

7 This theorem even holds for a weaker version of �-SEQ-OMUFBSS where the adver-
sary A is required to output signatures for � + 1 distinct messages.
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and B runs in time tB(tA). (Here, εB and tB are functions in the success prob-
ability and running time of A). Then there exists an algorithm M (the meta-
reduction) such that

AdvOMDL
M,�−1 ≥ εB

((
1 − 1

q

)�
)

and M runs in time tM = tB(O(�3)).

Proof Idea. We give a brief overview of the proof here, the detailed proof
can be found in the full version [30]. We employ the meta-reduction technique
[18]. Our meta-reduction provides the reduction with interfaces from the one-
more discrete logarithm game as well as an algebraic black box forger for blind
Schnorr signatures. It plays the OMDL game itself and forwards all oracle queries
and responses, thereby providing the reduction with the interfaces of an OMDL
challenger. The meta-reduction (in the role of the forger) first opens and closes all
signing sessions before it makes its first hash query. We note that up to this point
the only outputs made by the meta-reduction in the role of the forger have been
uniformly random queries to the Sign2 oracle provided by the reduction, and
thus independent of the algebraic representations output by the meta-reduction
during the process. It then uses the algebraic representations output by the
reduction as well as the responses from Sign2 to compute the secret key through
means of linear algebra. The meta-reduction then starts making queries to the
random oracle provided by the reduction and generating signatures, providing
the discrete logarithm of its random commitments as a representation. Thus, all
representations as well as all queries made by the reduction are independent from
the algebraic representations that the reduction provides to the meta-reduction
but not a to a real adversary. When the meta-reduction has output its signatures
to the reduction, the reduction solves the OMDL challenge. The meta-reduction
at this point only forwards the solution to its own OMDL challenger and wins
whenever the reduction wins.

Doesn’t this also Contradict Sect. 3? One may ask if it is possible to apply a
similar meta-reduction technique to Abe’s blind signature scheme or our par-
tially blind variant, which would contradict our result from Sect. 3. However,
this is not possible as the algebraic representations output by the reduction
break the witness-indistinguishability of the scheme. The meta-reduction would
only be able to compute the witness used by the reduction. Thus, the combi-
nation of representations provided by the adversary and signatures provided by
the adversary would be dependent on the algebraic representations provided by
the reduction.
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Abstract. Lattice-based blind signature schemes have been receiving
some recent attention lately. Earlier efficient 3-round schemes (Asiacrypt
2010, Financial Cryptography 2020) were recently shown to have mis-
takes in their proofs, and fixing them turned out to be extremely ineffi-
cient and limited the number of signatures that a signer could send to less
than a dozen (Crypto 2020). In this work we propose a round-optimal,
2-round lattice-based blind signature scheme which produces signatures
of length 150 KB. The running time of the signing protocol is linear in
the maximum number signatures that can be given out, and this limits
the number of signatures that can be signed per public key. Nevertheless,
the scheme is still quite efficient when the number of signatures is limited
to a few dozen thousand, and appears to currently be the most efficient
lattice-based candidate.

Keywords: Lattice cryptography ¨ Blind signatures

1 Introduction

Recent years have seen an influx of efficient lattice-based constructions of var-
ious cryptographic primitives. From zero-knowledge proofs [BLS19,YAZ+19,
ESLL19,LNS20], to group signatures [dPLS18], and even Monero-like private
payment systems [EZS+19,LNS21b], it now appears that a lot of fairly advanced
privacy-enhancing constructions can be instantiated based on the potential
quantum-safety of lattice problems. Somewhat surprisingly, though, there aren’t
any practical proposals of blind signatures.

Blind signatures, originally proposed by Chaum [Cha82] consist of an inter-
active procedure between a user and a signer in which the user would like to
obtain the signature of a message μ under the public key of the signer, but not
reveal the μ to the signer. Furthermore, after producing some certificate that he
indeed has a signature of μ, the signer should not be able to figure out during
which interaction this certificate was obtained. And of course, it is also required
that the user cannot produce signatures by himself – that is, after interacting k
times with the signer, the user should not be able to produce k ` 1 signatures.

A candidate for a 3-round lattice-based blind signature has been proposed
by Ruckert [Rüc10], and then improved upon in [ABB20]. The proofs of these
c© International Association for Cryptologic Research 2022
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schemes have, however, recently been shown to be incorrect [HKLN20]. At a
high level, the difficulty that was incorrectly overcome was what prevented
Pointcheval and Stern [PS00] from giving stronger proofs for Schnorr’s blind
signature. It recently turned out that the obstacle blocking the proof was real,
and the full Schnorr blind signature has been completely broken [BLL+21]. It
is thus quite possible that the errors in [Rüc10,ABB20] are not just mistakes in
the proof.

There have since been other constructions of blind signatures, such as
[HKLN20], which result in signatures being several (dozen) megabytes long and,
more importantly, only allow one to securely sign less than a dozen messages
per public key. Another recent proposal [ASY21] produces signatures that are
almost as short as in regular lattice-based signatures (i.e. a few kilobytes); but
the scheme has a few major downsides. The idea behind the scheme is for the
user to encrypt his message μ, and then for the signer to run a (modified version
of) the Dilithium lattice-based signature scheme [DKL+18] homomorphically by
employing a fully-homomorphic encryption scheme. The user would then decrypt
and reveal the signature. This approach entails evaluating cryptographic hash
functions homomorphically. Furthermore, as it is, the scheme is only blind with
respect to an honest signer. To protect against a malicious signer, the signer
would be required to give a zero-knowledge proof that the homomorphic eval-
uation of the signing procedure was done correctly. The extremely heavy tools
required for communication between the user and signer almost certainly put
this scheme into the theoretical category.

1.1 Our Results

We propose a practical two-round lattice-based blind signature scheme with two
restrictions. The first is that the signer is required to keep a counter as a state.
Secondly, the running time of signature generation and verification is linear in
the total number of signatures allowed by the scheme, and so it seems reasonable
to put a limit of the total number of signatures to somewhere under 220.1

The signature size is around 150 KB, and the interaction between the user
and the signer is approximately 16 MB. The size of the public key is a little over
a megabyte. The 150 KB signatures are about 50X longer than the signature
size of regular lattice signatures (e.g. [DKL+18,PFH+17], but as far as we’re
aware these are the shortest (instantiable and having a security proof) blind
signatures which are potentially quantum-safe. Even though the communication
between the user and the signer is large, all operations are efficient operations
on polynomials which have been extensively optimized in recent works on lattice
cryptography, and so time-wise, it should be rather efficient. We should mention
that the running time of the interaction between the user and the signer is

1 If one is content with a relaxed definition of blindness where a signature is hidden
among T user-signer interactions, then the running time of the scheme can be kept
to OpT q. This is not a standard definition of a blind signature, but we just mention
this possibility in case it’s good enough for an application.
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independent of the total number of signatures, and it’s only the user’s offline time
after interacting with the signer that is linear in the total number of signatures.

A part of our construction requires the use of lattice-based one-time signa-
tures, and we employ ideas from the scheme in [LM18]. In the current paper,
we need to use Gaussian-generated secret keys (because in the scheme, they will
be sampled using a trapdoor, and the most efficient such algorithm produces
Gaussians) unlike the uniform ones used in that paper, and so we develop a
different, and arguably easier, security proof for the one-time signature scheme.
The developed techniques for analyzing the security of the one-time signature
are then extended to prove security of our blind signature and we believe that
they can sometimes be used in lieu of analysis that employs Renyi techniques.
We believe that this contribution could be potentially of interest in other works.

1.2 Scheme Overview

Let N be the maximum number of messages that can be signed. For each N , we
will create a public key and secret key pair for a one-time signature scheme. The
N public key pairs are polynomial vectors pvi,wiq, and the corresponding secret
keys are polynomial vectors psi,yiq with small coefficients satisfying Asi “ vi

and Ayi “ wi. All the polynomials are in the polynomial ring ZqrXs{pXd `
1q. The matrix A, which is also part of the public key, is generated by the
signer together with a trapdoor which allows him to produce the aforementioned
short polynomial vectors si and yi. The public keys pvi,wiq are uniformly-
random and therefore do not need to be stored, as they can simply be defined as
Hpiq “ pvi,wiq, where H is some cryptographic hash function such as SHAKE.
Thus the public key size is dominated by A and is not dependent on N .

The message μ is a polynomial with very small, i.e. ´1/0/1 coefficients, and
the signing process begins by the user sending an encryption c “ encpμq. The
signer’s goal is to apply a function f to c such that decpfpcqq “ siμ ` yi. The
signer thus sends fpcq to the user, and the latter obtains z “ siμ ` yi by applying
dec. The vector z has small coefficients and satisfies the relation

Az “ viμ ` wi. (1)

The vector z is a signature of μ, but the user cannot reveal it in the clear because
that would allow the signer to link the message to the instance during which it
was signed. Instead, the user outputs a zero-knowledge proof of knowledge of
a z with small coefficients satisfying (1) for some pvi,wiq from a set. Such a
compact proof, whose size is logarithmic in N , was given in [LNS21b]. Since this
proof does not reveal the z nor the specific pvi,wiq from the set of public keys,
the blindness property is preserved.

The main technical part of this work is showing that for our specific functions
enc, dec, and f , the message μ is hidden, and that fpcq does not leak enough
information about the signer’s keys si,yi. In particular, the user who obtains
fpcq should not be able to produce two different pz, μq, pz1, μ1q satisfying (1).

An easy solution for hiding the μ and not having fpcq leak anything would
be to use a circuit-private homomorphic encryption scheme; but this would be
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overkill. We instead show a solution, which is similar in intuition to the one-time
signature proof idea in [LM18], which does not require the secrets si and yi to
be completely hidden either by drowning them with noise or applying a Renyi
entropy argument. Instead, it’s enough to show that z does not leak the exact si

and yi. And in this case, coming up with another signature is as hard as solving
the SIS problem.

We now give some more details. To improve readability, we will drop the
subscripts i from the secret and public keys. Because all the keys are indepen-
dent, we can prove things about individual public/secret key pairs. The encpμq
procedure is essentially an LWE public key encryption scheme in which the
user both does the encrypting and decrypting. So the public key consists of
a random matrix B and a polynomial vector bT “ xT B, where x is a poly-
nomial vector with small coefficients. The encpμq function samples random
small-coefficient polynomial vectors r, e and a polynomial e1, and outputs the
ciphertext pt, t1q “ pBr ` pe,bT r ` pe1 ` μq, where p is a “large-enough” prime.
This ciphertext, along with a zero-knowledge proof that it was properly com-
puted (i.e. that r, e, e1, μ have small coefficients) is sent to the signer. The zero-
knowledge proof can be created using the fairly-efficient recent techniques from
[ALS20,ENS20,LNS21a].

The signer now needs to create an encryption of z “ sμ ` y. He does this
by creating an encryption of each coefficient comprising z independently. In

particular, if s “
»

–

s1
. . .
sα

fi

fl and y “
»

–

y1
. . .
yα

fi

fl, then for each 1 ď j ď α, the signer

computes

sjt “ Brsj ` pesj (2)

yj ` sjt
1 “ bT rsj ` pe1sj ` pμsj ` yjq. (3)

Because r, e, e1, and sj have small coefficients, and assuming that all the coef-
ficients of pμsj ` yjq are less than p, the above is an encryption of pμsj ` yjq.
That is, one would decrypt in the usual way by computing

pyj ` sjt
1q ´ xT sjt mod p “ μsj ` yj .

It’s unclear however, whether sending (2) and (3) is secure on the signer’s part.
That is, he is possibly leaking too much information about s and y. Instead of
(2) and (3), he therefore sends the “masked” equations

sjt ` By1
j ` py2

j “ Bprsj ` y1
jq ` ppesj ` y2

jq (4)

yj ` sjt
1 ` bT y1

j ` py3 “ bT prsj ` y1
jq ` ppe1sj ` y3

j q ` pμsj ` yjq, (5)

where y1
j ,y

2
j , and y3

j are (vectors of) polynomials with small coefficients. As long
as these coefficients are small enough, one should still be able to decrypt μsj `yj

as before. We will now outline the proof showing that an adversary who is able
to produce a signature other than μs ` y for the public key pv,wq and message
μ can solve the SIS problem.
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In the real scheme, the public key is set as pv,wq “ Hpiq, and then the s,y
are sampled using a trapdoor for A. In the security proof, we will instead get a
random A from the challenger, sample the s,y, and then program the random
oracle Hpiq “ pv “ As,w “ Ayq. Because the trap-doored matrix is indistin-
guishable from uniform [MP12] and the standard deviation of s,y is above the
smoothing parameter [MR07], the two distributions are indistinguishable. The
reduction’s goal is to now solve SIS for the matrix A.

Because the reduction knows the secret keys s,y, it can produce the responses
in (4) and (5). Now, suppose that an adversary who sees (4) and (5) is able to
create two valid signatures z, z1 (with small coefficients) for two messages μ ‰ μ1
satisfying2

Az “ vμ ` w (6)
Az1 “ vμ1 ` w. (7)

Plugging in pv “ As,w “ Ayq and subtracting, the reduction obtains

Apz ´ z1q “ Appspμ ´ μ1qq. (8)

Thus, if
z ´ z1 ‰ spμ ´ μ1q, (9)

the reduction extracted a solution to SIS. The crucial part is now proving that
the signatures produced by the forger will indeed satisfy this inequality with
some non-negligible probability. Notice that if z ´ z1 “ spμ ´ μ1q, then one has
also has extracted s (because the coefficients of spμ ´ μ1q are small-enough that
no reduction modulo q takes place and so the ring ZrXs{pXd ` 1q is an integral
domain, and so one can simply divide by μ´μ1). In other words, the reduction can
either extract a solution to SIS from the adversary, or the adversary “knows”
the value s that was used by the reduction. The former is the computational
assumption upon which the scheme is based, while the latter, we will show, is
information-theoretically impossible except with probability at most 1 ´ δ. It’s
important to point out that the latter holds for all views that contain the public
key and equations (4) and (5). Therefore, it is impossible for an adversary to
always extract the correct s, and so (9) will be satisfied with probability at least
δ. So if an adversary succeeds in a forgery with probability ε,the reduction will
solve SIS with probability εδ.

We now need to show that that despite knowing the public keys and having
access to (4) and (5), the adversary still cannot information-theoretically deter-
mine the exact value s. Consider the possibility that instead of the vector s, we
sampled the vector s̃ “ s ` u, where u satisfies Au “ 0. This is a valid pre-image
for the public key v “ As “ Aps ` uq, and in order to also satisfy (4),(5), we
would need to have sampled, instead of y,y1,y2, and y3,

2 The first signature z on a message μ is already given to the adversary in (4) and (5),
so he really just has to produce a second one.
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ỹ “ y ´ μu (10)
ỹ1

j “ y1
j ´ ujr (11)

ỹ2
j “ y2

j ´ uje (12)

ỹ3
j “ y3

j ´ uje
1. (13)

To complete the proof, we need to show that the event that s,y,y1
j ,y

2
j , y

3
j

are sampled, conditioned on the view of the adversary, is not overly dominant.
For simplicity, let’s just look at s and the alternative s̃ “ s ` u; incorporating
the ỹ, ỹ1, ỹ2, ỹ3 in the analysis is done in a similar manner.

If s is sampled from Z
m according to a Gaussian distribution with standard

deviation σ – that is the distribution is proportional to
´

1?
2πσ

¯m ¨ ρσpxq, where

ρσpxq “ e´}x}2{2σ2
, then the conditional probability that s is some s˚ satisfying

v “ As˚ is

Pr
s˚ rs˚ “ s|As “ vs “ ρσpsq

ř

uPΛ
ρσps ´ uq ď 1

ř

uPΛ
ρσpuq , (14)

where the last inequality is implicit in the proof of [AR04, Lemma 3.2]. In The-
orem 3.3, we then show that when σ « qn{m, the above inequality is less than
1
2 , and so even an all-powerful adversary cannot know the exact s˚.

In Sect. 3, as an interlude, we also use the same techniques to give an instanti-
ation of the one-time signature from [LM18] where the secret keys are Gaussians.
In particular, the one-time signatures are just the blind signatures without the
blinding part and without the user needing to hide the public key that was
used to sign the message. That is, there is no user and no equations (4) and
(5). The signer simply sends z “ sμ ` y as his signature of μ, and the verifier
checks that }z} is small and Az “ vμ ` w. This is exactly the template from
[LM18], but with a different security proof which crucially uses the fact that the
secret keys are Gaussian instead of uniform. It seems that both instantiations
are about equally efficient, but we include this instantiation in case a Gaussian-
based scheme is useful for some application, similarly to how it was extended in
this paper.

As a side note, we would like to draw attention to the advantage of our
proof over a more “generic” one that would use Renyi entropy arguments (e.g.
[BLL+15]) to show that not enough information about s is leaked in (4) and
(5)). Using such arguments would require to set the standard deviations of y,y1,
etc. to be at least as large as }sμ}, }rsj}, etc. Our proof technique, on the other
hand, only needs the standard deviation to be approximately qn{m, which is
siginficantly smaller because just s has standard deviation at least that. In fact,
somewhat counter-intuitively, one does not even need the “mask” y to have
larger standard deviation than }sμ}. This is a rather different situation than
in signature schemes where the role of y is to make the distribution of y ` sμ
independent of s.

We remark, however, that our technique cannot replace the Renyi argument
everywhere. For our technique to be applicable, the reduction needs to know
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the secret values when performing the simulation, because we do not make any
claims about what the output distribution looks like. Renyi proofs, on the other
hand, argue that the resulting distribution is “close-enough” to some distribution
which can be sampled without knowing the secret.

2 Preliminaries

2.1 Notation

Let q be an odd prime and λ be a security parameter. In this paper we aim
for 128-bit security. Unless stated otherwise, all algorithms are implicitly given
a security parameter in unary. The joint execution of two algorithms A and
B in an interactive protocol with private inputs x to A and y to B is written
as pa, bq Ð xApxq,Bpyqy where a and b are the private outputs of A and B
respectively.

We write x Ð S when x P S is sampled uniformly at random from the
finite set S and similarly x Ð D when x is sampled according to the discrete
distribution D. The statistical distance between two probability distributions X
and Y over a countable set D is defined as ΔpX,Y q “ ř

dPD |Xpdq ´ Y pdq|. For
integer n P N, we define rns :“ t1, 2, . . . , nu. Given two functions f, g : N Ñ r0, 1s,
we write fpμq « gpμq if |fpμq´gpμq| ă μ´ωp1q. A function f is negligible if f « 0.
We write neglpnq to denote an unspecified negligible function in n.

2.2 Lattices

Let B “ tb1, . . . ,bnu consist of n linearly independent vectors. The n-
dimensional lattice generated by B is defined as

Λ “ LpBq “
#

n
ÿ

i“1

cibi : c1, . . . , cn P Z

+

.

The dual lattice of Λ is defined as Λ˚ “ tx P R
n : @v P Λ, xx,vy P Zu. We

denote B̃ to be the Gram-Schmidt orthogonalization of B.
For a power of two d, denote R and Rq respectively to be the rings

ZrXs{pXd ` 1q and ZqrXs{pXd ` 1q. Unless stated otherwise, lower-case let-
ters denote elements in R or Rq and bold lower-case (resp. upper-case) letters
represent column vectors (resp. matrices) with coefficients in R or Rq.

For an element w P Zq, we write }w}8 to mean |w mod˘ q|. Define the 	8
and 	p norms for w “ w0 ` w1X ` . . . ` wd´1X

d´1 P R as follows:

}w}8 “ max
j

}wj}8, }w}p “ p

b

}w0}p8 ` . . . ` }wd´1}p8.

If w “ pw1, . . . , wmq P Rk, then

}w}8 “ max
j

}wj}8, }w}p “ p
a}w1}p ` . . . ` }wk}p.
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By default, }w} :“ }w}2. Similarly, we define the norms for vectors over Zq.
Denote Sγ “ tx P Rq : }x}8 ď γu.

For a matrix A P Z
nˆm
q , we define the module q-ary lattice as:

ΛK
q pAq :“ tx P Z

m : Ax “ 0 mod qu.
Similarly, when A P Rnˆm

q then:

ΛK
Rq

pAq :“ tx P Rm : Ax “ 0 over Rqu.

For a polynomial f “ f0 ` f1X ` . . . ` fd´1X
d´1 P R, we define the rotation

matrix Rotpfq P Z
dˆd as:

Rotpfq “

»

—

—

—

–

f0 ´fd´1 . . . ´f1
f1 f0 . . . ´f2
...

... . . .
...

fd´1 fd´2 . . . f0

fi

ffi

ffi

ffi

fl

.

Similarly, for a matrix F “ pfi,jq P Rnˆm
q , we define

RotpFq “
»

—

–

Rotpf1,1q Rotpf1,2q . . . Rotpf1,mq
...

...
...

...
Rotpfn,1q Rotpfn,2q . . . Rotpfn,mq

fi

ffi

fl
P Z

ndˆmd.

2.3 Discrete Gaussian Distribution on Lattices

For any σ ą 0, we define the Gaussian function on R
n centered at c P R

n with
parameter σ as:

@x P R
n, ρσ,cpxq :“ exp

`´}x ´ c}2{2σ2
˘

.

More generally, if σ “ pσ1, . . . , σ
nq P R

ną0 then we define ρσ,cpxq “
śn

i“1 ρσi,ci
pxiq3. When we omit the subscript c, we set c “ 0 by default.

Let c P R
n, σ ą 0 and Λ be a n-dimensional lattice. We now define the

discrete Gaussian distribution over a lattice Λ as

@x P Λ,DΛ,σ,cpxq :“ ρσ,cpxq
ρσ,cpΛq .

As above, we may omit the subscript c. Also, we drop the subscript Λ when
Λ “ Z

n and denote it as Dn
σ,c.

We recall the definition of a smoothing parameter [MR07].

3 One could define the Gaussian function more generally using a covariance matrix.
However, we will not need such a general case and thus we omit it for presentation
purposes.
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Definition 2.1. Let Λ be an n-dimensional lattice and ε ą 0. Then, the smooth-
ing parameter ηεpΛq is the smallest real s ą 0 such that ρ 1?

2πs
pΛ˚zt0uq ď ε.

We will use the following upper-bound on the smoothing parameter.

Lemma 2.2 ([GPV08]). For any n-dimensional lattice Λ with basis B and ε ą
0, we have:

ηεpΛq ď }B̃} ¨ a

lnp2n{p1 ` 1{εqq{π.

The next fact states that the total Gaussian measure on any translation of
the lattice is essentially the same.

Lemma 2.3 ([MR07]). Let Λ be an n-dimensional lattice. Then, for any ε P
p0, 1q, σ ě ηεpΛq and c P R

n, we have

ρσ,cpΛq P
„

1 ´ ε

1 ` ε
, 1

j

¨ ρσpΛq.

In this paper we will apply the following simple corollary and provide the
proof in the full version of the paper.

Corollary 2.4. Let Λ,Λ1 be n-dimensional lattices and Λ1 Ď Λ. Then, for any
ε P p0, 1

2 s, σ ě ηεpΛ1q, define the following probability distributions D1,D2:

– D1: first sample x Ð DΛ,σ and output px, t :“ x mod Λ1q,
– D2: first generate t uniformly at random from ΛzΛ1 and then sample x Ð

DΛ,σ conditioned on t “ x mod Λ1. Output px, tq.
Then, ΔpD1,D2q ď 4ε.

We will use the following tail bound from [Ban93,Lyu12].

Lemma 2.5. Let m, k ą 1,Λ be m-dimensional lattice and c P Z
m. Then

1. PrzÐDσ
r|z| ą kσs ď 2e

´k2
2 .

2. PrzÐDm
σ

r‖z‖2 ą kσ
?

ms ď kme
m
2 p1´k2q.

3. PrzÐDm
Λ,σ,c

r‖z‖2 ą kσ
?

ms ď 2kme
m
2 p1´k2q.

2.4 Module-SIS and Module-LWE Problems

Security of our blind signature scheme relies on the well-known computational
lattice problems, namely Module-LWE (MLWE) and Module-SIS (MSIS) [LS15].
Both problems are defined over Rq.

Definition 2.6 (MSISn,m,B). Given A Ð Rnˆm
q , the Module-SIS problem with

parameters n,m ą 0 and 0 ă B ă q asks to find z P Rm
q such that Az “ 0 over

Rq and 0 ă }z} ď B. An algorithm A is said to have advantage ε in solving
MSISn,m,B if

Pr
“

0 ă }z} ď B ^ Az “ 0
ˇ

ˇ A Ð Rnˆm
q ; z Ð ApAq‰ ě ε.
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Definition 2.7 (MLWEn,m,χ). The Module-LWE problem with parameters
n,m ą 0 and an error distribution χ over R asks the adversary A to distin-
guish between the following two cases: 1) pA,As ` eq for A Ð Rnˆm

q , a secret
vector s Ð χm and error vector e Ð χn, and 2) pA,bq Ð Rnˆm

q ˆ Rm
q . Then,

A is said to have advantage ε in solving MLWEn,m,χ if
ˇ

ˇPr
“

b “ 1
ˇ

ˇ A Ð Rnˆm
q ; s Ð χm; e Ð χn; b Ð ApA,As ` eq‰

´ Pr
“

b “ 1
ˇ

ˇ A Ð Rnˆm
q ; b Ð Rn

q ; b Ð ApA,bq‰ˇ

ˇ ě ε. (15)

2.5 Blind Signatures

We present a definition of a blind signature where the signer is stateful and a
user is allowed to make at most k “ polypλq queries.

Definition 2.8. A k-time stateful blind signature scheme BS consists of PPT
algorithms BS.KeyGen, BS.Ver along with two interactive PPT algorithms S and
U such that

– BS.KeyGenp1λ, 1kq: given a security parameter λ and maximum number of
signing queries k, it outputs a private/verification key pair psk, pkq,

– For i P rks, the joint execution of Spsk, iq and Uppk,mq, where m P t0, 1u˚,
generates an output σi for the user U and no output for S, i.e.

pK, σq Ð xSpsk, iq,Uppk,mqy
– BS.Verppk,m, σq: given a verification key pk, message m and signature σ, it

outputs a bit b.

The main difference from previous works is the fact that S has the additional
input i which can be seen as a state. Indeed, if the message m and random coins in
the system are fixed, then it might still be the case that for i ‰ j, the interaction
between Spsk, iq and Uppk,mq would be different than the interaction between
Spsk, jq and Uppk,mq.

In general, blind signatures must satisfy three properties: (i) correctness, (ii)
blindness and (iii) one-more unforgeability. We adapt these standard properties
to k-time stateful blind signatures in an intuitive way.

Definition 2.9 (Correctness). A k-time stateful blind signature scheme BS is
correct if for any k messages m1, . . . ,mk P t0, 1u˚, psk, pkq Ð BS.KeyGenp1λq,
and σi output by U in the joint execution between Spsk, iq and Uppk,miq for
i P rks, it holds that @i P rks,BS.Verppk,mi, σiq “ 1 with probability 1 ´ neglpλq.
Definition 2.10 (Blindness). A k-time stateful blind signature scheme BS is
blind every PPT algorithm S˚ wins the following blindness game with negligible
probability:
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1. psk, pkq Ð S˚.
2. S˚ provides two distinct messages m0,m1.
3. b Ð t0, 1u.
4. S˚ interacts concurrently with U0 “ Uppk,mbq and U1 “ Uppk,m1´bq.
5. If either U0 or U1 abort, then pσ0, σ1q “ pK, Kq. Otherwise, denote σb and

σ1´b to be the outputs of U0 and U1 respectively. Then, S˚ is given pσ0, σ1q.
6. S˚ returns a bit b1. It wins the blindness game if b “ b1.

In this paper we consider blindness in the malicious signer model i.e. an
adversary gets to choose its own keys.

Definition 2.11 (One-More Unforgeability). A k-time stateful blind sig-
nature scheme BS is one-more unforgeable if every PPT algorithm U˚ wins the
following one-more unforgeability game with negligible probability:

1. psk, pkq Ð BS.KeyGenp1λq and U˚ is given pk.
2. U˚ interacts with 	 signers Spsk, 1q, . . . ,Spsk, 	q where 	 ď k.
3. U˚ outputs 	 ` 1 pairs pmi, σiq where i P r	 ` 1s.
4. Algorithm U˚ wins the one-more unforgeability game if @i P r	 ` 1s, it holds

that BS.Verppk,mi, σiq “ 1.

2.6 Lattice-Based NIZKs

We will use the LANES framework for efficient (non-interactive) arguments of
knowledge for proving linear and multiplicative relations between committed
messages developed in [ALS20,ENS20,LNS21a]4. In this paper we are interested
in the following two relations.

Verifiable Encryption. We want to prove that a ciphertext was constructed
correctly. More concretely, let μ be a binary polynomial, p be prime, r P Sm

γ and
e P Sn`1

γ be randomness and error vectors respectively. Then, given public keys
B P Rnˆm

q ,b P Rm
q and valid ciphertext t P Rn`1

q , we want to prove that

(i) μ is a binary polynomial,
(ii) r and e have coefficients between ´γ and γ,

(iii)
ˆ

B
bT

˙

r ` pe `
ˆ

0
μ

˙

“ t.

One observes that (i) and (ii) are multiplicative relations and (iii) is a
linear relation. These statements can be efficiently proven using protocols
from [ENS20,LNS21a]. We will denote the verifiable encryption proof as
πenc ppB,b, tq, pr, e, μqq.

4 We refer to [ENS20,LNS21a] for more details on the protocol.
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One-Out-of-Many Proof. Our blind signature will consist of the one-out-
of-many proof [GK15], i.e. a proof that one of the elements of a public set is
a commitment to zero. In our setting, we want to prove that, given a matrix
A P Rnˆm

q and a public finite set U of vectors in Rn
q , we know a vector s P Rm

q

which has small coefficients and As P U . As shown in [GK15], this concept is
closely related to ring signatures.

Very recently, Lyubashevsky et al. [LNS21b] proposed an efficient one-out-
of-many proof based on the LANES framework where the communication size
is logarithmic in the size of U . We will apply the non-interactive protocol from
[LNS21b, Section 3.2] and denote this proof as πP ppA, Uq, sq.

3 Lattice Based One-Time Signature Revisited

An important building block of our blind signature is the lattice-based one-time
signature construction by Lyubashevsky and Micciancio [LM18] using modules
lattices. However, we modify the original scheme so that the secret keys are
chosen from a discrete Gaussian distribution rather than picked uniformly at
random. The main motivation for such a change is that it mixes well with other
building blocks (e.g. trapdoor sampling [MP12]) described in the next section.

The one-time signature is defined by the following algorithms:

– Key Generation: sample matrix A Ð Rnˆm
q uniformly at random and a

secret key y Ð Dmd
σy

, s Ð Dmd
σs

. Then, the public key is a pair pk “ pA,w :“
Ay,v :“ Asq and its corresponding secret key is sk “ py, sq.

– Signing: given a binary polynomial μ P t0, 1ud Ă Rq as a message and a
secret key py, sq, it outputs z “ y ` μs.

– Verification: given a binary polynomial μ P Rq, public key pA,w,vq and a
signature z, it checks whether }z} ď pσy ` dσsq?

2md and Az “ w ` μv.

Correctness and security of the one-time signature can be summarised with the
following theorem. We provide the full proof in the full version of the paper.

Theorem 3.1. Let m ě 6pλ`1q{d. Then, the one-time signature scheme above
is correct. Concretely, the verification algorithm always accepts signatures pro-
duced by the legitimate signer with an overwhelming probability.

For unforgeability, suppose that σy ě qn{m?
2ed ` 2, σs ě qn{m?

2e ` 2 and
q ą 4dσs

?
2md. If there is an adversary A which succeeds in breaking the strong

unforgeability game of the one-time signature scheme with probability γ, then
there exists an algorithm that can solve MSISn,m,2pσy`dσsq?

2md with probability
at least γ{3 ´ neglpλq in essentially the same running time as the forgery attack.

For readability, we first provide a sketch for the unforgeability proof. Namely,
assume there is an adversary A which succeeds in breaking the strong unforge-
ability game of the one-time signature scheme. We can then construct an algo-
rithm B for solving MSIS as follows. Given a uniformly random matrix A, the
algorithm samples y Ð Dmd

σy
, s Ð Dmd

σs
and sets w “ Ay and v “ As. Next,
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B outputs pA,w,vq. When A asks a signing query on input μ, B answers with
z “ y ` μs. Finally, A outputs a forgery pμ1, z1q. Assuming that it is valid, B
outputs a potential solution z1 ´py`μ1sq. Now, given A,w,v, μ, z, the adversary
A does not know which py, sq from the following set was used:

S “ tpy1, s1q : Ay1 “ w,As1 “ v, z “ y1 ` μs1u.
To this end, we will prove that the probability of picking py, sq when sampling
from a discrete Gaussian distribution restricted to S (which is a coset of a lattice
as shown below) is sufficiently small, e.g. 1/2 when standard deviations σy, σs

are chosen properly.
Let us fix A,y, s, μ. We provide tools to compute an upper-bound on the

following probability:

Pr
”

y˚ “ y ^ s˚ “ s : py˚, s˚q Ð DΛK
Rq

pXq,σ,c

ı

(16)

where σ “ pσy, . . . , σy, σs, . . . , σsq P R
2mą0 ,

X “
¨

˝

A 0
0 A

1 ¨ Im μ ¨ Im

˛

‚P Rp2n`mqˆ2m
q and c “ ´

ˆ

y
s

˙

P R2m
q .

These techniques will be crucial for proving not only unforgeability for the one-
time signature but also for one-more unforgeability of the blind signature pre-
sented in the next section.

We start with the following technical lemma.

Lemma 3.2. Let M P Z
mˆn and Λ be an n-dimensional lattice. Then, for any

σ P R
mą0, s P R

m we have:

ρσpsq
ř

zPΛ ρσpMzq ď ρσpsq
ř

zPΛ ρσps ` Mzq ď 1
ř

zPΛ ρσpMzq .

Proof. Inequality on the left follows directly from [MR07, Lemma 2.9] and the
fact that MΛ is an m-dimensional lattice. The inequality on the right is essen-
tially implicit in the proof of [AR04, Lemma 3.2], but for completeness, we give
a proof of a slightly generalized statement needed in this work. Let us partition
Λzt0u into two sets Λ1 and Λ2, such that x P Λ1 if and only ´x P Λ2. Clearly,
|Λ1| “ |Λ2|. Then, for z P Λ1 we have:

ρσps ` Mzq ` ρσps ´ Mzq “ e
´ řm

i“1
s2i `xmi,zy2

2σ2
i ¨

ˆ

e

řm
i“1

2xmi,zy
2σ2

i ` e
´ řm

i“1
2xmi,zy

2σ2
i

˙

ě 2e
´ řm

i“1
s2i `xmi,zy2

2σ2
i

ě 2ρσpsqρσpMzq
ě ρσpsq ¨ pρσpMzq ` ρσp´Mzqq
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where for the first inequality we used the fact that x ` x´1 ě 2 for any x ą 0.
Hence,

ÿ

zPΛ
ρσps ` Mzq “ ρσpsq `

ÿ

zPΛ1

pρσps ` Mzq ` ρσps ´ Mzqq

ě ρσpsq `
ÿ

zPΛ1

ρσpsq ¨ pρσpMzq ` ρσp´Mzqq

ě ρσpsq
˜

1 `
ÿ

zPΛ1

pρσpMzq ` ρσp´Mzqq
¸

ě ρσpsq
ÿ

zPΛ
ρσpMzq.

Thus, the statement holds. [\
We are ready to present a theorem that says for which parameters the prob-

ability in (16) is upper-bounded by 1{2.

Theorem 3.3. Let A P Z
nˆm
q and M P Z

kˆm be arbitrary matrices and denote
mi P Z

m to be the i-th row of M. Furthermore, suppose σ “ pσ1, . . . , σkq satisfies

σi ě qn{m
b

ek
m }mi}1 ` 2 for i P rks. Then, for any s P R

k, we have:

ρσpsq
ř

zPΛK
q pAq ρσps ` Mzq ď 1

2
.

Proof. By Lemma 3.2 we only need to show that
ř

zPΛK
q pAq ρσpMzq ě 2. Let us

set γ “ P

1
2

?
eqn{mT

and define the set U as follows:

U “ �

u P ΛK
q pAqzt0u : }u} ď 2γ

(

.

First, we lower-bound the cardinality of U . By the pigeonhole principle, there
exist at least 	 ` 1 ě p2γqm{qn ` 1 vectors u1, . . . ,u
`1 such that for each
j P r	 ` 1s, }uj}8 ď γ and Au1 “ Au2 “ . . . “ Au
. Hence, for all i P r	s, we
have ui ´ ul`1 P U . Consequently, |U | ě 	 “ p2γqm{qn and

ÿ

zPΛK
q pAq

ρσpMzq ě 1 `
ÿ

zPU

ρσpMzq

ě 1 `
ÿ

zPU

exp

˜

´
k

ÿ

i“1

xmi, zy2
2σ2

i

¸

ě 1 `
ÿ

zPU

exp

˜

´
k

ÿ

i“1

4γ2}mi}21
2σ2

i

¸

ě 1 ` |U | ¨ exp

˜

´
k

ÿ

i“1

2γ2}mi}21
σ2

i

¸

ě 1 ` p2γqm

qn
exp

˜

´
k

ÿ

i“1

2γ2}mi}21
σ2

i

¸

.
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Since, we assumed that σi ě 2γ
a

k{m}mi}1 and γ ě 1
2

?
eqn{m, we obtain:

ÿ

zPΛK
q pAq

ρσpMzq ě 1 ` p2γqm

qn
exp

˜

´
k

ÿ

i“1

m

2k

¸

ě 1 ` p2γqm

qn
exp

´

´m

2

¯

ě 1 ` exp
´m

2

¯

exp
´

´m

2

¯

ě 2

which concludes the proof. [\
Finally, to compute the probability in (16), we note that:

Prry˚ “ y ^ s˚ “ ss “ DΛK
q pXq,σ,cp0,0q “ ρσpy, sq

ρσppy, sq ` ΛK
q pXqq

Note for every u P ΛK
Rq

pAq, we have pμu, ´uq P ΛK
q pXq. Therefore,

ρσpy, sq
ρσppy, sq ` ΛK

q pXqq ď ρσpy, sq
ř

uPΛK
Rq

pAq ρσ

ˆ

py, sq `
„

μ ¨ Im

´Im

j

u
˙ .

Since we set σy ě qn{m?
2ed ` 2, σs ě qn{m?

2e ` 2, we can apply Theorem 3.3
for σ “ pσy, . . . , σy, σs, . . . , σsq P R

2md,

A :“ RotpAq P Z
ndˆmd
q and M :“ Rot

ˆ„

μ ¨ Im

´Im

j˙

P Z
2mdˆmd.

We refer to the full version of the paper for a more rigorous proof of Theorem
3.1.

4 The Blind Signature

In this section, we define our blind signature scheme. A blind signature scheme
has two parties interacting: a user and a server (or signer), so the user produces
a signature under the public key of the server. The security of a blind signature
scheme is captured by two properties properly defined in Definitions 2.10 and
2.11: Blindness and One-More Unforgeability. Blindness informally requires that
the server is unable to link a signature to the interaction during which this sig-
nature was produced. One-More Unforgeability informally says that after some
number 	 of interactions with the server, the user is not able to produce 	 ` 1
signatures.

The strategy of our blind signature scheme is as follows: the public key is
a collection of N public keys of the one-time signature scheme defined in the
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previous Sect. 3. To keep the user/server interaction “blind”, the user sends an
encryption of his message, together with a NIZK proof that the ciphertext is well-
formed. This encryption scheme is such that the server can homomorphically
compute (somewhat efficiently) an encryption of the one-time signature under
the i-th public key. This way, the user receives an encryption of a one-time
signature of his message, but the response from the server hides its i-th secret
key enough so the user can only produce one signature per interaction. Again,
to preserve blindness, instead of giving away directly his one-time signature, he
gives a NIZK proof of knowledge of a valid one-time signature to one of the
public keys.

4.1 Definition of the Encryption Scheme

In this subsection, we define the first building block of our blind signature
scheme: an encryption scheme. This encryption scheme shall be secure against
Chosen Plaintext Attacks (we prove in Lemma 4.2 that the distribution of the
ciphertext is indistinguishable from uniform) and allow the server to compute a
one-time signature of the message while masking his secret key. The proofs of
the latter statement is postponed to Sect. 5. We also define a multi-dimensional
decryption algorithm Dec for better readability of the blind signature protocol
Fig. 2.

Notations. Throughout this subsection, we use n,m for dimensions, prime mod-
ulus q1 and prime p. Please note that the modulus used in the encryption scheme
differs from the one we use in the remaining of the blind signature scheme.

Algorithm 1. KeyGenpq :
1: B Ð Rnˆm

q1
2: x Ð t´γ, . . . , γun

3: bT “ xTB mod q1

4: pkenc “ pB,bq
5: skenc “ x
6: return ppkenc, skencq

Algorithm 2. encppkenc, μq :
1: pr, e, e1q Ð t´γ, . . . , γum ˆ t´γ, . . . , γun ˆ t´γ, . . . , γu
2: t “ pBr ` pe mod q1

3: t1 “ pbT r ` pe1 ` μ mod q1

4: return pt, t1q
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Algorithm 3. decpskenc, t, t1q :
1: z “ t1 ´ xT t mod q1

2: return z mod p

Theorem 4.1. The encryption scheme defined through Algorithms 1 to 3 is
correct. More precisely, if }μ}8 ď tp{2u, ppkenc, skencq “ KeyGenpq and

pndγ ` 1qγ ď q1

2p
´ 1{2, (17)

then decpskenc, t, t1q “ μ.

Proof. We compute z “ t1 ´ xT t. We have :

z “ pbT r ` pe1 ` μ ´ xT ppBr ` peq (18)

“ μ ` ppe1 ´ xT eq. (19)

Since we assumed pndγ ` 1qγ ď q1
2p ´ 1{2 and }μ}8 ď p{2, then

}μ ` ppe1 ´ xT eq}8 ď q1{2, therefore there is no reduction modulo q1 in
μ ` ppe1 ´ xT eq and hence z “ μ ` ppe1 ´ xT eq mod p “ μ. [\

Algorithm 4. Decpskenc,T, t1q :
1: zT “ t1T ´ xTT mod q1

2: return z mod p

Lemma 4.2.
Let μ be some message, ppk, skq Ð KeyGen, and pt, t1q “ encppk, μq. Then t, t1
is indistinguishable from uniform under MLWEm,n´m,Sγ

and MLWEn`1,m,Sγ
5.

Proof. We define a sequence of games.

G0: In this game, the adversary A wins if he distinguishes honest sam-
ples ppk, skq Ð KeyGen, pt, t1q “ encppk, μq from ppk, skq Ð KeyGen,
pt, t1q Ð Rn

q ˆ Rq.

G1: This game is the same as the previous one, except in the key generation, b
is sampled uniformly random. This game is indistinguishable from the previous
one under MLWEm,n´m,Sγ

.

5 We remind the reader that the encryption scheme’s variables and computations are
done over Rq, and therefore the MLWE problem is mod q, and Sγ here is those
r P Rq such that |r| ď γ.
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G2: This game is the same as the previous one, except Br and bT r are sampled
uniformly random. This game is indistinguishable from the previous one under
MLWEn`1,m,Sγ

.

G3: This game is the same as the previous one, except t, t1 are sampled uniformly
random. This game is identical to the previous one.

G4: This game is the same as the previous one, except the public key is honestly
sampled from KeyGen. This game is indistinguishable from the previous one
under MLWEm,n,Sγ

.

The result follows from summing up the advantages. [\

4.2 Description of the Scheme

We describe in Fig. 1 the setup algorithm for the server, the setup algorithm for
the user is simply 1) Run KeyGen to generate a key pair for the encryption scheme
2) Run the setup algorithm for the zero-knowledge proofs πenc, πP (notice that
the public parameters for πenc and πP must be independent so as to preserve
blindness), and finally in Fig. 2 we describe our blind signature scheme. The
verification algorithm is the verification algorithm of the NIZK πP. The scheme
contains two verification steps: the verification of the well-formedness of the
ciphertext πenc by the server and the verification of valid one-time signature
z such that Az “ μvj ` wj by the user. A non-succeeding verification implies
abortion of the scheme.

Notations. We let q, q1 be a prime moduli (q1 is the modulus for the encryption,
which will be greater than q, the modulus for the blind signature), p be a prime
which shall be smaller than q1 but greater than the messages to be encrypted, and
N a real number corresponding to the number of blind signatures. We introduce
a dimension α which is the height of the public matrix A, and σs, σy, σ1 which
are standard deviations for the Gaussian distributions. One can think of σy as d
times greater than σs so that }μs} » }y}. For a matrix A P Rnˆm

q and a vector
u P Rn

q , we write ΛK
upAq the lattice ts P Rm

q { As “ uu. We omit the subscript
u when u “ 0. For the sake of clarity, we write 3

?
q “ t 3

?
qu. We define a gadget

vector g “ p1 3
?

q 3
?

q2q, which we use to define the gadget matrix

G “

»

—

—

—

–

gT

gT

. . .
gT

fi

ffi

ffi

ffi

fl

.

5 Security Proof

In this section, we prove the correctness and security of our blind signature. In
Sect. 5.1, we prove the correctness of the homomorphic computation of the server
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Fig. 1. ServerKeyGenpq :

on the user’s ciphertext, from which we infer the correctness of the blind signa-
ture scheme. In Sect. 5.2, we prove the blindness and one-more unforgeability of
our blind signature scheme.

5.1 Blind Computation on the Ciphertext

We first prove in Lemma 5.1 that if both parties follow the protocol honestly,
then with overwhelming probability, the user successfully decrypts z “ μsi ` yi.
Next, we prove in Theorem 5.2 that this yields the correctness of the blind
signature scheme.

Lemma 5.1. We use notations from Fig. 2. If the user and the server follow
the protocol on Fig. 2 honestly and if

24σ1 ` dγpn ` 1q ď q1

2p
´ 1

2
and 12dσs ` 12σy ď p{2,

then with overwhelming probability Decpskenc,F, f 1qT “ yi ` μsi.

Proof. First, we notice that

#

F “ pBprsT
i ` Yq ` ppesT

i ` Y1q
fT “ pbprsT

i ` Yq ` ppe1sT
i ` y2T q ` μsT

i ` yT
i

Let us write sY “ rsT
i ` Y, sY1 “ esT

i ` Y1, sy “ e1sT
i ` y2T and sμ “ μsT

i ` yT
i .

Then, the decryption Decpskenc,F, fq is given by

Decpskenc,F, fq “ pbT
sY ` p sY1 ` sμ ´ xT ppB sY ` p sY1q mod p

“ sμ ` ppsy ´ xT
sY1q mod p.

Since we assumed 12dσs ` 12σy ď p{2, then with overwhelming probability we
have }μ̄}8 ď p{2. Moreover, we assumed 24σ1 ` dγpn ` 1q ď q1

2p ´ 1
2 , hence

}μ̄ ` sy ´ xT
sY1}8 ď q1

2p ´ 1
2 , and therefore Decpskenc,F, fq “ sμ. [\

Theorem 5.2. The blind signature scheme defined in Fig. 2 is correct. More
precisely, if both parties follow the protocol honestly, then the produced signature
passes verification with overwhelming probability.
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Fig. 2. Blind signature scheme

Proof. We only need to prove that the vector z recovered by the user veri-
fies Az P twi ` μvi, 1 ď i ď Nu, so the non-interactive zero-knowledge proof
πP that the user computes as the blind signature passes verification. We
chose parameters such that it follows directly from Lemma 5.1 that we have
z “ yi ` μsi, and therefore Az “ wi ` μvi where i is the state of the server
when he responded to the user’s query. [\

5.2 Blindness and One-More Unforgeability of the Blind Signature
Scheme

The main Theorem of this subsection is Theorem 5.4. We prove blindness directly
from a sequence of games, proving that the blindness game is indistinguishable
from a game that is independent of the messages. The proof of one-more unforge-
ability is broken down in 2 parts: first we reduce the one-more unforgeability
game to another game OMUF˚. Next, we prove that with rewindable access to
an adversary A with winning probability ε, one has probability Opεq to solve
MSISα,5α,B for some short bound B.
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Lemma 5.3. Let OMUF be the One-More Unforgeability game as described in
Definition 2.11. We define a variant of OMUF which we call OMUF˚. The chal-
lenger of OMUF˚ differs from the challenger of OMUF only in the key generation.
He executes instead the following instructions:

1. Generate A Ð Rαˆ5α
q uniformly random

2. For 1 ď i ď N , sample psi,yiq Ð D5α
σs

ˆ D5α
σy

3. For 1 ď i ď N , compute vi “ Asi and wi “ Awi

4. Generate a seed
5. Program the PRNG so PRNGpseedq expands to pvi,wiq1ďiďN

6. Set the public key of the blind signature scheme to be pA, seedq.
Then, for any adversary A and ε negligible, if σs, σy ě ηεpΛKpAqq, then we have

εOMUF
A ď εOMUF˚

A ` ε
MLWEα,α,S1
A ` 4Nε.

Proof. We define a sequence of games:

G0 : This game is OMUF. The advantage of A is εOMUF
A .

G1: This game is the same as the previous one, except psi,yiqi is sampled (from
a discrete Gaussian of the same standard deviations σs and σy as in G0) and
pvi,wiq is computed. The PRNG is programmed to expand seed onto pvi,wiqi.
Since σs, σy ě ηεpΛKpAqq, it follows from Corollary 2.4 that the distribution of
each pvi,wiq in this game is at statistical distance at most 4ε from the distribu-
tion of pvi,wiq in the previous game, for all 1 ď i ď N . Therefore this game is
at distance at most 4Nε from G0.

G2: This game is the same as the previous one, except the public matrix A is
sampled uniformly random A Ð Rαˆ5α

q . This game is indistinguishable from G1

under MLWEα,α,S1 .

The last game G2 is OMUF˚, hence the adversary A has advantage εOMUF˚
A against

G2, and the result follows from summing up the advantages. [\
The strategy of the one-more unforgeability proof is roughly speaking to

rely on the security of our one-time signature from Sect. 3. More precisely, the
reduction B plays the OMUF˚ with A. Similarly as in the unforgeability reduc-
tion of the one-time signature, B knows one preimage μs ` y of μv ` w, and
extracts a second one z from A’s forgery6. We cannot argue straight away that
z ´ psμ ` yq is a non-zero solution to MSIS for the public matrix A, since A
may have learnt from the extra information - or hints that B gave away when
sending the ciphertext pF, fq. Indeed, we have

F “ tsT
i ` pBY ` pY1 “ pBprsT

i ` Yq ` ppesT
i ` Y1q

fT “ yi ` t1sT
i ` pbT Y ` py2 “ pbprsT

i ` Yq ` ppe1sT
i ` y2T q ` z.

6 The forgery is one of the unexpected signatures, which exists since the adversary is
expected to produce at most � signatures from � interactions.
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The masks Y,Y1,y2 hide the secret values rsT
i , esT

i , e1sT
i , but we need to take

into account the amount of leakage these hints represent. In other word, what
is the winning probability of the adversary to the one-time signature when the
signer provides hints? We decided to write Theorem 3.3, which is the foundation
of the unforgeability proof of our one-time signature in a general fashion, which
encompasses the case with extra hints. The one-more unforgeability proof then
boils down to an application of Theorem 3.3.

Theorem 5.4. The blind signature scheme defined in Fig. 2 verifies blindness
and one-more unforgeability.

For blindness, we have the following:

εblindA ď ε
ZKpπencq
A ` ε

ZKpπPq
A ` ε

MLWEm,n,Sγ

A ` ε
MLWEn`m,m,Sγ

A .

For One-More Unforgeability, if σs ě 2 ` q1{5apm ` n ` 3q,
σy ě 2 ` q1{5apm ` n ` 3qd, σ1 ě 2 ` q1{5apm ` n ` 3qγd and A is an adver-
sary with winning probability ε against OMUF˚, then there exists an algorithm
B that with rewindable black-box access to A can solve MSISα,5α,B with winning
probability at least ε

2N , where B “ 24κPpdσs ` σyq ` 2BP, BP is the bound on
the norm verification of the membership proof and δ “. This statement com-
bined with Lemma 5.3 gives the One-More Unforgeability of the scheme.

Proof. Blindness.
We define a sequence of games.

G0: This game is the blindness game Definition 2.10. The adversary sends pkServer
to the challenger B. The challenger runs UserKeyGen twice. He sends pk0, pk1
to the adversary A. Then, the adversary sends two messages m0,m1 of his
choice to B, which picks a random bit b. The adversary and the challenger
produce σ0 “ BlindSigpm0q (respectively σ1 “ BlindSigpm1q), and we write
t0, t1

0, π
0
enc,F0, f0 (respectively t1, t1, π1

enc,F1, f1) the transcript of their communi-
cations. The verification step from the user ensures that the decryption of F0, f0
(respectively F1, f1) is a valid z7. The users send pσb, σ1´bq to the adversary. The
adversary wins if he outputs b.

G1: This game is the same as the previous one, except the challengers runs the
simulator of the zero-knowledge proof πenc to produce π0

enc, π
1
enc. This game is

indistinguishable from G0 under the zero-knowledge property of πenc.

G2: This game is the same as the previous one except t0, t1
0, t1, t

1
1 are replaced

with uniformly random samples. This game is indistinguishable from G1 under
MLWEm,n,Sγ

and MLWEn`m,m,Sγ
by Lemma 4.2.

G3: This game is the same as the previous one, except π0P and π1P are generated
using the simulator from the zero-knowledge proof of πP. This game is indis-
tinguishable from G2 under the zero-knowledge property of πP. This game is
independent of b, and therefore, the advantage of A against G4 is 0.
7 Notice that due to this verification step, our definition of blindness is stronger than

honest-signer blindness.
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The result follows from summing up the advantages.

One-More Unforgeability.
Let A be an adversary to the OMUF˚ game with winning probability ε. We

describe an efficient algorithm B that with rewindable black-box access to A
solves MSISα,5α,B with B “ 24κPpdσs ` σyq ` 2BP.

First, B receives an MSISα,5α,B instance A P Rαˆ5α
q . Then, B will execute the

following instructions:

1. For 1 ď i ď N , generate si,yi Ð D5α
σs

ˆ D5α
σy

.
2. For 1 ď i ď N , set vi “ Asi, wi “ Ayi and set vj “ v.
3. Sample a random seed.
4. Program the PRNG on input seed such that PRNGpseedq “ pvi,wiq1ďiďN .
5. Send the public key pA, seedq to the adversary A.

Notice that since A is an MSISα,5α,B instance, it is uniformly random and the dis-
tribution of the public key that the adversary A receives is identical to OMUF˚.
Next, the adversary sends some number 	 of queries pti, t

1
i, π

i
encq to B. The algo-

rithm B computes honest responses pFi, fiq and sends them to A. The adversary
has probability at least ε to succeed in producing 	 ` 1 valid signatures, which
he sends to B if he indeed succeeds.

Next, algorithm B picks a uniformly random index 1 ď j ď 	 ` 1, and runs
the extractor E from the membership proof upon reception of the j-th signature
from A. This way, B extracts an index i, a message μ, a vector z and a challenge
difference c̄ such that Az “ c̄pμvi ` wiq. We remind that from key generation,
B also knows z1 “ c̄pμsi ` yiq which verifies the same equation as the extracted
z. Three options are possible:

1. The adversary had an interaction with B on the public key vi,wi for the
message μ, at the end of which the decryption of B’s response Fi, fi is z.

2. The adversary had an interaction with B on the public key vi,wi for any
message, at the end of which the decryption of B’s response Fi, fi is not z.

3. The adversary never had an interaction with B on the public vi,wi.

Since A had 	 interactions with B but managed to produce 	 ` 1 signatures,
at least one of these signatures is in option 2q or 3q. With probability at least
1{p	 ` 1q ě 1{N, option 2q or 3q happened, otherwise B fails and aborts8.

8 It seems that A could send directly the index of the unexpected signature to B. This
would save a factor 1{N in the winning probability of B while seemingly keeping the
hardness of the forgery the same.
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Option 3) is harder for the adversary than option 2q, so we will only deal with
the latter. Let us assume that i, μ, z, c̄ are from option 2). We assume that
the adversary A is able to collect the masks Y ` risT

i ,Y1 ` esT
i ,y2 ` e1sT

i . We
gather these 3 equations in the form ω ` Psi “ x, where ω,x P R5αpm`n`1q

q ,
and P is the matrix of the linear function that depends on r, e, e1 such that
Ps “ ps1r s2r . . . s1e s2e . . . s1e

1 s2e
1 . . . q. Both P and x are known to the

adversary. Since the adversary is able to reconstruct Fi, fi from X, we claim
that this assumption is without loss of generality.

The vector z ´ z1 (remind that z1 “ c̄pμsi ` yiq is informally B’s signature of μ
times c̄) is B’s candidate for MSISα,5α,B . Indeed,

Apz ´ z1q “ c̄pμvi ` wiq ´ c̄pμAsi ` Ayiq “ 0.

Remains to prove i) that the probability that z “ z1 is not negligibly close to
1, and ii) that z ´ z1 is shorter than B. First, for i), we introduce the following
lattice coset

Λ “

$

’

’

’

&

’

’

’

%

ps,y,ωq P R5α
q ˆ R5α

q ˆ Rpn`m`1q5α
q ,

$

’

’

’

&

’

’

’

%

As “ vi

Ay “ wi

μis ` yi “ zi

PsT ` ω “ x

,

/

/

/

.

/

/

/

-

.

We claim that all of A’s information on psi,yiq is contained in the state-
ment that psi,yi,ωq are drawn from χ, which is D5α

σs
ˆ D5α

σy
ˆ D

pm`n`1q5α
σ1

restricted to Λ. Let ps1
i,y

1
i,ω

1q be random variables following χ, and let
ζps1

i,y
1
i,ω

1q “ μs1
i ` y1

i. Notice that for some ζ˚ P R5α
q , there can be only one

tuple ps˚,y˚,ω˚q in the support of χ such that ζ˚ “ μs˚ ` y˚. We have

Ppz “ z1q “ Ppz “ ζpsi,yi,ωiqq
ď Ppζps1

i,y
1
i,ω

1q “ ζpsi,yi,ωiqq
ď Ppps1

i,y
1
i,ω

1
iq “ psi,yi,ωiqq

ď χpsi,yi,ωiq.

To finish the proof of i), we prove that

max
ps1

i,y
1
i,ω

1
iq
χps1

i,y
1
i,ω

1
iq ď δ, (26)

for some constant δ that is not negligibly close to 1. This fact follows from
Theorem 3.3 applied to the rotations of the matrices A, and

M “
»

–

I5α

´μI5α

´P

fi

fl .
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The reason is we have

χps˚
i ,y

˚
i ,ω

˚
iq “ ρσspsi̊ qρσypyi̊ qρσ1 pωi̊q

ř

z“pz1,z2,z3qPΛ

ρσspz1qρσypz2qρσ1 pz3q .

Now, note that for every u P ΛKpAq, the vector Mu is such that
psi̊ ,yi̊ ,ωi̊ q ` Mu P Λ. This means that rotpMq is a valid matrix for Theorem
3.3. If we take σs ě 2 ` q1{5apm ` n ` 3q, σy ě 2 ` q1{5apm ` n ` 3qd and
σ1 ě 2 ` q1{5apm ` n ` 3qγd, then Theorem 3.3 ensures δ ď 1{2.

We now prove ii): z has the length of the extracted vector from the set member-
ship proof. With BP the bound on the norm verification of the membership proof,
we have }z} ď 2BP. On the other hand, B’s private signature z1 “ c̄pμsi ` yiq is
such that }z1} ď 24κPpdσs ` σyq, where κP is a bound on the Hamming weight of
the challenge difference c̄ of the membership proof. Pluging together the inequal-
ities yields ii), which in turn completes the One-More Unforgeability proof. [\

Remark on Standard Deviation Bounds. Theorem 3.3 gives lower bounds on the
standard deviation of the secrets such that the maximum probability of the secret
distribution (which is a multi-dimensionnal Gaussian) is 1{2. As it turns out in
our case, there is another lower bound on the standard deviations σs and σy

given by the smoothing parameter for trapdoor sampling, which is greater than
the one for one-more unforgeability. Therefore, the actual maximum probability
is lower than 1{2, which gives us some more room to decrease the standard
deviation σ1 of the hints. We leave this remark as a possible optimization of
the parameters, that would slightly reduce the communication cost of the blind
signature.

6 Parameter Selection

In this section we instantiate our blind signature for at most N “ 218 signing
queries and aim for 128-bit security (see Fig. 3 and 4). To this end, we measure
the hardness of MSIS and MLWE with the root Hermite factor δ and aim for
δ « 1.0043. For computing hardness of the latter problem, we use the LWE
Estimator by Albrecht et al. [APS15]. We refer to [LNS21a, Section 3.3] and
[LNS21b, Appendix C] for a detailed explanation on the parameter selection for
πenc and πP respectively.
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Fig. 3. Definition and concrete numbers for parameters used in the blind signature
construction.

Dimensions and Moduli. Firstly, we choose the ring dimension d “ 128
and moduli pq, q1q “ p« 264, « 2128q9. Next, we want to make sure that A “
rA1|A1R ´ Gs is indistinguishable from a random matrix over Rq. Hence, we
choose α “ 21 such that MLWEα,α,S1 is hard. Then, in order to apply Micciancio-
Peikert trapdoor sampling [MP12], we need the standard deviations σs, σy to be

at least 2ps1pRq ` 1q
b

P

q2{3T ` 1 where s1 is the operator norm. Similarly as
in [dPLS18, Section 2.6], we found experimentally that for a structured matrix
R P S2αˆ3α

1 , s1pRq ď 6
?

αd with a high probability. Note that the other lower
bound for σy, σs in Theorem 5.4 is smaller than the one necessary for trapdoor

sampling. Hence, in this scenario we will set σ :“ σs “ σy “ 13
b

αd
`P

q2{3T ` 1
˘

.

Encryption Scheme. We now focus on parameters for the encryption scheme.
In order to ensure the property that both the public key and the ciphertext
are indistinguishable from random, we need MLWEm,n´m,Sγ

and MLWEn`1,m,Sγ

to be hard. We set n “ 2m and thus these two problems are almost equally
hard. Since q1 « 2128, we pick pn,mq “ p80, 40q and γ “ 4. Then we set p “
12dσs ` 12σy and σ1 “ 2 ` q1{5apm ` n ` 3qγd. For such a large q1 « 2128,
correctness conditions from Lemma 5.1 follow easily.

Verifiable Encryption. We turn to computing the proof sizes for πenc and
πP. Let us focus on the former one first. Let ñ :“ m ` pn ` 1q ` 1 be the

9 More specifically, we choose q « 264 for which Xd ` 1 splits into quadratic terms
modulo q. This makes sure the one-out-of-many proof πP from [LNS21b] does not
need any repetitions.
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number polynomials in the vector pr, e, e1, μq and α̃ “ 2γ `110. Then, in order to
prove πenc (see Sect. 2.6), we apply the framework from [LNS21a]. As discussed
in [LNS21a, Section 3.3], the proof with soundness error 1{q1 « 2´128, i.e. no
repetitions, has size upper-bounded by:

pñ ` κ̃ ` α̃ ` 1qd log q1 ` pλ̃ ` ñ ` κ̃ ` α̃qd logp12sq bits

The standard deviation11. s is set as s “ d

b

pλ̃ ` ñ ` κ̃ ` α̃qd. Then, κ̃ and λ̃

are chosen such that MSISκ̃,λ̃`ñ`κ̃`α̃,8dβ and MLWEñ`κ̃`α̃,λ̃,χd are hard12, where

β “ s

b

2pλ̃ ` ñ ` κ̃ ` α̃qd and χ is the distribution on t´1, 0, 1u where ˘1 both
have probability 5{16 and 0 has probability 6{16. To further reduce the proof
size, we apply the Dilithium compression described in [LNS21a, Appendix B].

Communication Complexity. In order to compute total communication size,
we calculate the total size of public key and ciphertexts sent by both the user
U and the signer S. Note that U sends m ` n ` 1 elements in Rq. On the other
hand, S outputs back 5αpn ` 1q polynomials. Hence, the total communication
size, excluding πenc, is

pm ` p5α ` 1qpn ` 1qq log q1 bits.

Signature Size. Finally, to estimate the signature size, we need to look at the
one-out-of-many proof πP. Let us set m1 “ 2, i.e. plog qqm1`1 “ 218 “ N . As
described in [LNS21b, Appendix C], the proof size of πP can be bounded by:

pκ1 ` α ` 2m1 ` 2qd log q ` 5αd logp12s1q ` pκ1 ` λ1 ` α ` 2m1 ` 2qd logp12s2q
bits. We set s1 “ dpd`1qσ?

10αd and s2 “ d
apκ1 ` λ1 ` α ` 2m1 ` 2qd. Then, κ1

and λ1 are chosen such that MSISκ1,κ1`λ1`α`2m1`2,8dβ2 and MLWEκ1`α`2m1`2,λ1,χd

are hard where β2 “ s2a

2pκ1 ` λ1 ` α ` 2m1 ` 2qd. Eventually, in order to
ensure one-more-unforgeability, we check that MSIS

α,5α,2s1
?

2pκ1`λ1`α`2m1`2qd is
a hard problem. As before, we apply the Dilithium compression technique when
computing the signature/proof size.

Reducing the Public Key Size. We observe that the public key contains
the matrix A1R which cannot be generated from the seed. It consists of 3α2

10 Intuitively, α̃ represents how many garbage polynomials we need to prove that coef-
ficients a polynomial are exactly between ´γ and γ. For example, if one wants to
prove ternary coefficients, we need three garbage polynomials.

11 For simplicity, we neglect the size of a challenge polynomial since it has a negligible
impact on the total proof size.

12 Actually, the zero-knowledge property of the protocol in [LNS21a] reduces to the
so-called Extended-MLWE problem. However, as argued in [LNS21a], this problem
should still be almost as hard as the plain MLWE.
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Fig. 4. Public key, user secret key, signature sizes and communication complexity of
our blind signature scheme.

polynomials in Rq and for parameters selected above, the total public key size is
above 1 MB as presented in Fig. 4. In order to reduce the public key size, we apply
the technique by Lyubashevsky et al. [LNPS21] where one can decrease the value
of α at the cost of increasing the ring dimension d13. Then, one observes that the
equations over Rq which we are interested in, can be equivalently written over
the ring ZqrXs{pX128`1q and then proven using e.g. [ALS20,LNS21a]. However,
as a drawback of having a large ring dimension, we would obtain slightly larger
signatures and communication complexity.

Acknowledgement. We would like to thank anonymous reviewers for the useful feed-
back. This work was supported by the EU H2020 ERC Project 101002845 PLAZA.

References

[ABB20] Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: BLAZE: practi-
cal lattice-based blind signatures for privacy-preserving applications. In:
Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 484–502.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 26

[ALS20] Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lat-
tice commitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12171, pp. 470–499. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56880-1 17

[APS15] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. Cryptology ePrint Archive, Report 2015/046 (2015). https://
eprint.iacr.org/2015/046

[AR04] Aharonov, D., Regev, O.: Lattice problems in NP cap coNP. In: FOCS, pp.
362–371. IEEE Computer Society (2004)
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[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module
lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/
s10623-014-9938-4

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 41

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

[PFH+17] Prest, T., et al.: FALCON. Technical report, National Institute of Stan-
dards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions

[PS00] Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. J. Cryptol. 13(3), 361–396 (2000)
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