
On Jamming Game in Multi-user MIMO
Downlink AF Relay System

Bai Shi1, Kai Cui1, Jihong Jiang1, and Huaizong Shao1,2(B)

1 University of Electronic Science and Technology of China, Chengdu 611731,
Sichuan, People’s Republic of China

hzshao@uestc.edu.cn
2 Peng Cheng Laboratory, Shenzhen 519012, Guangdong, People’s Republic of China

Abstract. Wireless devices may threaten urban security if they are
maliciously used. Some Internet-of-things (IoT) devices have already
troubled the city management even hurt citizens. Jamming technique
is one of the effective approaches to prevent these malicious activities.
In addition, some IoT devices may locate far from base station and the
power of received signals may be low. In this paper, we discuss a jamming
power allocation problem in a multi-user multiple-input multiple-output
(MU-MIMO) downlink relay system when the communication and jam-
ming signals are relatively low due to the long distance between them,
in which jammer tries to minimize the sum rate of IoT devices while
these devices try to communicate at the fastest rate. Besides, jammer
transmits jamming signals after detecting the communication request of
devices so base station should decide how to transmit first, which is mod-
eled by a two-person zero-sum Stackelberg game. However, the sum rate
in such a scenario is non-convex. Finding the equilibrium strategy is gen-
eral N-P hard. To address this complex problem, we decompose it into
several easy-solved sub-problems and adopt an alternating optimization
over them. Further, we simulate the proposed method numerically and
results suggest the superiority.

Keywords: Urban security · Relay · MIMO · Jamming · Sum rate ·
Zero-sum game · Stackelberg game

1 Introduction

The widely used wireless devices facilitate daily life but it threatens urban secu-
rity. For example, terrorists may use wireless Internet of Things (IoT) devices
to destroy public facilities even endanger life safety. The characteristic of expo-
sure to the open-access environment of wireless communication systems makes
it susceptible to deliberate jamming attacks. In this way, jammer limits the com-
munication among opponents to protect itself. Traditional adversarial jamming
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methods against wireless communication systems include tone jamming, barrage
jamming and narrow-band jamming. These methods are widely applied but they
are inefficient. On the other hand, jamming techniques are facing the challenges
of anti-jamming techniques. For example, cognitive radio (CR) [8] techniques
have the inherent merit of evading the jamming signal intelligently. Jamming
techniques need to be upgraded.

One of the effective theories referred to by much intelligent jamming research
about countering the CR system is game theory. Most related research can be
divided into two types: correlated and uncorrelated jamming. Correlated jam-
ming [1,2,7,13,14] means jamming signal correlates to communication signal,
while uncorrelated jamming [3–6,9,15–17,19] means they are independent. Obvi-
ously, uncorrelated jamming is easier to be implemented. In [4], a Bayesian game
between transceiver and jammer was formulated, where jammer did not know
the user type (smart or regular one) clearly. In [17], the best strategy (Nash
equilibrium) for both authorized users and jammer is to uniformly allocate all
power to all the subchannels in AWGN channel in Orthogonal Frequency Divi-
sion Multiplexing (OFDM) system. Some researchers concentrated on the multi-
user system. In the uplink of multi-tone interference single-input-single-output
(SISO) channel, the jamming-transmitting capacity game has a Nash equilibrium
and it can be achieved by the generalized iterative water-filling algorithm [6]. In
[18], a Stackelberg game of a base station and a jammer in nonorthogonal mul-
tiple access (NOMA) downlink system was investigated and a Q-learning-based
power allocation algorithm was proposed. Furthermore, some researchers were
interested in the relay system. In a single-transmitter, single-user and multi-relay
communication system, in which some relays are non-cooperative to others and
behave maliciously to transceiver like a jammer, it proved that the Nash equi-
librium is transmitting Gaussian white noise [3], and [15] extended this research
in a two-way relay channel.

Previous research gives much insight into the jamming strategy, however,
little research investigates the optimal jamming strategy in the time-invariant
multi-user multiple-input multiple-output (MU-MIMO) downlink relay scenario
which is common in reality. Besides, the distances between base station and IoT
devices may sometimes be long and jammer may be far away from them so signal-
to-noise ratio (SNR) and jamming-to-noise ratio (JNR) are relatively low. To jam
these devices in such a scenario, we formulate a new static zero-sum Stackelberg
game of intelligently jamming MIMO downlink relay system, in which base sta-
tion tries to maximize the sum rate of the whole communication system while
jammer tries to minimize it. However, it is hard to find this equilibrium since
the sum rate is non-convex [10]. We propose a feasible algorithm to address this
complex problem. We first approximate the sum rate by an inequality. Subse-
quently, we decompose it into several easy-solved sub-problems and adopt an
alternating optimization over them. Finally, we solve every sub-problem by the
Lagrange method or majorization-minimization (MM) algorithm.

The rest of this paper is organized as follows. The system model and the
jamming-transmitting zero-sum game model are formulated in Sect. 2. In Sect. 3,
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Fig. 1. Downlink model with relay.

we show how to find an approximate equilibrium strategy of the transmitting-
jamming zero-sum game in time-invariant channel. Then we simulate those
algorithms by numerical method in Sect. 4 and conclude this paper in Sect. 5
(Table 1).

Table 1. Notation table

Notation Discription

H(∗)(·) channel matrix of (∗) to (·)
μ power amplification coefficient of relay

PS , PJ power of base station and jammer

k k-user, k = 0, 1, ..., K, 0 means relay

nk white Gaussian noise at k-user

xk transmitting symbols of base station to k-user

j jamming symbols

KXk,KJ covariance matrices of
√

αkPsxk,
√

βPsj

yR,yk receiving symbols at relay and k-user

HSRk μHRkHSR

HJRk μHRkHJR

Ñk HRKN0H
H
RK + NkI

2 System Model

2.1 Wireless Communication and Jamming Model

As shown in Fig. 1, we consider the downlink model of a MIMO communication
system with one amplify-and-forward (AF) relay and K devices. A jammer tries
to disrupt this system by transmitting jamming signals to relay and devices.
The power of jammer is limited. We assume that the wireless signals from base
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station attenuate seriously due to the long distance between base station and
devices so we can neglect them. For simplicity, all the radios are equipped with
M antennas. The maximum powers of jammer and base station are PJ and
PS separately and the amplification factor of AF relay is μ. In addition, for
consistency with other related research, we call k-device k-user.

The received signal at relay is given by

yR = HSR

K∑

k=1

√
PSαkxk + HJR

√
PJβj + n0, k = 1, 2, ...,K (1)

and the received signal at k-th user is given by

yk =μHRkyR + HJk

√
PJβj + nk

=HRkHSR

K∑

l=1

√
μPSαlxl + HRk

√
μn0 + nk (2)

+ HRkHJR

√
μPJβj + HJk

√
PJβj, k = 1, 2, ...,K

where H(·)(∗) denotes the M×M channel matrix from (·) to (∗) and the subscript
“S”, “R”, “J”, “k” means base station, relay, jammer and k-user respectively.
Each element of H(·)(∗) is supposed to be identically independently distributed
(i.i.d.), i.e., H(·)(∗) = [gij(·)(∗)]1≤i,j≤M and gij(·)(∗) ∼ CN (0, σ2

(·)(∗)) where CN
is circular symmetric complex Gaussian distribution. y(·) is the received signal
at (·). x(·) and j(·) are the transmitting and jamming symbol to (·) and the
subscript “0” means “to relay”. Every symbol of x(·) and j(·) is normalized and
i.i.d. so E(x(·)i) = 0, E(j(·)i) = 0 and E(x(·)ixH

(·)l) = 0, E(j(·)ijH(·)l) = 0, l �= i. α(·)
and β(·) are the power proportion allocated to (·) by base station and jammer.
no and nk are white Gaussian noise and n(·) ∼ CN (0, N(·)I). SNR is defined by
the power of base station PS divided by the power of noise, PS/N , and JNR is
PJ/N . The covariance matrix of transmitting signal to user k denotes as KXk

and that of jamming signal is KJ .

2.2 Stackelberg Game Formulation

In this section, we introduce the jamming game model with respect to sum rate.
A standard strategic game consists of a finite set of players N for each play
i ∈ N , a non-empty action set Ai and for each player a preference relation on
A = ×i∈N Ai [11]. We define N = {base station, jammer}. The action spaces of
them are A1 = {KXk ∈ C

M×M |KXk � 0,
∑K

k=1 Tr(KXk) ≤ PS , k = 1, 2, ...,K}
and A2 = {KJk ∈ C

M×M |KJk � 0,
∑K

k=0 Tr(KJk) ≤ PJ , k = 0, 1, ...,K}
respectively. The preference relations are defined by positive associated util-
ity functions: u1(KXk;KJk) = R(KXk,KJk) =

∑K
k=1 Rk(KXk,KJk) for base

station and u2(KJk;KXk) = −R(KXk,KJk) = −∑K
k=1 Rk(KJk;KXk) for jam-

mer, where Rk(∗, ·) is the data rate of k-th user
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Rk = log det(I + μHRkHSRKXkH
H
SRH

H
Rk(Ñk +

K∑

l=1,l�=k

μHRkHSRKXlH
H
SRH

H
Rk

+ μHRkHJRKJH
H
JRH

H
Rk + HJkKJH

H
Jk)−1) (3)

and Ñk = μHRkN0HH
Rk + NkI. We define u(∗) = u1(∗) = −u2(∗). In such case,

the jamming game is denoted by G1 = <N , (A1,A2), (u1, u2)> in brief.
Moreover, in a practical reactive jamming regime, jammer usually sends jam-

ming signals after detecting communication signals, and base station is aware of
this, which means that base station and jammer must decide in order. On the
other hand, base station and jammer are both intelligent enough to choose an
optimal transmitting strategy (covariance matrices). Thus, we model game G1

as a Stackelberg game, which is given by

max
KX1,...,KXK

.min
KJ

. R(KX1, ...,KXK ,KJ )

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

∑K
k=1 Tr(KXk) ≤ PS

Tr(KJ ) ≤ PJ

KXk � 0, k = 1, 2, ...,K
KJ � 0

(4)

3 Stackelberg Equilibrium of Jamming Game
in Time-Invariant Channel

In this section, we will address the optimal jamming power allocation problem in
the MU-MIMO downlink system in the time-invariant channel. However, prob-
lem (4) is quite complex. We first simplify the sum rate function in the regime
of low SNR and JNR. Then, we decouple it into two simple sub-problems to find
the jamming strategy.

Due to the low SNR and JNR, the covariance matrices of communication and
jamming signals are smaller than those of noise. For relatively smaller matrix
X,Y,

log det(I + X(N + Y)−1) ≈ Tr(XN−1(I − YN−1)) (5)

It is easy to prove it.

log det(I + X(N + Y)−1)

≈ Tr(X(N + Y)−1) (6)

= Tr(XN−1(I + YN−1)−1(I − YN−1)−1(I − YN−1))

≈ Tr(XN−1(I − YN−1))
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Substituting formula (5) into (3), Rk can be approximated by

Rk ≈ Tr(HSRkKXkHH
SRkÑ

−1
k − HSRkKXkHH

SRkÑ
−1
k HJkKJHH

J Ñ−1
k

− HSRkKXkHH
SRkÑ

−1
k HJRkKJHH

JRkÑ
−1
k

− HSRkKXkHH
SRkÑ

−1
k

K∑

l=1,l �=k

HSRkKXlHH
SRkÑ

−1
k )

Suppose that

A =

K∑

k=0

−HH
J Ñ−1

k HSRkKXkH
H
SRkÑ

−1
k HJk − HH

JRkÑ
−1
k HSRkKXkH

H
SRkÑ

−1
k HJRk

(7)

and

B1k =HH
SRkÑ

−1
k HSRk − HH

SRkÑ
−1
k HJkKJHH

J Ñ−1
k HSRk

− HH
SRkÑ

−1
k HJRkKJHH

JRkÑ
−1
k HSRk (8)

B2k = HH
SRkÑ

−1
k HSRk (9)

Given KXk, k = 1, 2, ...,K, R(KJ ;KX1, ...,KXK) = Tr(AKJ ), and given KJ

R(KX1, ...,KXK ;KJ ) =
∑K

k=0 Tr(B1kKXk−KXkB2k

∑
l �=k KXlB2k). The orig-

inal problem (4) is decoupled into two sub-problems:

min
KJ

. Tr(AKJ )

s.t.

{
Tr(KJ ) ≤ PJ

KJ � 0 (10)

and

max
KX1,...,KXK

.
K∑

k=0

Tr(B1kKXk − KXkB2k

∑

l �=k

KXlB2k)

s.t.

{∑K
k=1 Tr(KXk) ≤ PS

KXk � 0, k = 1, 2, ...,K
(11)

3.1 Jamming Power Allocation Strategy Design

Jamming power allocation strategy is acquired by solving problem (10). It is a
convex problem. The Lagrangian of it reads

L(KJ , λ,Q) = Tr(AKJ ) + λ(Tr(KJ ) − Pj) − Tr(QKJ) (12)
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and the Karush-Kuhn-Tucker (KKT) Conditions of it are given by

Q = A + λI

Tr(KJ ) ≤ PJ , KJ � 0 (13)
λ ≥ 0, Q � 0

λ(Tr(KJ ) − PJ) = 0, QKJ = 0

The solution is discussed as follows: (a) When λ = 0, Q = A, leading to A �
0. The optimal jamming covariance matrix K∗

J satisfies Tr(KJ ) ≤ PJ ,KJ �
0,AKJ = 0. Obviously, KJ = 0 is one of the solutions. (b) When λ > 0,
Q = A+λI. If Q � 0, KJ = 0 since QKJ = 0. It contradicts with Tr(KJ) = PJ .
Moreover, A � 0 is impossible since Q can not be strictly positive definite. Let
Q = A + λAminI where λAmin is the minimum eigenvalue of matrix A. K∗

J

should satisfy QK∗
J = 0, Tr(K∗

J) = PJ and K∗
J � 0. If u is one of the bases

of the null space of Q, then QuuH = 0. Consequently, PJuuH is one of the
solutions of KJ .

3.2 Optimizing Base Station Transmitting Strategy

The transmitting power allocation strategy of base station is acquired by solving
problem (11). However, it is non-convex. It can be rewritten as

min
KX1,...,KXK

. Tr(KXB2IMKXIvIHv B2 − B1KX) � f(KX)

s.t.

⎧
⎨

⎩

Tr(KX) ≤ PS

KX = blkdiag(KX1,KX2, ...,KXK)
KXk � 0, k = 1, 2, ...,K

(14)

where B1, B2 are the block diagonal concatenation of B1k and B2k respectively.
Iv = (I, I, ..., I)T .

Im =

⎡

⎢⎢⎣

0 I ... I
I 0 ... I
... ... ... ...
I I ... 0

⎤

⎥⎥⎦ (15)

I is the M × M identity matrix. B2IM may not be positive semidefinite.
To solve problem (14), we use the majorization-minimization (MM) method.

MM method consists of two steps: (a) find a surrogate function which is the
tight upper bound of original objective. (b) minimize surrogate function. The
first critical thing is to find the tight upper bound f̌(KX) of the objective f(KX).

Definition 1 (Lipschitz Continuous [12]). Given two metric spaces (X, dX)
and (Y, dY ) where d∗ denotes the metric on set (∗). A function f : X �→ Y is
called Lipschitz continuous if there exists a real constant L ≥ 0 such that for all
x1, x2 ∈ X, dY (f(x1), f(x2)) ≤ LdX(x1, x2).
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The second-order Taylor expansion of the quadratic matrix function g(X) =
Tr(XǍXB̌) is convex. Thus, if the gradient of g(X) is Lipschitz continuous, it
can be bounded by a convex quadratic function

ǧ(X) = g(X0) + ∇g(X0)(X − X0) +
L

2
||X − X0||2 (16)

where ||∇g(X)−∇g(X0)|| ≤ L||X−X0|| and ∇g(X) = (ǍXB̌+B̌XǍ)T . Define

V � ǍT ⊗ B̌ + B̌T ⊗ Ǎ (17)

so

L � sup
X

||∇g(X) − ∇g(X0)||F
||X − X0||F

= sup
X

||(Ǎ(X − X0)B̌ + B̌(X − X0)Ǎ)T ||F
||(X − X0)||F

Y�X−X0= sup
Y

||vec(ǍYB̌ + B̌YǍ)||
||vec(Y)||

= sup
Y

||(ǍT ⊗ B̌ + B̌T ⊗ Ǎ)vec(Y)||
||vec(Y)||

= sup
Y

||Vvec(Y)||
||vec(Y)||

There is a natural bound of L: the spectral norm of V. Let Ǎ = B2IM , B̌ =
IvIHv B2, so the upper bound is expressed as

f̌(KX) = ǧ(KX) − Tr(B1KX) (18)

min
KX1,...,KXK

. f̌(KX ;KX0)

s.t.

⎧
⎨

⎩

Tr(KX) ≤ PS

KX = blkdiag(KXk), k = 1, 2, ...,K
KXk � 0, k = 1, 2, ...,K

(19)

Thus, the problem (11) can be solved by successively solving convex problem
(19).

In summary, the original optimal jamming power allocation Stackelberg game
(4) of the MU-MIMO downlink system in the time-invariant channel can be
solved by alternatively optimizing problem (10) and problem (11). Furthermore,
problem (11) can be converted into sub-problem (19). The procedures to find
the jamming strategy are in Algorithm 1.
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Algorithm 1. Jamming Power Allocation Strategy of Stackelberg game
Input: Action Spaces A1 and A2, CSI of all channel
Output: KJ

1: repeat
2: calculate A in (7) and its minimum eigenvalue λAmin

3: if A � 0 then
4: KJ = 0
5: else
6: find a base vector u of null space of K
7: KJ = PJuu

H

8: end if
9: init K0

X and t := 0
10: repeat
11: t ← t + 1
12: Kt

X : solve problem (19) at KX0 = Kt−1
X by some convex solvers

13: until convergence
14: until convergence
15: Return KJ .
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Fig. 2. Sum rate in time-invariant channel against JNR when M = 2, K = 5, SNR =
−10 dB, μ = 2.
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4 Numerical Results

In this section, we will verify the performance of the proposed jamming power
allocation algorithm. We compare the proposed method with several widely-
used jamming methods numerically. Results indicate that the proposed jamming
method is superior to other methods. We present the performance of four meth-
ods: Stackelberg jamming (SJ) strategy, the uniformly jamming (UJ) strategy,
the strategy of matching the jamming channel to base station but uniformly allo-
cating power (KJ = PJ

n VVH , marked as ‘BUJ’), the strategy of inverting the
channel between jammer and base station (marked as ‘BJI’). Without loss of gen-
erality, the channel matrices H(·)(∗) = [gij(·)(∗)]1≤i,j≤M and gij(·)(∗) ∼ CN (0, 1)
and Nk = 10 for all k = 0, 1, ...,K.

We first focus on Fig. 2. Obviously, all the sum rates under different jamming
and transmitting strategies decrease with SNR. The sum rate of the proposed
method (marked as ‘SJ’) is the lowest compared to other methods. Then we turn
to reveal the performances with different SNR in Fig. 3. With SNR increases,
the sum rate of all users increases with no doubt for all methods. So proposed
equilibrium jamming strategy is still the lowest one. These two results manifest
that jammer can jam adversaries more effectively by using the proposed method.
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Fig. 3. Sum rate in time-invariant channel against SNR when M = 2, K = 5, JNR =
−10 dB, μ = 2.
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5 Conclusion

In this paper, we formulate a two-person zero-sum Stackelberg game about jam-
ming power allocation problem in MU-MIMO downlink system with smart jam-
mers in low SNR and JNR regime. We derive the approximated form of the orig-
inal problem and solve the approximated equilibrium strategy by an iterative
method. Numerical results show that the proposed jamming power allocation
method can successfully jam such a system. In the future, we plan to extend this
work in a non-orthogonal multiple-access (NOMA) regime.
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