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Abstract. Pulse vaccination is an important strategy to eradicate an
infectious disease. In this paper, we investigate an SIR epidemic model
with birth pulse and pulse vaccination on the newborn. By using the
discrete dynamical system determined by stroboscopic map, we obtain
the condition for the global asymptotical stability of the disease-free
periodic solution of the studied system. The permanent condition of the
investigated system is also given. Numerical simulation is employed to
illustrate our results. The result indicates that pulse vaccination rate
on the newborn plays an important role in eradicating the disease. It
provides a reliable tactic basis for preventing the disease from spreading.
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1 Introduction

Since last century, there has been a great deal of work in the mathematical
theory of epidemics; for example, we can refer to the books, [1–4]. SIR (suscep-
tible, infective, recovered) model is suitable for describing the transmission of
infectious diseases with life long immunity, which is one of the most important
epidemic models in epidemiology. In 1927, a classical SIR model was initially
presented by Kermack and Mckendrick [5]. After that, lots of continuous SIR
models with various transmission rates have been purposed, which have been
investigated extensively and many threshold conditions have been obtained [6,7].
However, these models do not consider pulse vaccination, neither do they contain
birth pulse, which is the novelty of our model in this present paper.
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Recently, pulse vaccination strategy, a new vaccination strategy against
measles, has been proposed. Its theoretical study was started by Agur et al.
in [8]. As far as pulse vaccination strategy are concerned, a lot of original work
has been done in [9–13].

In the real world, individual members of many species experience two stages
of life, immature and mature ones. Stage-structured population models have
attracted great attention, and many stage-structured models have been studied
in recent years [14–16].

Theories of impulsive differential equations have been introduced into popu-
lation dynamics lately. Impulsive equations are found in almost every domain of
applied science and have been studied in many investigations [17,18]. They gen-
erally describe phenomena which are subject to steep or instantaneous changes.

Motivated by the above studies, our study is to investigate transmission
dynamics of an SIR epidemic model with birth pulse and pulse vaccination. We
assume full immunity of recovered individuals; that is to say, those individuals
are no longer susceptible after they have recovered.

The present paper is to introduce birth pulse of the population and pulse
vaccination into SIR epidemic model, and obtain some important qualitative
properties for the investigated system. As a matter of fact, pulse birth and pulse
vaccination on the newborn are used in an epidemic model. To the best of our
knowledge, few research has been conducted.

2 The Model

In this paper, we consider an SIR epidemic model with birth pulse and pulse
vaccination on the newborn:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1(t)
dt

= −(c + d1)S1(t) − βS1(t)I(t),

dS2(t)
dt

= cS1(t) − d2S2(t),

dI(t)
dt

= βS1(t)I(t) − (r + d3)I(t),

dR(t)
dt

= rI(t) − d4R(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nτ, t �= (n + l)τ,

ΔS1(t) = S2(t)(a − bS2(t)),

ΔS2(t) = 0,

ΔI(t) = 0,

ΔR(t) = 0,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t = nτ, n = 1, 2, . . . ,

ΔS1(t) = −μS1(t),

ΔS2(t) = 0,

ΔI(t) = 0,

ΔR(t) = μS1(t),

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t = (n + l)τ, n = 1, 2, . . . ,

(1)
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where S1(t), S2(t) represent the numbers of the immature and the mature of the
susceptible. I(t), R(t) represent the numbers of the infectious, and the recov-
ered, respectively. c is called the rate of the immature susceptible turning into
the mature susceptible. d1, d2, d3, d4, respectively denote the natural death rate
of the immature susceptible, the mature susceptible, the infectious and the recov-
ered. β is the average number of adequate contacts of an immature infectious
individual per unit time. r stands for the recovery rate of the immature infectious
individual. The mature susceptible is birth pulse with intrinsic rate of natural
increase and density dependence rate of the mature susceptible denoted by a, b,
respectively. The pulse birth and pulse vaccination occurs every τ period (τ is a
positive constant). ΔS1(t) = S1(t+) − S1(t). μ(0 < μ < 1) is the proportion of
the successful vaccination which is called pulse vaccination rate, at t = (n + l)τ ,
0 < l < 1, n ∈ Z+. S2(t)(a − bS2(t)) represents the birth effort of the mature
susceptible at t = nτ, n ∈ Z+.

In this work, we assume:

(i) The infection is not fully susceptible; that is to say, the disease is spread
by the immature individual, the recovery from the disease will confer long
lasting immunity.

(ii) The mature susceptible is immune to the disease; that is to say, the mature
susceptible achieves lifetime immunity.

Since the first, second, and third equations do not include R(t), we can
simplify system (1) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1(t)
dt

= −(c + d1)S1(t) − βS1(t)I(t),

dS2(t)
dt

= cS1(t) − d2S2(t),

dI(t)
dt

= βS1(t)I(t) − (r + d3)I(t),

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t �= nτ, t �= (n + l)τ,

ΔS1(t) = S2(t)(a − bS2(t)),

ΔS2(t) = 0,

ΔI(t) = 0,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = nτ, n = 1, 2, . . . ,

ΔS1(t) = −μS1(t),

ΔS2(t) = 0,

ΔI(t) = 0,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = (n + l)τ, n = 1, 2, . . . .

(2)

This is equivalent to system (1).

3 Some Lemmas

Before discussing the main results, we will introduce some definitions, nota-
tions, and lemmas. Denote by f = (f1, f2, f3, f4)T the map defined by
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the right-hand side of system (1), the solution of (1), denoted by z(t) =
(S1(t), S2(t), I(t), R(t))T , is a piecewise continuous function z : R+ → R4

+, where
R+ = [0,∞), R4

+ = {z ∈ R4 : z > 0}. z(t) is continuous on (nτ, (n + l)τ ] × R4
+

and ((n + l)τ, (n + 1)τ ] × R4
+ (n ∈ Z+, 0 < l < 1). According to [17,18], the

global existence and uniqueness of solutions of system (1) is guaranteed by the
smoothness properties of f , the mapping defined by the right-hand side of sys-
tem (1).

Let V : R+ × R4
+ → R+. Then V is said to be belonged to class V0 if:

(i) V is continuous in (nτ, (n + l)τ ] × R4
+ and ((n + l)τ, (n + 1)τ ] × R4, for

all z ∈ R4
+, n ∈ Z+, and lim(t,y)→((n+l)τ+,z) V (t, y) = V ((n + l)τ+, z) and

lim(t,y)→((n+1)τ+,z) V (t, y) = V ((n + 1)τ+, z) exist.
(ii) V is locally lipschitzian in z.

Definition 3.1. If V ∈ V0, then, for (t, z) ∈ (nτ, (n + l)τ ] × R4
+ and ((n +

l)τ, (n + 1)τ) × R4
+, the upper right derivative of V (t, z) with respect to the

impulsive differential system (1) is defined as

D+V (t, z) = lim
h→0

sup
1
h

[V (t + h, z + hf(t, z)) − V (t, z)].

Lemma 3.2. (see [17], Theorem 1.4.1) Let the function m ∈ PC ′[R+, R] satisfy
the inequalities

{
m′(t) ≤ p(t)m(t) + q(t), t �= tk, k = 1, 2, . . . ,

m(t+k ) ≤ dkm(tk) + bk, t = tk, t ≥ t0,
(3)

where p, q ∈ C[R+, R] and dk ≥ 0 and bk are constants. Then

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp

(∫ t

t0

p(s)ds

)
+

∑

t0<tk<t

⎛

⎝
∏

tk<tj<t

dj exp

(∫ t

tk

p(s)ds

)⎞

⎠ bk

+

∫ t

t0

∏

s<tk<t

dk exp

(∫ t

s
p(σ)dσ

)
q(s)ds, t ≥ t0.

Lemma 3.3. There exists a constant M > 0 such that S1(t) ≤ M , S2(t) ≤ M ,
I(t) ≤ M , R(t) ≤ M for each solution (S1(t), S2(t), I(t), R(t)) of system (1) with
t large enough.

We choose the following notation:

μ∗ =
ace−d2τ (1 − e−(c+d1−d2)τ ) − (c + d1 − d2)(1 − e−d2τ )(1 − e−(c+d1)τ )

ace−d2τ (e−(c+d1−d2)lτ − e−(c+d1−d2)τ ) + (c + d1 − d2)(e−(c+d1)τ − e−(c+d1+d2)τ )
.
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If I(t) = 0, then we have the following subsystem of (2):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1(t)
dt

= −(c + d1)S1(t),

dS2(t)
dt

= cS1(t) − d2S2(t),

⎫
⎪⎪⎬

⎪⎪⎭

t �= nτ, t �= (n + l)τ,

ΔS1(t) = S2(t)(a − bS2(t)),

ΔS2(t) = 0,

⎫
⎬

⎭
t = nτ, n = 1, 2, . . . ,

ΔS1(t) = −μS1(t),

ΔS2(t) = 0,

⎫
⎬

⎭
t = (n + l)τ, n = 1, 2, . . . .

(4)

We easily obtain the analytic solution of system (4) between pulses as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

S1(nτ+)e−(c+d1)(t−nτ), t ∈ (nτ, (n + l)τ ],

(1 − μ)S1(nτ+)e−(c+d1)(t−nτ), t ∈ ((n + l)τ, (n + 1)τ ],

S2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e−d2(t−nτ)

[

S2(nτ+) +
cS1(nτ

+
)(1 − e

−(c+d1−d2)(t−nτ)
)

c + d1 − d2

]

, t ∈ (nτ, (n + l)τ ],

ce−d2(t−nτ)S1(nτ+)

c + d1 − d2

[
1 − μe

−(c+d1−d2)lτ − (1 − μ)e
−(c+d1−d2)(t−nτ)

]

+e−d2(t−nτ)S2(nτ+), t ∈ ((n + l)τ, (n + 1)τ ].

(5)

Considering the fourth, fifth, seventh, and eighth equations of system (2), we
have the stroboscopic map of (2)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S1((n + 1)τ+) =

[

(1 − μ)e−(c+d1)τ +
acζ

c + d1 − d2

]

S1(nτ+) + ae−d2τS2(nτ+)

−b

[
cζ

c + d1 − d2
S1(nτ+) + e−d2τS2(nτ+)

]2

,

S2((n + 1)τ+) =
cζ

c + d1 − d2
S1(nτ+) + e−d2τS2(nτ+),

(6)

where ζ = e−d2τ [(1−e−(c+d1−d2)lτ )+(1−μ)e−(c+d1−d2)lτ −(1−μ)e−(c+d1−d2)τ ] >

0. If we choose A = (1 − μ)e−(c+d1)τ +
acζ

c + d1 − d2
> 0, B = ae−d2τ > 0,

C =
cζ

c + d1 − d2
, D = e−d2τ , A < 1, and 0 < D < 1, the following two

equivalence relations are found by calculation

μ < μ∗ ⇔ 1 − A − D + AD − BC < 0,

μ > μ∗ ⇔ 1 − A − D + AD − BC > 0.

The two fixed points of (6) are obtained as G1(0, 0) and G2(S∗
1 , S∗

2 ), where
⎧
⎪⎨

⎪⎩

S∗
1 =

(1 − D − A + AD − BC)(−1 + D)
bC2

, μ < μ∗,

S∗
2 =

−(1 − D − A + AD − BC)
bC

, μ < μ∗.
(7)
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Lemma 3.4. (i) If μ > μ∗, then the fixed point G1(0, 0) is globally asymptoti-
cally stable. (ii) If μ < μ∗, then the fixed point G2(S∗

1 , S∗
2 ) is globally asymptot-

ically stable (The proof can refer to [19]).

Lemma 3.5. (i) If μ > μ∗, then the trivial periodic solution (0, 0) of system (4)
is globally asymptotically stable.

(ii) If μ < μ∗, then the periodic solution (˜S1(t), ˜S2(t)) of system (4) is globally
asymptotically stable, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˜S1(t) =

⎧
⎪⎨

⎪⎩

S∗
1 e−(c+d1)(t−nτ), t ∈ (nτ, (n + l)τ ],

(1 − μ)S∗
1 e−(c+d1)(t−nτ), t ∈ ((n + l)τ, (n + 1)τ ],

˜S2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e
−d2(t−nτ)

[

S
∗
2 +

cS∗
1 (1 − e−(c+d1−d2)(t−nτ))

c + d1 − d2

]

, t ∈ (nτ, (n + l)τ ],

ce−d2(t−nτ)S∗
1

c + d1 − d2

[
1 − μe

−(c+d1−d2)lτ − (1 − μ)e
−(c+d1−d2)(t−nτ)

]

+e
−d2(t−nτ)

S
∗
2 , t ∈ ((n + l)τ, (n + 1)τ ],

(8)

in which S∗
1 , S∗

2 are determined as in (7).

4 The Dynamics

In this section, for system (2) there obviously exists a disease-free periodic
solution (˜S1(t), ˜S2(t), 0). First, we prove that the disease-free periodic solution
(˜S1(t), ˜S2(t), 0) of system (2) is globally asymptotically stable. After that, we
prove that system (2) is permanent.

Theorem 4.1. If
μ < μ∗

and

μ >
1 − e−(c+d1)τ

e−(c+d1)lτ − e−(c+d1)τ
− (c + d1)(r + d3)τ

βS∗
1 (e−(c+d1)lτ − e(c+d1)τ)

,

then the disease-free periodic solution (˜S1(t), ˜S2(t), 0) of system (2) is globally
asymptotically stable, where S∗

1 , S∗
2 are defined by (7).

Definition 4.2. System (2) is said to be permanent if there are constants
m,M > 0 (independent of initial value) and a finite time T0, such that for
all solutions (S1(t), S2(t), I(t)) with any initial values S1(0+) > 0, S2(0+) >
0, I(0+) > 0, we have m ≤ S1(t) ≤ M,m ≤ S2(t) ≤ M,m ≤ I(t) ≤ M for all
t ≥ T0. Here T0 may depend on the initial values (S1(0+), S2(0+), I(0+)).

Theorem 4.3. If
μ < μ∗

and

μ <
1 − e−(c+d1)τ

e−(c+d1)lτ − e−(c+d1)τ
− (c + d1)(r + d3)τ

βS∗
1 (e−(c+d1)lτ − e(c+d1)τ )

, (9)

then system (2) is permanent, where S∗
1 , S∗

2 are defined by (7).
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Fig. 1. Globally asymptotically stable disease-free periodic solution of System (1) with
S1(0) = 0.1, S2(0) = 0.3, I(0) = 0.3, a = 0.1, b = 0.2, c = 0.1, β = 0.2, μ = 0.37, d1 =
0.02, d2 = 0.018, d3 = 0.016, r = 0.15, τ = 1, l = 0.25. (a) Time-series of S1(t); (b)
Time-series of S2(t); (c) Time-series of I(t).

5 Conclusion and Simulation

In this work, we consider an SIR epidemic model with birth pulse and pulse
vaccination on the newborn at different fixed moments. All solutions of system
(1) are uniformly ultimately bounded. The condition for the global asymptotic
stability of the disease-free periodic solution of system (1) is given, and the
permanence of system (1) is also obtained.

According to the relevant statistical data of the National Health and Fam-
ily Planning Commission, it is assumed that S1(0) = 0.1, S2(0) = 0.3, I(0) =
0.3, a = 0.1, b = 0.2, c = 0.1, β = 0.2, μ = 0.37, d1 = 0.02, d2 = 0.018, d3 =
0.016, r = 0.15, τ = 1, l = 0.25, the conditions of the Theorem 4.1 are obvi-
ously satisfied, then the disease-free periodic solution of system (1) is globally
asymptotically stable. (see Fig. 1). It is also assumed that S1(0) = 0.1, S2(0) =
0.3, I(0) = 0.3, a = 0.1, b = 0.2, c = 0.1, β = 0.2, μ = 0.1, d1 = 0.02, d2 =
0.018, d3 = 0.016, r = 0.15, τ = 1, l = 0.25, the conditions of the Theorem 4.3
are obviously satisfied, then system (1) is permanent (see Fig. 2). The thresh-
old dynamics about parameters l, τ can be also analyzed. If birth pulse and
pulse vaccination are not considered in the traditional method, the disease of
the system as a whole tends to be in a pandemic state. The results show that
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Fig. 2. The permanence for System (1) with S1(0) = 0.1, S2(0) = 0.3, I(0) = 0.3, a =
0.1, b = 0.2, c = 0.1, β = 0.2, μ = 0.1, d1 = 0.02, d2 = 0.018, d3 = 0.016, r = 0.15, τ =
1, l = 0.25. (a) Time-series of S1(t); (b) Time-series of S2(t); (c) Time-series of I(t).

the factors considered in this paper are more consistent with the actual situa-
tion. Our results indicate that pulse vaccination rate on the newborn plays an
important role in eradicating the disease. It also provides a reliable tactic basis
for preventing the disease from spreading.
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