
Experimental Comparison of Open Source
Discrete-Event Simulation Frameworks

Oskar Skak Kristiansen, Ulrik Sandberg, Casper Hansen, Morten Skovgaard Jensen,
Jonas Friederich(B), and Sanja Lazarova-Molnar

Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Campusvej 55,
5000 Odense, Denmark
jofr@mmmi.sdu.dk

Abstract. Simulation is a growing and very relevant field today.Withmany appli-
cation domains and increasing computational power, simulations are solving an
increasing number of real-world problems in a safe and efficient manner. The
aim of this study is to make an experimental comparison among popular open-
source discrete-event simulation frameworks, selected through a thorough survey.
The experimental comparison considers numerous parameters, the most impor-
tant of which were studied via an operational experiment of performance, as well
as a survey of surface level characteristics and usability. We initially surveyed
50 frameworks for high-level parameters relating to corresponding implementa-
tions, filtered by the generality of domain, license, popularity, etc. As a result, we
shortlisted five frameworks, which we then performance-tested in an operational
experiment. We discovered significant performance differences under the given
loads. We also completed a usability survey to provide a holistic impression of the
frameworks, further identifying key differences.

Keywords: Discrete-event simulation · Open source · Performance comparison

1 Introduction

Simulation is a growing and very relevant field today. With many application domains
and increasing computational power, simulations are solving an increasing number of
real-world problems in a safe and efficient manner [1, 2]. Simulation is often used to
conduct experiments where a real-world model would be either impractical or even
impossible to make, saving on both cost and/or time. This enables analysts, engineers
and stakeholders to communicate, verify and understand concepts and ideas concerning
complex systems [3].

In the current literature, we have not identified a comprehensive comparison of
open-source simulation frameworks in terms of the parameters that we investigated, i.e.,
performance, lines of code (LOC) forminimal implementation, community engagement,
etc. [4]–[8]. In this article, we share our findings from investigating and comparing vari-
ous open-source libraries available for discrete-event simulation (DES). Furthermore,we
use a classical simulation model case study to experimentally perform the comparison.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2022
Published by Springer Nature Switzerland AG 2022. All Rights Reserved
D. Jiang and H. Song (Eds.): SIMUtools 2021, LNICST 424, pp. 315–330, 2022.
https://doi.org/10.1007/978-3-030-97124-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97124-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-97124-3_24


316 O. S. Kristiansen et al.

While no similar comparison is available, there are numerous comprehensive studies
comparing simulation frameworks in different specific or even more general contexts
[6, 8, 9]. With this, we add to the current literature a quantitative comparison of several
state-of-the-art open-source simulation frameworks in amore experimental and practical
manner.

Being a relatively large field of study, it is obvious that choosing the right simulation
tool for the job is one of the initial important decisions with high impact on the results.
This is emphasized by performance as well as functionality required by the researcher
often being a limiting factor for selection of tools. As many libraries exist, choosing the
right one is not trivial.

As noted, the aim of this study is to compare among popular open-source simulation
libraries in an experimentalway. The purpose of this comparison is to provide researchers
that need to use open-source DES frameworks, a guidance for a more informed choice.
The study will seek to answer the following research questions: 1) What open-source
modelling and simulation libraries exist? 2) How do these open-source libraries compare
on specific parameters related to the quality attributes described within the field of
software engineering and related categorical differences?, and 3) Which frameworks
perform the best during run-time in regards to performance and related quantitative
measures? In answering these questions, we aim to provide simulation practitioners
with insight in the open-source modelling and simulation frameworks included in this
study.

The paper is structured as follows. In Sect. 2, we examine the existing literature
related to open-source DES frameworks. We present the overall research methodology
involved in Sect. 3. This includes the search process that we used to identify articles and
frameworks relevant to the context of open-source simulation frameworks. In the same
section we also present the primary research method used in this project. In Sect. 4 we
present and discuss the results of the operational experiment and the usability survey.
We discuss whether a recommendation can be made from the investigated frameworks
in Sect. 5, and lastly conclude in Sect. 6.

2 Related Work

The field of simulation is, while growing, already widely used throughout many disci-
plines. As a consequence, many studies comparing existing frameworks in different, and
often quite specific contexts have been done.

To identify articles, similar in nature to our point of interest, we utilized scholarly
database querying, which we further detail in Sect. 3.2. While no exact duplication in
topic and context could be found, many related works exist. This includes works such
as that of Franceschini et al., which is quite similar in nature to this project, except for
its inclusion of proprietary simulation frameworks whereas we limit our investigation
to open-source frameworks as well as the parameters included in the comparison, such
as the ease of use comparison as well as some performance measures [5]. Other works
include those by Majid et al. that has a similar methodology and purpose, with the



Experimental Comparison of Open Source Discrete-Event 317

significant difference of comparing frameworks on the accuracy parameter instead of
performance, as well as the work by Dagkakis and Heavy, which focuses on operations
research, and Knyazkov and Kovalchuk, which while similar in methodology, limits its
scope to interactive virtual environments [4, 6, 7]. Further, analyses of single frameworks
are quite exhaustive, including Göbel et. al., which focuses on DESMO-J, and Barlas
and Heavy, whose focus is on the Knowledge Extraction Tool, all of which are quite
useful in informing about the available frameworks themselves, but does not constitute
the comparison between frameworks this study attempts to lay out [8, 10].

As implied above, while much published research in the field of modelling and
simulation exists, they all differ in their primary focus, such as comparing frameworks
on another criteria than performance, or in their criteria for inclusion in the compari-
son, such as not focusing exclusively on open source frameworks. This is noted in the
aforementioned Dagkakis and Heavey journal, wherein they suggest future work should
include a weighted comparison of open source DES frameworks (that is, the objective
of this paper) [4]. Beyond the differing focus and chosen parameters of related works,
another important aspect of these works is the time period in which they were conducted.
Per the nature of the ever-evolving open source landscape, particularly in such an active
field, new analysis of frameworks is needed intermittently, as any attempt of illuminating
the state of the art landscape will quickly be partially outdated if not entirely deprecated.
Lastly, we should note the field of study is simply too big as for any project to include
all related existing research in its analysis. This is not of major concern in regard to
the novelty of this project, as the methodology is quite specific, and the emphasis on
the various parameters is almost sure to be unique. Further, although the environment is
very controlled, different algorithmic comparisons will yield vastly different results in
regard to performance of the selected frameworks, meaning the resulting comparison is
sure to contribute to existing material.

3 Research Methodology

In this section we describe the research methodology for our survey, including the exper-
iment but also the formulation of the evaluation criteria and the subsequent filtering of
the numerous simulation frameworks under initial consideration.

3.1 Search Process

For the purpose of identifying related works and potential gaps in the existing literature,
we utilized slightly broad search terms in theWebof Science academic research database.
We narrowed down the search through additional constraints, including time, relevance,
number of citations, etc., to identify articles relating to the relatively broad problem
definition of this study. From these articles, we identified potential candidates for the
technical comparison of open source DES frameworks through either direct mention
in the given articles, or through references. With this methodology, we extracted 50
candidates for potential testing. We filtered out the candidates that are no longer actively
supported in combination with additional filter: “LastUpdated ≥ 2018 − 01 – 01”. The
result was the 13 frameworks shown in Table 1.



318 O. S. Kristiansen et al.

Table 1. Framework classification.

Name Year Domain OS Language Ext Lic Vis Engagement

SimPy 20 3 3 Python 1 3 − 26 (26s + 0f)

SimJulia 19 3 3 Julia 1 3 − 138 (22s + 106f)

OMNeT 19 3 3 C++ 2 2 3D 277 (226s + 51f)

JaamSim 20 3 3 Java 2 3 3D 100 (77s + 33f)

NS-3 20 1 3 C++ 2 2 3D 578 (202s + 376f)

Facsimile 20 2 3 Scala 1 3 − 26 (20s + 16f)

JavaSim 20 3 3 Java 1 3 − 36 (20s + 16f)

J-Sim 20 3 3 Java 1 3 2D 2 (1s + 1f)

Root-Sim 19 3 1 C 1 2 − 28 (13s + 15f)

TerraME 20 1 3 Lua 1 3 2D 41 (27s + 14f)

SSJ 18 3 3 Java 1 3 − 101 (68s + 33f)

VLE 19 3 3 C++ 1 2 3D 34 (14s + 20f)

ADevs 20 3 2 Java 1 3 − 11 (4s + 7f)

The reasoning for excluding frameworks not updated before the specified date is that
software frameworks need to update often, if not for functional reasons, then at least as
a response to the ever-changing meta environment of the different operating systems,
protocols of communication, etc. [11]. After the filtering on dates, we researched the
remaining 13 frameworks and identified the most important characteristics, to give a
more holistic impression of the overall collection. We summarize our findings in Table
1. For the domain (‘Dom’), we gave a 1–3 score with 1 being very domain specific,
2 allowing generic use, and 3 decidedly generic in its domain. The OS columns refers
to how many of the three most common operating systems (Microsoft, Mac OS and
Linux-based) the frameworks are directly integrated into (meaning the frameworks can
functionwithout extensive custom configuration, usage of virtualmachines, etc.). For the
extension category (‘Ext’), we denoted frameworks with only manual custom extension
with 1, and frameworks with specific mechanisms for extension, such as offering virtual
extension methods on existing modules which allows for modification without changing
the underlying architecture or offering convenient ways of defining new options, data
structures, etc., with 2. With license (‘Lic’) we denote frameworks with 1 if no distri-
bution is allowed, 2 if only non-commercial distribution allowed, and 3 if the license is
completely open. The Engagement category shows the GitHub star (s) and forking (f)
score of the framework repositories.



Experimental Comparison of Open Source Discrete-Event 319

To arrive at the five chosen frameworks, the following filters were used: (Domain-
Score= = 3)∧ (LicenseScore= = 3)∧ (Max(Engagement)). There are several reasons
for the choice of these filters. First, all 13 frameworks are recently updated and have
decent possibilities in terms of development environments This means the filtering must
be done on other criteria. Parameters, such as a graphical user interface (GUI) envi-
ronment for development, documentation and integrated extension possibilities cannot
be said to be objective measures of suitability, since their importance is almost entirely
dependent on the context. Domain (as defined in the summation above), however, is
obviously quite important in this context as the aim is to analyse generic frameworks.
Further, licensing is of vital importance, aswhatever the technical benefits of a framework
might be, if the licensing is not permissive enough the framework is simply not usable
in many cases. In the last filter the frameworks with the greatest level of engagement
are chosen. From the sequential filtering, five frameworks were chosen to be included
in the experiment. Each framework will be introduced below.

SimPy is based on standard Python, and can be described as a domain specific library.
It is specifically designed for DES, but can obviously be extended to include continuous
simulation through custom extension in Python [12]. It is distributed under the open
MIT license, meaning all modifications and extensions are allowed, and maintains an
active and widely engaged community.

SimJulia differs from SimPy in that continuous event processing is directly inte-
grated, along with discrete event processing which is what we are interested in, in this
context. It is technically quite similar to SimPy, in that the API modelling imitates that
of SimPy [13]. Its documentation and community engagement are extensive, and the
licensing is identical to that of SimPy.

JaamSim differs from SimPy and SimJulia in its method of simulation implemen-
tation, in that developers can use its IDE (Integrated Development Environment) and
integrated graphical input functionality. Beyond that, it is quite similar in supported
functionality and like SimPy, focuses directly on DES [14]. The functionality offered in
the IDE is quite extensive, but potential users should still realize that many third-party
opportunities are perhaps better integrated in the CLI (Command Line Interface) style
development frameworks described above.

SSJ (Stochastic Simulation in Java) is, as the name suggests, a Java-based simulation
framework,whose primary focus is onDES [15].As such, SSJ includes the expected tools
and methods for developing standard DES simulations. SSJ supports both continuous
and hybrid simulation, and allows developers to implementmodels in a variety of general
purpose languages, as well as simulation specific languages [15].

JavaSim is described as an ‘object-oriented, discrete event simulation toolkit’ [16],
directly integrated with the general purpose Java language despite the specific paradigm,
with a focus on flexibility, extensibility and efficiency. The specific simulation paradigm
supported by JavaSim is ‘continuous time-discrete event’, which means it includes
the expected tools relating to the context of this paper and allowed for relatively
straightforward implementation of the chosen model.



320 O. S. Kristiansen et al.

3.2 Method Formulation

The primary research method in this study is experimental, specifically, a controlled
experiment within the domain of Software Engineering, as described in “A Survey
of Controlled Experiments in Software Engineering” [17]. The definition of a con-
trolled experiment in this context is operational, and relates quite closely to the quasi-
experimental method in classic scientific terminology, in that it involved conducting
software engineering tasks to observe and compare processes, methods, etc. [17]. This
definition and related procedures follows the stated purpose more closely than the dif-
ferent classical definitions, as there obviously is no need to introduce control groups or
randomization in order to assess the chosen parameters [18], as the experiment can be
directly controlled in a relatively precise manner. The experiment will be used to test
parameters related to the performance of the included frameworks, specifically computa-
tional time under given loads as well as CPU usage, which are of significant importance
within the field of simulation, given its resource intensive nature.

Beyond the primary method of experimentation, an arguably significant part of the
comparison involves the characteristics described in Sect. 3.1, as well as the unstructured
usability survey described in Sect. 3.5. As is evident, the procedure of this study will be
exploratory and descriptive, as is commonplace in this context [19].

3.3 Experimental Simulation Model

We designed the simulation model to contain elements that are typical for discrete
stochastic models. The simulation model used for the experiment emulates a street food
like scenario, with three important aspects, namely customers are able to order multiple
times, there is a limited amount of customers that can be in the street food at once and
they pay before they leave.

In the simulation, agents “arrive” at the street food according to an exponential distri-
bution. Following arrival, customers queue for a table, after which they decide to either
order food or drinks immediately. If they decide to order food, they will distribute over
three different food stands, namely burger, pizza or Chinese with an equal probability.
For each food stand there is an associated probability distribution with both waiting for
the food, as well as eating it afterwards. If a customer chooses to order a drink instead of
food, he/she will immediately queue at the drink stand. Once served, he/she will decide
if he/she also wants to order food. If he/she again decides to order food, he/she will
proceed through the food order flow described earlier. When a customer is done eating
or drinking, he/she has a final decision, he/she can either repeat the entire flow and thus
order food/drinks again or leave the street food through a checkout process.

The model is formulated to be simple enough to not introduce errors or disputes
in implementation across different frameworks, while still containing several of the
elements which are ordinarily used in DES, such as limited relative resource usage,
concurrency and generation of values from commonly used distributions.



Experimental Comparison of Open Source Discrete-Event 321

Fig. 1. Stochastic Petri Net of the experimental simulation model.

3.4 Framework Testing

We use the primary exploratory experiment, as described above, to compare the perfor-
mance of the selected simulation frameworks during what could be described as normal
use within the context of DES. That is to say, the model described above means to mirror
a typical relatively low level task, albeit likely less intensive. However, since there is
a variety of factors that can potentially influence the performance parameter, such as
spikes in resource usage of background tasks or scheduled processes occurring, even
within the relatively controlled environment, measures were taken to minimize influ-
ences external to the experiment itself. Since the complexity of the tested frameworks
is of a relatively high degree, it is not necessarily the case that a fair comparison can
be made with derived generic conclusions if the input to the simulation model is the
same across all tests. Reasons for this include, as an example, the benefits obtained from
overhead in a framework potentially being helpful when processing a resource intensive
task, but has a negative trade-off in terms of comparison if the load is small, since such
optimizations potentially would not outweigh their cost if the runtime is small. To avoid
judging on a biased foundation, the simulation model described above is ran with an
increasing input load from 25,000 to 500,000 customers (n), increasing by 25,000 per
interval. Further, to reduce the variation in results as a consequence of environmental
factors (such as the various background processes, services, etc.) each input interval is
replicated ten times. To validate the summarized results, each individual run duration
was inspected, ensuring no outliers would significantly diverge the summed results. The
CPU usage percentage as well as computational time for each interval was recorded in
order to properly analyse the performance of each framework. The tests were ran in a
stable and as close to identical environment as possible to make the results quantita-
tively comparable. Each test can be seen in the projects repository [20], along with the
implementation of the model in each of the tested frameworks.



322 O. S. Kristiansen et al.

3.5 Configuration Details

The hardware configuration of our test setup was as follows:

• CPU: Intel Core™ i9-9880H CPU @ 2.30 GHz
• GPU: AMD Radeon Pro 5500M 4 GB
• RAM: 8 * 2 GB DDR4 @ 2667 MHz

The versioning of the included frameworks is shown below in Table 2.

Table 2. Versions of included frameworks

Name Version Language Version

Javasim 2.3 15.0.2 (java)

JaamSim 2021.01 15.0.2 (java)

SSJ 3.3.1 15.0.2 (java)

Simply 4.0.1 2.7.16 (python)

SimJulia 1.2 15.0.2 (java)

3.6 Usability Comparison

The usability comparison was done in a relatively informal manner, since the primary
focus of the applied researchmethodologywas to test the performance andother naturally
quantifiable aspects. We still feel, however, that even a subjective usability assessment
is useful to include, since it can be helpful to potential users. While there are formalized
quantifiable measures for usability, we foundmany of the methodologies presented were
not fully applicable and did not necessarily give a fair picture given the experience gained
in the sequential process of developing the model in each framework. We deemed it best
to simply reflect on important parameters regarding usability and derive a ‘score’ which
was relative to the other frameworks, and simulation frameworks in general. Specifically,
each developer filled a simple survey asking them to judge the given parameters within
an interval from one to five, and then generalize the results. The specific parameters are
presented in Sect. 4.1 along with how each parameter scores.

4 Results

In this section we present and analyse the data gathered from the aforementioned tests.
This includes the results of the performance tests, but also a more usability focused
analysis of the utilization of the different frameworks based on the experience of working
with the frameworks in this project. Lastly, wewill discuss the results and explore aspects
related to the observed differences in performance and usability.



Experimental Comparison of Open Source Discrete-Event 323

4.1 Performance Comparison

As mentioned in Sect. 3.4, each framework was tested under increasing load in the
interval from n = 25,000 to n = 500,000, with each interval having a range of 25,000,
meaning 20 individual results per framework were gathered. Further, each interval was
repeated ten times to ensure the results would not be overly biased by outliers. In Fig. 2,
the averaged computational times are shown.

Fig. 2. Computational time for each framework given varying input size.

As is evident, the difference in performance under the given conditions and envi-
ronment is very significant. Note, that due to time constraints and the very evident
degradation in performance under increasing loads, the tests for SimJulia were halted
after the tests with input size equal to 75,000. While JaamSim, SimPy, JavaSim and
SSJ frameworks are somewhat comparable in performance, and follow a clearly evi-
dent linear progression under increasing load, SimJulia has a lot of variance between
results internally, and is vastly slower under the recorded range of loads. Since SimJulia
presents such a difference in both overall results and internal variance, further investi-
gation of the framework was performed. Here, we focus on its difference to SimPy (a
comparison with the other frameworks will be further explored below). As mentioned,
SimJulia is written after the specification of the SimPy API. This means the internal
processing is expressed syntactically very similar between SimJulia and SimPy. While
this is convenient when attempting to perform functionally identical tests, it also means
the possibility of human errors introduced in the test definition is quite low, since the
given functionality needs only minimal translation to be functional in either environ-
ment. Further, to ensure the very significant difference and internal variance is not due
to factors in the external environment, SimJulia’s test was replicated numerous times
in the environment, with similar results each time. While mistakes are always possible,
the relative simplicity of the simulation model, along with the syntactic and functional
similarity between SimJulia and SimPy, leads us to conclude that SimJulia likely simply
performs far below the level of the other frameworks. This is further backed up by the
large degree of popularity and extensiveness of the remaining frameworks relative to
SimJulia. Simulation processing under a relatively large load is obviously quite com-
plicated, and it seems SimJulia simply is not as fine-grained in its performance under
increasing loads, as the other frameworks under consideration.



324 O. S. Kristiansen et al.

Fig. 3. Computational time for each framework given varying input size excluding SimJulia.

From Fig. 2, it is evident that the overall duration of processing across all input sizes
is much longer in SimJulia, being hardly comparable to the remaining frameworks. For
this reason, we will exclude SimJulia in the following discussion. In future work it could
be interesting to investigate the reason for this drastic difference in performance. In Fig. 3
we show test results of the remaining frameworks.

As is evident, while all frameworks produce processing times which clearly have
linear relationships to the loads, JaamSim and SSJ have a significantly smaller rate
of growth. Practically, this means JaamSim and SSJ produce very similar processing
times under the initial (and relatively light) load, but that the difference between the
frameworks grows linearly, and JaamSim and SSJ outperforms SimPy and JavaSim
increasingly significantly while the load increases. In future work, it could be interesting
to explore if the exponential relationship between the graphs means SimPy actually
has better performance with loads below the initial interval used here (that is, 25,000),
as is loosely implied by the growing difference. Specifically, if the graph followed the
implied relationship, it appears SimPy could outperform JaamSim in loads with input
size slightly below the lower bounds in the experiment of 25,000.

In Fig. 4, the average CPU usages, in percentage, across the tested input intervals
are shown. It is obvious from the graph, that JaamSim occupies a substantially greater
percentage of the CPU for the lower input sizes, before gradually decreasing until it
is around the level of the remaining frameworks. This is expected, given the nature of
the JaamSim framework. While the remaining frameworks are integrated directly into
general purpose programming languages, and could be described as a simulation library
in the given languages, JaamSim is a standalone framework. One reason for the greater
CPU usage could be attributed to the overhead of the standalone framework, even if
it is compiled into an executable jar, similar to JavaSim and SSJ. This is supported by
the development of the graph, since the overhead, if associated with the start-up of the
framework, obviously would be a smaller part in the latter intervals, and the CPU usage,
therefore, remains steady once the cost of the overhead is factored out by the larger
overall cost of the framework running in steady use. In Fig. 5, we can see the CPU usage
of JaamSim in the interval where input size equals 32,500, that is, the interval before the
drop-off to a steady usage is found. Examining the graph, it is evident that a substantial



Experimental Comparison of Open Source Discrete-Event 325

percentage of the CPU is utilized by JaamSim in its beginning stages of execution, which
drops off, in this case, after about 18 s (note that the run depicted shows 10 replications
of the simulation).

Fig. 4. Average CPU usage percentage across varying input sizes.

The trend identified in the CPU usage of JaamSim is not found in any of the CLI
styled frameworks, which all remain relatively steady in their CPU usage throughout
execution, despite the load. To conclude, it is evident that JaamSim is quite resource
heavy in its beginning execution, which then tampers off during continuous use. Further
JavaSim allocated substantially fewer resources than any other framework, which makes
sense given its relatively slower execution across all tested intervals. SSJ and SimPy
are quite similar in their CPU usage throughout the intervals, indicating there must be
another reason for the significant difference in computational time needed to complete
the simulations. Finally, SimJulia, for the few tested input sizes, is comparable to the
other CLI styled frameworks in its CPU usage, meaning a lack of resource allocation
is evidently not the reason for the reduced performance in comparison to the other
frameworks.

Fig. 5. JaamSim’s CPU usage during runtime with n = 32,500.

To conclude, as is readily evident in the gathered results, there is a clear difference
in performance between the frameworks, with SSJ outperforming the other frameworks
in all tests within the given range. JaamSim is slightly behind SSJ on this parameter



326 O. S. Kristiansen et al.

but follow relatively closely. This difference grows at an exponential rate in comparison
to JavaSim and SimPy, meaning JaamSim and SSJ performs relatively better under
increasing loads. SimPy is only slightly behind in the initial intervals but is slower
throughout the range. JavaSim has a linear development in computational time across
the tested intervals, but is significantly slower than JaamSim, SSJ and SimPy. Lastly,
SimJulia scores significantly lower in performance relative to the other frameworks
under consideration, at all stages, and has a variance in performance not found in the
other tested frameworks.

4.2 Usability Comparison

In this section, we present the results of the usability comparison.
JaamSim had various generic installers available, including 64/32-bit windows

installers and compiled jar executables for all major OSs. JaamSim, whose input is
configured through its GUI, is documented thoroughly, including start-up examples of
different available basic models.We found JaamSim intuitive, given the GUI, albeit with
relatively poor debugging opportunities. Documentation and community engagement
seems to be very limited on the more specific issues.

SimPy does not have a dedicated installer, given its integration in standard Python.
Thismeans the installation is specific to the given users’ context, such as IDE integration,
pip, etc. As a non-GUI framework, the documentation felt extra critical in order to
facilitate an efficient workflow. Fortunately, both core concepts of the framework as well
as DES vocabulary had been maintained throughout the documentation. It also featured
blogs, examples and start-upwalk-through guides. Effectively, thismeant that the chosen
simulation model was implemented easily. Besides the documentation, another aspect
which felt beneficial and greatly impacted the feeling of “ease of use” was that we were
free to extend, modify and structure the code as it optimally fitted our needs.

We found SimJulia had a far greater barrier to entrance than the other frameworks.
Like SimPy, SimJulia is CLI based. It was quite difficult to use, relative to other frame-
works. Setting up the correct SimJulia environment proved to be very difficult. The offi-
cial documentation was incomplete and deprecated. Navigating to the projects’ GitHub
page resulted in conflicting results, as it recommended an older version of Julia than the
documentation. This change, however, did not solve the documented examples. Very lit-
tle community guidance exists, and we had to look to the SimJulia repositories test suite
for the particular versioning. Once up and running, the model was easier to implement,
however this was more a tribute to the completeness of SimPy’s documentation and the
fact that SimJulia’s had modelled their API after SimPy’s implementation.

The initial installation and setup of JavaSim was quite straightforward and well doc-
umented. Further, while documentation could not be said to be extensive, it did include
some examples to illustrate the most basic tools of DES included in the framework.
These examples were not as fully illustrative as would be ideal, but they were a good
starting point. The framework did require more than surface level knowledge of Java,
since things like parallelism, which is obviously vital to performance in simulation, were
mostly left up to the developer to manage.



Experimental Comparison of Open Source Discrete-Event 327

SSJ, like the other CLI based frameworks, does not comewith an integrated installer,
but is available through most of the common package managers such as Maven, Gra-
dle, etc. The documentation was extensive, easy to understand and included examples.
Additionally, a lot of examples were also provided in the repository which gave intu-
itive examples to work with. An important aspect of SSJ was its emphasis on using the
object oriented paradigm.When compared to the more scripting oriented languages, SSJ
felt a lot more structured and making more complicated models in SSJ feels facilitated
better in comparison to the remaining frameworks. In Table 3 the score of the chosen
parameters of usability is summarized.

Table 3. Ease of use comparison.

SimJulia JaamSim SimPy SSJ JavaSim

Startup documentation 1 5 4 4 3

Best practice examples 1 3 5 5 3

Extension options 3 4 3 3 3

Errors during development 1 3 4 4 2

Time to implement 2 3 4 4 1

Lines of code to simulate 4(66) 5(6) 4(62) 1(504) 1(614)

Overall ease of use 12 23 24 21 13

Note, that each score is given within a one to five interval. For all parameters five is
the best possible score. We will briefly address each parameter which is not intuitively
understandable. Startup documentation refers to the ‘get started’ type of documentation
often found within the documentation of development frameworks. Extension options
refers to the intuitiveness and availability of methods to extend the framework with
custom implementation. Lines of code shows the actual lines it took to implement the
model depicted in Fig. 1, denoted within parenthesis after the respective scores (the
JaamSim count refers to the script initializing and timing of the JAR (Java Archive)
executable). From the gathered parameters an overall ease of use score was given by
weighing each parameter equally.Note that JaamSimLoC,while not directly comparable
given its different interface, has gotten the highest score since there is no code to write or
manage. Another significant aspect of usability in the context is the framework language.
Java and python are both very popular languages, and it could be argued that the choice
of language would have a greater impact of overall usability. However, since it is very
hard to quantify the difference in usability between two high level languages, this has
not been directly included in the comparison



328 O. S. Kristiansen et al.

5 Discussion

In this section we will briefly discuss some of the most obvious questions in regard to the
results of this paper. This includes whether a clear recommendation of a specific frame-
work can be made and a discussion concerning the validity of the testing methodology
utilized.

5.1 Comparison

An obvious subject to discuss is whether a concrete recommendation can be made, after
evaluating the results. First, it is obvious that if the given load is comparable to the range
tested in this project, and the performance parameter is of primary importance, JaamSim
could be recommended if the GUI-styled builder is preferable in the given context.
Further, SSJ could be recommended if the CLI-styled interface would be preferable,
and performance is of greatest importance. However, performance is obviously not the
only relevant parameter when choosing a framework. The other parameters tested in this
paper related to usability or ease of use can be, depending on the context, at least equally
important or even more so than performance. This includes what one could denote as
more technical ease of use, such as the extension options and best practice examples
(since the user in question in this case is an at least reasonably experienced developer).
While it can certainly be argued that the results are of a subjective nature, it will still
be of relevance to the aim of this study. The biggest discrepancy between the types
of frameworks is in their integration in high level, widely used languages. It could be
argued that this is a major advantage of the CLI based frameworks, as the extension and
modification opportunities are endless. However, it is not necessarily relevant, depending
on the issue at hand.Becauseof this, nogeneric conclusion canbedrawn, but it is certainly
an impactful precursor to an outright recommendation. Lastly, individual developers will
obviously have differing preferences in terms of language used, interface, paradigm, etc.
In conclusion, no clear recommendation can be made. However, if evaluating from the
criteria examined in this article alone, it could be argued that a recommendation could
be made for JaamSim if performance is of primary importance and the GUI builder is
acceptable, or SSJ if integration directly in the environment of one of the most popular
high-level languages would be preferable.

5.2 Test Validity

One almost universal criticism that can be levied in this context of testing a quantifiable
parameter such as performance, is that the implementation is subjective, especially since
the technologies used are of relatively high complexity. Specifically, the argument could
be made that the frameworks performance is directly dependent on the individual imple-
mentation. This includes aspects such as integrated parallelization and opportunities for
extension (one example of this could be the lower-level language integration in Python
for performance-critical modules). This is a valid concern, but we would argue it is not
directly applicable in the context of this project. The reason for this lies in the aim of the
project, since the evaluation and comparison are geared towards informing on the aspects
of these frameworks under what we loosely classify as normal work. While it is hard



Experimental Comparison of Open Source Discrete-Event 329

to quantify as a term, we can be specific in the methodology used to achieve that aim.
First, all implementations follow the ‘best practice’ implied by their respective docu-
mentation, meaning effort was given to implement the tests in the way recommended by
the framework’s creators. Second, the simulation model was kept quite simple. Lastly,
given the holistic nature of the desired results in this project, each test was implemented
in a largely similar context to the expected use of the conclusions, meaning a developer
with at least basic knowledge of simulation theory and programming methodologies,
but with no specific knowledge regarding the given framework.

6 Conclusion

The aim of this study was to identify open-source modelling and simulation libraries
and compare them on parameters related to performance and usability. 50 frameworks
were initially considered, identified from the semi-structured material collection, which
were filtered down on the basis of the following parameters: nature of domain, openness
of license, popularity and how recently optimizing or modifying updates were released.
After the filtering, five frameworks were extracted for further testing: JaamSim, SimPy,
SimJulia, SSJ and JavaSim. JaamSim is a GUI based simulation builder as opposed to
SimPy, SSJ, JavaSim and SimJulia which are CLI based, and integrated in Python, Julia
and Java respectively.

SSJ was found to perform the best across all intervals in terms of computational
time, while utilizing a relatively high percentage of the CPU. Closely following was
JaamSim,which also took up a large average percentage of theCPU, especially at smaller
input sizes. SimPy was comparable to the aforementioned frameworks for smaller input
sizes, but was found to have a higher rate of change in regard to increasing input sizes,
scoring significantly lower for the larger input sizes, albeit with a lower percentage of
the CPU utilized. JavaSim was found to be significantly slower across all input sizes,
but utilized a much lower percentage of the CPU. All aforementioned frameworks were
found to have a linear development in the relationship between increasing input sizes
and the time needed to process them, but with varying rates. Further, each frameworks’
utilization of the CPU and their respective performance on the tested input sizes was
found to be corresponding, with the exception of JaamSim in the smaller intervals, likely
given the increased overhead of the framework. In the usability comparison SimPy
scored the highest, with JaamSim being slightly behind. Lastly, SimJulia scored the
lowest in both performance and usability. It was much slower under the given load
range and showed worrying internal variation in its performance. Further, SimJulia’s
documentation was often incomplete and/or outdated, leading to a challenging user
experience in implementing the selected model. JavaSim scores only slightly higher in
usability, given especially the LoC it took to implement the model.

While much literature pertaining to the subject of this study exists, the landscape of
simulation frameworks is so vast and ever evolving that we believe that studies of this
type would be relevant to simulation practitioners. However, many of the frameworks
that we ‘filtered out’, as well as frameworks not included in the first place, could be
definitely be investigated further, since the parameters we chose to filter on might differ
for other researchers. Namely, our focuswas onwell-supported, open-source and general
simulation frameworks.



330 O. S. Kristiansen et al.

References

1. Maclay, D.: Simulation gets into the loop. IEEE Rev. 43(3), 109–112 (1997)
2. Sarkar, N., Halim, S.: Simulation of computer networks: simulators, methodologies and rec-

ommendations, presented at the 5th International Conference on Information Technology and
Applications, ICITA 2008, January 2008

3. Banks, J., Carson II, J.S., Nelson, B., Nicol, D.: Discrete-Event System Simulation, 5th
edition. Upper Saddle River: Pearson (2009)

4. Dagkakis, G., Heavey, C.: A review of open source discrete event simulation software for
operations research. J. Simul. 10 (2015). https://doi.org/10.1057/jos.2015.9

5. Franceschini, R., Bisgambiglia, P.-A., Touraille, L., Bisgambiglia, P., Hill, D.: A survey of
modelling and simulation software frameworks using discrete event system specification, 43
(2014)

6. Majid, M.A., Aickelin, U., Siebers, P.-O.: Comparing simulation output accuracy of discrete
event and agent based models: a quantitative approach. SSRN J. (2009). https://www.ssrn.
com/abstract=2830304. Accessed 09 Mar 2021

7. Knyazkov, K.V., Kovalchuk, S.V.: Modeling and simulation framework for development of
interactive virtual environments. Procedia Comput. Sci. 29, 332–342 (2014)

8. Göbel, J., Joschko, P., Koors, A., Page, B.: The discrete event simulation frameworkDESMO-
J: review, comparison to other frameworks and latest development, 100–109 (2013)

9. Mualla, Y., Bai, W., Galland, S., Nicolle, C.: Comparison of Agent-based simulation frame-
works for unmanned aerial transportation applications. Procedia Comput. Sci. 130 (2018).
https://trid.trb.org/view/1509849. Accessed 09 Mar 2021

10. Barlas, P., Heavey, C.: KE tool: an open source software for automated input data in discrete
event simulation projects. In: 2016 Winter Simulation Conference (WSC), pp. 472–483,
December 2016

11. Jayatilleke, S., Lai, R.: A systematic review of requirements change management. Inf. Softw.
Technol. 93, 163–185 (2018)

12. SimPy Documentation: ‘Overview—SimPy 4.0.2.dev1+g2973dbe documentation’ (2021).
https://simpy.readthedocs.io/en/latest/. Accessed 09 Mar 2021

13. SimJuliaDocumentation:Welcome to SimJulia!—SimJulia documentation. https://simjuliajl.
readthedocs.io/en/stable/welcome.html. Accessed 09 Mar 2021

14. JaamsimDocumentation: ‘JaamSimFreeDiscrete Event Simulation Software’ (2021). https://
jaamsim.com/. Accessed 09 Mar 2021

15. L’Ecuyer, P.L., Meliani, L., Vaucher, J.: SSJ: a framework for stochastic simulation in Java,
1, 234–242 (2003)

16. JavaSim Documentation: ‘nmcl/JavaSim’,GitHub (2021). https://github.com/nmcl/JavaSim.
Accessed Mar 2021

17. Sjøberg, D., et al.: A survey of controlled experiments in software engineering. Softw. Eng.
IEEE Trans. 31, 733–753 (2005)

18. Creswell, J.W., Creswell, J.D.: Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches. SAGE Publications (2017)

19. Dodig-Crnkovic, G.: Scientific methods in computer science. In: Proceedings of the Confer-
ence for the Promotion of Research in IT at New Universities and at University Colleges in
Sweden, Skövde, Suecia. https://www.academia.edu/35111214/Scientific_methods_in_com
puter_science. Accessed 24 Jun 2021

20. Project Repository: SDU-SimulationFrameworkReviews/SimulationFrameworks. SDU-
SimulationFrameworkReviews (2021). https://github.com/SDU-SimulationFrameworkRe
views/SimulationFrameworks. Accessed 09 Apr 2021

https://doi.org/10.1057/jos.2015.9
https://www.ssrn.com/abstract=2830304
https://trid.trb.org/view/1509849
https://simpy.readthedocs.io/en/latest/
https://simjuliajl.readthedocs.io/en/stable/welcome.html
https://jaamsim.com/
https://github.com/nmcl/JavaSim
https://www.academia.edu/35111214/Scientific_methods_in_computer_science
https://github.com/SDU-SimulationFrameworkReviews/SimulationFrameworks

	Experimental Comparison of Open Source Discrete-Event Simulation Frameworks
	1 Introduction
	2 Related Work
	3 Research Methodology
	3.1 Search Process
	3.2 Method Formulation
	3.3 Experimental Simulation Model
	3.4 Framework Testing
	3.5 Configuration Details
	3.6 Usability Comparison

	4 Results
	4.1 Performance Comparison 
	4.2 Usability Comparison

	5 Discussion
	5.1 Comparison
	5.2 Test Validity

	6 Conclusion
	References




