
Two-Round Oblivious Linear Evaluation
from Learning with Errors

Pedro Branco1(B), Nico Döttling2, and Paulo Mateus1

1 SQIG - IT, University of Lisbon, Lisbon, Portugal
2 Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany

Abstract. Oblivious Linear Evaluation (OLE) is the arithmetic ana-
logue of the well-know oblivious transfer primitive. It allows a sender,
holding an affine function f(x) = a + bx over a finite field or ring, to
let a receiver learn f(w) for a w of the receiver’s choice. In terms of
security, the sender remains oblivious of the receiver’s input w, whereas
the receiver learns nothing beyond f(w) about f . In recent years, OLE
has emerged as an essential building block to construct efficient, reusable
and maliciously-secure two-party computation.

In this work, we present efficient two-round protocols for OLE over
large fields based on the Learning with Errors (LWE) assumption, pro-
viding a full arithmetic generalization of the oblivious transfer protocol
of Peikert, Vaikuntanathan and Waters (CRYPTO 2008). At the tech-
nical core of our work is a novel extraction technique which allows to
determine if a non-trivial multiple of some vector is close to a q-ary
lattice.

1 Introduction

Oblivious Linear Evaluation (OLE) is a cryptographic primitive between a sender
and a receiver, where the sender inputs an affine function f(x) = a + bx over a
finite field F, the receiver inputs an element w ∈ F, and in the end the receiver
learns f(w). The sender remains oblivious of the receiver’s input w and the
receiver learns nothing beyond f(w) about f . OLE can be seen as a generalization
of the well-known Oblivious Transfer (OT) primitive.1 In fact, just as secure
computation of Boolean circuits can be based on OT, secure computation of
arithmetic circuits can be based on OLE [2,20,22].

In recent years, OLE has emerged as one of the most promising avenues to
realize efficient two-party secure computation in different settings [1,2,6,11,13,
21,22]. Interestingly, OLE has found applications, not just in the secure computa-
tion of generic functions, but also in specific tasks such as Private Set Intersection
[18,19] or Machine Learning related tasks [23,28].

1 It is easy to see that, if we consider the affine function f : {0, 1} → {0, 1} such that
f(b) = m0 + b(m1 − m0), OLE trivially implements OT.

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 379–408, 2022.
https://doi.org/10.1007/978-3-030-97121-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_14

380 P. Branco et al.

Other aspects that set OLE apart from OT are reusability, meaning that the
first message of a protocol is reusable across multiple executions,2 and the fact
that even a semi-honest secure OLE can be used to realize maliciously secure
two-party computation [21].

Although OLE secure against semi-honest adversaries is complete for
maliciously-secure two-party computation [21], this comes at the cost of effi-
ciency and, thus, is it always preferable to start with a maliciously-secure one.
Moreover, some applications of OLE even ask specifically for a maliciously-secure
one [18]. Given this state of affairs and the importance of OLE in constructing
two-party secure computation protocols, we ask the following question:

Can we build efficient and maliciously-secure two-round OLE protocols from
(presumed) post-quantum hardness assumptions?

1.1 Our Results

In this work, we give an affirmative answer to the question above. Specifically,
we present two simple, efficient and round-optimal protocols for OLE based
on the hardness of the Learning with Errors (LWE) assumption [31], which is
conjectured to be post-quantum secure.

Before we start, we clarify what type of OLE we obtain. OLE comes in many
flavors, one of the most useful being vector OLE where the sender inputs two
vectors a = a, b = b ∈ F

� and the receiver obtains a linear combination of them
z = a + wb ∈ F

� [6]. For simplicity, we just refer to this variant as OLE.
Both of our protocols implement the functionality in just two-rounds and

have the following properties:

– Our first protocol (Sect. 5) for OLE achieves statistical security against a cor-
rupted receiver and computational semi-honest security against a corrupted
sender based on LWE. Additionally, we show how we can extend this protocol
to implement batch OLE, a functionality similar to OLE where the receiver
can input a batch of values {xi}i∈[k′], instead of just one value.

– Our main technical innovation is a new extraction technique which allows to
determine if a vector z ∈ Z

n
q is of the form z = sA + αe, where the matrix

A ∈ Z
k×n
q is given, and the unknown s ∈ Z

k
q , α ∈ Zq and short vector e are to

be determined. We provide an algorithm which solves this problem efficiently
given a trapdoor for the lattice Λ⊥

q (A). We believe that this contribution
is of independent interest. In particular, our extractor immediately leads to
an efficient simulation strategy for the PVW protocol [29] even for super-
polynomial moduli q.

2 While two-party reusable non-interactive secure computation (NISC) is impossible in
the OT-hybrid model [11], reusable NISC for general Boolean circuits is known to be
possible in the (reusable) OLE-hybrid model assuming one-way functions [11]. The
result stated above is meaningful only if we have access to a reusable two-round OLE
protocol. The only efficient realizations of this primitive are based on the Decisional
Composite Residuosity (DCR) and the Quadratic Residuosity assumptions [11].

Two-Round Oblivious Linear Evaluation from Learning with Errors 381

– We then show how to extend our OLE protocol to provide malicious security
for both parties (Sect. 6). The protocol makes λ invocations of a two-round
Oblivious Transfer protocol (which exists under LWE [29,30]), where λ is the
security parameter. By instantiating the OT with the LWE-based protocols
of [29,30], we preserve statistical security against a malicious receiver.

1.2 Related Work and Comparison

In the following, we briefly review some proposals from prior work and com-
pare them with our proposal. We only consider schemes that are provable UC-
secure as our protocols. OLE can be trivially implemented using Fully/Somewhat
Homomorphic Encryption (e.g., [23]) but these solutions are usually just proven
secure against semi-honest adversaries and it is unclear how to extend secu-
rity against malicious adversaries without relying on generic approaches such
as Non-Interactive Zero-Knowledge (NIZK) proofs.3 OLE can also be trivially
implemented using generic solutions for two-party secure computation (via OT)
such as [32]. However, these solutions fall short in achieving an acceptable level
of efficiency.

The work of Döttling et al. [14,15] proposed an OLE protocol with uncondi-
tional security, in the stateful tamper-proof hardware model. The protocol takes
only two rounds, however further interaction with the token is needed by the
parties.

In [22], a semi-honest protocol for oblivious multiplication was proposed,
which can be easily extended to a OLE protocol. The protocol is based on noisy
encodings. Based on the same assumption, [17] proposed a maliciously-secure
OLE protocol, which extends the techniques of [22]. However, their protocol
takes eight rounds of interaction.

Chase et al. [11] presented a round-optimal reusable OLE protocol based
on the Decisional Composite Residuosity (DCR) and the Quadratic Residuosity
(QR) assumptions. The protocol is maliciously-secure and, to the best of our
knowledge, it is the most efficient protocol for OLE proposed so far. However, it
is well-known that both the DCR and the QR problems are quantumly insecure.

Recently, two new protocols for OLE based on the Ring LWE assumption
were presented in [5,10]. Both protocols run in two rounds but the protocol of
[5] either requires a PKI or a setup phase, and the protocol of [10] is secure only
against semi-honest adversaries.

We also remark that our protocols implement vector OLE where the sender’s
input are vectors over a field, as in [17].

In Table 1, a brief comparison between several UC-secure OLE protocols is
presented.

3 As an example consider the work of [11], where the Paillier cryptosystem is extended
into an OLE protocol with malicious security and the construction is highly non-
trivial.

382 P. Branco et al.

Table 1. Comparison between different OLE schemes.

Hardness Assumption Setup Assumption Rounds Reusability Security

[22] Noisy Encodings OT 3 - semi-honest

[14] - Stateful tamper 2 ✗ malicious
proof hardware

[17] Noisy Encodings OT 8 - malicious

[11] DCR & QR CRS 2 ✓ malicious

[5] RLWE PKI/Setup 2 ✗ malicious

[10] RLWE - 2 - semi-honest

This work LWE CRS 2 ✓ malicious receiver

LWE CRS & OT 2 ✗ malicious

1.3 Open Problems

Our first protocol is secure against semi-honest senders and, thus, it is trivially
reusable. However, our fully maliciously-secure protocol (in Sect. 6) does not
have reusability of the first message. Hence, the main open problem left in our
work is the following: Can we construct a reusable maliciously-secure two-round
OLE protocol based on the LWE assumption?

2 Technical Outline

We will now give a brief overview of our protocol. In abuse of notation, we drop
the transposition operator for transposed vectors and always assume that vectors
multiplied from the right side are transposed.

2.1 The PVW Protocol

Our starting point is the LWE-based oblivious transfer protocol of Peik-
ert, Vaikuntanathan and Waters [29], which is based on Regev’s encryption
scheme [31]. Since our goal is to construct an OLE protocol, we will describe the
PVW scheme as a F2 OLE rather than the standard OT functionality. Assume
for simplicity that the LWE modulus q is even.

The PVW scheme uses a common reference string which consists of a random
matrix A ∈ Z

n×m
q and a vector a ∈ Z

m
q , which together syntactically form a

Regev public key. Given the CRS (A,a), the receiver, whose input is a choice bit
b ∈ {0, 1} chooses a uniformly random s ∈ Z

n
q and a e ∈ Z

m
q from a (short) LWE

error distribution, e.g. a discrete gaussian. The receiver now sets z = sA+e−b·a.
In other words, if b = 0 then (A, z) is a well-formed Regev public key, whereas
if b = 1 then (A, z + a) is a well-formed Regev public key.

The receiver now sends z to the sender who proceeds as follows. Say the
sender’s input are v0, v1 ∈ {0, 1}. The sender now encrypts v0 under the public
key (A, z) and v1 under (A,a) using the same randomness r. Specifically, the
sender chooses r ∈ Z

m from a wide enough discrete gaussian, sets c = Ar,
c0 = zr + q

2v0 and c1 = ar + q
2v1. Now the sender sends (c, c0, c1) back to the

Two-Round Oblivious Linear Evaluation from Learning with Errors 383

receiver. The receiver then computes and outputs y = �b · c1 + c0 − sc�2. Here
�·�2 denotes the rounding operation with respect to q/2.

To see that this scheme is correct, note that

b · c1 + c0 − sc = bar + b · q

2
v1 + zr + ·q

2
v0 − sAr

= bar + b · q

2
v1 + (sA + e − ba)r + ·q

2
v0 − sAr

=
q

2
(bv1 + v0) + er.

Since both e and r are short, er is also short and we can conclude that y =
�b · c1 + c0 − sc�2 = bv1 + v0.

Security. Security against semi-honest senders follows routinely from the hard-
ness of LWE. We will omit the discussion on security against malicious senders
for now and focus on security against malicious receivers.

The basic issue here is that a malicious receiver may choose z not of the form
z = sA + e − ba but rather arbitrarily.

It can now be argued that except with negligible probability over the choice

of a, one of the matrices A0 =
(
A
z

)
or A1 =

(
A

z + a

)
does not have a short

vector in its row-span. We can then invoke the Smoothing Lemma [27] to argue
that given c = Ar either zr or (z + a)r is statistically close to uniform. In the
first case we get that (c, c0, c1) statistically hides v0 = v0 + 0 · v1, in the second
case v0 + v1 = v0 + 1 · v1 is statistically hidden. In order to simulate, we must
determine which one of the two cases holds.

In [29] this is achieved as follows. First, the matrix A is chosen together with
a lattice trapdoor [16,26] which allows to efficiently decode a point x ∈ Z

m
q to the

point in the row-span of A closest to x (given that x is sufficiently close to the
row-span of A). The PVW extractor now tries to determine whether there is a
short vector in the row-span of A0 by going through all multiples αz of z (for
α ∈ Zq) and testing whether αz is close to the row-span of A. If such an α is
found, we know by the above argument that given Ar and zr it must hold that
(z+a)r is statistically close to uniform, and the simulator can set the extracted
choice bit b to 0. On the other hand, if no such α is found, it sets the extracted
choice bit to 1 since we know that in this case zr is statistically close to uniform
given Ar and (z + a)r.

A severe drawback of this method is that the extractor must iterate over all
α ∈ Zq. Consequently, for the extractor to be efficient q must be of polynomial
size. A recent work of Quach [30] devised an extraction method for superpoly-
nomial modulus q by using Hash Proof Systems (HPS)4. To make this approach
work the underlying Regev encryption scheme must be modified in a way that
unfortunately deteriorates correctness and prohibits linear homomorphism.

4 Despite numerous efforts, HPS in the lattice setting fall short in efficiency when
comparing to their group-based counterpart.

384 P. Branco et al.

2.2 An Oblivious Linear Evaluation Protocol Based on PVW

We will now discuss our OLE modification of the PVW scheme. The basic idea
is very simple: We will modify the underlying Regev encryption scheme to sup-
port a larger plaintext space, namely Zq1 for a modulus q1 and exploit linear
homomorphism over Zq1 , which will lead to an OLE over Zq1 .

Concretely, let q = q1 · q2 for a sufficiently large q2. We have the same CRS
as in the PVW scheme, i.e. a random matrix A ∈ Z

n×m
q and a random vector

a ∈ Z
m
q . Now the receiver’s input is a x ∈ Zq1 , and he computes z by z =

sA + e − x · a (where s and e are as above). The sender’s input is now a pair
v0, v1 ∈ Zq1 , and the sender computes c = Ar, c0 = zr+q2v0 and c0 = ar+q2v1
(again r as above). Given (c, c0, c1) the receiver can recover y by computing
y = �x · c1 + c0 − sc�q1 . Here �·�q1 is as usual defined by �u�q1 = ·�u/q2�. We
can establish correctness as above:

x · c1 + c0 − sc = xar + x · q2v1 + zr + q2v0 − sAr

= xar + xq2v1 + (sA + e − xa)r + q2v0 − sAr

= q2(xv1 + v0) + er.

Now, given that e and r are sufficiently short, specifically such that er is shorter
than q2/2 it holds that y = �x ·c1+c0−sc�q1 = xv1+v0 and correctness follows.

A detailed description of the protocol is presented in Sect. 5.5 The protocol
described there directly implements vector OLE, instead of just OLE as pre-
sented above.

Security. Security against semi-honest senders follows, just as above, routinely
from the LWE assumption. But for superpolynomial moduli q1 (which, in the
OLE setting, is the case we are mostly interested in) we are seemingly at an
impasse when it comes to proving security against malicious receivers: In this
case, the PVW extractor is not efficient and Quach’s technique [30] is incompat-
ible with our reliance on linear homomorphism of the Regev encryption scheme.

Consequently, we need to devise an alternative method of extracting the
receiver’s input x. The core idea of our extractor is surprisingly simple: While
PVW choose the matrix A together with a lattice trapdoor, we will instead

choose the matrix A′ =
(
A
a

)
together with a lattice trapdoor T ∈ Z

m×m (i.e.

a short square matrix T such that A′T = 0). This is possible as the vector a is
also provided in the CRS.

How does this help us to extract a x̃ ∈ Zq from the malicious receiver’s
message z? Let z ∈ Z

m
q be arbitrary, write z as z = sA − x · a + αd for some

s ∈ Z
n
q , x ∈ Zq, α ∈ Zq and a d ∈ Z

m of minimal length. In other words, there
exists no d∗ with ‖d∗‖ < ‖d‖ such that z can be written as z = s∗A+α∗d∗−x∗a
for some s∗, x∗ and α∗.

5 The protocol presented in Sect. 5 is presented in a slightly, but equivalent, form.

Two-Round Oblivious Linear Evaluation from Learning with Errors 385

Then it holds that

(c, c0, c1) = (Ar, zr + q2v0,ar + q2v1) (1)
= (Ar, (sA − x · a + αd)r + q2v0,ar + q2v1) (2)
= (Ar, sAr − xar + αdr + q2v0,ar + q2v1) (3)
≈s (u, su − xu + αdr + q2v0, u + q2v1) (4)
≡ (u, su − xu′ + xq2v1 + αdr + q2v0, u

′) (5)
= (u, su + αdr − xu′ + q2(xv1 + v0), u′) (6)
≈s (Ar, sAr + αdr − xar + q2(xv1 + v0),ar) (7)
= (Ar, zr + q2(xv1 + v0),ar). (8)

In other words, we can simulate (c, c0, c1) given only xv1 + v0. In the above
derivation, (4) holds as by the partial smoothing lemma [7] as (Ar,ar,dr) =
(A′r,dr) ≈s (u′,dr) = (u, u,dr) where u ∈ Z

m
q and u ∈ Zq are uniformly

random. Equation (5) follows by a simple substitution u → u′ − q2v1, where
u′ ∈ Zq is also uniformly random. Equation (7) follows analogously to (4) via
the smoothing lemma.

Efficient Extraction. It remains to be discussed how we can efficiently recover
x from z given the lattice trapdoor T for Λ⊥

q (A′). We will recover the represen-
tation z = s∗A + α∗d∗ − x∗a. Note that we can write z = s′A′ + αd, where
s′ = (s,−x). Setting f = zT we get

f = zT = (s′A′ + αd)T = αdT.

Assuming that d is sufficiently short, it holds that d′ = dT is also short. We
will now solve the equation system αd′ = f , in which f is known, for α and d′.
Write f = (f1, . . . , fm) and d′ = (d′

1, . . . , d
′
m). Then we get the equation system

f1 = αd′
1, . . . , fm = αd′

m.

We can eliminate α using the first equation and obtain the equations

−f2d
′
1 + f1d

′
2 = 0, . . . ,−fmd′

1 + f1d
′
m = 0.

Now assume for simplicity f1 is invertible, i.e. f1 ∈ Z
×
q . Then we can express

the above equations as

−(f2/f1) · d′
1 + d′

2 = 0, . . . ,−(fm/f1) · d′
1 + d′

m = 0.

Consequently, it is sufficient to find the first coordinate d′
1 to find all other

d′
j = (fj/f1) · d′

1.
To find the first coordinate d′

1, we rely on the fact that solving the Shortest
Vector Problem (SVP) in a two-dimensional lattice can actually be done in
polynomial time (and essentially independently of the modulus q) [24]. Consider
the lattice Λj defined by Λj = Λ⊥

q (bj), where bj = (−fj/f1, 1). First note that

386 P. Branco et al.

d′
j = (d′

1, d
′
j) is a short vector in Λi. Furthermore, notice that det(Λj) = q as the

second component of bj is 1 (bj is primitive). Letting B = ‖d′
j‖, we can then

argue via Hadamard’s inequality that any vector v ∈ Λi shorter than q/B must
be linearly dependent with d′

j .
By applying a SVP solver, we are able to find the shortest vector gj =

(g(1)j , g
(2)
j) in Λi. Observe that d′

1 must be a multiple of g
(1)
j for all j = 2, . . . , n

(otherwise, gj would not be the shortest solution of the SVP instance). Hence,
d′
1 can be computed by taking the least common multiple of g

(1)
1 , . . . , g

(1)
n .

Having recovered d′ ∈ Z
m, we can recover d by solving the linear equation

system dT = d′ over Z to recover d. Finally, given d we can efficiently find
s′ ∈ Z

n+1
q and α ∈ Zq using basic linear algebra by solving the equation system

s′A′ = z − αd. Given s′ we can set x to s′
n+1. If no solution is found in this

process we set x = 0 by default. Now notice that we can write

z = s′A′ + αd = sA + xa + αd,

where s = (s′
1, . . . , s

′
n). We remark that for a prime modulus q the above analysis

readily applies, whereas for composite moduli we need to take into account
several fringe cases.

Using a variant of the Smoothing Lemma [7] we can finally argue that
(Ar, zr + q2v0,ar + q2v1) only contains information about xv1 + v0, but leaks
otherwise no information about v0, v1.

2.3 Applications to PVW OT

Note that by setting q1 = 2 our OLE protocol realizes exactly the PVW proto-
col [29]. Thus, our new extraction mechanism immediately improves the PVW
protocol by allowing the modulus q to be superpolynomial. Furthermore, we can
combine our extractor with the smoothing technique of Quach [30] to obtain a
UC-secure variant of the PVW protocol with reusable CRS without the correct-
ness and efficiency penalties incurred by Quach’s protocol.

2.4 Extending to Malicious Adversaries

It might seem that Quach’s smoothing technique [30] immediately allows us to
prove security against malicious senders as well. And indeed, by choosing a as
a well-formed LWE sample a = s∗A + e∗ we can extract the sender’s input
v0, v1 from c, c0, c1. However, the issue presents itself slightly different: In the
real protocol the receiver computes and outputs y = �x ·(c1−s∗c)+c0−sc�q1 . If
c, c0, c1 are well-formed this is indeed a linear function in x. However, if c1 − s∗c
or c0 − sc is not close to a multiple of q2, then this is a non-linear function!
But by the functionality of OLE in the ideal model we have to compute a linear
function. Observe that this is not an issue in the case of OT (i.e. q1 = 2), as in
this case any 1-bit input function is a linear function. To overcome this issue for
OLE, we need to deploy a technique which ensures that c, c0, c1 are well-formed.

Two-Round Oblivious Linear Evaluation from Learning with Errors 387

In a nutshell, the idea to make the protocol secure against malicious senders
is to use a cut-and-choose-style approach using a two-round OT protocol6, which
exists under various assumptions [12,29,30]. Using the OT, the receiver is able
to check if the vectors cj = Arj provided by the sender are well-formed. More
precisely, our augmented protocol works as follows:7

1. The receiver computes z = sA + e − xa for a uniform input x (in Sect. 6 we
show how to remove the condition of x being uniform). Additionally, it runs
λ instances of the OT in parallel (playing the role of the receiver), with input
bits (b1, . . . , bλ) ←$ {0, 1}λ chosen uniformly at random; and sends the first
messages of each instance.

2. For j ∈ [λ], the sender (with input (v0, v1)) computes cj = Arj , c0,j =
zrj + q2u0,j and c1,j = arj + q2u1,j for a gaussian rj and uniform (u0,j , u1,j .
It sets M0,j = (rj , u0,j , u1,j) and M1,j = (v̄0,j = v0 + u0,j , v̄1,j = v1 + u1,j)
and inputs (M0,j ,M1,j) into the OT. Moreover, cj , c0,j , c1,j are sent to the
receiver in the plain.

3. If bj = 0, the receiver can check that the values cj , c0,j , c1,j are indeed well-
formed, i.e. it holds cj = Arj , c0,j = zrj + q2u0,j , c1,j = arj + q2u1,j and rj

is short. If bj = 1, the receiver obtains a random OLE u0,j +xu1,j (which can
be obtained by computing y = �x · c1,j + c0,j − scj�q1). This random OLE
instance can be derandomized by computing yj = v̄0,j +xv̄0,j − (u0,j +xu1,j).
If yj coincides at all the positions where bj = 1, then it outputs this value.
Else, it aborts.

Security against an unbounded receiver in the OT-hybrid model essentially
follows the same reasoning as in the previous protocol.

We now argue how we can build the simulator Sim against a corrupted sender.
Sim checks for which of the positions j, the message M0,j is well-formed. If all
but a small number of them are well-formed, Sim proceeds; else, it aborts. Then,
having recovered the randomness (rj , u0,j , u1,j), Sim can extract a pair (v0,j , v0,1)
from (cj , c0,j , c1,j). If (v0,j , v0,1) coincides in at least half of the positions, then
Sim outputs this pair; else, if no such pair exists, Sim aborts.

3 Preliminaries

Throughout this work, λ denotes the security parameter and PPT stands for
“probabilistic polynomial-time”.

Let A ∈ Z
k×n
q and x ∈ Z

n
q . Then ‖x‖ denotes the usual �2 norm of a vec-

tor x. Moreover, ‖A‖ = maxi∈[m]{
∥∥a(i)∥∥} where a(i) is the i-th column of A.

For a vector b ∈ {0, 1}k, we denote its weight, that is the number of non-null
coordinates, by wt(b).

6 The approach is similar in spirit as previous works, e.g. [25].
7 The construction actually works for any OLE scheme that is secure against semi-

honest senders and malicious receivers. In the technical sections we present the
generic construction.

388 P. Branco et al.

If S is a (finite) set, we denote by x ←$ S an element x ∈ S sampled according
to a uniform distribution. Moreover, we denote by U(S) the uniform distribution
over S. If D is a distribution over S, x ←$ D denotes an element x ∈ S sampled
according to D. If A is an algorithm, y ← A(x) denotes the output y after
running A on input x.

A negligible function negl(n) in n is a function that vanishes faster than the
inverse of any polynomial in n.

Given two distributions D1 and D2, we say that they are ε-statistically indis-
tinguishable, denoted by D1 ≈ε D2, if the statistical distance is at most ε.

The function lcm(i1, . . . , ij) between j integers i1, . . . , ij is the smallest inte-
ger a ∈ Z such that a is divisible by all i1, . . . , ij .

Error-Correcting Codes. We define Error-Correcting Codes (ECC). An ECC
over Zq is composed by the following algorithms ECCq′,q,�,k,δ = (Encode,Decode)
such that: i) c ← Encode(m) takes as input a message m ∈ Z

�
q′ and outputs a

codeword c ∈ Z
k
q ; ii) m ← Decode(c̃) takes as input corrupted codeword c̃ ∈ Z

k
q

and outputs a message m ∈ Z
�
q′ if ‖c̃ − c‖ ≤ δ where c ← Encode(m). In this

case, we say that ECC corrects up to δ errors. We say that ECC is linear if any
linear combination of codewords of ECC is also a codeword of ECC.

An example of such code is the primitive lattice of [26] which allows for
efficient decoding and fulfills all the properties that we need. In this code, q = q′

and � < k.
Alternatively, if m ∈ Z

�
q′ for q′t = q for some t ∈ N, we can use the encoding

c = t ·m which is usually used in lattice-based cryptography (e.g., [4]). Decoding
a corrupted codeword c̃ works by rounding �c̃�q′ = �(1/t) · c̃� mod q′.

3.1 Universal Composability

UC-framework [9] allows to prove security of protocols even under arbitrary
composition with other protocols. Let F be a functionality, π a protocol that
implements F and Z be a environment, an entity that oversees the execution
of the protocol in both the real and the ideal worlds. Let IDEALF,Sim,Z be a
random variable that represents the output of Z after the execution of F with
adversary Sim. Similarly, let REALG

π,A,Z be a random variable that represents
the output of Z after the execution of π with adversary A and with access to
the functionality G.

A protocol π UC-realizes F in the G-hybrid model if for every PPT adversary
A there is a PPT simulator Sim such that for all PPT environments E , the dis-
tributions IDEALF,Sim,Z and REALG

π,A,Z are computationally indistinguishable.
In this work, we only consider static adversaries. That is, parties involved in

the protocol are corrupted at the beginning of the execution.
We now present the ideal functionalities that we will use in this work.

CRS functionality. This functionality generates a crs and distributes it between
all the parties involved in the protocol. Here, we present the ideal functionality
as in [29].

Two-Round Oblivious Linear Evaluation from Learning with Errors 389

GCRS functionality

Parameters: An algorithm D.

– Upon receiving (sid,Pi,Pj) from Pi, GCRS runs crs ← D(1κ) and returns
(sid, crs) to Pi.

– Upon receiving (sid,Pi,Pj) from Pj , GCRS returns (sid, crs) to Pj .

OT functionality. Oblivious Transfer (OT) can be seen as a particular case of
OLE. We show the ideal OT functionality below.

FOT functionality

Parameters: sid ∈ N known to both parties.

– Upon receiving (sid, (M0,M1)) from S, FOT stores (M0,M1) and ignores
future messages from S with the same sid;

– Upon receiving (sid, b ∈ {0, 1}) from R, FOT checks if it has recorded
(sid, (M0,M1)). If so, it returns (sid,Mb) to R and (sid, receipt) to S, and
halts. Else, it sends nothing, but continues running.

OLE functionality. We now present the OLE functionality. This functionality
involves two parties: the sender S and the receiver R.

FOLE functionality

Parameters: sid, q, k ∈ N and a finite field F known to both parties.

– Upon receiving
(
sid, (a,b) ∈ F

k × F
k
)

from S, FOLE stores (a,b) and
ignores future messages from S with the same sid;

– Upon receiving (sid, x ∈ F) from R, FOLE checks if it has recorded
(sid, (a,b)). If so, it returns (sid, z = a + xb) to R and (sid, receipt) to
S, and halts. Else, it sends nothing but continues running.

Batch OLE functionality. Here we define a batch version of the functionality
defined above. In this functionality, the receiver inputs several OLE inputs at the
same time. The sender can then input an affine function together with an index
corresponding to which input the receiver should receive the linear combination.
The formal description of the functionality is presented in the full version of the
paper [8].

3.2 Lattices and Hardness Assumptions

Notation. Let B ∈ R
k×n be a matrix. We denote the lattice generated by B by

Λ = Λ(B) = {xB : x ∈ Z
k}.8 The dual lattice Λ∗ of a lattice Λ is defined by

Λ∗ = {x ∈ R
n : ∀y ∈ Λ,x · y ∈ Z}. It holds that (Λ∗)∗ = Λ.

8 The matrix B is called a basis of Λ(B).

390 P. Branco et al.

We denote by γB the ball of radius γ centered on zero. That is

γB = {x ∈ Z
n : ‖x‖ ≤ γ}.

A lattice Λ is said to be q-ary if (qZ)n ⊆ Λ ⊆ Z
n. For every q-ary lattice Λ,

there is a matrix A ∈ Z
k×n
q such that

Λ = Λq(A) = {y ∈ Z
n : ∃x ∈ Z

k
q ,y = xA mod q}.

The orthogonal lattice Λ⊥
q is defined by {y ∈ Z

n : AyT = 0 mod q}. It holds
that 1

q Λ⊥
q = Λ∗

q .
Let ρs(x) be probability distribution of the Gaussian distribution over R

n

with parameter s and centered in 0. We define the discrete Gaussian distribution
DS,s over S and with parameter s by the probability distribution ρs(x)/ρ(S) for
all x ∈ S (where ρs(S) =

∑
x∈S ρs(x)).

For ε > 0, the smoothing parameter ηε(Λ) of a lattice Λ is the least real
number σ > 0 such that ρ1/σ(Λ∗ \ {0}) ≤ ε [27].

Useful Lemmata. The following lemmas are well-known results on discrete Gaus-
sians over lattices.

Lemma 1 ([3]). Let σ > 0 and x ←$ DZn,σ. Then we have that

Pr
[‖x‖ ≥ σ

√
n
] ≤ negl(n).

The next lemma is a consequence of the smoothing lemma [27] and it tells us
that AeT is uniform, when e is sampled from a discrete Gaussian for a proper
choice of parameters.

Lemma 2 ([16]). Let q ∈ N and A ∈ Z
k×n
q be a matrix such that n =

poly(k log q). Moreover, let ε ∈ (0, 1/2) and σ ≥ ηε(Λ⊥
q (A)). Then, for

e ←$ DZm,σ,
AeT mod q ≈2ε uT mod q

where u ←$ Z
k
q .

The partial smoothing lemma tells us that the famous smoothing lemma [27]
still holds even given a small leak.

Lemma 3 (Partial Smoothing [7]). Let q ∈ N, γ > 0 be a real number, A ∈
Z

k×n
q and σ, ε > 0 be such that ρq/σ(Λq(A) \ γB) ≤ ε. Moreover, let D ∈ Z

m×k
q

be a full-rank matrix with Λ⊥
q (D) = {x ∈ Z

n : x · yT = 0,∀y ∈ Λq(A) ∩ γB}.
Then we have that

AxT mod q ≈ε A(x + u)T mod q

where x ←$ DZn,σ and u ←$ Λ⊥
q (D) mod q.

Recall Hadamard’s inequality.

Two-Round Oblivious Linear Evaluation from Learning with Errors 391

Theorem 1 (Hadamard’s inequality). Let Λ ⊆ R
n be a lattice and let

e1, . . . , en be a basis of Λ. Then it holds that

det(Λ) ≤
n∏

i=1

‖ei‖.

The following two lemmas give us an upper-bound on and the value of the
determinant of a two-dimensional lattice Λ⊥

q (a) for a ∈ Z
2
q.

Lemma 4. Let q ∈ N, B ∈ R and a ∈ Z
2
q such that a �= 0. Let e, e′ ∈ Z

2

such that e, e′ ∈ Λ⊥
q (a), ‖e‖ , ‖e′‖ < B and e, e′ are linearly independent over

Z. Then det
(
Λ⊥

q (a)
) ≤ B2.

The proof is presented in the full version of the paper [8].
We will need the following simple Definition and Lemma.

Definition 1. Let q be a modulus. We say that a vector a ∈ Z
n
q is primitive,

if the row-span of of a� is Zq. In other words it holds that every z ∈ Zq can be
expressed as z = 〈a,x〉 for some x ∈ Z

n
q .

Lemma 5. Let q be a modulus an let a ∈ Z
n
q be primitive. Then it holds that

det(Λ⊥(a)) = q.

The proof is presented in the full version of the paper [8].
The following lemma states that, for two-dimensional lattices, we can effi-

ciently find the shortest vector of the lattice.

Lemma 6 ([24]). Let q ∈ N, and let Λ ⊆ Z
2 be a q-ary lattice. There exists an

algorithm SolveSVP that takes as input (a basis of) Λ and outputs the shortest
vector e ∈ Λ. This algorithm runs it time O(log q).

We will also need the following lemma which states that any sufficiently
short vector of the lattice Λ⊥

q (a) must be a multiple of the shortest vector e′ ←
SolveSVP(a).

Lemma 7. Let q ∈ N, B <
√

q, a ∈ Z
2
q be a primitive 2-dimensional vector such

that a �= 0, and e ∈ Z
2 be the shortest vector of the lattice Λ⊥

q (a). If ‖e‖ < B

then for any e′ ∈ Z
2 such that e′ ∈ Λ⊥

q (a) and ‖e′‖ < B we have that e′ = te
for some t ∈ Z, i.e., e′ is a multiple of e over Z.

Proof. We have that e, e′ ∈ Λ⊥
q (a) and ‖e‖ , ‖e′‖ < B. Assume towards

contradiction that e, e′ are linearly dependent over Z. Then by Lemma 4
det

(
Λ⊥

q (ai)
) ≤ B2.

On the other hand, we have that det
(
Λ⊥

q (a)
)

= q by Lemma 5. Then q ≤ B2

and thus
√

q ≤ B, which contradicts the assumption that B <
√

q. We conclude
that e must be a multiple of e′ over the integers.

392 P. Branco et al.

The LWE Assumption. The Learning with Errors assumption was first presented
in [31]. The assumption roughly states that it should be hard to solve a set linear
equations by just adding a little noise to it.

Definition 2 (Learning with Errors). Let q, k ∈ N where k ∈ poly(λ),
A ∈ Z

k×n
q and β ∈ R. For any n = poly(k log q), the LWEk,β,q assumption holds

if for every PPT algorithm A we have

|Pr [1 ← A(A, sA + e)] − Pr [1 ← A(A,y)]| ≤ negl(λ)

for s ←$ {0, 1}k, e ←$ DZn,β and y ←$ {0, 1}n.

Regev proved in [31] that there is a (quantum) worst-case to average-case
reduction from some problems on lattices which are believed to be hard even in
the presence of a quantum computer.

Trapdoors for Lattices. Recent works [16,26] have presented trapdoors functions
based on the hardness of LWE.

Lemma 8 ([16,26]). Let τ(k) ∈ ω
(√

log k
)

be a function. There is a pair of
algorithms (TdGen, Invert) such that if (A, td) ← TdGen(1λ, n, k, q) then:

– A ∈ Z
k×n
q where n ∈ O(k log q) is a matrix whose distribution is 2−k close to

the uniform distribution over Z
k×n
q .

– For any s ∈ Zk
q and e ∈ Z

n
q such that ‖e‖ < q/(

√
nτ(k)), we have that

s ← Invert(td, sA + e).

In the lemma above, td corresponds to a short matrix T ∈ Z
n×n (that is,

‖T‖ < B, for some B ∈ R and B determines the trapdoor quality [16,26]) such
that AT = 0 and T−1 can be easily computed. To invert a sample of the form
y = sA + e, we simply compute yT = sAT + eT = eT. The error vector e can
be easily recovered by multiplying by T−1.

Observe that, if (A, tdA) ← TdGen(1λ, n, k, q), then Λ(A) has no short vec-
tors. That is, for all y ∈ Λ(A), then ‖y‖ > B = q/(

√
nτ(k)) [26]. If this does

not happen, then the algorithm Invert would not output the right s for a non-
negligible number of cases.

4 Finding Short Vectors in a Lattice with a Trapdoor

In this section, we provide an algorithm that, given a matrix A ∈ Z
k×n
q together

with the corresponding lattice trapdoor tdA (in the sense of Lemma 8), we can
decide if a vector a ∈ Z

n
q is close to the row-span of A, i.e. if a is close to the

lattice Λq(A), and even find the closest vector in Λq(A).
To keep things simple, we will only consider the case where q is either a prime

or the product of a “small” prime q1 and a “large” prime q2.
Before providing the algorithm, we will first prove the following structural

result about equation systems of the form y = re(mod q), where y ∈ Z
n
q is

given and r ∈ Zq and a short e ∈ Z
n are to be determined.

Two-Round Oblivious Linear Evaluation from Learning with Errors 393

Lemma 9. Let q be a modulus and let B2 ≤ q. Let y ∈ Z
n
q be a vector such

that there is an index i for which yi ∈ Z
∗
q . Assume wlog that y1 ∈ Z

∗
q . Define

the q-ary lattice Λ as the set of all x = (x1, . . . , xn) ∈ Z
n for which it holds that

−yi/y1 ·x1+xi = 0(mod q) for i = 2, . . . , n. Now let r ∈ Zq and e ∈ Z
n be such

that y = r · e. Then e ∈ Λ. Furthermore, all x ∈ Λ with ‖x‖ ≤ B are linearly
dependent. In other words, if there exists a x ∈ Λ\{0} with ‖x‖ ≤ B, then there
exists a x∗ ∈ Λ such that every x ∈ Λ with ‖x‖ ≤ B can be written as x = t · x∗

for a t ∈ Z.

Proof. First not that if y = r · e for an r ∈ Zq and an e ∈ Z
n, then it holds

routinely that −yi/y1·e1+ei = 0 for all i = 2, . . . , n. We will now show the second
part of the lemma, namely that if there exists an x ∈ Λ\{0} with ‖x‖ ≤ B, then
any such x can be written as x = t · x∗ for a x′ ∈ Λ, which is the shortest non-
zero vector in Λ. Let x = (x1, . . . , xn) ∈ Z

n and define the shortened vectors
xi = (x1, xi) ∈ Z

2. Note that since ‖x‖ ≤ B, it also holds that ‖xi‖ ≤ B. Further
define the lattices Λi ⊆ Z

2 (for i = 2, . . . , n) via the equation −yi/y1x1 +xi = 0,
and observe that xi ∈ Λi. Further let x∗

i = (x∗
1,i, x

∗
i) be the shortest non-zero

vector in Λi. Set x†
1 = lcm(x∗

1,2, . . . , x
∗
1,n) and x†

i = x∗
i · x†

1/x∗
1,i, and set set

x† = (x†
1, . . . , x

†
n). Note that x† ∈ Λ. We claim that x can be written as x = t·x†,

hence x† is the shortest vector in Λ.
Since ‖xi‖ ≤ B it follows by Lemma 7 that we can write xi as xi = ti · x∗

i

for a ti ∈ Z. That is x1 = ti · x∗
1,i and xi = ti · x∗

i . Now, since x∗
1,i divides x1 for

i = 2, . . . , n, it also holds that x†
1 = lcm(x∗

1,2, . . . , x
∗
1,n) divides x1. Thus write

x1 = t† · x†
1 for some t†, and it follows that

t† · x†
i = t† · x∗

i · x†
1/x∗

1,i

= x∗
i · x1/x∗

1,i

= x∗
i · ti

= xi,

for i = 2, . . . , n. We conclude that x = t† · x†.

The proof of Lemma 9 suggest an approach to recover e for y: Compute
the shortest vectors of the two-dimensional lattices Λi and use them to find the
shortest vector e† in Λ. Since e is a multiple of e†, e† also must be a short
solution to y = r†e†.

The following algorithm receives as input a vector y and allows us to find
(r, e) such that re = y mod q and e is a short vector (if such a vector exists).

Construction 1. Let q be a modulus and let n = poly(λ). Let y ∈ Z
n
q be such

that at least one component yi is invertible, i.e. yi ∈ Z
∗
q . Without loss of gener-

ality, we assume that this component is y1.

RecoverErrorq,n(y, B):

– Parse y ∈ Z
n
q as (y1, . . . , yn) and B > 0. If ‖y‖ ≤ B output y.

394 P. Branco et al.

– Since yi ∈ Z
∗
q , compute for all i = 2, . . . , n vi = yi · (y1)−1 over Zq, and set

ai = (vi − 1).
– For i = 2, . . . , n consider the lattice Λi = Λ⊥

q (ai) ⊆ Z
2 and run SolveSVP(Λi)

to obtain e∗
i ∈ Λi. Parse ei = (e∗

1,i, e
∗
i).

– Compute e†
1 = lcm (e1,2, . . . , e1,n).

– For all i = 2, . . . , n, set αi = e†
1/e1,i ∈ Z

– Set e†
i = αi · e∗

i .
– Set e† = (e†

1, . . . , e
†
n) and r† = y1 · (e†

1)
−1 ∈ Zq

– If
∥∥e†∥∥

∞ < B, output (r†, e†). Else, output ⊥.

Lemma 10. Given that B2 ≤ q and the vector y is of the form y = re for some
r ∈ Zq and e ∈ Z

n with ‖e‖∞ ≤ B, and further there exists an yi ∈ Z
∗
q , then

RecoverErrorq,n(y, B) outputs a pair (r†, e†) with y = r† · e† for an r† ∈ Zq and
e† ∈ Z

n with
∥∥e†∥∥ ≤ B. Furthermore, e is a short Z-multiple of e†, i.e. e and

e† are linearly dependent. The algorithm runs in time poly(log q, n).

Proof. We first analyze the runtime of the algorithm. Note that, since Λi has
dimension 2, then SolveSVP runs in time O(log q) by Lemma 6. All other proce-
dures run in time poly(log q, n).

We will now show that algorithm RecoverError is correct. Let

y = r · e ∈ Z
n
q (9)

for an r ∈ Zq and a e ∈ Z
n with ‖e‖∞ ≤ B. We claim that algorithm

RecoverError, on input y outputs an r∗ ∈ Zq and a e∗ ∈ Z
n with ‖e∗‖∞ ≤ ‖e‖∞.

We can expand (9) as the following non-linear equation system:

y1 = r · e1

...
yn = r · en.

Eliminating r via the first equation, using that y1 ∈ Z
∗
q we obtain the equation

system

−y2 · y−1
1 · e1 + e2 = 0

...

−yn · y−1
1 · e1 + en = 0,

i.e. we conclude that any solution to the above problem must also satisfy this
linear equation system. Now write vi = yi/y1 and set ai = (−vi, 1) and ei =
(e1, ei). The above equation system can be restated as for all i = 2, . . . , n that
ei ∈ Λi = Λ⊥(ai).

Since ‖e‖∞ ≤ B, it immediately follows that ‖ei‖∞ ≤ B. Note further that
all vectors ai ∈ Z

2
q are primitive (as their second component is 1). Now, let e∗

i

Two-Round Oblivious Linear Evaluation from Learning with Errors 395

be the shortest (non-zero) vector in Λi. As by the above argument ei ∈ Λi and
‖ei‖∞ < B, it follows by Lemma 7 that ei must be of the form ei = ri · e∗

i for
an ri ∈ Z.

Parsing e∗
i as e∗

i = (e∗
i,1, e

∗
i), the above implies for all i that e1 = ri · e∗

i,1, in
other words e∗

i,1 divides e1. But this means that also the least common multiple
e†
1 of the e∗

i,1 divides e1, i.e. e1 = tie
†
1. Consequently, it holds that |e†

1| ≤ |e1|.
Now set αi = e†

1/e∗
1,i and e†

i = αi ·e∗
i . Since |e†

1| ≤ |e1|, it must hold that αi ≤ ri

(as the linear combination ei = ri · e∗
i is unique) and therefore

∥∥∥e†
i

∥∥∥
∞

≤ ‖ei‖∞.

Now parse e†
i = (e†

1, e
†
i) and set e† = (e†

1, . . . , e
†
n). It follows that

∥∥e†∥∥
∞ ≤ B. By

the above it follows that e† is a B-short solution to the linear equation system.
It follows that r† = y1 · (e†

1)
−1 ∈ Zq provides us a solution to the non-linear

system.

Algorithm RecoverError requires that the vector y has a component in Z
∗
q .

If the modulus q is prime, then the existence of such a component follows from
y �= 0. However, this is generally not the case for composite moduli q. We will
now present an algorithm RecoverError+ which also covers composite moduli of
the form q is of the form q = q1 · q2, where q2 is a “large” prime and q1 is either
1 or a small prime.

Construction 2. Let q be a modulus of the form q = q1 · q2 (where the factors
q1 and q2 are explicitly known) and let n = poly(λ). Let y ∈ Z

n
q .

RecoverError+q,q1,q2,n(y, B):

– If it holds for all i that q1|yi, proceed as follows:
• Compute ȳ = y mod q2 (i.e. ȳ ∈ Z

n
q2)• Compute (r0, e) = RecoverErrorq2,n(ȳ)

• Set r1 = (q1)−1r0
• Let r′

1 be the lifting of r1 to Zq and set r = q1 · r′
1 ∈ Zq.

• Output (r, e)
– Otherwise, if it holds for all i that q2|yi proceed as follows:

• Compute ȳ = y mod q1 (i.e. ȳ ∈ Z
n
q1)• Set ē = (q2)−1 · ȳ ∈ Z

n
q2 (Note that q2 has an inverse modulo q1 as q1 and

q2 are co-prime).
• Lift ē to an e ∈ [−q1/2, q2/2]n ⊆ Z

n for which e mod q1 = ē.
• Set r = q2.
• Output (r, e).

– In the final case, there must exist components yi and yj such that q1 � yi and
q2 � yj. Proceed as follows:

• If q2 � yi it holds that yi ∈ Z
∗
q . Likewise, if q1 � yj it holds that yj ∈

Z
∗
q . If one of these two trivial cases happen compute and output (r, e) =

RecoverErrorq,n(y).
• Otherwise, set yn+1 = yi + yj and y′ = (y, yn+1) ∈ Z

n+1
q . Compute

(r, e′) = RecoverErrorq,n+1(y′). Set e = e′
1,...,n ∈ Z

n. If ‖e‖ ≤ B Output
(r, e), otherwise try this step again for yn+1 = yi − yj and output (r, e).

396 P. Branco et al.

Lemma 11. Let q = q1 · q2, where q1 ≤ 2B is either 1 or a prime and q2 > B2

is a prime. If y is of the form y = r′e′ for some r′ ∈ Zq and e′ ∈ Z
n with

‖e′‖∞ ≤ B, then RecoverError+q,q1,q2,n(y, B) outputs a pair (r, e) with ‖e‖∞ ≤ B
such that y = r · e. The algorithm runs in time poly(log q, n).

Proof. It follows routinely that RecoverError+q,q1,q2,n(y, B) runs in polynomial
time. We will proceed to the correctness analysis and distinguish the same cases
as RecoverError+.

– In the first case, given that y = r′ ·e′ (for a e′ ∈ Z
n with ‖e′‖∞ ≤ B) it holds

that ȳ = r̄′ · e′, where r̄′ = r mod q2. Consequently, as q2 > B2 it holds that
RecoverErrorq2,n(ȳ) will output a pair (r0, e) with ‖e‖∞ ≤ B such that r0 · e
mod q2 = ȳ. Now it holds that

(r · e) mod q2 = q1 · (q1)−1 · r0 · e = r0 · e = ȳ = y mod q2.

Furthermore, it holds that (r ·e) mod q1 = q1 · r′
1 ·e = 0 = y mod q1. Thus,

by the Chinese remainder theorem it holds that r · e = y.
– In the second case, if for all i that q2|yi, then it holds that ‖e‖∞ ≤ q1/2 ≤ B.

Furthermore, it holds that (r · e) mod q1 = (q2 · (q2)−1ē) mod q1 = ē = y
mod q1 and (r ·e) mod q2 = (q2 ·e) mod q2 = 0 = y mod q2. Consequently,
by the Chinese remainder theorem it holds that r · e = y.

– In the third case, if q2 � yi or q1 � yj correctness follows immediately from
the correctness of RecoverError, as in this case either yi or yj is the required
invertible component. Thus, assume that q1|yi but q2 � yi and q2|yj but q1 � yj .
It holds that (yi ±yj) mod q2 = yi mod q2 �= 0 and (yi ±yj) mod q1 = ±yj

mod q1 �= 0. Consequently, yi ± yj ∈ Z
∗
q . Finally given that yi = r · ei and

yj = r · ej with |ei|, |ej | ≤ B, it holds that yi ± yj = r · (ei ± ej) and either
|ei + ej | ≤ B or |ei − ej | ≤ B. Consequently, for one of these two cases
correctness follows from the correctness of RecoverError, as in this case y′ is
of the form y′ = r · e′ for an e′ ∈ Z

n with ‖e′‖∞ ≤ B.

We now present the main result of this section. The algorithm presented in
Construction 3 allows us decide if a given vector a is close to the row-span of A,
if A is generated together with a lattice trapdoor.

Construction 3. Let q = q1 · q2 be a product of primes, (A, tdA) ←
TdGen(1λ, n, k, q) and let RecoverError+ be the algorithm from Construction 2.

InvertCloseVector(tdA,a, B):

– Parse tdA = T ∈ Z
n×n, a ∈ Z

n
q and B > 0. Let C ∈ R be such that ‖T‖ < C.

– Compute z = aT.
– Run Γ ← RecoverError+q,q1,q2,n(z, B′) where B′ = BC

√
n. If Γ =⊥, abort the

protocol. Else, parse Γ = (r†, e†).
– Let t ∈ Z be the smallest integer for which ẽ = t · e†T−1 ∈ Z

n (t is the least
common multiple of the denominators of e†T−1).

Two-Round Oblivious Linear Evaluation from Learning with Errors 397

– Check if ‖ẽ‖ < B and recover x′, r such that x′A + r · ẽ = a (using gaussian
elimination).

– If ‖e‖ > B output ⊥. Else, output (x′, r, ẽ).

Theorem 2. Let C = C(λ) > 0 be a parameter, let q = q1 · q2, where q1 ≤
2BC

√
n is either 1 or a prime and q2 > B2C2n is a prime. Let TdGen be the

algorithm from Lemma 8 and RecoverErrorq,n be the algorithm of Construction
1. Let (A, tdA) ← TdGen(q, k) where A ∈ Z

k×n
q and tdA = T ∈ Z

n×n with
‖T‖ < C. If there are x ∈ Z

k
q and r ∈ Zq such that a = xA + re for some

e ∈ Z
n such that ‖e‖ ≤ B (where e is the shortest vector with this property),

then the algorithm InvertCloseVector outputs (x, r, e).

Proof. Assume now that e is the shortest vector for which we can write a =
xA + re for some x and r. Then it holds that

y = aT = xAT + reT = re′ mod q

where e′ = eT and where the last equality holds because AT = 0 mod q. Note
that ‖e′‖ < ‖e‖ ‖T‖ √

n ≤ BC
√

n = B′.
By Lemma 10, RecoverError(y, B′) will recover a pair (r†, e†) satisfying y =

r† · e†, and e† is the shortest vector with this property. By Lemma 9 it holds
that e′ and e† are linearly dependent, i.e. it holds that e′ = t† ·e†. Thus, it holds
that e = e′T−1 = t† ·e†T−1. Since the t computed by RecoverError(y, B′) is the
shortest integer for which t ·e†T−1 ∈ Z

n, it must hold that t = t†. Thus it holds
that ẽ = e. This concludes the proof.

5 Oblivious Linear Evaluation Secure Against
a Corrupted Receiver

In this section, we present a semi-honest protocol for OLE based on the hardness
of the LWE assumption. The protocol implements functionality FOLE defined in
Sect. 3.

5.1 Protocol

We begin by presenting the protocol.

Construction 4. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let k, n, �, �′, q ∈ Z such that q is as in Theorem 2, n = poly(k log q) and �′ ≤ �, and
let β, δ, ξ ∈ R such that q/C > β

√
n (where C ∈ R is as in Theorem 2), δ > β > 1

and β > q/δ. Additionally, let ECC�′,�,ξ = (ECC.Encode,ECC.Decode) be an ECC
over Zq. We present the protocol in full detail.

GenCRS(1λ):

– Sample A ←$ Z
k×n
q and a ←$ Z

n
q .

– Output crs = (A,a).

398 P. Branco et al.

R1 (crs, x ∈ Zq):

– Parse crs as (A,a).
– Sample s ←$ Z

k
q and an error vector e ←$ DZn,β.

– Compute a′ = sA + e − xa.
– Output ole1 = a′ and st = (s, x).

S

(
crs, (z0, z1) ∈

(
Z

�′
q

)2

, ole1

)
:

– Parse crs as (A,a) and ole1 as a′.
– Sample R ←$ DZn×�,δ.
– Compute C = AR ∈ Z

k×�
q , t0 = a′R + ECC.Encode(z0) and t1 = aR +

ECC.Encode(z1).
– Output ole2 = (C, t0, t1).

R2 (crs, st, ole2):

– Parse ole2 as (C, t0, t1) and st as (s, x) ∈ Z
k
q × Zq.

– Compute y ← ECC.Decode(xt1 + t0 − sC). If y =⊥, abort the protocol.
– Output y ∈ Z

�′
q .

5.2 Analysis

Theorem 3. (Correctness). Let ECC�′,�,ξ be a linear ECC where ξ ≥ √
�βδn.

Then the protocol presented in Construction 4 is correct.

Proof. To prove correctness, we have to prove that R2 outputs z0 + xz1, where
(z0, z1) is the input of S.

We have that

ỹ = xt1 + t0 − sC

= xaR + xẑ1 + a′R + ẑ0 − sAR

= xaR + xẑ1 + (sA + e − xa)R + ẑ0 − sAR

= xẑ1 + ẑ0 + e′

where e′ = eR, ẑ1 ← ECC.Encode(z1) and ẑ0 ← ECC.Encode(z0). Now since
ECC is a linear code over Zq′ , then

xẑ1 + ẑ0 = x · ECC.Encode(z1) + ECC.Encode(z0)
= ECC.Encode(xz1 + z0)

Finally, by Lemma 1, we have that ‖e‖ ≤ β
√

n. Moreover, if r(i) is a column
of R, then

∥∥r(i)∥∥ ≤ δ
√

n. Therefore, each coordinate of e′ has norm at most
‖e‖ · ∥∥r(i)∥∥ ≤ βδn. We conclude that ‖e′‖ ≤ √

�βδn. Since ECC corrects errors
with norm up to ξ ≥ √

�βδn, the output of ECC.Decode(ỹ) is exactly z0 + x1z1.

Two-Round Oblivious Linear Evaluation from Learning with Errors 399

Theorem 4 (Security). Assume that the LWEk,β,q assumption holds, q is as
in Theorem 2, q/C > β

√
n (where C ∈ R is as in Theorem 2), δ > β > 1,

β > q/δ and n = poly(k log q). The protocol presented in Construction 4 securely
realizes the functionality FOLE in the GCRS-hybrid model against:

– a semi-honest sender given that the LWEk,β,q assumption holds;
– a malicious receiver where security holds statistically.

Proof. We begin by proving security against a computationally unbounded cor-
rupted receiver.

Simulator for corrupted receiver: We describe the simulator Sim. Let
(TdGen, Invert) be the algorithms described in Lemma 8 and InvertCloseVector
be the algorithm of Theorem 2.

– CRS generation: Sim generates (A′, tdA′) ← TdGen(1λ, k + 1, n, q) and

parse A′ =
(
A
a

)
where A ∈ Z

k×n
q and a ∈ Z

n
q . Additionally, parse tdA′ as

T ∈ Z
n×n and let C ∈ R be such that ‖T‖ < C. It publishes crs = (A,a)

and keeps tdA′ to itself.
– Upon receiving a message a′ from R, Sim runs (s̃, α, e) ← InvertCloseVector

(tdA′ ,a′, B) where B = β
√

n. There are two cases to consider:
• If s̃ =⊥, then Sim samples t0, t1 ←$ Z

�
q and C ←$ Z

k×�
q . It sends ole2 =

(C, t0, t1).
• Else if s̃ �=⊥, then Sim sets x = s̃k+1 where s̃k+1 is the (k+1)-th coordinate

of s̃. It sends x to FOLE. When it receives a y ∈ Z
�′
q from FOLE, Sim samples

a uniform matrix U′ ←$ Z
(k+1)×�
q , which is parsed as U′ =

(
U
u

)
, and a

matrix R ←$ DZn×�,δ. It sets

C = U

t0 = s̃U′ + αeR + ECC.Encode(y)
t1 = u.

It sends ole2 = (C, t0, t1).

We now proceed to show that the real-world and the ideal-world executions
are indistinguishable. The following lemma shows that the CRS generated in the
simulation is indistinguishable from one generated in the real-world execution.
Then, the next two lemmas deal with the two possible cases in the simulation.

Lemma 12. The CRS generated above is statistically indistinguishable from a
CRS generated according to GenCRS.

Proof. The only thing that differs in both CRS’s is that the matrix A′ =
(
A
a

)

is generated via TdGen in the simulation (instead of being chosen uniformly).
By Lemma 8, it follows that the CRS is statistically indistinguishable from one
generated using GenCRS.

400 P. Branco et al.

Lemma 13. Assume that s̃ =⊥. Then, the simulated execution is indistinguish-
able from the real-world execution.

Proof. We prove that no (computationally unbounded) adversary can distinguish
both executions, except with negligible probability. First, note that, if s̃ =⊥
where (s̃, α, e) ← InvertCloseVector(tdA′ ,a′, B), then for any (α, s, x) ∈ Zq ×
Z

k
q × Zq we have that a′ = sA + xa + αe for an e with ‖e‖ > β

√
n since,

by Theorem 2, only in this case algorithm InvertCloseVector fails to invert a′.

In other words, consider the matrix Â =
(
A′

a′

)
. If a′ is of the form described

above, then the matrix Â has no short vectors in its row-span. That is, there is
no vector v �= 0 in Λq(Â) such that ‖v‖ ≤ β

√
n. This is a direct consequence of

the definition of algorithm InvertCloseVector of Theorem 2.
Hence ρβ(Λq(Â) \ {0}) ≤ negl(λ). Moreover, we have that

ρβ(Λq(Â) \ {0}) ≥ ρ1/β(Λq(Â) \ {0})

≥ ρ1/δ(Λq(Â) \ {0})

≥ ρ1/(qδ)(Λq(Â) \ {0})

= ρ1/δ(qΛq(Â) \ {0})

= ρ1/δ((Λ⊥
q (Â))∗ \ {0})

where the first and the second inequalities hold because δ > β > 1 by hypothesis
and the last equality holds because 1

q Λ⊥
q (Â) = Λq(Â)∗. Since

ρ1/δ((Λ⊥
q (Â))∗ \ {0}) ≤ negl(λ)

then δ ≥ ηε(Λ⊥(Â)), for ε = negl(λ). Moreover n = poly(k log q) by assumption.
Thus the conditions of Lemma 2 are met.

Therefore, we can switch to a hybrid experiment where ÂR mod q is
replaced by Û ←$ Z

(k+2)×� incurring only negligible statistical distance. That
is, ⎛

⎝C
t1
t0

⎞
⎠ =

⎛
⎝A

a
a′

⎞
⎠R +

⎛
⎝ 0

ẑ1
ẑ0 + ẽ

⎞
⎠ ≈negl(λ) Û +

⎛
⎝ 0

ẑ1
ẑ0 + ẽ

⎞
⎠ ≈negl(λ) U

where ẑj is the encoding ECC.Encode(zj) for j ∈ {0, 1}.
We conclude that, in this case, the real-world and the ideal-world execu-

tion (where Sim just sends a uniformly chosen triple (C, t0, t1)) are statistically
indistinguishable.

Lemma 14. Assume that s̃ �=⊥. Then, the simulated execution is indistinguish-
able from the real-world execution.

Proof. In this case, a′ = s̃A + αe for some s̃ ∈ Z
k
1 and e ∈ Z

n such that
‖e‖ < β

√
n. The proof follows the following sequence of hybrids:

Two-Round Oblivious Linear Evaluation from Learning with Errors 401

Hybrid H0. This is the real-world protocol. In particular, in this hybrid, the
simulator behaves as the honest sender and computes

t0 = a′R + ECC.Encode(z0) = s̃A′R + αeR + ECC.Encode(z0) mod q

t1 = aR + ECC.Encode(z1) mod q

C = AR mod q

for some α ∈ Zq \ {0} and where A′ =
(
A
a

)
.

Hybrid H1. This hybrid is similar to the previous one, except that Sim computes
t0 = s̃U′ +αeR+ECC.Encode(z0), C = U and t1 = u+ECC.Encode(z1), where

U′ =
(
U
u

)
←$ Z

(k+1)×�
q .

Claim 1. |Pr [1 ← A : A plays H0] − Pr [1 ← A : A plays H1]| ≤ negl(λ).

To prove this claim, we will resort to the partial smoothing lemma (Lemma
3). Using the same notation as in Lemma 3, consider γ = β

√
n. Then, we have

that
negl(λ) ≥ ρβ(Λq(A′) \ γB) ≥ ρq/δ(Λq(A′) \ γB)

since, by assumption, β > q/δ and where A′ =

⎛
⎝A

a
a′

⎞
⎠.

Hence, by applying Lemma 3, we obtain

A′R mod q ≈negl(λ) A′(R + X) mod q

for X ←$ Λ⊥(e) (here, in the notation of Lemma 3, we consider D = e).
We now argue that A′X mod q ≈negl(λ) U′ for U′ ←$ Z

(k+1)×�
q . Let B ∈

Z
n×k′
q be a basis of Λ⊥(e), that is, eB = 0. Let us assume for the sake of con-

tradiction that A′B does not have full rank (hence, A′X mod q is not uniform
over Z

(k+1)×�
q). Then, there is a vector v ∈ Z

k+1
q such that vA′B = 0.

Since B is a basis of Λ⊥(e), this means that vB ∈ (Λ⊥(e))⊥ = Λ(e). In other
words, vA′ = t · e for some t ∈ Zq. Consequently, we have e = t−1vA′ and thus
e is in the row-span of A′, that is, Λ(A′) has a vector of norm shorter than β

√
n.

However, this happens only with negligible probability over the uniform choice
of A and, thus, we reach a contradiction. We conclude that A′B needs to have
full rank. Now, since X is sampled uniformly from Λ⊥(e), we have that A′X is
uniform over Z

(k+1)×�
q . Thus, A′X mod q ≈negl(λ) U′ where U′ ←$ Z

(k+1)×�
q .

Hybrid H2. This hybrid is similar to the previous one, except that Sim com-
putes t0 = s̃U′ + αeR + ECC.Encode(y), C = U and t1 = u, where U′ =(
U
u

)
←$ Z

k×�
q .

This hybrid corresponds to the simulator for the corrupted receiver.

402 P. Branco et al.

Claim 2. |Pr [1 ← A : A plays H1] − Pr [1 ← A : A plays H2]| ≤ negl(λ).

Since u is uniformly at random, then it is statistically indistinguishable from
u′ −ECC.Encode(z1) where u′ ←$ Z

�
q is a uniformly random vector. Thus, replac-

ing the occurrences of u by u′ − ECC.Encode(z1), we obtain

(C, t0, t1) = (U, s̃U′ + αeR + ECC.Encode(z0),u + ECC.Encode(z1))

≈negl(λ)

(
U, s̃U

′
+ αeR + ECC.Encode(z0),u′

)

=
(
U, s̃−(k+1)U + αeR + ECC.Encode(z0) + xECC.Encode(z1),u′)

= (U,xU + αeR + y,u′)

where U
′

is the matrix whose rows are equal to U′, except for the (k + 1)-th
which is equal to u′ − ECC.Encode(z1), x = s̃k+1 is the (k + 1)-th coordinate of
s̃ and s̃−(k+1) ∈ Z

k
q is the vector s̃ with the (k + 1)-th coordinate removed.

This concludes the description of the simulator for the corrupted receiver.
We now resume the proof of Theorem 4 by presenting the simulator for the
semi-honest sender.

Simulator for corrupted sender. We describe how the simulator Sim proceeds: It
takes S’s inputs (z0, z1) and sends them to the ideal functionality FOLE, which
returns nothing. It simulates the dummy R by sampling a′ ←$ Z

n
q and sending it

to the corrupted sender.
It is trivial to see that both the ideal and the real-world executions are

indistinguishable given that the LWEk,q,β assumption holds.

5.3 Batch OLE

We now show how we can extend the protocol described above in order to imple-
ment a batch reusable OLE protocol, that is, in order to implement the func-
tionality FbOLE described in Sect. 3.

This variant improves the efficiency of the protocol since the receiver R can
commit to a batch of inputs {xi}i∈[k′], and not just one input, using the same
first message of the two-round OLE. Hence, the size of the first message can
be amortized over the number of R’s inputs, to achieve a better communication
complexity.

Construction 5. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let k, n, �, �′, q, k′ ∈ Z such that q is as in Theorem 2 and n = poly((k + k′) log q),
and let β, δ, ξ ∈ R such that q√

nτ(k)
> β (where τ(k) = ω(

√
log k) as in Lemma

8), δ > β > 1, β > q/δ and n = poly((k + k′) log q). Additionally, let ECC�′,�,ξ =
(ECC.Encode,ECC.Decode) be an ECC over Zq.

GenCRS(1λ): This algorithm is similar to the one described in Construction 4
except that crs = (A,a1, . . . ,ak′) where ai ←$ Z

n
q for i ∈ [k′]

Two-Round Oblivious Linear Evaluation from Learning with Errors 403

R1

(
crs, {xj}j∈[k′] ∈ Zq

)
: The algorithm is similar to the one described in Con-

struction 4, except that it outputs ole1 = a′ and st = (s, {xi}i∈[k′]), where

a′ = sA + e −
(∑k′

i=1 xiai

)
.

S

(
crs, (z0, z1) ∈

(
Z

�′
q

)2

, ole1, j ∈ [k′]
)

: This algorithm is similar to the one

described in Construction 4, except that; i) it computes t1 = −ajR; ii) It
computes wi = aiR for all i ∈ [k′] such that i �= j; and iii) it outputs
ole2 = (C, t0, t1, {wi}i
=j , j) (where j corresponds to which xj the receiver R
is supposed to use in that particular execution of the protocol) and {}.
R2(crs, st, ole2): This algorithm is similar to the one described in Construction
4, except that it outputs

z0 + xjz1 = y ← ECC.Decode

⎛
⎝t0 + xjt1 −

⎛
⎝sC +

∑
i
=j

xiwi

⎞
⎠

⎞
⎠ .

It is easy to see that correctness holds following a similar analysis as the one
of Theorem 3. We now state the theorem that guarantees security of the scheme.

Theorem 5 (Security). Assume that the LWEk,β,q assumption holds, q ∈ N

is as in Theorem 2, q/C > β
√

n (where C ∈ R is as in Lemma 8), δ > β > 1,
β > q/δ and n = poly((k + k′) log q). The protocol presented in Construction 5
securely realizes the functionality FbOLE in the GCRS-hybrid model against:

– a semi-honest sender given that the LWEk,β,q assumption holds;
– a malicious receiver where security holds statistically.

The proof of the theorem stated above essentially follows the same blueprint
as the proof of Theorem 4, except that the simulator for the corrupted receiver
extracts the first k′ coordinates {xj}j∈[k′] of x and sends these values to FbOLE .
From now on, it behaves exactly as the simulator in the proof of Theorem 4.
Indistinguishability of executions follows exactly the same reasoning.

Communication Efficiency Comparison. Comparing with the protocol presented
in Construction 4, this scheme achieves the same communication complexity for
the receiver (that is, the receiver message is of the same size in both construc-
tions). On the other hand, the sender’s message now depends on k′.

6 OLE from LWE Secure Against Malicious Adversaries

In this section, we extend the construction of the previous section to support
malicious sender. The idea is to use a cut-and-choose approach via the use of an
OT scheme in two rounds and extract the sender’s input via the OT simulator.

404 P. Branco et al.

6.1 Protocol

Construction 6. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let OLE = (GenCRS,R1,S,R) be a two-round OLE protocol which is secure against
malicious receivers and semi-honest senders and OT = (GenCRS,R1,S,R2) be a
two-round OT protocol. We now present the protocol in full detail.

GenCRS(1λ):

– Run crsOLE ← OLE.GenCRS(1λ) and crsOT ← OT.GenCRS(1λ).
– Output crs = (crsOLE, crsOT).

R1 (crs, x ∈ Zq):

– Parse crs as (crsOLE, crsOT).
– Sample x1, x2 ←$ Zq such that x1 + x2 = x.
– Compute (ole1,1, st1,1) ← OLE.R1(crsOLE, x1) and (ole1,2, st1,2) ←

OLE.R1(crsOLE, x2).
– Additionally, choose uniformly at random b = (b1, . . . , bλ) ←$ {0, 1}λ and

compute (ot1,i, s̃ti) ← OT.R1(crsOT, bi) for all i ∈ [λ].
– Output ole1 = (ole1,1, ole1,2, {ot1,i}i∈[λ]) and st =

(
st1,1, st1,2, {s̃ti}j∈[λ]

)
.

S
(
crs, (z0, z1) ∈ Z

�
q, ole1

)
:

– Parse crs as (crsOLE, crsOT) and ole1 as (ole1,1, ole1,2, {ot1,i}i∈[λ]).
– Sample z1,1, z1,2 ←$ Z

�
q such that z1,1 + z1,1 = z1.

– For all j ∈ [λ], do the following:
• Sample random coins rj,1, r2 ←$ {0, 1}λ.
• Compute ole2,j,1 ← OLE.S(crsOLE, ole1,1, (u0,j,1,u1,j,1); rj,1) for uni-

formly chosen u0,j,1,u1,j,1 ←$ Z
�′
q . Additionally, compute ole2,j,2 ← OLE.S

(crsOLE, ole1,2, (u0,j,2,u1,j,2); rj,2) for uniformly chosen u0,j,2,u1,j,2 ←$

Z
�′
q .

• Set M0,j = (rj,1, rj,2,u0,j,1,u1,j,1,u0,j,2,u1,j,2) and M1,j = (u0,j,1 +
z0,u1,j,1 + z1,1,u0,j,2 + z0,u1,j,2 + z1,2). Compute ot2,j ← OT.S
(crsOT, ot1,j , (M0,j ,M1,j)).

– Output ole2 = {ole2,j,1, ole2,j,2, ot2,j}j∈[λ].

R2(crs, st, ole2):

– Parse ole2 as {ole2,j,1, ole2,j,2, ot2,j}j∈[λ] and st as
(
st1,1, st1,2, {s̃ti}j∈[λ]

)
.

– For all j ∈ [λ], do the following:
• Recover Mbj ,j ← OT.R2(crsOT, s̃ti).
• If bj = 0, parse M0,j = (rj,1, rj,2,u0,j,1,u1,j,1,u0,j,2,u1,j,2). Compute

ole′
2,j,1 ← OLE.S(crsOLE, ole1,1, (u0,j,1,u1,j,1); rj,1)

and
ole′

2,j,2 ← OLE.S(crsOLE, ole1,2, (u0,j,2,u1,j,2); rj,2).

If ole′
2,j,1 �= ole2,j,1 or if ole′

2,j,1 �= ole2,j,1, abort the protocol.

Two-Round Oblivious Linear Evaluation from Learning with Errors 405

• If bj = 1, parse M1,j as (v0,j,1,v1,j,1,v0,j,2,v1,j,2). Compute yj,1 ←
OLE.R2(crsOLE, ole2,j,1, stj,1) and yj,2 ← OLE.R2(crsOLE, ole2,j,2, stj,2).
Compute wj,1 = v0,j,1 +x1ṽ1,j,1 −yj,1 and wj,2 = v0,j,2 +x2ṽ1,j,2 −yj,2.

– Let I1 ⊆ [λ] be the set of indices j such that bj = 1 and let {wj,1,wj,2}j∈I1 .
If w1 = wj,1 = wj′,1, w2 = wj,2 = wj′,2 and w = wj,1 +wj,2 = wj′,1 +wj′,2
for all pairs (j, j′) ∈ I21 then output w. Else abort the protocol.

6.2 Analysis

We now proceed to the analysis of the protocol described above.

Theorem 6 (Correctness). Assume OLE and OT implement the functionali-
ties FOLE and FOT. Then the protocol presented in Construction 6 is correct.

Theorem 7 (Security). Let q = 2ω(log λ). Assume that OLE implements
FOLE against malicious receivers and semi-honest sender and that OT imple-
ments the functionality FOT. The protocol presented in Construction 6 securely
realizes the functionality FOLE in the GCRS-hybrid model against static malicious
adversaries.

The proof of the theorem is presented in the full version of the paper available
at [8].

On the choice of the modulus q. The scheme presented above is only secure if
q is chosen to be superpolynomial in λ. The scheme can be adapted to support
fields of polynomial size by running λ instances of the underlying OLE, instead
of running only two instances.

6.3 Instantiating the Functionalities

We now discuss how we can instantiate the underlying functionalities FOT and
FOLE (secure against semi-honest receivers) used in the protocol described above.

When we instantiate FOT with the OT schemes from [29,30] and FOLE (secure
against semi-honest receivers) with the scheme from Sect. 5, we obtain a mali-
ciously secure OLE protocol with the following properties:

1. It has two rounds;
2. It is statistically secure against a malicious receiver since the the OT of [29,

30] and the scheme from Sect. 5 are statistically secure against a malicious
receiver.

3. Security against a malicious sender holds under the LWE assumption since
both the schemes of [29,30] are secure against malicious senders and the
scheme from Sect. 5 is secure against semi honest senders under the LWE
assumption.

406 P. Branco et al.

Acknowledgment. Pedro Branco thanks the support from DP-PMI and FCT (Por-
tugal) through the grant PD/BD/135181/2017. Part of the work was done while the
author was at CISPA.

Pedro Branco and Paulo Mateus are partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference UIDB/50008/2020 (Insti-
tuto de Telecomunicações via actions QuRUNNER, QUESTS) and Projects Quantum-
Mining POCI-01-0145-FEDER-031826, PREDICT PTDC/CCI-CIF/29877/2017 and
QuantumPrime PTDC/EEI-TEL/8017/2020.

Nico Döttling was supported by the Helmholtz Association within the project
“Trustworthy Federated Data Analytics” (TFDA) (funding number ZT-I- OO1 4).

References

1. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 8

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp.
120–129 (2011)

3. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296(4), 625–636 (1993). http://eudml.org/doc/165105

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

5. Baum, C., Escudero, D., Pedrouzo-Ulloa, A., Scholl, P., Troncoso-Pastoriza, J.R.:
Efficient protocols for oblivious linear function evaluation from ring-LWE. In:
Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 130–149.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6 7

6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, pp. 896–912. Association for Computing Machinery, New York
(2018). https://doi.org/10.1145/3243734.3243868

7. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from
LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 14

8. Branco, P., Döttling, N., Mateus, P.: Two-round oblivious linear evaluation from
learning with errors. Cryptology ePrint Archive, Report 2020/635 (2020). https://
ia.cr/2020/635

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136–145 (2001)

10. de Castro, L., Juvekar, C., Vaikuntanathan, V.: Fast vector oblivious linear evalu-
ation from ring learning with errors. Cryptology ePrint Archive, Report 2020/685
(2020). https://eprint.iacr.org/2020/685

11. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 462–488. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 15

https://doi.org/10.1007/978-3-319-63688-7_8
http://eudml.org/doc/165105
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-030-57990-6_7
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1007/978-3-030-03810-6_14
https://ia.cr/2020/635
https://ia.cr/2020/635
https://eprint.iacr.org/2020/685
https://doi.org/10.1007/978-3-030-26954-8_15

Two-Round Oblivious Linear Evaluation from Learning with Errors 407

12. Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious
transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 768–797. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 26

13. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: efficient
actively secure two-party computation from oblivious linear function evaluation.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, pp. 2263–2276. Association for Computing Machinery,
New York (2017). https://doi.org/10.1145/3133956.3134024

14. Döttling, N., Kraschewski, D., Müller-Quade, J.: Statistically secure linear-rate
dimension extension for oblivious affine function evaluation. In: Smith, A. (ed.)
ICITS 2012. LNCS, vol. 7412, pp. 111–128. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32284-6 7

15. Döttling, N., Kraschewski, D., Müller-Quade, J.: David & Goliath oblivious affine
function evaluation - asymptotically optimal building blocks for universally com-
posable two-party computation from a single untrusted stateful tamper-proof hard-
ware token. Cryptology ePrint Archive, Report 2012/135 (2012). https://eprint.
iacr.org/2012/135

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008).
https://doi.org/10.1145/1374376.1374407

17. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 22

18. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 6

19. Ghosh, S., Simkin, M.: The communication complexity of threshold private set
intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 1

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pp. 307–328 (2019)

21. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: LevioSA:
lightweight secure arithmetic computation. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, pp.
327–344. Association for Computing Machinery, New York (2019). https://doi.org/
10.1145/3319535.3354258

22. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

23. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency
framework for secure neural network inference. In: Proceedings of the 27th USENIX
Conference on Security Symposium, SEC 2018, pp. 1651–1668. USENIX Associa-
tion, USA (2018)

https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1145/3133956.3134024
https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-642-32284-6_7
https://eprint.iacr.org/2012/135
https://eprint.iacr.org/2012/135
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1145/3319535.3354258
https://doi.org/10.1145/3319535.3354258
https://doi.org/10.1007/978-3-642-00457-5_18

408 P. Branco et al.

24. Lempel, M., Paz, A.: An algorithm for finding a shortest vector in a two-
dimensional modular lattice. Theor. Comput. Sci. 125(2), 229–241 (1994). http://
www.sciencedirect.com/science/article/pii/030439759200021I

25. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

26. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

27. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaus-
sian measures. SIAM J. Comput. 37(1), 267–302 (2007). https://doi.org/10.1137/
S0097539705447360

28. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38 (2017)

29. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

30. Quach, W.: UC-secure OT from LWE, revisited. In: Galdi, C., Kolesnikov, V.
(eds.) SCN 2020. LNCS, vol. 12238, pp. 192–211. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-57990-6 10

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC 2005, pp. 84–93. ACM, New York (2005). https://doi.org/
10.1145/1060590.1060603

32. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science (SFCS 1982), pp. 160–164 (1982)

http://www.sciencedirect.com/science/article/pii/030439759200021I
http://www.sciencedirect.com/science/article/pii/030439759200021I
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-030-57990-6_10
https://doi.org/10.1007/978-3-030-57990-6_10
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603

	Two-Round Oblivious Linear Evaluation from Learning with Errors
	1 Introduction
	1.1 Our Results
	1.2 Related Work and Comparison
	1.3 Open Problems

	2 Technical Outline
	2.1 The PVW Protocol
	2.2 An Oblivious Linear Evaluation Protocol Based on PVW
	2.3 Applications to PVW OT
	2.4 Extending to Malicious Adversaries

	3 Preliminaries
	3.1 Universal Composability
	3.2 Lattices and Hardness Assumptions

	4 Finding Short Vectors in a Lattice with a Trapdoor
	5 Oblivious Linear Evaluation Secure Against a Corrupted Receiver
	5.1 Protocol
	5.2 Analysis
	5.3 Batch OLE

	6 OLE from LWE Secure Against Malicious Adversaries
	6.1 Protocol
	6.2 Analysis
	6.3 Instantiating the Functionalities

	References

