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Abstract. Many lattice-based encryption schemes are subject to a very
small probability of decryption failures. It has been shown that an adver-
sary can efficiently recover the secret key using a number of ciphertexts
that cause such a decryption failure. In PKC 2019, D’Anvers et al. intro-
duced ‘failure boosting’, a technique to speed up the search for decryp-
tion failures. In this work we first improve the state-of-the-art multitarget
failure boosting attacks. We then improve the cost calculation of failure
boosting and extend the applicability of these calculations to permit cost
calculations of real-world schemes. Using our newly developed method-
ologies we determine the multitarget decryption failure attack cost for
all parameter sets of Saber and Kyber, showing among others that the
quantum security of Saber can theoretically be reduced from 172 bits to
145 bits in specific circumstances. We then discuss the applicability of
decryption failure attacks in real-world scenarios, showing that an attack
might not be practical to execute.

Keywords: Post-Quantum Cryptography · Lattice-based
cryptography · Decryption failure attacks · Failure boosting

1 Introduction

Lattice-based cryptography is known for its versatility, bringing forth among oth-
ers encryption schemes [4,23], digital signatures [24,26] and fully homomorphic
encryption [16] and identity based encryption [17]. Moreover, lattice-based cryp-
tographic schemes are among the most promising candidates for post-quantum
cryptography, i.e. cryptography that is secure even in the presence of quantum
computers.

In 2016, the United States National Institute of Standards and Technology
(NIST) announced a standardization process with the goal of standardizing one
or more post-quantum encryption and digital signature schemes [1]. July 2020
saw the start of the third round of this process, with 3 out of 4 finalists for
public key encryption being lattice-based (and 2 out of the 5 alternate ‘backup’
schemes).
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To improve efficiency, many lattice-based encryption schemes are not per-
fectly correct, which means that even after a correct execution of the protocol,
it is possible that the decryption fails to retrieve the correct message or key. Such
an event is called a decryption failure, and the ciphertext that caused the failure
is referred to as a failing ciphertext. Three of the lattice-based NIST candidates
are subject to such decryption failures: Saber [10], Kyber [8] and FrodoKEM [25].

While the probabilities of these decryption failures are chosen sufficiently
small to avoid any impact on performance, they have been used to stage attacks
against these schemes. Decryption failure attacks can be roughly divided into two
categories: chosen-ciphertext attacks and valid-ciphertext attacks. The first type
was introduced by Jaulmes and Joux [21] and can efficiently recover the secret
key if it is reused, by crafting specific ciphertexts that fail based on properties
of the secret key. However, this attack type can be prevented by using a chosen-
ciphertext transformation such as the Fujisaki-Okamoto transformation.

The second type of decryption failure attacks remains a threat even in the
presence of chosen-ciphertext security measures. The idea behind this type of
attack is to input a large number of correctly generated ciphertexts in search
for failing ciphertexts. The authors of Kyber [8] noted that it is possible to
do a Grover search for ciphertexts with higher than average failure probability.
D’Anvers et al. [12] showed how to retrieve the secret key based on correctly
generated but failing ciphertexts, and introduced ‘failure boosting’, a frame-
work to speed up the search for failing ciphertexts. This was later extended
in [11] to ‘directional failure boosting’, which introduced a method that further
speeds up the failing ciphertext search when one or more failing ciphertext have
already been found. The latter work studied a simplified lattice-based scheme
and focussed on attacking a single target showing that the cost of a decryption
failure attack is dominated by the cost of finding the first failure. Moreover, they
introduced a simple multitarget attack specifically designed for scenarios where
a maximum number of decapsulations can be performed per target. Around the
same time, Guo et al. proposed specific decryption failure attacks on ss-ntru-
pke [18] and LAC [19].

As opposed to attacks focusing on decryption failures, Bindel and Schanck [7]
showed that correctly generated ciphertexts also provide a small amount of
information about the secret. While the errors in individual message bits
were assumed to happen independently in many NIST submission documents,
D’Anvers et al. [13] showed that these errors are in fact correlated, showing
an underestimation of the decryption failure probability for schemes that use
error correction and thus an overestimation of the security of these schemes.
Dachman-Soled et al. [9] developed a tool to include ‘hints’ into a LWE hard
problem and showed that it can be used to retrieve the secret key using failing
ciphertexts.

Our Contributions: We first improve the state-of-the-art multitarget decryption
failure attack using a levelled approach in Sect. 4, leading to a more efficient
attack especially for schemes with low failure probability. Secondly, we enhance
the techniques to estimate the cost of decryption failure attacks, and extend
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them to include practical schemes such as Saber and Kyber: Sect. 5 points out
three inaccuracies in the directional failure boosting calculation for the simplified
scheme of [11], which are discussed and remedied. Section 6 shows that this tradi-
tional approach of calculating the directional failure boosting cost is not directly
applicable to practical schemes such as Kyber and Saber due to compression of
the ciphertexts and introduces new methods that adapt the traditional direc-
tional failure boosting approach to these real-world schemes. Thirdly, Sect. 7
introduces two additional constraints an attacker might face when mounting a
decryption failure attack, which have not been taken into account in previous
failure boosting attacks. As a result, in Sect. 8 we discuss the impact of decryp-
tion failure attacks on Kyber and Saber.

2 Preliminaries

2.1 Notation

Denote with Zq the ring of integers modulo q, represented in (−q/2, q/2]. Let
Rq be the ring Zq[X]/(XN + 1), with N a power of two, and let Rl1×l2 be the
ring of l1 × l2 matrices over Rq. We denote matrices with bold upper case (e.g.
A) and vectors and polynomials with bold lower case (e.g. b).

Denote with �·� flooring to the nearest lower integer, with �·� rounding to
the nearest integer where ties are rounded upwards, and with �·�q→p dividing by
p/q followed by rounding, i.e. �x�q→p = �p/q ·x�. Let |·| denote taking the abso-
lute value. These notations are extended to vectors, matrices and polynomials
element wise. The l2 norm of a polynomial or vector of integers x is defined as
||x||2 =

√∑
i x

2
i and for a vector of polynomials y as ||y||2 =

√∑
i ||yi||22.

Let x ← χ mean sampling x according to a probability distribution χ, and
let X ← χ(Rl1×l2) denote sampling X ∈ Rl1×l2 with polynomial coefficients
according to the distribution χ. When the values are sampled pseudorandomly
based on a seed r, this is denoted as X ← χ(Rl1×l2 ; r). The uniform distribution
is denoted U .

We write P [E] to denote the probability of an event E. To simplify notation
we denote with P [a] the probability of sampling an element a from a certain
distribution χ when this distribution is clear from the context, i.e. P [x = a | x ←
χ]. Analogous, we denote with E[a] the expected value of an element a as sampled
from its distribution χ when this distribution is clear from the context.

2.2 Cryptographic Definitions

We define a Public Key Encryption scheme (PKE) as a triplet of functions
(KeyGen, Encrypt, Decrypt), where the key generation KeyGen generates a public
key pk and secret key sk, where the encryption Encrypt take a public key pk
and a message m from the message space M to generate a ciphertext ct, and
where the decryption Decrypt retrieves the message m with high probability
from the ciphertext ct using the secret key sk. A PKE is δ-correct if:

E [P [Decrypt(Encrypt(m, pk), sk) �= m]] ≤ δ.
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Similarly, we define a Key Encapsulation Mechanism (KEM) as the functions
(KeyGen, Encaps, Decaps), where KeyGen generates a public key pk and secret
key sk, where Encaps generates a key k from keyspace K and a ciphertext ct
given a public key pk, and where Decaps outputs a key k′ or ⊥ when given a
ciphertext ct and corresponding secret key sk. We say that a KEM is δ-correct
if:

E [P [Decaps(ct, sk) �= k : (ct, k) ← Encaps(pk)]] ≤ δ.

The Module Learning with Errors (Mod-LWE) is a hard mathematical prob-
lem introduced by Langlois and Stehlé [22], as a generalization of the Learning
with Errors (LWE) [26] and Ring Learning with Errors (Ring-LWE) [24] prob-
lems. Given integers N , q and l, the ring Rq = Z[X]/(XN + 1), a distribution
with limited variance χ and a secret element s ∈ Rl

q, samples from the Mod-LWE
distribution LR,N,q,l,χ,s are generated as:

(a,b := aT s + e) (1)

where: a ← U(Rl
q); e ← χ(Rq) (2)

We will specifically focus on the case where N is a power of two. The decision
Mod-LWE problem is then, given k samples, to determine whether they were
generated as Mod-LWE samples from LR,N,q,l,χ,s or from the uniform distribu-
tion U(Rl

q ×Rq). The search Mod-LWE problem consists of recovering the secret
s from k Mod-LWE samples. LWE is a specific instance where Rq = Zq and
Ring-LWE the specific instance where l = 1.

Learning with Rounding (LWR), as introduced by Banerjee et al. [5], is a
similar problem where the error e is replaced with a deterministic error obtained
by rounding. Analogous to the LWE problem, variants of LWR include Ring-
LWR and Mod-LWR. Given two moduli q and p, where q > p, sampling from
the Mod-LWR distribution can be described as:

(a,b := �aT s�q→p) (3)

where: a ← U(Rl
q) (4)

In this paper we will specifically consider the case where p|q. The Mod-LWR
decisional and search problem are defined similar to their respective Mod-LWE
versions, where in the decisional problem an adversary has to distinguish between
sampling from a Mod-LWR or uniform distribution, and where in the search
problem an adversary is tasked to retrieve the secret s from k Mod-LWR samples.

2.3 Lattice-Based Encryption

A generic PKE based on the Mod-LWE or Mod-LWR assumption is given in
Algorithm 1 to 3, where q, p1, p2 and t are scheme dependent integers, where χs

and χe are scheme specific probability distributions with small variance, where
r ∈ R = {0, 1}256 and where the message space M consists of polynomials in
Rq with coefficients {0, 1}.
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Algorithm 1: PKE.KeyGen()

1 A ← U(Rl×l
q )

2 s, e ← χs(R
l×1
q ) × χe(R

l×1
q )

3 b := �As + e�q→p1

4 return (pk = (b,A), sk = s)

Algorithm 2: PKE.Enc(pk = (b,A),
m ∈ M; r)

1 s′, e′ ← χs(R
l×1
q ; r) × χe(R

l×1
q ; r)

2 e′′ ← χe(Rq; r)

3 b′ := �AT s′ + e′�q→p2

4 bq := �b�p1→q

5 v′ := �bT
q s

′ + e′′ + �q/2� · m�q→t

6 return ct = (v′,b′)

Algorithm 3: PKE.Dec(sk = s, ct = (v′,b′))

1 b′
q := �b′�p2→q

2 v′
q := �v′�t→q

3 m′ := ��2/q�(v′
q − b′T

q s)�
4 return m′

This generic protocol can be used to describe Saber, Kyber and the scheme
studied in [11], which was designed to simplify the study of failure boosting and
will be referred to as Katana. The parameters of these schemes are given in
Table 1. For Saber and Kyber we consider the round 3 submissions as described
in [6] and [27] respectively, which are the most recent versions at the time of
writing.

For Kyber, the distributions χs and χe are centered binomial distributions
with limited variance. There is no public key compression (i.e. q = p1) but there
is ciphertext compression (i.e. q > p2 > t). Saber1 similarly uses a centered
binomial distribution for χs, but its distribution χe always returns zero. Saber
does both public key and ciphertext compression (e.g. q > p1 = p2 > t). Katana
is an idealized scheme with Gaussian distributions for χs and χe and without
compression of the public key or ciphertext (i.e. q = p1 = p2 = t).

Table 1. Parameters of Katana, Saber and Kyber. The security is based on the esti-
mates of Albrecht et al. [2,3]

L N q σ(si) σ(ei + ui) P [F ] Classical Quantum

Katana [11] 3 256 8192 2.00 2.00 2−119 2195 2177

Saber [6] 3 256 8192 1.41 2.29 2−136 2189 2172

Kyber768 [27] 3 256 3329 1.00 1.00/1.38† 2−164 2181 2164

† Standard deviation of the error term in the public key and ciphertext respectively

1 Saber has slightly different rounding methods, but this does not impact our study
as the failure condition remains the same.
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2.4 Chosen-Ciphertext Security

To protect against chosen-ciphertext attacks, designers typically convert their
passively secure PKE to an actively secure KEM using a generic transformation
such as a post-quantum variant [20,28] of the Fujisaki-Okamoto [14,15] transfor-
mation. The obtained KEM then has a similar key generation, while the encap-
sulation and decapsulation are constructed as described in Algorithms 4 and 5
respectively. The idea behind this transformation is that the input ciphertext
is checked using a re-encryption of the message, and the ciphertext is rejected
if the input ciphertext is not valid. As a result of this procedure, an adversary
does not learn anything from inputting invalid ciphertexts. However, in case of
a valid ciphertext that leads to a decryption failure, the re-encryption still fails
and we will assume that an attacker is able to recognize such event.

Algorithm 4: KEM.Encaps(pk)

1 m ← U({0, 1}256)

2 (K, r) := G(pk, m)
3 ct := PKE.Enc(pk, m, r)

4 K := H(K, r)
5 return (ct, K)

Algorithm 5: KEM.Decaps(sk, pk, ct,K)

1 m′ := PKE.Dec(sk, ct)

2 (K, r′) := G(pk, m′)
3 ct′ := PKE.Enc(pk, m′; r′)
4 if ct = ct′ then
5 return K := H(K, r′)
6 else
7 return K :=⊥

2.5 Decryption Failures

A decryption failure is an event where one fails to recover message or key, which
can even happen after following the correct protocol. The occurrence of decryp-
tion failures depends on the secret terms s, s′, e, e′, e′′ in combination with the
rounding errors u,u′,u′′, which are defined as:

u := bq − (As + e) (5)

u′ := b′
q − (AT s′ + e′) (6)

u′′ := v′
q − (bT

q s′ + e′′ + m) (7)

Expanding the value of the received message m′, we get:

m′ = ��2/q�(v′
q − b′T

q s)� (8)

= m + ��2/q�((e + u)T s′ − sT (e′ + u′) + (e′′ + u′′))� (9)

and a decryption failure occurs if any coefficient of this error term exceeds the
threshold qt = q/4, which can be formalized as follows:

||(e + u)T s′ − sT (e′ + u′) + (e′′ + u′′)||∞ > qt
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Failure Vectors: Following [12] we define the failure vectors S, C, G as:

S =
( −s
e + u

)
C =

(
e′ + u′

s′

)
G = e′′ + u′′ (10)

which simplifies the failure condition to:

||ST C + G||∞ > qt

Geometric Notation: To streamline notation, we will use the geometric notation
as introduced in [11]. The vector S ∈ Z

lN×1
q is an integer vector representation

of S, obtained by arranging all coefficients of the polynomials of S in a vector.
Additionally, the rotation of a vector of polynomials C is defined as:

C(r) := Xr · C(X−1) mod XN + 1. (11)

Using this notation, the ith coefficient of ST C can be calculated as ST C(i).
An illustration of these concepts is given in Example 1. For more information
about this representation we refer to [11].

Example 1. [11] For a secret S and a ciphertext C in Z
2×1
q [X]/(X3 + 1):

S =
[S0,0 + S0,1X + S0,2X

2

S1,0 + S1,1X + S1,2X
2

]
, C =

[C0,0 + C0,1X + C0,2X
2

C1,0 + C1,1X + C1,2X
2

]

we get the following vectors:

S =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

S0,0

S0,1

S0,2

S1,0

S1,1

S1,2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, C(0) =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

C0,0

−C0,2

−C0,1

C1,0

−C1,2

−C1,1

⎤

⎥⎥⎥⎥
⎥⎥
⎦

C(1) =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

C0,1

C0,0

−C0,2

C1,1

C1,0

−C1,2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

C(3) =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

−C0,0

C0,2

C0,1

−C1,0

C1,2

C1,1

⎤

⎥⎥⎥⎥
⎥⎥
⎦

. . .

Definitions: We will denote with F a decryption failure, and with S a successful
decryption. Fi will denote an error at the ith coefficient of ST C + G, which
happens when the absolute value of this coefficient is bigger than qt. Similarly
Si will denote a successful decryption of the ith coefficient. Using the geometric
notation we can say that an error Fi occurs if:

∣∣∣ST C(i) + Gi

∣∣∣ > qt

We will use the shorthand PF [ct] to denote the failure probability P [F |ct]
for a certain ciphertext ct, which can be formalized as:

PF [ct] =
∑

∀S
P [S] · P [F |ct,S]

Sometimes, we will group ciphertexts in classes, where a class cl bundles all
ciphertexts with certain properties, e.g. cl = {∀ct : ||C||2 = c,G = g}. In this case
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PF [cl] denotes the weighted average of the failure probabilities of all ciphertexts
in the class cl, which can be formalized as:

PF [cl] =
∑

∀ct:ct∈cl

P [ct] · P [F |ct]

3 Failure Boosting Attacks

By exploiting decryption failures, an attacker can mount an attack that retrieves
the secret key. The crux of such an attack is that failing ciphertexts give infor-
mation that can be used to reconstruct the secret key as described in [11,12] and
[9]. In this paper we will focus on the process to obtain these failing ciphertexts
as efficiently as possible.

We specifically target schemes that are IND-CCA secured, which implies that
non-valid ciphertexts are rejected by the decapsulation regardless of the occur-
rence of a decryption failure and thus that they can not give any information. As
such the attack surface is limited to submitting valid ciphertexts and observing
whether a failure occurs.

Failure boosting [12] is a technique to increase the failure probability of valid
ciphertexts submitted for decapsulation. It is a two step process consisting of a
precomputation step and a query step. We will discuss the cost of a failure boost-
ing attack using two metrics: work W and queries Q. Work describes the cost of
precomputation, where 1W is defined as the cost of generating one ciphertext,
while Q describes the total number of decapsulation queries performed.

Precomputation: During precomputation, the adversary performs an offline
search for weak ciphertexts, i.e. valid ciphertexts with a high failure probabil-
ity. This is accomplished by randomly generating ciphertexts until a ciphertext
with failure probability above a certain threshold ft is found. The probability of
finding such a ciphertext can be expressed as follows:

α(ft) =
∑

∀ct:PF [ct]>ft

P [ct]. (12)

Finding a weak failure will take on average α(ft)−1 work, but this can be
sped up quadratically using a quantum computer to

√
α(ft)−1 work.

Querying: Once a weak ciphertext is found, it is submitted for decapsulation
and the adversary observes whether it triggers a decryption failure. A failure
happens with probability β(ft) for a given threshold ft, which can be calculated
as follows:

β(ft) =

∑
∀ct:PF [ct]>ft

P [ct] · PF [ct]
∑

∀ct:PF [ct]>ft
P [ct]

=

∑
∀ct:PF [ct]>ft

P [ct] · PF [ct]

α(ft)
. (13)

The query step can not be sped up using quantum computers as an adversary
has typically no quantum access to the decapsulation oracle. An adversary needs
on average β(ft)−1 queries to obtain one decryption failure.
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Attack Cost: For a given threshold ft, finding a decryption failure costs on
average α(ft)−1β(ft)−1 work and β(ft)−1 queries, which can be reduced to√

α(ft)−1β(ft)−1 work when Grover search is used during precomputation.

3.1 Directional Failure Boosting

Directional failure boosting [11] improves failure boosting and can be used when
at least one other failure has been found. It specifically uses information of
previously found failing ciphertexts to improve the search for new failures. In [11],
this is done by calculating E , an estimate of the direction of the secret S, and
taking this into account in the failure estimation PF [ct, E ].

Directional failure boosting dramatically reduces the cost of finding addi-
tional failures after the first failure has been found. As a result, in a single
target attack the work and number of queries is dominated by finding the first
failure and thus the cost of a single target attack can be approximated as the cost
of finding the first failure. An in depth discussion of directional failure boosting
can be found in [11].

3.2 Estimation of Efficiency

The cost of (directional) failure boosting is described by Eq. 12 and 13, which
requires to sum over all possible ciphertexts. This is clearly infeasible, but can
be simplified by making an approximate failure model and grouping ciphertexts
with similar failure probability. Two such models were presented in the literature:
Gaussian approximation and geometric approximation.

Gaussian Approximation [12]: The Gaussian approximation considers the coef-
ficients of ST C to follow a Gaussian distribution with zero mean and variance
depending on C. This assumption can be used to accurately estimate failure
boosting efficiency, but does not work for directional failure boosting estima-
tions. The calculation method as presented in [12] takes both C and G into
account in the weak ciphertext selection. For more information about the exact
calculation methodology we refer the reader to [12].

Geometric Approximation [11]: The geometric approximation assumes that the
angle φ between ST C(i) behaves as a uniformly random angle in dimension 2Nl.
This approximation corresponds to the assumption that χs and χe are continuous
Gaussian distributions with zero mean. Using the geometric approximation, the
condition on an error at the ith coefficient can be rewritten from:

∣
∣∣ST C(i) + Gi

∣
∣∣ > qt (14)

to:

| ||S||2 · ||C||2 · cos(φ) + Gi| > qt (15)
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In directional failure boosting, the vectors S and C(i) are first expanded in a
part parallel and a part orthogonal to the estimate of the secret E :

∣∣
∣ST

⊥C(i)⊥ + ST

‖ C(i)‖ + Gi

∣∣
∣ > qt (16)

which can be further expanded to:
∣∣∣
∣
||S||2 · ||C||2 · cos(θSE) · cos(θCiE)+
||S||2 · ||C||2 · sin(θSE) · sin(θCiE) · cos(ψ) + Gi

∣∣∣
∣ > qt (17)

with ψ a uniformly random angle in dimension 2Nl − 1. In D’Anvers et al. [11],
the G term was neglected in the calculations. A more detailed explanation of
this technique can be found in [11].

Attack Cost Estimation: Using the above approximations, one can bundle cipher-
texts with similar failure probability in classes cl to reduce the cost of calculating
α(ft) and β(ft). The values of α(ft) and β(ft) can be calculated using the for-
mulas below, with the difference that P [cl] is the probability of a randomly
generated ciphertext belongs to the specific class cl, and PF [cl] the failure prob-
ability of ciphertexts in that class.

α(ft) ≈
∑

∀cl:PF [cl]>ft

P [cl] (18)

β(ft) ≈
∑

∀cl:PF [cl]>ft
P [cl] · PF [cl]

α(ft)
(19)

For example, under the geometric approximation, one bundles all cipher-
texts with similar ||C||2 for failure boosting. Directional failure boosting in the
geometric approximation defines classes based on ||C||2 and the closest angle
maxcosi(θC(i)E) between the rotations of the ciphertext and the estimate of the
secret E .

4 Multitarget Attacks

One of the main constraints in a practical attack is the number of queries that
can be performed. For example, NIST [1] set a maximum of qlimit = 264 decapsu-
lation queries per target that can be performed during an attack. One possibility
to circumvent such limitation is to consider multiple targets, with the goal of
breaking one of these targets.

Such a multitarget attack queries a certain number of targets T (0), where
each target has an individual query limit. The goal is to retrieve the secret key
for at least one of these targets. We assume that multitarget protection is in
place, so that ciphertexts are only valid for one given public key and thus target.
Such multitarget protection is easily obtained by incorporating (a hash of) the
public key in the ciphertext generation, which is the case for Saber and Kyber.
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4.1 Naive Multitarget

A naive variant of the multitarget attack was introduced in [11], which proceeded
as follows: First, find the first failure by performing at most qlimit/2 per target,
which in total implies a maximum of T (0) · qlimit/2 queries. Then, focus on the
target that caused the failure and continue with a single target attack on this
target with query limit qlimit/2.

First note that due to multitarget protection, each generated weak ciphertext
is linked to a specific public key and can only be used for that target. Moreover,
one can assume that given only the public key the adversary has no efficient
way to retrieve information about the secret key S without solving the Mod-
LWE/LWR problem. This implies that he has no efficient way to distinguish
between targets with higher or lower failure probability and thus that generating
a weak ciphertext and querying it has exactly the same failure probability at each
target.

Assuming that successful queries do not contribute any information about the
targets, the failure probability at each target stays the same until a decryption
failure has been found. Therefore, we can say that finding one failure at T (0)

targets with a maximum of qlimit/2 queries per target has the same cost as
finding one failure at one target with a maximum of T (0) · qlimit/2 queries, so
that the cost of finding the first failure in the naive multitarget attack can be
described with:

√
α−1
0 β−1

0 work, and β−1
0 queries, (20)

under the condition that:

β−1
0 < T (0) · qlimit/2, (21)

where αi and βi denote the optimal values for α(ft) and β(ft) for the ith failure,
which can be determined by selecting the value of ft that optimally reduces the
work while fulfilling the query limit constraint.

To estimate the cost of finding the follow-up failures, we can use the approx-
imation from [11], which states that in a single target attack the attack cost is
dominated by finding the first failure. In this case, the first failure of the single
target attack is the second overall failure so that the cost of finding the follow
up failures can be calculated as:

√
α−1
1 β−1

1 work, and β−1
1 queries, (22)

under the condition that:

β−1
1 < qlimit/2, (23)

One can easily see that the total number of queries per target is always under
qlimit in this scenario.
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4.2 Levelled Multitarget

When the cost of finding the second failure is the dominant factor, this naive
multitarget attack can be improved using a levelled approach. Notice that the
naive multitarget attack essentially reduces the cost of the attack by relaxing the
query limit constraint for finding the first failure. To reduce the cost of finding
the second failure, we can similarly focus on multiple targets to relax the query
constraint. However, this requires the attacker to find multiple failing ciphertexts
in the first step of the attack.

More specifically, in the first phase, the attacker aims at obtaining T (1) tar-
gets using under qlimit/3 queries per target (which is a total of T (0) · qlimit/3
queries). This has a cost of:

T (1)
√

α−1
0 β−1

0 work and T (1)β−1
0 queries. (24)

Under the condition that:

T (1)β−1
0 < T (0) · qlimit/3. (25)

The attacker can then use T (1) · qlimit/3 queries to find the next failure, which
has a cost of:

√
α−1
1 β−1

1 work and β−1
1 queries. (26)

Under the condition that:

β−1
1 < T (1) · qlimit/3. (27)

(a) Naive multitarget[11] (b) Levelled multitarget

Fig. 1. Example of multitarget attacks on Katana, with 264 targets and maximum
264 queries. The cost of finding one failure is indicated with x. The cost of finding
T (1) failures using failure boosting in the first phase is given by the blue dot, and the
corresponding number of queries can be found as β−1 where β is the x-axis value of
this point. In the naive multitarget attack the cost is dominated by finding the second
failure in under 264 queries. In the levelled approach the cost of the two phases is
equalized.



Multitarget Decryption Failure Attacks 15

Table 2. Comparison of the naive and levelled multitarget attack. Note that α and β
values are not the same between both methods as the difference in query limits leads
to a different optimal ft.

Naive multitarget [11] Levelled multitarget [ours]

work queries work queries

first failure
√

α−1
0 β−1

0 T (0) · qlimit/2 T (1)
√

α−1
0 β−1

0 T (0) · qlimit/(3T (1))†

second failure
√

α−1
1 β−1

1 qlimit/2
√

α−1
1 β−1

1 T (1) · qlimit/3

follow up failures negligible –
√

α−1
2 β−1

2 qlimit/3
† per failure, total query limit is T (0) · qlimit

Once a second failure is found for a given target, the attack continues with a
single target attack on that target using at most qlimit/3 queries. An overview of
this levelled multitarget approach is given in Table 2. Note that the query limit
per phase is chosen so that the total number of queries at each target over all
failures is always under qlimit. Figure 1 gives a graphical comparison of the naive
and multitarget attack on Katana.

In principle it is possible to extend this approach to more levels: if the third
failure would be more expensive than the previous two failures one can target
T (2) targets to reduce the cost of finding the third failure. However, we did
not find a situation in which this was applicable, as finding the third failure is
typically much cheaper than finding previous failures.

5 Better Failure Boosting Estimation

The calculation of the work necessary to perform a multitarget attack is not
straightforward. Especially the cost of directional failure boosting is expensive
to determine and requires multiple approximations to be able to practically
compute. D’Anvers et al. [11] introduced crude approximations to reduce the
computational cost of this calculation.

Apart from the geometric approximation, as explained in Subsect. 3.2, they
did not consider G, simplified the distribution of ||S||2 into its average and used
a simplified formula for the calculation of θSE . Additionally, there is a weak key
effect in multitarget attacks which has not been addressed before2.

These simplifications are justifiable in the single target attack, where the cost
of the second failure is significantly lower than the cost of the first failure. How-
ever, in multitarget attacks, where the second failure cost might be dominant,
it is important to have an accurate estimation of the cost to find this failure.
We will first detail the weak key effect, then we will improve the estimation of
cos(θSE) and finally we will consider the distribution of ||S||2 and G. We will
clearly compare our improvements with the state-of-the-art. In this section we
2 Guo et al. [18] have used the terminology (‘weak keys’) in their attack, but this refers

to public keys that are vulnerable against specific types of ciphertexts.
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focus on the case where χs = χe and schemes without rounding, while in Sect. 6
we will extend the estimation techniques for more general schemes, including the
NIST finalists Kyber and Saber.

5.1 Weak Keys

Some targets might have secret keys that are more prone to decryption failures,
which we will call weak keys. It does not seem possible to efficiently identify
targets with weak keys from their public key. However, in a multitarget attack,
weak key targets are more prone to produce a failing ciphertext. This means
that in the second phase of the attack, when looking for the second failure of
a certain target, this target will have higher failure probability compared to a
single target attack.

In particular, the norm of the secret ||S||2 determines the failure probability
of a given target. We will show that the a posteriori distribution of ||S||2, given
a multitarget attack where in the first phase T (0) targets are considered, and
with failure boosting threshold ft can be approximated using:

P [||S||2] · T (0)P [F | ||S||2, ft ]
P [F | ||S||2, ft ] + (T (0) − 1) · P [F | ft ]

(28)

To derive this formula, we first introduce the notation F (t, q) to describe the
event where the overall first failure occurs at target t on the qth query. Similarly,
we define S(t, q) as a success at target t on the qth query. F (t, ·) signifies the
event where the first failure occurs at target t, regardless of at which query this
happens. Without loss of generality we denote the target where the first failure
occurs as target t = 0, which implies that ||S||2 denotes the norm of S for the 0th

target. To simplify the derivation, we will assume that the ith query is performed
at all targets at the same time, after which they are all checked for decryption
failures. We can then write:

P [||S||2 | F (0, ·), ft] (29)

= P [||S||2 | ft] · P [F (0, ·) | ||S||2, ft]
P [F (0, ·) | ft]

(30)

≈ T (0) · P [||S||2] · P [F (0, ·) | ||S||2, ft] (31)

where the latter step uses the fact that a failure occurs with equal probability at
all T (0) targets without extra information about the norms ||S||2 of the targets.

The term P [F (0, ·) | ||S||2, ft] can then be extended by explicitly writing it
out as a sum over the probabilities of failures at each query round:

P [F (0, ·) | ||S||2, ft] (32)

=
∞∑

q=0

P

[
F (t, q), S(i, j)

∀i ∈ {0, . . . , T (0) − 1}, j ∈ {0, . . . , q} : (i, j) �= (t, q)

∣
∣∣∣ ||S||2, ft

]
(33)

=
∞∑

q=0

P

[
F (0, q), S(0, j)

∀j ∈ {0 . . . , q − 1}
∣∣∣∣ ||S||2, ft

]
· P

[
S(1, j)

∀j ∈ {0 . . . , q}
∣∣∣∣ ft

]T (0)−1

(34)
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The failure probability of a target is reduced slightly when successful ciphertexts
are found. However, this effect is small, as the information embedded in success-
ful ciphertexts is limited. We therefore assume that the failure probability of
ciphertexts does not change when finding successful ciphertexts. This allows us
to simplify the expression as:

≈
∞∑
q=0

P [F | ||S||2, ft ] · P [S | ||S||2, ft ]q · P [S | ft ]
(T (0)−1)(q+1)

≈ P [F | ||S||2, ft ] · P [S | ft ]
(T (0)−1)

∞∑
q=0

(
P [S | ||S||2, ft ] · P [S | ft ]

(T (0)−1)
)q

(35)

≈ P [F | ||S||2, ft ] · P [S | ft ]
(T (0)−1)

1 − P [S | ||S||2, ft ] · P [S | ft ]
(T (0)−1)

≈ P [F | ||S||2, ft ]
P [F | ||S||2, ft ] + (T (0) − 1) · P [F | ft ] (36)

where Eq. 35 is an infinite geometric sum, and Eq. 36 takes a Taylor approxima-
tion where only the highest order terms are kept. We will discuss the effect of
weak keys in the next section, after its effects on θSE have been addressed.

5.2 Calculating θSE

The angle θSE can be estimated using the simplified failure equation. Assuming
a failure occurred at the ith location we know:

ST C(i) > qt, (37)

which can be rewritten as:

cos(θSE) >
qt

||S||2||C||2 . (38)

The fact that uniform angles in high dimensions strongly tend to orthogonality
can be used to approximate this to:

cos(θSE) =
qt

||S||2||C||2 . (39)

As such, we can estimate the expected value of cos(θSE) by assuming indepen-
dence between E [||S||2] and E [||C||2] as:

E [cos(θSE)] =
qt

E [||S||2]E [||C||2] . (40)

In [11], the values of E [||S||2] and E [||C||2] were estimated over the original
a priori distribution. However, failure boosting increases the expected norm of
||C||2 and the weak key effect increases the expected norm of E [||S||2]. Both
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effects will decrease E [cos(θSE)] and therefore diminish the efficiency of direc-
tional failure boosting.

We take these effects into account by considering the a posteriori distributions
as follows:

E [||C||2] =
∑

||C||2
||C||2 · P [||C||2 | ft] (41)

E [||S||2] =
∑

||S||2
||S||2 · P [||S||2 | F (0, ·), ft] (42)

Note that our expression of E [cos(θSE)] is now significantly better than in pre-
vious works, but still not exact for the following reasons: First, E [||C||2] will be
slightly higher than calculated above as failures happen with higher probabil-
ity for higher values of ||C||2. However, this effect is limited as failure boosting
pushes ||C||2 to high values where the tails decrease rapidly. Therefore the val-
ues of ||C||2 will be strongly focussed around the cut-off value. Secondly, the
independence assumption used to obtain Eq. 40 is not exact. Nevertheless, the
approximation is good enough for our purposes.

Comparison to State-of-the-art: Figure 2a shows the effect of including the weak
key effect and improving the cos(θSE) estimation. On one hand, one can see
that the weak key reduces the failure probability, which is the leftmost point
on the curve, from 2−115 to 2−107. On the other hand, the increase in E [||S||2]
and E [||C||2] and subsequent reduction of E [cos(θSE)] reduces the effectiveness
of directional failure boosting, an effect that becomes more pronounced with
higher precomputation.

Fig. 2. Effect of inclusion of weak keys and ||S||2 and G on Katana. The red cross
indicates the failure probability of Katana (or equally the cost of finding a failure when
random guessing). (Color figure online)
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5.3 Inclusion of S and G
In [11], the distributions of ||S||2 and G were simplified to their mean to speed up
calculations. However, the side-effect of this is an underestimation of the failure
probability and the attack efficiency. In our calculations, we take into account
the distribution of both ||S||2 and G.

Failure Boosting: Failure boosting calculations under the geometric approxima-
tion can be calculated by making classes based on ||C||2 and using Eqs. 18 and
19 to determine α(ft) and β(ft).

Including S and G does not change the ciphertext probability P [cl], but does
impact the failure probability PF [cl] needed to calculate α(ft) and β(ft). A more
exact expression of this failure probability that takes into account ||S||2 and G
can be derived as follows:

PF [cl] = PF [||C||2] (43)

=
∑

||S||2
P [||S||2] · P [F | ||C||2, ||S||2] (44)

=
∑

||S||2
P [||S||2] ·

(

1 −
N−1∏

i=0

(1 − P [Fi | ||C||2, ||S||2])
)

(45)

=
∑

||S||2
P [||S||2] ·

(

1 −
N−1∏

i=0

(

1 −
∑

Gi

P [Gi] · P [Fi | ||C||2, ||S||2,Gi]

))

(46)

where P [Fi | ||C||2, ||S||2,Gi] can be calculated following the geometric approxi-
mation of Eq. 15 as:

P [Fi | ||S||2, ||C||2,Gi] =
P [cos(φ) > qt−Gi

||S||2·||C||2 | ||C||2, ||S||2,Gi]

+P [cos(φ) < −qt−Gi

||S||2·||C||2 | ||C||2, ||S||2,Gi]
, (47)

and where φ can be modelled as a uniformly random angle in dimension 2Nl.

Directional Failure Boosting: The procedure for directional failure boosting
is more complicated, as one should make a list over all values of ||C||2 and
maxcosi(θC(i)E). As before, the calculation of P [cl] is the same as in [11], but the
calculation of PF [cl] additionally should take into account ||S||2 and G.

Without loss of generality we will assume that the highest value of cos(θC(i)E)
occurs at i = 0, so that maxcosi(θC(i)E) = cos(θC(0)E). Similar to the derivation
of Eq. 46, the failure probability can then be calculated as:
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PF [cl] = PF [||C||2, θC(0)E ] (48)

=
∑

||S||2
P [||S||2] · P [F | ||C||2, θC(0)E , ||S||2] (49)

=
∑

||S||2
P [||S||2] ·

(
1 −

N−1∏

i=0

(
1 − P [Fi | ||C||2, θC(0)E , ||S||2]

)
)

(50)

≈
∑

||S||2
P [||S||2] ·

(
1 −

( (
1 − P [F0 | ||C||2, θC(0)E , ||S||2]

) ·∏N−1
i=1

(
1 − P [Fi | ||C||2, cos(θC(i)E) ≤ cos(θC(0)E), ||S||2]

)
))

(51)

≈
∑

||S||2
P [||S||2]· (52)

⎛

⎝1 −
⎛

⎝

(
1 − ∑

G0
P [G0] · P [F0 | ||C||2, θC(0)E , ||S||2, G0]

)
·

∏N−1
i=1

(
1 − ∑

Gi
P [Gi] · P [Fi | ||C||2, cos(θC(i)E) ≤ cos(θC(0)E), ||S||2, Gi]

)

⎞

⎠

⎞

⎠

P [Fi | ||C||2, θC(i)E , ||S||2,Gi] can be estimated using the geometric assump-
tion and Eq. 17 as:

P [cos(ψ) >
qt−Gi−||S||2·||C||2·cos(θSE)·cos(θ

C(i)E
)

||S||2·||C||2·sin(θSE)·sin(θ
C(i)E

) | ||S||2, ||C||2,Gi, cos(θC(i)E)]

+P [cos(ψ) <
−qt−Gi−||S||2·||C||2·cos(θSE)·cos(θ

C(i)E
)

||S||2·||C||2·sin(θSE)·sin(θ
C(i)E

) | ||S||2, ||C||2,Gi, cos(θC(i)E)]

with ψ a uniformly random angle in dimension 2Nl − 1.
The value P [Fi | ||C||2, cos(θC(i)E) ≤ cos(θC(0)E), ||S||2,Gi] can be calculated

by taking a weighted average over all θC(i)E values for which cos(θC(i)E) ≤
cos(θC(0)E) as:

P [Fi | ||C||2, cos(θC(i)E) ≤ cos(θC(0)E), ||S||2,Gi] (53)

=
∑

∀θ
C(i)E

:cos(θ
C(i)E

)≤cos(θ
C(0)E

)

P [θC(i)E ] · P [Fi | ||C||2, θC(i)E , ||S||2,Gi] (54)

Approximate Distributions. Note that both the failure boosting and direc-
tional failure boosting methods require to loop over all possible values of
||C||2, θC0E , ||S||2,Gi, which is a costly process. To reduce calculation time, these
distributions are approximated using a subset of points in the distribution. We
use 200 points to approximate ||C||2 and θC(i)E , 100 points to approximate ||S||2
and a maximum of 40 points to approximate Gi.

Comparison to state-of-the-art: From Fig. 2b, we see that the method that does
not take into account ||S||2 and G does indeed underestimate the failure probabil-
ity. This effect will become larger for realistic schemes such as Saber and Kyber,
who have a larger variance of the distribution of G. Our new methodology that
takes ||S||2 and G into account does match with the reference calculation using
the Gaussian approximation, which further confirms our method. Note that this
figure presents failure boosting (for the first failure), and that the Gaussian
approximation can not be used for directional failure boosting.
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6 Dealing with Uneven Distributions

The cost estimation as described above can not directly be used for calculation of
practical schemes that use rounding, such as Kyber or Saber, or more generally
schemes that have uneven distributions for the coefficients of S and C. The main
reasons are twofold: first, when the distributions of s and e do not have the
same variance, values of ||e′+u′||2 and ||s′||2 have different impact on the overall
failure probability. Therefore, using ||C||2 as a predictor of the failure probability,
as used in the traditional calculation of direction failure boosting [11], does not
give accurate results. Secondly, when rounding occurs, the distributions of e
and e′ are typically not centered and thus the assumption of them following a
uniform distribution is not valid.

Note that the Gaussian approximation which is used for the failure boosting
(first failure) does not have these problems. Unfortunately it does not seem
possible to port the Gaussian assumption to directional failure boosting due to
the skew introduced in the distribution of ST C when directional failure boosting
is applied.

The problems described above have a significant effect on the accuracy of
the failure boosting estimation (blue) as can be seen from Fig. 3. First, one can
see that performing no precomputation (i.e. the leftmost point on the curve,
which corresponds to the failure probability before failure boosting) does not
correspond to the actual failure probability by a large margin. As an additional
check we plotted the Gaussian estimation (green) for finding the first failure,
which clearly further shows the discrepancy between both estimations. Looking
ahead, we also plotted the geometric-uneven estimate (orange) which will be
developed in this section.

(a) Failure boosting
(first failure)

(b) Directional failure boosting
(second failure)

Fig. 3. Comparison of estimated cost of (directional) failure boosting for Saber. Geo-
metric refers to the method of Sect. 5, while geometric-uneven indicates the improved
method of Sect. 6 Red cross indicates failure probability (when no precomputation is
performed). Gaussian estimation is given for failure boosting as a reference. (Color
figure online)
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(a) Failure boosting
(first failure)

(b) Directional failure boosting
(second failure)

Fig. 4. Comparison of estimated cost of (directional) failure boosting for Katana. Geo-
metric refers to the method of Sect. 5, while geometric-uneven indicates the improved
method of Sect. 6 Red cross indicates failure probability (when no precomputation is
performed). Gaussian estimation is given for failure boosting as a reference. (Color
figure online)

6.1 Uneven Distributions

When the variance of the coefficients of s and e+u differs, the impact of ||e′+u′||2
and ||s′||2 varies and they should be considered separately instead of combined
in the term ||C||2. For sake of brevity, we will use the following abbreviations:

C0 = e′ + u′ S0 = −s
C1 = s′ S1 = e + u (55)

Uneven Failure Boosting: Instead of grouping ciphertexts based on ||C||2, cipher-
texts will be grouped in classes based on ||C0||2 and ||C1||2. The probability of
a class P [cl] can be easily calculated as P [||C0||2] · P [||C1||2], where the distribu-
tion of the norms can be calculated exhaustively. The failure probability PF [cl]
becomes more involved to calculate.

Similar to the approach of Subsect. 5.3, we first include the effect of S and
G, with the difference that we split ||S||2 into ||S0||2 and ||S1||2 which leads to:

PF [cl] = PF [||C0||2, ||C1||2] = (56)

∑

||S0||2

∑

||S1||2

⎛

⎝
P [||S0||2] · P [||S1||2]·(
1 −

(
1 − ∑

Gi
P [Gi] · P [Fi | ||C0||2, ||C1||2, ||S0||2, ||S1||2, Gi]

)N
)

⎞

⎠

To find an expression for P [Fi | ||C0||2, ||C1||2, ||S0||2, ||S1||2,Gi] we go back
to the failure term which we rewrite as:

ST C + Gi (57)

= ST
0 · C0 + ST

1 · C1 + Gi (58)
= ||S0||2 · ||C0||2 · cos(φ0) + ||S1||2 · ||C1||2 · cos(φ1) + Gi (59)
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Under the geometric assumption, the distribution of φ0 and φ1 can be approx-
imated as angles from the uniform angle distribution in dimension lN . This
allows us to calculate the error probability at the ith location for given values of
cond1 := (||S0||2, ||S1||2, ||C0||2, ||C1||2,Gi) as:

P [F | cond1] (60)
= P [| ||S0||2 · ||C0||2 · cos(φ0) + ||S1||2 · ||C1||2 · cos(φ1) + Gi| > qt | cond1] (61)

=
∑

φ0

P [φ0]

(
P [cos(φ1) > qt−Gi−||S0||2·||C0||2·cos(φ0)

||S1||2·||C1||2 | cond1]+

P [cos(φ1) < −qt−Gi−||S0||2·||C0||2·cos(φ0)
||S1||2·||C1||2 | cond1]

)

(62)

Uneven Directional Failure Boosting: Directional failure boosting not only con-
siders ||C0||2 and ||C1||2, but also the angle between the ciphertext and the esti-
mate E . Similar to splitting ||C||2 these angles and the estimate E also should
be split. We will denote with E0 the estimation of the direction of the secret S0

and with E1 the estimation of the direction of the secret S1. The angles θCi
0E0

and θCi
0E0

denote the angle between C(i)
0 and E0 and between C(i)

1 and E1

respectively.
Ciphertext are then combined in classes based on both the norms and the

angles. Ideally one would take the maximal angle out of the lN available angles
similar to [11]:

cl :=
(
||C0||2, ||C1||2,max

i
cos(θCi

0E0
),max

i
cos(θCi

1E1
)
)

.

However, for computational efficiency we only consider failures F0 at the zeroth

coefficient, so that the classes are defined by:

cl :=
(
||C0||2, ||C1||2, θC0

0E0
, θC0

1E1

)
.

The failure probability is under the same approximation equal to:

PF [cl] ≈ P [F0|cl]
For the calculation of α(ft) and β(ft), the class probability P [cl] can be sim-

plified using independence between the class properties as: P [||C0||2] · P [||C1||2] ·
P [θC0

0E0
] · P [θC0

1E1
]. For the failure probability PF [cl] we first include the influ-

ence of ||S0||2, ||S1||2 and G0 as:

PF [cl] ≈ P [F0 | cl] (63)

=
∑

||S0||2

∑

||S1||2

∑

G0

(
P [||S0||2] · P [||S1||2] · P [G0]·
P [F0 | ||C0||2, ||C1||2, ||S0||2, ||S1||2,G0, θC0

0E0
, θC0

1E1
]

)
,

and further denoting cond2 :=
(
||C0||2, ||C1||2, ||S0||2, ||S1||2,G0, θC0

0E0
, θC0

1E1

)
,

this becomes:

=
∑

||S0||2

∑

||S1||2

∑

G0

P [||S0||2] · P [||S1||2] · P [G0] · P [F0 | cond2]. (64)
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To find an expression for the error probability P [F0 | cond2], we rewrite the
failure term as follows:

ST C(0) + G0 (65)

= ST

0 C(0)
0 + ST

1 C(0)
1 + G0 (66)

= ST

0,‖C(0)
0,‖ + ST

0,⊥C(0)
0,⊥ + ST

1,‖C(0)
1,‖ + ST

1,⊥C(0)
1,⊥ + G0 (67)

= ||S0||2||C0||2 cos(θS0E0) cos(θC0
0E0

) + ||S0||2||C0||2 sin(θS0E0) sin(θC0
0E0

) cos(ψ0)

+ ||S1||2||C1||2 cos(θS1E1) cos(θC0
1E1

) + ||S1||2||C1||2 sin(θS1E1) sin(θC0
1E1

) cos(ψ1)

+ G0, (68)

with θS0E0 and θS1E1 the angles between S0 and E0, and S1 and E1 respectively.
Following the geometric approximation, ψ0 and ψ1 are uniformly random angles
in dimension Nl − 1. The failure probability can then be calculated as:

P [F0 | cond2] = (69)

∑

ψ0

P [ψ0]

⎛

⎝
P [cos(ψ1) > qt−G0−w

||S1||2||C1||2 sin(θS1E1 ) sin(θC0
1E1

) | cond2, ψ0]

+P [cos(ψ1) < −qt−G0−w
||S1||2||C1||2 sin(θS1E1 ) sin(θC0

1E1
) | cond2, ψ0]

⎞

⎠ ,

where:

w =

⎛

⎝
||S1||2||C1||2 cos(θS1E1) cos(θC0

1E1
)

+||S0||2||C0||2 cos(θS0E0) cos(θC0
0E0

)
+||S0||2||C0||2 sin(θS0E0) sin(θC0

0E0
) cos(ψ0)

⎞

⎠ . (70)

6.2 Meet-in-the-middle Speedup

While the uneven directional failure boosting method is much more precise for
schemes with uneven distributions than the original method of [11], it is compu-
tationally very demanding. The prescribed calculation in Subsect. 6.1 sums over
the distributions of C0, C1, S0, S1, G0, θC0

0E0
, θC0

1E1
and ψ0. Even when these

distributions are approximated, the trade-off between computational cost and
accuracy remains unsatisfactory. In this section we will introduce a meet-in-the-
middle approach to reduce the computational cost of this method.

From Eq. 68, we can see that the failure equation can be written as:

x0 cos(ψ0) + x1 cos(ψ1) + z + G0 (71)

where:

x0 =||C0||2 · ||S0||2 · sin(θC0
0E0

) · sin(θSE0) (72)

x1 =||C1||2 · ||S1||2 · sin(θC0
1E1

) · sin(θSE1) (73)

z =
( ||C0||2 · ||S0||2 · cos(θC0

0E0
) · cos(θSE0)+

||C1||2 · ||S1||2 · cos(θC0
1E1

) · cos(θSE1)

)
(74)
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The work can then be split into a precomputation, where the failure prob-
ability given x0, x1 and z is calculated (i.e. PF [x0, x1, z]), and the directional
failure boosting calculation itself, which can now use the precomputed values
of PF [x0, x1, z] to reduce calculations. During precomputation PF [x0, x1, z] is
calculated for a wide range of x0, x1 and z values as:

PF [x0, x1, z] ≈ P [F0 | x0, x1, z] (75)
= P [|x0 cos(φ0) + x1 cos(φ1) + z + G0| > qt | x0, x1, z] (76)

=
∑

G0

∑

φ0

P [G0] · P [φ0] · P [|x0 cos(φ0) + x1 cos(φ1) + z + G0| > qt | x0, x1, z]

(77)

=
∑

G0

∑

φ0

P [G0] · P [φ0] ·
(

P [cos(φ1) > qt−z−G0−x0 cos(φ0)
x1

| x0, x1, z]+
P [cos(φ1) < −qt−z−G0−x0 cos(φ0)

x1
| x0, x1, z]

)

(78)

Using the precomputation, the directional failure boosting calculation of
PF [ct] can then be simplified as:

PF [ct] ≈ P [F0|ct] (79)

=
∑

||S0||2

∑

||S1||2
P [||S0||2] · P [||S1||2] · P [F0|ct, ||S0||2, ||S1||2] (80)

=
∑

||S0||2

∑

||S1||2

⎛

⎜
⎜⎜⎜
⎝

P [||S0||2] · P [||S1||2]·

P

⎡

⎢⎢
⎣F0

∣∣
∣∣∣∣∣
∣

x0 = ||C0||2 · ||S0||2 · sin(θC0
0E0

) · sin(θSE0),
x1 = ||C1||2 · ||S1||2 · sin(θC0

1E1
) · sin(θSE1),

z =
( ||C0||2 · ||S0||2 · cos(θC0

0E0
) · cos(θSE0)+

||C1||2 · ||S1||2 · cos(θC0
1E1

) · cos(θSE1)

)

⎤

⎥⎥
⎦

⎞

⎟
⎟⎟⎟
⎠

(81)

with the values of P [F0 | x0, x1, z] as calculated in the precomputation.
The precomputation loops over a grid of (x0, x1, z) values, and for each grid-

point sums over the distribution of G0 and φ0. In total, the precomputation thus
only loops 5 distributions. The (x0, x1, z) grid is calculated over 100 values for
each of the elements, and intermediate values of P [F0 | x0, x1, z] are linearly
interpolated.

The directional failure boosting loops over the distributions of C0, C1, S0, S1,
θC0

0E0
, θC0

1E1
, which is a total of 6 distributions. This can be compared to the loop

over 8 distributions in the direct method that does not use meet-in-the-middle
calculations. As a result, our meet-in-the-middle approach makes it possible to
practically calculate the cost of directional failure boosting for practical schemes
such as Saber and Kyber.

6.3 Removing the Bias

One of the assumptions that is explicitly used for the geometric estimation of
(directional) failure boosting is that the angles ψ0 and ψ1 are distributed uni-
formly random. This corresponds to the idealized scenario where the secret is
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drawn from a continuous Gaussian distribution, but it is well approximated by
binomial distribution, which is typically used in practical designs. In case of
rounding, there is typically a bias in the distribution due to a non-zero mean,
as a result of which there will be a ‘sense of direction’ in C0 and S1.

To remove this ‘sense of direction’ we subtract the mean of the distribution
of the coefficients of C0 and S1:

C′
0 = C0 − μχe+χs

(82)
S ′
1 = S1 − μχe+χs

, (83)

This subtraction needs to be compensated to keep a correct failure equation,
which can be done as follows:

ST
0 C0 + ST

1 C1 + G (84)

= ST
0 C′

0 + S ′T
1 C1 + (G + μχe+χs

· S0 + μχe+χs
C1) (85)

And thus by selecting:

G′ = G + μχe+χs
· S0 + μχe+χs

+ C1, (86)

we can use the failure term ST
0 C′

0 + S ′
1
T C1 + G′, which has exactly the same

failure probability. However, this term will give slightly lower efficiency of failure
boosting, as an adversary only considers C0 and C1, and not G, to determine the
weakness of ciphertexts. To apply this adjustment to previous techniques one
just has to use the C′

0, S ′
1 and G′ instead of C0, S1 and G.

6.4 Discussion

Figure 3 and Fig. 4 give an indication of the accuracy of our newly developed
geometric-uneven methods. First, one can see that both in the case of Saber
and Katana, the attack cost when performing no precomputation (the leftmost
point on the curves) is approximately the failure probability. This is expected
behaviour, but it is not the case for Saber in the geometric calculations following
Sect. 5. This is a first indication that the geometric-uneven method is more
accurate than the standard geometric method in this case.

Secondly, one can see that the geometric-uneven curve is relatively close to
the Gaussian curve in the failure boosting (first failure) case. For Saber the
geometric-uneven approximation gives a significantly more accurate result com-
pared to the geometric approximation. Overall, the geometric-uneven estimation
gives an overestimation of the attack cost, which is logical in view of the assump-
tions and approximations made in its derivation (e.g. only considering F0 and
making the distributions symmetric). On the other hand, for Katana the geo-
metric approach is more accurate than the geometric-uneven approach, which
makes sense as the scheme has χs = χe and does not perform rounding.

One can therefore conclude that the geometric approach is best suited for
symmetric non-rounding schemes like Katana, while the geometric-uneven app-
roach is considerably better than the geometric approach for practical schemes
such as Saber and Kyber.
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7 Attack Constraints

In previous derivations, as in literature [11,12], it is assumed that there is an
unlimited number of possible ciphertexts. However, for schemes that use the
FO transformation, ciphertexts are generated deterministicaly from a message
m ∈ M, and as such there are only |M| ciphertexts for each public key. When
an attacker performs strong failure boosting, this maximum number of cipher-
texts |M| might be a limit to the number of weak ciphertexts an adversary can
generate, which in turn could limit or even obstruct an attack.

In a failure boosting attack an adversary first searches for weak ciphertexts,
which occur with a probability α(ft). This means that there are on average |M|·
α(ft) weak ciphertexts that can be found at each target, and thus |M| ·α(ft) ·T1

in total for T1 targets. It is expected that an attacker needs β(ft)−1 of these weak
ciphertexts to find one decryption failure and thus an adversary that wants to
collect T2 failures would need β(ft)−1 · T2 weak ciphertexts. In short, there are
on average |M| · α(ft) · T1 weak ciphertexts available, and an adversary would
need on average β(ft)−1 · T2 of them to proceed to the next phase of the attack.

From the above we can conclude that if β(ft)−1 · T2 > |M| · α(ft) · T1, it is
probable that the attacker will not find sufficient unique ciphertexts to obtain
T2 decryption failures. Even in the case where β(ft)−1 · T2 ≈ |M| · α(ft) · T1,
the attack will become less efficient as the adversary will with high probability
generate non-unique weak ciphertexts, which requires him to restart the precom-
putation. For β(ft)−1 · T2 < |M| · α(ft) · T1, these effects can be expected to be
negligible, as there will be enough weak ciphertexts to avoid duplication. To take
this observation into account one can add an additional constraint in the attack
calculations using the following restriction on ft: β(ft)−1 ·α(ft)−1 < |M|·T1/T2.

Another possible obstacle for an attacker is the maximum depth Dmax of
the quantum computer used for the precomputation. Such depth limit reduces
the Grover search success probability if

√
α(ft)−1 � Dmax. This can be com-

pensated for by splitting the search space in p partitions and performing a
Grover search of depth Dmax in each partition. Asymptotically one would need
α(ft)−1/D2

max partitions to find a weak ciphertext with probability close to 1.
Thus, when

√
α(ft)−1 ≤ Dmax, the maximum depth does not restrict the

Grover search and the cost to find a weak ciphertext is
√

α(ft)−1, but when√
α(ft)−1 > Dmax, the cost is Dmax · α(ft)−1/D2

max = α(ft)−1/Dmax.

8 Results

We calculated the multitarget attack cost using the geometric-uneven approach
for all parameter sets of Saber, Kyber and uSaber with a query limit of 264 per
target. In Table 3, we first give the attack cost for 240 and 264 targets following
the procedure described until Sect. 6, where |M| = ∞ and Dmax = ∞.

We then recalculate the results for 264 targets with the following restrictions:
in a first instance |M| = 2256, which is the case for the current designs of
these schemes, and a second instance |M| is taken equal to the equivalent AES
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strength, i.e. 2128 schemes that are in NIST category 1, 2192 for schemes in NIST
category 3 and 2256 for schemes in NIST category 5. The maximum depth is in
both cases set to Dmax = 296, which is the worst case scenario put forward by
NIST [1]. A graphical overview of the attack for all parameter sets of Saber and
Kyber is given in the eprint version of this paper, where the full line represents
Dmax = ∞ and where the dotted line represents Dmax = 296.

An interested reader can generate their own numbers and figures for specific
constraints using the python source code, which is made available at https://
github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures.

8.1 Impact on Saber and Kyber

Before discussing the security impact of our attack on the targeted schemes, we
want to go into some considerations considering the attack model. The failure
boosting attack cost is expressed in terms of precomputational work W and
queries Q: 1W refers to the cost of 1 offline encapsulation and the quantum
speedup is assumed to be quadratic, ignoring subexponential costs; 1Q describes
the cost of 1 decapsulation, which is performed as classical computations.

In a real-life scenario, one needs to take into account the fact that 1Q involves
performing a decapsulation query online on the targets hardware, which might be
a critical constraint in mounting a practical attack. For Saber, in an ideal scenario
our attack requires at least 298 queries and thus encapsulations performed on
the attacked hardware for an attack that costs 2168W. For the attack reported
in Table 3, the query cost is 2126 queries.

Moreover, in the offline precomputation step one has to take into account the
cost of performing the encapsulation (1W). The Grover search is additionally
constraint when considering a depth d for executing one encapsulation, leading
to a cost of α(ft)−1 · d/DmaxW when

√
α(ft)−1 > Dmax/d where the cost of

one encapsulation is still counted as 1W.
Our analysis shows that the category 3 instance of Saber is theoretically

vulnerable for a decryption failure attack. A decryption failure attack on Saber
would cost 2145W and 2126Q in the specific setting where qlimit = 264 and
T (0) = 264, which can be compared to the claimed 2172 coreSVP security. How-
ever, practical execution of the attack would not be straightforward due to the
constraints outlined above. The other parameter sets of Saber and Kyber are not
vulnerable to the decryption failure attack we developed, in case of Kyber1024
and FireSaber this is due to the constraints on the number of ciphertexts due
to |M|. The uSaber parameter sets are not vulnerable to the decryption failure
attacks we developed, even without additional constraints.

8.2 Increasing the Attack Cost

One option to increase the attack cost could be to reduce |M|. Such a design
change does not incur an efficiency cost but is limited by the security of the
overall scheme as a too low value for |M| could impact the security under tradi-
tional attacks. The effect of a reduction of |M| to 2128 and 2192 for schemes of

https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures
https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures
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category 1 and 3 respectively is detailed in the last column of Table 3. Note that
this change will especially restrain the efficiency of finding follow up failures, as
the term |M| · T1/T2 is typically much higher for finding the first failure due to
a high value of the number of targets T1. Therefore, a reduction in |M| is also
a good precaution for future advances in decryption failure attacks as will be
discussed in Subsect. 8.3.

Looking at the error term (e+u)T s′−sT (e′+u′)+(e′′+u′′), the compression
error u′′ can be a significant factor in decryption failures in schemes with strong
compression of v′ (i.e. large q/t). In this case the attack cost can be increased
by increasing t. This comes at a modest cost in ciphertext size, but generally has
no impact on the security of the scheme under non-decryption failure attacks.
For Saber, increasing t to 2t would make the attack more expensive than solving
the Mod-LWR problem while increasing the ciphertext size with only 256 bits.
The impact of such a change for Saber is given in the last rows of Table 3.

If increasing t is not sufficient, one needs to adapt the distributions of χs and
χe, which would impact both security as design and thus would require a more
in-depth analysis.

8.3 Possible Future Advances

In this subsection we go into detail on possible future advances in failure boosting
and its cost estimations.

Failure Boosting The cost calculation of failure boosting takes into account both
C and G and makes two assumptions. The first being that errors at different coeffi-
cients of the message are independent, which has been shown byD’Anvers et al. [13]
to be a valid assumption for schemes without error correction. The second being
the Gaussian assumption as discussed in Subsect. 3.2. As a result, the attack cost
calculation of failure boosting is nearly optimal in the failure boosting framework.

Directional Failure Boosting The directional failure boosting calculation uses
more assumptions and approximations that make the estimate less accurate.
Specifically, the attack relies on two assumptions: The geometric-uneven assump-
tion states that the distributions of S0, C0, S1 and C1 are multivariate Gaussian
distributed with zero mean and equal variance for each coefficient. This is a
fairly good approximation for binomial distributions with large variance, but is
less accurate for small variance binomial distributions or uniform distributions
as is the case in Kyber and Saber. The second assumption is the independency
assumption that is also used in the failure boosting calculation and is valid for
schemes without error correction.

Furthermore, the directional failure boosting calculation in this work consid-
ers a slightly suboptimal attack as some terms are not taken into account in the
weak ciphertext selection criterion: First, the attack does not take into account G
in the weak key selection (but it does for the failure probability calculation). Sec-
ondly, it removes the bias of S0 and C1 due to rounding, and adds it to the term G
as explained in Subsect. 6.3. Therefore, the above approximations correspond to
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executable attacks, but the attack is slightly suboptimal as a better weak cipher-
text selection criterion (e.g. taking G into account) would lead to a more efficient
attack.

Finally, the directional failure boosting calculation makes two significant
approximations: First, in the geometric-uneven directional failure boosting app-
roach, only the error probability of the first bit of the message is considered. This
would lead to an underestimation of the failure probability and thus an overes-
timation of the attack cost. Secondly, the distributions of the different variables
are approximated using a limited number of points.

The previous assumptions and approximations are necessary to allow efficient
calculation of the attack cost. However, they could result in a less optimal attack
and a less accurate cost estimation for directional failure boosting. During the
development of our cost estimation methods in Sects. 5 and 6 we showed that
our calculation methods are still reasonably accurate using three checks:

First we checked the failure probability when no precalculation is performed,
which should correspond to the failure probability of the scheme. As shown in
the paper, this is always approximately the case for our cost estimation methods
(but not in case of Saber or Kyber in the geometric case, which led us to argue
that this method is not appropriate for Saber or Kyber).

Secondly, we checked our geometric and geometric-uneven methods in the
failure boosting case using the more accurate Gaussian approximation, where we
could see that our newly developed methods give approximately the same result.
Note that this comparison is not possible in the directional failure boosting case.

Thirdly, we verified the geometric-uneven method using the geometric
method in case of Katana. As the latter method makes less approximations
and as its assumptions are valid for Katana, this comparison can be used to ver-
ify some of the new assumptions (i.e. removing the bias in Subsect. 6.3 and only
considering errors at the first coefficient in Subsect. 6.1) made in the geometric-
uneven method compared to the geometric method.

Table 4. Cost (log2) of obtaining the first and second failure in our multitarget attack
and cost of obtaining only the first failure if the second failure would be free. qlimit = 264

and T (0) = 264. Text is made bold for dominating factor in the attack cost. When
performing a levelled multitarget attack where T (1) �= 1, the search for the second
failure is considered dominant.

Full attack First failure

W0/Q0 W1/Q1 W0/Q0

LightSaber 116/108 104/62 116/108

Saber 140/126 140/68 133/125

FireSaber 215/126 215/68 188/128

Kyber512 131/118 129/62 131/118

Kyber768 174/126 175/69 161/128

Kyber1024 228/126 219/71 191/128
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Conclusion For schemes where the attack cost is dominated by finding the first
failure, the calculated cost will be close to the optimal decryption failure attack
cost (unless a radical new attack is discovered that outperforms failure boost-
ing). For schemes with an attack cost dominated by directional failure boosting,
the estimation will be less accurate. In a worst case attack scenario (from the
designers perspective) one could assume the directional failure boosting cost to
be reduced even more, leading to an attack that is essentially dominated by find-
ing the first failure. Note that this is a very conservative approach and does not
correspond to an existing attack scenario. An overview of the dominant attack
costs can be found in Table 4.
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