
Goichiro Hanaoka
Junji Shikata
Yohei Watanabe (Eds.)

LN
CS

 1
31

77

25th IACR International Conference
on Practice and Theory of Public-Key Cryptography
Virtual Event, March 8–11, 2022
Proceedings, Part I

Public-Key Cryptography –
PKC 2022

Lecture Notes in Computer Science 13177

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7410

https://link.springer.com/bookseries/7410

Goichiro Hanaoka · Junji Shikata ·
Yohei Watanabe (Eds.)

Public-Key Cryptography –
PKC 2022
25th IACR International Conference
on Practice and Theory of Public-Key Cryptography
Virtual Event, March 8–11, 2022
Proceedings, Part I

Editors
Goichiro Hanaoka
National Institute of Advanced Industrial
Science and Technology (AIST)
Tokyo, Japan

Yohei Watanabe
The University of Electro-Communications
Tokyo, Japan

Junji Shikata
Yokohama National University
Yokohama, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-97120-5 ISBN 978-3-030-97121-2 (eBook)
https://doi.org/10.1007/978-3-030-97121-2

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-97121-2

Preface

The 25th IACR International Conference on Practice andTheory of Public-KeyCryptog-
raphy (PKC 2022) was held virtually duringMarch 8–11, 2022. (Initially, the conference
was scheduled to be held in Yokohama, Japan, but unfortunately, due to the prolonged
global outbreak of COVID-19, it was finally decided to hold the conference virtually.)
This conference is organized annually by the International Association of Cryptologic
Research (IACR), and is the main IACR-sponsored conference with an explicit focus on
public-key cryptography. The proceedings are comprised of two volumes and include
the 39 papers that were selected by the Program Committee. (Initially, 40 papers were
accepted, but one of them was later withdrawn by the authors.)

A total of 137 submissions were received for consideration for this year’s program.
Submissions were assigned to at least three reviewers, while submissions by Program
Committee members received at least five reviews. The review period was divided into
two stage. The first stage was reserved for individual reviewing and lasted four weeks. It
was followed by the second stage, which lasted about five weeks, in which the Program
Committee members engaged in discussion. On a number of occasions, authors were
contacted regarding reviewer questions and provided clarifications. One of the papers
was conditionally accepted and received a final additional round of reviewing. The
reviewing and paper selection process was a difficult task and I am deeply grateful to
the members of the Program Committee for their hard and thorough work. Additionally,
my deep gratitude is extended to the 145 external reviewers who assisted the Program
Committee. PKC 2022 was the first PKC to use HotCRP in the peer review process.
I would like to express my sincere thanks to Kevin McCurley for his support in using
HotCRP.

Two invited talkswere given at PKC2022. The first invited talk, entitled “The First 25
Years of the PKCAnnual Conference”, was delivered byYuliang Zheng, who is the chair
of the PKC steering committee. Since PKC 2022 was the 25th PKC, this invited talk was
a review of the history of the past quarter century. The second invited talk, entitled “The
Beginning of the End: The First NIST PQC Standards”, was delivered by DustinMoody.
In this invited talk, he presented the latest status of NIST Post-Quantum Cryptography
Standardization. I would like to express my deepest gratitude to both invited speakers
for accepting the invitation and contributing to the program this year as well as all the
authors who submitted their work. I would like to also thank co-editors of these two
volumes, Junji Shikata and Yohei Watanabe, who served as general co-chairs this year. I
would also like to express my appreciation to the PKC 2022 local organizing committee
members (Keita Emura, Ryuya Hayashi, Takahiro Matsuda, Takayuki Nagane, Yusuke
Naito, Kazumasa Shinagawa, Jacob Schuldt, Naoto Yanai, and Kazuki Yoneyama) for
their dedication and cooperation. Finally, I am deeply grateful to our industry sponsors,
listed on the conference’s website, who provided generous financial support.

March 2022 Goichiro Hanaoka

Organization

General Chair

Junji Shikata Yokohama National University, Japan
Yohei Watanabe University of Electro-Communications, Japan

Program Committee Chair

Goichiro Hanaoka AIST, Japan

Steering Committee

Masayuki Abe NTT, Japan
Jung Hee Cheon Seoul National University, South Korea
Yvo Desmedt University of Texas at Dallas, USA
Juan Garay Texas A&M University, USA
Goichiro Hanaoka AIST, Japan
Aggelos Kiayias University of Edinburgh, UK
Tanja Lange Eindhoven University of Technology, Netherlands
David Pointcheval ENS, France
Moti Yung Google and Columbia University, USA
Yuliang Zheng (Chair) University of Alabama at Birmingham, USA

Program Committee

Prabhanjan Ananth University of California, Santa Barbara, USA
Daniel Apon NIST, USA
Christian Badertscher IOHK, Switzerland
Manuel Barbosa University of Porto and INESC TEC, Portugal
Carsten Baum Aarhus University, Denmark
Jonathan Bootle IBM Research Zurich, Switzerland
Chris Brzuska Aalto University, Finland
Liqun Chen University of Surrey, UK
Ilaria Chillotti ZAMA, France
Craig Costello Microsoft Research, USA
Geoffroy Couteau Paris Diderot University, France
Bernardo David IT University of Copenhagen, Denmark
Nico Döttling CISPA, Germany

viii Organization

Thomas Espitau NTT, Japan
Sebastian Faust TU Darmstadt, Germany
Dario Fiore IMDEA Software Institute, Spain
Pierre-Alain Fouque ENS, France
Pierrick Gaudry CNRS, Nancy, France
Junqing Gong East China Normal University, China
Rishab Goyal MIT, USA
Goichiro Hanaoka AIST, Japan
Shuichi Katsumata AIST, Japan
Elena Kirshanova Immanuel Kant Baltic Federal University, Russia,

and Ruhr-Universität Bochum, Germany
Fuyuki Kitagawa NTT, Japan
Ilan Komargodski Hebrew University of Jerusalem, Israel, and NTT

Research, USA
Tanja Lange Technische Universiteit Eindhoven,

The Netherlands
Changmin Lee KIAS, South Korea
Benoit Libert CNRS and ENS de Lyon, France
Feng-Hao Liu Florida Atlantic University, USA
Giulio Malavolta Max Planck Institute for Security and Privacy,

Germany
Alexander May Ruhr-Universität Bochum, Germany
Jiaxin Pan NTNU, Norway
Alice Pellet-Mary CNRS and University of Bordeaux, France
Christophe Petit Université libre de Bruxelles, Belgium
Bertram Poettering IBM Research Zurich, Switzerland
Jacob Schuldt AIST, Japan
Luisa Siniscalchi Aarhus University, Denmark
Yongsoo Song Seoul National University, South Korea
Akshayaram Srinivasan Tata Institute of Fundamental Research, India
Igors Stepanovs ETH Zürich, Switzerland
Atsushi Takayasu University of Tokyo, Japan
Qiang Tang University of Sydney, Australia
Serge Vaudenay EPFL, Switzerland
Benjamin Wesolowski Institut de Mathématiques de Bordeaux, France
David Wu University of Texas at Austin, USA
Keita Xagawa NTT, Japan
Bo-Yin Yang Academia Sinica, Taiwan
Yu Yu Shanghai Jiao Tong University, China
Mark Zhandry Princeton University and NTT Research, USA

Organization ix

Additional Reviewers

Nuttapong Attrapadung
Subhadeep Banik
Razvan Barbulescu
James Bartusek
Andrea Basso
Balthazar Bauer
Daniel J. Bernstein
Pedro Branco
Yanlin Chen
Arka Rai Choudhuri
Sherman S. M. Chow
Daniel Collins
Sandro Coretti
Maria Corte-Real Santos
Ben Curtis
Jan Czajkowski
Poulami Das
Thomas Decru
Rafael Del Pino
Amit Deo
Jelle Don
Jesko Dujmovic
Julien Duman
Reo Eriguchi
Andreas Erwig
Daniel Escudero
Andre Esser
Hanwen Feng
Matthias Fitzi
Cody Freitag
Hiroki Furue
Rachit Garg
Romain Gay
Nicholas Genise
Lorenzo Gentile
Satrajit Ghosh
Aarushi Goel
Aditya Gulati
Keisuke Hara
Dominik Hartmann
Keitaro Hashimoto
Kathrin Hoevelmanns
Loïs Hughenin-Dumittan

Yasuhiko Ikematsu
Ilia Iliashenko
Ryoma Ito
Joseph Jaeger
Aayush Jain
Sam Jaques
Yao Jiang
Fatih Kaleoglu
Harish Karthikeyan
Hamidreza Khoshakhlagh
Jiseung Kim
Duhyeong Kim
Susumu Kiyoshima
Dimitris Kolonelos
Yashvanth Kondi
Anders Konring
David Kretzler
Mikhail Kudinov
Sabrina Kunzweiler
Péter Kutas
Qiqi Lai
Changmin Lee
Jiangtao Li
Yanan Li
Xiao Liang
Mingyu Liang
Jacob Lichtinger
Damien Ligier
Xiangyu Liu
Jiahui Liu
Zhen Liu
Patrick Longa
George Lu
Yuan Lu
Ji Luo
Lin Lyu
Monosij Maitra
Takahiro Matsuda
Pierre Meyer
Carl Miller
Niklas Miller
Hart Montgomery
Pedro Moreno-Sánchez

x Organization

Fabrice Mouhartem
Alexander Munch-Hansen
Michael Naehrig
Ryo Nishimaki
Anca Nitulescu
Semyon Novoselov
Julian Nowakowski
Kazuma Ohara
Jean-Baptiste Orfila
Maximilian Orlt
Pascal Paillier
Lorenz Panny
Alain Passelègue
Ray Perlner
Thomas Peters
Sihang Pu
Chen Qian
Tian Qiu
Willy Quach
Anais Querol
Divya Ravi
Michael Reichle
Siavash Riahi
Angela Robinson
Yusuke Sakai
Shingo Sato
Lars Schlieper
Yu-Ching Shen
Sina Shiehian

Tjerand Silde
Daniel Slamanig
Daniel Smith-Tone
Yongha Son
Fang Song
Nick Spooner
Shifeng Sun
Abdullah Talayhan
Bénédikt Tran
Ida Tucker
Bogdan Ursu
Prashant Vasudevan
Michael Walter
Yuyu Wang
Han Wang
Zhedong Wang
Florian Weber
Charlotte Weitkaemper
Yunhua Wen
Stella Wohning
David Wu
Shota Yamada
Takashi Yamakawa
Yusuke Yoshida
Greg Zaverucha
Runzhi Zeng
Xiao Zhang
Yongjun Zhao

Contents – Part I

Cryptanalysis

Multitarget Decryption Failure Attacks and Their Application to Saber
and Kyber . 3
Jan-Pieter D’Anvers and Senne Batsleer

Post-quantum Security of Plain OAEP Transform . 34
Ehsan Ebrahimi

On the Security of OSIDH . 52
Pierrick Dartois and Luca De Feo

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding in Ternary
Codes . 82
Pierre Karpman and Charlotte Lefevre

Syndrome Decoding Estimator . 112
Andre Esser and Emanuele Bellini

On the Isogeny Problem with Torsion Point Information . 142
Tako Boris Fouotsa, Péter Kutas, Simon-Philipp Merz, and Yan Bo Ti

MPC and Secret Sharing

Reusable Two-Round MPC from LPN . 165
James Bartusek, Sanjam Garg, Akshayaram Srinivasan, and Yinuo Zhang

On the Bottleneck Complexity of MPC with Correlated Randomness 194
Claudio Orlandi, Divya Ravi, and Peter Scholl

Low-Communication Multiparty Triple Generation for SPDZ
from Ring-LPN . 221
Damiano Abram and Peter Scholl

Storing and Retrieving Secrets on a Blockchain . 252
Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno,
and Yifan Song

CNF-FSS and Its Applications . 283
Paul Bunn, Eyal Kushilevitz, and Rafail Ostrovsky

xii Contents – Part I

Cryptographic Protocols

Efficient Verifiable Partially-Decryptable Commitments from Lattices
and Applications . 317
Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao

Making Private Function Evaluation Safer, Faster, and Simpler 349
Yi Liu, Qi Wang, and Siu-Ming Yiu

Two-Round Oblivious Linear Evaluation from Learning with Errors 379
Pedro Branco, Nico Döttling, and Paulo Mateus

Improved Constructions of Anonymous Credentials
from Structure-Preserving Signatures on Equivalence Classes 409
Aisling Connolly, Pascal Lafourcade, and Octavio Perez Kempner

Traceable PRFs: Full Collusion Resistance and Active Security 439
Sarasij Maitra and David J. Wu

Tools

Radical Isogenies on Montgomery Curves . 473
Hiroshi Onuki and Tomoki Moriya

Towards a Simpler Lattice Gadget Toolkit . 498
Shiduo Zhang and Yang Yu

SNARKs and NIZKs

Polynomial IOPs for Linear Algebra Relations . 523
Alan Szepieniec and Yuncong Zhang

A Unified Framework for Non-universal SNARKs . 553
Helger Lipmaa

ECLIPSE: Enhanced Compiling Method for Pedersen-Committed
zkSNARK Engines . 584
Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli,
Chaya Ganesh, Claudio Orlandi, and Akira Takahashi

Rational Modular Encoding in the DCR Setting: Non-interactive Range
Proofs and Paillier-Based Naor-Yung in the Standard Model 615
Julien Devevey, Benoît Libert, and Thomas Peters

Author Index . 647

Contents – Part II

Key Exchange

Post-quantum Asynchronous Deniable Key Exchange and the Signal
Handshake . 3
Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson,
and Douglas Stebila

Post-quantum Anonymous One-Sided Authenticated Key Exchange
Without Random Oracles . 35
Ren Ishibashi and Kazuki Yoneyama

Theory

Lockable Obfuscation from Circularly Insecure Fully Homomorphic
Encryption . 69
Kamil Kluczniak

Financially Backed Covert Security . 99
Sebastian Faust, Carmit Hazay, David Kretzler, and Benjamin Schlosser

Lifting Standard Model Reductions to Common Setup Assumptions 130
Ngoc Khanh Nguyen, Eftychios Theodorakis, and Bogdan Warinschi

Encryption

Efficient Lattice-Based Inner-Product Functional Encryption 163
Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc,
and Azam Soleimanian

The Direction of Updatable Encryption Does Matter . 194
Ryo Nishimaki

Leakage-Resilient IBE/ABE with Optimal Leakage Rates from Lattices 225
Qiqi Lai, Feng-Hao Liu, and Zhedong Wang

Encapsulated Search Index: Public-Key, Sub-linear, Distributed,
and Delegatable . 256
Erik Aronesty, David Cash, Yevgeniy Dodis, Daniel H. Gallancy,
Christopher Higley, Harish Karthikeyan, and Oren Tysor

xiv Contents – Part II

KDM Security for the Fujisaki-Okamoto Transformations in the QROM 286
Fuyuki Kitagawa and Ryo Nishimaki

A New Security Notion for PKC in the Standard Model: Weaker, Simpler,
and Still Realizing Secure Channels . 316
Wasilij Beskorovajnov, Roland Gröll, Jörn Müller-Quade,
Astrid Ottenhues, and Rebecca Schwerdt

Signatures

Lattice-Based Signatures with Tight Adaptive Corruptions and More 347
Jiaxin Pan and Benedikt Wagner

Count Me In! Extendability for Threshold Ring Signatures 379
Diego F. Aranha, Mathias Hall-Andersen, Anca Nitulescu,
Elena Pagnin, and Sophia Yakoubov

A Note on the Post-quantum Security of (Ring) Signatures 407
Rohit Chatterjee, Kai-Min Chung, Xiao Liang, and Giulio Malavolta

Logarithmic-Size (Linkable) Threshold Ring Signatures in the Plain Model 437
Abida Haque, Stephan Krenn, Daniel Slamanig, and Christoph Striecks

On Pairing-Free Blind Signature Schemes in the Algebraic Group Model 468
Julia Kastner, Julian Loss, and Jiayu Xu

Efficient Lattice-Based Blind Signatures via Gaussian One-Time Signatures . . . 498
Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plancon

Author Index . 529

Cryptanalysis

Multitarget Decryption Failure Attacks
and Their Application to Saber

and Kyber

Jan-Pieter D’Anvers(B) and Senne Batsleer

imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, Bus 2452,
3001 Leuven-Heverlee, Belgium

janpieter.danvers@esat.kuleuven.be

Abstract. Many lattice-based encryption schemes are subject to a very
small probability of decryption failures. It has been shown that an adver-
sary can efficiently recover the secret key using a number of ciphertexts
that cause such a decryption failure. In PKC 2019, D’Anvers et al. intro-
duced ‘failure boosting’, a technique to speed up the search for decryp-
tion failures. In this work we first improve the state-of-the-art multitarget
failure boosting attacks. We then improve the cost calculation of failure
boosting and extend the applicability of these calculations to permit cost
calculations of real-world schemes. Using our newly developed method-
ologies we determine the multitarget decryption failure attack cost for
all parameter sets of Saber and Kyber, showing among others that the
quantum security of Saber can theoretically be reduced from 172 bits to
145 bits in specific circumstances. We then discuss the applicability of
decryption failure attacks in real-world scenarios, showing that an attack
might not be practical to execute.

Keywords: Post-Quantum Cryptography · Lattice-based
cryptography · Decryption failure attacks · Failure boosting

1 Introduction

Lattice-based cryptography is known for its versatility, bringing forth among oth-
ers encryption schemes [4,23], digital signatures [24,26] and fully homomorphic
encryption [16] and identity based encryption [17]. Moreover, lattice-based cryp-
tographic schemes are among the most promising candidates for post-quantum
cryptography, i.e. cryptography that is secure even in the presence of quantum
computers.

In 2016, the United States National Institute of Standards and Technology
(NIST) announced a standardization process with the goal of standardizing one
or more post-quantum encryption and digital signature schemes [1]. July 2020
saw the start of the third round of this process, with 3 out of 4 finalists for
public key encryption being lattice-based (and 2 out of the 5 alternate ‘backup’
schemes).
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 3–33, 2022.
https://doi.org/10.1007/978-3-030-97121-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_1

4 J.-P. D’Anvers and S. Batsleer

To improve efficiency, many lattice-based encryption schemes are not per-
fectly correct, which means that even after a correct execution of the protocol,
it is possible that the decryption fails to retrieve the correct message or key. Such
an event is called a decryption failure, and the ciphertext that caused the failure
is referred to as a failing ciphertext. Three of the lattice-based NIST candidates
are subject to such decryption failures: Saber [10], Kyber [8] and FrodoKEM [25].

While the probabilities of these decryption failures are chosen sufficiently
small to avoid any impact on performance, they have been used to stage attacks
against these schemes. Decryption failure attacks can be roughly divided into two
categories: chosen-ciphertext attacks and valid-ciphertext attacks. The first type
was introduced by Jaulmes and Joux [21] and can efficiently recover the secret
key if it is reused, by crafting specific ciphertexts that fail based on properties
of the secret key. However, this attack type can be prevented by using a chosen-
ciphertext transformation such as the Fujisaki-Okamoto transformation.

The second type of decryption failure attacks remains a threat even in the
presence of chosen-ciphertext security measures. The idea behind this type of
attack is to input a large number of correctly generated ciphertexts in search
for failing ciphertexts. The authors of Kyber [8] noted that it is possible to
do a Grover search for ciphertexts with higher than average failure probability.
D’Anvers et al. [12] showed how to retrieve the secret key based on correctly
generated but failing ciphertexts, and introduced ‘failure boosting’, a frame-
work to speed up the search for failing ciphertexts. This was later extended
in [11] to ‘directional failure boosting’, which introduced a method that further
speeds up the failing ciphertext search when one or more failing ciphertext have
already been found. The latter work studied a simplified lattice-based scheme
and focussed on attacking a single target showing that the cost of a decryption
failure attack is dominated by the cost of finding the first failure. Moreover, they
introduced a simple multitarget attack specifically designed for scenarios where
a maximum number of decapsulations can be performed per target. Around the
same time, Guo et al. proposed specific decryption failure attacks on ss-ntru-
pke [18] and LAC [19].

As opposed to attacks focusing on decryption failures, Bindel and Schanck [7]
showed that correctly generated ciphertexts also provide a small amount of
information about the secret. While the errors in individual message bits
were assumed to happen independently in many NIST submission documents,
D’Anvers et al. [13] showed that these errors are in fact correlated, showing
an underestimation of the decryption failure probability for schemes that use
error correction and thus an overestimation of the security of these schemes.
Dachman-Soled et al. [9] developed a tool to include ‘hints’ into a LWE hard
problem and showed that it can be used to retrieve the secret key using failing
ciphertexts.

Our Contributions: We first improve the state-of-the-art multitarget decryption
failure attack using a levelled approach in Sect. 4, leading to a more efficient
attack especially for schemes with low failure probability. Secondly, we enhance
the techniques to estimate the cost of decryption failure attacks, and extend

Multitarget Decryption Failure Attacks 5

them to include practical schemes such as Saber and Kyber: Sect. 5 points out
three inaccuracies in the directional failure boosting calculation for the simplified
scheme of [11], which are discussed and remedied. Section 6 shows that this tradi-
tional approach of calculating the directional failure boosting cost is not directly
applicable to practical schemes such as Kyber and Saber due to compression of
the ciphertexts and introduces new methods that adapt the traditional direc-
tional failure boosting approach to these real-world schemes. Thirdly, Sect. 7
introduces two additional constraints an attacker might face when mounting a
decryption failure attack, which have not been taken into account in previous
failure boosting attacks. As a result, in Sect. 8 we discuss the impact of decryp-
tion failure attacks on Kyber and Saber.

2 Preliminaries

2.1 Notation

Denote with Zq the ring of integers modulo q, represented in (−q/2, q/2]. Let
Rq be the ring Zq[X]/(XN + 1), with N a power of two, and let Rl1×l2 be the
ring of l1 × l2 matrices over Rq. We denote matrices with bold upper case (e.g.
A) and vectors and polynomials with bold lower case (e.g. b).

Denote with �·� flooring to the nearest lower integer, with �·� rounding to
the nearest integer where ties are rounded upwards, and with �·�q→p dividing by
p/q followed by rounding, i.e. �x�q→p = �p/q ·x�. Let |·| denote taking the abso-
lute value. These notations are extended to vectors, matrices and polynomials
element wise. The l2 norm of a polynomial or vector of integers x is defined as
||x||2 =

√∑
i x

2
i and for a vector of polynomials y as ||y||2 =

√∑
i ||yi||22.

Let x ← χ mean sampling x according to a probability distribution χ, and
let X ← χ(Rl1×l2) denote sampling X ∈ Rl1×l2 with polynomial coefficients
according to the distribution χ. When the values are sampled pseudorandomly
based on a seed r, this is denoted as X ← χ(Rl1×l2 ; r). The uniform distribution
is denoted U .

We write P [E] to denote the probability of an event E. To simplify notation
we denote with P [a] the probability of sampling an element a from a certain
distribution χ when this distribution is clear from the context, i.e. P [x = a | x ←
χ]. Analogous, we denote with E[a] the expected value of an element a as sampled
from its distribution χ when this distribution is clear from the context.

2.2 Cryptographic Definitions

We define a Public Key Encryption scheme (PKE) as a triplet of functions
(KeyGen, Encrypt, Decrypt), where the key generation KeyGen generates a public
key pk and secret key sk, where the encryption Encrypt take a public key pk
and a message m from the message space M to generate a ciphertext ct, and
where the decryption Decrypt retrieves the message m with high probability
from the ciphertext ct using the secret key sk. A PKE is δ-correct if:

E [P [Decrypt(Encrypt(m, pk), sk) �= m]] ≤ δ.

6 J.-P. D’Anvers and S. Batsleer

Similarly, we define a Key Encapsulation Mechanism (KEM) as the functions
(KeyGen, Encaps, Decaps), where KeyGen generates a public key pk and secret
key sk, where Encaps generates a key k from keyspace K and a ciphertext ct
given a public key pk, and where Decaps outputs a key k′ or ⊥ when given a
ciphertext ct and corresponding secret key sk. We say that a KEM is δ-correct
if:

E [P [Decaps(ct, sk) �= k : (ct, k) ← Encaps(pk)]] ≤ δ.

The Module Learning with Errors (Mod-LWE) is a hard mathematical prob-
lem introduced by Langlois and Stehlé [22], as a generalization of the Learning
with Errors (LWE) [26] and Ring Learning with Errors (Ring-LWE) [24] prob-
lems. Given integers N , q and l, the ring Rq = Z[X]/(XN + 1), a distribution
with limited variance χ and a secret element s ∈ Rl

q, samples from the Mod-LWE
distribution LR,N,q,l,χ,s are generated as:

(a,b := aT s + e) (1)

where: a ← U(Rl
q); e ← χ(Rq) (2)

We will specifically focus on the case where N is a power of two. The decision
Mod-LWE problem is then, given k samples, to determine whether they were
generated as Mod-LWE samples from LR,N,q,l,χ,s or from the uniform distribu-
tion U(Rl

q ×Rq). The search Mod-LWE problem consists of recovering the secret
s from k Mod-LWE samples. LWE is a specific instance where Rq = Zq and
Ring-LWE the specific instance where l = 1.

Learning with Rounding (LWR), as introduced by Banerjee et al. [5], is a
similar problem where the error e is replaced with a deterministic error obtained
by rounding. Analogous to the LWE problem, variants of LWR include Ring-
LWR and Mod-LWR. Given two moduli q and p, where q > p, sampling from
the Mod-LWR distribution can be described as:

(a,b := �aT s�q→p) (3)

where: a ← U(Rl
q) (4)

In this paper we will specifically consider the case where p|q. The Mod-LWR
decisional and search problem are defined similar to their respective Mod-LWE
versions, where in the decisional problem an adversary has to distinguish between
sampling from a Mod-LWR or uniform distribution, and where in the search
problem an adversary is tasked to retrieve the secret s from k Mod-LWR samples.

2.3 Lattice-Based Encryption

A generic PKE based on the Mod-LWE or Mod-LWR assumption is given in
Algorithm 1 to 3, where q, p1, p2 and t are scheme dependent integers, where χs

and χe are scheme specific probability distributions with small variance, where
r ∈ R = {0, 1}256 and where the message space M consists of polynomials in
Rq with coefficients {0, 1}.

Multitarget Decryption Failure Attacks 7

Algorithm 1: PKE.KeyGen()

1 A ← U(Rl×l
q)

2 s, e ← χs(R
l×1
q) × χe(R

l×1
q)

3 b := �As + e�q→p1

4 return (pk = (b,A), sk = s)

Algorithm 2: PKE.Enc(pk = (b,A),
m ∈ M; r)

1 s′, e′ ← χs(R
l×1
q ; r) × χe(R

l×1
q ; r)

2 e′′ ← χe(Rq; r)

3 b′ := �AT s′ + e′�q→p2

4 bq := �b�p1→q

5 v′ := �bT
q s

′ + e′′ + �q/2� · m�q→t

6 return ct = (v′,b′)

Algorithm 3: PKE.Dec(sk = s, ct = (v′,b′))

1 b′
q := �b′�p2→q

2 v′
q := �v′�t→q

3 m′ := ��2/q�(v′
q − b′T

q s)�
4 return m′

This generic protocol can be used to describe Saber, Kyber and the scheme
studied in [11], which was designed to simplify the study of failure boosting and
will be referred to as Katana. The parameters of these schemes are given in
Table 1. For Saber and Kyber we consider the round 3 submissions as described
in [6] and [27] respectively, which are the most recent versions at the time of
writing.

For Kyber, the distributions χs and χe are centered binomial distributions
with limited variance. There is no public key compression (i.e. q = p1) but there
is ciphertext compression (i.e. q > p2 > t). Saber1 similarly uses a centered
binomial distribution for χs, but its distribution χe always returns zero. Saber
does both public key and ciphertext compression (e.g. q > p1 = p2 > t). Katana
is an idealized scheme with Gaussian distributions for χs and χe and without
compression of the public key or ciphertext (i.e. q = p1 = p2 = t).

Table 1. Parameters of Katana, Saber and Kyber. The security is based on the esti-
mates of Albrecht et al. [2,3]

L N q σ(si) σ(ei + ui) P [F] Classical Quantum

Katana [11] 3 256 8192 2.00 2.00 2−119 2195 2177

Saber [6] 3 256 8192 1.41 2.29 2−136 2189 2172

Kyber768 [27] 3 256 3329 1.00 1.00/1.38† 2−164 2181 2164

† Standard deviation of the error term in the public key and ciphertext respectively

1 Saber has slightly different rounding methods, but this does not impact our study
as the failure condition remains the same.

8 J.-P. D’Anvers and S. Batsleer

2.4 Chosen-Ciphertext Security

To protect against chosen-ciphertext attacks, designers typically convert their
passively secure PKE to an actively secure KEM using a generic transformation
such as a post-quantum variant [20,28] of the Fujisaki-Okamoto [14,15] transfor-
mation. The obtained KEM then has a similar key generation, while the encap-
sulation and decapsulation are constructed as described in Algorithms 4 and 5
respectively. The idea behind this transformation is that the input ciphertext
is checked using a re-encryption of the message, and the ciphertext is rejected
if the input ciphertext is not valid. As a result of this procedure, an adversary
does not learn anything from inputting invalid ciphertexts. However, in case of
a valid ciphertext that leads to a decryption failure, the re-encryption still fails
and we will assume that an attacker is able to recognize such event.

Algorithm 4: KEM.Encaps(pk)

1 m ← U({0, 1}256)

2 (K, r) := G(pk, m)
3 ct := PKE.Enc(pk, m, r)

4 K := H(K, r)
5 return (ct, K)

Algorithm 5: KEM.Decaps(sk, pk, ct,K)

1 m′ := PKE.Dec(sk, ct)

2 (K, r′) := G(pk, m′)
3 ct′ := PKE.Enc(pk, m′; r′)
4 if ct = ct′ then
5 return K := H(K, r′)
6 else
7 return K :=⊥

2.5 Decryption Failures

A decryption failure is an event where one fails to recover message or key, which
can even happen after following the correct protocol. The occurrence of decryp-
tion failures depends on the secret terms s, s′, e, e′, e′′ in combination with the
rounding errors u,u′,u′′, which are defined as:

u := bq − (As + e) (5)

u′ := b′
q − (AT s′ + e′) (6)

u′′ := v′
q − (bT

q s′ + e′′ + m) (7)

Expanding the value of the received message m′, we get:

m′ = ��2/q�(v′
q − b′T

q s)� (8)

= m + ��2/q�((e + u)T s′ − sT (e′ + u′) + (e′′ + u′′))� (9)

and a decryption failure occurs if any coefficient of this error term exceeds the
threshold qt = q/4, which can be formalized as follows:

||(e + u)T s′ − sT (e′ + u′) + (e′′ + u′′)||∞ > qt

Multitarget Decryption Failure Attacks 9

Failure Vectors: Following [12] we define the failure vectors S, C, G as:

S =
(−s
e + u

)
C =

(
e′ + u′

s′

)
G = e′′ + u′′ (10)

which simplifies the failure condition to:

||ST C + G||∞ > qt

Geometric Notation: To streamline notation, we will use the geometric notation
as introduced in [11]. The vector S ∈ Z

lN×1
q is an integer vector representation

of S, obtained by arranging all coefficients of the polynomials of S in a vector.
Additionally, the rotation of a vector of polynomials C is defined as:

C(r) := Xr · C(X−1) mod XN + 1. (11)

Using this notation, the ith coefficient of ST C can be calculated as ST C(i).
An illustration of these concepts is given in Example 1. For more information
about this representation we refer to [11].

Example 1. [11] For a secret S and a ciphertext C in Z
2×1
q [X]/(X3 + 1):

S =
[S0,0 + S0,1X + S0,2X

2

S1,0 + S1,1X + S1,2X
2

]
, C =

[C0,0 + C0,1X + C0,2X
2

C1,0 + C1,1X + C1,2X
2

]

we get the following vectors:

S =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

S0,0

S0,1

S0,2

S1,0

S1,1

S1,2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, C(0) =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

C0,0

−C0,2

−C0,1

C1,0

−C1,2

−C1,1

⎤

⎥⎥⎥⎥
⎥⎥
⎦

C(1) =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

C0,1

C0,0

−C0,2

C1,1

C1,0

−C1,2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

C(3) =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

−C0,0

C0,2

C0,1

−C1,0

C1,2

C1,1

⎤

⎥⎥⎥⎥
⎥⎥
⎦

. . .

Definitions: We will denote with F a decryption failure, and with S a successful
decryption. Fi will denote an error at the ith coefficient of ST C + G, which
happens when the absolute value of this coefficient is bigger than qt. Similarly
Si will denote a successful decryption of the ith coefficient. Using the geometric
notation we can say that an error Fi occurs if:

∣∣∣ST C(i) + Gi

∣∣∣ > qt

We will use the shorthand PF [ct] to denote the failure probability P [F |ct]
for a certain ciphertext ct, which can be formalized as:

PF [ct] =
∑

∀S
P [S] · P [F |ct,S]

Sometimes, we will group ciphertexts in classes, where a class cl bundles all
ciphertexts with certain properties, e.g. cl = {∀ct : ||C||2 = c,G = g}. In this case

10 J.-P. D’Anvers and S. Batsleer

PF [cl] denotes the weighted average of the failure probabilities of all ciphertexts
in the class cl, which can be formalized as:

PF [cl] =
∑

∀ct:ct∈cl

P [ct] · P [F |ct]

3 Failure Boosting Attacks

By exploiting decryption failures, an attacker can mount an attack that retrieves
the secret key. The crux of such an attack is that failing ciphertexts give infor-
mation that can be used to reconstruct the secret key as described in [11,12] and
[9]. In this paper we will focus on the process to obtain these failing ciphertexts
as efficiently as possible.

We specifically target schemes that are IND-CCA secured, which implies that
non-valid ciphertexts are rejected by the decapsulation regardless of the occur-
rence of a decryption failure and thus that they can not give any information. As
such the attack surface is limited to submitting valid ciphertexts and observing
whether a failure occurs.

Failure boosting [12] is a technique to increase the failure probability of valid
ciphertexts submitted for decapsulation. It is a two step process consisting of a
precomputation step and a query step. We will discuss the cost of a failure boost-
ing attack using two metrics: work W and queries Q. Work describes the cost of
precomputation, where 1W is defined as the cost of generating one ciphertext,
while Q describes the total number of decapsulation queries performed.

Precomputation: During precomputation, the adversary performs an offline
search for weak ciphertexts, i.e. valid ciphertexts with a high failure probabil-
ity. This is accomplished by randomly generating ciphertexts until a ciphertext
with failure probability above a certain threshold ft is found. The probability of
finding such a ciphertext can be expressed as follows:

α(ft) =
∑

∀ct:PF [ct]>ft

P [ct]. (12)

Finding a weak failure will take on average α(ft)−1 work, but this can be
sped up quadratically using a quantum computer to

√
α(ft)−1 work.

Querying: Once a weak ciphertext is found, it is submitted for decapsulation
and the adversary observes whether it triggers a decryption failure. A failure
happens with probability β(ft) for a given threshold ft, which can be calculated
as follows:

β(ft) =

∑
∀ct:PF [ct]>ft

P [ct] · PF [ct]
∑

∀ct:PF [ct]>ft
P [ct]

=

∑
∀ct:PF [ct]>ft

P [ct] · PF [ct]

α(ft)
. (13)

The query step can not be sped up using quantum computers as an adversary
has typically no quantum access to the decapsulation oracle. An adversary needs
on average β(ft)−1 queries to obtain one decryption failure.

Multitarget Decryption Failure Attacks 11

Attack Cost: For a given threshold ft, finding a decryption failure costs on
average α(ft)−1β(ft)−1 work and β(ft)−1 queries, which can be reduced to√

α(ft)−1β(ft)−1 work when Grover search is used during precomputation.

3.1 Directional Failure Boosting

Directional failure boosting [11] improves failure boosting and can be used when
at least one other failure has been found. It specifically uses information of
previously found failing ciphertexts to improve the search for new failures. In [11],
this is done by calculating E , an estimate of the direction of the secret S, and
taking this into account in the failure estimation PF [ct, E].

Directional failure boosting dramatically reduces the cost of finding addi-
tional failures after the first failure has been found. As a result, in a single
target attack the work and number of queries is dominated by finding the first
failure and thus the cost of a single target attack can be approximated as the cost
of finding the first failure. An in depth discussion of directional failure boosting
can be found in [11].

3.2 Estimation of Efficiency

The cost of (directional) failure boosting is described by Eq. 12 and 13, which
requires to sum over all possible ciphertexts. This is clearly infeasible, but can
be simplified by making an approximate failure model and grouping ciphertexts
with similar failure probability. Two such models were presented in the literature:
Gaussian approximation and geometric approximation.

Gaussian Approximation [12]: The Gaussian approximation considers the coef-
ficients of ST C to follow a Gaussian distribution with zero mean and variance
depending on C. This assumption can be used to accurately estimate failure
boosting efficiency, but does not work for directional failure boosting estima-
tions. The calculation method as presented in [12] takes both C and G into
account in the weak ciphertext selection. For more information about the exact
calculation methodology we refer the reader to [12].

Geometric Approximation [11]: The geometric approximation assumes that the
angle φ between ST C(i) behaves as a uniformly random angle in dimension 2Nl.
This approximation corresponds to the assumption that χs and χe are continuous
Gaussian distributions with zero mean. Using the geometric approximation, the
condition on an error at the ith coefficient can be rewritten from:

∣
∣∣ST C(i) + Gi

∣
∣∣ > qt (14)

to:

| ||S||2 · ||C||2 · cos(φ) + Gi| > qt (15)

12 J.-P. D’Anvers and S. Batsleer

In directional failure boosting, the vectors S and C(i) are first expanded in a
part parallel and a part orthogonal to the estimate of the secret E :

∣∣
∣ST

⊥C(i)⊥ + ST

‖ C(i)‖ + Gi

∣∣
∣ > qt (16)

which can be further expanded to:
∣∣∣
∣
||S||2 · ||C||2 · cos(θSE) · cos(θCiE)+
||S||2 · ||C||2 · sin(θSE) · sin(θCiE) · cos(ψ) + Gi

∣∣∣
∣ > qt (17)

with ψ a uniformly random angle in dimension 2Nl − 1. In D’Anvers et al. [11],
the G term was neglected in the calculations. A more detailed explanation of
this technique can be found in [11].

Attack Cost Estimation: Using the above approximations, one can bundle cipher-
texts with similar failure probability in classes cl to reduce the cost of calculating
α(ft) and β(ft). The values of α(ft) and β(ft) can be calculated using the for-
mulas below, with the difference that P [cl] is the probability of a randomly
generated ciphertext belongs to the specific class cl, and PF [cl] the failure prob-
ability of ciphertexts in that class.

α(ft) ≈
∑

∀cl:PF [cl]>ft

P [cl] (18)

β(ft) ≈
∑

∀cl:PF [cl]>ft
P [cl] · PF [cl]

α(ft)
(19)

For example, under the geometric approximation, one bundles all cipher-
texts with similar ||C||2 for failure boosting. Directional failure boosting in the
geometric approximation defines classes based on ||C||2 and the closest angle
maxcosi(θC(i)E) between the rotations of the ciphertext and the estimate of the
secret E .

4 Multitarget Attacks

One of the main constraints in a practical attack is the number of queries that
can be performed. For example, NIST [1] set a maximum of qlimit = 264 decapsu-
lation queries per target that can be performed during an attack. One possibility
to circumvent such limitation is to consider multiple targets, with the goal of
breaking one of these targets.

Such a multitarget attack queries a certain number of targets T (0), where
each target has an individual query limit. The goal is to retrieve the secret key
for at least one of these targets. We assume that multitarget protection is in
place, so that ciphertexts are only valid for one given public key and thus target.
Such multitarget protection is easily obtained by incorporating (a hash of) the
public key in the ciphertext generation, which is the case for Saber and Kyber.

Multitarget Decryption Failure Attacks 13

4.1 Naive Multitarget

A naive variant of the multitarget attack was introduced in [11], which proceeded
as follows: First, find the first failure by performing at most qlimit/2 per target,
which in total implies a maximum of T (0) · qlimit/2 queries. Then, focus on the
target that caused the failure and continue with a single target attack on this
target with query limit qlimit/2.

First note that due to multitarget protection, each generated weak ciphertext
is linked to a specific public key and can only be used for that target. Moreover,
one can assume that given only the public key the adversary has no efficient
way to retrieve information about the secret key S without solving the Mod-
LWE/LWR problem. This implies that he has no efficient way to distinguish
between targets with higher or lower failure probability and thus that generating
a weak ciphertext and querying it has exactly the same failure probability at each
target.

Assuming that successful queries do not contribute any information about the
targets, the failure probability at each target stays the same until a decryption
failure has been found. Therefore, we can say that finding one failure at T (0)

targets with a maximum of qlimit/2 queries per target has the same cost as
finding one failure at one target with a maximum of T (0) · qlimit/2 queries, so
that the cost of finding the first failure in the naive multitarget attack can be
described with:

√
α−1
0 β−1

0 work, and β−1
0 queries, (20)

under the condition that:

β−1
0 < T (0) · qlimit/2, (21)

where αi and βi denote the optimal values for α(ft) and β(ft) for the ith failure,
which can be determined by selecting the value of ft that optimally reduces the
work while fulfilling the query limit constraint.

To estimate the cost of finding the follow-up failures, we can use the approx-
imation from [11], which states that in a single target attack the attack cost is
dominated by finding the first failure. In this case, the first failure of the single
target attack is the second overall failure so that the cost of finding the follow
up failures can be calculated as:

√
α−1
1 β−1

1 work, and β−1
1 queries, (22)

under the condition that:

β−1
1 < qlimit/2, (23)

One can easily see that the total number of queries per target is always under
qlimit in this scenario.

14 J.-P. D’Anvers and S. Batsleer

4.2 Levelled Multitarget

When the cost of finding the second failure is the dominant factor, this naive
multitarget attack can be improved using a levelled approach. Notice that the
naive multitarget attack essentially reduces the cost of the attack by relaxing the
query limit constraint for finding the first failure. To reduce the cost of finding
the second failure, we can similarly focus on multiple targets to relax the query
constraint. However, this requires the attacker to find multiple failing ciphertexts
in the first step of the attack.

More specifically, in the first phase, the attacker aims at obtaining T (1) tar-
gets using under qlimit/3 queries per target (which is a total of T (0) · qlimit/3
queries). This has a cost of:

T (1)
√

α−1
0 β−1

0 work and T (1)β−1
0 queries. (24)

Under the condition that:

T (1)β−1
0 < T (0) · qlimit/3. (25)

The attacker can then use T (1) · qlimit/3 queries to find the next failure, which
has a cost of:

√
α−1
1 β−1

1 work and β−1
1 queries. (26)

Under the condition that:

β−1
1 < T (1) · qlimit/3. (27)

(a) Naive multitarget[11] (b) Levelled multitarget

Fig. 1. Example of multitarget attacks on Katana, with 264 targets and maximum
264 queries. The cost of finding one failure is indicated with x. The cost of finding
T (1) failures using failure boosting in the first phase is given by the blue dot, and the
corresponding number of queries can be found as β−1 where β is the x-axis value of
this point. In the naive multitarget attack the cost is dominated by finding the second
failure in under 264 queries. In the levelled approach the cost of the two phases is
equalized.

Multitarget Decryption Failure Attacks 15

Table 2. Comparison of the naive and levelled multitarget attack. Note that α and β
values are not the same between both methods as the difference in query limits leads
to a different optimal ft.

Naive multitarget [11] Levelled multitarget [ours]

work queries work queries

first failure
√

α−1
0 β−1

0 T (0) · qlimit/2 T (1)
√

α−1
0 β−1

0 T (0) · qlimit/(3T (1))†

second failure
√

α−1
1 β−1

1 qlimit/2
√

α−1
1 β−1

1 T (1) · qlimit/3

follow up failures negligible –
√

α−1
2 β−1

2 qlimit/3
† per failure, total query limit is T (0) · qlimit

Once a second failure is found for a given target, the attack continues with a
single target attack on that target using at most qlimit/3 queries. An overview of
this levelled multitarget approach is given in Table 2. Note that the query limit
per phase is chosen so that the total number of queries at each target over all
failures is always under qlimit. Figure 1 gives a graphical comparison of the naive
and multitarget attack on Katana.

In principle it is possible to extend this approach to more levels: if the third
failure would be more expensive than the previous two failures one can target
T (2) targets to reduce the cost of finding the third failure. However, we did
not find a situation in which this was applicable, as finding the third failure is
typically much cheaper than finding previous failures.

5 Better Failure Boosting Estimation

The calculation of the work necessary to perform a multitarget attack is not
straightforward. Especially the cost of directional failure boosting is expensive
to determine and requires multiple approximations to be able to practically
compute. D’Anvers et al. [11] introduced crude approximations to reduce the
computational cost of this calculation.

Apart from the geometric approximation, as explained in Subsect. 3.2, they
did not consider G, simplified the distribution of ||S||2 into its average and used
a simplified formula for the calculation of θSE . Additionally, there is a weak key
effect in multitarget attacks which has not been addressed before2.

These simplifications are justifiable in the single target attack, where the cost
of the second failure is significantly lower than the cost of the first failure. How-
ever, in multitarget attacks, where the second failure cost might be dominant,
it is important to have an accurate estimation of the cost to find this failure.
We will first detail the weak key effect, then we will improve the estimation of
cos(θSE) and finally we will consider the distribution of ||S||2 and G. We will
clearly compare our improvements with the state-of-the-art. In this section we
2 Guo et al. [18] have used the terminology (‘weak keys’) in their attack, but this refers

to public keys that are vulnerable against specific types of ciphertexts.

16 J.-P. D’Anvers and S. Batsleer

focus on the case where χs = χe and schemes without rounding, while in Sect. 6
we will extend the estimation techniques for more general schemes, including the
NIST finalists Kyber and Saber.

5.1 Weak Keys

Some targets might have secret keys that are more prone to decryption failures,
which we will call weak keys. It does not seem possible to efficiently identify
targets with weak keys from their public key. However, in a multitarget attack,
weak key targets are more prone to produce a failing ciphertext. This means
that in the second phase of the attack, when looking for the second failure of
a certain target, this target will have higher failure probability compared to a
single target attack.

In particular, the norm of the secret ||S||2 determines the failure probability
of a given target. We will show that the a posteriori distribution of ||S||2, given
a multitarget attack where in the first phase T (0) targets are considered, and
with failure boosting threshold ft can be approximated using:

P [||S||2] · T (0)P [F | ||S||2, ft]
P [F | ||S||2, ft] + (T (0) − 1) · P [F | ft]

(28)

To derive this formula, we first introduce the notation F (t, q) to describe the
event where the overall first failure occurs at target t on the qth query. Similarly,
we define S(t, q) as a success at target t on the qth query. F (t, ·) signifies the
event where the first failure occurs at target t, regardless of at which query this
happens. Without loss of generality we denote the target where the first failure
occurs as target t = 0, which implies that ||S||2 denotes the norm of S for the 0th

target. To simplify the derivation, we will assume that the ith query is performed
at all targets at the same time, after which they are all checked for decryption
failures. We can then write:

P [||S||2 | F (0, ·), ft] (29)

= P [||S||2 | ft] · P [F (0, ·) | ||S||2, ft]
P [F (0, ·) | ft]

(30)

≈ T (0) · P [||S||2] · P [F (0, ·) | ||S||2, ft] (31)

where the latter step uses the fact that a failure occurs with equal probability at
all T (0) targets without extra information about the norms ||S||2 of the targets.

The term P [F (0, ·) | ||S||2, ft] can then be extended by explicitly writing it
out as a sum over the probabilities of failures at each query round:

P [F (0, ·) | ||S||2, ft] (32)

=
∞∑

q=0

P

[
F (t, q), S(i, j)

∀i ∈ {0, . . . , T (0) − 1}, j ∈ {0, . . . , q} : (i, j) �= (t, q)

∣
∣∣∣ ||S||2, ft

]
(33)

=
∞∑

q=0

P

[
F (0, q), S(0, j)

∀j ∈ {0 . . . , q − 1}
∣∣∣∣ ||S||2, ft

]
· P

[
S(1, j)

∀j ∈ {0 . . . , q}
∣∣∣∣ ft

]T (0)−1

(34)

Multitarget Decryption Failure Attacks 17

The failure probability of a target is reduced slightly when successful ciphertexts
are found. However, this effect is small, as the information embedded in success-
ful ciphertexts is limited. We therefore assume that the failure probability of
ciphertexts does not change when finding successful ciphertexts. This allows us
to simplify the expression as:

≈
∞∑
q=0

P [F | ||S||2, ft] · P [S | ||S||2, ft]q · P [S | ft]
(T (0)−1)(q+1)

≈ P [F | ||S||2, ft] · P [S | ft]
(T (0)−1)

∞∑
q=0

(
P [S | ||S||2, ft] · P [S | ft]

(T (0)−1)
)q

(35)

≈ P [F | ||S||2, ft] · P [S | ft]
(T (0)−1)

1 − P [S | ||S||2, ft] · P [S | ft]
(T (0)−1)

≈ P [F | ||S||2, ft]
P [F | ||S||2, ft] + (T (0) − 1) · P [F | ft] (36)

where Eq. 35 is an infinite geometric sum, and Eq. 36 takes a Taylor approxima-
tion where only the highest order terms are kept. We will discuss the effect of
weak keys in the next section, after its effects on θSE have been addressed.

5.2 Calculating θSE

The angle θSE can be estimated using the simplified failure equation. Assuming
a failure occurred at the ith location we know:

ST C(i) > qt, (37)

which can be rewritten as:

cos(θSE) >
qt

||S||2||C||2 . (38)

The fact that uniform angles in high dimensions strongly tend to orthogonality
can be used to approximate this to:

cos(θSE) =
qt

||S||2||C||2 . (39)

As such, we can estimate the expected value of cos(θSE) by assuming indepen-
dence between E [||S||2] and E [||C||2] as:

E [cos(θSE)] =
qt

E [||S||2]E [||C||2] . (40)

In [11], the values of E [||S||2] and E [||C||2] were estimated over the original
a priori distribution. However, failure boosting increases the expected norm of
||C||2 and the weak key effect increases the expected norm of E [||S||2]. Both

18 J.-P. D’Anvers and S. Batsleer

effects will decrease E [cos(θSE)] and therefore diminish the efficiency of direc-
tional failure boosting.

We take these effects into account by considering the a posteriori distributions
as follows:

E [||C||2] =
∑

||C||2
||C||2 · P [||C||2 | ft] (41)

E [||S||2] =
∑

||S||2
||S||2 · P [||S||2 | F (0, ·), ft] (42)

Note that our expression of E [cos(θSE)] is now significantly better than in pre-
vious works, but still not exact for the following reasons: First, E [||C||2] will be
slightly higher than calculated above as failures happen with higher probabil-
ity for higher values of ||C||2. However, this effect is limited as failure boosting
pushes ||C||2 to high values where the tails decrease rapidly. Therefore the val-
ues of ||C||2 will be strongly focussed around the cut-off value. Secondly, the
independence assumption used to obtain Eq. 40 is not exact. Nevertheless, the
approximation is good enough for our purposes.

Comparison to State-of-the-art: Figure 2a shows the effect of including the weak
key effect and improving the cos(θSE) estimation. On one hand, one can see
that the weak key reduces the failure probability, which is the leftmost point
on the curve, from 2−115 to 2−107. On the other hand, the increase in E [||S||2]
and E [||C||2] and subsequent reduction of E [cos(θSE)] reduces the effectiveness
of directional failure boosting, an effect that becomes more pronounced with
higher precomputation.

Fig. 2. Effect of inclusion of weak keys and ||S||2 and G on Katana. The red cross
indicates the failure probability of Katana (or equally the cost of finding a failure when
random guessing). (Color figure online)

Multitarget Decryption Failure Attacks 19

5.3 Inclusion of S and G
In [11], the distributions of ||S||2 and G were simplified to their mean to speed up
calculations. However, the side-effect of this is an underestimation of the failure
probability and the attack efficiency. In our calculations, we take into account
the distribution of both ||S||2 and G.

Failure Boosting: Failure boosting calculations under the geometric approxima-
tion can be calculated by making classes based on ||C||2 and using Eqs. 18 and
19 to determine α(ft) and β(ft).

Including S and G does not change the ciphertext probability P [cl], but does
impact the failure probability PF [cl] needed to calculate α(ft) and β(ft). A more
exact expression of this failure probability that takes into account ||S||2 and G
can be derived as follows:

PF [cl] = PF [||C||2] (43)

=
∑

||S||2
P [||S||2] · P [F | ||C||2, ||S||2] (44)

=
∑

||S||2
P [||S||2] ·

(

1 −
N−1∏

i=0

(1 − P [Fi | ||C||2, ||S||2])
)

(45)

=
∑

||S||2
P [||S||2] ·

(

1 −
N−1∏

i=0

(

1 −
∑

Gi

P [Gi] · P [Fi | ||C||2, ||S||2,Gi]

))

(46)

where P [Fi | ||C||2, ||S||2,Gi] can be calculated following the geometric approxi-
mation of Eq. 15 as:

P [Fi | ||S||2, ||C||2,Gi] =
P [cos(φ) > qt−Gi

||S||2·||C||2 | ||C||2, ||S||2,Gi]

+P [cos(φ) < −qt−Gi

||S||2·||C||2 | ||C||2, ||S||2,Gi]
, (47)

and where φ can be modelled as a uniformly random angle in dimension 2Nl.

Directional Failure Boosting: The procedure for directional failure boosting
is more complicated, as one should make a list over all values of ||C||2 and
maxcosi(θC(i)E). As before, the calculation of P [cl] is the same as in [11], but the
calculation of PF [cl] additionally should take into account ||S||2 and G.

Without loss of generality we will assume that the highest value of cos(θC(i)E)
occurs at i = 0, so that maxcosi(θC(i)E) = cos(θC(0)E). Similar to the derivation
of Eq. 46, the failure probability can then be calculated as:

20 J.-P. D’Anvers and S. Batsleer

PF [cl] = PF [||C||2, θC(0)E] (48)

=
∑

||S||2
P [||S||2] · P [F | ||C||2, θC(0)E , ||S||2] (49)

=
∑

||S||2
P [||S||2] ·

(
1 −

N−1∏

i=0

(
1 − P [Fi | ||C||2, θC(0)E , ||S||2]

)
)

(50)

≈
∑

||S||2
P [||S||2] ·

(
1 −

((
1 − P [F0 | ||C||2, θC(0)E , ||S||2]

) ·∏N−1
i=1

(
1 − P [Fi | ||C||2, cos(θC(i)E) ≤ cos(θC(0)E), ||S||2]

)
))

(51)

≈
∑

||S||2
P [||S||2]· (52)

⎛

⎝1 −
⎛

⎝

(
1 − ∑

G0
P [G0] · P [F0 | ||C||2, θC(0)E , ||S||2, G0]

)
·

∏N−1
i=1

(
1 − ∑

Gi
P [Gi] · P [Fi | ||C||2, cos(θC(i)E) ≤ cos(θC(0)E), ||S||2, Gi]

)

⎞

⎠

⎞

⎠

P [Fi | ||C||2, θC(i)E , ||S||2,Gi] can be estimated using the geometric assump-
tion and Eq. 17 as:

P [cos(ψ) >
qt−Gi−||S||2·||C||2·cos(θSE)·cos(θ

C(i)E
)

||S||2·||C||2·sin(θSE)·sin(θ
C(i)E

) | ||S||2, ||C||2,Gi, cos(θC(i)E)]

+P [cos(ψ) <
−qt−Gi−||S||2·||C||2·cos(θSE)·cos(θ

C(i)E
)

||S||2·||C||2·sin(θSE)·sin(θ
C(i)E

) | ||S||2, ||C||2,Gi, cos(θC(i)E)]

with ψ a uniformly random angle in dimension 2Nl − 1.
The value P [Fi | ||C||2, cos(θC(i)E) ≤ cos(θC(0)E), ||S||2,Gi] can be calculated

by taking a weighted average over all θC(i)E values for which cos(θC(i)E) ≤
cos(θC(0)E) as:

P [Fi | ||C||2, cos(θC(i)E) ≤ cos(θC(0)E), ||S||2,Gi] (53)

=
∑

∀θ
C(i)E

:cos(θ
C(i)E

)≤cos(θ
C(0)E

)

P [θC(i)E] · P [Fi | ||C||2, θC(i)E , ||S||2,Gi] (54)

Approximate Distributions. Note that both the failure boosting and direc-
tional failure boosting methods require to loop over all possible values of
||C||2, θC0E , ||S||2,Gi, which is a costly process. To reduce calculation time, these
distributions are approximated using a subset of points in the distribution. We
use 200 points to approximate ||C||2 and θC(i)E , 100 points to approximate ||S||2
and a maximum of 40 points to approximate Gi.

Comparison to state-of-the-art: From Fig. 2b, we see that the method that does
not take into account ||S||2 and G does indeed underestimate the failure probabil-
ity. This effect will become larger for realistic schemes such as Saber and Kyber,
who have a larger variance of the distribution of G. Our new methodology that
takes ||S||2 and G into account does match with the reference calculation using
the Gaussian approximation, which further confirms our method. Note that this
figure presents failure boosting (for the first failure), and that the Gaussian
approximation can not be used for directional failure boosting.

Multitarget Decryption Failure Attacks 21

6 Dealing with Uneven Distributions

The cost estimation as described above can not directly be used for calculation of
practical schemes that use rounding, such as Kyber or Saber, or more generally
schemes that have uneven distributions for the coefficients of S and C. The main
reasons are twofold: first, when the distributions of s and e do not have the
same variance, values of ||e′+u′||2 and ||s′||2 have different impact on the overall
failure probability. Therefore, using ||C||2 as a predictor of the failure probability,
as used in the traditional calculation of direction failure boosting [11], does not
give accurate results. Secondly, when rounding occurs, the distributions of e
and e′ are typically not centered and thus the assumption of them following a
uniform distribution is not valid.

Note that the Gaussian approximation which is used for the failure boosting
(first failure) does not have these problems. Unfortunately it does not seem
possible to port the Gaussian assumption to directional failure boosting due to
the skew introduced in the distribution of ST C when directional failure boosting
is applied.

The problems described above have a significant effect on the accuracy of
the failure boosting estimation (blue) as can be seen from Fig. 3. First, one can
see that performing no precomputation (i.e. the leftmost point on the curve,
which corresponds to the failure probability before failure boosting) does not
correspond to the actual failure probability by a large margin. As an additional
check we plotted the Gaussian estimation (green) for finding the first failure,
which clearly further shows the discrepancy between both estimations. Looking
ahead, we also plotted the geometric-uneven estimate (orange) which will be
developed in this section.

(a) Failure boosting
(first failure)

(b) Directional failure boosting
(second failure)

Fig. 3. Comparison of estimated cost of (directional) failure boosting for Saber. Geo-
metric refers to the method of Sect. 5, while geometric-uneven indicates the improved
method of Sect. 6 Red cross indicates failure probability (when no precomputation is
performed). Gaussian estimation is given for failure boosting as a reference. (Color
figure online)

22 J.-P. D’Anvers and S. Batsleer

(a) Failure boosting
(first failure)

(b) Directional failure boosting
(second failure)

Fig. 4. Comparison of estimated cost of (directional) failure boosting for Katana. Geo-
metric refers to the method of Sect. 5, while geometric-uneven indicates the improved
method of Sect. 6 Red cross indicates failure probability (when no precomputation is
performed). Gaussian estimation is given for failure boosting as a reference. (Color
figure online)

6.1 Uneven Distributions

When the variance of the coefficients of s and e+u differs, the impact of ||e′+u′||2
and ||s′||2 varies and they should be considered separately instead of combined
in the term ||C||2. For sake of brevity, we will use the following abbreviations:

C0 = e′ + u′ S0 = −s
C1 = s′ S1 = e + u (55)

Uneven Failure Boosting: Instead of grouping ciphertexts based on ||C||2, cipher-
texts will be grouped in classes based on ||C0||2 and ||C1||2. The probability of
a class P [cl] can be easily calculated as P [||C0||2] · P [||C1||2], where the distribu-
tion of the norms can be calculated exhaustively. The failure probability PF [cl]
becomes more involved to calculate.

Similar to the approach of Subsect. 5.3, we first include the effect of S and
G, with the difference that we split ||S||2 into ||S0||2 and ||S1||2 which leads to:

PF [cl] = PF [||C0||2, ||C1||2] = (56)

∑

||S0||2

∑

||S1||2

⎛

⎝
P [||S0||2] · P [||S1||2]·(
1 −

(
1 − ∑

Gi
P [Gi] · P [Fi | ||C0||2, ||C1||2, ||S0||2, ||S1||2, Gi]

)N
)

⎞

⎠

To find an expression for P [Fi | ||C0||2, ||C1||2, ||S0||2, ||S1||2,Gi] we go back
to the failure term which we rewrite as:

ST C + Gi (57)

= ST
0 · C0 + ST

1 · C1 + Gi (58)
= ||S0||2 · ||C0||2 · cos(φ0) + ||S1||2 · ||C1||2 · cos(φ1) + Gi (59)

Multitarget Decryption Failure Attacks 23

Under the geometric assumption, the distribution of φ0 and φ1 can be approx-
imated as angles from the uniform angle distribution in dimension lN . This
allows us to calculate the error probability at the ith location for given values of
cond1 := (||S0||2, ||S1||2, ||C0||2, ||C1||2,Gi) as:

P [F | cond1] (60)
= P [| ||S0||2 · ||C0||2 · cos(φ0) + ||S1||2 · ||C1||2 · cos(φ1) + Gi| > qt | cond1] (61)

=
∑

φ0

P [φ0]

(
P [cos(φ1) > qt−Gi−||S0||2·||C0||2·cos(φ0)

||S1||2·||C1||2 | cond1]+

P [cos(φ1) < −qt−Gi−||S0||2·||C0||2·cos(φ0)
||S1||2·||C1||2 | cond1]

)

(62)

Uneven Directional Failure Boosting: Directional failure boosting not only con-
siders ||C0||2 and ||C1||2, but also the angle between the ciphertext and the esti-
mate E . Similar to splitting ||C||2 these angles and the estimate E also should
be split. We will denote with E0 the estimation of the direction of the secret S0

and with E1 the estimation of the direction of the secret S1. The angles θCi
0E0

and θCi
0E0

denote the angle between C(i)
0 and E0 and between C(i)

1 and E1

respectively.
Ciphertext are then combined in classes based on both the norms and the

angles. Ideally one would take the maximal angle out of the lN available angles
similar to [11]:

cl :=
(
||C0||2, ||C1||2,max

i
cos(θCi

0E0
),max

i
cos(θCi

1E1
)
)

.

However, for computational efficiency we only consider failures F0 at the zeroth

coefficient, so that the classes are defined by:

cl :=
(
||C0||2, ||C1||2, θC0

0E0
, θC0

1E1

)
.

The failure probability is under the same approximation equal to:

PF [cl] ≈ P [F0|cl]
For the calculation of α(ft) and β(ft), the class probability P [cl] can be sim-

plified using independence between the class properties as: P [||C0||2] · P [||C1||2] ·
P [θC0

0E0
] · P [θC0

1E1
]. For the failure probability PF [cl] we first include the influ-

ence of ||S0||2, ||S1||2 and G0 as:

PF [cl] ≈ P [F0 | cl] (63)

=
∑

||S0||2

∑

||S1||2

∑

G0

(
P [||S0||2] · P [||S1||2] · P [G0]·
P [F0 | ||C0||2, ||C1||2, ||S0||2, ||S1||2,G0, θC0

0E0
, θC0

1E1
]

)
,

and further denoting cond2 :=
(
||C0||2, ||C1||2, ||S0||2, ||S1||2,G0, θC0

0E0
, θC0

1E1

)
,

this becomes:

=
∑

||S0||2

∑

||S1||2

∑

G0

P [||S0||2] · P [||S1||2] · P [G0] · P [F0 | cond2]. (64)

24 J.-P. D’Anvers and S. Batsleer

To find an expression for the error probability P [F0 | cond2], we rewrite the
failure term as follows:

ST C(0) + G0 (65)

= ST

0 C(0)
0 + ST

1 C(0)
1 + G0 (66)

= ST

0,‖C(0)
0,‖ + ST

0,⊥C(0)
0,⊥ + ST

1,‖C(0)
1,‖ + ST

1,⊥C(0)
1,⊥ + G0 (67)

= ||S0||2||C0||2 cos(θS0E0) cos(θC0
0E0

) + ||S0||2||C0||2 sin(θS0E0) sin(θC0
0E0

) cos(ψ0)

+ ||S1||2||C1||2 cos(θS1E1) cos(θC0
1E1

) + ||S1||2||C1||2 sin(θS1E1) sin(θC0
1E1

) cos(ψ1)

+ G0, (68)

with θS0E0 and θS1E1 the angles between S0 and E0, and S1 and E1 respectively.
Following the geometric approximation, ψ0 and ψ1 are uniformly random angles
in dimension Nl − 1. The failure probability can then be calculated as:

P [F0 | cond2] = (69)

∑

ψ0

P [ψ0]

⎛

⎝
P [cos(ψ1) > qt−G0−w

||S1||2||C1||2 sin(θS1E1) sin(θC0
1E1

) | cond2, ψ0]

+P [cos(ψ1) < −qt−G0−w
||S1||2||C1||2 sin(θS1E1) sin(θC0

1E1
) | cond2, ψ0]

⎞

⎠ ,

where:

w =

⎛

⎝
||S1||2||C1||2 cos(θS1E1) cos(θC0

1E1
)

+||S0||2||C0||2 cos(θS0E0) cos(θC0
0E0

)
+||S0||2||C0||2 sin(θS0E0) sin(θC0

0E0
) cos(ψ0)

⎞

⎠ . (70)

6.2 Meet-in-the-middle Speedup

While the uneven directional failure boosting method is much more precise for
schemes with uneven distributions than the original method of [11], it is compu-
tationally very demanding. The prescribed calculation in Subsect. 6.1 sums over
the distributions of C0, C1, S0, S1, G0, θC0

0E0
, θC0

1E1
and ψ0. Even when these

distributions are approximated, the trade-off between computational cost and
accuracy remains unsatisfactory. In this section we will introduce a meet-in-the-
middle approach to reduce the computational cost of this method.

From Eq. 68, we can see that the failure equation can be written as:

x0 cos(ψ0) + x1 cos(ψ1) + z + G0 (71)

where:

x0 =||C0||2 · ||S0||2 · sin(θC0
0E0

) · sin(θSE0) (72)

x1 =||C1||2 · ||S1||2 · sin(θC0
1E1

) · sin(θSE1) (73)

z =
(||C0||2 · ||S0||2 · cos(θC0

0E0
) · cos(θSE0)+

||C1||2 · ||S1||2 · cos(θC0
1E1

) · cos(θSE1)

)
(74)

Multitarget Decryption Failure Attacks 25

The work can then be split into a precomputation, where the failure prob-
ability given x0, x1 and z is calculated (i.e. PF [x0, x1, z]), and the directional
failure boosting calculation itself, which can now use the precomputed values
of PF [x0, x1, z] to reduce calculations. During precomputation PF [x0, x1, z] is
calculated for a wide range of x0, x1 and z values as:

PF [x0, x1, z] ≈ P [F0 | x0, x1, z] (75)
= P [|x0 cos(φ0) + x1 cos(φ1) + z + G0| > qt | x0, x1, z] (76)

=
∑

G0

∑

φ0

P [G0] · P [φ0] · P [|x0 cos(φ0) + x1 cos(φ1) + z + G0| > qt | x0, x1, z]

(77)

=
∑

G0

∑

φ0

P [G0] · P [φ0] ·
(

P [cos(φ1) > qt−z−G0−x0 cos(φ0)
x1

| x0, x1, z]+
P [cos(φ1) < −qt−z−G0−x0 cos(φ0)

x1
| x0, x1, z]

)

(78)

Using the precomputation, the directional failure boosting calculation of
PF [ct] can then be simplified as:

PF [ct] ≈ P [F0|ct] (79)

=
∑

||S0||2

∑

||S1||2
P [||S0||2] · P [||S1||2] · P [F0|ct, ||S0||2, ||S1||2] (80)

=
∑

||S0||2

∑

||S1||2

⎛

⎜
⎜⎜⎜
⎝

P [||S0||2] · P [||S1||2]·

P

⎡

⎢⎢
⎣F0

∣∣
∣∣∣∣∣
∣

x0 = ||C0||2 · ||S0||2 · sin(θC0
0E0

) · sin(θSE0),
x1 = ||C1||2 · ||S1||2 · sin(θC0

1E1
) · sin(θSE1),

z =
(||C0||2 · ||S0||2 · cos(θC0

0E0
) · cos(θSE0)+

||C1||2 · ||S1||2 · cos(θC0
1E1

) · cos(θSE1)

)

⎤

⎥⎥
⎦

⎞

⎟
⎟⎟⎟
⎠

(81)

with the values of P [F0 | x0, x1, z] as calculated in the precomputation.
The precomputation loops over a grid of (x0, x1, z) values, and for each grid-

point sums over the distribution of G0 and φ0. In total, the precomputation thus
only loops 5 distributions. The (x0, x1, z) grid is calculated over 100 values for
each of the elements, and intermediate values of P [F0 | x0, x1, z] are linearly
interpolated.

The directional failure boosting loops over the distributions of C0, C1, S0, S1,
θC0

0E0
, θC0

1E1
, which is a total of 6 distributions. This can be compared to the loop

over 8 distributions in the direct method that does not use meet-in-the-middle
calculations. As a result, our meet-in-the-middle approach makes it possible to
practically calculate the cost of directional failure boosting for practical schemes
such as Saber and Kyber.

6.3 Removing the Bias

One of the assumptions that is explicitly used for the geometric estimation of
(directional) failure boosting is that the angles ψ0 and ψ1 are distributed uni-
formly random. This corresponds to the idealized scenario where the secret is

26 J.-P. D’Anvers and S. Batsleer

drawn from a continuous Gaussian distribution, but it is well approximated by
binomial distribution, which is typically used in practical designs. In case of
rounding, there is typically a bias in the distribution due to a non-zero mean,
as a result of which there will be a ‘sense of direction’ in C0 and S1.

To remove this ‘sense of direction’ we subtract the mean of the distribution
of the coefficients of C0 and S1:

C′
0 = C0 − μχe+χs

(82)
S ′
1 = S1 − μχe+χs

, (83)

This subtraction needs to be compensated to keep a correct failure equation,
which can be done as follows:

ST
0 C0 + ST

1 C1 + G (84)

= ST
0 C′

0 + S ′T
1 C1 + (G + μχe+χs

· S0 + μχe+χs
C1) (85)

And thus by selecting:

G′ = G + μχe+χs
· S0 + μχe+χs

+ C1, (86)

we can use the failure term ST
0 C′

0 + S ′
1
T C1 + G′, which has exactly the same

failure probability. However, this term will give slightly lower efficiency of failure
boosting, as an adversary only considers C0 and C1, and not G, to determine the
weakness of ciphertexts. To apply this adjustment to previous techniques one
just has to use the C′

0, S ′
1 and G′ instead of C0, S1 and G.

6.4 Discussion

Figure 3 and Fig. 4 give an indication of the accuracy of our newly developed
geometric-uneven methods. First, one can see that both in the case of Saber
and Katana, the attack cost when performing no precomputation (the leftmost
point on the curves) is approximately the failure probability. This is expected
behaviour, but it is not the case for Saber in the geometric calculations following
Sect. 5. This is a first indication that the geometric-uneven method is more
accurate than the standard geometric method in this case.

Secondly, one can see that the geometric-uneven curve is relatively close to
the Gaussian curve in the failure boosting (first failure) case. For Saber the
geometric-uneven approximation gives a significantly more accurate result com-
pared to the geometric approximation. Overall, the geometric-uneven estimation
gives an overestimation of the attack cost, which is logical in view of the assump-
tions and approximations made in its derivation (e.g. only considering F0 and
making the distributions symmetric). On the other hand, for Katana the geo-
metric approach is more accurate than the geometric-uneven approach, which
makes sense as the scheme has χs = χe and does not perform rounding.

One can therefore conclude that the geometric approach is best suited for
symmetric non-rounding schemes like Katana, while the geometric-uneven app-
roach is considerably better than the geometric approach for practical schemes
such as Saber and Kyber.

Multitarget Decryption Failure Attacks 27

7 Attack Constraints

In previous derivations, as in literature [11,12], it is assumed that there is an
unlimited number of possible ciphertexts. However, for schemes that use the
FO transformation, ciphertexts are generated deterministicaly from a message
m ∈ M, and as such there are only |M| ciphertexts for each public key. When
an attacker performs strong failure boosting, this maximum number of cipher-
texts |M| might be a limit to the number of weak ciphertexts an adversary can
generate, which in turn could limit or even obstruct an attack.

In a failure boosting attack an adversary first searches for weak ciphertexts,
which occur with a probability α(ft). This means that there are on average |M|·
α(ft) weak ciphertexts that can be found at each target, and thus |M| ·α(ft) ·T1

in total for T1 targets. It is expected that an attacker needs β(ft)−1 of these weak
ciphertexts to find one decryption failure and thus an adversary that wants to
collect T2 failures would need β(ft)−1 · T2 weak ciphertexts. In short, there are
on average |M| · α(ft) · T1 weak ciphertexts available, and an adversary would
need on average β(ft)−1 · T2 of them to proceed to the next phase of the attack.

From the above we can conclude that if β(ft)−1 · T2 > |M| · α(ft) · T1, it is
probable that the attacker will not find sufficient unique ciphertexts to obtain
T2 decryption failures. Even in the case where β(ft)−1 · T2 ≈ |M| · α(ft) · T1,
the attack will become less efficient as the adversary will with high probability
generate non-unique weak ciphertexts, which requires him to restart the precom-
putation. For β(ft)−1 · T2 < |M| · α(ft) · T1, these effects can be expected to be
negligible, as there will be enough weak ciphertexts to avoid duplication. To take
this observation into account one can add an additional constraint in the attack
calculations using the following restriction on ft: β(ft)−1 ·α(ft)−1 < |M|·T1/T2.

Another possible obstacle for an attacker is the maximum depth Dmax of
the quantum computer used for the precomputation. Such depth limit reduces
the Grover search success probability if

√
α(ft)−1 � Dmax. This can be com-

pensated for by splitting the search space in p partitions and performing a
Grover search of depth Dmax in each partition. Asymptotically one would need
α(ft)−1/D2

max partitions to find a weak ciphertext with probability close to 1.
Thus, when

√
α(ft)−1 ≤ Dmax, the maximum depth does not restrict the

Grover search and the cost to find a weak ciphertext is
√

α(ft)−1, but when√
α(ft)−1 > Dmax, the cost is Dmax · α(ft)−1/D2

max = α(ft)−1/Dmax.

8 Results

We calculated the multitarget attack cost using the geometric-uneven approach
for all parameter sets of Saber, Kyber and uSaber with a query limit of 264 per
target. In Table 3, we first give the attack cost for 240 and 264 targets following
the procedure described until Sect. 6, where |M| = ∞ and Dmax = ∞.

We then recalculate the results for 264 targets with the following restrictions:
in a first instance |M| = 2256, which is the case for the current designs of
these schemes, and a second instance |M| is taken equal to the equivalent AES

28 J.-P. D’Anvers and S. Batsleer

strength, i.e. 2128 schemes that are in NIST category 1, 2192 for schemes in NIST
category 3 and 2256 for schemes in NIST category 5. The maximum depth is in
both cases set to Dmax = 296, which is the worst case scenario put forward by
NIST [1]. A graphical overview of the attack for all parameter sets of Saber and
Kyber is given in the eprint version of this paper, where the full line represents
Dmax = ∞ and where the dotted line represents Dmax = 296.

An interested reader can generate their own numbers and figures for specific
constraints using the python source code, which is made available at https://
github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures.

8.1 Impact on Saber and Kyber

Before discussing the security impact of our attack on the targeted schemes, we
want to go into some considerations considering the attack model. The failure
boosting attack cost is expressed in terms of precomputational work W and
queries Q: 1W refers to the cost of 1 offline encapsulation and the quantum
speedup is assumed to be quadratic, ignoring subexponential costs; 1Q describes
the cost of 1 decapsulation, which is performed as classical computations.

In a real-life scenario, one needs to take into account the fact that 1Q involves
performing a decapsulation query online on the targets hardware, which might be
a critical constraint in mounting a practical attack. For Saber, in an ideal scenario
our attack requires at least 298 queries and thus encapsulations performed on
the attacked hardware for an attack that costs 2168W. For the attack reported
in Table 3, the query cost is 2126 queries.

Moreover, in the offline precomputation step one has to take into account the
cost of performing the encapsulation (1W). The Grover search is additionally
constraint when considering a depth d for executing one encapsulation, leading
to a cost of α(ft)−1 · d/DmaxW when

√
α(ft)−1 > Dmax/d where the cost of

one encapsulation is still counted as 1W.
Our analysis shows that the category 3 instance of Saber is theoretically

vulnerable for a decryption failure attack. A decryption failure attack on Saber
would cost 2145W and 2126Q in the specific setting where qlimit = 264 and
T (0) = 264, which can be compared to the claimed 2172 coreSVP security. How-
ever, practical execution of the attack would not be straightforward due to the
constraints outlined above. The other parameter sets of Saber and Kyber are not
vulnerable to the decryption failure attack we developed, in case of Kyber1024
and FireSaber this is due to the constraints on the number of ciphertexts due
to |M|. The uSaber parameter sets are not vulnerable to the decryption failure
attacks we developed, even without additional constraints.

8.2 Increasing the Attack Cost

One option to increase the attack cost could be to reduce |M|. Such a design
change does not incur an efficiency cost but is limited by the security of the
overall scheme as a too low value for |M| could impact the security under tradi-
tional attacks. The effect of a reduction of |M| to 2128 and 2192 for schemes of

https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures
https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures

Multitarget Decryption Failure Attacks 29

T
a
b
le

3
.
C

o
st

o
f
fa

il
u
re

b
o
o
st

in
g

a
tt

a
ck

s
o
n

va
ri

o
u
s

sc
h
em

es
.
S
ec

u
ri

ty
va

lu
es

a
re

g
iv

en
lo

g
2
.
E

m
p
ty

ce
ll
s

in
d
ic

a
te

a
n

a
tt

a
ck

is
n
o
t
p
o
ss

ib
le

in
u
n
d
er

2
2
5
6
W

.

Q
u
a
n
tu

m
se

c
.

P
[F

]
S
in

g
le

ta
rg

e
t

T
(0

)
=

2
4
0

(W
/
Q

)
T

(0
)
=

2
6
4

(W
/
Q

)
T

(0
)
=

2
6
4

(W
/
Q

)
T

(0
)
=

2
6
4

(W
/
Q

)

|M
|=

∞
,
D

m
a
x

=
∞

|M
|=

∞
,
D

m
a
x

=
∞

|M
|=

2
2
5
6
,
D

m
a
x

=
2
9
6

|M
|=

A
E
S
† ,

D
m

a
x

=
2
9
6

N
a
iv
e

L
e
v
e
ll
e
d

N
a
iv
e

L
e
v
e
ll
e
d

N
a
iv
e

L
e
v
e
ll
e
d

N
a
iv
e

L
e
v
e
ll
e
d

L
ig
h
tS

a
b
e
r

1
0
7

2
−

1
2
0

–
1
1
7
/
1
0
2

1
1
7
/
1
0
2

1
1
6
/
1
0
8

1
1
6
/
1
0
8

1
1
6
/
1
0
8

1
1
6
/
1
0
8

–
1
2
4
/
1
1
5

S
a
b
e
r
[6
]

1
7
2

2
−

1
3
6

–
1
5
7
/
1
0
2

1
5
7
/
1
0
2

1
4
8
/
1
2
5

1
4
1
/
1
2
6

1
4
8
/
1
2
6

1
4
1
/
1
2
6

–
1
4
4
/
1
2
6

F
ir
e
S
a
b
e
r

2
3
6

2
−

1
6
5

–
–

–
–

2
1
6
/
1
2
6

–
–

–
–

K
y
b
e
r5

1
2

1
0
7

2
−

1
3
9

–
1
3
8
/
1
0
2

1
3
8
/
1
0
2

1
3
1
/
1
1
8

1
3
1
/
1
1
8

1
3
1
/
1
1
8

1
3
1
/
1
1
8

–
–

K
y
b
e
r7

6
8

[2
7
]

1
6
5

2
−

1
6
4

–
2
0
8
/
1
0
2

2
0
8
/
1
0
2

1
8
7
/
1
1
2

1
7
5
/
1
2
6

–
1
8
6
/
1
2
6

–
–

K
y
b
e
r1

0
2
4

2
3
2

2
−

1
7
4

–
–

–
–

2
2
8
/
1
2
6

–
–

–
–

u
L
ig
h
tS

a
b
e
r

1
0
1

2
−

1
8
4

–
–

–
–

–
–

–
–

–

u
S
a
b
e
r
[6
]

1
6
5

2
−

1
6
7

–
–

–
–

–
–

–
–

–

u
F
ir
e
S
a
b
e
r

2
3
2

2
−

1
5
4

–
–

–
–

–
–

–
–

–

S
a
b
e
r
-
2
t

1
7
2

2
−

1
5
6

–
2
1
3
/
1
0
2

2
1
3
/
1
0
2

1
8
0
/
1
2
6

1
7
0
/
1
2
6

–
1
7
4
/
1
2
6

–
–

S
a
b
e
r
-
4
t

1
7
2

2
−

1
6
5

–
2
4
7
/
1
0
2

2
4
7
/
1
0
2

1
9
6
/
1
2
6

1
8
7
/
1
2
6

–
2
1
5
/
1
2
6

–
–

†
|M

|t
a
k
e
n

e
q
u
a
l
to

th
e
n
u
m
b
e
r
o
f
m
e
ss
a
g
e
s
in

th
e
c
o
rr
e
sp

o
n
d
in

g
A
E
S

in
st
a
n
c
e

i.
e
.
2
1
2
8

sc
h
e
m

e
s
th

a
t
a
re

in
N
IS

T
c
a
te

g
o
ry

1
,
2
1
9
2

fo
r
sc

h
e
m

e
s
in

N
IS

T
c
a
te

g
o
ry

3
a
n
d

2
2
5
6

fo
r
sc

h
e
m

e
s
in

N
IS

T
c
a
te

g
o
ry

5
.

30 J.-P. D’Anvers and S. Batsleer

category 1 and 3 respectively is detailed in the last column of Table 3. Note that
this change will especially restrain the efficiency of finding follow up failures, as
the term |M| · T1/T2 is typically much higher for finding the first failure due to
a high value of the number of targets T1. Therefore, a reduction in |M| is also
a good precaution for future advances in decryption failure attacks as will be
discussed in Subsect. 8.3.

Looking at the error term (e+u)T s′−sT (e′+u′)+(e′′+u′′), the compression
error u′′ can be a significant factor in decryption failures in schemes with strong
compression of v′ (i.e. large q/t). In this case the attack cost can be increased
by increasing t. This comes at a modest cost in ciphertext size, but generally has
no impact on the security of the scheme under non-decryption failure attacks.
For Saber, increasing t to 2t would make the attack more expensive than solving
the Mod-LWR problem while increasing the ciphertext size with only 256 bits.
The impact of such a change for Saber is given in the last rows of Table 3.

If increasing t is not sufficient, one needs to adapt the distributions of χs and
χe, which would impact both security as design and thus would require a more
in-depth analysis.

8.3 Possible Future Advances

In this subsection we go into detail on possible future advances in failure boosting
and its cost estimations.

Failure Boosting The cost calculation of failure boosting takes into account both
C and G and makes two assumptions. The first being that errors at different coeffi-
cients of the message are independent, which has been shown byD’Anvers et al. [13]
to be a valid assumption for schemes without error correction. The second being
the Gaussian assumption as discussed in Subsect. 3.2. As a result, the attack cost
calculation of failure boosting is nearly optimal in the failure boosting framework.

Directional Failure Boosting The directional failure boosting calculation uses
more assumptions and approximations that make the estimate less accurate.
Specifically, the attack relies on two assumptions: The geometric-uneven assump-
tion states that the distributions of S0, C0, S1 and C1 are multivariate Gaussian
distributed with zero mean and equal variance for each coefficient. This is a
fairly good approximation for binomial distributions with large variance, but is
less accurate for small variance binomial distributions or uniform distributions
as is the case in Kyber and Saber. The second assumption is the independency
assumption that is also used in the failure boosting calculation and is valid for
schemes without error correction.

Furthermore, the directional failure boosting calculation in this work consid-
ers a slightly suboptimal attack as some terms are not taken into account in the
weak ciphertext selection criterion: First, the attack does not take into account G
in the weak key selection (but it does for the failure probability calculation). Sec-
ondly, it removes the bias of S0 and C1 due to rounding, and adds it to the term G
as explained in Subsect. 6.3. Therefore, the above approximations correspond to

Multitarget Decryption Failure Attacks 31

executable attacks, but the attack is slightly suboptimal as a better weak cipher-
text selection criterion (e.g. taking G into account) would lead to a more efficient
attack.

Finally, the directional failure boosting calculation makes two significant
approximations: First, in the geometric-uneven directional failure boosting app-
roach, only the error probability of the first bit of the message is considered. This
would lead to an underestimation of the failure probability and thus an overes-
timation of the attack cost. Secondly, the distributions of the different variables
are approximated using a limited number of points.

The previous assumptions and approximations are necessary to allow efficient
calculation of the attack cost. However, they could result in a less optimal attack
and a less accurate cost estimation for directional failure boosting. During the
development of our cost estimation methods in Sects. 5 and 6 we showed that
our calculation methods are still reasonably accurate using three checks:

First we checked the failure probability when no precalculation is performed,
which should correspond to the failure probability of the scheme. As shown in
the paper, this is always approximately the case for our cost estimation methods
(but not in case of Saber or Kyber in the geometric case, which led us to argue
that this method is not appropriate for Saber or Kyber).

Secondly, we checked our geometric and geometric-uneven methods in the
failure boosting case using the more accurate Gaussian approximation, where we
could see that our newly developed methods give approximately the same result.
Note that this comparison is not possible in the directional failure boosting case.

Thirdly, we verified the geometric-uneven method using the geometric
method in case of Katana. As the latter method makes less approximations
and as its assumptions are valid for Katana, this comparison can be used to ver-
ify some of the new assumptions (i.e. removing the bias in Subsect. 6.3 and only
considering errors at the first coefficient in Subsect. 6.1) made in the geometric-
uneven method compared to the geometric method.

Table 4. Cost (log2) of obtaining the first and second failure in our multitarget attack
and cost of obtaining only the first failure if the second failure would be free. qlimit = 264

and T (0) = 264. Text is made bold for dominating factor in the attack cost. When
performing a levelled multitarget attack where T (1) �= 1, the search for the second
failure is considered dominant.

Full attack First failure

W0/Q0 W1/Q1 W0/Q0

LightSaber 116/108 104/62 116/108

Saber 140/126 140/68 133/125

FireSaber 215/126 215/68 188/128

Kyber512 131/118 129/62 131/118

Kyber768 174/126 175/69 161/128

Kyber1024 228/126 219/71 191/128

32 J.-P. D’Anvers and S. Batsleer

Conclusion For schemes where the attack cost is dominated by finding the first
failure, the calculated cost will be close to the optimal decryption failure attack
cost (unless a radical new attack is discovered that outperforms failure boost-
ing). For schemes with an attack cost dominated by directional failure boosting,
the estimation will be less accurate. In a worst case attack scenario (from the
designers perspective) one could assume the directional failure boosting cost to
be reduced even more, leading to an attack that is essentially dominated by find-
ing the first failure. Note that this is a very conservative approach and does not
correspond to an existing attack scenario. An overview of the dominant attack
costs can be found in Table 4.

References

1. Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process (2016). https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf

2. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: SCN 18, LNCS
(2018)

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

4. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (eds.) Topics in Cryptology. LNCS, vol.
8366. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

5. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) LNCS, vol. 7237, pp. 719–737. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-29011-4 42

6. Basso, A., et al.: SABER. Technical report, national institute of standards and
technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

7. Bindel, N., Schanck, J.M.: Decryption failure is more likely after success. In: Ding,
J., Tillich, J.P. (eds.) Post-Quantum Cryptography. PQCrypto 2020. LNCS, vol.
12100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1 12

8. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM.
IACR ePrint, 634 (2020)

9. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
attacks and concrete security estimation. In: CRYPTO 2020, Part II, LNCS (2020)

10. D‘Anvers, J.P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-Secure encryption and CCA-Secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) Progress in Cryptology. LNCS, vol. 10831. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

11. D‘Anvers, J.P., Rossi, M., Virdia, F.: (One) Failure is not an option: bootstrapping
the search for failures in lattice-based encryption schemes. In: Canteaut, A., Ishai,
Y. (eds.) Advances in Cryptology. LNCS, vol. 12107. Springer, Cham. https://doi.
org/10.1007/978-3-030-45727-3 1

12. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: On the impact of decryption
failures on the security of LWE/LWR based schemes. Cryptology ePrint Archive,
Report 2018/1089 (2018). https://eprint.iacr.org/2018/1089

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-642-29011-4_42
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-44223-1_12
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-030-45727-3_1
https://doi.org/10.1007/978-3-030-45727-3_1
https://eprint.iacr.org/2018/1089

Multitarget Decryption Failure Attacks 33

13. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: The impact of error dependen-
cies on ring/mod-LWE/LWR based schemes. In: Post-Quantum Cryptography -
10th International Conference, PQCrypto 2019 (2019)

14. Dent, A.W.: A Designer‘s guide to KEMs. In: Paterson, K.G. (eds.) Cryptography
and Coding. Cryptography and Coding 2003. LNCS, vol. 2898. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-40974-8 12

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. (1) (2013)

16. Gentry, C., Boneh, D.: A fully homomorphic encryption scheme. Stanford Univer-
sity Stanford (2009)

17. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008. ACM (2008)

18. Guo, Q., Johansson, T., Nilsson, A.: A generic attack on lattice-based schemes
using decryption errors with application to ss-ntru-pke. Cryptology ePrint Archive,
Report 2019/043 (2019). https://eprint.iacr.org/2019/043

19. Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors
against LAC. In: Galbraith, S., Moriai, S. (eds.) Advances in Cryptology. LNCS,
vol. 11921. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 4

20. Hofheinz, D., Hovelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography.
TCC 2017. LNCS, vol. 10677. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70500-2 12

21. Jaulmes, É., Joux, A.: A chosen-ciphertext attack against NTRU. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 20–35. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 2

22. Langlois, A., Stehle, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75, 565–599 (2015). https://doi.org/10.1007/s10623-014-
9938-4

23. Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-
based signatures. In: ASIACRYPT (2009)

24. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

25. Naehrig, M., et al.: Technical report, NIST (2017)
26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. ACM, In: STOC (2005)
27. Schwabe, P., et al.: CRYSTALS-KYBER. technical report, national institute of

standards and technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

28. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) Theory of Cryptography. TCC
2016. LNCS, vol. 9986. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 8

https://doi.org/10.1007/978-3-540-40974-8_12
https://eprint.iacr.org/2019/043
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/3-540-44598-6_2
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-13190-5_1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8

Post-quantum Security of Plain OAEP
Transform

Ehsan Ebrahimi(B)

Department of Computer Science, University of Luxembourg,
Esch-sur-Alzette, Luxembourg

ehsan.ebrahimi@uni.lu

Abstract. In this paper, we show that OAEP transform is indistin-
guishable under chosen ciphertext attack in the quantum random oracle
model if the underlying trapdoor permutation is quantum partial-domain
one-way. The existing post-quantum security of OAEP (TCC 2016-B
[14]) requires a modification to the OAEP transform using an extra hash
function. We prove the security of the OAEP transform without any
modification and this answers an open question in one of the finalists of
NIST competition, NTRU submission [6], affirmatively.

Keywords: Post-quantum Security · OAEP · Quantum Random
Oracle Model

1 Introduction

The rapid progress on quantum computing and the existence of quantum algo-
rithms like Shor’s algorithm [12] has sparked the necessity of replacing old cryp-
tography with post-quantum cryptography. Toward this goal, the National Insti-
tute of Standards and Technology (NIST) has initiated a competition for post-
quantum cryptography. In this paper we address an open question in one of the
finalists of NIST competition, NTRU submission [6]. The security of (unmodi-
fied) Optimal Asymmetric Encryption Padding (OAEP) in the quantum random
oracle model has been mentioned as an interesting open question in [6]1. The
existing post-quantum security proof of OAEP [14] requires a modification to
OAEP transform. (See details below.)

The random oracle model [1] is a powerful model in which the security of a
cryptographic scheme is proven assuming the existence of a truly random func-
tion that is accessible by all parties including the adversary. But in real world
applications, the random oracle will be replaced with a cryptographic hash func-
tion and the code of this function is public and known to the adversary. Following
[4], we use the quantum random oracle model in which the adversary can make
queries to the random oracle in superposition (that is, given a superposition of
inputs, he can get a superposition of output values). This is necessary since a

1 In the Subsect. 2.4.5 (titled: An IND-CCA2 PKE using Q-OAEP) of the version
dated September 2020.

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 34–51, 2022.
https://doi.org/10.1007/978-3-030-97121-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_2

Post-quantum Security of Plain OAEP Transform 35

quantum adversary attacking a scheme based on a real hash function is neces-
sarily able to evaluate that function in superposition. Hence the random oracle
model must reflect that ability if one requests post-quantum security.

Bellare and Rogaway [2] proposed OAEP transform, for converting a trap-
door permutation into a public-key encryption scheme using two random oracles.
It was believed that the OAEP-cryptosystem is provable secure in the random
oracle model based on one-wayness of trapdoor permutation, but Shoup [13]
showed it is an unjustified belief. Later, Fujisaki et al. [9] proved IND-CCA
security of the OAEP-cryptosystem based on a stronger assumption, namely,
partial-domain one-wayness of the underlying permutation.

Is OAEP transform secure in the standard model? A recent work
to study this question [5] shows that a full instantiation of RSA-OAEP is only
possible for two variants of RSA-OAEP (called ‘t-clear’ and ‘s-clear’). Also, we
emphasize that the positive results in [5] hold against a classical adversary and
one needs to investigate the possibility of such instantiation in the post-quantum
setting. For instance, the partial instantiations are based on algebraic properties
of the RSA assumption that trivially does not hold in the post-quantum setting.
Or the full instantiation of t-clear RSA-OAEP is based on non-standard assump-
tions (called ‘XOR-type’ assumptions) for which an intuitive justifications has
been only given in light of the multiplicative structure of RSA, and etc. Even
though the post-quantum instantiation of the random oracles in OAEP is a rele-
vant research question, it is not in the scope of this paper and we leave a further
investigation as an open question. Here, we investigate the security of OAEP
transform in the quantum random oracle model.

Post-quantum security of OAEP transform has been studied in [14]. The
authors modified OAEP transform (called it Q-OAEP) using an extra hash func-
tion that is length-preserving and show that Q-OAEP is IND-CCA secure in the
quantum random oracle model. The extra hash function in Q-OAEP is used to
extract the preimage of a random oracle queries in the security proof. In this
work, we show that this extra hash function is unnecessary. We use Zhandry’s
compressed oracle technique [17] to prove IND-qCCA security of OAEP trans-
form (without any modification) in the quantum random oracle model. IND-
qCCA notion introduced in [3] is an adaptation of IND-CCA in which the adver-
sary is allowed to make quantum decryption queries, but, the challenge query
is restricted to be classical. Since security in the sense of IND-qCCA implies
IND-CCA security, our result answers an open question in one of the finalists of
NIST competition, NTRU [6], affirmatively.

Note that in the IND-qCCA notion, the adversary’s challenge queries are
restricted to be classical. Proposing a quantum IND-CCA notion that grants the
adversary the possibility of submitting quantum challenge queries is a challeng-
ing task with some partial successes [7,10]. We postpone verifying the security of
OAEP transform in the sense of definitions in [7,10] until a definite definition is
given.

Organization. In Sect. 2, we present some basics of quantum information and
computation, security definitions needed in the paper and an introduction for the

36 E. Ebrahimi

Compressed Standard Oracle that has been introduced in [17] which we use in the
paper. In Sect. 3, we present the OAEP scheme and show that it is IND-qCCA
secure in the quantum random oracle model.

2 Preliminaries

Notations. Let MSP shows the message space. The notation x
$←− X means

that x is chosen uniformly at random from the set X. For a natural number
n, [n] means the set {1, · · · , n}. Pr[P : G] is the probability that the predicate
P holds true where free variables in P are assigned according to the program
in G. The function negl(n) is any non-negative function that is smaller than
the inverse of any non-negative polynomial p(n) for sufficiently large n. That is,
limn→∞ negl(n)p(n) = 0 for any polynomial p(n). For a function f , fx denotes
the evaluation of f on the input x, that is f(x). For a bit-string x of size more-
than-equal k, [x]k are the k least significant bits of x and [x]k are the k most
significant bits of x. For two bits b and b′, [b = b′] is 1 if b = b′ and it is 0
otherwise.

2.1 Quantum Computing

We present basics of quantum computing in this subsection. The inter-
ested reader can refer to [11] for more information. For two vectors |Ψ〉 =
(ψ1, ψ2, · · · , ψn) and |Φ〉 = (φ1, φ2, · · · , φn) in C

n, the inner product is defined
as 〈Ψ,Φ〉 =

∑
i ψ∗

i φi where ψ∗
i is the complex conjugate of ψi. Norm of |Φ〉 is

defined as ‖ |Φ〉 ‖ =
√〈Φ,Φ〉. The n-dimensional Hilbert space H is the complex

vector space C
n with the inner product defined above. A quantum system is

a Hilbert space H and a quantum state |ψ〉 is a vector |ψ〉 in H with norm 1.
A unitary operation over H is a transformation U such that UU

† = U
†
U = I

where U
† is the Hermitian transpose of U and I is the identity operator over

H. Norm of an operator U is ‖U‖ = max|ψ〉 ‖U |ψ〉‖. The computational basis
for H consists of log n vectors |bi〉 of length log n with 1 in the position i and 0
elsewhere. With this basis, the Hadamard unitary is defined as

H : |b〉 → 1√
2
(|b̄〉 + (−1)b |b〉),

for b ∈ {0, 1} where b̄ = 1 − b. The controlled-swap unitary is defined as

|b〉 |ψ0〉 |ψ1〉 → |b〉 |ψb〉 |ψb̄〉,
for b ∈ {0, 1}. The controlled-unitary U (cU) is define as:

cU|b〉 |Ψ〉 →
{

|b〉U |Ψ〉 if b = 1
|b〉 |Ψ〉 if b = 0

.

The bit-flip unitary X maps |b〉 to |b̄〉 for b ∈ {0, 1}. An orthogonal projection P

over H is a linear transformation such that P
2 = P = P

†. A measurement on a

Post-quantum Security of Plain OAEP Transform 37

Hilbert space is defined with a family of projectors that are pairwise orthogonal.
An example of measurement is the computational basis measurement in which
any projection is defined by a basis vector. The output of computational mea-
surement on a state |Ψ〉 is i with probability ‖〈 bi, Ψ〉‖2 and the post measurement
state is |bi〉. For a general measurement {Pi}i, the output of this measurement
on a state |Ψ〉 is i with probability ‖Pi |Ψ〉 ‖2 and the post measurement state is
Pi|Ψ〉

‖Pi|Ψ〉‖ .
For two operators U1 and U2, the commutator is [U1,U2] = U1U2 − U2U1.

For two quantum systems H1 and H2, the composition of them is defined by the
tensor product and it is H1 ⊗ H2. For two unitary U1 and U2 defined over H1

and H2 respectively, (U1 ⊗ U2)(H1 ⊗ H2) = U1(H1) ⊗ U2(H2). In this paper,
QFT over an n-qubits system is H

⊗n.
If a system is in the state |Ψi〉 with the probability pi, we interpret this

with a quantum ensemble E = {(|Ψi〉 , pi)}i. Different outputs of a quantum
algorithm can be represented as a quantum ensemble. The density operator
corresponding with the ensemble E is ρ =

∑
i pi|Ψi〉 〈Ψi| where |Ψi〉 〈Ψi| is the

operator acting as |Ψi〉 〈Ψi| : |Φ〉 → 〈Ψi, Φ〉|Ψi〉. The trace distance of two density
operators ρ1, ρ2 is defined as TD(ρ1, ρ2) := 1

2 tr |ρ1 − ρ2| where tr is the trace
of a square matrix (the sum of entries on the main diagonal) and |ρ1 − ρ2| :=√

(ρ1 − ρ2)†(ρ1 − ρ2). Note that the trace distance of two pure states |Ψ〉 , |Φ〉 is
defined as TD(|Ψ〉 〈Ψ | , |Φ〉 〈Φ|).

Any classical function f : X → Y can be implemented as a unitary operator
Uf in a quantum computer where Uf : |x, y〉 → |x, y ⊕ f(x)〉 and it is clear that
U

†
f = Uf . A quantum adversary has standard oracle access to a classical function

f if it can query the unitary Uf .

2.2 Definitions

Here, we define a public-key encryption scheme, the IND-qCCA security notion
and the quantum partial-domain one-wayness.

Definition 1. A public-key encryption scheme E consists of three polynomial-
time (in the security parameter n) algorithms, E = (Gen,Enc,Dec), such that:

1. Gen, the key generation algorithm, is a probabilistic algorithm which on input
1n outputs a pair of keys, (pk, sk) ← Gen(1n), called the public key and the
secret key for the encryption scheme, respectively.

2. Enc, the encryption algorithm, is a probabilistic algorithm which takes as
input a public key pk and a message m ∈ MSP and outputs a ciphertext c ←
Encpk(m). The message space, MSP, may depend on pk.

3. Dec, the decryption algorithm, is a deterministic algorithm that takes as input
a secret key sk and a ciphertext c and returns the message m := Decsk(c).
It is required that the decryption algorithm returns the original message, i.e.,
Decsk(Encpk(m)) = m, for every (pk, sk) ← Gen(1n) and every m ∈ MSP.
The algorithm Dec returns ⊥ if ciphertext c is not decryptable.

38 E. Ebrahimi

In the following, we define the IND-qCCA security notion [3] in the quantum
random oracle model. The IND-qCCA security notion for a public-key encryp-
tion scheme allows the adversary to make quantum decryption queries but the
challenge query is classical. We define UDec as:

UDec |c, y〉 →
{

|c, y⊕ ⊥〉 if c∗ is defined ∧ c = c∗

|c, y ⊕ Decsk(c)〉 otherwise
,

where c∗ is the challenge ciphertext and ⊥ is a value outside of the output space.
We say that a quantum algorithm A has quantum access to the random oracle
H if A can submit queries in superposition and the oracle H answers to these
queries by applying a unitary transformation that maps |x, y〉 to |x, y ⊕H(x)〉.
Definition 2 (IND-qCCA in the quantum random oracle model). A
public-key encryption scheme E = (Gen,Enc,Dec) is IND-qCCA secure if for
any quantum polynomial-time adversary A

Pr
[
b = 1 : b ← ExpqCCA,qRO

A,E (n)
]

≤ 1/2 + negl(n),

where ExpqCCA,qRO
A,E (n) game is define as:

ExpqCCA,qRO
A,E (n) game:

Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk, sk) and
chooses random oracles.

Query: The adversary A given the public key pk, the quantum oracle access
to UDec and the quantum access to the random oracles, chooses two classical
messages m0,m1 of the same length and sends them to the challenger. The chal-
lenger chooses a random bit b and responds with c∗ ← Encpk(mb).

Guess: The adversary A continues to query the decryption oracle and the ran-
dom oracles. Finally, the adversary A produces a bit b′. The output of the game
is [b = b′].

Definition 3 (Quantum partial-domain one-way function). We say a
permutation f : {0, 1}n+k1 × {0, 1}k0 → {0, 1}m is quantum partial-domain one-
way if for any polynomial-time quantum adversary A,

Pr
[
s̃ = s : s

$←− {0, 1}n+k1 , t
$←− {0, 1}k0 , s̃ ← A(f(s, t))

]
≤ negl(n).

2.3 Compressed Standard Oracle

In this section, we briefly present the Compressed Standard Oracle (CStO) that
has been introduced in [17]. The interested reader can refer to [8,17] for more
details.

In the standard quantum random oracle model, a function H : {0, 1}m →
{0, 1}n is chosen uniformly at random from the set of all functions (lets call it

Post-quantum Security of Plain OAEP Transform 39

ΩH) and superposition queries will be answered by the unitary UH that maps
|x, y〉 to |x, y ⊕ H(x)〉. Another perspective to consider this is that the oracle
puts the superposition of all functions on his private register2 and a query is
implemented as

StO : |x, y〉
∑

H

1
√|ΩH | |H〉 →

∑

H

1
√|ΩH | |x, y ⊕ H(x)〉 |H〉.

Note that if the oracle measures its internal state in the computational basis,
this corresponds to choosing H uniformly at random from ΩH and answer with
UH . So these two oracles are perfectly indistinguishable. Now if we apply QFT
to the output register before and after applying StO, we will get the Phase oracle
that operates as follows:

PhO : |x, y〉
∑

H

1
√|ΩH | |H〉 →

∑

H

1
√|ΩH | (−1)y·H(x) |x, y〉 |H〉.

Let D represent the truth table of the function H and Px,y represent the truth
table of the point function that is y on the input x and it is zero elsewhere. With
this notation we can write the query above as follows:

PhO : |x, y〉
∑

D

1
√|ΩH | |D〉 →

∑

D

1
√|ΩH | (−1)Px,y·D |x, y〉 |D〉.

Now if the oracle applies QFT to the oracle register after applying PhO, it will
get:

QFTDPhO : |x, y〉
∑

D

1
√|ΩH | |D〉 → |x, y〉 |Px,y〉.

Note that QFTD only effects the oracle state and it is undetectable to the adver-
sary. At this stage, the oracle will symmetrically store the inputs/outputs of the
adversary’s queries in its private register. Informally, if the oracle is able to move
the entry that is not zero in the database Px,y to the beginning of its private
register and remove all the zero slots (without the adversary’s detection), the
private register of the oracle can contain a polynomial number of registers3.

RmoVDMoVDQFTDPhO :
∑

x,y

αx,y |x, y〉
∑

D

1
√|ΩH | |D〉 →

∑

x,y

αx,y |x, y〉 |x, y〉.

Following the perspective above, Zhandry [17] developed the CStO that
its private register can be implemented efficiently, symmetrically stores the
inputs/outputs of the adversary’s queries in its private register and it is per-
fectly indistinguishable from the standard oracle (StO).

Lemma 1 (Lemma 4 in [17]). CStO and StO are perfectly indistinguishable.
2 This requires an exponential number of registers that is not efficient.
3 This informal ‘move’ and ‘remove’ operations are detectable to the adversary and

they are given only to build the intuition behind CStO.

40 E. Ebrahimi

For the rest, we import the representation of CStO from [8]. Let D = ⊗x∈XDx

be the oracle register. The state space of Dx is generated with vectors |y〉 for
y ∈ Y ∪ {⊥}. Let FDx

be a unitary acting on Dx that maps |⊥〉 to QFT |0〉 and
vice versa. And for any vector orthogonal to |⊥〉 and QFT |0〉, F is identity. We
define CStO to be the following unitary acting on the input register, the output
register and the D register.

CStO =
∑

x

|x〉〈x| ⊗ FDx
CNOTY Dx

FDx
,

where CNOTY Dx
|y, yx〉 = |y ⊕ yx, yx〉 for y, yx ∈ Y and it is identity on |y,⊥〉.

The initial state of D register is ⊗x∈X |⊥〉.
We call a query to CStO ‘dummy’ if its output register is set to the uniform

superposition. Note that for such a query CNOTY Dx
is identity and therefore

CStO is identity.
In the following, we present preliminaries for Theorem 3.1 in [8] that will be

used in the security proof in Sect. 3. For a fixed relation R ⊂ X × Y , ΓR is the
maximum number of y’s that fulfill the relation R where the maximum is taken
over all x ∈ X:

ΓR = max
x∈X

|{y ∈ Y |(x, y) ∈ R}|.

We define a projector Πx
Dx

that checks if the register Dx contains a value y �=⊥
such that (x, y) ∈ R:

Πx
Dx

:=
∑

y s.t. (x,y)∈R

|y〉〈y|Dx
.

Let Π̄x
Dx

= IDx
−Πx

Dx
. We define the measurement M to be the set of projectors

{Σx}x∈X∪{∅} where

Σx :=
⊗

x′<x

Π̄x′
Dx′ ⊗ Πx

Dx
for x ∈ X and Σ∅ := I −

∑

x

Σx. (1)

Informally, the measurement M checks for the smallest x for which Dx contains
a value y �=⊥ such that (x, y) ∈ R. If no register Dx contains a value y �=⊥ such
that (x, y) ∈ R, the outcome of M is ∅. We define a purified measurement MDP

corresponding to M that XORs the outcome of the measurement to an ancillary
register:

MDP |φ, z〉DP →
∑

x∈X∪{∅}
Σx |φ〉D |z ⊕ x〉P .

The following lemma states that CStO and MDP almost commute if ΓR is small
proportional to the size of Y .

Lemma 2 (Theorem 3.1 in [8]). For any relation R and ΓR defined above,
the commutator [CStO,MDP] is bounded as follows:

‖[CStO,MDP]‖ ≤ 8 · 2−n/2
√

2ΓR.

Post-quantum Security of Plain OAEP Transform 41

It has been shown that a quantum adversary needs an exponential number of
quantum queries to a random oracle to find a collision [16]. As an immediate
corollary, a random injective function is indistinguishable from a random oracle
for a quantum polynomial-time adversary. We use this corollary in the security
proof of OAEP.

Lemma 3 (From [16]). Any quantum adversary making q queries to a random
oracle H : {0, 1}m → {0, 1}n outputs a collision for H with probability at most
C(q + 1)3/2n where C is a universal constant.

In addition to the lemmas above, we use the ‘gentle-measurement lemma’ [15]
in the proof. Informally, it states that if an output of a measurement is almost
certain for a quantum state, the measurement does not disturb the state much.

Lemma 4 (gentle-measurement lemma). Let M = {Pi}i is a measure-
ment. For any state |Ψ〉, if there exists an i such that ‖Pi |Ψ〉 ‖2 ≥ 1 − ε, then
TD(|Ψ〉 ,M |Ψ〉) ≤ √

ε + ε.

3 Security of OAEP

In this section, we define OAEP transformation and prove that it is IND-qCCA
secure in the quantum random oracle model if the underlying trapdoor permu-
tation is quantum partial-domain one-way. (Since IND-qCCA security trivially
implies IND-CCA security, our result shows that OAEP transform is IND-CCA
in the quantum random oracle model if the underlying trapdoor permutation is
quantum partial-domain one-way.)

Definition 4 (OAEP). Let G : {0, 1}k0 → {0, 1}n+k1 , H : {0, 1}n+k1 →
{0, 1}k0 be random oracles. The encryption scheme OAEP = (Gen,Enc,Dec) is
defined as:

1. Gen: Specifies an instance of the injective function f and its inverse f−1.
Therefore, the public key and secret key are f and f−1 respectively.

2. Enc: Given a message m ∈ {0, 1}n, the encryption algorithm computes

s := m||0k1 ⊕ G(r) and t := r ⊕ H(s),

where r
$←− {0, 1}k0 , and outputs the ciphertext c := f(s, t)4.

3. Dec: Given a ciphertext c, the decryption algorithm does the following: Com-
pute f−1(c) = (s, t) and then,
(a) query the random oracle H on input s, query the random oracle G on

input t⊕H(s) and compute M := s⊕G(t⊕H(s)). In addition it submits
two dummy queries to the random oracle G5.

4 Q-OAEP in [14] outputs the ciphertext c :=
(
f(s, t), H ′(s, t)

)
for a fresh random

oracle H ′.
5 Note that these dummy queries are required to make the number of queries submitted

to G equal in the Games 1 and 2 in the security proof.

42 E. Ebrahimi

(b) if the k1 least significant bits of M are zero then return the n most sig-
nificant bits of M , otherwise return ⊥.

Note that k0 and k1 depend on the security parameter n.

We prove the security of OAEP for the parameters k0 − n = O(n) (this is needed
to show that Games 1 and 2 are indistinguishable) and n + k1 ≥ k0 (because we
need to replace the random oracle G with a random injective function in Game 1).

Here we sketch the main ideas to prove the IND-qCCA security of OAEP in
the quantum random oracle. We start with the IND-qCCA game in QROM in
which the adversary wins if he guesses the challenge bit b correctly. By intro-
ducing some (indistinguishable) intermediate games we reach the last game in
which the adversary’s success probability is 1/2. In the last game, the adver-
sary is not allowed to query the randomness r∗ that is used to obtain the
challenge ciphertext c∗. (Since queries are quantum, this is prevented by mea-
suring the input register of the queries to G by the projective measurement
Mr∗ = {P1 = |r∗〉〈,|P0 = I − P1} and aborting if the outcome is 1.) Therefore,
G(r∗) is a random value for the adversary and mb||0k1⊕G(r∗) hides the challenge
bit b information-theoretically.

Note that at some steps of the proof, the indistinguishability of two games
(specifically two last games in the proof) needs to be reduced to the partial-domain
one-wayness of the underlying permutation. A reduction adversary to break the
partial-domain one-wayness of the underlying permutation needs to answer the
decryption queries without knowing f−1. In this step, the reduction adversary uses
the databases of the compressed standard oracles corresponding to the random
oracles H,G for decryption. (On the input c it searches over the inputs/outputs of
the random oracle queries in the databases of H,G that satisfies c = f(s, r ⊕ Hs)
and [Gr ⊕ s]k1 = 0k1 and outputs [Gr ⊕ s]n.) However, it is not straightforward to
show that this new decryption algorithm is indistinguishable from the decryption
algorithm of the OAEP scheme. This is because a decryption algorithm that uses
the databases to decrypt may cause detectable effects on the databases. In other
words, the extraction of data from the databases may be detectable to the adver-
sary. Here we use Lemma 2 to show that the oracle can extract information from
the databases without an adversary’s detection. We show this indistinguishability
by modifying the decryption algorithm of the OAEP scheme step by step to reach
the decryption algorithm that only uses the databases.

Theorem 1. If the underlying permutation is quantum partial-domain one-way,
then the OAEP scheme is IND-qCCA secure in the quantum random oracle
model.

Proof. Let ΩH and ΩG be the set of all function G : {0, 1}k0 → {0, 1}n+k1

and H : {0, 1}n+k1 → {0, 1}k0 , respectively. Let SG shows the set of all injec-
tive functions from {0, 1}k0 to {0, 1}n+k1 . Let A be a polynomial-time quantum
adversary that attacks the OAEP-cryptosystem in the sense of IND-qCCA in
the quantum random oracle model and makes at most qH and qG queries to the
random oracles H and G respectively and qdec decryption queries.

Post-quantum Security of Plain OAEP Transform 43

Game 0: This is IND-qCCA game in qROM, ExpqCCA,qRO
A,OAEP (n).

Game 0:

let (pk, sk) ← Gen(1n), r∗ $←− {0, 1}k0 , b
$←− {0, 1}, H

$←− ΩH , G
$←− ΩG

let m0,m1 ← AH,G,UDec(pk)
let s∗ := mb||0k1 ⊕ G(r∗), t∗ := r∗ ⊕ H(s∗), c∗ := f(s∗, t∗)
let b′ ← AH,G,UDec(c∗)
return [b = b′]

Game 1: In this game, we consider H is being implemented as the compressed
standard oracles CStOH and G is replaced with a random injective function.

Game 1:

let (pk, sk) ← Gen(1n), r∗ $←− {0, 1}k0 , b
$←− {0, 1}, G

$←− SG

let m0,m1 ← ACStOH ,G,UDec(pk)
let s∗ := mb||0k1 ⊕ G(r∗), t∗ := r∗ ⊕ H(s∗), c∗ := f(s∗, t∗)

let b′ ← ACStOH ,G,UDec(c∗)
return [b = b′]

Since CStOH and the standard oracles StOH are perfectly indistinguishable
by Lemma 1, this change does not effect the adversary’s success probability. And
changing the random oracle G to a random injective function is distinguishable
by a probability at most C(qG+3qdec+2)3/2n+k1 by Lemma 3. (Each decryption
query makes three random oracle queries to G, so the total number of queries
to G is at most qG + 3qdec plus 1 for the challenge query.)

Game 2: In this game we change UDec oracle to UDec(1) described below. Let
DH denotes the database of CStOH . We define the relation RH

c to be the set
of all (s,Hs) such that [G(Hs ⊕ [f−1(c)]k0) ⊕ s]k1 = 0k1 . Given the relation
RH

c , the projectors Σs
c for s ∈ {0, 1}n+k1 and Σ∅

c are defined similar to Eq. (1).
Now the measurement MH = {Σs

c}s∈{0,1}n+k1∪{∅} checks if there exists a pair in
DH satisfying the relation RH

c or not. If there is more than one pair satisfying
the relation RH

c , the smallest s will be the output of MH . If there is no such a
pair the output of MH is ∅. Let Mc

DH ,PH
be the following purified measurement

corresponding to M
H :

M
c
DH ,PH

|φ, z〉DHPH
→

∑

s∈{0,1}n+k1∪{∅}
Σs

c |φ〉DH
|z ⊕ s〉PH

.

We define the unitary MDH ,PH
that operates on the ciphertext, DH and PH

registers as:

MDH ,PH
|c〉 |φ, z〉DHP → |c〉 ⊗ M

c
DH ,PH

|φ, z〉DHPH
.

44 E. Ebrahimi

Note that MDH ,PH
is an involution, that is, MDH ,PH

MDH ,PH
= I. For each

decryption query, UDec(1) first applies the MDH ,PH
unitary with the PH register

initiated with 0. Then it executes UDec without submitting the two dummy
queries to the random oracle G. We denote this slightly modified decryption
algorithm by U

′
Dec . (We omit these dummy queries since MDH ,PH

makes two
queries to G in each decryption query.) Finally it applies the MDH ,PH

again.

UDec(1) = MDH ,PH
U

′
Dec MDH ,PH

.

Game 2:

let (pk, sk) ← Gen(1n), r∗ $←− {0, 1}k0 , b
$←− {0, 1}, G

$←− SG

let m0,m1 ← ACStOH ,G,U
Dec(1) (pk)

let s∗ := mb||0k1 ⊕ G(r∗), t∗ := r∗ ⊕ H(s∗), c∗ := f(s∗, t∗)

let b′ ← ACStOH ,G,U
Dec(1) (c∗)

return [b = b′]

We prove MDH ,PH
and U

′
Dec almost commute to show the indistinguishabil-

ity of these two games. Note that MDH ,PH
only interfaces with U

′
Dec when U

′
Dec

makes a query to the random oracle H. In other words, the reason that MDH ,PH

does not commute with U
′
Dec is that U′

Dec makes a random oracle query to H in
each decryption query. By Lemma 2, if we commute M

c
DH ,PH

and UDec , this will

be distinguishable to the adversary with a probability at most 8 · 2− k0
2

√
2ΓRc

H
.

Since G is an injective function ΓRc
H

= 2n. Therefore the distinguishing advan-

tage of the adversary is at most 2
n−k0

2 + 7
2 that is negligible because k0−n = O(n).

The overall advantage of the adversary in distinguishing these two games is at
most qdec2

n−k0
2 + 7

2 .

Game 3: In this game we replace the random injective function with a com-
pressed standard oracle CStOG. (First we replace the random injective function
with a random oracle and then we change it to a compressed standard oracle.
We do these two changes in one game in favor of reducing the total number of
games in the proof.)

Game 3:

let (pk, sk) ← Gen(1n), r∗ $←− {0, 1}k0 , b
$←− {0, 1},

let m0,m1 ← ACStOH ,CStOG,U
Dec(1) (pk)

let s∗ := mb||0k1 ⊕ G(r∗), t∗ := r∗ ⊕ H(s∗), c∗ := f(s∗, t∗)

let b′ ← ACStOH ,CStOG,U
Dec(1) (c∗)

return [b = b′]

Replacing the random injective function with a random oracle G is distin-
guishable with a probability at most C(qG+3qdec+1)3/2n+k1 by Lemma 3. Then,
a random oracle G is perfectly indistinguishable from a CStOG by Lemma 1.

Post-quantum Security of Plain OAEP Transform 45

Game 4: In this game we change UDec(1) oracle to UDec(2) described below.
Let DG denotes the database of CStOG. We define the relation RG

c to be the
set of all (r,Gr) such that [[f−1(c)]n+k1 ⊕ Gr]k1 = 0k1 . Given the relation RG

c ,
the projectors Σr

c for r ∈ {0, 1}k0 and Σ∅
c are defined similar to Eq. (1). Now

the measurement M
G = {Σr

c }r∈{0,1}k0∪{∅} checks if there exists a pair in DG

satisfying the relation RG
c or not. If there are more than one pair satisfying

the relation RG
c , the smallest r will be the output of MG. If there is no such a

pair the output of MG is ∅. Let M
c
DG,PG

be the following purified measurement
corresponding to M

G:

M
c
DG,PG

|φ, z〉DGPG
→

∑

r∈{0,1}k0∪{∅}
Σr

c |φ〉DG
|z ⊕ r〉PG

.

We define the unitary MDG,PG
that operates on the ciphertext, DG and PG

registers as:

MDG,PG
|c〉 |φ, z〉DG,PG

→ |c〉 ⊗ M
c
DG,PG

|φ, z〉DGPG
.

Note that MDG,PG
is an involution. For each decryption query, UDec(2) first

applies the MDH ,PH
unitary with the PH register initiated with 0. Then it applies

the MDG,PG
unitary with the PG register initiated with 0. Then it executes U′

Dec.
And finally it applies MDG,PG

and MDH ,PH
again.

UDec(2) = MDH ,PH
MDG,PG

U
′
Dec MDG,PG

MDH ,PH
.

Game 4:

let (pk, sk) ← Gen(1n), r∗ $←− {0, 1}k0 , b
$←− {0, 1}

let m0,m1 ← ACStOH ,CStOG,U
Dec(2) (pk)

let s∗ := mb||0k1 ⊕ G(r∗), t∗ := r∗ ⊕ H(s∗), c∗ := f(s∗, t∗)

let b′ ← ACStOH ,CStOG,U
Dec(2) (c∗)

return [b = b′]

In order to show the indistinguishability of two games, we show that U
′
Dec

and MDG,PG
almost commutes (then MDG,PG

will cancel out with its second
application and we will get UDec(1)). Note that U

′
Dec does not commute with

MDG,PG
because it makes a random oracle query to G in each decryption query.

In other words, U′
Dec would commute with MDG,PG

if U′
Dec had not made a ran-

dom oracle query to G. By Lemma 2, if we commute M
c
DG,PG

and UDec , this will

be distinguishable to the adversary with a probability at most 8 ·2−n+k1
2

√
2ΓRc

G
.

Since ΓRc
G

= 2n, the overall distinguishing advantage of the adversary is at most

qdec2− k1
2 + 7

2 .

46 E. Ebrahimi

Game 5: In this game we change UDec(2) oracle to UDec(3) described below. For
each decryption query, UDec(3) first applies MDH ,PH

and then MDG,PG
with the

PH and PG registers initiated with 0. Then, if c∗ is defined and c = c∗ it XORs ⊥
to the output register. Otherwise, if the PH register contains ∅ or the PG register
contains ∅ it XORs ⊥ to the output register and make a dummy query to the
random oracles G,H. If the PH and PG registers do not contain ∅, it executes
U

′
Dec:

|c, y〉 |z1〉PH
|z2〉PG

→

⎧
⎪⎨

⎪⎩

|c, y⊕ ⊥〉 |z1〉 |z2〉 if c∗ is defined ∧ c = c∗

|c, y⊕ ⊥〉 |z1〉 |z2〉 if z1 = ∅ ∨ z2 = ∅
|c, y ⊕ Decf−1(c)〉 |z1〉 |z2〉 if z1 �= ∅ ∧ z2 �= ∅

.

Finally, it applies the unitary MDG,PG
and MDH ,PH

.

Game 5:

let (pk, sk) ← Gen(1n), r∗ $←− {0, 1}k0 , b
$←− {0, 1}

let m0,m1 ← ACStOH ,CStOG,U
Dec(3) (pk)

let s∗ := mb||0k1 ⊕ G(r∗), t∗ := r∗ ⊕ H(s∗), c∗ := f(s∗, t∗)

let b′ ← ACStOH ,CStOG,U
Dec(3) (c∗)

return [b = b′]

We show that UDec(2) and UDec(3) algorithms are indistinguishable. Below, we
recall a bit modified version of the decryption algorithm UDec(2) :

|c, y〉 |z1〉PH
|z2〉PG

→

⎧
⎪⎨

⎪⎩

|c, y⊕ ⊥〉 |z1〉 |z2〉 if c∗ is defined ∧ c = c∗

|c, y ⊕ Decf−1(c)〉 |z1〉 |z2〉 if z1 = ∅ ∨ z2 = ∅
|c, y ⊕ Decf−1(c)〉 |z1〉 |z2〉 if z1 �= ∅ ∧ z2 �= ∅

.

Note that if for any ciphertext c for which z1 = ∅ or z2 = ∅, Decf−1 (on input
c) returns ⊥ then the algorithms UDec(2) and UDec(3) return the same output in
all three cases. In the claim below, we show that if z1 = ∅ or z2 = ∅, Decf−1(c)
returns ⊥ with an overwhelming probability. The high-level argument to prove
this claim is that the adversary is not able to output a valid ciphertex (we call
a ciphertext c valid if Decf−1(c) �=⊥) with an overwhelming probability unless
it executes the encryption oracle, that is, unless it executes the random oracle
queries. (Note that the ciphertex space is {0, 1}n+k0+k1 and the total number of
the valid ciphertexts is 2n+k0 . So a random ciphertext is a valid ciphertext with
a probability at most 1/2k1 .) Then we show that if an adversary can distinguish
these two games with a non-negligible probability, then a reduction adversary
can output a valid ciphertext c for which z1 = ∅ or z2 = ∅ with a non-negligible
probability and this is a contradiction to the claim shown below.

Claim. A ciphertext c for which z1 = ∅ or z2 = ∅ is a valid ciphertext with a
probability at most 1/2k1 .

Post-quantum Security of Plain OAEP Transform 47

Proof. Let c is a ciphertext for which z1 = ∅ and let f−1(c) = (s′, t′). Note that
since z1 = ∅, there is no pair (s,Hs) in DH that satisfies [s⊕G(Hs ⊕t′)]k1 = 0k1 .
This means that either [s′⊕G(Hs′ ⊕t′)]k1 �= 0k1 or the adversary has not queried
the input s′ to H. Clearly if [s′ ⊕ G(Hs′ ⊕ t′)]k1 �= 0k1 , Decf−1(c) =⊥ and c is
an invalid ciphertext. And if s′ has not been queried to H, Hs′ is a random
value from the adversary’s point of view. Therefore, [s′ ⊕ G(t′ ⊕ Hs′)]k1 = 0k1

holds with a probability at most 1/2k1 . That is, c is a valid ciphertext with a
probability at most 1/2k1 .

Let c is a ciphertext for which z2 = ∅ and let f−1(c) = (s′, t′). Note that
since z2 = ∅, there is no pair (r,Gr) in DG that satisfies [s′ ⊕ Gr]k1 = 0k1 . This
means that either [s′ ⊕ G(t′ ⊕ Hs′)]k1 �= 0k1 or the adversary has not queried
the input t′ ⊕ Hs′ to G. If [s′ ⊕ Gr]k1 �= 0k1 , Decf−1(c) =⊥ and c is an invalid
ciphertext. If t′ ⊕Hs′ has not been queried to G, since G is a random oracle, the
probability that [s′ ⊕ G(t′ ⊕ Hs′)]k1 = 0k1 is at most 1/2k1 . That is, c is a valid
ciphertext with a probability at most 1/2k1 . ��
Now let A is an adversary that distinguishes these two games with a non-
negligible advantage. That is, at least one of the A’s decryption queries is of
the form ∑

ci for which z1=∅ or z2=∅, j

αi,j |ci〉 |yj〉 + |Ψ〉,

where for any i Decf−1(ci) �=⊥ and
∑

i,j ‖αi,j‖2 is non-negligible. (Note that
if there is no such a query, one can exclude the ciphertexts ci for which
Decf−1(ci) �=⊥ and z1 = ∅ or z2 = ∅ from the query using an appropriate pro-
jective measurement without the adversary’s detection (by Lemma 4) in each
decryption query and therefore two games will be indistinguishable.)

Now a reduction adversary B runs A and measures one of its decryption
queries at random. It is clear that B is able to output a valid ciphertex c for
which z1 = ∅ or z2 = ∅ with a non-negligible probability. And this is a contra-
diction to the claim above.

Game 6: The decryption algorithm UDec(3) in Game 5 searches over databases
DH ,DG to find pairs (s,Hs), (r,Gr) such that [G(Hs ⊕ [f−1(c)]k0) ⊕ s]k1 = 0k1

and [[f−1(c)]n+k1 ⊕Gr]k1 = 0k1 respectively. Instead of using f−1, we can simply
search for pairs (s,Hs), (r,Gr) that satisfy c = f(s, r⊕Hs) and [Gr ⊕s]k1 = 0k1 .
In this game, we change UDec(3) a new decryption oracle UDec(4) that searches
the databases DH and DG to decrypt. Let Search be a function that on input
(c,DH ,DG) searches for the pairs (s,Hs) in DH and (r,Gr) in DG such that
c = f(s, r⊕Hs) and [Gr⊕s]k1 = 0k1 . If it finds such pairs, it returns (1, [Gr⊕s]n),
otherwise it returns (0,⊥).

Let Qb′Qm be quantum registers of size (n + 1) that are initiated with zero.
The unitary UDec(4) first applies the unitary USearch where its output is stored in
Qb′Qm registers. Then it does as the following:

48 E. Ebrahimi

|c, y〉 |b′,m〉Qb′ Qm
→

⎧
⎪⎨

⎪⎩

|c, y⊕ ⊥〉 |b′,m〉 if c∗ is defined ∧ c = c∗

|c, y⊕ ⊥〉 |b′,m〉 if b′ = 0
|c, y ⊕ m〉 |b′,m〉 if b′ = 1

,

it submits two dummy queries to the random oracle G in all cases, and it submits
a dummy query to the random oracles G,H when b′ = 0 and when b′ = 1. Finally,
it applies USearch to undo Qb′Qm registers to zero.

Game 6:

let (pk, sk) ← Gen(1n), r∗ $←− {0, 1}k0 , b
$←− {0, 1}

let m0,m1 ← ACStOH ,CStOG,U
Dec(4) (pk)

let s∗ := mb||0k1 ⊕ G(r∗), t∗ := r∗ ⊕ H(s∗), c∗ := f(s∗, t∗)

let b′ ← ACStOH ,CStOG,U
Dec(4) (c∗)

return [b = b′]

We show that UDec(3) and UDec(4) are indistinguishable.

1. When c∗ is defined and c = c∗, both algorithms XOR ⊥ to the output register
and make two random oracle queries to G.

2. When b′ = 0, it is clear that either z1 is ∅ or z2 is ∅. Both algorithms XOR
⊥ to the output register and make three random oracle queries to G and one
random oracle query to H.

3. When b′ = 1, it is clear that z1 �= ∅ and z2 �= ∅. So both algorithms XOR
[Gr ⊕ s]n to the output register and make three random oracle queries to G
and one random oracle query to H.

Game 7: This is identical to Game 6, except it measures all the queries to CStOG

with the projective measurements Mr∗ . If there is an 1-output measurement, it
aborts and returns a random bit.

Game 7:

let (pk, sk) ← Gen(1n), r∗ $←− {0, 1}k0 , b
$←− {0, 1}

Mr∗ = {P1 = |r∗〉〈r∗|,P0 = I − P1},
run until there is an 1-output measurement with Mr∗

let m0,m1 ← ACStOH ,CStOG,U
Dec(4) (pk)

let s∗ := mb||0k1 ⊕ G(r∗), t∗ := r∗ ⊕ H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,U

Dec(4) (c∗)
return [b = b′]

Let qG1 be the total number of queries submitted to G before the challenge
query. Let qG2 be the total number of queries submitted to G after the challenge
query. (qG1 + qG2 = qG + 3qdec.) If there is no query to CStOG with a non-
negligible weight on the state |r∗〉, we can use Lemma 4 (gentle-measurement
lemma) to show that these two games are indistinguishable. In more details, let
ρi is the state of the i-th query (for i ∈ [qG+3qdec]) and let Mr∗(ρi) returns 1 with
the probability εi. By the gentle-measurement lemma, the trace distance between

Post-quantum Security of Plain OAEP Transform 49

Mr∗(ρi) and ρi is at most
√

εi+εi. So overall, these two games are distinguishable
with the advantage of at most 2(qG + 3qdec)

√
maxi{εi}. Therefore, if maxi{εi}

is negligible, two games are indistinguishable.
Since r∗ is a random value that has not been used before the challenge query

Mr∗(ρi) returns 1 with a probability at most 1/2k0 for any i ∈ [qG1]. So the
measurements before the challenge query are distinguishable with a probability
at most 2qG1

√
2−k0 that is negligible.

It is left to show that the measurements after the challenge query are indis-
tinguishable. Proof by contrary, let assume A makes a query to CStOG after the
challenge query with a non-negligible weight on |r∗〉. From A, we can construct
an adversary B that breaks the quantum partial-domain one-wayness of f . In
more details, B on input c∗(:= f(s∗, t∗) for uniformly random s∗, t∗

)
, chooses a

random element i from [qG2] and a random bit b, runs the adversary A, answers
the random oracle queries and decryption queries using two compressed oracles
CStOH , CStOG and finally it measures the input register of the i-th query to
CStOG and the database DH with the computational basis measurement, returns
an output and aborts. In the following we describe B in more details.

Simulation of Random Oracle Queries. For H-queries, the adversary B
uses CStOH . For G-queries, B does as follows. Let G′ be a random oracle with
the same domain and co-domain as G. Let Find be an operator that on inputs
r, c∗,DH , checks if there exists a pair (s,Hs) in DH such that c∗ = f(s, r ⊕Hs).
If there exists such a pair it returns (1, s). Otherwise, it returns (0, 0n+k1). Note
that since f is a permutation, the Find unitary either returns (0, 0n+k1) or returns
(1, s∗). For each query, B first applies Find operator with an ancillary register
Qb′Qs of (1 + n + k1) qubits initiated with zero. Then, if the query is conducted
before the challenge query or the Qb′ is set to 0, it forwards the query to CStOG′ ,
otherwise, it XORs mb||0k1 ⊕ s∗ to the output register:

G : |r, y〉 |DH〉 →

⎧
⎪⎨

⎪⎩

|r, y ⊕ G′(r)〉 if mb is not defined
|r, y ⊕ G′(r)〉 if Find(r, c∗,DH) = (0, 0n+k1)
|r, y ⊕ (mb||0k1 ⊕ s∗)〉 if Find(r, c∗,DH) = (1, s∗)

.

And finally it applies the Find operator again. Since f is a permutation, there
exists only one r such that c∗ = f(s∗, r ⊕ Hs∗) and that is r∗. For any r �= r∗

the oracle G and the random oracle G′ are the same, therefore, the simulation of
G-queries will be indistinguishable from the random oracle G′ unless the adver-
sary submits a post-challenge query with a non-negligible weight on the state
|r∗〉 and Find(r∗, c∗,DH) = (1, s∗). (And if this happens, it breaks the quantum
partial-domain one-wayness of f explained below.)

The Challenge Query. Upon receiving m0 and m1 from A, the adversary B
returns c∗ as the challenge ciphertext. (Note that the way we simulate G-queries
G(r∗) := mb||0k1 ⊕ s∗ and c∗ = f(s∗, r∗ ⊕ HS∗) that is a perfect simulation of
the challenge query.)

50 E. Ebrahimi

Simulation of Decryption Queries. B uses the oracle UDec(4) on inputs DH

and DG′ for the decryption queries. Note that G and G′ only differ on the input
r∗ for which c∗ = f(s∗, r∗ ⊕ Hs∗). Since UDec(4) on input c∗ does not use its
database and returns ⊥, the simulation of the decryption queries is perfect.

Output of B. The adversary B measures the (qG1 + i)-th random oracle query
to CStOG with Mr∗ and the database DH with the computational basis mea-
surement. Since there exists a query with a non-negligible weight on the state
|r∗〉, the adversary B can obtain r∗ with a non-negligible probability. Then,
the adversary searches over the database DH to find a pair (s∗,Hs∗) such that
c∗ = f(s∗, r∗ ⊕ Hs∗). If it finds such a pair, it returns s∗ as the partial inverse
of f on c∗ and aborts. Otherwise, it returns s∗ = G′(r∗) ⊕ mb||0k1 as the par-
tial inverse of f on the input c∗. (Note that when there is no pair (s∗,Hs∗)
in DH such that c∗ = f(s∗, r∗ ⊕ Hs∗), that is Find(r∗, c∗,DH) = (0, 0n+k1),
the G-queries are answered with the random oracle G′. Therefore, the equa-
tion c∗ = f(x, r∗ ⊕ H(x)) holds for x = G′(r∗) ⊕ mb||0k1 .) Since f is quantum
partial-domain one-way, Games 6 and 7 are indistinguishable.

Now, it is clear that Game 7 returns 1 with the probability 1/2 because if one
of the measurements returns 1, the output of the game is a random bit. If none
of the measurements return 1, G(r∗) remains an uniformly random value for A
and consequently mb||0k1 ⊕ G(r∗) is an uniformly random value for A. So the
probability that A guesses b is 1/2. Finally, since each two consecutive games
are indistinguishable, the probability that A guesses b in Game 0 is 1/2+negl(n)
and this finishes the proof of the theorem. ��

Acknowledgment. We would like to thank anonymous reviewers for their useful com-
ments and suggestions.

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R. S., Ashby,
V.: (eds.), CCS ’93, Proceedings of the 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, USA, pp. 62–73. ACM (1993)

2. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A.D., (ed.)
Proceedings of the Advances in Cryptology - EUROCRYPT ’94, Workshop on the
Theory and Application of Cryptographic Techniques, LNCS, vol. 950, pp. 92–111.
Springer, Cham (1994). https://doi.org/10.1007/BFb0053428

3. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J. A., (eds.) Proceedings of the
Advances in Cryptology - CRYPTO 2013–33rd Annual Cryptology Conference,
LNCS, vol. 8043, pp. 361–379. Springer (2013). https://doi.org/10.1007/978-3-
642-40084-1 21

4. Boneh, D., Dagdelen, O., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology. LNCS, vol. 7073. Springer (2011). https://doi.org/10.1007/978-3-642-
25385-0 3

https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

Post-quantum Security of Plain OAEP Transform 51

5. Cao, N., O‘Neill, A., Zaheri, M.: Toward RSA-OAEP without random oracles.
In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key Cryptog-
raphy. LNCS, vol. 12110. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45374-9 10

6. Chen, C.: Ntru (2020). https://ntru.org
7. Chevalier, C., Ebrahimi, E., Vu, Q. H.: On the security notions for encryption in

a quantum world. IACR Cryptol. ePrint Arch., 237 (2020)
8. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the

quantum random-oracle model. Cryptology ePrint Archive, pp. 280 (2021).
https://eprint.iacr.org/2021/280

9. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. J. Cryptol. 17(2), 81–104 (2004)

10. Gagliardoni, T., Krämer, J., Struck, P.: Quantum indistinguishability for public
key encryption. IACR Cryptol. ePrint Arch., 266 (2020)

11. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information
(10th Anniversary edition). Cambridge University Press (2016)

12. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

13. Shoup, V.: OAEP reconsidered. In: Kilian, J., (ed.) Proceedings of the Advances
in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
LNCS, Santa Barbara, California, USA, vol. 2139, pp. 239–259. Springer (2021)

14. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) Theory of Cryptography. TCC
2016. LNCS, vol. 9986. Springer (2016). https://doi.org/10.1007/978-3-662-53644-
5 8

15. Winter, A.J.: Coding theorem and strong converse for quantum channels. IEEE
Trans. Inf. Theory, 45(7), 2481–2485 (1999)

16. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7and8), 557–567 (2015)

17. Zhandry, M.: How to record quantum queries, and applications to quantum indiffer-
entiability. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology. LNCS,
vol. 11693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 9

https://doi.org/10.1007/978-3-030-45374-9_10
https://doi.org/10.1007/978-3-030-45374-9_10
https://ntru.org
https://eprint.iacr.org/2021/280
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-030-26951-7_9

On the Security of OSIDH

Pierrick Dartois1,2(B) and Luca De Feo2

1 Corps des Mines, Paris, France
pierrick.dartois@mines-paristech.fr

2 IBM Research Europe, Zürich, Switzerland
pkc22@defeo.lu

Abstract. The Oriented Supersingular Isogeny Diffie–Hellman is a
post-quantum key exchange scheme recently introduced by Colò and
Kohel. It is based on the group action of an ideal class group of a
quadratic imaginary order on a subset of supersingular elliptic curves,
and in this sense it can be viewed as a generalization of the popular
isogeny based key exchange CSIDH. From an algorithmic standpoint,
however, OSIDH is quite different from CSIDH. In a sense, OSIDH uses
class groups which are more structured than in CSIDH, creating a poten-
tial weakness that was already recognized by Colò and Kohel. To cir-
cumvent the weakness, they proposed an ingenious way to realize a key
exchange by exchanging partial information on how the class group acts
in the neighborhood of the public curves, and conjectured that this addi-
tional information would not impact security.

In this work we revisit the security of OSIDH by presenting a new
attack, building upon previous work of Onuki. Our attack has exponen-
tial complexity, but it practically breaks Colò and Kohel’s parameters
unlike Onuki’s attack. We also discuss countermeasures to our attack,
and analyze their impact on OSIDH, both from an efficiency and a func-
tionality point of view.

Keywords: Post-quantum cryptography · Isogenies · Cryptographic
group actions

1 Introduction

Cryptographic group actions have recently attracted much interest owing to their
supposed quantum-resistance and to their versatility. Brassard and Yung [9] ini-
tiated the study of group actions in cryptography, but it was Couveignes [15]
and Rostovtsev and Stolbunov [36] who independently exhibited the first post-
quantum key exchange based on a group action. The invention of CSIDH1 [11],
the first efficient post-quantum group action, spurred a wave of interest on the
topic. Among the many applications of CSIDH, we may cite the signature scheme
CSI-FiSh [6], threshold [19] and ring [5] signatures, oblivious transfer [20,30],

1 The “Commutative Supersingular Diffie–Hellman”, pronounced sea-side.

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 52–81, 2022.
https://doi.org/10.1007/978-3-030-97121-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_3&domain=pdf
http://orcid.org/0000-0002-9321-0773
https://doi.org/10.1007/978-3-030-97121-2_3

On the Security of OSIDH 53

oblivious PRFs [7] and hash proof systems [2]. As of today, all known post-
quantum group actions are obtained from isogenies of elliptic curves, either
ordinary or supersingular, and are all understood as instances of the celebrated
theory of complex multiplication.

Drawing inspiration from CSIDH, Colò and Kohel recently proposed a gener-
alization they called OSIDH, for “Oriented Supersingular Diffie–Hellman” [14].
Like CSIDH, OSIDH is based on the action of the class group of a quadratic imag-
inary order on a set of supersingular curves. But while CSIDH’s group action is
fully determined by the Frobenius endomorphism, OSIDH’s action is determined
by an arbitrary endomorphism which they call an orientation. Besides the added
technicalities involved in working with orientations, to complete a key exchange
in OSIDH Alice and Bob need to exchange significantly more information than
in CSIDH. Colò and Kohel conjectured nevertheless that this additional infor-
mation does not adversely affect the security of the cryptosystem.

In this work, we present a new classical attack that casts doubts on the
viability of OSIDH. Albeit exponential in complexity, we give evidence that it
breaks in practice the parameters that Colò and Kohel suggested would match
the security of CSIDH-512.2 The only exponential step in our attack is an SVP
computation in a lattice that depends exclusively on the system parameters. The
attack can be countered by increasing the dimension of the lattice and the other
parameters accordingly, however we argue that this patch is of dubious interest
for post-quantum cryptography: besides making OSIDH prohibitively expensive,
it makes it at best as secure as lattice based schemes, without the efficiency, the
versatility and the security reductions that go with them.

A more advanced countermeasure is to stretch parameters to a point where,
according to standard heuristics, no short enough vectors exist in the lattice. This
countermeasure is less costly, yet we argue that it does not completely rescue
OSIDH. Indeed, our attack shows that OSIDH fails at satisfying the standard
axioms of a cryptographic group action, and thus powerful schemes such as CSI-
FiSh [6] cannot be securely built on it. This pretty much confines OSIDH to the
role of a key exchange of mostly theoretical interest, for the time being.

On the positive side, we argue that, because OSIDH is not properly speaking
a cryptographic group action, Kuperberg’s quantum algorithm does not appear
to apply to it. It is conceivable, then, that the best quantum algorithm against
OSIDH would have exponential, rather than subexponential, complexity.

1.1 Overview

The theory of complex multiplication establishes a link between the abelian
extensions of quadratic imaginary number fields and elliptic curves. If O is an
order in a quadratic imaginary number field, an elliptic curve is said to have
complex multiplication (CM) by O when its endomorphism ring is isomorphic

2 CSIDH-512 was originally claimed to match the NIST-1 security level. Recent works
have questioned the quantum security of CSIDH [8,33], but to this day CSIDH-512’s
classical security claim still holds unchanged.

54 P. Dartois and L. De Feo

to O. For example, ordinary curves over finite fields always have CM by some
quadratic order.

An isogeny ϕ : E → E′ between two curves with CM by the same order O
is called horizontal [27]. The same way it identifies elements of O to endomor-
phisms, CM identifies (invertible) ideals of O to isogenies. Invertible fractional
ideals of O form an abelian group, and their identification with isogenies defines
a group action on the set of elliptic curves with CM by O by

a · E := E′,

where ϕa : E → E′ is the isogeny associated to a ⊂ O. By this definition,
principal ideals of O act trivially, and the fundamental theorem of CM states
that the ideal class group Cl(O)—the quotient of the invertible by the principle
ideals—acts faithfully and transitively on the set of elliptic curves with CM by
O. See [16,38,44] for more details.

The correspondence with isogenies lets us evaluate the action of Cl(O) effec-
tively. A prime q that splits in O factors as a product (q) = qq̄ of prime ideals of
norm q. These are the only two ideals of norm q in O, and to each corresponds
an isogeny of degree q. As long as we can compute the two horizontal isogenies
of degree q starting from E, we can thus evaluate the action of q and q̄. Which
isogeny corresponds to which ideal can be determined by looking at how the
Frobenius endomorphism of E acts on the kernels of the isogenies.

This is the idea at the heart of Couveignes’ [15] and Rostovtsev and Stol-
bunov’s [36] key exchange schemes: On the one hand the group action can be
evaluated efficiently; on the other hand it is assumed to be hard, given two curves
E,E′ with CM by O, to find the element a ∈ Cl(O) such that a · E = E′, or,
equivalently, a horizontal isogeny ϕ : E → E′.

However, computing isogenies has complexity polynomial in the degree, and
thus only for a small fraction of all ideals we can efficiently evaluate the CM
action. We can work around this limitation by fixing a list of ideals of small
norm q1, q2, . . . , qt, and representing elements of Cl(O) as linear combinations
of these generators:

a =
t∏

i=1

qei
i .

Provided enough generators, any element a can be represented by an exponent
vector (e1, . . . , et) of small norm, and the CM action can thus be evaluated using
only

∑t
i=1 |ei| efficient isogeny computations.

Although any element of Cl(O) may be represented in this factored form, it
is not necessarily the case that such representation can be easily computed for
any input.

In [2], this is called a Restricted Effective Group Action (REGA), as opposed
to Effective Group Actions (EGA) where the action of any group element can
be efficiently evaluated. It is believed that REGAs are less powerful than EGAs,
as some protocols are only known for the latter [19], and many others are much
less efficient when instantiated from the former [2,5,6,18].

On the Security of OSIDH 55

Given a set of generators q1, . . . qt, it is natural to introduce the relation
lattice

L =

⎧
⎨

⎩(e1, . . . , et)

∣∣∣∣∣

t∏

j=1

[qi]ei = [1] in Cl(O)

⎫
⎬

⎭ . (1)

Then, by definition Cl(O) � Z
t/L, i.e. two exponent vectors represent the same

element of Cl(O) if and only if they differ by an element of L. If L can be
computed, then any exponent vector e can be transformed in an equivalent
vector e′ = e − c of small norm by finding a close vector c ∈ L to e. This is the
idea behind CSI-FiSh [6], and a general technique to transform any REGA into
an EGA, assuming these computations can be done efficiently.

OSIDH. Supersingular curves have endomorphism rings isomorphic to maxi-
mal orders in a quaternion algebra, but these contain infinitely many quadratic
imaginary orders, which make it possible to define a CM group action on subsets
of supersingular curve. For example, when p ≡ 3 [8] and p > 3, the endomor-
phism ring of any supersingular curve defined over a prime field Fp contains a
subring isomorphic to O := Z[

√−p]. This is, in fact, the subring of Fp-rational
endomorphisms of the curve. CSIDH [11] uses precisely this case to define a
supersingular analogue of Couveignes and Rostovtsev–Stolbunov. The identifi-
cation of the Frobenius endomorphism with

√−p makes it possible to compute
the CM action exactly like in the ordinary case; moreover, the shift to super-
singular curves enables a range of optimizations that make CSIDH vastly more
practical.

OSIDH seeks to replicate the ideas of CSIDH, but using a different quadratic
order O ↪→ End(E). To do so, it needs to construct a quadratic order O with
exponentially large class group, and compute a curve in the associated CM orbit.
This is done by starting from a maximal quadratic order with small class group,
e.g. Z[i], for which it is easy to find an associated supersingular curve E0. Then,
a chain E0 → E1 → · · · → En of descending (i.e. not horizontal) isogenies of
degree � is taken, to which is associated a chain of increasingly small orders Oi :=
Z + �iO. Colò and Kohel call the inclusion Oi ↪→ End(Ei) an Oi-orientation of
Ei, and, since Oi+1 ⊂ Oi, the whole chain E0 → · · · → En is On-oriented. At
each descending step the size of the class group Cl(Oi) is multiplied roughly
by � (see [16, Theorem 7.24]), and it is proved that Cl(On) acts faithfully and
transitively on the set of (primitively) On-oriented curves (see Theorem 1).

The action of Cl(On) on descending chains E0 → · · · → En can be com-
puted efficiently using the same techniques as above (with a set of generating
prime ideals). However Colò and Kohel remark that the inverse problem, that
of computing the element a ∈ Cl(On) mapping a chain to another, is not hard,
unlike in CSIDH. Ideally, one would like to only publish the final element of the
chain En, and act with Cl(On) on it. However in doing so the information on
the orientation is lost, and thus the action of Cl(On) cannot be computed.

Colò and Kohel suggest, instead, to publish En along with the information on
how a list of generators q1, . . . , qt ∈ Cl(On) acts on En up to a bounded distance.

56 P. Dartois and L. De Feo

Namely, they publish En along with horizontal chains qe
i ·En for all 1 ≤ i ≤ t and

−r ≤ e ≤ r for some pre-determined bound r. From this information, the action
of exponentially many elements of Cl(On) on En can be evaluated efficiently.
Remarkably, the analogous information in CSIDH is publicly available, so it
may be believed that publishing qe

i · En in OSIDH does not harm security.

Our Contribution. We show that the additional information conveyed by the
horizontal isogeny chains in OSIDH can be leveraged to recover the descending
chain E0 → · · · → En, and thus the secret.

Our attack builds upon the work of Onuki [32], who showed that being able
to evaluate a single endomorphism of On on points of En is enough to recover
the descending chain. For this, it is necessary to express the endomorphism as a
cycle En → · · · → En of small degree isogenies, equivalently as a product

∏
i q

ei
i .

To find such an isogeny cycle, Onuki resorts to an expensive meet-in-the-middle
procedure, which seems difficult to put into practice.

We observe that finding a product
∏

i q
ei
i corresponding to a cycle amounts

to finding a vector in the relation lattice L defined in Eq. (1). A basis for L can
be computed from the description of On, without involving any elliptic curve
computations, and in polynomial time, thanks to the special structure of On. To
obtain an effectively computable isogeny cycle, the vector in L must be short, so
that we can use the published horizontal chains. Such a short vector, if it exists,
can be found by an SVP computation: this is the only step in our attack which
has exponential complexity, namely in the number t of public generators. After
the short vector is found, all subsequent steps in Onuki’s attack take polynomial
time.

In practice, following CSIDH, Colò and Kohel suggested t = 74 for an instan-
tiation of OSIDH deemed to be as secure as CSIDH-512. This falls well short of
the dimension needed to thwart SVP attacks, and indeed in our experiments we
were able to construct the lattice and find a short vector in less than one hour
on an ordinary laptop.

A simple countermeasure is to increase the number of primes t and #Cl(On)
accordingly, until the relation lattice becomes large enough to stop SVP compu-
tations, however this appears to be extremely expensive. A cheaper countermea-
sure would be to keep t relatively small, but increase the size of Cl(On) so that no
short enough vectors are expected to exist in L. We argue that, no matter what
solution is chosen, one desirable property of CM group actions is lost: CSI-FiSh
was made possible by the computation of the relation lattice of CSIDH-512; fur-
thermore, each CSI-FiSh signature solves a CVP problem in dimension t = 74.
Neither of these is possible with OSIDH after we apply one of the patches above.
It seems, indeed, that the security of OSIDH is fundamentally in conflict with
the possibility of evaluating the CM group action for any possible input, and
thus that it cannot be used as a foundation for protocols based on EGAs or even
REGAs.

On the Security of OSIDH 57

Plan. In the next section we present the mathematical foundations of OSIDH,
then in Sect. 3 we present the protocol itself. In Sect. 4 we present our attack, and
in Sect. 5 the countermeasures against it, and their consequences, both positive
and negative, for OSIDH.

2 Oriented Supersingular Elliptic Curves

We start by briefly recalling the mathematical framework of OSIDH, presented
in detail by Colò–Kohel [14] and Onuki [32].

2.1 Oriented Elliptic Curves and Isogenies

Let K be a quadratic imaginary field and E an elliptic curve defined over a
finite field. A K-orientation of E is an embedding ι : K ↪→ End(E) ⊗ Q. If O
is an order of K, we say that (E, ι) is an O-orientation if ι(O) ⊆ End(E). An
O-orientation is primitive if O is maximal for this inclusion, or in other words,
if ι(O) = End(E) ∩ ι(K).

Example 1. The elliptic curve E : y2 = x3 + x defined over Fp (p ≡ 3 [4]) has a
Q(i)-orientation, mapping i =

√−1 to the endomorphism

φ : (x, y) ∈ E �−→ (−x, ay) ∈ E,

with a ∈ Fp2 such that a2 = −1. This is a primitive Z[i]-orientation.

When E is ordinary, End(E) ⊗ Q is itself a quadratic imaginary field, hence,
there is only one K-orientation (up to complex conjugation). The case of super-
singular elliptic curves is more interesting: End(E) ⊗ Q is a quaternion algebra
and we can embed infinitely many quadratic fields inside, so there are infinitely
many orientations of E.

Let (E, ιE) and (F, ιF) be two K-oriented elliptic curves. An isogeny ϕ :
E −→ F is K-oriented if ϕ∗(ιE) = ιF , where ϕ∗(ιE) is the K-orientation of F
defined as follows:

∀α ∈ K, ϕ∗(ι)(α) =
1

deg(ϕ)
ϕι(α)ϕ̂.

A K-oriented isogeny λ : (E, ιE) −→ (F, ιF) is a (K-oriented) isomorphism if it
has an inverse isogeny F −→ E that is also K-oriented (F, ιF) −→ (E, ιE).

Let ϕ : (E, ιE) −→ (F, ιF) be a K-oriented isogeny, O := ι−1
E (End(E)) and

O′ := ι−1
F (End(F)), so that ιE is a primitive O-orientation and ιF is a primitive

O′-orientation. We say that ϕ is horizontal, ascending or descending, respectively
when O = O′, O � O′ or O � O′. There is no reason for this to be verified in
general, except when ϕ has prime degree. In that case, the index relating O and
O′ also divides deg(ϕ) [27, Chapter 4, Proposition 21]. Finally, an isomorphism
is always horizontal.

58 P. Dartois and L. De Feo

2.2 Class Group Action

Let K be a quadratic imaginary field and O be an order of K. Let p be a
prime number. We consider the set SSpr

O (p) of isomorphism classes of primitively
O-oriented supersingular elliptic curves defined over Fp.

Proposition 1. [32, Proposition 3.2] SSpr
O (p) is not empty if and only if p does

not split in K and is prime to the conductor of O.

In the following, we shall assume that SSpr
O (p) is not empty. We define a

group action of Cl(O) on SSpr
O (p). Let a ⊆ O be an ideal of norm prime to p and

(E, ι) be a primitively O-oriented supersingular elliptic curve defined over Fp2 .
We define the a-torsion subgroup by

E[a] :=
⋂

α∈a

ker(ι(α)).

By [39, Proposition III.4.12], there exists a separable isogeny ϕa : E −→ F of
kernel E[a]. If a is an invertible O-ideal (i.e. one whose norm is prime to the
conductor of O), then ϕa is a horizontal isogeny by [32, Proposition 3.5]. In that
case, we write

a · (E, ι) := (F, (ϕa)∗(ι)).

A separable isogeny being determined by its kernel up to isomorphism [39, Propo-
sition III.4.11], we easily get that the isomorphism class of a ·(E, ι) only depends
on a and the isomorphism class of (E, ι).

Furthermore, if b is another invertible O-ideal of norm prime to p and if
ϕb : F −→ G has kernel F [b], then ker(ϕb◦ϕa) = E[ab], by [44, Proposition 3.12]
or [31, Proposition 7.28]. Hence, if we set

a−1 · (E, ι) := a · (E, ι),

we define an action of the group of fractional O-ideals prime to p on SSpr
O (p).

Since the action of principal ideals is trivial, we get an action of the ideal class
group

Cl(O) × SSpr
O (p) −→ SSpr

O (p).

This action is faithful [32, Theorem 3.4], but not transitive.

Example 2. The orientation of Example 1 and its composition with the complex
conjugation are two non-isomorphic Z[i]-orientations. But the ideal class group
Cl(Z[i]) is trivial, so the orbits contain only one element. Hence, the group action
of Cl(Z[i]) on SSpr

Z[i](p) cannot be transitive.

This example illustrates the general case (see [32, Proposition 3.3]): there are
always two orbits related by complex conjugation (or equivalently by the action
of the p-th Frobenius isogeny). In [32, § 3.2], Onuki constructs one of these orbits
“canonically”, as the image of Ell(O), the set of isomorphism classes of elliptic
curves defined over C with complex multiplication by O by a reduction modulo
p map: ρO : Ell(O) −→ SSpr

O (p) (that he defines properly). Onuki also proves
that:

On the Security of OSIDH 59

Theorem 1. [32, Theorem 3.4] The group Cl(O) acts faithfully and transitively
on ρO(Ell(O)).

Since Cl(O) also acts freely and transitively on Ell(O) (see [38, Proposi-
tion II.1.2]) it follows that ρO is injective. In the following we shall restrict our
attention to the ideal class group action on the orbit ρO(Ell(O)).

2.3 Oriented Supersingular Isogeny Graphs

Let Ell(K) be the union of Ell(O) for every order O of K with conductor prime
to p and SSK(p) be the set of K-oriented supersingular elliptic curves up to
K-oriented isomorphism. Then, we have an injective map

ρ : Ell(K) −→ SSK(p)

naturally induced by the maps ρO : Ell(O) −→ SSpr
O (p) for all orders O of K

with conductor prime to p.
We say that two K-oriented isogenies are K-equivalent if they are equal up to

multiplication on the right and on the left by K-oriented isomorphisms. Let � �= p
be a prime number. The K-oriented supersingular �-isogeny graph G�(K, p) is
the graph whose set of vertices is ρ(Ell(K)) and whose edges are K-oriented
�-isogenies up to K-equivalence.

By the injectivity of ρ, this graph is isomorphic to the �-isogeny graph of
elliptic curves over C with complex multiplication by an order of K. It follows
that G�(K, p) is infinite (unlike the supersingular �-isogeny graph over Fp) and
that every �-isogeny from a vertex of G�(K, p) has codomain in G�(K, p).

In addition, as Kohel proved [27, Chapter 4, Proposition 23], the connected
components of G�(K, p) have a volcano structure (see Fig. 1). From each vertex
on the crater, there are 1+

(
ΔK

�

)
horizontal and 1/[O× : (Z+ �O)×]

(
� − (ΔK

�

))

descending �-isogenies up to K-equivalence. From each vertex outside of the
crater, there are � descending and one ascending �-isogeny up to K-equivalence.

Unlike the supersingular �-isogeny graph, G�(K, p) is infinite because ver-
tices carry additional information: the K-orientation. Hence, the graph G�(K, p)
refolds when we forget orientations and consider j-invariants only (see Fig. 1).
Equivalently, the forgetful map ρ(Ell(K)) −→ SS(p) is not injective (SS(p) being
the set of supersingular elliptic curves over Fp, up to isomorphism). This is incon-
venient because in OSIDH, K-oriented elliptic curves are represented by their
j-invariants only in order to use modular polynomials. Luckily, we have:

Theorem 2. [14, Proposition 13] When restricted to the union of Ell(O) with
|disc(O)| < p, the forgetful map becomes injective.

2.4 Effective Computation of the Ideal Class Group Action

Let � be a small prime (�= p). For all i ∈ N, let Oi := Z + �iOK . OSIDH is based
on the ideal class group action of Cl(On) on the canonical orbit ρ(Ell(On)) for
n ∈ N big enough. By Theorem 1, this is a cryptographic group action.

60 P. Dartois and L. De Feo

Fig. 1. On the left: Representation of a connected component (with volcano struc-
ture) of G2(Q(i), 79), the Q(i)-oriented supersingular 2-isogeny graph over F792 up to
depth 4. On the right: Supersingular 2-isogeny graph over F792 (left graph refolded).
NB: Elliptic curves with the same color have the same j-invariant.

Unfortunately, there is no known algorithm to compute the group action on
ρ(Ell(On)) directly. Colò and Kohel’s trick is to work in the K-oriented super-
singular �-isogeny graph. Instead of considering a vertex (En, ιn) ∈ ρ(Ell(On))
alone, we consider the descending chain of K-oriented �-isogenies in the graph:

(E0, ι0) −→ · · · −→ (En, ιn),

with (Ei, ιi) ∈ ρ(Ell(Oi)) for all i ∈ �1 ; n�.
Let q ⊆ OK be an ideal of norm prime to � and p. Then, we have a commu-

tative diagram of K-oriented isogenies:

where (Fi, ι
′
i) := (q ∩ Oi) · (Ei, ιi), for all i ∈ �0 ; n�, the down arrows are

the isogenies associated to the q ∩ Oi and the arrows between the (Fi, ι
′
i) are

�-isogenies. Such a diagram is called an �-ladder of degree q := N(q) and the
chain at the bottom (Fi, ι

′
i)0≤i≤n is also denoted by q · (Ei, ιi)0≤i≤n.

When the norm q is a small prime number, the descending �-isogeny chain
(Fi, ι

′
i)0≤i≤n can be easily computed, assuming (Ei, ιi)0≤i≤n is known. The end-

ing element is the result of the group action by q∩On we wanted to compute in
the first place: (Fn, ι′n) := (q∩On)·(En, ιn). Assuming that p > q�2n|disc(K)|, we
can perform this computation with j-invariants only and omit the orientations
(this is a consequence of Theorem 2, see [32, Theorem 6.2]).

Assume that j(Fi) is known. Then, j(Fi+1) is solution of the modular equa-
tions:

{
Φ�(j(Fi), x) = 0

Φq(j(Ei+1), x) = 0 ⇐⇒ gcd(Φ�(j(Fi), x), Φq(j(Ei+1), x)) = 0. (�i)

(E0, ι0)

��

�� (E1, ι1)

��

�� · · · �� (En−1, ιn−1)

��

�� (En, ιn)

��
(F0, ι

′
0) �� (F1, ι

′
1) �� · · · �� (Fn−1, ιn−1) �� (Fn, ι′n),

On the Security of OSIDH 61

For i big enough, Eq. (�i) admits only one solution [32, Theorem 6.2], so we can
easily go down the chain of Fi.

To compute the first values of j(Fi) we cannot use Eq. (�i) because there are
multiple solutions (both j(Fi) = j(q · Ei) and j(q · Ei) are solutions). Hence, we
explicitly compute the torsion subgroups Ei[q∩Oi] and use Vélu’s formulas [43].
Colò and Kohel chose K so that Cl(OK) is trivial (K = Q(i) or Q(

√−3) in
practice), so that j(F0) = j(E0) and we save the first computation.

With this algorithm, we can compute the ideal class group action, as visual-
ized in Fig. 2.

E0ρ(Ell(O1))ρ(Ell(O2))

ρ(Ell(On−1)) ρ(Ell(On))

En

E1

E2

En−1

q ∩ On · En

q ∩ O1 · E1

q ∩ O2 · E2

q ∩ On−1 · En−1q

Fig. 2. Action of the prime ideal q on the descending �-isogeny chain.

3 Oriented Supersingular Isogeny Diffie–Hellman

The material of this section mostly replicates Colò and Kohel [14]. Nonetheless,
in Sect. 3.3 we give a more detailed account of the attack on their straw man
key exchange [14, § 5.1], and we improve it using lattice reduction.

3.1 The OSIDH Setup

As explained in Sect. 2.4, we choose a quadratic imaginary number field K such
that Cl(OK) is trivial (K = Q(i) or K = Q(

√−3)), � a small prime and p a
large prime that does not split in K (cf. Proposition 1). Let Oi := Z + �iOK for
all i ∈ N

∗ and n ∈ N
∗ large enough. OSIDH uses the group action of Cl(On) on

the orbit ρ(Ell(On)).
According to the terminology of [2], this is a restricted cryptographic group

action (REGA), because we can use the algorithm of Sect. 2.4 with (prime) ideals
of small norm only. Hence, we choose a set of generators: let q1, . . . , qt be small

62 P. Dartois and L. De Feo

distinct primes, distinct from �, and all splitting in K, and let qj be prime OK-
ideals lying above qj for all j ∈ �1 ; t�. We assume that the qj ∩ On genrate
Cl(On).

3.2 A Straw Man Key Exchange Scheme

With the setup of the previous section, let (Ei, ιi)0≤i≤n be a public descending
�-isogeny chain (represented as a list of j-invariants) such that E0 is primitively
OK-oriented.

Alice and Bob separately choose secret exponents e1, . . . , et and f1, . . . , ft

lying in the integer range �−r ; r� (where r is a small positive integer) and
respectively compute the action of

a :=
t∏

j=1

q
ej

j and b :=
t∏

j=1

q
fj

j

on (Ei, ιi)0≤i≤n step by step, using the method of Sect. 2.4.
Then, Alice sends a · (Ei, ιi)0≤i≤n to Bob (as a list of j-invariants) and Bob

sends b · (Ei, ιi)0≤i≤n to Alice. In the end, Alice computes a · (b · (Ei, ιi)0≤i≤n)
and Bob computes b · (a · (Ei, ιi)0≤i≤n), so that both parties share the chain

a · (b · (Ei, ιi)0≤i≤n) = b · (a · (Ei, ιi)0≤i≤n) = ab · (Ei, ιi)0≤i≤n.

We shall now see that this protocol is insecure: given knowledge of the chain
(Ei, ιi)0≤i≤n and of, say, a · (Ei, ιi)0≤i≤n, an attacker can recover the secret ideal
class [a].

3.3 Inverting the Class Group Action on Descending Chains

Given two chains (Ei, ιi)0≤i≤n and (Fi, ι
′
i)0≤i≤n := a · (Ei, ιi)0≤i≤n with a secret

ideal class [a] ∈ Cl(On), we explain how to recover [a]. As Colò and Kohel
indicate [14, § 5.1], there are two methods to do that. The first one exploits the
chains to recover the full endomorphism rings End(En) and End(Fn) [22,45],
then computes a connecting ideal between those quaternion orders [28], and
finally finds an equivalent ideal in On. The second method, which we are now
going to illustrate, only uses the ideal class group action.

For i ∈ �0 ; n − 1�, suppose that we know an ideal of ai =
∏t

j=1 q
ei,j

j of OK ,
such that

ai · (Ek, ιk)0≤k≤i = (Fk, ι′k)0≤k≤i.

Then [a∩Oi] = [ai ∩Oi] in Cl(Oi) and ai ∩Oi is determined up to multiplication
by principal ideals of Oi, i.e. by elements of Oi. We look for an ideal ai+1 =∏t

j=1 q
ei+1,j
j of OK such that

ai+1 · (Ek, ιk)0≤k≤i+1 = (Fk, ι′k)0≤k≤i+1.

On the Security of OSIDH 63

Then, [ai+1 ∩ Oi] = [a ∩ Oi] = [ai ∩ Oi] is in Cl(Oi), i.e. ai+1 ∩ Oi ≡ ai ∩
Oi mod P (Oi). Hence, to determine ai+1, one only has to find an ideal bi =∏t

j=1 q
dj

j such that bi ∩ Oi is principal and

[(ai · bi) ∩ Oi+1] · Ei+1 = Fi+1. (�)

Then, we can set ai+1 := ai · bi, so that ei+1,j := ei,j + dj for all j ∈ �1 ; t�.
Both ai+1 ∩ Oi+1 and bi ∩ Oi+1 are determined up to principal ideals of Oi+1,
thus [bi ∩ Oi+1] is in the kernel of the surjective group homomorphism

[c] ∈ Cl(Oi+1) −� [cOi] ∈ Cl(Oi),

whose order is � for i ≥ 1 and 1
[O×

K :O×
1]

(
� − (ΔK

�

))
for i = 0 (by [16, Theorem

7.24]), so we only have to test a few values for bi until Eq. (�) is satisfied.
However, we have to make sure that all the values of bi to be tested can be

expressed in terms of the qj , and that the exponents ei+1,j of ai · bi are short
enough to make the computation of [(ai · bi) ∩ Oi+1] · Ei+1 practical.

Expressing ker(Cl(Oi+1) −� Cl(Oi)) in terms of the qj. We need to inves-
tigate the structure of the ideal class groups, which turns out to be very simple.

Lemma 1. One of the following results hold:

(i) For all n ≥ 1, Cl(On) is cyclic.
(ii) For all n ≥ 2, Cl(On) � (Z/�Z) × (Z/hn−1Z) with

hn−1 := #Cl(On−1) =
�n−2

[O×
K : O×

1]

(
� −

(
ΔK

�

))
,

where ΔK := disc(K).

The last case only happens when � = 2 or when � ≥ 3 ramifies in K (this
condition is necessary but not sufficient).

Proof. See the extended version of this work [17].

The result above leads to a straightforward way to express ker(Cl(Oi+1) −�
Cl(Oi)). The strategy is first to use Algorithm 1 to compute a basis of Cl(On)
i.e. a generator or a pair of generators without non trivial relations. Then, we
use Algorithm 2 to express the kernels for i ∈ �0 ; n − 1�. Both algorithms use
discrete algorithm computations which are not costly (polynomial in n) with
Pohlig-Hellman’s algorithm [35], since the ideal class groups are smooth.

Reducing the Exponents of ai ·bi. Once bi is expressed in terms of the qj , i.e.
when the exponents dj are known, we still have to make sure that the exponents
ei+1,j = ei,j + dj of ai · bi are small. We define the relation lattice

Li+1 :=

⎧
⎨

⎩(e1, . . . , et) ∈ Z
t

∣∣∣∣∣

t∏

j=1

[qj ∩ Oi+1]ej = [1] in Cl(Oi+1)

⎫
⎬

⎭ ,

64 P. Dartois and L. De Feo

Algorithm 1: Computing a basis of Cl(On).
Data: q1, · · · , qj , n.
Result: A basis of Cl(On).

1 Compute the order dj of [qj] ∈ Cl(On) for all j ∈ �1 ; t�;
2 m ← lcm1≤j≤tdj ;
3 Find a product of the [qj], [g] of order m in Cl(On);
4 if m = #Cl(On) then
5 Return g;
6 else
7 Find [qj] �∈ 〈[g]〉 (try to compute the discrete logarithm until it fails);

8 Compute the discrete logarithm k of [qj]
� to base [g] ; // [qj]

� ∈ 〈[g]〉
9 k′ ← k/� ; // � | k since [qj]

�’s order divides m/�

10 [h] ← [qj][g]
−k′

;
11 Return ([g], [h]);

12 end

Algorithm 2: Expressing ker(Cl(Oi+1) −� Cl(Oi)) in terms of the qj .
Data: q1, · · · , qj , a basis of Cl(On), i ∈ �0 ; n − 1�.
Result: A generator of ker(Cl(Oi+1) −� Cl(Oi)) in terms of the qj .

1 if #Cl(On) is cyclic then
2 [g] ← entry generator of Cl(On);
3 hi ← #Cl(Oi);

4 Return [g ∩ Oi+1]
hi ;

5 else
6 if i ≥ 3 then
7 ([g], [h]) ← entry basis of Cl(On);
8 hi−1 ← #Cl(Oi)/�;

9 Return [g ∩ Oi+1]
hi−1 ;

10 else
11 Describe the kernel exhaustively;
12 end

13 end

then two vectors ei+1 := (ei+1,j)1≤j≤t define the same element of Cl(Oi+1) if
and only if they differ by an element of Li+1. Thus we may compute Li+1 and
then find an element c ∈ Li+1 close to ei+1, so to replace ei+1 by e′

i+1 := ei −c.
We explain how to compute a basis of Li+1 when Cl(Oi+1) is cyclic. To do

so, we start by computing a generator [g] of Cl(Oi+1) using Algorithm 1. Then,
we compute the discrete logarithms xj of the [qj] to base [g], which is easily done
since Cl(Oi+1) has smooth order. Define the row vector x := (x1, . . . , xt), and
let hi+1 = #Cl(Oi+1), then

Li+1 :=

{
e ∈ Z

t

∣∣∣∣∣ ∀k ∈ �1 ; r�, x · e ≡ 0 [hi+1]

}
,

On the Security of OSIDH 65

where x · e denotes the dot product. The dual of this lattice is

L∗
i+1 := Z

t + Z
1

hi+1
xT ,

so we easily find a basis C of L∗
i+1 by computing the Hermite Normal Form of

the matrix (hi+1It|xT), using [13, Algorithm 2.4.4]. Then, B := (CT)−1 is a
basis of Li+1.

When Cl(Oi+1) is not cyclic, we proceed similarly. We find a basis ([g], [h])
using Algorithm 1, we compute the discrete logarithm (xj , yj) of the [qj] to this
base, using Sutherland’s Algorithm [40, Algorithm 2]. Li+1 is now defined by two
equations x · e ≡ 0 [hi] and y · e ≡ 0 [�], with x := (x1, . . . , xt), y := (y1, . . . , yt)
and hi := #Cl(Oi). The basis C of L∗

i+1 is the Hermite Normal Form of the
matrix (hi�It|�xT |hiyT), and finally B := (CT)−1 is a basis of Li+1.

All these operations are polynomial in i ≤ n and t. To find a vector c ∈ Li+1,
close to ei+1 we can use Babai’s nearest plane algorithm [3] running in time
O(t6). Theoretically, the distance ‖c − ei+1‖ (in norm �2) will be exponential
but in practice, for t ∼ 102, this distance will be reasonably low, making this
attack practical.

For bigger values of t, one has to find a balance between the time complexity
of the CVP algorithm and the distance ‖c − ei+1‖, closely related to the time
complexity of the operation [ai · b] · Ei+1. This could be done with Espitau and
Kirchner’s algorithm [23], leading to a subexponential attack of time complexity
Lt[1/2, c] = exp((c+o(1))

√
t log(t)), with c � 0.229 (see Appendix A). To reach

a security level of 128 bits would require to take t ≥ 3 · 104, which is unrealistic.

3.4 The OSIDH Key Exchange

To obtain a secure key exchange, one must avoid publishing the full chains
a · (Ei, ιi)0≤i≤n and b · (Ei, ιi)0≤i≤n. Ideally, Alice and Bob would only exchange
the final elements EA,n := [a] · En and EB,n := [b] · En. However, this is not
enough information for one party to evaluate the group action on the other
party’s public curve. Colò and Kohel proposed that the parties exchange the
horizontal chains

[qj]−r · EA,n → · · · → EA,n → · · · → [qj]r · EA,n

and [qj]−r · EB,n → · · · → EB,n → · · · → [qj]r · EB,n

for all j ∈ �1 ; t�, instead. This is sufficient to compute [a] · EB,n and [b] · EA,n,
provided the exponents occurring in a and b are chosen in �−r ; r�. See [14,
§ 5.2] for details (Fig. 3).

Colò and Kohel conjecture that this additional information cannot be lever-
aged to find the secrets, then, in [14, § 6], suggest a concrete set of parameters
inspired by CSIDH-512. Concretely, they take K = Q(i), � = 2, and n = 256,
to obtain a class group of size ≈ 2256, ensuring 2128 security against meet-in-
the-middle attacks. Then, like in CSIDH, they set r = 5 and t = 74, so that
(2r + 1)t ≈ 2256, which ensures that the secret key space covers nearly all of
Cl(On).

66 P. Dartois and L. De Feo

Fig. 3. The OSIDH protocol as presented in [14, § 5.2].

4 Our Attack on OSIDH

As explained in Sect. 3.3, the knowledge of the descending �-isogeny chains
(Ei, ιi)0≤i≤n and (Fi, ι

′
i)0≤i≤n := [a] · (Ei, ι

′
i)0≤i≤n is sufficient to recover the

secret ideal class [a] ∈ Cl(On). In this section, we prove that the knowledge of
the qj-action horizontal chains

[qj]−r · Fn → · · · → Fn → · · · → [qj]r · Fn

for all j ∈ �1 ; t� may give away enough information to recover (Fi, ι
′
i)0≤i≤n,

depending on the choice of parameters n, t and r.

4.1 Onuki’s Idea

In [32, § 6.3], Onuki claims that the knowledge of a K-oriented endomorphism
ι′n(β) with β ∈ On \ On+1 is sufficient to recover the whole chain (Fi, ι

′
i)0≤i≤n.

We explain how such an endomorphism ι′n(β) helps recover Fn−1, adapting
the ideas of Petit’s attack on SIDH [34] (in particular § 4.3). The same method
can then be applied recursively to recover the whole chain. Let θ be a generator
of OK . Then �nθ generates On and we can write β := a+ b�nθ with a, b ∈ Z and
� � b (since β �∈ On+1). Since ι′n(a) = [a], we can infer ι′n(b�nθ) from ι′n(β).

Lemma 2. We have ker(ι′n(b�nθ)) ∩ Fn[�] = ker(ϕ̂n−1), where ϕn−1 :
Fn−1 −→ Fn is the last K-oriented isogeny of the chain (Fi, ι

′
i)0≤i≤n.

Proof. Let G := ker(ι′n(b�nθ)) ∩ Fn[�]. We have

ι′n(b�nθ) = [�]ι′n(b�n−1θ) = ϕn−1ι
′
n−1(b�

n−1θ)ϕ̂n−1

and b�n−1θ ∈ On−1, so that ι′n−1(b�
n−1θ) ∈ End(Fn−1), and consequently,

ker(ϕ̂n−1) ⊆ ker(ι′n(b�nθ)). Since deg(ϕn−1) = �, we have also ker(ϕ̂n−1) ⊆ Fn[�]
so that ker(ϕ̂n−1) ⊆ G. So G is either cyclic of order � and equal to ker(ϕ̂n−1) or
of order �2 and equal to the entire �-torsion subgroup Fn[�]. If the latter holds,
ι′n(b�nθ) factors through [�] by [39, Corollary III.4.11] and b�n−1θ ∈ On, so �|b.
A contradiction. Hence, G = ker(ϕ̂n−1).

On the Security of OSIDH 67

By the lemma, if we evaluate ι′n(b�nθ) on Fn[�], we can recover ker(ϕ̂n−1)
and compute ϕ̂n−1 with Vélu’s formulas [43] to recover Fn−1. Using modular
equations to push the chains using the algorithm of Sect. 2.4, we can also compute

[qj]−r · Fn−1 → · · · → Fn−1 → · · · → [qj]r · Fn−1

for all j ∈ �1 ; t�, with the knowledge of Fn−1 and

[qj]−r · Fn → · · · → Fn → · · · → [qj]r · Fn.

Hence, we can apply our method recursively to recover the whole chain
(Fi)0≤i≤n.

Now, the problem is to find a K-oriented endomorphism ι′n(β) with β ∈ On \
On+1. Onuki suggests to find β such that βOn = I ·J , where I :=

∏t
j=1(qj∩On)ej

with e1, · · · , et ∈ �−r ; r� and J is an On-ideal of norm as small as possible.
Then ι′n(β) will be a composite of the isogenies Fn −→ [I] ·Fn with kernel Fn[I]
and [I] · Fn −→ [IJ] · Fn = Fn, with kernel [I] · Fn[J]. The first isogeny can be
computed with the knowledge of the qj-action chains

[qj]−r · Fn → · · · → Fn → · · · → [qj]r · Fn

for all j ∈ �1 ; t� (applying the method of [14, § 5.2]). Onuki suggests a meet-in-
the middle exhaustive search strategy to compute the second isogeny. However,
there is no guarantee that we find a K-oriented isogeny with this method (which
is essential for the attack to work). Besides, Onuki’s attack is very costly. It not
only requires the computation of the second isogeny (in Ω(

√
N(J)) operations)

but it also requires, before that, an exhaustive search for β ∈ On \ On+1 with
a big factor I =

∏t
j=1(qj ∩ On)ej and a small factor J . The time complexity of

such an attack is Ω(�2n/3/(r + 1)t/3) (see Appendix B). Hence, it would require
more than 2100 operations with Colò and Kohel’s parameters (n = 256, t = 74,
� = 2 and r = 5). In [32, §6.3], Onuki underestimated the complexity as he
neglected the exhaustive search for β, which led him to recommend n ≥ 103.

In the following, we present another method based on a lattice reduction to
find ι′n(β) that breaks Colò and Kohel’s parameters.

4.2 Finding Endomorphisms via Relations

Let us assume that

βOn =
t∏

j=1

(qj ∩ On)ej ,

with e1, . . . , et ∈ �−2r ; 2r� and write ej := e′
j + e′′

j with e′
j , e

′′
j ∈ �−r ; r� for

all j ∈ �1 ; t�. Then, with the knowledge of the qj-action horizontal chains

[qj]−r · Fn → · · · → Fn → · · · → [qj]r · Fn

68 P. Dartois and L. De Feo

for all j ∈ �1 ; t�, we can compute the isogenies

ϕ : Fn −→
t∏

j=1

[qj]e
′
j · Fn and ψ : Fn −→

t∏

j=1

[qj]−e′′
j · Fn =

t∏

j=1

[qj]e
′
j · Fn,

and finally compute ι′n(β) = ψ̂ ◦ ϕ.
Hence, to find a suitable β and compute ι′n(β), it suffices to find a non-zero

vector of ∞-norm ≤ 2r in the relation lattice of the qj in On

Ln :=

⎧
⎨

⎩(e1, . . . , et) ∈ Z
t

∣∣∣∣∣

t∏

j=1

[qj ∩ On]ej = [1] in Cl(On)

⎫
⎬

⎭ .

As explained in Sect. 3.3, Ln can be computed in polynomial time in n and t.
But can we find short enough vectors in Ln? Assuming that Ln behaves as a
random lattice, the following results answer this question with an estimate of
the first minimum for the ∞-norm λ

(∞)
1 (Ln).

Lemma 3 (Aono, Espitau and Nguyen [46, Theorem 11])

(i) The set IN,d for full-rank sublattices of Z
d with covolume N is finite.

(ii) Let Λ be a random variable following the uniform distribution on IN,d. Then,
for all ε > 0, there exists d0, N0 ∈ N

∗ such that for all d ≥ d0 and N ≥ N0

P

[∣∣∣∣∣λ
(∞)
1 (Λ) − N

1
d

2

∣∣∣∣∣ ≤
log log(d)

d

N
1
d

2

]
≥ 1 − ε.

Proof. (i) IN,d is in bijection with the matrices of Md(Z) in Hermite Normal
Form with discriminant ±N . (i) follows.

(ii) This result has already been proved in [46, Theorem 11] for the norm
�2. The reasoning would be exactly the same here. We only have to replace
the Gaussian Heuristic function h(d) = 1/Vol(B2(0, 1))1/d by the constant
1/Vol(B∞(0, 1))1/d = 1/2 in the inequality.

Lemma 4. Covol(Ln) = #Cl(On).

Proof. We have an exact sequence

{0} −→ Ln −→ Z
t −→ Cl(On) −→ {0},

where the first map is the natural inclusion Ln ⊆ Z
t and the second one is

(e1, . . . , et) ∈ Z
t �−→

t∏

j=1

[qj]ej ∈ Cl(On).

It is surjective because the [qj] generate Cl(On). As a consequence, Cl(On) �
Z

t/Ln, so that Covol(Ln) = #(Zt/Ln) = #Cl(On).

On the Security of OSIDH 69

Colò and Kohel recommend to define a secret key space
⎧
⎨

⎩

t∏

j=1

[qj]ej

∣∣∣∣∣ (e1, . . . , et) ∈ �−r ; r�t

⎫
⎬

⎭

large enough to (heuristically) cover all of Cl(On) without many redundancies
to make it computationally hard to find short cycles in the key space that break
OSIDH, as explained earlier. This leads to Covol(Ln) = #Cl(On) � (2r + 1)t.
Assuming that Ln behaves as a random lattice in I#Cl(On),t, we have

λ
(∞)
1 (Ln) ≤

(
1 +

log log(t)
t

)
(#Cl(On))

1
t

2
�
(

1 +
log log(t)

t

)(
r +

1
2

)
≤ 2r

for t big enough. Hence, we expect Ln to contain short enough vectors, thus
enabling our attack, at least in theory.

Complexity Analysis. All operations in our attack are polynomial in n and
t on a classical computer, except the search for a nontrivial vector e ∈ Ln \ {0}
such that ‖e‖∞ ≤ 2r, which takes exponential time in t. The most direct way
to find e is to solve the shortest vector problem (SVP) in ∞-norm, and the
best known algorithm for this is due to Aggarwal and Mukhopadhyay [1], and
runs in heuristic time 20.62t+o(t). We have no theoretical guarantee that shortest
vectors in �2 norm are shortest vectors in ∞-norm but there is a margin between
λ
(∞)
1 (Ln) and 2r, so SVP algorithms in �2 norm are relevant here. The best SVP

algorithm in �2 norm is due to Becker, Ducas, Gama and Laarhoven [4] and runs
in time (3/2)t/2+o(t) � 20.292t+o(t).

Neglecting polynomial terms and factors, we may assume that our attack
runs in 20.292t+o(t). Thus, to reach 128 bits of classical security, we would have
at the very least to take t ≈ 400. As for other parameters, the setup of OSIDH
requires n � t log(2r + 1)/ log(�) (since �n � #Cl(On) � (2r + 1)t), however we
are going to argue that this bound is not sufficient for security.

4.3 Extending the Attack by Exhaustive Search

As we saw, our attack is possible only when λ
(∞)
1 (Ln) ≤ 2r and this inequality

always holds when the key space covers Cl(On). When the key space is signifi-
cantly smaller than Cl(On), i.e. when #Cl(On) � (2r + 1)t, Lemma 3 ensures
that λ

(∞)
1 (Ln) � (#Cl(On))1/t/2 > 2r. Nevertheless, we can extend the attack

to address this case.
Let us assume that we found a short vector e ∈ Ln with norm ‖e‖∞ > 2r.

Then, we may write e := e′ + e′′ + d with e′, e′′,d ∈ Z
t such that ‖e′‖∞ =

‖e′′‖∞ = r and d has ∞-norm as small as possible. As previously, we can
compute the K-oriented isogenies

ϕ : Fn −→ F ′ :=
t∏

j=1

[qj]e
′
j · Fn and ψ : Fn −→ F ′′ :=

t∏

j=1

[qj]−e′′
j · Fn.

70 P. Dartois and L. De Feo

with kernel Fn[
∏t

j=1[qj]e
′
j] and Fn[

∏t
j=1[qj]−e′′

j] respectively. In order to com-
pute the endomorphism of Fn associated to e (whose kernel is Fn[

∏t
j=1 q

ej

j]),
it remains to compute the isogeny F ′ −→ F ′′ associated to d (whose kernel
is F ′[

∏t
j=1 q

dj

j]). Following Onuki’s idea, we compute this isogeny by a meet-
in-the-middle style search. Let us write d := d′ + d′′ with d′

j := �dj/2� and
d′′

j := dj − d′
j for all j ∈ �1 ; t�. We compute K-oriented isogenies

φ : F ′ −→
t∏

j=1

[qj]d
′
j · F ′ and φ′ : F ′′ −→

t∏

j=1

[qj]−d′′
j · F ′′ =

t∏

j=1

[qj]d
′
j · F ′

of kernel F ′[
∏t

j=1[qj]d
′
j] and F ′′[

∏t
j=1[qj]−d′′

j] respectively, by exhaustively test-

ing all isogenies of degree
∏t

j=1 q
|d′

j |
j and

∏t
j=1 q

|d′′
j |

j respectively, until the codo-
mains of φ and φ′ match. In that case, the desired endomorphism will be the
composite ψ̂ ◦ φ̂′ ◦ φ ◦ ϕ. Note that, as in Onuki’s attack, we have no theoretical
guarantee that such an isogeny will actually be K-oriented (which is necessary
to perform the attack). However, assuming the attack succeeds, we can estimate
its complexity.

Proposition 2. Under the heuristic assumption that Ln behaves like a random
lattice among lattices of covolume #Cl(On) and that the shortest vector of Ln

can be found in negligible time, our attack performs in time

Ω
(
(q1 + 1)

1
4 �n/t−r

)
,

where q1 := N(q1) is assumed to be the smallest prime among the qj := N(qj)
for j ∈ �1 ; t�.

Proof. The dominant step in our attack is clearly the meet-in-the-middle search,
and its time complexity is (up to polynomial factors)

Ω

⎛

⎝
t∏

j=1

(qj + 1)|d′
j | +

t∏

j=1

(qj + 1)|d′′
j |

⎞

⎠ .

Indeed, we search among all composites of chains of qj-isogenies of length |d′
j |

and |d′′
j | for j ∈ �1 ; t�. Besides, by [39, Corollary III.4.11], we know that the

number of isogenies of prime degree q is q + 1. The number of isogenies to test,
and the time complexity of our exhaustive search follows. By assumption, d′ and
d′′ cut d in half and e = e′ + e′′ + d, so that

‖e‖∞ ≤ ‖e′‖∞ + ‖e′′‖∞ + ‖d‖∞ = 2r + ‖d‖∞

and ‖d‖∞ ≥ ‖e‖∞ − 2r ≥ λ
(∞)
1 (L) − 2r. But by Lemma 3, we have

λ
(∞)
1 (L) ≥

(
1 − log log(t)

t

)
(#Cl(On))

1
t

2
∼

t→+∞
�

n
t

2
.

The result follows.

On the Security of OSIDH 71

In conclusion, to ensure an asymptotic security level of λ bits, we would need

(q1 + 1)
1
4 �n/t−r ≥ 2λ ⇐⇒ n ≥ t

log(�)
log
(

4r +
4λ log(2)

log(q1 + 1)

)
.

Note that initially, Colò and Kohel proposed n � t log(2r + 1)/ log(�), so this
bound is more restrictive.

4.4 Implementation of Our Attack

Tests on Toy Parameters. We implemented the OSIDH protocol and our
attack in Sagemath [42] for toy parameters: � = 2, r = 3, t = 10, n = 28 and
K = Q(i). The source code can be found on Github3. The attack is divided into
three steps:

Step 1: Our lattice based chain recovery of both Alice’s and Bob’s chains.
Step 2: A recovery of Alice’s ideal class using the algorithm presented in Sect. 3.2.
Step 3: The shared secret chain computation by acting with Alice’s ideal class

on Bob’s chain.

Time performance results were obtained from a sample of 60 executions on
a Mac Book Pro mid-2015 equipped with an Intel Core i7-4870HQ clocked at
2.5 GHz. They are presented in the following table:

Protocol Chain attack
(half of step 1)

Step 2 Step 3 Complete attack

Average (in s) 84.83 135.44 98.19 6.97 376.05

Standard
deviation (in s)

5.61 7.15 13.06 1.61 18.29

Margin of error
(95 %) on the
average (in s)

1.46 1.90 3.40 0.42 4.76

For the modular polynomials that were used in our implementation, we give
credit to Sutherland’s online database4 computed with the algorithms of [10].

Attacking Real Parameters. For 128 bits of classical security, Colò and Kohel
suggest � = 2, r = 5, t = 74, n = 256 and K = Q(i). Our implementation of the
full attack cannot handle such parameters, however our attempt at implementing
the OSIDH protocol itself cannot handle them either. In fact, we are not aware of
any implementation of OSIDH using the parameters originally suggested in [14,
§ 6].
3 See https://github.com/Pierrick-Dartois/OSIDH.
4 See https://math.mit.edu/∼drew/ClassicalModPolys.html.

https://github.com/Pierrick-Dartois/OSIDH
https://math.mit.edu/~drew/ClassicalModPolys.html

72 P. Dartois and L. De Feo

Ironically, the practical bottleneck in the attack is not the exponential time
lattice reduction step, but rather the class group action computation, which is
essentially shared with OSIDH itself, and which runs in polynomial time (see
Lemma 5). The culprit are the extremely large modular polynomials that the
implementation needs to handle, requiring several GB of storage.

On the contrary, the lattice reduction step in the attack can easily handle the
real parameters, and much more. Indeed, we were able to compute the relation
lattice Ln for the originally proposed parameters in 64 min. Most of this time
was spent computing the (polynomial time) discrete logarithms, while the lattice
reduction step, performed via fpylll’s implementation of BKZ [37,41] with
block size k = 4, found a vector e ∈ Ln of ∞-norm ‖e‖∞ = 9 < 2r in less than
0.5 s.

In conclusion, we believe that our lattice based attack could be very efficient
in practice for the originally proposed parameters, as well as larger ones, provided
one is able to efficiently implement OSIDH itself.

5 Countermeasures

Because our attack has exponential complexity, it is still possible to safely instan-
tiate OSIDH by increasing parameters. We analyze here the available options.

5.1 Increase t, and Everything Else

The simplest countermeasure is to increase the number t of prime ideals qj ,
which governs the dimension of the relation lattice, to the point where solving
SVP becomes infeasible. As we saw in Sect. 4.2 if we use the Becker–Ducas–
Gama–Laarhoven algorithm [4] to solve SVP in norm �2, we need at least t ≈ 400
to achieve 128 bits of classical security. However, the size of Cl(On), and thus
the prime p, shall be increased accordingly to satisfy #Cl(On) ≈ (2r + 1)t.
Otherwise, we could consider only the t′ < t first qj (where t′ is such that
#Cl(On) ≈ (2r+1)t′

) and still perform our attack with a smaller relation lattice
of dimension t′. We may partly compensate this increase of t by decreasing r; we
may in fact even restrict to just three values (r = 1) for the secret exponents,
e.g. ej ∈ {−1, 0, 1}. With t ≈ 400, � = 2 and r = 1, this would lead to n ≈ 630.

This increase is significant compared to n = 256, t = 74 as suggested by Colò
and Kohel, or even n = 1428, t = 100 as suggested by Onuki [14, § 6.3], and we
expect them to severely affect performance, as the following analysis indicates.

Lemma 5. Let (Ei)0≤i≤n be a descending �-isogeny chain such that E0 is OK-
oriented and a :=

∏t
j=1 q

ej

j with e1, . . . , et sampled in �−r ; r�. Then, the com-
putation of a · (Ei)0≤i≤n requires O(nt3 log2(t) + n2) operations over Fp2 on
average, with the constant inside O depending on r and �.

Proof. See the extended version of this work [17].

On the Security of OSIDH 73

A possibly even worse consequence of this countermeasure is that it tightly
binds the security of OSIDH to a lattice assumption. Qualitatively, security
would look much worse than that of any lattice based scheme, since it appears
to be impossible to prove any kind of security reduction of OSIDH to a standard
lattice problem. Quantitatively, it seems hard to justify the practical interest of
such a slow scheme, when lattice based schemes are several orders of magnitude
faster.

5.2 Increase #Cl(On), Keep the Same Key Space

Alternatively, we may ensure that #Cl(On) � �n is much larger than (2r + 1)t,
so that the key space

⎧
⎨

⎩

t∏

j=1

[qj]ej | (e1, . . . , et) ∈ �−r ; r�t

⎫
⎬

⎭

is far from covering all of Cl(On), and thus λ
(∞)
1 (Ln) > 2r. The analysis in

Sect. 4.3 suggests taking

n ≥ t

log(�)
log
(

4r +
4λ log(2)

log(q1 + 1)

)

for a security level of λ bits.
We can adapt Colò and Kohel’s choice of parameters (K = Q(i), � = 2, r =

5, t = 74) by taking n = 575 instead of n = 256 to attain λ = 128 bits of
security. The increase for n, and thus for p, is roughly comparable to the previous
countermeasure; however, by keeping the same value for t, we do not need to
introduce larger modular polynomials, and can thus hope for a significantly faster
result.

Onuki’s choice of parameters in [32, §6.3] (n = 1428, t = 100, � = 2, r = 3
and K = Q(i)) also follows this countermeasure but such an increase in n is not
necessary and results form a cost underestimation of his attack, as we explained
in Sect. 4.1.

5.3 OSIDH and Cryptographic Group Actions

Besides affecting efficiency, both countermeasures also have adverse effects on the
possibility of using the OSIDH group action in contexts other than key exchange.
Brassard and Yung [9], then Couveignes [15], then Alamati, De Feo, Montgomery
and Patranabis [2] established the axiomatic foundations of cryptographic group
actions. The latter call Effective Group Action (EGA) a group action (G,X, ·)
where, among other axioms, the value g · x can be efficiently computed for any
g ∈ G and any x ∈ X. They also observe that CSIDH does not naturally satisfy
this axiom, and thus define a better abstraction named Restricted Effective
Group Actions (REGA), where g · x can be efficiently evaluated for any x, but
only for a few g taken from a fixed list.

74 P. Dartois and L. De Feo

OSIDH satisfies neither the axioms of EGAs, nor of REGAs. Indeed, the class
group action of OSIDH can only be computed with the help of the horizontal
chains, however these are “single use”: after computing Gn :=

(∏
j q

ej

j

)
· Fn

there is no way to compute the horizontal chains for Gn without knowing the
secret descending chain (Fi)0≤i≤n, and thus of evaluating a new action on Gn.
Colò and Kohel did not claim anything else than a key exchange, and for that
the limitations of OSIDH are not an issue. However it is natural to ask whether
the same primitives that are known from the CSIDH group action can be built
from the OSIDH action. This is where the countermeasures to our attack become
an obstacle.

An important step for CSIDH was the computation of the class group struc-
ture of CSIDH-512, paved the way for the CSI-FiSh signature scheme [6]. Thanks
to this intensive computational effort, it became possible to compute a reduced
basis for the relation lattice of CSIDH-512, which is used to evaluate the action
of arbitrary exponent vectors, much in the same way as we did in Sect. 13, thus
effectively making CSIDH-512 into an EGA. The class group structure of OSIDH
is much easier to compute than in CSIDH, and thus one may have hoped that
the analogue of CSI-FiSh would be easy to define. However it is clear that we
cannot ask the OSIDH relation lattice to be, at the same time, easy and hard
to reduce: easy for a CSI-FiSh style CVP computation, and hard to prevent our
attack. Thus, it would seem that neither CSI-FiSh, nor any of the applications
derived from it [2,5,19], can be replicated in the OSIDH context.

Remark 1. There seems to be a small positive upside, though, to OSIDH not
being a cryptographic group action in the usual sense: the best generic attacks
against (R)EGA, both classical and quantum, do not seem to apply to OSIDH!

Indeed, the best classical attack against (R)EGAs is a Pollard Rho-style ran-
dom walk algorithm [24,25], which necessitates to compute long random walks
by chaining many group actions. This is not possible for OSIDH, for which we
argued the group action can only be evaluated a limited number of times. The
next best algorithm would be a meet-in-the-middle search, which has the same
time complexity, but worse space complexity.

Possibly more remarkably, the best quantum algorithm against (R)EGAs is
Kuperberg’s subexponential algorithm for the hidden shift problem [29]. This
algorithm repeatedly calls a quantum oracle that evaluates the group action in
superposition for all possible group elements. If we apply the countermeasure of
Sect. 5.2, then the OSIDH group action can only be evaluated on a negligibly
small subset of the whole class group. It has already been remarked that Kuper-
berg algorithm doesn’t appear to work when the oracle is only used to evaluate
the action for a small fraction of the group elements [12], and thus wouldn’t
apply to this variant of OSIDH. The next best quantum against OSIDH would
be, again, a meet-in-the-middle strategy, possibly applying some Grover-style
accelerations [26], which has exponential complexity, putting OSIDH in a much
better place than CSIDH regarding quantum security.

On the Security of OSIDH 75

6 Conclusion

We presented a new classical attack against OSIDH that practically breaks the
parameters proposed for 128 bits security. The attack has exponential complex-
ity, and can thus be countered by increasing parameters. However the increased
parameters heavily impact the performance of a scheme which is already very
slow, and they also severely limit the number of other cryptographic primitives
one may hope to derive from the OSIDH group action.

It must be stressed that there is, as of today, no reduction of the security of
OSIDH to a well studied isogeny problem, and thus the security of the counter-
measures we propose remains somewhat dubious. More scrutiny of the security
assumptions supporting OSIDH would be beneficial.

Interestingly, we remarked that one of the countermeasures we propose
appears to defeat not only our attack, but also Kuperberg’s quantum attack.
It would be interesting to investigate the quantum security of OSIDH more in
depth.

None of the countermeasures we propose is particularly efficient, and OSIDH
itself is challenging to implement. A detailed study of performance optimizations
applicable to OSIDH, and of potential efficiency-minded variants, would be very
welcome.

A Time Complexity of the Chain Attack of Sect. 3.3

We refer to Sect. 3.3 for the notations. As explained in Sect. 3.3, the dominant
step in the attack is to find a close vector to ei+1 in Li+1 and compute the action
of [ai · bi] on Ei+1. This operation has to be repeated at most � � times for all
i ∈ �0 ; n − 1�, so at most n� times.

If we find c ∈ Li+1 close to ei+1 and set e′
i+1 := ei+1 − c, so that [ai · bi] =∏t

j=1[qj]e
′
i+1,j in Cl(Oi+1), then the time complexity of the operation [ai·bi]·Ei+1

is

Θ

⎛

⎝(i + 1)
t∑

j=1

P (qj , n)|e′
i+1,j |

⎞

⎠ ,

where P is a polynomial. Hence, the complexity is Θ(‖e′
i+1‖1) up to a polynomial

factor (in n, t and the qj). Since ‖e′
i+1‖2 ≤ ‖e′

i+1‖1 ≤ √
t‖e′

i+1‖2, the complexity
becomes Θ(‖e′

i+1‖2) up to a polynomial factor.

Theorem 3 [23, Theorem 3.3]. Let Λ ⊆ Z
d be a lattice of rank d, B :=

(b1, . . . ,bd), a basis of Λ, a target x ∈ R
d and k ∈ N

∗ such that d > 2k.
Under some heuristic assumptions, there exists an algorithm finding c ∈ Λ such
that

‖x − c‖2 = Θ
(
GH(k)

d
2k Covol(Λ)

1
d

)
,

76 P. Dartois and L. De Feo

where GH is the Gaussian heuristic function: GH(k) := Γ (k/2+1)1/k/
√

π. This
algorithm runs in time

(TCV P (k) + TSV P (k))P
(

k, d, log ‖x‖2, log max
1≤i≤d

‖bi‖2
)

,

where TCV P (k) and TSV P (k) are the time complexities of oracles for CVP and
SVP in dimension k for the norm �2 respectively and P is a polynomial.

The best known algorithms for CVP and SVP are due to [21] and [4] respec-
tively. They run in time TCV P (k) = 2c1k+o(k) and TSV P (k) =

(
3
2

)k/2+o(k) =
2c2k+o(k) respectively, with c1 ≈ 0.264 and c2 ≈ 0.292. The time complexity of
the attack follows

T := 2c2k+o(k) +
1

√
π

1
k

Γ

(
k

2
+ 1
) t

2k2

�
n
t

up to polynomial factors, where we used the fact that Covol(Ln) = #Cl(On) �
�n and neglected TCV P (k) compared to TSV P (k). Using the Stirling equivalent
Γ (k/2 + 1) ∼ √

πk(k/2e)k/2 as k → +∞ and setting k := �κ√t log2(t)�, with
κ := 1/

√
8c2 in order to optimize the complexity, we get

T = 2(
√

c2/8+o(1))
√

t log2(t) = exp((c + o(1))
√

t log(t)),

with c :=
√

c2/8 log(2) � 0.229, assuming that � and n are constant and t → +
∞.

B Complexity Analysis of Onuki’s Attack Presented
in Sect. 4.1

We use the notations of Sect. 4.1 explaining Onuki’s attack which consists in
computing a K-oriented endomorphism ι′n(β) ∈ End(Fn) for β ∈ On \ On+1.
We look for β such that βOn = I · J , with a big factor I :=

∏t
j=1(qj ∩ On)ej ,

where e1, · · · , et ∈ �−r ; r�, and a small factor J . Then ι′n(β) will be computed
as the composite of the isogeny associated to I and the isonegy associated to J .
The first one is easy to compute with the knowledge of the action of powers of
qj on Fn. The second one can be computed by a meet-in-the-middle strategy in
Ω(
√

N(J)) operations (as explained in Sect. 4.3).
We proceed as follows to select a suitable β. Let θ be a generator of OK , so

that �nθ generates On. We sample β := a+b�nθ with a and b sampled uniformly
at random in �−m ; m� and �−m ; m� \ �Z respectively, for m big enough.

We stop the sampling when N(β) has a big enough divisor Q :=
∏t

j=1 q
e′
j

j with
e′
1, · · · , e′

t ∈ �0 ; r�, let’s say Q ≥ x, where the threshold x is to be chosen. We
make the heuristic assumption that N(β) has the same arithmetic properties
as a uniform variable in �Nmin ; Nmax�. Under this assumption, we have the
following result:

On the Security of OSIDH 77

Lemma 6. The average time complexity of Onuki’s attack [32, §6.3] is:

C(x) ≥ x

(r + 1)t
+

κ
√

Nmax√
x(r + 1)t

,

where κ := 1
2
√

q1

(
1 − 1

q1

)
and x is the threshold for the value of the norm

of the ideal J =
∏t

j=1 q
ej

j dividing β. The optimal value for the threshold is

xm := (κ/2)2/3N
1/2
max(r + 1)t/3 and the optimal average time complexity is:

C(xm) = Ω

(√
Nmax

(r + 1)
t
3

)
= Ω

(
�

2n
3

(r + 1)
t
3

)
,

since Nmax ≥ Nmin ≥ �2n.

Proof. Under the heuristic assumption we made, we can assume that N := N(β)
is a uniform random variable in the range �Nmin ; Nmax�. We define the random
variable:

Q := Q(N) =
t∏

j=1

q
min(r,vqj

(N))

j .

The cost of the exhaustive search for a suitable β is then:

C1(x) =
1

P(Q(N) ≥ x)
=

Nmax − Nmin

#S(x)
,

with:

S(x) :=

⎧
⎨

⎩y ∈ �Nmin ; Nmax�

∣∣∣∣∣

t∏

j=1

q
min(r,vqj

(y))

j ≥ x

⎫
⎬

⎭

=
⋃

(e1,··· ,et)∈�0 ; r�t

x≤∏t
j=1 q

ej
j ≤Nmax

⎧
⎨

⎩k

t∏

j=1

q
ej

j

∣∣∣∣∣ k ∈ �

⌈
Nmin∏t
j=1 q

ej

j

⌉
;

⌊
Nmax∏t
j=1 q

ej

j

⌋
�

⎫
⎬

⎭

so that:

#S(x) ≤
∑

(e1,··· ,et)∈�0 ; r�t

x≤∏t
j=1 q

ej
j ≤Nmax

(⌊
Nmax∏t
j=1 q

ej

j

⌋
−
⌈

Nmin∏t
j=1 q

ej

j

⌉)

≤
∑

(e1,··· ,et)∈�0 ; r�t

x≤∏t
j=1 q

ej
j ≤Nmax

Nmax − Nmin∏t
j=1 q

ej

j

≤ Nmax − Nmin

x
#

⎧
⎨

⎩(e1, · · · , et) ∈ �0 ; r�t

∣∣∣∣∣x ≤
t∏

j=1

q
ej

j ≤ Nmax

⎫
⎬

⎭

≤ (Nmax − Nmin)
(r + 1)t

x
. (1)

78 P. Dartois and L. De Feo

It follows that the search for β costs:

C1(x) ≥ x

(r + 1)t
. (2)

The average cost of the meet-in-the-middle procedure to find the isogeny
associated to J is:

C2(x) ≥ E

[√
N

Q(N)
| Q(N) ≥ x

]
≥

√
AP(N ≥ AQ(N)|Q(N) ≥ x),

where we used Markov’s inequality with A > 0 to be chosen. Hence:

C2(x) ≥
√

A
P({N ≥ AQ(N)} ∩ {Q(N) ≥ x})

P(Q(N) ≥ x)
=

√
A#T (A)
#S(x)

, (3)

with:

T (A) :=

{
k

t∏

j=1

q
ej

j

∣∣∣∣∣ Nmax ≥
t∏

j=1

q
ej

j ≥ x

and k ∈ �max

(
�A�,

⌈
Nmin∏t
j=1 q

ej

j

⌉)
;

⌊
Nmax∏t
j=1 q

ej

j

⌋
�

}
.

We take A := Nmax/(q1x), so that for all e1, · · · , et ∈ �0 ; r� such that Nmax ≥∏t
j=1 q

ej

j ≥ x, we have:

Nmin∏t
j=1 q

ej

j

≤ Nmin

x
<

Nmax

q1x
= A,

since Nmax/Nmin � m2 � q1. Without loss of generality, we can assume that x
is a product of the qj . Hence:

#T (A) ≥
⌊

Nmax

x

⌋
− A ≥ Nmax

x
− Nmax

q1x
− 1 =

Nmax

2x

(
1 − 1

q1

)
,

under the fair assumption that x ≤ Nmax/2(1−1/q1). This inequality combined
with Eq. (1) and Eq. (3) leads to:

C2(x) ≥ (Nmax)
3
2 (1 − 1/q1)

2
√

q1x(r + 1)t(Nmax − Nmin)
≥

√
Nmax

2
√

q1x(r + 1)t

(
1 − 1

q1

)
. (4)

Combining Eq. (2) and Eq. (4), we find that Onuki’s attack has average com-
plexity:

C(x) ≥ C1(x) + C2(x) ≥ x

(r + 1)t
+

κ
√

Nmax√
x(r + 1)t

,

with κ := 1
2
√

q1

(
1 − 1

q1

)
. The optimal value for x is obtained by differenciating

of the function defined over R
∗
+:

x �−→ x

(r + 1)t
+

κ
√

Nmax√
x(r + 1)t

.

On the Security of OSIDH 79

References

1. Aggarwal, D., Mukhopadhyay, P.: Improved algorithms for the shortest vector
problem and the closest vector problem in the infinity norm (2018)

2. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3 14

3. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem (short-
ened version). In: STACS (1985)

4. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.)
27th SODA, pp. 10–24. ACM-SIAM, January 2016. https://doi.org/10.1137/1.
9781611974331.ch2

5. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

6. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

7. Boneh, D., Kogan, D., Woo, K.: Oblivious pseudorandom functions from isogenies.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 520–550.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 18

8. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

9. Brassard, G., Yung, M.: One-way group actions. In: Menezes, A.J., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 94–107. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-38424-3 7

10. Bröker, R., Lauter, K., Sutherland, A.V.: Modular polynomials via isogeny volca-
noes. Math. Comput. 81(278), 1201–1231 (2011)

11. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

12. Chavez-Saab, J., Chi-Dominguez, J.J., Jaques, S., Rodriguez-Henriquez, F.: The
SQALE of CSIDH: square-root Vélu quantum-resistant isogeny action with low
exponents. Cryptology ePrint Archive, Report 2020/1520 (2020). https://eprint.
iacr.org/2020/1520

13. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Hei-
delberg (1993). https://doi.org/10.1007/978-3-662-02945-9

14. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. J. Math. Cryptol.
14(1), 414–437 (2020). https://doi.org/10.1515/jmc-2019-0034

15. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

16. Cox, D.A.: Primes of the form x2 + ny2. Wiley (2013)
17. Dartois, P., De Feo, L.: On the security of OSIDH. Cryptology ePrint Archive,

Report 2021/1681 (2021). https://ia.cr/2021/1681

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2020/1520
https://eprint.iacr.org/2020/1520
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1515/jmc-2019-0034
https://eprint.iacr.org/2006/291
https://ia.cr/2021/1681

80 P. Dartois and L. De Feo

18. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

19. De Feo, L., Meyer, M.: Threshold schemes from isogeny assumptions. In: Kiayias,
A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp.
187–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 7

20. de Saint Guilhem, C.D., Orsini, E., Petit, C., Smart, N.P.: Semi-commutative
masking: a framework for isogeny-based protocols, with an application to fully
secure two-round isogeny-based OT. In: Krenn, S., Shulman, H., Vaudenay, S.
(eds.) CANS 2020. LNCS, vol. 12579, pp. 235–258. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-65411-5 12

21. Ducas, L., Laarhoven, T., van Woerden, W.P.J.: The randomized slicer for CVPP:
sharper, faster, smaller, batchier. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas,
V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 3–36. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45388-6 1

22. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

23. Espitau, T., Kirchner, P.: The nearest-colattice algorithm: Time-approximation
tradeoff for approx-CVP. Open Book Ser. 4, 251–266 (2020). https://doi.org/10.
2140/obs.2020.4.251

24. Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS Weil descent attack. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 29–44. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 3

25. Galbraith, S.D., Stolbunov, A.: Improved algorithm for the isogeny problem for
ordinary elliptic curves. Appl. Algebra Eng. Commun. Comput. 24(2), 107–131
(2013). https://doi.org/10.1007/s00200-013-0185-0

26. Jaques, S., Schrottenloher, A.: Low-gate quantum golden collision finding. Cryp-
tology ePrint Archive, Report 2020/424 (2020). https://eprint.iacr.org/2020/424

27. Kohel, D.: Endomorphism rings of elliptic curves over finite fields (1996). http://
iml.univ-mrs.fr/∼kohel/pub/thesis.pdf

28. Kohel, D.R., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion-isogeny path
problem. LMS J. Comput. Math. 17(A), 418–432 (2014)

29. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

30. Lai, Y.F., Galbraith, S.D., de Saint Guilhem, C.: Compact, efficient and UC-secure
isogeny-based oblivious transfer. Cryptology ePrint Archive, Report 2020/1012
(2020). https://eprint.iacr.org/2020/1012

31. Milne, J.S.: Complex multiplication (2020). https://www.jmilne.org/math/
CourseNotes/cm.html

32. Onuki, H.: On oriented supersingular elliptic curves (2020). https://arxiv.org/abs/
2002.09894

33. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 16

34. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-65411-5_12
https://doi.org/10.1007/978-3-030-65411-5_12
https://doi.org/10.1007/978-3-030-45388-6_1
https://doi.org/10.1007/978-3-030-45388-6_1
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.2140/obs.2020.4.251
https://doi.org/10.2140/obs.2020.4.251
https://doi.org/10.1007/3-540-46035-7_3
https://doi.org/10.1007/s00200-013-0185-0
https://eprint.iacr.org/2020/424
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
https://eprint.iacr.org/2020/1012
https://www.jmilne.org/math/CourseNotes/cm.html
https://www.jmilne.org/math/CourseNotes/cm.html
https://arxiv.org/abs/2002.09894
https://arxiv.org/abs/2002.09894
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-70697-9_12

On the Security of OSIDH 81

35. Pohlig, S.E., Hellman, M.E.: An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Trans. Inf. Theor. IT 24(1),
106–110 (1978)

36. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145

37. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

38. Silverman, J.H.: Advanced Topics in The Arithmetic of Elliptic Curves. Springer,
New York (1994). https://doi.org/10.1007/978-1-4612-0851-8

39. Silverman, J.H.: Integral points on elliptic curves. In: The Arithmetic of Elliptic
Curves. GTM, vol. 106, pp. 269–307. Springer, New York (2009). https://doi.org/
10.1007/978-0-387-09494-6 9

40. Sutherland, A.V.: Structure computation and discrete logarithms in finite abelian
p-groups. Math. Comput. 80(273), 477–500 (2010)

41. The FPLLL development team: FPyLLL, a Python wraper for the fplll lattice
reduction library, Version: 0.5.6 (2021). https://github.com/fplll/fpylll

42. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.2) (2021). https://www.sagemath.org

43. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-rendus de l’Académie des
Sciences 273, 238–241 (1971). https://gallica.bnf.fr

44. Waterhouse, W.C.: Abelian varieties over finite fields. Annales scientifiques de
l’École Normale Supérieure 2(4), 521–560 (1969). http://eudml.org/doc/81852

45. Wesolowski, B.: The supersingular isogeny path and endomorphism ring problems
are equivalent. Cryptology ePrint Archive, Report 2021/919 (2021). https://ia.cr/
2021/919

46. Yoshinori Aono, T.E., Nguyen, P.Q.: Random lattices: theory and practice. https://
espitau.github.io/bin/random lattice.pdf

https://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-1-4612-0851-8
https://doi.org/10.1007/978-0-387-09494-6_9
https://doi.org/10.1007/978-0-387-09494-6_9
https://github.com/fplll/fpylll
https://www.sagemath.org
https://gallica.bnf.fr
http://eudml.org/doc/81852
https://ia.cr/2021/919
https://ia.cr/2021/919
https://espitau.github.io/bin/random_lattice.pdf
https://espitau.github.io/bin/random_lattice.pdf

Time-Memory Tradeoffs for Large-Weight
Syndrome Decoding in Ternary Codes

Pierre Karpman1(B) and Charlotte Lefevre2(B)

1 Institute of Engineering, University of Grenoble Alpes, CNRS, Grenoble INP, LJK,
Grenoble 38000, France

pierre.karpman@univ-grenoble-alpes.fr
2 Radboud University, Nijmegen, The Netherlands

charlotte.lefevre@ru.nl

Abstract. We propose new algorithms for solving a class of large-weight
syndrome decoding problems in random ternary codes. This is the main
generic problem underlying the security of the recent Wave signature
scheme (Debris-Alazard et al. 2019), and it has so far received limited
attention. At SAC 2019 Bricout et al. proposed a reduction to a binary
subset sum problem requiring many solutions, and used it to obtain the
fastest known algorithm. However —as is often the case in the coding
theory literature— its memory cost is proportional to its time cost, which
makes it unattractive in most applications.

In this work we propose a range of memory-efficient algorithms for this
problem, which describe a near-continuous time-memory tradeoff curve.
Those are obtained by using the same reduction as Bricout et al. and
carefully instantiating the derived subset sum problem with exhaustive-
search algorithms from the literature, in particular dissection (Dinur et
al. 2012) and dissection in tree (Dinur 2019). We also spend significant
effort adapting those algorithms to decrease their granularity, thereby
allowing them to be smoothly used in a syndrome decoding context when
not all the solutions to the subset sum problem are required. For a pro-
posed parameter set for Wave, one of our best instantiations is estimated
to cost 2177 bit operations and requiring 288.5 bits of storage, while we
estimate this to be 2152 and 2144 for the best algorithm from Bricout
et al..

1 Introduction

At ASIACRYPT 2019, Debris-Alazard et al. proposed a new (conjecturally post-
quantum secure) code-based signature scheme called Wave [4]. Some of the more
unusual and notable features of this scheme are that it is based on ternary linear
codes, i.e. codes whose alphabet is F3, and that its security relies in part on the
generic hardness of some large-weight syndrome decoding problems. Most of the
existing cryptography and coding-theory literature does not quite address either
of those aspects as it tends to focus on binary codes (where low- and large-weight
problems are symmetric) and, in the few existing adaptations to q-ary codes, on
low-weight problems [2,10,12,13,16].
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 82–111, 2022.
https://doi.org/10.1007/978-3-030-97121-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_4

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 83

Shortly following the introduction of Wave, Bricout et al. introduced new ded-
icated algorithms for solving the specific large-weight ternary syndrome decoding
instances underlying Wave’s security [1]. Their approach consists in exploiting
the fact that a large-weight syndrome may be found by: 1) finding a full -weight
syndrome for a smaller derived sub-problem and; 2) extending this smaller solu-
tion to one for the original problem, hoping that it satisfies the weight constraint.
While this overall strategy is quite typical of the family of information-set decod-
ing algorithms, the fact that the first step searches for full -weight syndromes over
F3 leads to a clean reduction to a {0,1}-subset sum problem. Furthermore, since
the success probability of the second step is typically small, one in fact needs to
repeat the first one many times; the best results are then obtained when many
solutions for the latter can be obtained at a low (ideally constant) amortised cost.
Bricout et al. consider several algorithms for solving the subset sum problem and
obtain their best results by using Wagner’s k-tree algorithm [17] with an adap-
tation of the so-called representation technique. For parameter sizes relevant to
Wave’s security, their best algorithm has an asymptotic time cost of O(20.0176n),
where n is the length of the code. However, the memory cost of this algorithm
is also O(20.0176n); while this is a common behaviour of the “fastest” algorithms
from the cryptography and coding theory literature, this is an unattractive fea-
ture for “real-life” implementations as (beyond a certain point) memory is much
more expensive than time in existing hardware, and certainly not on par as
analyses focusing on optimising time cost alone somewhat implicitly assume.

Our Contribution. In this paper, we perform a detailed study of time-memory
tradeoffs for the large-weight ternary syndrome decoding problem, in the regime
relevant to Wave’s security. We use the same reduction to {0,1}-subset sum as
Bricout et al., and the tradeoffs are obtained by acting on one parameter used
in the reduction and, more importantly, by carefully instantiating the resolu-
tion of the subset sum problem with memory-efficient algorithms. For this task
we rely on the dissection [6] and dissection in tree [5] frameworks. One main
hurdle in efficiently applying both frameworks to the syndrome decoding set-
ting is that they are designed to exhaustively solve general-birthday (or subset
sum-like) problems, which they do at a low (possibly constant) amortised cost.
The reduction by Bricout et al. only requires comparatively few solutions, and
providing more than necessary inevitably leads to a sub-optimal instantiation.
We thus spend a significant effort in adapting both frameworks to lower the
granularity at which they return solutions (i.e. the minimum number of solu-
tion that can be returned with constant amortised cost), so that only the right
amount is computed. This eventually leads to attractive time-memory tradeoffs
which significantly outperform the results of Bricout et al. when taking the cost
of memory into account. We however make no attempt at accurately modeling
the cost of memory access which we assume to be constant and only compute for
our algorithms the cost of memory storage. A summary of our results is shown

84 P. Karpman and C. Lefevre

in Table 1 in the asymptotic regime where we include the product of time and
memory costs as a primitive tool of comparison between different tradeoffs.

Table 1. Asymptotic exponents (in base 2) of some algorithms for solving a ternary
syndrome decoding problem for a random code of length n, dimension 0.676n, and
syndrome weight 0.948366n.

Time Memory Time × Memory Tradeoff Algorithm

0.0176n 0.0176n 0.0352n T = M k-Tree + representations [1]

0.02014n 0.01007n 0.03021n T = M2 4,4-Dissection (Sect. 5)

0.02256n 0.007521n 0.03008n T = M3 2,11-Dissection (Sect. 5)

0.02335n 0.005838n 0.02919n T = M4 3,11-Dissection (Sect. 5)

Structure of the Paper. We recall some definitions and state our problem
in Sect. 2. We then present the framework of Bricout et al. in a detailed and
self-contained way in Sect. 3, while also emphasising the role played by the gran-
ularity. Section 4 recalls some classical frameworks for the generalised birthday
problem and applies them (sometimes with some tweaks) to syndrome decod-
ing, and Sect. 5 does the same with the more recent dissection-in-tree framework.
Finally Sect. 6 presents numerical results applied to the most recent parameter
set for Wave.

2 Preliminaries

2.1 Notation and Definitions

Except specified otherwise, we assume to be in a ternary setting, i.e. with all
structures defined over F3.

Vectors (resp. matrices) names are written in a bold font and in lower (resp.
upper) case, for instance x (resp. M); vectors are row vectors. The ith coordinate
of a vector x is written xi, and indices start from 1. The (Hamming) weight wt(x)
of an n-dimensional vector x is the size of its support, i.e. #{i ∈ �1, n� |xi �= 0},
where �1, n� = {1, 2, . . . , n}.

A (ternary) linear code of length n and dimension k is a k-dimensional linear
subspace of Fn

3 ; any code with such parameters is said to be an [n, k] linear code.
A parity-check matrix of an [n, k] (ternary) linear code C is any full-rank matrix
H ∈ F

(n−k)×n
3 s.t. x ∈ C ⇔ xHT = 0, where 0 ∈ F

n−k
3 is the null vector.

We use x := y (resp x =: y) to define x as being equal to y (resp. y as being
equal to x), and x � S means that x has been drawn uniformly at random
from the finite set S; except specified otherwise, this drawing is supposed to be
independent from any other.

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 85

We say that an algorithm A returning S distinct (and a priori independent)
outputs in time O(ST) runs in amortised time O(T). Also, in order to sim-
plify notation, we often drop the “O(·)” when discussing the cost of algorithms.
Finally, except specified otherwise, the logarithm function log is in base 2.

2.2 The Large-Weight Ternary Syndrome Decoding Problem

We now define the ternary syndrome decoding problem (or “SDP” for short),
which is the main problem studied in this paper. We specialise the definition to
the ternary case, i.e. with all underlying structures with coefficients in F3, but
generalizations to other fields are straightforward.

Problem 1 (Ternary syndrome decoding problem). Let H ∈ F
(n−k)×n
3 be a

parity-check matrix for an [n, k] ternary linear code, w ∈ �1, n�, s ∈ F
n−k
3 .

The ternary syndrome decoding problem with inputs H, s, w asks to find e ∈ F
n
3

s.t.:

1. eHT = s;
2. wt(e) = w.

We may refer to s as the target syndrome, and to e as an error.

A natural variant of this problem, which we however do not consider here, is
to constraint the weight of e not to a single value w but only requiring that it
be included in some interval.

In all of this work we only consider instances of Problem 1 with the following
additional restrictions:

1. We consider uniformly random linear codes:

H �
{
M ∈ F

(n−k)×n
3 | rank(M) = n − k

}
.

2. We consider uniformly random syndromes: s � F
n−k
3 .

3. The code parameters n and k and the target weight w are proportional,
with the same ratios as in the “updated” parameters for the Wave signature
scheme given by Bricout et al. [1], viz. k = 0.676n, w = 0.948366n. In the
following we refer to this setting as the Wave regime which, since w ≈ 0.95n
is a particular instance of a large-weight regime.

Remark 2. The Wave regime as defined above corresponds to a setting for which
no efficient (in particular no polynomial-time) algorithm for solving the prob-
lem is known, yet one expects a random instance to have a number of solution
exponential in the length n of the code. We refer to [4, §3] for more details on
the topic and on parameter selection for Wave in general.

86 P. Karpman and C. Lefevre

3 A Framework for Solving the Ternary Syndrome
Decoding Problem

At SAC 2019 [1], Bricout et al. formalised a high-level framework to solve (hard)
instances of the ternary syndrome decoding problem They name this framework
“PGE+SS”, standing for partial Gaussian elimination + subset sum, and its
structure closely follows the one used by similar information set decoding (or
ISD) algorithms used in the (more usual) binary setting. Since our work fully
adheres to this framework we wish to give here a self-contained description of
its main ideas and analysis, and refer to [1] for more details.

3.1 The PGE+SS Framework

Let H ∈ F
(n−k)×n
3 , s, w define an instance of Problem 1; the PGE+SS framework

fixes two additional parameters l ∈ �0, n − k� and p ∈ �0,min(w, k + l)�. One
then does the following:

1. Partial information set selection. Pick P ∈ F
n×n
3 uniformly at random among

the permutation matrices that are s.t. the n − k − l first columns of HP are
linearly independent.

2. Partial Gaussian elimination. Compute the reduced row-echelon form of HP ,
stopping after the first n − k − l rows have been processed. This returns an
invertible matrix S ∈ GL(n − k, 3) s.t.:

SHP =:
(
In−k−l H1

0 H2

)
,

with H1 ∈ F
(n−k−l)×(k+l)
3 , H2 ∈ F

l×(k+l)
3 , and further let s′ =

(
s′
1 s′

2

)
:=

sST , with s′
1 ∈ F

n−k−l
3 , s′

2 ∈ F
l
3.

Remark then that if e′ is a solution to the syndrome decoding problem
instance defined by SHP , s′ and w then e′P T is a solution to the initial
instance, as from e′P THTST = s′ one has (e′P T)HT = s.

3. Subset sum problem resolution. Solve the syndrome decoding problem
instance defined by H2, s′

2 and weight p and return S distinct solutions
{e′

2 ∈ F
k+l
3 }, where S is a parameter to be determined later. For large-weight

ternary syndrome decoding and well-chosen parameters l and p, this in fact
reduces to a {0,1}-subset sum problem (see Sects. 3.2 and 4.1 and [1, §2] for
details).

4. Probabilistic reconstruction. For every solution e′
2 returned at step 3 compute

the unique vector e′
1 := s′

1 − e′
2H

T
1 s.t.

(
e′
1 e′

2

)
P THTST =

(
s′
1 s′

2

)
, and if

wt(e′
1) = w−p return

(
e′
1 e′

2

)
P T as a solution to the initial problem. If none

of the solutions satisfied the weight constraint the algorithm fails.

Remark 3. Prange’s algorithm [14] corresponds to the setting l = 0. In that case
the subset sum problem from step 3 becomes trivial since the zero-dimensional
s′
2 imposes no constraint. Yet for the same number of returned solutions S and

for most target weights w the success probability of step 4 is in this case typically
smaller than for l > 0.

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 87

We now analyse some aspects of the PGE+SS framework, but only in the
regime relevant to us, i.e. when the target weight w is close to n (but lower than
the Gilbert-Varshamov bound). In particular we only consider the case where
p = k + l, that is where the solutions for the smaller syndrome decoding sub-
problem at step 3 are required to be full-weight. This has two consequences: 1)
except for very large values of l, this maximises the probability that a solution
to the sub-problem extends to a solution to the initial problem in step 4; 2) since
there are exactly two non-zero elements in F3, this sub-problem can be solved
by using an algorithm for the (quite common) {0,1}-subset sum problem.

3.2 Required Number of Solution for the Subset-Sum Problem

With the above constraint on the PGE+SS parameterization, the number S
of returned solution to the sub-problem required for the algorithm to succeed
with constant probability becomes only a function of n, l, k and w (or in fact
only n and l inasmuch as k and w depend on n in the Wave regime): assuming
independence of the solutions, it precisely needs to be proportional to the inverse
probability that e′ as computed in step 4 has the right weight; we compute this
probability in Proposition 4, and often denote Sl its inverse in the remainder of
this paper.

Proposition 4. Let H, s, w define a random instance of Problem 1 in the
Wave regime, and H1, H2, s′

1, s
′
2 be as in Sect. 3.1. Then assuming that the

syndrome decoding sub-problem defined by H2, s′
2, k+ l has many solutions, and

if e′
2 is picked uniformly at random among them, one has:

Pr[wt(e′
1) = w − k − l] ≈

(
n−k−l
w−k−l

)
2w−k−l

3n−k−l
, (1)

where e′
1 ∈ F

n−k−l
3 is equal to s′

1 − e′
2H

T
1 .

Proof. Let P be as in Sect. 3.1 and S denote the set of solutions to the main
decoding problem; we have that wt(e′

1) = w − k − l iff.
(
e′
1 e′

2

)
P T ∈ S. Thus

Pr[wt(e′
1) = w − k − l] = Pr[∃e ∈ S,e =

(∗ e′
2

)
P T], i.e. the probability that

there is a solution with the right structure.1

To compute this probability, we first assume that the elements of S are
uniformly distributed among the 2w

(
n
w

)
weight-w vectors of Fn

3 . Also, since the
Wave regime is such that w is far away from the Gilbert-Varshamov bounds we
approximate the expected size of S by S := 2w

(
n
w

)
/3n−k. Similarly, the expected

number of solution to the sub-problem is approximated by S2 := 2k+l/3l.
Now for e ∈ S to have the right structure, two conditions must be satisfied:

1) it must have the right support, which happens with probability
(

n−k−l
w−k−l

)
/
(

n
w

)
;

2) it must be equal to e′
2 on the right part, which happens with probability S

−1
2

conditioned on having the right support (since by construction this part then
constitutes a solution to the sub-problem). Finally, equating the probability with
1 Note that since e′

1 is fully determined by e′
2 there can be at most one such solution.

88 P. Karpman and C. Lefevre

the (approximated) expectancy, we get Pr[wt(e′
1) = w − k − l] = S × S

−1
2 ×(

n−k−l
w−k−l

)
/
(

n
w

)
. ��

In practice we sometimes rely in our cost computations on the same simpler
asymptotic estimate for Eq. (1) as [3, Lemma 1.2].

Remark 5. In the Wave regime, Sl < 2k+l/3l, the number of solutions to the sub-
problem, so by properly choosing S at step 3 one can ensure that the algorithm
succeeds w.h.p..

3.3 Parameterization of the Subset-Sum Problem

The choice for the (unique) parameter l of the PGE+SS framework has a con-
siderable influence on the final cost of solving the problem. Some of the conse-
quences are quite obvious: if l is small, then the decoding sub-problem is easy
to solve, but the required number of solution Sl is huge; similarly, if l is large
one requires much fewer solutions but solving the sub-problem becomes much
harder. A slightly less näıve observation is that although at first sight one is
asking in step 3. to solve a problem similar to the original (viz. a syndrome
decoding problem), the fact that many solutions are required (and not just one)
opens the way to specific optimisations; in particular one may aim at finding
theses solutions at a low (ideally constant) amortised cost, so that the total time
cost be proportional to Sl. To reach this goal one has at its disposal a full range
of powerful algorithms for the subset sum problem. Yet those algorithms are
not without some limitations, and their (efficient) usage is often not straightfor-
ward. We now mention two of those limitations at a high level, and explore their
consequences systematically in Sects. 4 and 5.

– The algorithms we consider have an intrinsic non-trivial granularity at which
they return solutions. This is the smallest number of solutions that an algo-
rithm may return at its nominal (usually constant) amortised cost, see Defini-
tion 6. In our case one incurs some loss in using an algorithm if its granularity
is larger than the number of required solutions Sl.

– They also all have a large memory cost, sometimes equal to their granularity.

Definition 6 (Granularity of an Algorithm). Let A be an algorithm that
returns S outputs and runs in amortised time O(T). We define its granularity
as the least positive integer S′ ≤ S s.t. there exists a tweaked algorithm A′ for
the same problem that returns S′ outputs in amortised time O(T).

The above can be summarised as the following rough estimation for the cost
of a PGE+SS instantiation in our case: a subset sum algorithm that returns S
solutions in amortised constant time and with memory cost M and granularity
S′ can be used to solve the decoding problem with memory cost M ,2 and time
cost max(Sl, S

′).
2 If Sl > M , one would in practice interleave steps 3. and 4 so as to avoid storing all
Sl solutions at the same time.

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 89

4 Fundamental Algorithms for the Generalised Birthday
Problem

4.1 Subset Sum as a Generalised Birthday Problem

In this section we present and compare two families of algorithms that solve the
generalised birthday problem (whose definition we recall in Problem 7, in the
specific case of Fn

3): the k-tree algorithm and its variants [17] and the dissection
framework [6]. Both can be seen as a way to generalise the meet-in-the-middle
algorithm.

Problem 7 (Generalised birthday problem or r-list problem). Let L1, . . . , Lr be r
lists of vectors uniformly sampled from F

n
3 and s ∈ F

n
3 be a target, the generalised

birthday problem asks to find (x1, . . . ,xr) ∈ L1 × · · · × Lr s.t.
∑r

i=1 xi = s.

An algorithm solving Problem 7 can be used in the PGE+SS framework
to solve the subset sum problem arising from the sub decoding problem in the
full-weight regime.

Let us hereafter denote by H ∈ F
l×(k+l)
3 and s ∈ F

l
3 the matrix H2 and

vector s′
2 from Sect. 3.1 respectively. Then finding a full-weight vector e s.t.

eHT = s can be done by: 1) building r lists Li = {xHT : x ∈ Wi}, where the
elements of the sets Wi have full weight on a set of indices Ii and weight zero
on its complementary and I1, . . . , Ir forms a partition of �0, k + l�; 2) solving a
generalised-birthday problem with input L1, . . . , Lr and s.

This is a classical approach in general, and it was successfully applied to
ternary syndrome decoding by Bricout et al., who consider a number of variants
of the k-tree algorithm [1]. We recall their results and start exploring some
related time-memory tradeoffs next.

4.2 Application of the k-Tree Algorithm to Syndrome Decoding

From now on assume that r =: 2a is a power of two. Recall that the basic k-tree
algorithm [17] works as follows: at the first step, subtract the target s to every
element of Lr, then for each pair of lists (L2i−1, L2i), i ∈ �1, 2a−1�, compute the
merged list L′

i := L2i−1 ��w L2i := {xu + xv : (xu,xv) ∈ L2i−1 × L2i,xu =w

−xv}, where w is a parameter and x =w y means that x and y are equal on their
last w coordinates. This process is then repeated on the lists L′

1, . . . , L
′
2a−1 with

the equality constraint being imposed on the w′ coordinates before the last w
ones, etc.; after a iterations in total, and provided that w+w′′+· · · = l = dim(s),
all the elements of the last list (if non empty) are solutions to the problem.

In a classical and typical parameterization of the k-tree algorithm, one takes
w = w′ = · · · and lists of initial size equal to the “entropy” of a size-w constraint;
in our case this is 3w. This ensures that on average the size of all lists (except
possibly the last one) remains equal to 3w at every level of the tree and this also
gives the memory cost of the algorithm (up to a factor 2a if the lists cannot be
generated on-the-fly). Then the two typical choices for w are l/(a + 1) and l/a;

90 P. Karpman and C. Lefevre

in the former case the expected size of the root list is 1, while it is 3w = 3l/a

in the latter. This last parameterization is of particular interest in our context
since it gives an algorithm with time and memory cost O(2a3l/a) that on average
returns 3l/a solutions. The amortised cost per solution is then O(2a), or O(1) as
a is in fact often a constant, and the granularity is 3l/a.

As we have just described it, the k-tree algorithm only returns in the root
lists solutions which are highly structured which, put another way, means that it
highly decimates the number of possible solutions to be found among the initial
lists. Yet if more than 3l/a solutions are needed, two (non-exclusive) options
exist: 1) restart the algorithm from new lists (if possible); 2) jointly change the
merging condition for two pairs of lists at the same level, so that one merges
elements s.t. xu =w −xv + t and the other elements s.t. xu =w −xv − t;
this is easily implementable by simply adding (resp. subtracting) the right w
coordinates of t to one of the two lists for each pair. This second option in fact
lets one now exhaustively search for all the possible solutions, something we will
discuss again in Sect. 4.3. We illustrate this and the general process of a typical
k-tree instantiation in Fig. 1 for a = 3.

Remark 8. We defined here the k-tree algorithm with as input a number of lists
which is a power of two. It is possible to adapt the algorithm to a relaxed setting
without this constraint, but there is no added gain3 in doing it.

Bricout et al. use the k-tree algorithm within the PGE+SS framework to
solve hard instances of the ternary syndrome decoding problem [1]. In a basic
application, the only additional constraint to what has already been described
above is that for a fixed l parameter, the depth of the tree must be s.t. it is
possible to build lists of size 3l/a at its leaves. When elements of those initial
lists are of the form {xHT : x ∈ Wi}, this list population constraint can be
expressed as:

3l/a ≤ 2(k+l)/2a . (2)

This simply expresses the fact that there are 2a lists of full-weight vectors to
build at the leaves of the tree and one must then split the support of the domain
F

k+l
3 into that many equally-sized disjoint sets.

For a fixed l parameter, the memory (and the granularity) of this application
of the k-tree algorithm is minimised by simply selecting the largest a for which
this constraint is satisfied.

Smoothed k-Tree Algorithm. Smoothing the k-tree algorithm is a technique that
allows to slightly relax constraint (2) by adding one more level to the tree than
what it dictates. This corresponds to the extended k-tree algorithm of Minder
and Sinclair [11, Theorem 3.1], and it was adapted to the ternary case under
this name by Bricout et al. [1].

In a nutshell the idea is the following: if one cannot build initial lists that
are large enough, the constraint size w from the level 1 lists to level 2 is lowered
3 In the next part, the gain is formally defined in Definition 10.

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 91

L1 L2 L3 L4 L5 L6 L7 L8

−t3 −t2+t3 −t4
s1 + t2
+t4

−t2

−t1

s1 + t2

s2 + t1

s

l/3

2l/3

l

Fig. 1. Illustration of the k-tree algorithm with M = 3l/3. For only one iteration of the
tree, the targets ti are all set to 0. For more than one iteration, the targets ti must be
set to non-zero values, and every distinct tuple of ti’s provides disjoint solutions.

so as to increase the size of the latter; then this increased (expected) list size is
preserved all the way up to the root of the tree. Schematically this translates
into a sequence of constraints sizes w < w′ = w′′ = · · · which sum to l; the
memory cost is then equal to 3w′

, which is more than if one had had constraints
of identical sizes, i.e. one has to “pay” for the dissatisfaction of Eq. (2) with
memory. Nonetheless, in the case of the SDP, adding one more level to the
tree to apply the smoothing technique is always more beneficial, even if this is
done at a less favourable time/memory ratio. We summarise the consequences
of smoothing as Proposition 9, which restates [1, Prop. 4].

Proposition 9. Let l, k, n be as above and a > 3 be a constant. If 3l/(a−1) ≤
2(k+l)/2a−1

, then one can use a smoothed k-tree algorithm with a levels to obtain
2m solutions to the generalised birthday problem in amortised constant time and
memory cost 2m, where:

m =
1

a − 2

(
l log(3) − k + l

2a−1

)
.

Proof. We only prove this informally without showing optimality nor checking
initial conditions, our main goal here being to illustrate the inner workings of
smoothing.

Let ς := l log(3) normalise in base 2 the size of the dimension-l ternary
constraint that one wishes to solve and τ := (k + l)/2a be the logarithm of

92 P. Karpman and C. Lefevre

the maximum size of 2a lists of full-weight vectors partitioning the domain. We
wish to find initial and subsequent constraints w and w′ = w′′ = · · · s.t.: 1)
w′ = 2τ −w; 2) w+(a−1)w′ = ς. The first condition expresses the fact that the
constraint of size w ensures that the first level lists merge into lists of expected
size 2w′

; the structure of the k-tree algorithm together with the second condition
then ensure the fact that the root list contains 2w′

solutions to the problem, and
since w < w′ that the algorithm runs in amortised constant time and with
memory 2m := 2w′

.
To find the stated value of m, one simply substitutes 2τ − w for w′ into

w + (a − 1)w′ = ς and solves the latter for w, i.e.:

w + (a − 1)(2τ − w) = ς

⇔ (a − 1)2τ − (a − 2)w = ς

⇔ w = ((a − 1)2τ − ς)/(a − 2)

Using again w′ = 2τ − w one then gets:

w′ = [2(a − 2)τ − ((a − 1)2τ − ς)]/(a − 2)

⇔ w′ = (ς − 2τ)/(a − 2) = (l log(3) − (k + l)/2a−1)/(a − 2).

��
Using Representations. Bricout et al. obtained their best result in the Wave
regime by applying the so-called representation technique [8] to their ternary
k-tree algorithm, slightly beating their instantiations that used smoothing. We
do not detail this approach since we do not consider it in our work, and refer
to [1] for details. When optimised for time, this uses a tree with a = 7 levels and
parameter l = 0.060835n and solves the decoding problem in asymptotic time
and memory O(20.0176n).

Time-Memory Tradeoffs from the k-Tree Algorithm. Recall that within
the PGE+SS framework, solving the sub decoding problem for parameter l in
amortised constant time with granularity and memory cost S′ allows to solve
the initial problem with memory cost S′ and time cost max(Sl, S

′). Since the
(smoothed) k-tree algorithm may in principle be used for any l one then naturally
obtains a time-memory tradeoff by varying this parameter and using the best
variant of the k-tree algorithm to solve the derived sub-problem. Choosing this
variant is a rather straightforward consequence of what has been presented above
and we give pseudocode for this parameter selection in the full version [9] for both
“standard” and smoothed k-tree algorithms We show the resulting time-memory
tradeoff curves in Fig. 2, where we also include the best attack of Bricout et al. as
a point of comparison. One may notice there the natural discontinuity exhibited
by the standard k-tree algorithm and the fact that the smoothed variant is indeed
always superior. The near monotonicity of the curves is consequence of the fact
that the granularity of the k-tree algorithm is low and thence does not limit the
performance of the algorithm, except for the relatively large l parameters used
to draw the bottom right part of the graph.

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 93

Fig. 2. Time-Memory tradeoffs from the (smoothed) k-tree algorithm.

4.3 Solving Generalised Birthday Problems with Dissection

The dissection framework was introduced by Dinur et al. at CRYPTO 2012 to
solve “composite” problems in a memory-efficient way [6]. The main initial moti-
vation was provided by the generic key recovery attack of iterated block ciphers,
but the framework adapts easily to an r-list problem and was already used in this
context by Esser et al. and Dinur [5,7], who also study it in some non-exhaustive
regimes. Dissection generalises the meet-in-the-middle algorithm in a different
way than the k-tree algorithm (with both techniques also being refinements of
[15]). Its main originality is that instead of merging lists along a (typically) bal-
anced binary tree, it uses a recursive asymmetric decomposition; the solutions of
the smaller sub-problem resulting from this decomposition are stored in memory
and combined with solutions for the larger problem that are generated on-the-fly.
Altogether, this asymmetric decomposition and the structure of the algorithm
make dissection a memory-friendly family of algorithms.

An important notion to quantitatively analyse dissection algorithms (and
algorithms for the r-list problem in general) is the gain [6], which we state in
Problem 10 in our specific ternary case. In there, and in all of the following, we
let by definition the size of the r initial lists of Problem 7 be equal to 3m, and
often treat m as a parameter.

Definition 10. Let A be an algorithm that solves Problem 7 with r lists in F3

in time O(3mT) and memory O(3mM) with m ∈ R. Then its gain is defined as
gain(A) := r − (T + M).

This should be understood as a gain over the time-memory tradeoff offered
by the meet-in-the-middle algorithm, which always has gain 0. Any positive gain

94 P. Karpman and C. Lefevre

then gives a better tradeoff than the latter. Hereafter we use gain(r) to denote
the gain of an r-dissection that solves an r-list problem (or sometimes simply g,
when r is clear from the context).

We now illustrate the dissection framework with two examples.

Example 11 (4-Dissection). The 4-dissection is simply the exhaustive variant
of the k-tree algorithm with two levels as described in Sect. 4.2, and it was
in fact well-known before the general formulation of the dissection framework.
Unlike instantiations with a larger number of lists, it also uses a symmetric
decomposition. Starting from four lists L1,...,4 of size 3m and with a target s
of dimension l := 2m, one introduces an intermediate target t of dimension m.
Then for each value of t, one applies the k-tree algorithm to L1+t := {x+

(
0 t

)
:

x ∈ L1}, L2, L3−t, L4−s, obtaining as a result a list of solutions with a unique
structure (viz. x1,...,4 s.t. x1 + x2 =m −t, x3 + x4 =m s + t), and enumerating
all values for t yields all the solutions to be found within L1,...,4. The memory
cost and the granularity is 3m and the time cost 32m, also equal to the expected
number of returned solutions. The product of the time and memory cost is then
33m, which is a factor 3m less than what one would get from meet-in-the-middle
algorithms, hence the gain is equal to 1.

Example 12 (7-Dissection). The 7-dissection is the first instantiation of the
framework with gain 2. It groups its 7 input lists into a group of three (resp.
four) lists, for which a meet-in-the-middle algorithm (resp. 4-dissection) will be
used. Let again 3m be the size of the initial lists, and t1 and t2 be as in Fig. 3,
which also illustrates the structure of the algorithm; to solve a 7-list problem for
a target s of size 3m one does the following for all values of t1 and t2:

1. Exhaustively search for all solutions to a 3-list problem for the 2m target(
s2 − t2 s1 − t1

)
, using a meet-in-the-middle algorithm with memory (resp.

time) cost O(3m) (resp. O(32m)), and store all solutions in a list L′.
2. Exhaustively search for all solutions to a 4-list problem for the 2m target(

t2 t1
)
, using 4-dissection with memory and granularity (resp. time) cost

O(3m) (resp. O(32m)), and for every returned solution x =
(∗ t2 t1

)
check

on-the-fly if there is x′ ∈ L′ s.t. they sum to s.

The total memory cost is O(3m), the time cost and number of returned solutions
is O(34m), and the granularity is given by the size of the intermediate target(
t2 t1

)
for the 4-dissection and thence 32m.

In general an r-dissection of gain g is built from an (r − g −1)-dissection and
a meet-in-the-middle algorithm with g + 1 lists. This leads to a magic sequence
(Mn) of gains [6], where Mg is the least r s.t. there is an r-dissection with gain
g. Dinur et al. showed that Mg = (g+1)(g+2)

2 +1 ≈ g2/2, leading to the following
approximation:

gain(r) ≈
√

2r (3)

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 95

L1 L2 L3 L4

t2

t1

Repeat for all t1, t2

2m

Exhaustive 4-dissection

L5 L6 L7

s2−t2

s1−t1
2m

Exhaustive
meet-in-the-middle

s 3m

Fig. 3. 7-Dissection with initial lists of size 3m and a target s of size 3m. A list drawn
with dashed lines is not stored in memory and processed on-the-fly.

One may also characterise an r-dissection with gain g from the fact that it
returns all the 3m(r−g−1) solutions to an r-list problem with target size (g +1)m
in amortised constant time and with memory cost O(3m). Since in this case
the intermediate target t used in the recursion is of size gm, it also follows
that in this regime the granularity of the dissection is at most 3m(r−g−1)/3gm =
3m(r−2g−1). Remark that it is also straightforward to exhaustively solve for target
sizes smaller than (g + 1)m by running many times a dissection with dummy
targets of the latter size.

The above description concerns dissection with a memory cost equal to the
size of the initial lists, but the framework can be easily extended to use more
memory [6]. For any integer μ > 1, one increases the number μr of lists in the
meet-in-the-middle step and returns a list L′ of partial solutions of size 3μm

while also allowing the recursive dissection to have memory cost 3μm. Denoting
gain(r, μ) the gain of such an r-dissection with memory parameter μ, one has
the relation μr = gain(r, μ) + μ. A convenient consequence of generalising dis-
section in this way is that in some sense an r-dissection with μ = 1 and m = n
is equivalent to an rN -dissection with μ = N and m = n/N , where N ≥ 1
is an arbitrary integer. In our context where we have considerable freedom in
the choice for the initial number of lists, this remark simplifies the search for
good parameterization of the dissection to solve the problem at hand. Indeed,
considering one r-dissection with r large and allowing μ to vary is enough to
reasonably represent all tradeoffs offered by the dissection framework, as we do

96 P. Karpman and C. Lefevre

in Fig. 4. In the following description we however let μ = 1 unless mentioned
otherwise.

4.4 Application of the Dissection Framework to Syndrome
Decoding

Since the dissection framework can be used to solve an r-list problem, it readily
applies to the full-weight sub decoding problem encountered in the PGE+SS
framework, in exactly the same way as the k-tree algorithm does. In principle
this provides a range of memory-efficient tradeoffs to solve the (full) decoding
problem, yet the main hurdle in a straightforward application of dissection to
this context is that its granularity is quite coarse; in particular it is coarser
than the one of the k-tree algorithm. In this section we slightly adapt the dis-
section to decrease its granularity and make it more easily applicable to the
PGE+SS framework. We then compare the results with instantiations based on
the (smoothed) k-tree algorithm in the next Sect. 4.5.

Let n, l, r, m be as above; a straightforward adaptation of Eq. (2) to the use
of dissection is:

3m ≤ 2(k+l)/r. (4)

By design, an r-dissection with gain g returns solutions to an r-list problem
with target size (at most) (g+1)m in amortised constant time. If used within the
PGE+SS framework, one thus ideally requires that l ≤ (g + 1)m. When the size
l of the sub-problem increases, and since g increases monotonically with r one
may require to increase r at some point in order to remain in the same regime.
Yet since Sl decreases with l while the granularity of the dissection increases
with r, this eventually results in unattractive instantiations of the PGE+SS
framework where more solutions to the sub-problem are returned than needed.
Essentially this quick analysis hints at the fact that the dissection framework is
mostly useful in the low-memory regime implied by small values of l.

Improving the Granularity of the Dissection. Recall that at a high level,
the granularity of an r-dissection with gain g in the amortised constant time
regime is equal to 3m(r−2g−1).

One may first remark that since such a dissection recursively decomposes
into an (r − 1 − g)-dissection and a meet-in-the-middle algorithm on g + 1 lists,
and since the solutions returned by the former are processed on-the-fly, one may
possibly reduce the granularity by asking the former to return fewer solutions
(i.e. not to be exhaustive in its resolution of the recursive sub-problem). However
this will only decrease the granularity if the lowered cost of this non-exhaustive
dissection does not become smaller than the one of the meet-in-the-middle, which
otherwise would dominate the running time. Yet if this condition is not met one
may replace this meet-in-the-middle algorithm by a (g + 1)-dissection to do

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 97

the exact same work at a lower cost,4 as already considered by Dinur [5]. We
illustrate this in Example 13 and generalise the process in Proposition 14.

Example 13 (11-Dissection with Lowered Granularity). An 11-dissection has
gain 3 and is composed of a 7-dissection and a meet-in-the-middle algorithm. In
the amortised constant time regime the 7-dissection has granularity at most 32m

but the meet-in-the-middle with 4 lists and memory 3m has time cost 33m, so
the granularity of the 11-dissection for a target of size 4m is given by the latter
and equal to 33m. Even though this is already smaller than what one would
obtain by asking the 7-dissection to exhaustively return the 34m solutions to its
sub-problem of size 3m, it is possible to do better: since a 4-dissection has gain
1, using one instead of a meet-in-the-middle algorithm lets one building the list
L′ in time 32m, thus lowering the overall granularity to 32m.

Proposition 14. The granularity of an r-dissection with gain g, initial lists size
3m and target size at most m(g + 1) is 3m(g−gain(g+1)).

Proof. It is enough to prove the statement for target sizes exactly m(g + 1),
since lower sizes can then be accommodated for by considering one or more
larger dummy targets.

We prove this by induction on the gain g.
The base case g = 1 corresponds to a 4-, 5- or 6-dissection. We have already

seen in Example 11 that the granularity of the 4-dissection is 3m. The 5- and
6-dissection just add one or two additional lists to a 4-dissection and thus cannot
have a lower granularity.

We now assume that the property holds for any dissection of gain g − 1 ≥ 1,
and will prove it for any dissection of gain g. Consider an r-dissection of gain g;
by construction it is built from an (r−g−1)-dissection of gain g−1 and (with our
tweak) an exhaustive (g+1)-dissection. The time cost of the (g+1)-dissection is
O(3m(g−gain(g+1))) while it returns 3m intermediate solutions, and by induction
the granularity of the (r−g−1)-dissection is 3m(g−1−gain(g)). Since 1+gain(g) ≥
gain(g +1), the latter dissection is more fine-grained than the former; it is then
possible to ask the (r − g − 1)-dissection to return only 3m(g−gain(g+1)) solutions
with a target size of mg in amortised constant time. The remaining target size
required to merge the solutions of the two sub dissections into solutions of the
main one being m, one expects to find 3m(g−gain(g+1)) of them and so the r-
dissection is able to provide that many solutions in amortised constant time.

��
Despite the improvement provided by Proposition 14, the granularity of the

dissection remains too high in our context for many values of l, as shown in
Example 15.

4 Remark that there would be no point in doing this in an exhaustive dissection since
in that case the cost of the (exhaustive) (r − 1 − g)-dissection is always higher than
the one of the meet-in-the-middle.

98 P. Karpman and C. Lefevre

Example 15. Let l = 0.04n, one has Sl ≈ 30.0148n. Solving the derived r-list
problem using dissection in the amortised constant time regime and with min-
imum memory gives the constraint m = l/(g + 1) and the granularity is thus
3m(g−gain(g+1)) = 3l(g−gain(g+1))/(g+1); this latter quantity is lower-bounded by
30.02n for any g and therefore no suitable dissection has a granularity less than
Sl. This fact is illustrated in Fig. 4 where no instantiation reaches the grey line
representing a time cost of Sl.

We conclude by proposing another tweak to the dissection framework to
further reduce its granularity. Recall that we let μ = 1 for simplicity, but the
process generalises to other values in the same way as the original dissection.
Let us again consider an r-dissection of gain g with initial lists of size 3m and
denote by 3s the desired number of solution. Assume that s < m(g − gain(g +
1)), so that the granularity guaranteed by Proposition 14 is too high. The idea
here is to reduce the dominating time cost of the exhaustive (g + 1)-dissection
by asking for fewer solutions, which mechanically means that the number of
solutions that need to be returned by the (r−g−1)-dissection has to be increased.
In some sense this consists in balancing the cost of the two sub-problems in the
(typically highly asymmetric) dissection, and thus making it somewhat closer
to a k-tree algorithm. A possible explanation as to why this eventually leads
to better results is that when only a very small fraction of the total number
of solutions is required, more symmetric algorithms (one of whose drawbacks
is that they highly decimate the solution space) tend to perform better. More
formally one asks for 3s+c solutions in the (r − g −1)-dissection and 3m−c in the
(g + 1)-dissection for some c ∈ R, and the overall time cost is minimised under
the equality constraint:

s + c = m(g − gain(g + 1)) − c,

which gives:

c =
m(g − gain(g + 1)) − s

2
One must also satisfy the “granularity constraint” given by the (r − g − 1)-
dissection, viz.:

s + c ≥ m(g − 1 − gain(g)).

There are then two possibilities:
{

s ≥ m(g − gain(g + 1)) : gain(g + 1) = gain(g) + 1
s ≥ m(g − 2 − gain(g + 1)) : gain(g + 1) = gain(g)

As it was initially assumed that s < m(g−gain(g+1)), this technique is thus
only useful if gain(g+1) = gain(g). In that case and under the above conditions,
one can check that the granularity constraint of the (g +1)-dissection is satisfied
and so the overall time cost is given by O(3s+c) = O(3(m(g−gain(g+1))+s)/2).
This is simply the middle point (in the exponent) between the granularity of the

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 99

original dissection and the number of required solutions. Here the solutions are
not obtained in amortised constant time any more, but one does not “waste”
any in the sense that only the desired number is returned.

In Fig. 4, the time-memory tradeoffs obtained by using this modified dissec-
tion are drawn in black.

Finally one may somewhat further extend the above by using a u-dissection
instead of a (g + 1)-dissection for some parameter u, further balancing the cost
of the two sub dissections. This does not provide an added gain from the above
but allows a finer control of the time/memory ratio.

Results. We illustrate the time-memory tradeoffs offered by the dissection to
solve the ternary syndrome decoding problem in the Wave regime in Fig. 4. For
simplicity, this graph illustrates the tradeoffs obtained using only a fixed (sub-
optimal) value of l = 0.04n; the best tradeoffs, all using l < 0.034n, are shown
in Fig. 5 in the next Sect. 4.5. The figure was obtained by using the parameter
selection algorithms given in the full version [9] and implemented in https://
github.com/charlotte-lefevre/TM tradeoffs SDP. All the results come from a
single 400-dissection which, as remarked previously, allows to implicitly con-
sider many dissections with fewer initial lists by simply varying μ. We do not
consider r-dissections with r > 400, since it would only improve the tradeoffs
T ≈ Mm with m > 20. The figure reads as follows: each line represents a dif-
ferent value for μ in ascending order from left to right, and each point on a line
represents a different value for m, the log3 of initial lists size. The additional
tradeoffs obtained with the last proposed tweak to improve its granularity are
singled out as black crosses, and provide here the best results.

Finally a notable aspect of the results shown in Fig. 4 (which also applies to
Fig. 5) is that there is very little interest in increasing the memory allocated to
the dissection beyond a certain point.

4.5 Comparison of the k-Tree and Dissection Frameworks

The k-tree and dissection frameworks may both be used to solve the same r-list
problems. In this short section we wish to compare these two options and show
in which regimes they respectively perform better. We again let by definition 3m

be the initial lists size.
We start with an example, comparing a 16-dissection with a 16-tree algo-

rithm. The 16-dissection of gain g = 4 is split into an 11-dissection and a 5-
dissection, with a total recursion depth equal to 5; the maximal target size for
which this dissection may provide solutions in amortised constant time is thus
equal to 5m = (g+1)m. The 16-tree algorithm has a total number of levels equal
to 4, and the maximal target size for which it may provide solutions in amortised
constant time is 4m. Now considering a full-weight sub syndrome decoding prob-
lem of target size l, setting m to l/5 (resp. l/4) minimises the memory cost and
granularity of the 16-dissection (resp. 16-tree algorithm) while allowing to find
solutions in amortised constant time. In this case the dissection’s granularity is

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP

100 P. Karpman and C. Lefevre

Fig. 4. Time-memory tradeoffs offered by the use of a 400-dissection within the
PGE+SS framework with l = 0.04n. The grey line represents the desired number
of solution Sl for this particular l.

33l/5 while the one of the k-tree is 3l/4. It is thus mostly beneficial to use the
more memory-efficient 16-dissection over a 16-tree algorithm when Sl ≥ 33l/5,
which asymptotically holds for l � 0.028n, while the granularity of the 16-tree
itself will not be a limiting factor until the much larger value of l ≈ 0.051n; since
Sl is decreasing with increasing l in this range, it means that a 16-tree is able
to reach a lower time cost than a 16-dissection, but with a comparably higher
memory cost.

More generally, we may compare a 2a-tree with a 2a-dissection: from Eq. (3)
the gain of the dissection is approximately 2(a+1)/2, and it follows from Propo-
sition 14 that its granularity is approximately 3m2a/2

, which is to be compared
with the much lower 3m for the k-tree algorithm. The maximum target size for
which the dissection may provide solutions in amortised constant time is then
≈ m2(a+1)/2, much larger than the k-tree algorithm at am. One may then again
remark that the dissection is much more memory-efficient than the k-tree algo-
rithm as it allows to return exponentially-more solutions in amortised constant
time with the same memory usage, but that its efficient usage may be limited
by an exponentially-larger granularity.

We conclude this comparison by plotting in Fig. 5 the best time-memory
tradeoffs we obtained by applying the dissection & k-tree frameworks to ternary
syndrome decoding in the Wave regime. In consistency with the above analysis,
dissection performs significantly better than the k-tree algorithm in the low-
memory regime where the total memory cost M � 30.0073n; there is also little
interest in using memory larger than ≈ 30.0025n since doing so only very moder-
ately decreases the time cost. All of those points correspond to small values for

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 101

the l parameter for which the dissection granularity matches the large number of
required solutions. In the large-memory regime the dissection looses its interest
and it becomes significantly outperformed by the k-tree algorithm whose fine
granularity is not limiting until much larger values of l.

Fig. 5. Time-memory tradeoffs for the ternary syndrome decoding problem in the Wave
regime from the k-tree & dissection frameworks. The results for the dissection are the
best tradeoffs obtained from a 400-dissection after minimisation with l, µ and m.

5 Dissection in Tree for Syndrome Decoding

We now present the “hybrid” Multiple-Layer List Sum Algorithms (which we
will call “dissection in tree” for short) introduced by Dinur as a framework to
solve generic generalised birthday problems [5], and apply it to ternary syndrome
decoding. Similarly to the algorithms of the previous section, fully exploiting the
framework in our particular case requires careful parameter selection and some
modifications in particular to improve the granularity.

5.1 The Main Algorithm of Dissection in Tree

The idea behind dissection in tree is in fact quite straightforward: it consists in
replacing the binary tree structure underlying the k-tree algorithm with an n-ary
one and using (typically exhaustive) n-dissection to implement the merging of
lists at each level. Similarly as in the k-tree framework, the merging is usually
done w.r.t. targets whose sizes ensure that the expected list size is maintained
constant through the tree, except possibly at the root level.

102 P. Karpman and C. Lefevre

We first illustrate this in our case with a tree of three levels of 4-dissection,
which we denote as a 3,4-dissection; Fig. 6 shows the structure of the resulting
tree. This instance provides some of the best tradeoffs we were able to obtain
for syndrome decoding in the Wave regime.

3l/8

3l/4

l

Fig. 6. Illustration of 4-dissection with three levels and M = 3l/8.

Since in this case the number of leaves is equal to 43 = 64, and again letting
3m denote by definition the cardinal of the lists, an immediate adaptation of the
constraint from Eq. (2) gives here:

3m ≤ 2
k+l
64 (5)

To keep a constant expected size for the lists of the first two levels, the target
size is set to 3m. At the last level, the remaining target size is equal to l − 6m,
where l again denotes the total target size. The expected number of returned
solutions S for a thusly parameterised 3,4-dissection is then given by:

S =
34m

3l−6m
=

310m

3l

Since the time cost of an exhaustive 4-dissection is O(32m), one obtains the
following constraint for the solutions to be returned in amortised constant time:

310m

3l
≥ 32m ∴ m ≥ l

8
,

and one would typically use the minimal admissible value m = l
8 .

Comparison with a 64-Tree. It is quite relevant to compare the performance of
3,4-dissection and a k-tree instance with 6 levels, since both instantiations have
a similar structure and use the same number of lists. When applied to syndrome

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 103

decoding and even without specific adaptation, the 3,4-dissection performs sys-
tematically better: as shown above, it is able to provide solutions to the sub
decoding problem for a target of size l in amortised constant time with memory
cost O(3l/8), while the 64-tree requires a memory of size O(3l/6) to achieve the
same. Informally one effect at play here is that using a dissection allows to find
solutions that are less structured compared to a k-tree algorithm, and one thus
does not require to increase the memory as much as the latter does to compen-
sate for a high decimation of the solution space. One beneficial effect of a lower
memory consumption is then that it leads to a wider range of target sizes: the
constraint from Eq. (5) is “easier” to satisfy than Eq. (2), thus allowing for lower
time cost for identical memory costs. There is however one downside to using
dissection in tree: the granularity of 3l/4 = 32m = 32(l/8) of the 3,4-dissection
is coarser than the 3l/6 of the 64-tree, which can be explained from the use of
inherently coarser dissections to perform the merging. While this never makes
3,4-dissection “worse” than a 64-tree, it does prevent exploiting its full potential.

We summarise this comparison in Fig. 7, which plots the best time-memory
tradeoffs obtained from raw 3,4-dissection and 64-tree and various values of l
(shown in false colour). Two regimes are clearly observable for the 3,4-dissection
whose coarse granularity makes it returning too many solutions for somewhat
large values of l.

Fig. 7. Best time-memory tradeoff for the syndrome decoding problem in the Wave
regime using raw 3,4-dissection and 64-tree.

The analysis of a general raw h, r-dissection tree is a straightforward exten-
sion of the above example for the 3,4-dissection.

104 P. Karpman and C. Lefevre

Letting again 3m be by definition the initial list size, enforcing equally-sized
lists gives target sizes of m(r−1) at every level of the tree but the last, where it is
l−m(r−1)(h−1). Then if we let g = gain(r), the cost of one dissection is equal
to O(3m(r−1−g)) and returning solutions in amortised constant time translates
into the following:

3mr

3l−m(r−1)(h−1)
≥ 3m(r−1−g) ∴ m ≥ l

(r − 1)(h − 1) + 1 + g
, (6)

or simply m = l/((r − 1)(h − 1) + 1 + g) when minimising the memory.
Finally, the straightforward generalisation of Eq. (5) is given by:

3m ≤ 2
k+l

rh (7)

We provide the full algorithm for this parameter selection in the full
version [9], and an implementation at https://github.com/charlotte-lefevre/
TM tradeoffs SDP.

5.2 Improvements for Syndrome Decoding

We now present (and ultimately combine) two improvements to the dissection
in tree: the first aims at reducing its granularity while the second is a straight-
forward adaptation of the smoothing technique. The price to pay for both are
exponentially larger memory costs and thus less favourable tradeoffs.

Improving the Granularity of the Dissection in Tree. In a raw dissection
tree, the dissections performed at every level are exhaustive. To decrease the
overall granularity, one idea would then be to consider non-exhaustive dissections
so that fewer solutions are eventually returned. This however also requires to
decrease the target sizes at every level to compensate, and thus also to increase
the initial list sizes if one wishes to return solutions in amortised constant time.

Let α be a new parameter s.t. the r-dissection now enumerates only 3m(r−α)

candidates from the product of the r input lists. Enforcing equally-sized lists
gives target sizes of m(r − 1 − α) at every level of the tree but the last, where
it is l − m(h − 1)(r − 1 − α). The expected number of returned solutions is then
equal to:

S =
3m(r−α)

3l−m(h−1)(r−1−α)
(8)

Each dissection now costs O(3m(r−g−1−α)) (provided that this is not lower
than their granularity), and returning solutions in amortised constant time trans-
lates into the following:

3m(r−α)

3l−m×(h−1)(r−1−α)
≥ 3m(r−g−1−α)

∴ m ≥ l

(h − 1)(r − 1) + 1 + g − α(h − 1)
(9)

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 105

The memory increase for positive values of α is then visible by comparing
Eq. (6) and Eq. (9).

It remains to determine the optimal α, which in the amortised constant time
regime is constrained by two phenomena:

1. The number of returned solutions must not be greater than necessary, i.e.
S ≤ Sl. Letting s = log3(Sl) and injecting the minimal value for m given by
Eq. (9) into Eq. (8) gives (after a tedious computation):

[l − (h − 1)s] × α ≥ [l(r − g − 1) − s(g + 1 + (h − 1)(r − 1))] (10)

2. The required number of solution at every level must not be lower than the
granularity of the dissection. From Proposition 14 this gives:

r − g − 1 − α > g − gain(g + 1) (11)

One would then pick the smallest value of α satisfying both constraints to
minimise the overall memory cost. We provide the full algorithm for this param-
eter selection in the full version [9], and an implementation at https://github.
com/charlotte-lefevre/TM tradeoffs SDP.

Smoothing the Dissection Tree. Since the dissection tree features a popula-
tion constraint similar to the k-tree algorithm, we may adapt to it the smoothing
technique from Proposition 9. This leads to the following:

Proposition 16. Let l, r, h be fixed, g := gain(r). If 3l > 2(k+l)/(rh−1) and
3l/(g+1+(r−1)(h−2)) < 2(k+l)/(rh−1) , then one can use a smoothed tree with h
levels of r-dissections to obtain 2m(r−g−1) solutions to the generalised birthday
problem with r lists in amortised constant time, where:

m =
1

(h − 2)(r − 1) + g

(
l log2(3) − k + l

rh−1

)
.

The proof is similar to the one of Proposition 9 and given in the full ver-
sion [9], along with the parameter selection algorithm.

Combination of the Improvements. There are settings where both previous
improvements may be jointly necessary. This can be done by using a two-step
process: the bottom level of the tree is used to satisfy a constraint of size t,
which becomes a parameter, in a possibly non-exhaustive way as controlled by
a parameter β. As in a smoothed tree, the goal is to produce intermediate lists
of size 3m (where m is another parameter), starting from ones of size 3m̃, m̃ :=
log3(2

k+l

rh). Then the h−1 remaining levels are required to satisfy a target of size
l − t with input lists of size 3m, in a possibly non-exhaustive way as controlled
by a parameter α.

Parameters leading to valid instances in amortised constant time must then
satisfy the following constraints:

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP

106 P. Karpman and C. Lefevre

1. The expected list size is larger than 3m after the first level:

3m̃×(r−β)

3t
≥ 3m ∴ β ≤ r − m + t

m̃

2. The parameter α is constrained by Eqs. (10) and (11).
3. The parameter β is constrained by Eq. (11).
4. The cost is dominated by the upper part of the tree:

3m̃×(c−β) ≤ 3m(c−α) ∴ β ≥ c − m

m̃
(c − α),

where c := r − g − 1.

When searching for valid parameterizations, it is best to first select the value
for t and to take it as large as possible as this minimises the memory cost. This
makes sense, intuitively, since in that case the tree is as close as possible to a
balanced (non-smoothed) one.

The full parameter selection algorithm is given in the full version [9]
and an implementation is provided at https://github.com/charlotte-lefevre/
TM tradeoffs SDP. The impact of the granularity improvements, also combined
with smoothing, are illustrated for the 3,4-dissection in Fig. 8. Thanks to these
improvements, the 3,4-dissection is now applicable to larger memory regimes but
at the cost of less favourable tradeoffs (clearly observable from the changes of
the slopes).

Fig. 8. Best time-memory tradeoff for the syndrome decoding problem in the Wave
regime using 3,4-dissection. From M ≈ 20.01n, the granularity of the 3,4-dissection
becomes too coarse, so that non-exhaustive dissections are henceforth considered. Then
at M ≈ 20.0112n, Eq. (7) is no more satisfied, leading thus to the use of the smoothing
technique

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 107

5.3 Experimental Results

As a proof of concept, we implemented the 3,4-dissection algorithm using Sage.
The main aim here is to check that the practical number of iterations of the Sub-
set sum step before finding a solution to the SDP coincides with the theoretical
prediction. This implementation is not fully optimised and relies on a general-
purpose finite-field linear algebra software packaged within Sage. This restricts
its usage to relatively small parameters and we only considered instances up to
n = 875, which in the Wave regime translates to k = 591, l = 48. With this
instantiation, one iteration of the Subset sum step combined with the Probabilis-
tic reconstruction step takes on average 800 s on a (virtualised) i386 processor.5

With 10 runs of the full algorithm, 5.7 iterations of the Subset sum step were
necessary on average before finding a solution, which is somewhat consistent
with the theoretically expected 2.9, especially given the small number of runs.
Moreover, with the instantiation n = 560, k = 379, l = 34, the average number
of iterations with 110 runs is 12.05, which comes very close to the 12.3 expected
number of iterations.

The code of this proof-of-concept implementation is available at https://
github.com/charlotte-lefevre/TM tradeoffs SDP.

6 Application to Wave

We summarise our best time-memory tradeoffs for solving the syndrome decod-
ing problem in the Wave regime in Fig. 9. We do this in two settings: in Fig. 9b
we use asymptotic estimates similar to the ones used in the previous sections,
while Fig. 9a is an estimate in bit complexity for concrete proposed security
parameters. The plots were all drawn using the parameter selection algorithms
presented in the full version [9], and the code is available at https://github.com/
charlotte-lefevre/TM tradeoffs SDP.

From these figures it is notable that dissection in tree always outperforms
k-tree instantiations (except in the regime where time and memory are about
equal) and almost always outperforms dissection (it is about equivalent in the
very low memory regime). For instance, the bit complexity estimate for the 3,4-
dissection at M ≈ 290 is about 225 times less than using a smoothed k-tree
algorithm with the same amount of memory. For low-memory regimes, the best
instances use layered dissections with 2 levels, while from M ≈ 20.009n, the best
tradeoffs are obtained with 4, 4 or 3, 4-dissections.

5 The computer used for the tests has an Apple M1 processor, but Sage uses Apple’s
Intel emulator.

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP

108 P. Karpman and C. Lefevre

Table 2. Bit cost estimates for various tradeoffs for solving the generic syndrome
decoding problem, n = 7236, k = 4892, w = 6862.

Time Memory Target tradeoff Algorithm

2152 2144 T = M k-Tree + representations [1]

2162 2130 T = M5/4 3,4-Dissection

2177 288.5 T = M2 3,4-Dissection

2194 264.8 T = M3 2,11-Dissection

2213 242.6 T = M5 2,16-Dissection

2247 224.6 T = M10 2,29-Dissection

The bit costs of Fig. 9a correspond to Wave’s “new” parameters n = 7236,
k = 4892, w = 6862 [1], and were computed using the following assumptions or
simplifications:

– Elements of F3 are stored on 2 bits, and elementary operations in F
n
3 cost 2n

bit operations.
– Polynomial factors of the algorithms are taken into account.
– Polynomial factors in the estimate for Sl are taken into account.
– Computing L1 ��w L2 for some lists L1, L2 of elements of F

n
3 and some w

costs 2n(#L1 + #L2) as long as the size of the result is not larger than one
of the input lists.

The last simplification implies a constant cost for memory access, which is
an unrealistic underestimation for most of the considered memory sizes. The
provided costs should thus not be interpreted as precise estimates but rather as
intermediate points between asymptotic computations and a full and accurate
modelling of an attack, which is out of the scope of this paper.

Finally, we list some of the most notable tradeoffs for concrete parameters in
Table 2.

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 109

(a) Bit cost for fixed parameters.

(b) Asymptotic cost.

Fig. 9. Summary of obtained time-memory tradeoffs. For the dissection in tree, r
denotes the dissection used and h the number of levels.

110 P. Karpman and C. Lefevre

Acknowledgements. The first author was partially supported by the French
National Research Agency in the framework of the Investissements d’avenir programme
(ANR-15-IDEX-02). The second author is in part supported by the Netherlands Organ-
isation for Scientific Research (NWO) under grant OCENW.KLEIN.435. Part of this
work was done when the second author was with Université Grenoble Alpes, and was
partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) in the
framework of the Investissement d’avenir programme. Finally we wish to thank the
reviewers for all their comments.

References

1. Bricout, R., Chailloux, A., Debris-Alazard, T., Lequesne, M.: Ternary syndrome
decoding with large weight. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS,
vol. 11959, pp. 437–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-38471-5 18

2. Coffey, J.T., Goodman, R.M.: The complexity of information set decoding. IEEE
Trans. Inf. Theory 36(5), 1031–1037 (1990)

3. Debris-Alazard, T.: Cryptographie fondée sur les codes: nouvelles approches pour
constructions et preuves; contribution en cryptanalyse. (Code-based Cryptography:
New Approaches for Design and Proof; Contribution to Cryptanalysis). PhD thesis,
Pierre and Marie Curie University, Paris (2019)

4. Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of trapdoor one-
way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 2

5. Dinur, I.: An algorithmic framework for the generalized birthday problem. Des.
Codes Cryptogr. 87(8), 1897–1926 (2018). https://doi.org/10.1007/s10623-018-
00594-6

6. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of compos-
ite problems, with applications to cryptanalysis, knapsacks, and combinatorial
search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 42

7. Esser, A., Heuer, F., Kübler, R., May, A., Sohler, C.: Dissection-BKW. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 638–
666. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 22

8. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 12

9. Karpman, P., Lefevre, C.: Time-memory tradeoffs for large-weight syndrome
decoding in ternary codes. IACR Cryptol. ePrint Arch. Full version, to appear
(2022)

10. Meurer, A.: A coding-theoretic approach to cryptanalysis. PhD thesis, Ruhr Uni-
versity Bochum (2013)

11. Minder, L., Sinclair, A.: The extended k-tree algorithm. J. Cryptol. 25(2), 349–382
(2012)

12. Niebuhr, R., Cayrel, P.-L., Bulygin, S., Buchmann, J. On lower bounds for infor-
mation set decoding over Fq. In: SCC 2010, vol. 10, pp. 143–157 (2010)

https://doi.org/10.1007/978-3-030-38471-5_18
https://doi.org/10.1007/978-3-030-38471-5_18
https://doi.org/10.1007/978-3-030-34578-5_2
https://doi.org/10.1007/s10623-018-00594-6
https://doi.org/10.1007/s10623-018-00594-6
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-319-96881-0_22
https://doi.org/10.1007/978-3-642-13190-5_12

Time-Memory Tradeoffs for Large-Weight Syndrome Decoding 111

13. Peters, C.: Information-set decoding for linear codes over Fq. In: Sendrier, N. (ed.)
PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-12929-2 7

14. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962)

15. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

16. Torres, R.C.: Asymptotic analysis of ISD algorithms for the q-ary case. In: Pro-
ceedings of the Tenth International Workshop on Coding and Cryptography WCC
2017 (2017)

17. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

https://doi.org/10.1007/978-3-642-12929-2_7
https://doi.org/10.1007/978-3-642-12929-2_7
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

Syndrome Decoding Estimator

Andre Esser(B) and Emanuele Bellini(B)

Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE
{andre.esser,emanuele.bellini}@tii.ae

Abstract. The selection of secure parameter sets requires an estima-
tion of the attack cost to break the respective cryptographic scheme
instantiated under these parameters. The current NIST standardization
process for post-quantum schemes makes this an urgent task, especially
considering the announcement to select final candidates by the end of
2021. For code-based schemes, recent estimates seemed to contradict the
claimed security of most proposals, leading to a certain doubt about the
correctness of those estimates. Furthermore, none of the available esti-
mates include most recent algorithmic improvements on decoding linear
codes, which are based on information set decoding (ISD) in combination
with nearest neighbor search. In this work we observe that all major ISD
improvements are build on nearest neighbor search, explicitly or implic-
itly. This allows us to derive a framework from which we obtain practical
variants of all relevant ISD algorithms including the most recent improve-
ments. We derive formulas for the practical attack costs and make those
online available in an easy to use estimator tool written in python and
C. Eventually, we provide classical and quantum estimates for the bit
security of all parameter sets of current code-based NIST proposals.

Keywords: ISD · syndrome decoding · nearest neighbor · estimator ·
code-based

1 Introduction

The current NIST standardization process for post quantum schemes is
announced to finally select proposals to be standardized around the end of 2021.
After this initial selection it is still a long procedure until the final standards for
the chosen schemes will be obtained. One major challenge will be the selection
of secure parameter sets for standardization, which match the respective secu-
rity levels given by NIST. To determine and evaluate parameter sets a precise
estimation of the attack cost of the best known attacks on the schemes or the
corresponding primitives is necessary.

Before such estimates can be derived efficiently, the best practical attacks
must be identified. Code based schemes usually rely on the hardness of the syn-
drome decoding problem, which given a random matrix H ∈ F

(n−k)×n
2 , a syn-

drome s ∈ F
n−k
2 and an integer ω asks to find an error vector e ∈ F

n
2 with exactly

ω coordinates equal to one that satisfies He = s. The best known algorithms
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 112–141, 2022.
https://doi.org/10.1007/978-3-030-97121-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_5

Syndrome Decoding Estimator 113

to solve this problem all belong to a class of algorithms known as information
set decoding (ISD), initially discovered by Prange in 1962 [29]. Since then there
have been numerous works building on the same initial idea [4,8,11,16,23,24,31].
Usually, these works study the problem for ω = cn, where c is constant. For this
choice they improve the asymptotic runtime exponent. However, all code based
NIST PQC submissions rely on sublinear error weight, i.e. ω = o(n). In this set-
ting the advantage of improved algorithms of the ISD class over Prange’s initial
approach has been shown to asymptotically vanish, i.e., they only affect second
order terms [32]. Since usually these improvements come along with a polyno-
mial overhead, it is per se not clear which algorithms actually yield practical
improvements.

Estimators for concrete hardness approximation of the syndrome decoding
problem have previously been studied in [17,28] and more recently in [3]. So far
these works consider only a subset of the mentioned improvements, not includ-
ing the most recent variants, which are usually based on nearest neighbor search
techniques [8,24]. The omission of these improvements in [3] might be due to the
use of practically costly, but theoretically close to optimal routines to instantiate
the nearest neighbor search in the original works of [8,24]. The BIKE submis-
sion gives a similar reasoning for disregarding these works in the security analysis
based on polynomial overhead [1]. Contrary, we show that by substituting the
used routines by more practical nearest neighbor search techniques these variants
yield complexity improvements with regard to the cryptographic setting. Fur-
thermore we uncover relations between all significant algorithmic improvements
of the ISD class. More precisely, we show that all major ISD improvements use
nearest neighbor search techniques, explicitly or implicitly. Using this relation
we derive an algorithmic framework, which allows us to obtain variants of all
advanced ISD techniques, including the improvements made by May-Meurer-
Thomae (MMT) [23], Becker-Joux-May-Meurer (BJMM) [4], May-Ozerov [24]
and Both-May [8]. Finally the framework allows us to analyze the complexity
of all algorithms in a unified and practical model giving a fair comparison and
concrete hardness estimations.

Related Work. In [28] Peters gives a concrete analysis of Stern’s algorithm for
decoding codes over Fq including the case of q = 2. Peters focuses especially on
optimized strategies for the initial Gaussian elimination part of ISD algorithms,
adopting techniques introduced in [7,9]. While including some of these improve-
ments in our estimates, we refrain from exhaustively optimizing this step. This
allows us to keep the analysis and formulas comprehensible. Also note that for
more recent ISD algorithms the complexity of the Gaussian elimination proce-
dure does not dominate.

In [17] the authors present a non-asymptotic analysis of the MMT and
BJMM algorithm, providing estimates for some selected parameter sets. Unfor-
tunately no source code is provided to easily obtain estimates for parameter sets
of more recent schemes. Also the analysis omits some practical details, as for
instance the necessity for balanced weight distributions in successful runs of the

114 A. Esser and E. Bellini

algorithms. Also a heuristic approach to determine the number of iterations of
the algorithms is used, whereas we use an exact computation.

The most recent study of concrete costs of ISD algorithms was performed in
[3]. Here the bit complexity estimates for the algorithmic cost of performing the
MMT algorithm on nearly all proposed parameter sets are significantly lower
than claimed by the submissions. Accordingly, this work raised some discussions
(in the NIST PQC forum [33,34]) about whether the currently proposed param-
eter sets of code based schemes actually match their security levels and if so
where to obtain more reliable estimates. We found that the analysis of [3] is
slightly flawed for both advanced ISD algorithms that are considered, namely
the BJMM and the MMT algorithm. We give a more detailed description of
that flaw in the full version of this paper [12]. Besides that flaw the authors also
use techniques that might affect the success probability of the algorithms, but
are not mentioned in the latter analysis (as for instance a trimming of lists that
exceed certain sizes). However, the analysis of the other ISD variants given in
[3] seems to be correct.

In [8] Both and May describe an ISD improvement entirely based on near-
est neighbor search. They also consider nearest neighbor algorithms other than
May-Ozerov, which was motivated by the non-fulfillment of necessary prerequi-
sites. However, their analysis is purely asymptotical and focuses entirely on the
constant error regime.

Our Contribution. The contribution of this work is twofold. First we uncover
relations between major ISD improvements, showing that all of them are build
on nearest neighbor search. In the case of the BJMM and MMT algorithms, this
view allows us to detect and finally correct deficiencies in the way the nearest
neighbor search is performed. Our fix results in two new variants of the BJMM

algorithm, which practically (and probably also asymptotically) outperform the
original BJMM algorithm. Our work therefore contributes substantially to a
better understanding of ISD algorithms.

Moreover, as another contribution, we give a unified framework based on near-
est neighbor search,which allows to obtain variants of allmajor ISD improvements.
By an easy exchange of the used nearest neighbor routines we obtain practical vari-
ants of the improvements by May-Ozerov and Both-May, which were previously
disregarded in the context of concrete hardness estimations.

By an analysis of our framework for different instantiations we obtain for-
mulas for the concrete complexity to solve the syndrome decoding problem.
We implemented these estimates for all variants considered in this work (and
more1) and provide the source code in form of an easy to use estimator program
(mostly) written in python.2 This allows for an effortless recomputation of our

1 The focus of this work lies on advanced algorithms, but our estimator also provides
the estimates for asymptotically inferior procedures.

2 The estimator can be downloaded at https://github.com/Crypto-TII/syndrome
decoding estimator.

https://github.com/Crypto-TII/syndrome_decoding_estimator
https://github.com/Crypto-TII/syndrome_decoding_estimator

Syndrome Decoding Estimator 115

results, estimation of the security levels for newly proposed parameter sets as
well as custom modifications if required.

Finally we give the classical estimates for all proposed parameter sets of
code-based schemes being part of the third round of the NIST PQC call, namely
Classic McEliece [10], BIKE [1] and HQC [25]. Here we consider different memory
access cost models and memory limitations. We find that essentially all param-
eter sets of the three schemes match their claimed security levels, with a slight
outlier in form of the McEliece category three parameter set. Also we provide
quantum estimates under the NIST metric of a maxdepth constraint, which lim-
its the depth of the quantum circuit. We find that under this constraint even a
very optimistic analysis of the quantum version of Prange’s ISD algorithm [5]
lets all proposed parameter sets match their claimed quantum security level.

The rest of the paper is organized as follows. In Sect. 2 we give basic defi-
nitions and present the practical nearest neighbor algorithms used in our anal-
yses. In Sect. 3 we outline the nearest neighbor relations between known ISD
variants. A reader only interested in concrete hardness estimations may skip
this section. Subsequently, in Sect. 4 we present and analyze the framework and
its instantiations to obtain formulas for practical cost estimations. Finally in
Sect. 5 we present our hardness estimates for the classical and quantum security
of McEliece, BIKE and HQC.

2 Preliminaries

We denote vectors as bold lower case letters and matrices with capital letters.
We let In be the n × n identity matrix. For an integer i ∈ N we define [i] :=
{1, 2, . . . , i}. Let v = (v1, v2, . . . vn) be a vector and S ⊆ [n] then we denote by
vS the projection of v onto its coordinates indexed by S. For w ∈ F

n
2 we define

wt(w) := |{i ∈ [n] | wi = 1}| to be the Hamming weight of w. Furthermore we
let Bn

p := {w ∈ F
n
2 | wt(w) = p} be the set of all binary vectors of length n and

Hamming weight p.

Coding Theory. A binary linear code C of length n and dimension k is a
k-dimensional subspace of F

n
2 . Such a code can be defined as the image of a

generator matrix G ∈ F
k×n
2 or via the kernel of a parity check matrix H ∈

F
(n−k)×n
2 . We use the parity check description of the code throughout this work.

Note that since any codeword c ∈ C satisfies Hc = 0 the task of decoding a
faulty codeword y = c + e for some error e yields the identity

Hy = H(c + e) = He =: s .

The vector s is usually called the syndrome of y, while obtaining e from given
H and s is called the syndrome decoding problem.

Definition 2.1 (Syndrome Decoding Problem). Let H ∈ F
(n−k)×n
2 be the

parity check matrix of a random linear code, s ∈ F
n−k
2 and ω ∈ [n]. The syn-

drome decoding problem asks to find a vector e ∈ F
n
2 with wt(e) = ω satisfying

He = s.

116 A. Esser and E. Bellini

Nearest Neighbor. At the heart of all algorithms presented in this work lies
a specific kind of nearest neighbor or approximate matching problem, which we
define in the following.

Definition 2.2 (Approximate Matching Problem). Let M ∈ F
r×m
2 be a

random matrix, s ∈ F
r
2 and δ, p ∈ N. The approximate matching problem asks

to find all solutions e ∈ F
m
2 satisfying

wt(e) = p and wt(Me + s) = δ.

We write
Me ≈δ s ,

to denote that Me matches s on all but δ coordinates and call this equation an
approximate matching identity.

Usually, routines to solve the approximate matching problem exploit a direct
reduction to the bichromatic nearest neighbor problem. In this problem we are
given two lists of binary vectors and are asked to find all pairs between those lists
with distance δ. Therefore split e = e1 + e2 in the sum of two vectors. For now
let us consider a meet-in-the-middle split and (without loss of generality) even
m, where e1 = (d1, 0

m
2) and e2 = (0

m
2 ,d2) with d1,d2 ∈ Bm/2

p/2 , but also other
splittings are possible.3 Then all e1, respectively e2, are enumerated and Me1
is stored in list L1, respectively Me2 + s is stored in list L2. Now, a pair with
distance δ between those lists fulfills by definition the approximate matching
identity

M(e1 + e2) ≈δ s .

Also note that due to the chosen splitting e = e1 + e2 has weight p by construc-
tion, as desired.

The asymptotically fastest known algorithm for solving the bichromatic near-
est neighbor problem where the lists are of size Õ (2c·m), for constant c, is by
May-Ozerov [24]. While the algorithm achieves theoretically close to optimal
complexities [21], it inherits a huge polynomial overhead limiting its practical-
ity, despite recent efforts to reduce that overhead [14]. As one of the major goals
of this work is to provide precise practical estimates we do not consider the
algorithm by May-Ozerov. However, we use different, simpler but more practical
approaches.

Let us briefly outline three techniques to solve the bichromatic nearest neigh-
bor problem, where we measure all running times in vector operations in F

m
2 .

The most basic variant is a naive enumeration, which we call Bruteforce in
the following. The algorithm simply enumerates all pairs of L1 × L2 and checks
if their distance is δ. Clearly this algorithm has running time

TB = |L1 × L2|.
3 Note that this splitting only allows to construct balanced solutions e, which have

exactly weight p
2

on the upper and lower half. While we take this into account when
deriving our concrete estimates let us neglect this fact for now.

Syndrome Decoding Estimator 117

Meet-in-the-Middle. A slightly more sophisticated algorithm uses a meet-in-the-
middle approach. First, the lists are enlarged by factor of the number of possible
vectors of Hamming weight equal to δ. Thus, for every possible such vector, its
sum with the original element is present in the enlarged list. To balance the
complexities the δ-Hamming weight vector is again split in a meet-in-the-middle
fashion among both lists. This implies that the algorithm can only find pairs
of elements whose distance is balanced, i.e. splits equally on both sides of their
sum. We will take this into account in our precise analysis later, but for know
let us ignore this issue. The pseudocode of the algorithm is given in Algorithm
1. Note that after the addition of the δ/2-weighted vectors the nearest neighbor
problem degenerates to a search for equality.

Algorithm 1. Meet-in-the-Middle

Input: L1, L2 ∈ (Fm
2)∗, δ ∈ [m]

Output: all (x,y) ∈ L1 × L2 with wt(x + y) = δ

1: L′
1 = {x + (d,0) | x ∈ L1, d ∈ Bm/2

δ/2 }
2: L′

2 = {y + (0,d) | y ∈ L2, d ∈ Bm/2
δ/2 }

3: for y′ ∈ L′
2 do

4: L ← L ∪ {(x,y) | x′ = y′,x′ ∈ L′
1}

5: return L

Therefore note that for every pair (x,y) ∈ L it holds that

x′ = y′ ⇔ x + (d1,0) = y + (0,d2) ⇔ x + y = (d1,d2) ⇒ wt(x + y) = δ.

The lists L′
1 and L′

2 are of size
(
m/2
w/2

)·|L1|, while the output list L is of expected
size |L′

1 × L′
2|/2m. As we only need to search for equality the time complexity

to construct L is linear in these lists sizes,4 which gives a time complexity of

TMitM = 2 ·
(

m/2
w/2

)
· |L1| +

|L1|2
(
m/2
w/2

)2

2m
. (1)

Indyk-Motwani. The third routine we consider for solving the nearest neigh-
bor problem is based on locality sensitive hashing introduced by Indyk and
Motwani [18]. Let z = x + y for (x,y) ∈ L1 × L2 be an element with weight
δ. Then the algorithm guesses λ ∈ N coordinates I ⊂ [m] of z for which it
assumes that zI = 0 holds. Now, an exact matching on these λ coordinates
is performed between L1 and L2. For each match (x′,y′), the algorithm then
checks if wt(z′) = δ for z′ = x′ + y′ holds.

The algorithm relies on the fact that for elements whose sum has small weight,
the projection to one of the coordinates of those elements is more likely to
be equal then for elements whose sum has larger weight. Algorithm 2 gives a
pseudocode description of the procedure.
4 By using a hashing strategy.

118 A. Esser and E. Bellini

Algorithm 2. Indyk-Motwani

Input: L1, L2 ∈ (Fm
2)∗, δ ∈ [m]

Output: all (x,y) ∈ L1 × L2 with wt(x + y) = δ

1: λ := min(log L1,m − 2δ), N := (m
δ)

(m−λ
δ)

2: for i = 1 to N do
3: choose random I ⊆ [m] with |I| = λ
4: for (x,y) ∈ {(x,y) ∈ L1 × L2 | xI = yI} do
5: if wt(x + y) = δ then
6: L ← L ∪ (x,y)
7: return L

Note that the probability that for a z ∈ F
m
2 with wt(z) = δ the projection to

a random choice of λ distinct coordinates is the zero vector is

p := Pr
[
zI = 0λ | z ∈ F

m
2 ∧ wt(z) = δ

]
=

(
m−λ

δ

)
(
m
δ

) .

Similar to the meet-in-the-middle approach the time for the construction of L is
linear in the involved lists sizes, which results in an expected time complexity of

TIM = p−1 · (2|L1| + |L1|2/2λ) =

(
m
δ

) · (2|L1| + |L1|2/2λ)
(
m−λ

δ

) , (2)

assuming |L1| = |L2|. An approximation of the binomial coefficients via Stirling’s
formula and analytical analysis yields a global minimum at λ = min(log |L1|,m−
2δ). Numerical computations show, that this value is also very close to the opti-
mum when instead considering the more precise form of the runtime formula
given in in Eq. (2).

3 ISD Algorithms from a Nearest Neighbor Perspective

Let us start with the ISD algorithm by Prange, which forms the foundation for
all advanced techniques. The algorithm first applies a random permutation to
the columns of the parity check matrix H. Note that for any permutation matrix
P ∈ F

n×n
2 we have (HP)(P−1e) = s. Now, by applying Gaussian elimination to

its rows we transform HP into systematic form, modelled by the multiplication
with an invertible matrix Q ∈ F

(n−k)×(n−k)
2

QHP =
(
H̃ In−k

)
, where H̃ ∈ F

(n−k)×(k)
2 . (3)

Note that for a random permutation matrix there exists such an invertible Q
with constant probability. Further let (P−1e) = (e′, e′′) ∈ F

k
2 × F

n−k
2 and Qs =

s̃ ∈ F
n−k
2 , then the following identity holds

Q(HP)(P−1e) = (H̃e′ + e′′) = s̃.

Syndrome Decoding Estimator 119

Assume that the permutation P induces a weight distribution of

wt(e′) = p and hence wt(e′′) = ω − p , (4)

then it suffices to find an e′ ∈ F
k
2 of weight p satisfying

wt(H̃e′ + s̃) = wt(e′′) = ω − p . (5)

Once a suitable permutation P and a vector e′ are found e = P (e′, H̃e′ + s̃)
forms a solution to the syndrome decoding problem. Note that Eqs. (4) and (5)
yield an approximate matching identity according to Definition 2.2

H̃e′ ≈ω−p s̃ . (6)

While Prange’s algorithm chooses the weight p of e′ equal to zero and thus
does not have to put any effort into solving the approximate matching problem,5

all further improvements choose p > 0.
Choosing p > 0 and applying the bruteforce approach that simply enumerates

all possible e′ of weight p yields a polynomial improvement due to Lee and
Brickell [22].

Applying instead the Indyk-Motwani or the meet-in-the-middle approaches
results in algorithmic analogs of the well-known ISD improvements by Stern [31]
and Dumer [11] respectively.

Stern’s Original Algorithm. Stern [31] improved on the approach of Prange by
introducing an �-window of zero entries in the error e′′. Thus one considers
(P−1e) = (e′, e′′) ∈ F

k
2 × F

n−k
2 , where e′′ = (0�, ẽ). Note that due to this weight

distribution H̃e′ matches the syndrome on the first � coordinates, as we have

H̃e′ = s̃ + e′′ = s̃ + (0�, ẽ) = (s̃1, s̃2 + ẽ) ,

where s̃ = (s̃1, s̃2) ∈ F
�
2 × F

n−k−�
2 . Now Stern’s algorithm uses the identity

(H̃e′)[�] = s̃1 to perform a meet-in-the-middle search on e′. Thus, it splits
e′ = (e1, 0

k
2) + (0

k
2 , e2), constructs two lists containing H̃(x, 0

k
2) and H̃(0

k
2 ,y)

respectively for all x,y ∈ Bk/2
p/2 and searches between those lists for pairs that

sum to s̃1 on their first � coordinates. For every matching pair ((x′,0), (0,y′)) it
is checked if H̃(x′,y′) + s̃ has weight ω − p, which is particularly satisfied when
(x′,y′) = (e1, e2).

NN-Perspective of Stern’s Algorithm. Let us modify the permutation step by
first aiming for the weight distribution of Prange (Eq. (4)) and then permuting
the error e′′ separately several times until we may expect the desired �-window.
For every such permutation we continue with the meet-in-the-middle step of
Stern’s algorithm. First note that this does not change the expected amount

5 For p = 0 a simple check if wt(s̃) = ω suffices to determine if the permutation
distributes the weight correctly.

120 A. Esser and E. Bellini

of necessary permutations until the weight is distributed as in Stern’s original
algorithm. However, it shows that the algorithm by Stern is actually solving
the approximate matching identity from Eq. (6) via Indyk-Motwani. Here the
matching on the first � coordinates after the permutation corresponds to the
matching on a random projection of � coordinates used by Indyk-Motwani.

Dumer’s Original Algorithm. Dumer [11] changed the procedure by increasing
the dimension of e′ to k + �, which allowed him to get rid of the �-window of
zeros in the permutation. Therefore he defines the systematic form as

QHP =
(

H1 0
H2 In−k−�

)
, (7)

where H1 ∈ F
�×(k+�)
2 and H2 ∈ F

(n−k−�)×(k+�)
2 . Again it is aimed for a weight

distribution where for P−1e = (e′, e′′) ∈ F
k+�
2 ×F

n−k−�
2 it holds wt(e′) = p, and

wt(e′′) = ω − p. Due to the increased dimension of e′ we get

QHP (e′, e′′) = (H1e′,H2e′ + e′′) = (s̃1, s̃2) = s̃ ,

where (s̃1, s̃2) ∈ F
�
2 × F

n−k−�
2 . The algorithm then uses the identity on the first

� bits again to search for e′ using a meet-in-the-middle strategy. Again for each
computed candidate x for e′ satisfying the identity it checks if wt(H2x + s̃2) =
wt(e′′) = ω − p and if so outputs the solution P (x,H2x + s̃2).

NN-Perspective of Dumer’s Algorithm. Note that the original matrix used by
Prange’s algorithm (see Eq. (3)) is already in systematic form according to the
definition of Dumer, since

(
H̃ In−k

)
=

(
H̃1 I� 0
H̃2 0 In−k−�

)
, where H̃ ∈ F

(n−k)×(k)
2 .

Thus we obtain Eq. (7) by setting H1 =
(
H̃1 I�

)
and H2 =

(
H̃2 0

)
. Now let us

further split e′ ∈ F
k+�
2 in two parts e′ = (e1, e2) ∈ F

k
2 × F

�
2 and reconsider the

identity H1e′ = s̃1, which now becomes

H1e′ =
(
H̃1 I�

)
(e1, e2) = H̃1e1 + e2 = s̃1 .

Thus we are facing again a nearest neighbor identity H̃1e1 ≈|e2| s̃1. Dumer’s algo-
rithm enforces only a joined weight distribution of wt((e1, e2)) = p and, hence,
we do not exactly know the weight of the approximate matching problem we
are facing. However, with inverse polynomial probability the weight distributes
proportionally on both sides, giving wt(e1) = k·p

k+� and wt(e2) = �·p
k+� . Now using

the Meet-in-the-Middle algorithm to solve this instance we obtain a version
of Dumer’s algorithm from a nearest neighbor perspective achieving the same
asymptotic complexity.

A natural question which comes to mind when considering the nearest neigh-
bor version of Dumer is: why should it be optimal to choose a joined weight

Syndrome Decoding Estimator 121

distribution for (e1, e2)? By introducing two different weight parameters p1 and
p2 for both sides of e′ we obtain an algorithmic analogue of the improvement
of Bernstein et al. [7] known as Ball Collision Decoding (BCD), which slightly
improves on Dumer’s algorithm.

Also one might question the optimality of Stern’s procedure, which performs
the nearest neighbor search on the whole n − k coordinates of e′′ and weight
ω − p instead of using a reduced instance of length �2 and weight p2, like the
BCD variant. We found that refining Stern’s algorithm using the additional
parameters �2 and p2 yields a slight improvement similar to the BCD one.

The MMT Algorithm. Let us now turn our focus to the ISD improvements
by May, Meurer and Thomae (MMT) [23] as well as by Becker, Joux, May
and Meurer (BJMM) [4]. These algorithms first apply a permutation, similar
to the previous algorithms. However, instead of splitting the vector e′ in two
addends, as done by Dumer, Stern or BCD, they split it in four (MMT) or eight
(BJMM). Then all candidates for the addends are enumerated in a meet-in-
the-middle fashion. A binary search tree (similar to Wagner’s k-tree algorithm
[35]) is subsequently used to construct the solution as sum of base list elements.
Additionally, they do not use a disjoint splitting of the addends throughout the
tree, which gives several different representations of the solution. For example
the MMT algorithm represents e′ = e1 + e2 with e1, e2 ∈ F

n
2 and then splits e1

and e2 in a meet-in-the-middle fashion (as before). This gives several different
combinations of (e1, e2) that sum up to e′. As the binary search tree imposes
restrictions on the exact form of the solution, a careful choice of parameters lets
a single of these representations fulfill the constraints. Note that the knowledge
of a single representation of e′ suffices to solve the syndrome decoding problem.

As the structure of the BJMM and MMT algorithm is quite similar we stick
with a description of the MMT algorithm for now, highlighting their differences
later.

Let us explain the algorithm in a bit more detail. The MMT (as well as
the BJMM) algorithm uses the same preprocessing step as Dumer, hence H is
in systematic form according to Eq. (7) and the weight similarly distributes on
P−1e := (e′, e′′) ∈ F

k+�
2 × F

n−k−�
2 as wt(e′) = p and wt(e′′) = ω − p. Now, as

mentioned before, the algorithm splits

e′ = (a1, 0
k+�
2) + (0

k+�
2 ,a2)︸ ︷︷ ︸

e1

+ (a3, 0
k+�
2) + (0

k+�
2 ,a4)︸ ︷︷ ︸

e2

,

with ai ∈ B(k+�)/2
p/4 , i = 1, 2, 3, 4, hence, by construction we have e1, e2 ∈ Bk+�

p/2 .
Next candidates for ai are constructed by enumerating all possible values

from B(k+�)/2
p/4 in the base lists Li. Now, one chooses some random t ∈ F

�1
2 , for

some optimized �1 ≤ �, and constructs a new list L12 by just considering those
elements (x,y) ∈ L1 × L2 for which it holds that

(H1(x + y))[�1] = t .

122 A. Esser and E. Bellini

Now the same is done for the lists L3 and L4, thus they are merged in a new list
L34 but using a modified target t′ = t + (s̃1)[�1]. This choice of t′ ensures that
(v,w) ∈ L12 × L34 satisfy

H1(v + w) = (s̃1)[�1] ,

i.e., the desired identity is already satisfied on the lower �1 coordinates. Finally
the algorithm merges lists L12 and L34 in a list L1234 by enforcing the identity
on all � bits and then checks if for any z ∈ L1234 it holds that wt(H̃2z + s̃2) =
wt(e′′) = ω − p and, if so, outputs the solution.

NN-Perspective and An Algorithmic Shortcoming of the MMT Algorithm. We
show in the following that the MMT algorithm also uses a meet-in-the-middle
strategy for solving nearest-neighbor equations. But contrary to the procedure
given in Algorithm 1, too many vectors are enumerated in the base lists, which
unnecessarily increases the list sizes and results in undesired list distributions
for special inputs.

Similar to the NN-perspective of Dumer’s algorithm, let H be in systematic
form as given by Eq. (3), which is

H =
(
H̃ In−k

)
=

(
H̃1 I� 0
H̃2 0 In−k−�

)
, where H̃ ∈ F

(n−k)×(k)
2 .

Additionally, let e′ = (e′
1, e

′
2, e

′
3) ∈ F

k
2 × F

�1
2 × F

�−�1
2 and let the weight on

each of the e′
i be pi := |e′

i|·p
k+l . Also, for now consider the base list elements of the

MMT algorithm to be formed as
(Bk/2

p1/4 × 0
k
2 × B�1/2

p2/4 × 0
�1
2 × B(�−�1)/2

p3/4 × 0
�−�1

2
)

and
(
0

k
2 × Bk/2

p1/4 × 0
�1
2 × B�1/2

p2/4 × 0
�−�1

2 × B(�−�1)/2
p3/4

)
,

rather than (B(k+l)/2
p/4 × 0

k+�
2

)
and

(
0

k+�
2 × B(k+l)/2

p/4

)
.

Thus, each of the e′
i is getting enumerated in a meet-in-the-middle fashion in

the base lists.6 Additionally let us write H1 as

H1 :=
(
H̃1 I�

)
=

(
H̃11 I�1 0
H̃12 0 I�−�1

)

Now let us consider the first join of base lists. For this join only elements
x ∈ L1 and y ∈ L2 are considered for which

(
H1(x + y)

)
[�1]

= t . (8)

6 Note that both sets differ only in a polynomial fraction of their elements. Fur-
thermore our argumentation also holds when using the original base lists, but the
refinement allows for easier illustration by yielding approximate matching identities
with fixed distances.

Syndrome Decoding Estimator 123

By letting x = (x1,x2,x3) ∈ F
k
2 ×F

�1
2 ×F

�−�1
2 and y = (y1,y2,y3), analogously,

Eq. (8) becomes

H̃11(x1 + y1) + x2 + y2 = t

⇔ H̃11(x1 + y1) = t + x2 + y2 . (9)

Note that by construction wt(x1 + y1) = p1/2 and wt(x2 + y2) = p2/2,
hence the newly constructed list L12 consists only of vectors having weight p1/2,
which are p2/2 close to t when multiplied by H̃11. Hence, this join solves the
approximate matching problem given by the identity

Hx ≈p2/2 t ,

for x with wt(x) = p1/2.
Contrary to the Meet-in-the-Middle algorithm from Sect. 2 the MMT

algorithm additionally enumerates all values for x3 (resp. y3) in the base lists
even though they are not taken into account by the matching routine. Thus,
whenever any element satisfies Eq. (9), it is added to L12 for any combination
of (x3,y3) ∈ B(�−�1)/2

p3/4 × B(�−�1)/2
p3/4 .

Thus, if (z1, z2) = (x1 +y1,x2 +y2) describes an element satisfying Eq. (9),
all elements of

{
(z1, z2, z3) | z3 ∈

(
B(�−�1)/2

p3/4 × B(�−�1)/2
p3/4

) }
(10)

are added to L12 (analogously the same holds for L34).
The final join then solves the nearest neighbor identity on the upper � − �1

bits for target (s̃1)[�1+1,�] and distance p3. But instead of using a disjoint split
of the vectors with weight p3, as done by Algorithm 1, the weight is distributed
over the full � − �1 coordinates (see z3 of Eq. (10)). Thus, there exist multiple
different representations for every possible difference, resulting in as many dupli-
cates being added to L1234 for every element fulfilling the approximate matching
identity on the upper bits.

Not only would a single representation of the solution in L1234 suffice to solve
the problem, but imagine there would be a subsequent level in the tree, which
is e.g. the case for the BJMM algorithm. Then the degenerated list distribution
would significantly affect the list sizes of following levels and, implicitly, the time
complexity and correctness of the algorithm. We want to stress that this problem
only occurs if the algorithm is provided with a parity-check matrix H as defined
in Eq. (3). If the input matrix has the shape given in Eq. (7) with random
H1 this seems to re-randomize the duplicates such that the list sizes match their
expectations, as experiments have shown [2,13]. Nevertheless, it enables us in the
next section to improve on the standard MMT (respectively BJMM) algorithm
by changing the way the base lists are constructed.

124 A. Esser and E. Bellini

Other Advanced ISD Variants. Let us briefly outline the differences between
the MMT algorithm and the improvements made by Becker-Joux-May-Meurer
[4], May-Ozerov [24] and Both-May [8]. The BJMM algorithm works similar
to the MMT algorithm but increases the weight of the candidates for the ai

to p/4 + ε. The parameter ε then accounts for ones that cancel during addi-
tion. While increasing list sizes, this also increases the amount of representa-
tions allowing for larger constraint choices (the length of �1). Additionally, the
increased amount of representations yields a theoretically optimal search tree
depth of three (instead of two), to cancel out the representations and balance
the tree most effectively. The ideas introduced with the BJMM algorithm were
adopted by both – May-Ozerov and Both-May. May and Ozerov exchanged the
meet-in-the-middle strategy to solve the nearest neighbor problem on the last
level by their own more efficient algorithm for nearest neighbor search. Both and
May finally exploited the nearest neighbor search technique from May-Ozerov
for the construction of all lists of the tree.

4 An ISD Framework Based on Nearest Neighbor Search

In this section we describe an algorithmic framework for ISD algorithms based
explicitly on nearest neighbor search that resolves the shortcomings mentioned
in the previous section. We are able to obtain variants of all major ISD improve-
ments by choosing specific configurations of our framework. Additionally, we can
easily exchange costly routines, such as May-Ozerov nearest neighbor search by
more practical algorithms. Similar to the MMT algorithm, our framework uses
a search tree to construct the solution. To obtain the lists of each level, nearest
neighbor search is exploited. The framework then yields the basis for obtaining
our practical security estimates.

Remark 4.1. Our complexity estimates show that, for the cryptographically
interesting error regimes, a search tree depth of two is (almost) always opti-
mal, regardless of the chosen instantiation of the framework. We find that this is
the case in memory constrained and unconstrained settings, as well as under con-
sideration of different memory access costs. Only in some rare cases, an increase
to depth three gives minor improvements of a factor strictly less than two (for
the proposed parameter sets of McEliece, BIKE and HQC). Hence, for didactic
reasons we describe our framework only in depth two.

Let us assume the parity check matrix is in systematic form according to
Eq. (3) and let us write the matrix as

H =
(
H̃ In−k

)
=

⎛

⎝
H̃1 I�1 0 0
H̃2 0 I�2 0
H̃3 0 0 I�3

⎞

⎠ , where H̃ ∈ F
(n−k)×k
2 , (11)

and let

s̃ := (s̃1, s̃2, s̃3) ∈ F
�1
2 × F

�2
2 × F

�3
2 (12)

Syndrome Decoding Estimator 125

be the corresponding syndrome (after the Gaussian elimination). The permuta-
tion is assumed to distribute the weight on e = (e′, e′′

1 , e′′
2 , e′′

3) ∈ (Fk
2 × F

�1
2 ×

F
�2
2 × F

�3
2) as

wt(e′) = p and wt(e′′
i) = ωi for i = 1, 2, 3, (13)

where �1, �2, ω1, ω2 and p are optimized numerically and �3 := n − k − �1 − �2,
as well as ω3 := ω − p − ω1 − ω2. Note that, by our formulation, the following
three approximate matching identities hold7

H̃ie′ ≈ωi
s̃i for i = 1, 2, 3. (14)

Again, we split e′ = e1 + e2 in two addends ei ∈ F
k
2 with wt(ei) = p1 for

some numerically optimized p1.
In the base lists of the search tree (compare also to Fig. 1), we enumerate

all candidates for e1, respectively e2, in a meet-in-the-middle fashion. To obtain
the lists of the middle level, we combine two base lists by searching for pairs
(x1,x2) ∈ L1 × L2, respectively (x3,x4) ∈ L3 × L4, fulfilling the identities

H̃1(x1 + x2) ≈ω11 0�1 and respectively

H̃1(x3 + x4) ≈ω11 s̃1 ,

where ω11 is another parameter that has to be optimized numerically.
All resulting candidates for e1 and e2, namely x12 = x1 +x2 and x34 = x3 +

x4, satisfying the above identities are stored in the lists L12 and L34 respectively.
Finally, those two lists are merged in the list L1234 by finding all solutions to
the identity

H̃2(x12 + x34) ≈ω2 s̃2 .

Eventually every element of L1234 is checked for yielding a solution.

We measure the time complexity of the proposed framework in vector addi-
tions in F

n
2 . Even though some of the used labels and vectors could be imple-

mented using less than n coordinates, each addition contributes as one. On the
one hand this simplifies the analysis and on the other hand it is highly imple-
mentation dependent if a vector is indeed implemented using less coordinates

Analysis of the Framework. Let us first analyze our framework. Later, we then
compute the concrete complexity for different configurations. Let us start with
the correctness. Assume the permutation distributes the error weight as desired
(compare to Eq. (11)). Now consider the possible decomposition of e′ = e1 +
e2 with wt(ei) = p1 and denote the amount of different such representations

7 Note that the equation for i = 3 will not be used by the algorithm. It just enables
us to perform the nearest neighbor search for i = 2 on a reduced sub-instance
with flexible �2, ω2; instead of being forced to operate always on the full n − k − �1
coordinates with weight ω − p − ω1.

126 A. Esser and E. Bellini

Algorithm 3. ISD-NN-Framework

Input: parity check matrix H ∈ F
(n−k)×n
2 , syndrome s, error weight ω ∈ [n]

Output: e ∈ F
n
2 : He = s and wt(e) = ω

Optimize: �1, �2, ω1, ω2, ω11, p1, p

1: Let H̃1, H̃2, s̃1, s̃2 and all parameters be as defined in Equations (11) to (13)
2: repeat
3: choose random permutation matrix P ∈ F

n×n
2

4: Transform HP to systematic form by multiplication of invertible matrix
Q (compare to Equation (11)): H̃ ← (QHP)[k], s̃ ← Qs

5: Li =
{
xi | xi = (y, 0k/2) : y ∈ Bk/2

p1/2

}
for i = 1, 3

6: Li =
{
xi | xi = (0k/2,y) : y ∈ Bk/2

p1/2

}
for i = 2, 4

7: Compute L12, L34 and L1234 using nearest neighbor algorithm
8: L12 ← {x1 + x2 | (x1,x2) ∈ L1 × L2 ∧ H̃1(x1 + x2) ≈ω11 0}
9: L34 ← {x3 + x4 | (x3,x4) ∈ L3 × L4 ∧ H̃1(x3 + x4) ≈ω11 s̃1}

10: L1234 ← {x12 + x34 | (x12,x34) ∈ L12 × L34 ∧ H̃2(x12 + x34) ≈ω2 s̃2}
11: for x ∈ L1234 do
12: ẽ = (x, H̃x + s̃)
13: if wt(ẽ) = ω then
14: break
15: until wt(ẽ) = ω

16: return P ẽ

as R. Furthermore let the probability that any such representation fulfills the
restrictions imposed by L12 and L34 be

q := Pr
[
wt(H̃1e1) = wt(H̃1e2 + s̃1) = ω11 | e′ = e1 + e2

]
.

Note that the computation of L1234 does not impose further constraints on
the representations since, by Eq. (14), we already conditioned on

H̃2(e1 + e2) = H̃2e′ ≈ω2 s̃2 .

Hence, as long as we ensure R · q ≥ 1, we expect at least one representation
to survive the restrictions imposed. Even if R · q < 1, we can compensate for it
by 1

R·q randomized constructions of the tree (line 5 to 14 of Algorithm 3).8

Lets now turn our focus to the time complexity. We define TP to be the
expected number of random permutations until at least one of them distributes
the weight as desired. For each of these TP permutations we need to apply the
Gaussian elimination at a cost of TG as well as the computation of base lists,
8 For example we can randomize by adding a random r ∈ F

n−k
2 to all labels in lists

L1 and L3.

Syndrome Decoding Estimator 127

Fig. 1. Graphical representation of the computation tree used by the ISD framework.

three nearest neighbor computations and the weight check of elements of the
final list.

Note that in our formulation of the lists they only hold the respective can-
didates xi to keep the notation comprehensible. In a practical application one
might also want to store the label H̃xi in Li for i = 1, 2, 3 and respectively
H̃x4 + s̃ in L4 to avoid their re-computation at later levels. While these labels
can be naively computed using matrix vector multiplication, a more sophisti-
cated strategy enumerates the xi in the base lists such that wt(xi + xi+1) = 2.
Then every label can be computed from the previous one using only two vec-
tor additions, yielding a total cost of roughly p1

2 + 2L1 per base list. This is
surpassed by the cost for the nearest neighbor search on the first level, which
is why we neglect this term in the analysis. Let us denote the cost for nearest
neighbor search on two lists of size |L|, for vectors of length � and weight δ as
NL,�,δ. Finally observe, that the computation of L1234 comes at a much higher
cost than the linear check of the list, which is why we disregard the linear pass
through the list in the analysis.

Hence, in total the time complexity becomes

T = TP︸︷︷︸
permutations

·
(

TG︸︷︷︸
Gaussian

+ max
(
1, (R · q)−1

)

︸ ︷︷ ︸
representations

· (2 · N|L1|,�1,ω11 + N|L12|,�2,ω2

)

︸ ︷︷ ︸
tree computation

)
.

(15)

Note that from a memory point of view one can implement the procedure in
a streaming manner rather than storing each list on every level, similar to the
ones described in [26,35]. In this way we only need space for two base lists as well
as one intermediate list, since the final list can be checked on-the-fly anyway.
Additionally we need to store the matrix, thus we have

M = 2 · |L1| + |L12| + n − k .

128 A. Esser and E. Bellini

Using the above framework we obtain several ISD algorithms by changing the
specific configuration. This includes improved and practical variants of all major
ISD improvements (restricted to depth 2) such as MMT, BJMM, May-Ozerov
as well as the latest improvement by Both and May.

Let us briefly sketch how to obtain these variants of known ISD algorithms
before analyzing them in more detail. Let us start with the MMT/ BJMM

algorithm9. Therefore let us instantiate our framework using the Meet-in-the-

Middle algorithm on both levels to directly obtain a variant of the MMT/
BJMM algorithm using disjoint weight distributions and resolving the short-
comings outlined in the previous section. If we instead choose Meet-in-the-

Middle on the first but May-Ozerov nearest neighbor search on the second
level, set �2 = n − k − �1, ω2 = ω − p and hence �3 = ω3 = 0 we obtain a
variant of the May-Ozerov ISD algorithm using a disjoint weight distribution
on the lower level. Observe that the choice of parameters ensures the nearest
neighbor search on the final level being performed on all remaining coordinates.
And finally if we choose the May-Ozerov nearest neighbor algorithm on both
levels with the same choice of �2, �3, ω2, ω3 as for the May-Ozerov variant we
obtain the ISD variant of Both and May.

4.1 Concrete Practical Instantiations of the Framework

So let us start the analysis with a variant where we instantiate the nearest
neighbor routine by Indyk-Motwani. We credit this variant to Both and May,
who first used explicit nearest neighbor search on all levels, by simply calling
the variant Both-May in the following.

Remark 4.2 (Balanced Weight Distribution). As outlined in Sect. 2, the way we
construct the solution only allows to obtain e′ with balanced weight, i.e., vectors
having weight p/2 on the upper and weight p/2 on the lower half of their coordi-
nates. The amount of balanced vectors is a polynomial fraction of all vectors with
weight p and hence it is usually disregarded in the theoretical analysis. However,
for our practical estimates we account for this. Specifically this influences the
amount of representations R as well as the amount of necessary permutations
TP .

BOTH-MAY Algorithm. Recall that for the Both-May algorithm we choose �2 =
n − k − �1, ω2 = ω − p − ω1 and �3 = ω3 = 0. Thus the expected amount of
iterations until we draw a permutation that distributes the weight according to
Eq. (13) (under consideration of Remark 4.2) becomes

TP =

(
n
ω

)

(
�2
ω2

)(
�1
ω1

)(
k/2
p/2

)2 =

(
n
ω

)

(
n−k−�1
ω−p−ω1

)(
�1
ω1

)(
k/2
p/2

)2 .

9 We do not differentiate between both algorithms, since in our setting the only dif-
ference of BJMM is the larger choice of p1 > p/2. Hence, the bare optimization of
p1 determines which algorithm is chosen.

Syndrome Decoding Estimator 129

Further note, that the number of representations of one balanced vector e′ ∈ F
k
2

with weight p as a sum of two balanced vectors with weight p1 is

R =
(

p/2
p/4

)2((k − p)/2
p1/2 − p/4

)2

.

Here the first factor counts the ones contributed to one half of e′ from the first
addend. The remaining p/4 ones are then contributed by the second addend.
The second factor counts the possibilities how the remaining p1/2 − p/4 ones
in one half can cancel out. Finally since every representation of the lower half
can be combined with any representation of the upper half to obtain a valid
representation of e′, we square the result.

The probability q of a representation (e1, e2) of e′ fulfilling the restriction
imposed by L12 and L34 is

q := Pr
[
wt(H̃1e1) = wt(H̃1e2 + s̃1) = ω11 | e′ = e1 + e2

]

=

(
ω1

ω1/2

)(
�1−ω1

ω11−ω1/2

)

2�1

Therefore observe that for a representation (e1, e2) of e′ it holds that

H̃1e1 + H̃1e2 + s̃1 = e′′
1 , where wt(e′′

1) = ω1 .

Now there are 2�1 different combinations of values for H̃1e1, H̃1e2 + s̃1 that
satisfy the above identity. Out of these pairs

(
ω1

ω1/2

)(
�1−ω1

ω11−ω1/2

)
have the correct

weight ω11. Now by the randomness of H̃1 the probability becomes the claimed
fraction.

In the base lists we enumerate all vectors of length k/2 and weight p1/2,
hence it holds

|L1| =
(

k/2
p1/2

)
.

The intermediate lists hold all elements of the Cartesian product of two base
lists which fulfill the weight restriction on �1 coordinates, thus

|L12| =
|L1|2

(
�1

ω11

)

2�1

Eventually the running time N|L1|,�1,ω11 for the nearest neighbor routine on
the first level and N|L12|,n−k−�1,ω−p−ω1 for the second level are given by Eq. (2).

BJMM-DW: BJMM / MMT with disjoint weight distribution. In comparison
to our version of the Both-May algorithm the BJMM-dw algorithm uses Meet-

in-the-Middle for nearest neighbor search. Thus, we choose �2 < n−k−�1 and
ω2 < ω − p − ω1, which yields �3, ω3 > 0.10 Accordingly the time complexity for
10 If we would perform the Meet-in-the-Middle on the full n − k − �1 coordinates

as before, the blow-up due to the internal addition of the fixed Hamming weight
vectors would be to huge and render this approach inefficient.

130 A. Esser and E. Bellini

the nearest neighbor search on the first and second level, which are N|L1|,�1,ω11

and N|L12|,�2,ω2 are now given by Eq. (1). Note that the choice of the meet-in-the-
middle approach only allows to find elements with balanced distances. Thus, we
also need the balanced property on the �2 and �1 windows. Hence, the number of
permutations and the probability of a representation matching the restrictions
change to

TP =

(
n
ω

)

(
n−k−�1−�2
ω−ω1−ω2−p

)(
�2/2
ω2/2

)2(�1/2
ω1/2

)2(k/2
p/2

)2 and q =

(
ω1/2
ω1/4

)2(�1/2−ω1/2
ω11/2−ω1/4

)2

2�1
.

The rest stays as in the analysis of the Both-May variant.

4.2 Joint Weight Distributions

Since in practice �1 is comparably (to the code length) small and the error weight
only sublinear, an optimization of parameters in some cases yields ω11 = 0 and
hence ω1 = 0. In these cases we find that a joint weight distribution on the
base level, meaning an enumeration of vectors of length k+�1

2 rather than k
2 ,

as in the original algorithm by Dumer, can yield improvements. Recall that
asymptotically the joint weight case is subsumed by the disjoint weight case
when using proportional weight on both sides.

However, since our primary focus lies on the concrete hardness of crypto-
graphic parameter sets, which all use a sublinear error weight, we now describe
a variant of the framework using a joint weight distribution on the first level.
Note that this description is also closer to the original descriptions of the May-
Ozerov, BJMM and MMT algorithms, which all use joint weight distributions,
the latter even over multiple levels.

First assume that the weight on the solution e = (e′, e′′
1 , e′′

2 , e′′
3) ∈ F

k
2 ×F

�1
2 ×

F
�2
2 × F

�3
2 distributes as

wt((e′, e′′
1)) = p, wt(e′′

2) = ω2 and wt(e′′
3) = ω3 . (16)

Also we re-randomize the identity part of size �1 by considering the parity check
matrix being of form

H =
(
H̃ In−k−�1

)
=

⎛

⎝
H̃1 0 0
H̃2 I�2 0
H̃3 0 I�3

⎞

⎠ ,

where H̃ ∈ F
(n−k)×(k+�1)
2 has random structure. This allows us to perform a

meet-in-the-middle on (e′, e′′
1) without splitting both parts individually. There-

fore we change the definition of base lists to

Li =
{
xi | xi = (y, 0(k+�1)/2) : y ∈ B(k+�1)/2

p1/2

}
for i = 1, 3 and

Li =
{
xi | xi = (0(k+�1)/2,y) : y ∈ B(k+�1)/2

p1/2

}
for i = 2, 4 .

Syndrome Decoding Estimator 131

Now we construct the lists L12 and L34 as

L12 := {x1 + x2 | (x1,x2) ∈ L1 × L2 ∧ H̃1(x1 + x2) = 0}
L34 := {x3 + x4 | (x3,x4) ∈ L3 × L4 ∧ H̃1(x3 + x4) = s̃1} .

(17)

Finally list L1234 is constructed via nearest neighbor search, as before as

L1234 ← {x12 + x34 | (x12,x34) ∈ L12 × L34 ∧ H̃2(x12 + x34) ≈ω2 s̃2} .

Adaptation of the Analysis. While most of the analysis stays the same as for the
general nearest neighbor framework, our adaptations affect some of the details.
Precisely the probability q of a representation surviving the imposed restrictions
as well as the cost for the construction of L12 and L34. First note that for lists
as defined in Eq. (17) the probability q is defined as

q := Pr
[
H̃1e1 = 0 ∧ H̃1e2 = s̃1 | (e′, e′′

1) = e1 + e2
]

= 2−�1 .

Since we already know that H̃1(e′, e′′
1) = s̃1 by randomness of H̃1 we have

q = Pr
[
H̃1e1 = 0

]
= 2−�1 . Now observe that the construction of L12 (resp. L34)

can be done in time |L1|+|L2|+|L12| as we only need to check for equality. Thus,
the runtime can still be expressed via Eq. (15), where N|L1|,�1,ω11 := |L1|+ |L2|+
|L12|. Next we give two instantiations with joint weight distribution on the base
level. The first is a variant of the BJMM algorithm using again Meet-in-the-

Middle for the construction of L1234, while the second uses Indyk-Motwani

instead and can be seen as a variant of the May-Ozerov algorithm.

BJMM-P-DW: BJMM / MMTalgorithm with partially disjoint weight distri-
bution. The expected amount of permutations until we may expect a weight
distribution as given in Eq. (16) under consideration of the balanced property
(see Remark 4.2) is

TP =

(
n
ω

)

(
n−k−�1−�2
ω−ω1−ω2−p

)(
(k+�1)/2

p/2

)2(�2/2
ω2/2

)2

Note that the balanced property on the �2 windows stems from the fact that the
BJMM algorithm uses Meet-in-the-Middle for the construction of L1234.
The base lists are now of increased size |L1| =

(
(k+�1)/2

p1/2

)
while |L12| = |L34| =

|L1|2/2�1 since we perform an exact matching on �1 coordinates. On the upside
we now have an increased amount of representations

R =
(

p/2
p/4

)2((k + �1 − p)/2)
p1/2 − p/4

)2

.

The cost for the computation of L1234, namely N|L12|,�2,ω2 , is given by Eq. (1).

132 A. Esser and E. Bellini

MAY-OZEROV The essential difference to the BJMM-p-dw lies in the usage
of the Indyk-Motwani for the computation of L1234. Also this variant chooses
�2 = n−k − �1 and ω2 = ω − p, which implies �3 = ω3 = 0. Then the complexity
of the final list computation N|L12|,�2,ω2 is given by Eq. (2). The rest stays as in
the analysis of the BJMM-p-dw.

For completeness and comparisons we also state the running time of the
original BJMM algorithm (in depth two). It uses a joint weight distribution over
both levels, hence the vectors are enumerated on (k + �1 + �2)/2 coordinates in
the base lists. This results in the final construction of list L1234 coming at a cost
of |L12|+ |L34|+ |L1234|. Referring to Eq. (15) this means we have N|L12|,�2,ω2 =
|L12| + |L34| + |L1234|

BJMM: original BJMM algorithm. Let � = �1 + �2. The base list size of the
BJMM algorithm is |L1| =

(
(k+�)/2

p1/2

)
. The matching is then performed again

on �1 coordinates, which results in |L12| = |L34| = |L1|2/2�1 . The amount of
representations is

R =
(

p/2
p/4

)2((k + � − p)/2
p1/2 − p/4

)2

.

Now the construction of list L1234 is performed as a matching of L12 and L34 on
� − �1 = �2 coordinates, thus we have |L1234| = |L12|2/2�2 . The rest stays as in
the BJMM-p-dw algorithm.

5 Estimator

In this section we present our results on the bit security estimates for the sug-
gested parameters of code based cryptographic submissions to the NIST PQC
standardisation process, namely McEliece, BIKE and HQC.

A Cautious Note on Concrete Hardness Estimates. Concrete hardness estimates
often give the impression of being highly accurate, not least because they are
usually given up to the second or even third decimal place. In particular, follow-
ing recent discussions (in the NIST PQC forum [33]), we want to emphasize that
these concrete security estimates should always be taken with care. They heavily
rely on implementation details, targeted platforms, possible hardware accelera-
tions and many more factors. Thus, many assumptions must be made to obtain
these estimates. The derived numbers should therefore be understood as indica-
tive rather than precise. Following this line of thought we give our estimates
rounded to the nearest integer and admit that they may inherit an inaccuracy
of a few bits.

Before we discuss the security estimations let us briefly address some method-
ology aspects. All advanced algorithms we consider require an exponential
amount of memory, which certainly slows down computations compared to
memory-free algorithms like Prange. In [3] it was suggested to use a logarith-
mic memory access model, which accounts for the need of memory with an

Syndrome Decoding Estimator 133

Table 1. Parameter sets suggested by NIST PQC proposals.

Category n k ω

1 3488 2720 64
3 4608 3360 96

McEliece 5 6688 5024 128
5 6960 5413 119
5 8192 6528 128
1 24646 12323 134

BIKE (message) 3 49318 24659 199
5 81946 40973 264
1 24646 12323 142

BIKE (key) 3 49318 24659 206
5 81946 40973 274
1 35338 17669 132

HQC 3 71702 35851 200
5 115274 57637 262

additive log log memory in the bit security estimate, where memory is the total
memory consumed by the algorithm. We follow this suggestion and consider
besides the more conservative constant memory access cost also this logarithmic
model. Additionally, we consider a cube-root memory access cost, which results
in an additive log 3

√
memory in the respective algorithms bit complexity, which

was recently suggested by Perlner [27].
Note that our estimator software also allows for a square-root access cost

model as well as user defined cost functions. However, we believe that the con-
stant, logarithmic and cube-root models already give a good overview.

The NIST defines five security categories, where most submissions focus on
parameters for the categories one, three and five. A parameter set for a proposal
is said to match the security level of category one, three or five if the scheme
instantiated with the corresponding parameters is at least as hard to break as
AES-128, AES-192 or AES-256 respectively. In Table 1 we list all corresponding
parameters of each submission and their respective security category.

Remark 5.1 (Up-to-Date Estimates). Even though, we computed the presented
estimates with the utmost care, we would like to encourage the reader to use our
Syndrome Decoding Estimator rather than only relying on the estimates given in
this paper. This is because the tool offers a wide variety of customization to make
sure the estimates address the right setting. Also, we are constantly extending
and improving the Syndrome Decoding Estimator such that the results obtained
might slightly vary from the tables presented here.

134 A. Esser and E. Bellini

Let us start with the Classic McEliece submission. Table 2 shows the bit
complexity estimates for all suggested parameter sets. Besides the ISD vari-
ants obtained as instantiations of our framework we included the estimates for
Prange and Stern for comparisons. It can be observed that the time com-
plexity estimations for all advanced ISD algorithms, namely Both-May, May-

Ozerov, BJMM, BJMM-dw and BJMM-p-dw are comparable, where the
variants bring slight advantages over BJMM. However, the use of explicit near-
est neighbor search and disjoint weight distributions pays off when turning the
focus to the memory consumption. For the proposed parameter sets, our new
BJMM variants for instance allow to decrease the memory consumption of plain
BJMM by up to 30 bits. This partly stems form the advantage of not enumer-
ating unnecessary vectors in the base lists as outlined in Sect. 3. Recall that
this reduced memory consumption eventually also results in practical run time
improvements when considering different memory access models.

Additionally we provide in Table 2 bit-security estimates where the available
memory is limited to 60 and 80 bits (still in the constant memory access model).
Under this memory restrictions the May-Ozerov algorithm performs best by
entirely providing the best estimates for those regimes. This is an effect of the
use of joined weight distributions on the lower level as well as memory-efficient
nearest neighbor search in form of Indyk-Motwani.

Also we state the best complexities obtained when considering the logarith-
mic and cube-root memory access model.11 For the logarithmic model it can be
observed that the optimization suggests the same parameters as in the constant
model. This results in all bit complexities being increased by a logarithm of the
memory usage in the constant setting. Contrary, the optimization in the cube-
root model avoids the use of memory almost completely, yielding significantly
higher bit complexities.

We also used our estimator to approximate the hardness of an already solved
McEliece instance reported online at decodingchallenge.org [2] and an instance
that was attacked by Bernstein, Lange and Peters in [6]. Recently, Esser, May
and Zweydinger reported the solution to an instance with parameters (n =
1284, k = 1028, w = 24) [2], for this instance our estimator yields a bit complexity
of 65 bit. For the instance (n = 1024, k = 525, w = 50) attacked in [6] by
Bernstein et al. we find a slightly lower bit complexity of 64 bit. Note that while
these numbers might occur high, usually attacks are performed with a register-
width of 64 bit. Thus, the actual operation count is reduced by six bit, yielding
operation counts of 59 and 58 bits for those instances. These estimates seem to be
coherent with the reported computational efforts made to solve those instances.

Next we give the security estimates for the BIKE scheme. Note that BIKE
uses a quasi-cylic code allowing for polynomial speedups, which need to be con-
sidered in the security estimates.

This is also the reason why we have to distinguish the message and key
security. Obtaining the message from a BIKE ciphertext requires the attacker

11 Note that we take the number of necessary vector space elements that need to be
stored as a measure to derive the penalty.

https://decodingchallenge.org/

Syndrome Decoding Estimator 135

Table 2. Bit security estimates for the suggested parameter sets of the Classic McEliece
scheme.

Category 1
(n = 3488)

Category 3
(n = 4608)

Category 5
(n=6688)

Category 5
(n = 6960)

Category 5
(n = 8192)

T M T M T M T M T M

Prange 173 22 217 23 296 24 297 24 334 24
Stern 151 50 193 60 268 80 268 90 303 109
Both-May 143 88 182 101 250 136 249 137 281 141
May-Ozerov 141 89 180 113 246 165 246 160 276 194
BJMM 142 97 183 121 248 160 248 163 278 189
BJMM-p-dw 143 86 183 100 249 160 248 161 279 166
BJMM-dw 144 97 183 100 250 130 250 160 282 164
M ≤ 60 145 60 187 60 262 58 263 60 298 59
M ≤ 80 143 74 183 77 258 76 258 74 293 77
log M access 147 89 187 113 253 165 253 160 283 194
3
√

M access 156 25 199 26 275 36 276 36 312 47

to solve a syndrome decoding problem for a syndrome usually not equal to the
zero vector. Opposed to that, attacking the secret key requires finding a low
weight codeword or equivalently solving the syndrome decoding problem, where
the syndrome is the zero vector. For these two cases different speed-ups can be
obtained due to the cyclic structure.

In terms of message security, the cyclicity allows to derive n−k = k syndrome
decoding instances from an initial input instance out of which a single one has to
be decoded to break the security of the system. This variant is known as decoding
one out of many (DOOM). It has been shown in [30] that Stern’s algorithm can
be sped up in this setting by a factor of roughly

√
k. Even though, it has not

been studied how to obtain this speed-up for advanced ISD algorithms, such as
BJMM, it is commonly assumed to be obtainable similar to the case of Stern’s
algorithm. Hence, we also deducted log k

2 from all our bit security estimates.
Considering key security the quasi cyclic code contains all k cyclic shifts

of the searched codeword. Hence, without any adaptations the probability of
choosing a permutation that distributes the weight as desired is enhanced by a
factor of k. Thus, in this case we subtract log(k) from our bit security estimates.

Table 3 states the bit security estimates for the BIKE scheme. Note that
BIKE in comparison to McEliece uses a decreased error weight of ω = O(

√
n)

rather than ω = O(n
log n). This reduced weight lets the advantage of enumeration

based algorithms deteriorate, with the result that advanced algorithms only offer
a slight advantage over basic Stern. However, when considering the logarithmic
or cube-root model still our May-Ozerov variant provides the best complexities.
For the BIKE setting we observe that already for a logarithmic penalty the
optimization suggests to use low-memory configurations.

136 A. Esser and E. Bellini

Table 3. Bit security estimates for the suggested parameter sets of the BIKE scheme.

Category 1
(n = 24646)

Category 3
(n = 49318)

Category 5
(n = 81946)

T M T M T M

message security Prange 167 28 235 30 301 32
Stern 146 40 211 43 277 45
Both-May 147 38 212 41 276 63
May-Ozerov 146 55 211 57 276 61
BJMM 147 38 211 59 277 63
BJMM-p-dw 147 37 211 56 276 61
BJMM-dw 147 45 211 56 277 43
log M access 150 31 215 33 281 34
3
√

M access 152 30 217 32 283 33
key security Prange 169 28 234 30 304 32

Stern 147 40 211 43 279 45
Both-May 148 38 211 60 278 63
May-Ozerov 147 55 210 57 278 61
BJMM 147 54 211 59 279 63
BJMM-p-dw 147 55 211 56 278 61
BJMM-dw 147 55 211 56 279 43
log M access 151 31 215 33 283 34
3
√

M access 153 30 217 32 285 33

Eventually we state in Table 4 our bit security estimates for the HQC scheme.
Similar to the BIKE scheme HQC uses a cyclic structure allowing for a

√
k

speedup. Also HQC builds on the same asymptotically small error weight of
ω = O(

√
n), but in comparison to BIKE uses even smaller constants. Thus, as

the estimates show, the advantage of more involved procedures vanishes almost
completely. Here most variants degenerate to a version of Stern, by choosing
all intermediate weights equal to zero. Nevertheless, when considering memory
access costs again our May-Ozerov algorithm yields the best time complexity.

The biggest solved instance reported to decodingchallenge.org in the quasi-
cyclic setting has parameters (n = 2918, k = 1459, w = 54) [2]. We estimate
for this instance a bit complexity of 64 bit using our estimator tool, which
corresponds to roughly 258 necessary operations on a 64-bit architecture.

Interpretation of the Security Estimates. We observe that most bit security esti-
mates match the required classical gate counts of 143, 207 and 272, correspond-
ing to breaking AES-128, AES-192 and AES-256 according to NIST, surprisingly

https://decodingchallenge.org/

Syndrome Decoding Estimator 137

Table 4. Bit security estimates for the suggested parameter sets of the HQC scheme.

Category 1
(n = 35338)

Category 3
(n = 71702)

Category 5
(n = 115274)

T M T M T M

Prange 166 29 237 31 300 33
Stern 145 41 213 44 276 46
Both-May 146 39 214 42 276 39
May-Ozerov 145 39 214 42 276 44
BJMM 146 39 214 42 276 44
BJMM-p-dw 146 39 214 42 276 43
BJMM-dw 146 39 214 42 276 40
log M access 150 32 218 34 280 36
3
√

M access 151 31 220 33 282 35

well. Note that all submissions use the asymptotic complexity estimate of basic
Prange as foundation for parameter selection. Hence, the exact match comes
from the fact that the improvement due to advanced algorithms corresponds
quite exactly to Prange’s polynomial factors.

The McEliece submission team admits that advanced ISD algorithms yield
a lower complexity count then required in the constant memory access model
[10], which is confirmed by our estimates. However, they argue that the memory
access costs faced in the real world will make up for the difference. Our estimates
support this claim, when imposing a cube-root memory access cost.

Only the category three parameter set of the Classic McEliece scheme seems
to fail the given security level slightly. Here, even when imposing a cube-root
memory access cost it still deviates from the needed 207 bits by eight bits.

For BIKE and HQC the consideration of different memory access cost models
is less significant. This is because already in the constant memory access setting
the parameters do not allow advanced ISD techniques to leverage the use of
memory. However, both schemes already match their security levels in the more
conservative constant cost model. In the more realistic setting with logarithmic
or cube-root access cost both schemes’ parameter sets seem to inherit a slight
margin of five to fifteen bits.

5.1 Quantum Security

The metric for quantum security provided by NIST is based on a maxdepth ∈
{40, 64, 96} constraint, defining the maximum allowed depth of a quantum circuit
used to attack the corresponding instantiation. Here the maxdepth constraint
accounts for the difficulty of constructing large scale quantum computers.

138 A. Esser and E. Bellini

A parameter set is said to match the quantum security definition of category
one, three or five, if it is at least as hard to break as AES-128, AES-192 or
AES-256 quantumly. Furthermore NIST defines the quantum security of AES as

– AES-128 corresponds to 2170−maxdepth quantum gates,
– AES-192 corresponds to 2233−maxdepth quantum gates,
– AES-256 corresponds to 2298−maxdepth quantum gates.

In terms of quantum attacks Bernstein showed, that the search for a cor-
rect permutation in Prange’s algorithm can be asymptotically accelerated by a
square-root gain using a Grover search [5]. There has also been some research
on how to quantize advanced ISD algorithms [19,20]. While resulting in slightly
better asymptotic complexities than Bernstein’s quantum Prange, we agree with
the BIKE submission [1], that these procedures inherit huge overheads making
them for practical security estimates irrelevant.

In the following we analyze the quantum security of the proposed parameter
sets based on Bernstein’s quantum Prange in a very optimistic way, disregarding
any overhead caused by a real implementation. For an in-depth analysis of the
necessary circuit required for launching a quantum ISD attack the reader is
referred to [15]. Nevertheless, even with our analysis, which disregards a lot of
the actual costs, we find that all parameter sets still match the quantum security
definition of the respective categories.

Quantum Prange Under Depth Constraint. Let the Gaussian elimination circuit
require a depth of DE = (n − k)ωM , where ωM ∈ �2, 3�. Now recall that the
probability of drawing a random permutation that distributes the weight as
desired (see Eq. (4)) is

q :=

(
n−k

ω

)
(

n
ω

) .

Hence, leveraging Grover search, finding a good permutation with one appli-
cation of a single quantum circuit would require a depth of

D = O(DE

√
q−1) .

Since we are limited in depth, following Zalka [36] we need to partition the
search space in enough pieces such that the circuit performing a search on each
partition does not exceed the depth constraint. Then the circuit has to be reap-
plied for each partition. Separating the search space in N equally large partitions
results in a necessary quantum circuit depth of

DN = O(DE

√
(qN)−1) ,

for performing the search on a single partition. Now setting DN = 2maxdepth

results in

N =
(DE)2 · q−1

22·maxdepth .

Syndrome Decoding Estimator 139

Table 5. Quantum bit security margin of the corresponding schemes in comparison to
breaking AES quantumly.

Scheme Category n Quantum
security margin

1 3488 21
3 4608 3

McEliece 5 6688 18
5 6960 18
5 8192 56
1 24646 41

BIKE (message) 3 49318 47
5 81946 53
1 24646 32

BIKE (key) 3 49318 40
5 81946 43
1 35338 33

HQC 3 71702 43
5 115274 44

Finally this gives a quantum circuit of depth 2maxdepth which has to be reap-
plied N times to find the solution. Hence, the total time complexity becomes

TQ = N · 2maxdepth =
(DE)2

q · 2maxdepth
.

In Table 5 we present the quantum bit security estimates for the NIST PQC
schemes. Note that we do not state the security for every category and maxdepth
combination. Rather we just state the difference of log TQ and the quantum bit
security of AES for the corresponding category, which is given in the above
listing. Observe that this difference does not depend on the maxdepth constraint
anymore. The table can now be read as the quantum bit security of breaking the
corresponding scheme is x bit higher than required, where x is the value given in
the column “quantum security margin”. For obtaining these estimates we used
the more than optimistic matrix multiplication constant of ωM = 2.5.

The estimates confirm our prior finding, that the McEliece parameter set
for category three inherits a way smaller security margin compared to the other
proposed parameter sets.

140 A. Esser and E. Bellini

References

1. Aragon, N., et al.: BIKE: bit flipping key encapsulation (2020)
2. Aragon, N., Lavauzelle, J., Lequesne, M.: decodingchallenge.org (2019). https://

decodingchallenge.org/
3. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: A finite regime

analysis of information set decoding algorithms. Algorithms 12(10), 209 (2019)
4. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes

in 2 n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 31

5. Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS,
vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12929-2 6

6. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3 3

7. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision
decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 42

8. Both, L., May, A.: Decoding linear codes with high error rate and its impact
for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
79063-3 2

9. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to mceliece’s cryptosystem and to narrow-sense bch
codes of length 511. IEEE Trans. Inf. Theory 44(1), 367–378 (1998)

10. Chou, T., et al.: Classic McEliece: conservative code-based cryptography 10 Octo-
ber 2020 (2020)

11. Dumer, I.: On minimum distance decoding of linear codes. In: Proceedings of the
5th Joint Soviet-Swedish International Workshop Information Theory, pp. 50–52
(1991)

12. Esser, A., Bellini, E.: Syndrome decoding estimator. Cryptology ePrint Archive
(2021)

13. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 17

14. Esser, A., Kübler, R., Zweydinger, F.: A faster algorithm for finding closest pairs
in hamming metric. arXiv preprint arXiv:2102.02597 (2021)

15. Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M.: An optimized
quantum implementation of ISD on scalable quantum resources. Cryptology ePrint
Archive (2021)

16. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryp-
tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 6

17. Hamdaoui, Y., Sendrier, N.: A non asymptotic analysis of information set decoding.
IACR Cryptol. ePrint Arch. 2013, 162 (2013)

18. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pp. 604–613 (1998)

https://decodingchallenge.org/
https://decodingchallenge.org/
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1007/978-3-642-22792-9_42
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-319-63715-0_17
http://arxiv.org/abs/2102.02597
https://doi.org/10.1007/978-3-642-10366-7_6

Syndrome Decoding Estimator 141

19. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 5

20. Kirshanova, E.: Improved quantum information set decoding. In: Lange, T., Stein-
wandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 507–527. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-79063-3 24

21. Kirshanova, E., Laarhoven, T.: Lower bounds on lattice sieving and information
set decoding. To appear at CRYPTO 2021 (2021)

22. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330,
pp. 275–280. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-
8 25

23. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 6

24. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, Marc (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 9

25. Melchor, C.A., et al.: Hamming quasi-cyclic (HQC) (2020)
26. Naya-Plasencia, M., Schrottenloher, A.: Optimal merging in quantum k-xor and

k-sum algorithms. In: EUROCRYPT 2020–39th Annual International Conference
on the Theory and Applications of Cryptographic (2020)

27. Perlner, R.: pqc-forum: Round 3 official comment: classic mceliece (2021).
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec/m/
xBky FKFDgAJ

28. Peters, C.: Information-set decoding for linear codes over F ¡Subscript¿ q ¡/Sub-
script¿. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2 7

29. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962)

30. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25405-5 4

31. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolf-
mann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Hei-
delberg (1989). https://doi.org/10.1007/BFb0019850

32. Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear
error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 10

33. Various: pqc-forum: Round 3 official comment: classic mceliece (2021). https://
groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec

34. Various: pqc-forum: Security strength categories for code based crypto (and trying
out crypto stack exchange) (2021). https://groups.google.com/a/list.nist.gov/g/
pqc-forum/c/6XbG66gI7v0

35. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

36. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60(4),
2746 (1999)

https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-319-79063-3_24
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec/m/xBky_FKFDgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec/m/xBky_FKFDgAJ
https://doi.org/10.1007/978-3-642-12929-2_7
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/978-3-319-29360-8_10
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/6XbG66gI7v0
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/6XbG66gI7v0
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

On the Isogeny Problem with Torsion
Point Information

Tako Boris Fouotsa1(B), Péter Kutas2,3(B), Simon-Philipp Merz4(B),
and Yan Bo Ti5(B)

1 Università Degli Studi Roma Tre, Rome, Italy
takoboris.fouotsa@uniroma3.it

2 University of Birmingham, Birmingham, UK
p.kutas@bham.ac.uk

3 Eötvös Loránd University, Budapest, Hungary
4 Royal Holloway, University of London, Egham, UK

simon-philipp.merz.2018@rhul.ac.uk
5 DSO, Singapore, Singapore

yanbo.ti@gmail.com

Abstract. It has recently been rigorously proven (and was previously
known under certain heuristics) that the general supersingular isogeny
problem reduces to the supersingular endomorphism ring computation
problem. However, in order to attack SIDH-type schemes, one requires a
particular isogeny which is usually not returned by the general reduc-
tion. At Asiacrypt 2016, Galbraith, Petit, Shani and Ti presented a
polynomial-time reduction of the problem of finding the secret isogeny in
SIDH to the problem of computing the endomorphism ring of a supersin-
gular elliptic curve. Their method exploits the fact that secret isogenies
in SIDH are of degree approximately p1/2. The method does not extend
to other SIDH-type schemes, where secret isogenies of larger degree are
used and this condition is not fulfilled.

We present a more general reduction algorithm that generalises to all
SIDH-type schemes. The main idea of our algorithm is to exploit avail-
able torsion point images together with the KLPT algorithm to obtain
a linear system of equations over a certain residue class ring. We show
that this system will have a unique solution that can be lifted to the
integers if some mild conditions on the parameters are satisfied. This lift
then yields the secret isogeny. One consequence of this work is that the
choice of the prime p in B-SIDH is tight.

Keywords: post-quantum · isogeny-based cryptography ·
supersingular isogenies · endomorphism rings · SIDH

1 Introduction

Practical large scale quantum computers pose a threat to most cryptosystems
currently in use [13,27]. Recent advances in quantum computing and the need
for long-term security in cryptography has led to a surge of interest in developing
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 142–161, 2022.
https://doi.org/10.1007/978-3-030-97121-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_6

On the Isogeny Problem with Torsion Point Information 143

quantum secure replacements for these classical cryptographic algorithms. More-
over, NIST has started a procedure to determine new cryptographic standards
for a post-quantum era [22].

Most of the standardisation candidates are based on lattices, codes or multi-
variate polynomial systems over finite fields. A more recent but promising area
of post-quantum research is isogeny-based cryptography.

Couveignes was the first one to mention isogenies for cryptographic use in
1997 [6], and the area gained traction in the following decade with new develop-
ments such as collision-resistant hashing [3] and key exchange [26,29] based on
isogeny problems. After Jao and De Feo introduced supersingular isogeny Diffie-
Hellman (SIDH) [15], a predecessor of the isogeny-based submission to NIST’s
standardisation procedure SIKE [14], the area has enjoyed increasing popularity.

The central problem in most of isogeny-based cryptography is to find an
isogeny ϕ : E1 → E2, i.e. a morphism both in the sense of algebraic geometry
and group theory, between two given supersingular elliptic curves defined over
a finite field Fq. For two supersingular elliptic curves E1 and E2, the problem
of computing an arbitrary isogeny between them and the problem of comput-
ing their endomorphism rings End(E1) and End(E2) was recently proven to
be equivalent under the assumption that the generalized Riemann hypothesis
(GRH) holds by Wesolowski [34]. Yet, in the case where E1 and E2 are ordinary
curves, it is usually much easier to determine End(Ei) of an arbitrary Ei than
computing an isogeny between two arbitrary curves [19].

There are infinitely many isogenies E1 → E2, but attacking isogeny-based
primitives such as SIDH requires to recover an isogeny ϕ : E1 → E2 of a specific
degree. Generic algorithms are unlikely to return an isogeny of the correct degree
given the endomorphism rings. In Section 4 of [12], it is shown how to recover
secret isogenies in the case of SIDH. The attack exploits the observation that
secret isogenies in SIDH are of degree p1/2, which is relatively small. In the
case where the isogeny one wishes to recover is not of particularly small degree,
as is the case in B-SIDH [5], SÉTA [8] or instantiations of SIDH with secret
isogenies of larger degree, this observation no longer holds and the algorithm
due to Galbraith et al. no longer applies.

Our Contributions. Assuming the generalized Riemann hypothesis, this paper
provides a polynomial-time (in log p) algorithm that recovers an isogeny with cer-
tain torsion point images between two supersingular elliptic curves of a specific
degree N1, given their endomorphism rings and some torsion point images under
the isogeny. More precisely, let d be the least degree of any isogeny between two
isogenous supersingular elliptic curves E1 and E2. Then, our algorithm solves
the following problem, whenever N1 < dN2/16.

Task 1.1. Let N1, N2 be coprime integers and let ϕ : E1 → E2 be a secret
isogeny of degree N1 between two supersingular elliptic curves. Let PB, QB be a
basis of E1[N2]. Given End(E1), End(E2), ϕ(PB), and ϕ(QB), find an isogeny
ϕ′ : E1 → E2 of degree N1 such that ϕ|E1[N2] = ϕ′

|E1[N2]
.

Since SIDH-type schemes such as B-SIDH tend to use balanced parameters,
where N1 ≈ N2, the condition that N1 < dN2/16 is very mild.

144 T. B. Fouotsa et al.

The main idea behind the algorithm is the following. Isogenies from E1 to E2

form a Z-module M of rank 4. A basis of M can be computed using an algorithm
due to Kirschmer and Voight [17] (or the KLPT algorithm [18]). Then, one
computes an LLL-reduced basis ψ1, ψ2, ψ3, ψ4 of M . We show how to evaluate
ψi(PB), ψi(QB) for i = 1, . . . , 4 and we are given φ(PB) and φ(QB).

Since φ = x1ψ1 + x2ψ2 + x3ψ3 + x4ψ4 for some xi ∈ Z, this yields 4 linear
equations in 4 variables, x1, x2, x3, x4, modulo N2 (torsion-point images can be
represented by a 2 × 2 matrix with entries from Z/N2Z and each entry corre-
sponds to an equation). We will show that this system of equations has a unique
solution for xi modulo N2 which we also compute. Since the ψi form an LLL-
reduced basis, we can bound the absolute value of the coefficients xi by N2/2
for N1 < dN2/16. This leads to a solution for xi ∈ Z.

The contribution of this paper can be seen as an extension of the reductions
by Kohel, Lauter, Petit, and Tignol [18] and Wesolowski [34] which allow to
compute an isogeny (of no specific degree) between two supersingular elliptic
curves, whenever the endomorphism rings of the curves are known. Note that
Kohel et al. provide a heuristic polynomial-time algorithm for this reduction,
whereas Wesolowski shows that this reduction works in polynomial-time in gen-
eral assuming only GRH.

Together with known results on the computation of endomorphism rings, a
consequence of this work is an answer to the open question how small the size
of the prime p in B-SIDH can be chosen. More precisely, this work implies that
one cannot lower the size of the prime p in B-SIDH significantly, while maintain-
ing the same security level. Current parameter sets are not threatened because
parameters were selected in a cautious way (i.e., were larger than necessary if one
only accounted for existing attacks). Our algorithm has a similar classical run-
time to a generic meet-in-the-middle algorithm but is essentially memory-free
whereas meet-in-the-middle requires an exponential amount of memory. Fur-
thermore, the quantum version of our attack has a much better runtime than
previously known quantum attacks (O(p1/4) [10] compared to O(p1/2) [16]),
where the authors showed that the Tani’s claw algorithm has better complexity
quantumly, but suffers from quantum storage issues. The running time of our
algorithms is dominated by the computation of the endomorphism rings.

Outline. In Sect. 2, we recall some necessary mathematical background, details
of the SIDH key exchange as well as some related work. In Sect. 3, we give algo-
rithms to evaluate non-smooth degree isogenies and to compute an isogeny of
a specific degree between two supersingular elliptic curves with known endo-
morphism ring, if certain torsion point information is available. Moreover, we
discuss the impact of this work on isogeny-based cryptography before conclud-
ing the paper in Sect. 5.

2 Preliminaries

In this section, we recall some relevant background on elliptic curves and isogeny-
based cryptography. For further introductory reading, we refer to Silverman [28]

On the Isogeny Problem with Torsion Point Information 145

and De Feo [7] respectively. Furthermore, we briefly recall some consequences of
the KLPT algorithm [18] and the LLL lattice reduction [20]. Moreover, we sketch
a related algorithm due to Galbraith et al. [12] which computes an isogeny of spe-
cific degree between two supersingular elliptic curves with known endomorphism
ring, if this degree is sufficiently small.

2.1 Elliptic Curves and Isogenies

Let E1, E2 be elliptic curves defined over a field K. An isogeny between E1 and
E2 is a non-constant rational map which is also a group homomorphism (or
equivalently, fixes the point at infinity). The degree of an isogeny is its degree
as a finite map of curves, i.e. the degree of the extension of function fields. An
isogeny is called separable if the corresponding field extension is separable. For
a separable isogeny, the degree equals the size of its kernel. Furthermore, for
every finite subgroup G of an elliptic curve E, there exists a separable isogeny
whose kernel is G. Up to post-composition with an isomorphism, the isogeny is
unique. We denote the codomain of this isogeny by E/G. Given a finite subgroup
G ⊂ E the corresponding isogeny from E to E/G can be computed using Vélu’s
formulae [32].

Let φ : E1 → E2 be an isogeny of degree d. Then there exists a unique isogeny
φ̂ with the property that φ ◦ φ̂ = [d], where [d] denotes the multiplication by d.
This isogeny φ̂ is called the dual of φ and it is also of degree d. An isogeny from E
to itself is called an endomorphism. Together with the zero map, endomorphisms
of E form a ring under addition and composition denoted by End(E).

Let E be defined over a finite field of characteristic p. Then End(E) is either
an order in an imaginary quadratic field and E is called ordinary, or a maximal
order in the rational quaternion algebra Bp,∞ ramified at p and at infinity in
which case E is called supersingular. For the rest of the paper we will restrict
ourselves to supersingular elliptic curves.

For an elliptic curve E : y2 = x3 + Ax + B, its j-invariant is given by
j(E) = 1728 4A3

4A3+27B2 and two curves are isomorphic over K if and only if they
share the same j-invariant.

Example 2.1. For the supersingular elliptic curve E0 : y2 = x3 + x the above
formula yields the j-invariant j(E0) = 1728. It is well-known that End(E0)
is the Z-module generated by 1, ι, 1+π

2 and ι+ιπ
2 , where ι denotes E0’s non-

trivial automorphism, (x, y) �→ (−x, iy), and π is the Frobenius endomorphism,
(x, y) �→ (xp, yp).

Let � be a prime number and define the supersingular �-isogeny graph as
follows. The vertices of the graph are isomorphism classes of supersingular elliptic
curves represented by their j-invariant and two vertices are connected by an
edge if and only if they are �-isogenous. The supersingular �-isogeny graph is
connected, (� + 1)-regular and a Ramanujan expander graph. The diameter of
the graph is between log p and 2 log p [25, Theorem 1]. The presumed hardness of
path-finding in this graph is the hardness assumption underlying isogeny-based
cryptography.

146 T. B. Fouotsa et al.

Remark 2.2. In the rest of this paper we will call an integer smooth if its smooth-
ness bound is polynomial in log p for a fixed p.

2.2 SIDH and B-SIDH

We give a brief description of SIDH [15] and B-SIDH [5] key exchanges.
The public parameters of SIDH are two coprime smooth numbers N1 and N2,

a prime p of the form p = N1N2f − 1, where f is a small cofactor, and a super-
singular elliptic curve E0 defined over Fp2 together with points PA, QA, PB , QB

such that E0[N1] = 〈PA, QA〉 and E0[N2] = 〈PB , QB〉.
The protocol proceeds as follows:

1. Alice chooses a random cyclic subgroup of E0[N1] as GA = 〈PA+[xA]QA〉 and
Bob chooses a random cyclic subgroup of E0[N2] as GB = 〈PB + [xB]QB〉.

2. Alice and Bob compute the isogeny φA : E0 → E0/〈GA〉 =: EA and the
isogeny φB : E0 → E0/〈GB〉 =: EB , respectively.

3. Alice sends the curve EA and the two points φA(PB), φA(QB) to Bob. Mutatis
mutandis, Bob sends

(
EB , φB(PA), φB(QA)

)
to Alice.

4. Alice and Bob use the given torsion points to obtain the shared secret
j(E0/〈GA, GB〉). To do so, Alice computes φB(GA) = φB(PA) + [xA]φB(QA)
and uses the fact that E0/〈GA, GB〉 ∼= EB/〈φB(GA)〉. Bob proceeds analo-
gously.

In practice N1 and N2 are chosen to be powers of 2 and 3, respectively, to
maximize the efficiency of the scheme. However, choosing a prime of the form
N1N2f − 1 with N1 ≈ N2 implies that the curves EA, EB are much closer at E0

than the diameter of the supersingular isogeny graph, i.e. the paths connecting
E0 with EA and EB are shorter than one would expect for randomly chosen
isogenous curves.

In order to avoid walking only in a small subgraph and to reduce the size of
the prime p, Costello introduced the variant B-SIDH [5]. The main differences
between SIDH and B-SIDH are

– N1 and N2 are smooth coprime divisors of p − 1 and p + 1 (or vice versa)
respectively. Hence, p + 1 and p − 1 both need to have large smooth factors
as opposed to just one of them in SIDH.

– For the best parameter choice, we have N1 ≈ N2 ≈ p as opposed to N1 ≈
N2 ≈ √

p in SIDH.
– Kernel generators are a priori Fp4 -rational as opposed to Fp2 -rational.

In B-SIDH the curves E0 and EA are no longer closer than expected in the
isogeny graph, but parameter selection might be harder and it seems at first to
come at the expense of working over larger field extensions. However, to every
supersingular elliptic curve E defined over Fp2 , there exists a quadratic twist
(i.e., a curve defined over Fp2 which is isomorphic to E over Fp4 but not over
Fp2). If E has (p+1)2 rational points over Fp2 , then its twist has (p−1)2 rational
points over Fp2 . Thus, when computing an isogeny of degree N1 dividing p+1 one

On the Isogeny Problem with Torsion Point Information 147

can work with the curves having p + 1 rational points, and before computing an
isogeny of degree N2 dividing p−1, one switches to twists that have p−1 rational
points. Technically, the switch makes it possible to compute the isogenies using
only operations over Fp2 . For more details we refer to [5].

2.3 KLPT and LLL Lattice Reduction

In this subsection, we recall some facts about the Kohel-Lauter-Petit-Tignol
(KLPT) algorithm [18] and the Lenstra-Lenstra-Lovász (LLL) lattice reduc-
tion [20].

Let Bp,∞ be the quaternion algebra ramified at p and at infinity. Let O1 and
O2 be maximal orders in Bp,∞. Then the quaternion isogeny problem asks for a
left ideal I connecting O1 and O2, i.e., a left ideal I of O1 which is also a right
ideal of O2. By [18, Lemma 8], we have the following result.

Lemma 2.3. Let O1 and O2 be maximal orders in Bp,∞. Then the intersection
O1 ∩ O2 has the same index M in O1 and O2. Furthermore,

I(O1,O2) = {α ∈ Bp,∞ |αO2α ⊂ MO1}

is a left ideal of O1 and a right ideal of O2 of reduced norm M . I(O1,O2) can
be computed in polynomial time.

Lemma 2.3 shows that one can compute a connecting ideal between two maximal
orders efficiently. However, this ideal will not have smooth norm in general.
In [18], the main algorithm shows how to compute an equivalent left ideal of O1

of norm �k where � is some small prime number.
Let E1, E2 be supersingular elliptic curves with endomorphism rings O1 and

O2 respectively. Then the set of isogenies from E1 to E2 is a left O1-module and
a right O2-module. In particular, they form a Z-lattice of rank 4 [33, Lemma
42.1.11]. The Z-lattice is isomorphic to a connecting left ideal I as an O1-module
by the following lemma.

Lemma 2.4. [33, 42.2.8] Let Hom(E2, E1) denote the set of isogenies from E2

to E1 and let O1 and O2 denote the endomorphism rings of E1 and E2 respec-
tively. Let I be a connecting ideal of O1 and O2 and let φI : E2 → E1 denote
the corresponding isogeny. Then the map φ∗

I : Hom(E1, E2) → I, ψ �→ ψ ◦ φI is
an isomorphism of left O1-modules.

Since the KLPT-algorithm computes a connecting ideal between two maximal
orders, Lemma 2.4 implies that one can compute a Z-basis of Hom(E1, E2).
However, the degree of these isogenies might not be smooth and it is not obvious
that one can evaluate them efficiently. In Algorithm 1, we will show that one
can evaluate these isogenies on points efficiently using the KLPT algorithm.

Next, we recall some basic facts about lattice reduction, which aims to trans-
form an arbitrary input basis into a basis of “higher quality”. In the following,
we are interested in bases that are close to orthogonal.

148 T. B. Fouotsa et al.

Let B := (b1, . . . , bn) be the basis of a lattice L, let πi denote the projection
onto span(b1, . . . , bi−1) for i = {1, . . . , n} and let B∗ := (b∗

1, . . . , b
∗
n) be the Gram-

Schmidt orthogonalization of B, where b∗
i = πi(bi). Intuitively speaking, a good

basis is one in which the sequence of Gram-Schmidt norms ‖b∗
1‖, ‖b∗

2‖, . . . , ‖b∗
n‖

does not decay too fast.
The Lenstra-Lenstra-Lovász (LLL) reduction calculates a short and nearly

orthogonal lattice basis for any lattice in polynomial time [20]. We recall a more
precise statement in the following proposition using the Gram-Schmidt coeffi-
cients μi,j := 〈bi,b∗

j 〉
〈b∗

j ,b∗
j 〉 .

Proposition 2.5. The LLL lattice reduction with factors (η, δ), where δ ∈
(0.25, 1) and η ∈ [0.5,

√
δ], provides in polynomial time a basis B = (b1, . . . , bn)

that is size-reduced with μi,j < η for all j < i and has Gram-Schmidt orthogo-
nalization satisfying the Lovász condition δ‖b∗

i ‖2 ≤ ‖μi+1,ibi + b∗
i+1‖2.

The default parameters for LLL-reduction in magma, which we will use later
in this paper, are δ = 0.75 and η = 0.501. Since LLL-reduced bases are in
some sense close to orthogonal, we can expect short vectors in the lattice to
have rather small coefficients with respect to the basis. This is captured by the
following lemma which is a consequence of [20, Equation (1.8)] and Cramer’s
rule.

Lemma 2.6. Let L be a full rank lattice with LLL-reduced basis b1, . . . , bn with
factors (η, δ) and let v :=

∑n
i=1 γibi ∈ L. Then

|γi| ≤
(

4
(4δ − 1)

)n(n−1)/4 |v|
|bi| .

Proof. By [20, Equation (1.8)], an LLL-reduced basis b1, . . . , bn satisfies

n∏

i=1

|bi| ≤
(

4
(4δ − 1)

)n(n−1)/4

det(L).

Therefore, using Cramer’s rule we get

|γi| =
det(b1, . . . , bi−1, v, bi+1, . . . , bn)

det(L)
≤ |b1| · · · |bi−1| · |v| · |bi+1| · · · |bn|

det(L)
· |bi|
|bi|

≤
(

4
(4δ − 1)

)n(n−1)/4

· |v| · det(L)
|bi| · det(L)

=
(

4
(4δ − 1)

)n(n−1)/4

· |v|
|bi| .

��

2.4 GPST

In [12, §4], Galbraith, Petit, Shani and Ti describe how to compute the secret
isogeny of an SIDH instance efficiently, if the endomorphism rings of both the
domain and the codomain of the isogeny are known (or can be computed). We

On the Isogeny Problem with Torsion Point Information 149

summarize their results and we recall why the algorithm does not work as such
outside of an SIDH setting.

Let ϕ : E1 → E2 be a �n-degree isogeny one wishes to recover, given the
two endomorphism rings O1 and O2 of E1 and E2 respectively. Since E1 and
E2 are supersingular curves, their endomorphism rings are maximal orders in
the rational quaternion algebra Bp,∞. By Lemma 2.3, one can recover an ideal
connecting O1 and O2. Such an ideal corresponds to one of infinitely many
isogenies between E1 and E2. This isogeny is in general not of degree �n and,
in particular, it is not the same as ϕ. Yet, to attack SIDH, the isogeny needs to
be of the correct degree and should also have the correct action on the torsion
points.

The secret isogenies in SIDH are of degree approximately
√

p. However, a
pair of random supersingular elliptic curves over Fp2 is unlikely to be connected
by an isogeny of degree significantly smaller than

√
p. In [12] the authors leverage

this observation to recover the sought isogeny given the endomorphism rings of
E1 and E2 as follows.

Given a connecting ideal I for the endomorphism rings, the authors compute
a Minkowski reduced basis which is used to recover an element α ∈ I of minimal
norm. By [18, Lemma 5], the ideal I ′ := Iα/Norm(I) is another ideal connecting
O1 and O2 of minimal norm, Norm(α). Then, one can compute the isogeny
E1 → E2 of degree Norm(α) corresponding to this ideal using Vélu’s formulae.
If the shortest isogeny between E1 and E2 is indeed of degree �n, this algorithm
allows to recover such an isogeny of correct degree from the endomorphisms. The
experimental results in [12] suggest that, by trying relatively few small elements
α in the previous algorithm, one recovers an isogeny that can be used to attack
SIDH with overwhelming probability.

Clearly, the approach outlined above relies crucially on the fact that the
degree of the isogeny one wants to recover is among the smallest possible degrees
of isogenies connecting E1 and E2. In schemes that do not use secret isogenies
of relatively small degree (e.g., B-SIDH [5] or SÉTA [8]), the GPST approach is
infeasible.

3 Computing Isogenies Using Torsion Information

In this section, we describe an algorithm to evaluate non-smooth degree isoge-
nies; and an algorithm to compute a secret isogeny φ : E1 → E2 of degree N1

between supersingular elliptic curves, provided that certain torsion images and
the endomorphism rings of E1 and E2 are known.

3.1 Evaluating Non-smooth Degree Isogenies

In this subsection, we provide an algorithm for the following problem.

Task 3.1. Let E1 and E2 be two curves with given endomorphism rings O1

and O2 respectively. Let I be an O1-left and O2-right ideal of norm N1 and let
P ∈ E1. Evaluate φI(P), where φI is the isogeny corresponding to the ideal I.

150 T. B. Fouotsa et al.

Remark 3.2. The isogeny φI corresponding to the left ideal I is only unique up to
post-composition with isomorphisms. Here E2 is a prescribed curve so one has
only potential issues with automorphisms of E2. The number of automorphisms
of E2 can be bounded by a constant (in most cases it is actually 2), so one has
some slight amibguity in the end result of Task 3.1 which will eventually result
in a constant overhead every time this subroutine is called.

To solve this task, we extend an algorithm due to Petit and Lauter [24, Algorithm
3] which evaluates endomorphisms. Note that a solution to Task 3.1 evaluates
isogenies of non-smooth degree between curves with known endomorphism rings.

Petit-Lauter Algorithm [24, Alg. 3]: Let (E1,O1) denote a supersingular
curve and its endomorphism ring, and let w ∈ O1. In order to evaluate the
endomorphism φO1w on a point P ∈ E1, the algorithm by Petit and Lauter
uses a curve (E0,O0) whose endomorphisms can be efficiently evaluated, e.g.
the curve with j-invariant 1728 (see Example 2.1). The algorithm proceeds as
follows.

Let {w1, w2, w3, w4} be a basis of O0 and let {φ1, φ2, φ3, φ4} be the corre-
sponding basis of End(E0). The core idea of the algorithm is to use the KLPT
algorithm to compute a powersmooth isogeny ϕ : E1 → E0 of degree N .

Then, we have NO1 ⊂ O0 and thus Nw ∈ O0. For w = a1w1+a2w2+a3w3+a4w4
N

this implies

φwO1 = ϕ−1 ◦ a1φ1 + a2φ2 + a3φ3 + a4φ4

N
◦ ϕ,

where ϕ−1 := 1
deg ϕ ϕ̂. Since all the isogenies on the right-hand side can be

evaluated efficiently, this allows to evaluate φwO1 .

Solving Task 3.1: Let (E2,O2) be a supersingular elliptic curve with its endo-
morphism ring, let I be an O1-left and O2-right ideal of non-smooth norm and
let P ∈ E1. We would like to evaluate the isogeny φI corresponding to the ideal
I at the point P .

Using the KLPT algorithm, we compute an O1-right and O2-left ideal J
whose smooth norm is coprime to that of I. Then, the ideal IJ represents an
endomorphism w ∈ O1 of E1. The element w ∈ O1 can be recovered by comput-
ing the shortest vector in IJ . We obtain IJ = wO1 for some w ∈ O1. Using [24,
Algorithm 3], we evaluate Q = φwO1(P), and compute φI(P) = φ−1

J (Q). We
summarize the steps in Algorithm 1.

Lemma 3.3. Assuming GRH, Algorithm 1 runs in polynomial time.

Proof. The endomorphism rings of the curves E0, E1 and E2 are known. For
this case, Wesolowski gave a polynomial-time algorithm to compute a connecting
smooth ideal in polynomial time assuming only GRH [34]. Previously, a similar
(faster) polynomial-time algorithm, KLPT [18], was already known for this task,
but it relies on heuristics. Thus, Steps 1 and 2 run in polynomial time.

The ideal I (O1-left and O2-right) and J (O1-right and O2-left) have coprime
norms, hence the two-sided O1 ideal IJ corresponds to a non trivial endomor-
phism w ∈ O1 of E1 that can be recovered by computing a Minkowski reduced

On the Isogeny Problem with Torsion Point Information 151

Algorithm 1: Evaluating non-smooth degree isogenies
Input: Elliptic curves E1, E2 with endomorphism rings O1, O2 and an O1-left

and O2-right ideal I together with a point P ∈ E1, an elliptic curve E0

such that its endomorphism ring O0 is generated by endomorphisms
φ1, φ2, φ3, φ4 that can be evaluated efficiently.

Output: φI(P).
1 Compute an O1-right and O2-left ideal J whose smooth norm is coprime to that

of I using Wesolowski’s algorithm [34] (or KLPT);
2 Compute an O1-left and O0-right ideal K of powersmooth norm N using

Wesolowski’s algorithm (or KLPT);
3 Set IJ = wO1 for some w ∈ O1 and find integers a1, a2, a3 and a4 such that

Nw = a1w1 + a2w2 + a3w3 + a4w4;

4 Evaluate Q = φIJ(P) =
φ−1
K

◦(a1φ1+a2φ2+a3φ3+a4φ4)◦φK(P)

N
using [24, Alg. 3];

5 return φ−1
J (Q)

basis of IJ . For lattices up to dimension 4, a Minkowski reduced basis can be
computed in polynomial time [23]. The integers a1, a2, a3 and a4 are obtained
by rewriting the quaternion Nw as an element of O0. Therefore, Step 3 runs in
polynomial time. By hypothesis, the isogenies φ1, φ2, φ3 and φ4 can be evaluated
efficiently. The ideals K and J have smooth norm, hence the isogenies φK , φ−1

K

and φ−1
J have smooth degree and can also be evaluated efficiently. It follows that

Step 4 and Step 5 run in polynomial time as well. ��

3.2 Main Algorithm

Next, we generalise Algorithm 2 of [12]. In [12], an isogeny φ between two curves
E1 and E2 with known endomorphism rings O1 and O2 is computed, if its degree
is minimal (i.e., φ is the isogeny of smallest degree connecting E1 and E2). The
algorithm in [12] applies to the SIDH setting where the degree of the secret
isogenies are minimal with non-negligible probability (or otherwise at least of
particularly small degree). Meanwhile, the torsion point information available in
SIDH-like schemes is not used at all.

We will show in this section how the torsion point information in SIDH-like
schemes can be exploited together with the knowledge of endomorphism rings
to compute secret isogenies of arbitrary (larger but fixed) degree.

The strategy is as follows. Let φ : E1 → E2 be a secret isogeny, let P , Q
be a basis of E1[N2] and let φ(P), φ(Q) be the torsion information provided in
SIDH-like schemes. Let I(O1,O2) be a connecting ideal between the maximal
orders O1 and O2. Instead of solving for a minimal norm element of the ideal
I(O1,O2) as in [12], we compute an LLL-reduced basis {ψ1, ψ2, ψ3, ψ4} of I.

Using Algorithm 1, the isogenies ψi, i = 1, . . . , 4, can be evaluated at the
points P and Q. Next, we want to write φ in terms of our LLL-reduced basis,
i.e. we want to find (x1, . . . , x4) ∈ Z

4 such that

φ = x1ψ1 + x2ψ2 + x3ψ3 + x4ψ4, (1)

152 T. B. Fouotsa et al.

Clearly, recovering xi allows to compute the secret isogeny φ.
Note that Eq. 1 implies in particular

4∑

i=1

xiψi(P) = φ(P) and
4∑

i=1

xiψi(Q) = φ(Q). (2)

To compute x1, x2, x3 and x4, we first prove that a solution to Eq. 2 is unique
modulo N2. Then, we use simple linear algebra methods to recover it. Finally,
we will show that knowing the xi modulo N2 is enough to recover them exactly
(as integers).

Lemma 3.4. Let E1, E2 be supersingular elliptic curves over Fp2 and let P,Q
be a basis of E1[N2]. Let ψ1, ψ2, ψ3, ψ4 be a Z-basis of Hom(E1, E2). The system
of linear equations modulo N2 corresponding to

4∑

i=1

xiψi(P) = φ(P) and
4∑

i=1

xiψi(Q) = φ(Q)

has a unique solution (x1, x2, x3, x4) ∈ (Z/N2Z)4.

Proof. Let P ′, Q′ be a basis of E2[N2]. Every isogeny φ in Hom(E1, E2) can be

identified with a matrix
(

a b
c d

)
∈ M2(Z/N2Z) by writing its images on E1[N2]

as follows
φ(P) = aP ′ + cQ′, φ(Q) = bP ′ + dQ′.

Let A =
(

a b
c d

)
be a matrix in M2(Z/N2Z). First, we prove that for any matrix

A, there exists an isogeny φ ∈ Hom(E1, E2) such that representation of φ is A.
Let ψ : E1 → E2 be an isogeny such that the degree of ψ is coprime to

N2. Note that such an isogeny exists as the �-isogeny graph is connected for
any prime �. Let M be the matrix corresponding to ψ. Since the degree of ψ is
coprime to N2, it corresponds to an invertible matrix in M2(Z/N2Z).

It is known (see [33, Theorem 42.1.9.]) that End(E1)/N2 End(E1) is isomor-
phic to M2(Z/N2Z) (the injection is clear, surjectivity is the key result). Note
that the isomorphism depends on a choice of basis of E1[N2]. Consider the iso-
morphism corresponding to the basis P,Q. Then, there exists an endomorphism
θ ∈ End(E1) whose matrix representation is AM−1. This implies that the matrix
representation of φ = θ ◦ ψ is AM−1M = A, i.e. there exists an isogeny from E0

to E1 that is represented by the matrix A.
Clearly,

∑4
i=1 xiψi and

∑4
i=1 yiψi are represented by the same matrix if

xi ≡ yi (mod N2) for i = 1, . . . , 4. Thus, there are at most N4
2 = |(Z/N2Z)4|

different matrices that one can obtain.
Now, the Lemma follows by a simple counting argument. Since every matrix

in M2(Z/N2Z) is represented for an isogeny, every matrix must uniquely corre-
spond to a sum of the form

∑4
i=1 xiψi modulo N2. Consequently, if a matrix

has two different representations of the form
∑4

i=1 xiψi, then they are the same
modulo N2 which finishes the proof. ��

On the Isogeny Problem with Torsion Point Information 153

Remark 3.5. Essentially the main result of the proof is that Hom(E1, E2) modulo
N2 is isomorphic to M2(Z/N2Z) as a Z/N2Z-module [30]. Informally, the key
idea is that Hom(E1, E2) is a left ideal in End(E1), hence it will be a left ideal in
M2(Z/N2Z) modulo N2. Since isogenies between E1 and E2 of degree coprime
to N2 exist, this left ideal will contain invertible matrices, hence it must be the
entire matrix ring.

Now we provide details on how to recover x1, x2, x3, x4. Given ψi(P), ψi(Q)
for i = 1, 2, 3, 4 and φ(P), φ(Q), where {ψ1, ψ2, ψ3, ψ3} is the LLL-reduced basis
of Hom(E1, E2), we would like to compute (x1, · · · , x4) ∈ (Z/N2Z)4 such that

4∑

i=1

xiψi(P) = φ(P) and
4∑

i=1

xiψi(Q) = φ(Q).

Note that N2 is a smooth integer and that φ(P) and φ(Q) form a basis
of E2[N2] as deg(φ) and N2 are coprime. For i = 1, 2, 3, 4, we can compute the
integers ai, bi, ci, di ∈ Z/N2Z such that ψi(P) = [ai]φ(P)+[bi]φ(Q) and ψi(Q) =
[ci]φ(P) + [di]φ(Q) by using the Weil pairing and solving discrete logarithms in
a group of smooth order. Now, the integers (x1, · · · , x4) ∈ (Z/N2Z)4 satisfy

φ(P) =

[
4∑

i=1

xiai

]

φ(P) +

[
4∑

i=1

xibi

]

φ(Q)

and

φ(Q) =

[
4∑

i=1

xici

]

φ(P) +

[
4∑

i=1

xidi

]

φ(Q).

We obtain

(
1 0 0 1

)
=

(
x1 x2 x3 x4

) ·

⎛

⎜
⎜
⎝

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

⎞

⎟
⎟
⎠ .

By Lemma 3.4, there exists a unique solution
(
x1 x2 x3 x4

)
to the previous

equation. Hence the matrix

M :=

⎛

⎜
⎜
⎝

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

⎞

⎟
⎟
⎠

is invertible and the solution is given by
(
x1 x2 x3 x4

)
=

(
1 0 0 1

) · M−1. The
latter operation corresponds to adding the first and the fourth row of M−1. We
summarize this process in Algorithm 2.

Lemma 3.6. Algorithm 2 is correct and runs in polynomial time provided that
N2 is smooth.

154 T. B. Fouotsa et al.

Algorithm 2: Computing the linear system
Input: ψi(P) and ψi(Q) for i = 1, . . . , 4, where ψi are a Z-basis of

Hom(E1, E2); φ(P) and φ(Q) of smooth order N2.
Output: x1, x2, x3, x4 such that

∑4
i=1 xiψi(P) = φ(P), and∑4

i=1 xiψi(Q) = φ(Q).
1 for i = 1, · · · , 4 do
2 Compute ai, bi, ci, di ∈ Z/N2Z such that ψi(P) = [ai]φ(P) + [bi]φ(Q) and

ψi(Q) = [ci]φ(P) + [di]φ(Q);

3 Set M to be the 4 × 4 matrix whose rows are
(
ai bi ci di

)
for i = 1, 2, 3, 4;

4 Compute the inverse matrix M−1 of M ;

5 Set
(
x1 x2 x3 x4

)
to be the sum of the first and the fourth rows of M−1;

6 return x1, x2, x3, x4 such that |xi| < N2/2.

Proof. Follows from the previous discussion. ��
Lemma 3.7 gives a condition under which the solution computed in Algo-

rithm 2 gives a solution to Eq. 1.

Lemma 3.7. Let d := min{deg(ϕ) |ϕ : E1 → E2 is isogeny}. If N1
N2

< d
16 ,

then given the solution x1, . . . , x4 to the system of linear equations modulo N2

returned by Algorithm 2
∑4

i=1 xiψi(P) = φ(P),
∑4

i=1 xiψi(Q) = φ(Q), we have
φ =

∑4
i=1 xiψi in Hom(E1, E2).

Proof. By Lemma 2.6, setting δ = 0.75 and n = 4, we have that φ =
∑4

i=1 γiψi

where |γi| ≤ 8 deg(φ)
deg(ψi)

≤ 8N1
d . It follows that |γi| ≤ 8N1

d < N2
2 since N1

N2
< d

16 by
hypothesis.

The solution (x1, x2, x3, x4) returned by Algorithm 2 satisfies |xi| < N2
2 for

i = 1, 2, 3, 4. Moreover, by Lemma 3.4, this solution is unique modulo N2. Thus,
φ =

∑4
i=1 xiψi in Hom(E1, E2). ��

The entire process of computing isogenies of a specific but arbitrary degree
between two supersingular curves with known endomorphism ring is summarised
in Algorithm 3.

Finally, we prove that Algorithm 3 succeeds in polynomial time.

Theorem 3.8. Let d := min{deg(φ) |φ : E1 → E2 is isogeny}. Assuming GRH,
Algorithm 3 solves Problem 1.1 in polynomial time, whenever N1

N2
< d

16 .

Proof. Correctness of the algorithm follows from Lemma 3.7 and the preceding
discussion. We are left to show the polynomial running time. Step 1 could use
the KLPT algorithm [18] or in fact the algorithm due to Kirschmer–Voight [17],
as the connecting ideal does not need to have a smooth norm. This runs in
polynomial time (to avoid heuristics we can also use the algorithm from [34]).
Step 2 is the LLL lattice reduction algorithm which also runs in polynomial
time. Step 3 and Step 4 run in polynomial time by Lemma 3.3 and Lemma 3.6
respectively. ��

On the Isogeny Problem with Torsion Point Information 155

Algorithm 3: Computing isogeny with torsion-point information
Input: Supersingular elliptic curves E1, E2 with known endomorphism rings

O1, O2 which are connected by an isogeny φ of degree N1 and
φ(P), φ(Q), where P, Q are a basis of E1[N2], such that N1

N2
< d

16
.

Output: φ.
1 Compute a basis of an O1-left and O2-right ideal I;
2 Compute an LLL-reduced basis ψ1, ψ2, ψ3, ψ4 of I;
3 Compute ψi(P), ψi(Q) using Algorithm 1;
4 Use Algorithm 2 to solve for |xi| < N2/2 such that

∑4
i=1 xiψi(P) = φ(P),

∑4
i=1 xiψi(Q) = φ(Q);

5 Compute isogeny from the relation φ =
∑4

i=1 xiψi;
6 return φ

Remark 3.9. We could also have required the condition N1
N2

≤ d
16 and in that

case we get the condition that |xi| ≤ N2/2. However, when N2 is even and xi

is congruent to N2/2, then the lift to the above range is not unique (as −N2/2
and N2/2 represent the same residue class). This is not issue for Algorithm 3 as
one will have multiple candidates (16 of them in the worst case) for ψ that can
be tested. By looking at the degrees, the correct one can be chosen efficiently.
More generally, one can actually relax the statement of Theorem 3.8 further by
allowing non-unique lifts and adding a check step at the end of Algorithm 3.

Remark 3.10. As was shown in Lemma 3.7, Algorithm 3 requires an amount of
torsion point information that depends on the degree d of the shortest isogeny
between the supersingular elliptic curves E1 and E2.

For many applications of cryptographic interest balanced parameters are used
where N1 ≈ N2. Taking N1

N2
≈ 1, the procedure above works whenever the two

curves are not connected by an isogeny of degree smaller than 16. This can be
checked easily with an exhaustive search.

Remark 3.11. One does not use the fact that N1 is smooth in Algorithm 3. If
one wants to retrieve the secret isogeny as a rational map (as a composition of
small degree maps), then this is still important. However, if one wants only to be
able to evaluate the secret isogeny at any point, then this can be accomplished
by Algorithm 3 even if N1 is not smooth.

3.3 Example

We will illustrate the attack with an example.
Consider the prime p = 83701957499, where we have p + 1 = 22 · 314 · 54 · 7.

Let B be the quaternion algebra ramified at p and ∞ and generated over the
rationals by i, j, k where i2 = −p, j2 = −1, and k = ij. Fix the finite field Fp2

where α2 = −1 generates Fp2 over Fp.

156 T. B. Fouotsa et al.

Consider the elliptic curve given by E0 : y2 = x3 + x which has j-invariant
1728. The endomorphism ring of E0 is generated by:

1, j,
j + k

2
,
1 + i

2
.

We let the secret isogeny be a 314-isogeny θ : E0 → E. We use θ to recover the
endomorphism ring of E which is generated by

5159993 + i + 10319986j + 11800766447346k

9565938
,
2i + 6291065j + 7411685041437k

9565938
,
3j + 196249k

2
, 1594323k.

Note that in the real attack, we have made the assumption that End(E) is
known, so we have only used the secret to calculate a known quantity.

Now, using the knowledge of both endomorphism rings, we are able to com-
pute a connecting ideal between them and also compute the reduced basis of the
ideal to be

227049 + i + 154612j

2
,
154612 − 227049j + k

2
,
121127 − 9i + 4995744j + 14k

2
,
4995744 − 14i − 121127j − 9k

2
.

We can interpret these endomorphisms and map the generators of the E0[54]
through them.

We have chosen the points

P5 = (75854242840α + 62002351922, 51107649030α + 19190692821),
Q5 = (17857458337α + 504604508, 77775481527α + 25718537048)

to be the generators of E0[54].
In particular, by naming the reduced basis elements as ψ′

1, ψ
′
2, ψ

′
3, ψ

′
4, we have

that

ψ′
1(P5) = (9049577476α + 26838535531, 9532248787α + 18861270144)

ψ′
1(Q5) = (14085392798α + 75272963133, 35152660085α + 3705843319)

ψ′
2(P5) = (54148936824α + 29574813, 27904476482α + 79581351851)

ψ′
2(Q5) = (6218706354α + 14437916419, 19897519544α + 26853032937)

ψ′
3(P5) = (27253519435α + 63921648196, 55371710596α + 3587102479)

ψ′
3(Q5) = (6221393886α + 23453138168, 81414672111α + 63571818133)

ψ′
4(P5) = (20904892135α + 45099774747, 32347928248α + 14718113311)

ψ′
4(Q5) = (16837240041α + 11444980635, 5815630261α + 82050564219)

Furthermore, we have the images of P5 and Q5 through the secret isogeny θ
as given as part of the problem. Note that these ψi are not the same as the ones
defined in the previous section as they are endomorphisms of E0. However, they
are just the original ψi composed with the isogeny between E1 and E0 coming
from KLPT. We will denote the actual isogenies corresponding to them by ψi.
They can be evaluated at P5 and Q5 by applying the connecting isogeny to them
and multiplying it with the inverse of its degree modulo 54. These are points in

On the Isogeny Problem with Torsion Point Information 157

E, and in particular, they are in the subgroup E[54]. This allows us to express
them in terms of θ(P5) and θ(Q5) which we are given.

This results in the following 4 × 4 matrix
⎛

⎜
⎜
⎝

222 128 484 474
311 363 337 12
184 477 307 574
344 566 191 132

⎞

⎟
⎟
⎠

whose first row represents the four coefficients that expresses ψ1(P5) as a linear
combination of θ(P5) and θ(Q5), and ψ1(Q5) as a linear combination of θ(P5)
and θ(Q5). For example,

ψ2(Q5) = [337]θ(P5) + [12]θ(Q5).

Inverting this matrix and summing the first and fourth rows allow us to
recover the coefficients xi’s providing the expression of the secret isogeny as a
linear combination of ψ1, ψ2, ψ3 and ψ4. The result of the computation is that

θ = 14ψ1 + 9ψ2 + ψ4.

One can check that this is correct without actually computing the ψi by com-
puting that the degree of this linear combination is indeed 314 (as the action on
the 54-torsion is already correct).

Remark 3.12. As one can see in this example, the secret isogeny is not the
isogeny between E0 and E of smallest degree, hence the algorithm from [12]
would not have been sufficient for finding θ. However, the secret isogeny in this
setting is still the smallest degree isogeny with the given action on the N2-torsion.

4 Relevance to Isogeny-Based Cryptography

We use this section to summarize how Algorithm 3 impacts different isogeny-
based constructions.

First, we recall the current state-of-the-art regarding endomorphism ring
computations as it is clearly the most time consuming part when attacking an
isogeny-based cryptosystem using the reduction given by this paper.

Given a supersingular elliptic curve E defined over a finite field of charac-
teristic p, the problem is to find End(E). The first algorithm to solve this is
described in Kohel’s thesis [19] and was later improved by Delfs-Galbraith [9]
to a running time of Õ(p1/2). The most recent algorithm is due to Eisenträger,
Hallgren, Leonardi, Morrison, and Park [10] which runs in time O(log(p)2p1/2).
The best known quantum algorithm is due to Biasse, Jao and Sankar [2] and
has a running time of Õ(p1/4).

The isogeny-based community for a long time considered the meet in the
middle attack (MiTM) [11] as best attack when addressing the security level of

158 T. B. Fouotsa et al.

isogeny-based schemes. Meanwhile, this MiTM attack requires exponential stor-
age, hence may be unrealistic. Recently, [1] and [4] considered the van Oorschot-
Wiener (vOW) parallel collision finding algorithm [31] for the isogeny computa-
tion problem. The vOW collision search allows for a space-time trade-off in the
generic MiTM, leading to a larger time complexity when limited storage is used.

Estimating the security level of isogeny-based schemes using vOW, suggests
that one can reduce the size of parameters that where previously fixed con-
sidering the generic MiTM attack with unrealistic memory requirements. For
an SIDH-like scheme in which the secret isogenies have degree roughly N , the
scheme is secured against the MiTM attack if 22λ < N , where λ is the desired
security level. When considering the vOW attack, N may be considerably smaller
compared to 22λ. See for instance a recent proposal for the reduction of param-
eters in SIKE by Cotello, Longa, Naehrig, Renes, and Virdia [21].

However, one also needs to take the attack into account where the endomor-
phism ring of curves is computed and then Algorithm 3 is used to attack the
secret isogeny. Given the classical and quantum complexity O(log(p)2p1/2) and
Õ(p1/4) respectively, this implies that the parameter p must also satisfy 22λ < p.

The complexity of our attack applied against SIDH instances is similar to
the attack by Galbraith et al. [12]. It does not effect parameter choices, as SIDH
isogenies are of small degrees and thus pathfinding algorithms are more efficient.

Our algorithm has more impact when isogeny degrees are larger relative to
the size of the underlying finite field Fp (as the complexity of our algorithms
depends on p and not on N1).

For B-SIDH, the proposed prime p is roughly 22λ. Provided the new analysis
of the vOW collision search attack in [21], one may be tempted to propose smaller
B-SIDH primes in order to improve on B-SIDH’s efficiency. However, doing so
would make the scheme vulnerable to attacks that compute endomorphism rings
and use the results of this paper. This is because p would be smaller than 22λ.

Hence, one consequence of this paper is that the current choice of the param-
eter p in B-SIDH is tight. Furthermore, one can also interpret this result differ-
ently. Namely, any SIDH-like construction has to use parameters at least as
large as B-SIDH, otherwise they become vulnerable. In other words, proposing
schemes with longer isogeny walks than in B-SIDH does not provide any secu-
rity benefit. This is not unexpected, as walks in B-SIDH have lengths which are
comparable to the diameter of the supersingular isogeny graph.

Another interpretation of our result is that when torsion point images are
provided, then the problem of finding one isogeny between two supersingular
elliptic curves becomes equivalent to finding an isogeny of a specific degree for
a wide range of parameters.

5 Conclusion

In this paper, we showed how to compute an isogeny of a specific degree between
two supersingular elliptic curves, given their endomorphism rings and the images
of some torsion points under the isogeny. This can be seen as an extension of an

On the Isogeny Problem with Torsion Point Information 159

algorithm due to Galbraith et al. [12] which did not use torsion point information
but required the isogeny to be of small degree.

As a consequence, this paper allows us to estimate the security of schemes
like B-SIDH, SÉTA and SIDH instantiated with larger degree isogenies, when
considering an attack that computes endomorphism rings. In particular, our
work provides a significant speed-up to existing quantum attacks on B-SIDH. We
stress that this work does not allow to break any of the recommended parameter
sets. However, our work shows that the prime chosen in B-SIDH cannot be
lowered for the given security levels and also implies that any (reasonable) scheme
that provides torsion point images has to use a 2λ-bit prime for security level λ.

Acknowledgements. We would like to thank Craig Costello and Christophe Petit for
useful comments on a previous draft. Moreover, we thank the reviewers at PKC 2021
whose feedback helped improve the presentation of the paper. Péter Kutas and Simon-
Philipp Merz were supported by EPSRC grants EP/S01361X/1 and EP/P009301/1
respectively. Further, Péter Kutas was supported by the Ministry of Innovation and
Technology and the National Research, Development and Innovation Office within the
Quantum Information National Laboratory of Hungary.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domı́nguez, J.J., Menezes, A., Rodŕıguez-
Henŕıquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: IACR Cryptol. ePrint Arch. (2018)

2. Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing isoge-
nies between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 25

3. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

4. Costello, C., Longa, P., Naehrig, M., Renes, J., Virdia, F.: Improved classical crypt-
analysis of SIKE in practice. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020. LNCS, vol. 12111, pp. 505–534. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45388-6 18

5. Costello, C.: B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp.
440–463. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 15

6. Couveignes, J.-M.: Hard homogeneous spaces (1999). Preprint at https://eprint.
iacr.org/2006/291

7. De Feo, L.: Mathematics of isogeny based cryptography. arXiv preprint
arXiv:1711.04062 (2017)

8. de Saint Guilhem, C.D., Kutas, P., Petit, C., Silva, J.: SéTA: supersingular encryp-
tion from torsion attacks. IACR Cryptol. ePrint Arch., 1291 (2019)

9. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Cryptogr. 78(2), 425–440 (2016)

10. Eisentraeger, K., Hallgren, S., Leonardi, C., Morrison, T., Park, J.: Computing
endomorphism rings of supersingular elliptic curves and connections to pathfinding
in isogeny graphs. arXiv preprint arXiv:2004.11495 (2020)

https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/978-3-030-45388-6_18
https://doi.org/10.1007/978-3-030-45388-6_18
https://doi.org/10.1007/978-3-030-64834-3_15
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
http://arxiv.org/abs/1711.04062
http://arxiv.org/abs/2004.11495

160 T. B. Fouotsa et al.

11. Galbraith, S.: Constructing isogenies between elliptic curves over finite fields. LMS
J. Comput. Math. 2, 118–138 (1999)

12. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 212–219 (1996)

14. Jao, D., et al.: SIKE: Supersingular isogeny key encapsulation (2017). http://sike.
org/

15. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

16. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 2

17. Kirschmer, M., Voight, J.: Algorithmic enumeration of ideal classes for quaternion
orders. SIAM J. Comput. 39(5), 1714–1747 (2010)

18. Kohel, D., Lauter, K., Petit, C., Tignol, J.-P.: On the quaternion �-isogeny path
problem. LMS J. Comput. Math. 17(A), 418–432 (2014)

19. Kohel, D.R.: Endomorphism rings of elliptic curves over finite fields. Ph.D thesis,
University of California, Berkeley (1996)

20. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 26, 1:515–534 (1982)

21. Longa, P., Wang, W., Szefer, J.: The cost to break SIKE: a comparative hardware-
based analysis with AES and SHA-3. Cryptology ePrint Archive, Report 2020/1457
(2020). https://eprint.iacr.org/2020/1457

22. National Institute for Standards and Technology (NIST). Post-quantum
crypto standardization (2016). https://csrc.nist.gov/projects/post-quantum-
cryptography

23. Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. In:
Buell, D. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 338–357. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24847-7 26

24. Petit, C., Lauter, K.: Hard and easy problems for supersingular isogeny graphs.
Cryptology ePrint Archive, Report 2017/962 (2017). https://eprint.iacr.org/2017/
962

25. Pizer, A.K.: Ramanujan graphs and Hecke operators. Bull. Am. Math. Soc. 23(1),
127–137 (1990)

26. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive 2006, 145 (2006)

27. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

28. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-09494-6

29. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

30. Tate, J.: Endomorphisms of abelian varieties over finite fields. Invent. Math. 2,
134–144 (1966)

https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
http://sike.org/
http://sike.org/
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://eprint.iacr.org/2020/1457
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-540-24847-7_26
https://eprint.iacr.org/2017/962
https://eprint.iacr.org/2017/962
https://doi.org/10.1007/978-0-387-09494-6

On the Isogeny Problem with Torsion Point Information 161

31. Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic
applications. J. Cryptol. 12(1), 1–28 (1999)

32. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A 273,
305–347 (1971)

33. Voight, J.: Quaternion algebras. preprint 13, 23–24 (2018)
34. Wesolowski, B.: The supersingular isogeny path and endomorphism ring problems

are equivalent. Cryptology ePrint Archive, Report 2021/919 (2021). https://ia.cr/
2021/919

https://ia.cr/2021/919
https://ia.cr/2021/919

MPC and Secret Sharing

Reusable Two-Round MPC from LPN

James Bartusek1(B), Sanjam Garg1,2, Akshayaram Srinivasan3,
and Yinuo Zhang1

1 University of California, Berkeley, USA
{sanjamg,yinuo}@berkeley.edu

2 NTT Research, Sunnyvale, USA
3 Tata Institute of Fundamental Research, Mumbai, India

akshayaram.srinivasan@tifr.res.in

Abstract. We present a new construction of maliciously-secure, two-
round multiparty computation (MPC) in the CRS model, where the
first message is reusable an unbounded number of times. The security of
the protocol relies on the Learning Parity with Noise (LPN) assumption
with inverse polynomial noise rate 1/n1−ε for small enough constant ε,
where n is the LPN dimension. Prior works on reusable two-round MPC
required assumptions such as DDH or LWE that imply some flavor of
homomorphic computation. We obtain our result in two steps:

– In the first step, we construct a two-round MPC protocol in the silent
pre-processing model (Boyle et al. Crypto 2019). Specifically, the par-
ties engage in a computationally inexpensive setup procedure that
generates some correlated random strings. Then, the parties commit
to their inputs. Finally, each party sends a message depending on
the function to be computed, and these messages can be decoded to
obtain the output. Crucially, the complexity of the pre-processing
phase and the input commitment phase do not grow with the size
of the circuit to be computed. We call this multiparty silent NISC
(msNISC), generalizing the notion of two-party silent NISC of Boyle
et al. (CCS 2019). We provide a construction of msNISC from LPN
in the random oracle model.

– In the second step, we give a transformation that removes the pre-
processing phase and use of random oracle from the previous proto-
col. This transformation additionally adds (unbounded) reusability
of the first round message, giving the first construction of reusable
two-round MPC from the LPN assumption. This step makes novel
use of randomized encoding of circuits (Applebaum et al., FOCS
2004) and a variant of the “tree of MPC messages” technique of
Ananth et al. and Bartusek et al. (TCC 2020).

1 Introduction

Consider a scenario where a consortium of oncologists wants to compute several
statistical tests on the confidential genomic data of their patients, while pre-
serving the privacy of their patients. To accomplish this, each oncologist first
publishes an encryption of their private database on their website. Next, given
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 165–193, 2022.
https://doi.org/10.1007/978-3-030-97121-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_7

166 J. Bartusek et al.

a proposed hypothesis F , the oncologists would like to figure out if this hypoth-
esis is consistent with their joint databases. They would like to achieve this by
sending a single message (that could grow with the size of the circuit computing
F) to each other. Can they achieve this? What if they want to continue com-
puting multiple hypotheses on the same data? Can they perform multiple tests
at varying points in time while sending just one additional message for every
new test? In other words, can they reuse the published encryptions of their data
across multiple tests?

This scenario is a special case of the more general problem of constructing
reusable two-round multiparty computation, whose feasibility was established
in the work of Garg et al. [GGHR14] assuming the existence of indistinguisha-
bility obfuscation [BGI+01,GGH+13]. Starting with this work, an important
line of research has been to weaken the computational assumptions required for
constructing this primitive. The work of Mukherjee and Wichs [MW16] and a
recent work of Ananth et al. [AJJM20] gave a construction from the Learning
with Errors assumption [Reg05]. The work of Benhamouda and Lin [BL20] con-
structed such a protocol from standard assumptions on bilinear maps and the
work of Bartusek et al. [BGMM20] provided a construction based on the DDH
assumption.

Despite significant progress, our understanding of the assumptions neces-
sary to realize two-round MPC protocols with reusability still lags behind the
assumptions known to be sufficient for two-round MPC without reusability. In
particular, while we know two-round MPC from any two-round OT [BL18,
GS18a], known constructions of two-round MPC with reusability seem to
require assumptions that support homomorphic computation—namely, LWE
and DDH (which are known to imply various flavours of homomorphic secret
sharing [BGI16]). In particular, these assumptions are known to imply some
notion of communication-efficient1 secure computation for a rich class of func-
tions [MW16,BGI16,DHRW16]. In this work, we ask:

Can we realize reusable two-round MPC from assumptions that are not
known to imply communication-efficient secure computation?

1.1 Our Results

We answer the above question in the affirmative by constructing a reusable two-
round MPC protocol from the LPN assumption over binary fields with inverse
polynomial noise rate 1/n1−ε for small enough constant ε, where n is the LPN
dimension.

Our construction proceeds in two steps:

– Multiparty Silent NISC: We first consider the problem of constructing a
two-round MPC protocol where the first round message is succinct (i.e., the

1 By communication efficiency, we mean that the communication cost of the protocols
do not grow with the circuit size of the functionality to be computed.

Reusable Two-Round MPC from LPN 167

complexity of computing the first round message does not grow with the cir-
cuit size) in the silent pre-processing model [BCG+19b]. To give more details,
there is a pre-processing phase run by a dealer that generates correlated ran-
dom strings for each party. In the first round, the parties send a commitment
to their inputs using the correlated randomness. In the second round, the
parties send a message that can be later decoded to obtain the output of
the function. For efficiency, we require the complexity of the pre-processing
phase and the input commitment phase to be independent of the circuit size
and only the second round computation can depend on this parameter. We
call this multiparty silent NISC, and this naturally extends a similar notion
defined by Boyle et al. [BCG+19a] for the two-party case. We give a con-
struction of a multiparty silent NISC protocol in the random oracle model
based on the LPN assumption.

– Reusable Two-Round MPC: In the second step, we transform the above
protocol to a protocol in the CRS model that achieves unbounded reusability
without increasing the number of rounds or requiring stronger assumptions.
As a corollary, we obtain the first construction of reusable two-round MPC
in the CRS model from the LPN assumption.

2 Technical Overview

In this section, we first discuss the notion of multiparty silent non-interactive
secure computation (msNISC), which is a natural extension of the silent NISC
primitive of [BCG+19a] to the multiparty setting. We then give an overview
of our construction of msNISC from the LPN assumption in the random oracle
model. This result mostly follows from a combination of ideas from [GIS18,
BCG+19b], with a few necessary tweaks. Finally, we give an overview of the
transformation from msNISC to reusable two-round MPC. This transformation
forms the heart of our technical contribution.

2.1 Multi-party Silent NISC

In a silent NISC protocol [BCG+19a], two parties begin by interacting in a pre-
processing phase that results in some shared correlated randomness. In addition,
they send to each other encodings of their inputs x and y. So far, all computation
and communication is “small”, i.e. it does not grow with the size of the circuit
C they will eventually want to compute on their inputs. At this point, one party
may publish a single (large) message to the other party, allowing the latter to
learn the value C(x, y). Since all communication before this point was small, the
parties will be required to “silently” expand their correlated randomness into
useful correlations needed for the final non-interactive computation phase.

We naturally extend this interaction pattern to the multi-party setting. We
outline a three-phase approach for computing an m-party functionality.

– Preprocessing phase: A trusted dealer computes correlated secrets {si}i∈[m]

and sends si to party i.

168 J. Bartusek et al.

– Input commitment phase: Party i, using secret si, computes and broadcasts
a commitment ci to its input xi.

– Compute phase: Once a circuit C is known to all parties, they each compute
and broadcast a single message mi.

– Recovery: The protocol is publicly decodable. That is, the messages {mi}i∈[m]

can be combined by any party (inside or outside the system) to recover the
output Y ← C(x1, . . . , xn).

Crucially, we require the computation and communication during the pre-
processing and input commitment phases to only grow as a fixed polynomial in
the input size and the security parameter, and not with the size of C (although
an upper bound on the size of supported circuits may be known during these
phases).

Starting Point: PCG. Based on prior works, we can construct a multi-
party silent NISC protocol using either a multi-key fully-homomorphic encryp-
tion [MW16,DHRW16], or homomorphic secret sharing [BGMM20], or using
a specialized type of witness encryption [BL20,GS17]. However, each of these
approaches make use of assumptions that can support some (limited) form of
homomorphic computation on encrypted data. Further, these protocols have
a fairly inefficient compute phase. For example, the approach of [BGMM20]
requires the parties to compute a PRF homomorphically under a HSS scheme -
this non-black-box use of cryptography will be prohibitively inefficient in
practice.

On the other hand, the works of [BCG+19b,BCG+19a] study methods for
distributing short seeds to two parties which can then be silently and efficiently
expanded into useful two-party correlations under the LPN assumption. For
example, they show how to generate many random oblivious transfer (OT) cor-
relations efficiently via short seeds, and they call the primitive that accomplishes
this a pseudorandom correlation generator (PCG) for OT correlations.

Now, given pairwise random OT correlations between each pair of parties,
[GIS18] shows how to implement the two-round MPC protocol of [GS18a] (which
we refer to as GS18) in a black-box manner. Their approach would fit the tem-
plate of multi-party silent NISC, except that their input commitment phase
would also grow with the size of the circuit, and thus the resulting protocol
would not be “succinct”. In this work, we show how to use the PCG techniques
of [BCG+19b,BCG+19a] in order to generate more sophisticated correlations
that suffice to instantiate GS18 while keeping the input commitment phase inde-
pendent of the circuit to be computed.

A PCG for GS18 Correlations. In [GIS18], the random OT correlations and
first-round messages (which also function as input commitments) are essentially
used to set up certain structured OT correlations that enable the parties to
compute a circuit over their joint inputs with only one additional message. At a
high level, these structured correlations allow parties to each output sequences

Reusable Two-Round MPC from LPN 169

of garbled circuits that communicate with each other in order to implement an
MPC protocol among themselves, though the details of this will not be important
for this discussion. Here, we directly describe the correlation which consists of
pairwise correlations set up between each pair of parties, one acting as a sender
and one as a receiver. The sender gets random OT messages {(mt,0,mt,1)}t∈[T]

and the receiver gets a random string v along with messages {mt,zt
}t∈[T]. Each

zt is not a uniformly random and independent bit, rather, each is computed
as zt = NAND (v[f] ⊕ α, v[g] ⊕ β) ⊕ v[h] for some indices (f, g, h) and constants
(α, β).

As we will see below, one can write what is described so far as a two-party
bilinear correlation. This is good news, since the work of [BCG+19b] constructed
a PCG for two-party bilinear correlations. However, we do not generically make
use of their PCG, for two reasons. First, we will actually require a multi-party
correlation, since each party’s random string v must be shared among all of the
two-party correlations it sets up with each other party. Next, we have a more
stringent requirement on the complexity of expansion. In particular, parties must
use some of their expanded randomness in the input commitment phase, which
must be efficient. We set up the PCG so that parties can obtain some part of the
expanded randomness without expanding the entire set of correlations, which is
computation that would grow with the size of the circuit. Thus, we describe how
to set up the multi-party correlations necessary for GS18 from basic building
blocks. Although our construction and proof follow those of [BCG+19b] very
closely, we give a full description of the scheme in the body for the sake of
completeness.

Now we briefly review the PCG of [BCG+19b,BCG+19a] that produces a
large number of (unstructured) random OT correlations. Fix parameters n′ > n.
The dealer first samples a sparse binary error vector y ∈ F

n′
2 (with a compact

description denoted by ỹ) and a random offset (shift) δ ∈ F2λ . Then, y · δ is
secret shared into shares k0, k1, which are vectors in F

n′
2λ and also have com-

pact descriptions ˜k0,˜k1 (this step requires the use of Distributed Point Func-
tions [GI14]). Finally, (˜k0, ỹ) is given to the receiver, (˜k1, δ) is given to the sender,
and a n′-by-n random binary matrix H is made public. In order to expand
these short seeds into n random OT correlations, the receiver first expands its
compact descriptions into (k0, y) and then computes t0 := k0 · H ∈ F

n
2λ and

z := y · H ∈ F
n
2 , and the sender expands its compact description into k1 and

computes t1 := k1 · H ∈ F
n
2λ . It is easy to check that t0 = t1 + z · δ and thus for

each i ∈ [n], (z[i], t0[i]), (t1[i], t1[i]+ δ) is a correlated random OT instance. The
choice bits z are random due to the LPN assumption. In order to remove the cor-
related offset δ, the parties can use a correlation robust hash function [IKNP03]
or a random oracle, to hash each OT string.

Recall that in our setting, we actually require some structure on the string
z of choice bits. To implement this, we first write each expression zt =
NAND(v[f] ⊕ α, v[g] ⊕ β) ⊕ v[h] as a degree-two equation over F2 whose vari-
ables are entries of v. That is, zt = v[f]v[g] + αv[g] + βv[f] + v[h] + αβ + 1. In
order to obtain these degree-two correlated OT, we follow the construction of

170 J. Bartusek et al.

PCGs for constant-degree relations from [BCG+19b]. In particular, we define
the error vector to be y′ := (1, y) ⊗ (1, y) ∈ F

n′·n′
2 . Same as before, y′ is secret

shared into k0, k1 ∈ F
n′·n′
2λ . Now, the receiver can compute v := y · H and set

z := (1, v) ⊗ (1, v) ∈ F
n·n
2 , and likewise the receiver and sender can compute

vectors t0 := k0 · (H ′ ⊗ H ′) and t1 := k1 · (H ′ ⊗ H ′) respectively, where H ′ is
(

1
H

)

. Both are vectors in F
n·n
2λ , such that for any f, g ∈ [n] and any degree-one

or degree-two monomial v[f]v[g] over the entries of v, there exists an index i such
that (z[i] := v[f]v[g], t0[i]) , (t1[i], t1[i] + δ) is a valid correlated OT. One can then
obtain any degree-two correlated OT by taking appropriate linear combinations.
Correctness of this step crucially relies on the fact that all the “base” correlated
OTs have the same shift δ. After taking the linear combinations, the parties can
still apply a correlation robust hash function to get structured OT correlations
with random sender strings.

In the body, we show that even in the setting where there is one receiver
with a fixed error vector y, but multiple senders with different random offsets δi,
one can still show security via reverse sampleability. In particular, for any one
of n parties, their output correlation can be reverse sampled, given the output
correlations of all other parties.

The Final Protocol. Given ideas from the previous section, we can complete
our description of multiparty silent NISC from LPN in the random oracle model.

In the preprocessing phase, a trusted dealer sets up pairwise structured OT
correlations between each pair of parties as described above. We include a ran-
dom oracle in the CRS, which is used to generate the (large) matrix H and also
used as a correlation robust hash function. In the input commitment phase, we
have parties partially expand their correlated seeds into randomness that may
be used to mask their inputs. Crucially, this step does not require fully expand-
ing their seeds into the entire set of structured correlations that will be used
in the compute phase, so we maintain the “silent” notion. To implement this,
we actually sample two different H1,H2 matrices and two different error vectors

y1, y2 of different sizes, and set v = (y1, y2)
(

H1

H2

)

. As long as each yb has

sufficient error positions, we can still rely on LPN with inverse polynomial error
rate. Finally, in the compute phase, the parties publish GS18 second round mes-
sages computed with respect to their expanded correlations, thus completing the
protocol. Since the GS18 protocol is publicly decodable, so is our protocol.

As a final note, we can remove the random oracle at the cost of having a large
CRS. In particular, given a bound on the size of the circuit to be computed, we
can instantiate the protocol with a CRS that contains the H matrix (note that
the size of this matrix must grow with the number of OT correlations generated
and thus, the size of the circuit to be computed). Although this CRS is large,
it can be reused across any number of input commitment and compute phases
- a property that we take advantage of in the next section, which focuses on a
construction of reusable two-round MPC from LPN. We will also have to replace

Reusable Two-Round MPC from LPN 171

the use of the random oracle as a correlation-robust hash function. As already
observed in [BCG+19b], the role of correlation robust hash function can be
replaced by an encryption scheme which is semantically secure against related-
key attack for the class of linear functions. It is known that such an encryption
scheme can be based on the LPN assumption [AHI11].

2.2 Reusable Two-Round MPC from LPN

We now turn to our main result - a reusable two-round MPC protocol from the
LPN assumption. Our approach takes the multiparty silent NISC protocol from
last section as a starting point and constructs from it a first message succinct
two-round MPC (FMS-MPC). An FMS-MPC protocol satisfies the property
that the size of computation and communication necessary in the first round
only grows with the input size and security parameter, and not with the size of
the circuit to be computed in the second round. The work of [BGMM20] shows
that FMS-MPC implies reusable two-round MPC, so we appeal to their theorem
to finish our construction. Our construction of FMS-MPC proceeds in two steps.

Step 1: Bounded FMS-MPC. In order to convert a multiparty silent NISC
protocol into a two-round MPC, we need to remove the preprocessing phase,
instantiating the dealer’s computation in a distributed manner. A natural app-
roach is to use a two-round MPC (e.g. GS18) to compute the preprocessing and
input commitment phases, and after this is completed, have the parties compute
and send their compute phases messages. However, this results in a three-round
MPC protocol.

To collapse this protocol into two rounds, we use an idea from [BGMM20]
- the two-round MPC which implements the dealer will compute garbled labels
corresponding to the outputs of the preprocessing and input commitment phases,
and in the second round, parties will also release garbled circuits that output
their compute phase messages. Anyone can then combine the garbled inputs and
garbled circuits to learn the entire set of compute phase messages, which will then
allow one to recover the output of the circuit. Since the computation necessary
for computing the preprocessing and input commitment phases is small, the first
round of the resulting protocol is succinct.

However, recall that the multiparty silent NISC constructed in last section
requires a large CRS if instantiated without the use of a random oracle. In an
FMS-MPC, the size of CRS should only depend on the security parameter, not
the circuit size. Thus, we do not quite obtain an FMS-MPC following the above
approach. Rather, we obtain what we call a bounded FMS-MPC, which has a
large (but reusable) CRS whose size grows with the size of the circuit to be
computed. Meanwhile, this MPC protocol is bounded since the size of the CRS
determines the bound on the circuit size that can be supported.

Step 2: From Bounded FMS-MPC to FMS-MPC. Thus, our task is to
reduce the size of the CRS as well as to enable computation of unbounded

172 J. Bartusek et al.

polynomial-size circuits in the second round. This forms the main technical con-
tribution of the second step.

To support unbounded circuit size, our idea is to use a randomized encoding
in order to break down the computation of one large circuit into the computation
of many small circuits. In particular, using results from [AIK05] for example, one
can compute any a priori unbounded polynomial-size circuit with a number of
“small” circuits, where this number depends on the original circuit size. Here
“small” means that the size of each individual circuit is some fixed polynomial
in the security parameter. Thus, the size of the CRS required to compute each of
these small circuits only grows with the security parameter. Moreover, the CRS
in our bounded FMS-MPC protocol is reusable, so the same small CRS can be
used to compute each small circuit of randomized encodings.

However, computing each of the small circuits in parallel does not result in an
FMS-MPC. Indeed, to maintain security this would require a different first round
message for computing each randomized encoding circuit, and thus the total size
of first round messages will still grow with the original circuit size. To remedy
this, we use a variant of the tree-based approach from [AJJM20,BGMM20].
We construct a polynomial-size tree of bounded FMS-MPC instances, where
each internal node computes two sets of fresh first round messages which are
to be used to compute its two child nodes. Each leaf node corresponds to one
of the small randomized encoding circuits. The first round message in our final
FMS-MPC protocol will only consist of the first round messages for computing
the root of this tree. In the second round, parties release garbled circuits that
compute the second round message for each node in this tree. As before, to assist
evaluation of these garbled circuits, each node will instead output garbled labels
corresponding to the second round messages. This allows anyone to evaluate the
entire tree, eventually learning the outputs of each leaf MPC, thus learning the
randomized encoding of the original circuit that was computed.

Crucially, the small CRS can be reused to compute each node of this tree, so
that each internal node does not need to generate a fresh CRS for its children.
This allows the tree to grow to some unbounded polynomial size without each
node computation becoming prohibitively large - each node just computes two
sets of first round messages of the bounded FMS-MPC, which in total has some
fixed polynomial size. Additional details of this construction can be found in
Sect. 5.2.

On the LPN Assumption. In both the multiparty NISC and the reusable
MPC results, we rely on LPN with inverse polynomial error rate 1/n1−ε. In
both cases, the reason is that we require the computation in the first phase to be
polynomially smaller than the size of the circuits supported in the second phase.
Indeed, as discussed above, in the reusable MPC case we only need to support
circuits of some fixed polynomial size λc in order to allow parties to compute
circuits of unbounded polynomial size. However, we require the size of the first-
round message to be some fixed polynomial size in the security parameter λ, say
λ2, independent of the circuit size λc. That is, the size of the first round message

Reusable Two-Round MPC from LPN 173

should not depend on the constant c determining the fixed polynomial size of
the circuits supported in the second round.2

We accomplish this as follows. In the first phase, parties perform computation
that sets up the LPN error vector. We fix the number of error positions in this
vector to be λ, so that the size of this computation does not grow with the size λc

of circuits supported. Now, the number of LPN samples required in the second
round must grow with λc. Thus, while the number of error positions is fixed to
λ, we set the LPN dimension n to be roughly λc, and the number of samples
to be, say, 2n. In the two-round MPC setting without a random oracle, this
corresponds to a CRS (consisting of the LPN matrix) that grows with the size
of circuits supported. However, as discussed above, we can handle a large CRS
on the way to our eventual reusable two-round MPC result, as long as the first
round message satisfies our succinctness property. Finally, note that the error
rate of the LPN samples is λ/2n, which is roughly 1/λc−1 = 1/n1−1/c. Thus,
setting ε ≈ 1/c, we see that our final results follows from LPN with inverse
polynomial noise rate. We stress that while the constant ε that appears in the
LPN noise rate does depend on the constant c that determines the size of circuits
supported, this constant c can be some fixed constant in our final protocol, which
nevertheless allows for computation of unbounded polynomial-size circuits.

3 Preliminaries

3.1 Learning Parity with Noise

We recall the decisional exact Learning Parity with Noise (LPN) assumption
over binary fields. The word “exact” modifies the standard decisional Learning
Parity with Noise problem by changing the sampling procedure for the error
vector. Instead of setting each component of e ∈ F

n
2 to be 1 with independent

probability, we sample e uniformly from the set of error vectors with exactly t
entries set to 1. We let HWn,t denote the uniform distribution over binary strings
of length n with Hamming weight t. The exact LPN problem is polynomially
equivalent to the standard version following the search to decision reduction
given in [AIK09], as noted in [JKPT12]. We give the precise definition in its
dual formulation.

Definition 1 (Exact Learning Parity with Noise). Let λ be the security
parameter and let n(·), n′(·), t(·) be some polynomials. The (dual) Decisional
Exact Learning Parity with Noise problem with parameters (n(·), n′(·), t(·)) is
hard if, for every probabilistic polynomial-time algorithm A, there exists a neg-
ligible function μ such that

∣

∣

∣

∣

Pr
B,e

[A(B, e · B) = 1] − Pr
B,u

[A(B, u) = 1]
∣

∣

∣

∣

≤ μ(n)

2 It should also suffice to require only that the first-round message is sufficiently sub-
linear in the size of circuits supported, though we achieve the stronger succinctness
property described here.

174 J. Bartusek et al.

where B ← F
n′(λ)×n(λ)
2 , e ← HWn′(λ),t(λ), and u ← F

n(λ)
2 .

Throughout this work, we will use the following flavor of LPN assumption.
For a given security parameter λ and polynomial p(λ), we will need to assume
that LPN is hard when e has Hamming weight λ and e · B is a vector of length
p(λ). Thus, we can set n = p(λ) and n′ = 2n, which corresponds to a (primal)
LPN assumption of dimension n and error rate λ/2n = 1/n1−ε for some constant
ε. This is referred to as “LPN with inverse polynomial error rate”.

3.2 PCG

We recall the following definition of PCG from [BCG+19b]:

Definition 2 (Reverse-sampleable Correlation Generator). Let C be a
correlation generator, that is, C(1λ) outputs two random strings (R0, R1) accord-
ing to some joint distribution. We say C is reverse sampleable if there exists a
PPT algorithm Rsample such that for b ∈ {0, 1} the correlation obtained via:

{(R′
0, R

′
1) | (R0, R1) ← C

(

1λ
)

, R′
b := Rb, R

′
1−b ← Rsample (b,Rb)}

is indistinguishable from {(R0, R1) ← C
(

1λ
)}.

In this work, we primarily consider the following correlation generators:

– Correlated OT:
{

(R0 := (σ,mσ) , R1 := (m0,m1 := m0 + δ)) ← C(1λ)
}

.
Where δ is a random element in some field, each σ ∈ {0, 1} and each m0 are
uniformly sampled. This correlation generator is clearly reverse-sampleable.
In this work we sometimes refer to R0 as the receiver strings and R1 as the
sender strings.

– Subfield-VOLE:
{

(R0 := (�u,�v) , R1 := (δ, �w)) ← C(1λ)
}

. Where (�u,�v) ∈ F
n
2 ×

F
n
2λ , (δ, �w) ∈ F2λ × F

n
2λ , and where �u,�v, and δ are uniformly random, and

�v = �uδ + �w. This correlation generator is also reverse-sampleable.

Definition 3 (Pseudorandom Correlation Generator (PCG)). Let C be
a reverse-sampleable correlation generator. A pseudorandom correlation gener-
ator (PCG) for C is a pair of algorithms (PCG.Gen,PCG.Expand) with the fol-
lowing syntax:

– (s0, s1) ← PCG.Gen
(

1λ
)

: On input the security parameter λ, it outputs a pair
of seeds (s0, s1).

– Rb ← PCG.Expand (b, sb): On input an index b ∈ {0, 1}, the seed sb, it outputs
a string Rb.

Correctness: We require that the correlation obtained via:

{(R0, R1) | (s0, s1) ← PCG.Gen
(

1λ
)

, Rb ← PCG.Expand (b, sb)}

is indistinguishable from {(R0, R1) ← C
(

1λ
)}.

Reusable Two-Round MPC from LPN 175

Security: For any b ∈ {0, 1}, the following two distributions are computationally
indistinguishable:

{(s1−b, Rb) | (s0, s1) ← PCG.Gen(1λ), Rb ← PCG.Expand (b, sb)}, and
{

(s1−b, Rb)
∣

∣

∣

∣

(s0, s1) ← PCG.Gen(1λ), R1−b ← PCG.Expand (1 − b, s1−b) ,
Rb ← Rsample (1 − b,R1−b)

}

where Rsample is the reverse sampling algorithm for correlation C.

We will also consider m-party PCGs, where PCG.Gen(1λ) outputs an m-tuple
of seeds (s1, . . . , sm). Here, security is defined against any subset of colluding
parties. In particular, for any T ⊂ [m], the following two distributions should be
computationally indistinguishable:

{({sj}j∈T , {Ri}i/∈T)|(s1, . . . , sm) ← PCG.Gen(1λ), ∀i /∈ T, Ri ← PCG.Expand(i, si)}, and{
({sj}j∈T , {Ri}i/∈T)

∣∣∣∣ (s1, . . . , sm) ← PCG.Gen(1λ), ∀j ∈ T, Rj ← PCG.Expand(j, sj),
{Ri}i/∈T ← Rsample(T, {Rj}j∈T)

}
.

PCG for Subfield-VOLE. One of the building blocks used in this work is a
PCG protocol for subfield-VOLE correlation. It has been studied by the works
of [BCG+19b,BCG+19a] and is known to be implied by a suitable choice of the
LPN assumption. Our main construction is crucially inspired by such PCG so
we give a brief overview of the protocol.

We denote this protocol specifically by (PCG.GensVOLE,PCG.ExpandsVOLE).
Due to the compressing nature of PCG, we also explicitly associate an algorithm
sEval with this protocol. It takes as input any compressed vector y ∈ F

n
p and

an evaluation domain of size k ≤ n, and reconstructs the vector y restricted to
F

k
p := F

n
p [: k]. We denote the compressed form of any vector y by ỹ. Therefore

for correctness we always have y = sEval (ỹ, n).
In [BCG+19a], the algorithm PCG.GensVOLE begins by sampling a random

sparse vector y ∈ F
n′
2 of Hamming weight w and a random offset δ ∈ F2λ ,

but here we alter the syntax so that PCG.GensVOLE takes these values as input.
Since y is a sparse vector, it can be naturally represented in a compressed form
using O(w · log(n′)) bits, which we denote by ỹ. In this way, PCG.GensVOLE

takes as input
(

1λ, ỹ, δ
)

and outputs a pair of compressed random seeds (˜k0, ˜k1)
where (˜k0, ˜k1) can later be expanded using sEval into k0, k1 ∈ F

n′
2λ such that

k0 = k1 + y · δ. In fact, (˜k0, ˜k1) are the outputs of a Function Secret Shar-
ing (FSS) scheme for the multi-point function induced by the sparse vector
y · δ. Their sizes only depend on (λ, t, log(n′)). Furthermore, due to the secu-
rity of FSS, there exists a simulator Sim so that for any PPT adversary who
is given the description of y · δ, and for each b ∈ {0, 1}, the two distributions
{

(˜kb, ·) ← PCG.GensVOLE(1λ, ỹ, δ)
}

,
{

˜k′
b ← Sim(1λ, F2λ , n′)

}

are indistinguish-
able.

176 J. Bartusek et al.

To expand these seeds into subfield-VOLE correlation, PCG.ExpandsVOLE

takes as input
(

˜k0, ˜k1

)

and a random n′-by-n binary code matrix Hn′,n ∈ F
n′×n
2

(where n < n′), and computes k0 = sEval
(

˜k0, n
′
)

, k1 = sEval
(

˜k1, n
′
)

,
t0 := k0 · Hn′,n, t1 := k1 · Hn′,n and sets v := y · Hn′,n. This immediately
gives the desired subfield-VOLE correlation where t0 = t1 + v · δ. The vector v
is random due to the LPN assumption.

4 Multiparty NISC with Silent Preprocessing

In this section we describe our first result: a multiparty silent NISC protocol from
the LPN assumption in the random oracle model. We organize this section as
follows. In Sect. 4.1, we give a definition of multiparty silent NISC. In Sect. 4.2, we
revisit the GS18 compiler in the context of multiparty silent NISC and identify
a specific type of correlation that we need for implementing this compiler. In
Sect. 4.3 we give a PCG protocol for this correlation. The final construction is
given in Sect. 4.4. Finally, in Sect. 4.5, we discuss some extensions to our basic
protocol. The security proof of our protocol is given in the full version [BGSZ21].

The main result of this section is the following:

Assuming LPN with inverse polynomial error rate, there exists a multiparty
silent NISC protocol in the random oracle model.

4.1 Multiparty Silent NISC: Definition

We introduce the notion of multiparty non-interactive secure computation with
silent preprocessing, or Multiparty Silent NISC, which extends the two-party
silent NISC primitive of [BCG+19a] to the multi-party setting.

An m-party silent NISC protocol begins with a preprocessing phase, where
a CRS is sampled and a trusted dealer sets up m secret parameters and dis-
tributes them to each party. The computation performed by the dealer should
be efficient, in the sense that it only grows with the security parameter, and not
with the size of the circuit that the parties will eventually compute. After the
preprocessing phase, each party broadcasts a commitment to its input. Finally,
the parties compute a circuit C over their joint inputs by broadcasting one
additional message. Anyone can recover the output of the computation based on
these messages.

Definition 4 (Multiparty Silent NISC). An m-party non-interactive secure
computation with silent preprocessing (m-party silent NISC) is a protocol
described by algorithms (Gen,Setup,Commit,Compute,Recover) with the follow-
ing syntax and properties:

– CRS ← Gen(1λ): On input a security parameter λ, the Gen algorithm outputs
a CRS.

Reusable Two-Round MPC from LPN 177

– {si}i∈[m] ← Setup
(

1λ, L,CRS
)

: On input the security parameter λ, a bound
L on the size of supported circuits, and CRS, the Setup algorithm outputs a
set of secret parameters {si}i∈[m]. Secret si is given to party i.

– ci ← Commit (i, xi, si,CRS): On input an index i, ith party’s input xi, its
secret parameter si and CRS, the Commit algorithm outputs party i’s com-
mitment ci to its input xi.

– mi ← Compute
(

i, xi, si,CRS, {cj}j∈[m] , C
)

: On input an index i, ith party’s
input xi, its secret parameter si, the CRS, all the commitments {cj}j∈[m] and
description of a circuit C, the Compute algorithm outputs party i’s message
mi for computing circuit C.

– Y ← Recover
(

{mj}j∈[m]

)

: On input all messages {mj}j∈[m], the Recover
algorithm outputs Y ← C (x1, . . . , xm).

Correctness. For any (deterministic) circuit C whose size is bounded by L,
and any set of inputs (x1, . . . , xm), correctness requires that:

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Y = C (x1, . . . , xm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

CRS ← Gen(1λ),
{si}i∈[m] ← Setup

(

1λ, L,CRS
)

ci ← Commit (i, xi, si,CRS)
mi ← Compute

(

i, xi, si,CRS, {cj}j∈[m] , C
)

Y ← Recover
(

{mj}j∈[m]

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 1.

Silent Preprocessing. A multi-party silent NISC satisfies the following prop-
erties.

– Succinct setup: The running time of the Setup algorithm is independent of
the circuit size L. That is, we require that the setup algorithm runs in some
fixed polynomial time poly (λ).

– Circuit-independent commitment : The running time of the Commit algorithm
is independent of the circuit size, and only depends on the security parameter
and input size.

Security. For defining security, we follow the standard real/ideal world
paradigm. A formal definition may be found in the full version [BGSZ21].

4.2 A Strawman from GS18 Compiler

Recall that the GS18 compiler (see the full version [BGSZ21] for a description
of the compiler and of the conforming protocol to which the compiler is applied)
yields a two round MPC protocol (MPC1,MPC2,MPC3), which can be presented
in the syntax of multiparty NISC as follows:

178 J. Bartusek et al.

– The Gen algorithm samples the CRS for GS18 compiler.
– In the setup phase, the setup algorithm samples a set of secret randomness

{ri}i∈[m]. Then it sets si := ri for each i ∈ [m].
– In the commit phase, given the description of circuit C, party i commits to

its input xi by running
(

st
(1)
i ,msg

(1)
i

)

← MPC1

(

1λ,CRS, C, i, xi, si

)

. Then it

sets ci := msg
(1)
i .

– In the compute phase, given all the previous commitments, ith party computes
msg

(2)
i ← MPC2

(

C, st
(1)
i , {cj}j∈[m]

)

. It then sets mi := msg
(2)
i .

– In the recover phase, given all messages, anyone can simply compute Y ←
MPC3

(

{mj}j∈[m]

)

.

However, this naive construction does not achieve silent preprocessing
(Sect. 4.1), due to the fact that MPC1 takes as input a description of the circuit
and that its running time is dependent on the size of this circuit. Thus, this
construction does not achieve circuit-independent commitment.

To address this issue, we begin by taking a closer look to the MPC1 algorithm.
It outputs two things: an encoding of party i’s input, which only depends on the
input size, and a number of OT1 messages that is comparable to the size of
circuit C. Merely computing these messages already takes time O (|C|) so we
cannot hope to include them as part of the commitment.

The reason these OT1 messages are required is that, combining with the
subsequent OT2 messages sent by each party’s garbled circuits, they allow to set
up OT correlations between any two parties (i, j) in the following way. For any
round t where party i is the speaking party and party j is one of the listening
parties,

– Party i has the receiver strings R0 := (γt,mγt
). The choice bit γt is computed

according to the description of action φt of the conforming protocol3 Φ: γt =
NAND (vf ⊕ α, vg ⊕ β)⊕vh, where α and β are recorded in each party’s public
state, φt := (i, f, g, h) and v := vi are ith party masking bits (secret state).

– Party j has the sender strings R1 :=
(

m0 := labi,t+1
h,0 ,m1 := labi,t+1

h,1

)

, where
(

labi,t+1
h,0 , labi,t+1

h,1

)

are input labels for input value γt of its next garbled
circuit.

Then party i can simply output its string so that any party can recover the
correct input label (c.f labi,t+1

h,γt
) for party j’s next round garbled circuit.

We formalize those OT correlations by defining the more general GS18 cor-
relations:

3 See the full version [BGSZ21] for a description of the conforming protocol.

Reusable Two-Round MPC from LPN 179

Definition 5 (GS18 correlation generator). A GS18 correlation generator,
denoted as CGS, is an algorithm which takes as input the security parameter λ
and a set {φt := (·, f, g, h)}t∈[q]

4, and outputs:

⎛

⎝

R0 :=
(

v,
{

mt,(α,β)

}

α,β∈{0,1},t∈[q]

)

,

R1 :=
(

δ,
{

mt,(α,β),0

}

α,β∈{0,1},t∈[q]

)

⎞

⎠ ← CGS

(

1λ, {φt}t∈[q]

)

Where v ← {0, 1}n is a random vector and δ ← F2λ is a random off-
set. mt,(α,β),0 ← {0, 1}λ is a random string. Furthermore, for each t ∈
[q], φt := (·, f, g, h), and for any choice of α, β ∈ {0, 1}, let γt,(α,β) =
NAND (vf ⊕ α, vg ⊕ β) ⊕ vh, and mt,(α,β),1 := mt,(α,β),0 + δ. Then mt,(α,β) =
mt,(α,β),γt,(α,β)

. Notice that the GS18 correlation is also reverse-sampleable:

– Rsample (0, R0): Sample δ ← F2λ randomly, then for each t ∈ [q] and each
α, β ∈ {0, 1}, set mt,(α,β),0 := mt,(α,β) + γt,(α,β) · δ.

– Rsample (1, R1): Sample v ← {0, 1}n randomly, then for each t ∈ [q] and
each α, β ∈ {0, 1}, compute γt,(α,β) as before and set mt,(α,β) := mt,(α,β),0 +
γt,(α,β) · δ.

Observe that we define GS18 correlation such that for each action φt, we
obtain a set of four correlated OTs, one for each choice of α, β:

R0 :=
(

γt,(α,β),mt,(α,β)

)

, R1 :=
(

mt,(α,β),0,mt,(α,β),1 := mt,(α,β),0 + δ
)

(1)

As first observed in [IKNP03], it suffices to use a correlation robust hash function
to obtain random OTs from correlated OTs. In our construction we deploy a
random oracle function ρ as correlation robust hash function.

Now suppose that before the compute phase, for each round t, party i is
given R0 whereas party j is given R1, and additionally both parties agree on the
choice of (α, β) in the compute phase. Thereby party i’s garbled circuit can sim-
ply output

(

γt := γi
t,(α,β),mt := ρ

(

mi,j
t,(α,β)

))

, whereas party j’s garbled circuit
outputs:
(

a0 := labi,t+1
h,0 ⊕ ρ

(

mi,j
t,(α,β),0

)

, a1 := labi,t+1
h,1 ⊕ ρ

(

mi,j
t,(α,β),1

))

. As a result,

any party can recover the label labi,t+1
h,γt

= aγt
⊕ mt.

But how can those parties obtain GS18 correlations before the compute
phase? We cannot afford to generate them in the setup phase since its runtime
should be succinct. To solve this problem, we specifically design a pseudoran-
dom correlation generator (PCG) for GS18 correlations. With this tweak, the
setup algorithm will include PCG seeds for each party in its secret parameter, so
that each party can silently expand its seed to obtain desired GS18 correlations
before the compute phase, hence making the preprocessing phase silent.
4 We do not include the first argument to the description of the action φt = (i, f, g, h),

since this will be constant (a single party) for each correlation that we generate.
That is, we split the entire set of actions into one set per party, where each party’s
set consists of all actions in which they are the speaker.

180 J. Bartusek et al.

4.3 A PCG Protocol for GS18 Correlation

As suggested in [BCG+19a], any subfield-VOLE correlation gives correlated OTs
where for each i ∈ [n], the receiver string is R0 :=

(

v[i],mv[i] := t0[i]
)

, and the
sender string is R1 := (m0 := t1[i],m1 := t1[i] + δ). One can then get random
OTs by applying a correlation-robust hash function on these correlated OTs.

In order to generate desired OT correlations, first note that in the
field F2, one can rewrite each NAND relation as a degree-two equation:
NAND (vf ⊕ α, vg ⊕ β) ⊕ vh ≡ 1 + (vf + α) (vg + β) + vh = (vfvg) +
(αvg + βvf + vh) + (αβ + 1). As a result of this, given random masking bits
v ∈ {0, 1}n, each choice bit γt can be viewed as a sum of a degree two relation
over v, a degree one relation over v, and a constant which are parametrized by
the choice of (α, β).

The subfield-VOLE correlation is itself a degree 1 relation. As before we set
v := y · Hn′,n. In order to distinguish it from a degree 2 relation, we use the
notation ((ỹ,˜k1

0), (˜k1
1, δ)) to denote the degree 1 seeds for receiver (R := 0) and

sender (S := 1) respectively, and propagate this notation to all other symbols
in the natural way. For consistency with previous sections, we slightly abuse the
notation by letting vi := v[i]. Under this notation, the degree-1 correlated OT
can be rewritten as follows: for each i ∈ [n], R1

0 :=
(

vi, m1
vi

:= t10[i]
)

, R1
1 :=

(

m1
0 := t11[i],m

1
1 := t11[i] + δ

)

.
In order to deduce degree 2 relations, we take the tensor product of same error

vector with itself and use it as the new error vector as suggested in [BCG+19a]:
(

˜k2
0,

˜k2
1

)

← PCG.GensVOLE

(

1λ, ỹ ⊗ y, δ
)

. The expansion algorithm also needs

to be modified as follows: k2
0 = sEval

(

˜k2
0, n

′
)

, t20 := k2
0 · (Hn′,n ⊗ Hn′,n) , k2

1 =

sEval
(

˜k2
1, n

′
)

, t21 := k2
1 · (Hn′,n ⊗ Hn′,n), where t20, t

2
1 ∈ F

n2

2λ . Viewing both

t21 and t20 as n-by-n matrices over F2λ , for any i, j ∈ [n], observe that the
following degree 2 relation holds: t20[i, j] = t21[i, j] + vivj · δ. As before, this

immediately gives a correlated OT where R2
0 :=

(

vivj ,m
2
vivj

:= t20[i, j]
)

, and

R2
1 :=

(

m2
0 := t21[i, j],m

2
1 := t21[i, j] + δ

)

.
Now that we know how to generate degree 1 and degree 2 correlated OTs, we

can easily derive the GS18 correlations by taking linear combinations of (R1
0, R

2
0)

(resp. (R1
1, R

2
1)) over F2. This gives a PCG protocol for generating GS18 correla-

tions. Now, the protocol we need is actually in the multi-party setting: that is, the
receiver’s choice bits v must be shared between all of their pairwise correlations
with every other sender. This additional requirement can be ensured by reusing
the same error vector y multiple times. Below we give a PCG protocol for GS18
correlations with one receiver and an arbitrary number m of senders. We denote
this specific PCG protocol by (PCG.GenGS,PCG.ExpandGS), given in Protocol 1.

We prove the following theorem in the full version [BGSZ21].

Theorem 1. Assuming LPN with noise rate λ/n′, (PCG.GenGS,PCG.ExpandGS)
in Protocol 1 is a multi-party PCG protocol for GS18 correlations satisfying PCG
security (Definition 3).

Reusable Two-Round MPC from LPN 181

Protocol 1 (Multi-party PCG Protocol For GS18 Correlations)

– Parameters: Let λ be the security parameter, m be the number of senders, q be the
number of actions for the GS18 protocol, and n′, n be integers such that n′ > n.

– Output:
• For receiver:

∗ Masking bits v ∈ {0, 1}n;
∗ For each t ∈ [q], α, β ∈ {0, 1}, i ∈ [m], a receiver string mi

t,(α,β).
• For sender i ∈ [m]:

∗ A shift δi ∈ F2λ ;
∗ For each t ∈ [q], α, β ∈ {0, 1}, a sender string mi

t,(α,β),0.
– Input:

• A compressed random error vector y ∈ {0, 1}n′
with hamming weight λ,

denoted by ỹ.
• A random shift δi ∈ F2λ for each i ∈ [m].
• An n′-by- n binary code matrix Hn′,n.
• A sequence of actions {φt}t∈[q].

– GenGS
(

1λ, ỹ, {δi}i∈[m]

)

:

• For each i ∈ [m], compute
(

˜k1
i,0,

˜k1
i,1

)

← PCG.GensVOLE

(

1λ, ỹ, δi

)

;
(

˜k2
i,0,

˜k2
i,1

)

← PCG.GensVOLE

(

1λ, ỹ ⊗ y, δi

)

.

• Set si
0 :=

(

˜k1
i,0,

˜k2
i,0, ỹ

)

, si
1 :=

(

˜k1
i,1,

˜k2
i,1, δi

)

.

– ExpandGS
(

1λ, b, {si
b}i∈[m], Hn′,n, {φt}t∈[q]

)

:
• If b = 0, set y = sEval (ỹ, n′), v = y · Hn′,n, and for each i ∈ [m]:

∗ Parse si
0 =

(

k1
i,0, k

2
i,0, ỹ

)

, and compute k1
i,0 = sEval

(

˜k1
i,0, n

′
)

, k2
i,0 =

sEval
(

˜k2
i,0, n

′
)

.

∗ Compute t1i,0 := k1
i,0 · Hn′,n, t2i,0 := k2

i,0 · (Hn′,n ⊗ Hn′,n).
∗ For each t ∈ [q], parse φt := (·, f, g, h), and for each α, β ∈ {0, 1} set

mi
t,(α,β) := t2i,0[f, g] + α · t1i,0[g] + β · t1i,0[f] + t1i,0[h].

• If b = 1, for each i ∈ [m]:

∗ Parse si
1 =

(

k1
i,1, k

2
i,1, δi

)

, and compute k1
i,1 = sEval

(

˜k1
i,1, n

′
)

, k2
i,1 =

sEval
(

˜k2
i,1, n

′
)

.

∗ Compute t1i,1 := k1
i,1 · Hn′,n, t2i,1 := k2

i,1 · (Hn′,n ⊗ Hn′,n).
∗ For each t ∈ [q], parse φt := (·, f, g, h), and for each α, β ∈ {0, 1}, set

mi
t,(α,β),0 := t2i,1[f, g] + α · t1i,1[g] + β · t1i,1[f] + t1i,1[h] + (αβ + 1) · δi.

4.4 Multiparty Silent NISC: The Construction

Two-Step Seed Expansion. In our strawman protocol (see Sect. 4.2), each
party’s commitment contains an encoding of its input and a large number of
OT1 messages. Using PCG for GS18 correlations we are able to remove the
OT1 messages in this commitment. Nevertheless, recall that in GS18 compiler,
party i’s input encoding is computed as zi := xi ⊕ ri, where ri := vi[: l] (l is
a bound on |xi|). If party i does this naively and computes the whole masking

182 J. Bartusek et al.

bits vi in the commit phase, it would take time |vi| at least, which is dependent
on the circuit size. To circumvent this problem, we slightly modify the receiver
expansion algorithm to allow a two-step seed expansion.

First, instead of generating the code matrix Hn′,n uniformly at random, we
let Hn′,n be a block diagonal matrix that consists of a small matrix H1

l′,l and
a big matrix H2

n′−l′,n−l along its diagonal. The small matrix is only used to
generate input masking bits whereas the big matrix is used to generate all of
the remaining masking bits. Correspondingly, we also need to modify the error
vector y now that Hn′,n is not a uniformly random matrix. The error vector
will be split into two parts: y := y′||y∗, where |y′| = l′ and |y∗| = n′ − l′. We
sample y′ ← HW l′,λ and y∗ ← HWn′−l′,λ independently. This ensures that
both v′ = y′ · H1

l′,l and v∗ = y∗ · H2
n′−l′,n−l will both be indistinguishable from

random due to the LPN assumption with inverse polynomial noise rate, showing
that the multi-party PCG from last section remains secure.

Then, in the input commitment phase, each party computes y′ = sEval(˜y′, l′)
and then sets v′ = y′ · H1

l′,l and ci := zi = xi ⊕ v′. This can be seen as the first-
step seed expansion and it allows to remove dependency on circuit size. Finally,
in the compute phase, each pair of parties silently expand the rest seeds just as
before. This is the second-step seed expansion.

Protocol 2 (Multiparty Silent NISC)

– Parameters: Let m be the number of parties. Let (MPC1,MPC2,MPC3) be a set of
algorithms in the GS18 compiler, and let (PCG.GenGS,PCG.ExpandGS) be a multi-
party PCG protocol for GS18 correlations. Let n′ > n be integers that depend on
the size L of the circuit to be computed, and let l′ > l be integers that depends on
the size of inputs to the circuit.

– Gen(1λ): Set CRS := ρ, where ρ is a random oracle function.
– Setup(1λ, L):

1. For each i ∈ [m], sample y′
i ← HW l′,λ, y∗

i ← HWn′−l′,λ and set yi =
y′

i||y∗
i .

2. For each i, j ∈ [m], sample shifts δi,j ← Fp.
3. For each i ∈ [m], compute

{

si,j
0 , si,j

1

}

j �=i
← PCG.GenGS

(

1λ, ỹi, {δi,j}j �=i

)

.

4. Set secret parameter si :=
(

{

si,j
0

}

j∈[m]/{i} ,
{

sj,i
1

}

j∈[m]/{i}

)

.

– Commit (i, xi, si,CRS):

1. Parse si :=
(

{

si,j
0

}

j∈[m]/{i} ,
{

sj,i
1

}

j∈[m]/{i}

)

, then parse any si,j
0 :=

(

˜k1
0 ,

˜k2
0 , ỹi

)

and ỹi = ˜y′
i||˜y∗

i .

2. Compute yi
′ = sEval

(

˜y′
i, l

′
)

.

3. Generate an l′-by- l random binary code matrix H1
l′,l ← ρ (l, l′) and compute

vi
′ = yi

′ · H1
l′,l, where l ≥ |xi| and l′ > l.

4. Set commitment ci := xi ⊕ vi
′.

– Compute: See algorithm 2.
– Recover: See algorithm 3.

Reusable Two-Round MPC from LPN 183

Algorithm 2 (Compute)

– Parameters: Let C be the description of a circuit and Φ be a T -round conforming
protocol for computing C.

– Compute
(
i, xi, si,CRS, {cj}j∈[m] , C

)
:

1. Parse si :=

({
si,j
0

}
j∈[m]/{i}

,
{
sj,i
1

}
j∈[m]/{i}

)
.

2. Generate a (n′ − l′)-by-(n − l) random binary code matrix H2
n′−l′,n−l

← ρ (n′, l′),
and set

Hn′,n :=

[
H1

l′,l
H2

n′−l′,n−l

]

3.

(
vi,

{
mi,j

t,(α,β)

}
t,α,β,j

)
← PCG.ExpandGS

(
1λ, 0, {si,j

0 }j �=i, Hn′,n, {φt}t∈[q]

)
,(

δj,i,
{

mj,i
t,(α,β),0

}
t,α,β,j

)
← PCG.ExpandGS

(
1λ, 1, {sj,i

1 }j �=i, Hn′,n, {φt}t∈[q]

)
.

4. For each t ∈ T such that φt := (i, f, g, h), and each j ∈ [m]/{i}, compute{
m̃i,j

t,(α,β)

}
t,α,β

:=
{

ρ
(
mi,j

t,(α,β)

)}
t,α,β

.

For each t ∈ T such that φt := (j, f, g, h) for j �= i,

• Set
{

mj,i
t,(α,β),1

}
t,α,β

:=
{

mj,i
t,(α,β),0

+ δj,i

}
t,α,β

.

•
{

m̃j,i
(t,(α,β),0)

, m̃j,i
(t,(α,β),1)

}
t,α,β

:=
{

ρ
(
mj,i

(t,(α,β),0)

)
, ρ

(
mj,i

(t,(α,β),1)

)}
t,α,β

5. Parse vi := vi
′||v∗

i and adjust v∗
i so that pq = |v∗

i |. Initialize a computation tape
sti := c1||0pq || . . . ||cm||0pq. Let N := |sti|.

6. Set lab
i,T+1

:=
(
labi,T+1

k,0 , labi,T+1
k,1

)
k∈[N]

where for each k ∈ [N] and b ∈ {0, 1}
labi,T+1

k,b = 0λ.
7. For each t from T to 1, compute:

(
P̃i,t, lab

i,t
)

← Garble
(
1λ,Pi,t

)
.

where the circuit Pi,t hardcodes party i’s receiver and sender strings, as well as all
input labels of Pi,t+1 (see algorithm 4).

8. Set l̂ab
i,1

:=
{
labi,1

k,sti,k

}
k∈[N]

9. Set message mi :=

({
P̃i,t

}
t∈[T]

, l̂ab
i,1

)
.

184 J. Bartusek et al.

Algorithm 3 (Recover)

– Parameters: Let Φ be the conforming protocol that computes circuit C. Let T be
total number of rounds of Φ.

– Recover
(

{mj}j∈[m]

)

:

1. For each j ∈ [m], parse mj :=

(

{

˜Pj,t
}

t∈[T]
, ̂lab

j,1
)

.

2. For each t from 1 to T , do:

(a) Parse action φt := (i∗, f, g, h).

(b) Compute

(

γt,
{

m̃i∗,j
t

}

j∈[m]/{i∗}
, ̂lab

i∗,t+1
)

← GEval

(

˜Pi∗,t, ̂lab
i∗,t

)

.

(c) For each j �= i∗, do:

i. Compute (a0, a1) ← GEval
(

˜Pj,t, ̂lab
j,t

)

.

ii. Recover labj,t+1
h = aγt ⊕ m̃i∗,j

t .

iii. Reset ̂lab
j,t+1

:=
{

{labj,t+1
k,stj,k

}k∈[N]/{h}, labj,t+1
h

}

.

3. Let Z := (γ1, . . . , γT), set Y := post (Z).

Algorithm 4 (Circuit Pi,t)
Input: sti.
Hardwired inputs: Party i’s masking bits vi, its receiver and sender strings
{

m̃i,j
t,(α,β)

}

α,β∈{0,1},j∈[m]/{i}
,

{(

m̃j,i
(t,(α,β),0), m̃

j,i
(t,(α,β),1)

)}

α,β∈{0,1},j∈[m]/{i}
, the

input labels of the next garbled circuit ˜Pi,t+1: lab
i,t+1

, and the round action φt.

1. Parse φt = (i∗, f, g, h).
2. Set α := sti[(i

∗ − 1) (pq + l) + f], β := sti[(i
∗ − 1) (pq + l) + g].

3. If i = i∗, then:
(a) Set v := vi, and compute γi

t,(α,β) = NAND (vf ⊕ α, vg ⊕ β) ⊕ vh.

(b) Set sti[(i − 1) (pq + l) + h] := γi
t,(α,β).

(c) Set ̂lab
i,t+1

:=
{

labi,t+1
k,sti,k

}

k∈[N]
.

(d) Output

(

γi
t,(α,β),

{

m̃i,j
t,(α,β)

}

j∈[m]/{i}
, ̂lab

i,t+1
)

.

4. If i �= i∗, then:

(a) Set ̂lab
i,t+1

:=
{

labi,t+1
k,sti,k

}

k∈[N]/{h}
.

(b) Output
(

labi,t+1
h,0 ⊕ m̃i∗,i

t,(α,β),0, labi,t+1
h,1 ⊕ m̃i∗,i

t,(α,β),1,
̂lab

i,t+1
)

, where the label

labi,t+1
h is the input for the bit sti[(i

∗ − 1) (pq + l) + h] of the next garbled
circuit.

Reusable Two-Round MPC from LPN 185

Theorem 5. Fix any constant ε > 0 and let n = λ1/ε be a polynomial in the
security parameter. Assuming LPN with inverse polynomial error rate 1/n1−ε

(where n is the LPN dimension), Protocol 2 is a secure multiparty silent NISC
protocol in the random oracle model for computing circuits C of size at most n.5

See Sect. 3.1 for more details about how we set LPN parameters based on the
(polynomial-size) circuit C to be computed. The proof of this theorem is given
in the full version [BGSZ21].

4.5 Extensions

Removing the Random Oracle. Our construction of multiparty silent NISC
relies on a random oracle. Nevertheless, we can remove the use of random oracle,
at the cost of introducing a large (growing with the size of the computation) CRS.
Below we define this notion as multiparty silent NISC with large reusable CRS.

To begin with, one can observe that the previous construction utilizes the
random oracle in two following ways:

– Modeling it as a correlation robust hash function; This is used to obtain
random OTs from correlated OTs.

– Generating random binary code matrices for PCG seed expansion.

As already observed in [BCG+19b], the role of correlation robust hash function
can be replaced by an encryption scheme which is semantically secure against
related-key attack (RKA) for the class of linear functions. It was also shown that
this encryption scheme can be based on standard LPN assumptions (over F2)
[AHI11]. Therefore we can effectively remove this use of random oracle without
introducing new assumptions. In slightly more detail, rather than using the hash
of each string mi,j

t,α,β,b to mask the corresponding label labb, we instead encrypt
labb with an RKA-secure encryption scheme using key mi,j

t,α,β,b. Then, in Hybrid2
in the proof of Theorem 5, we can appeal to the RKA-security of the encryption
scheme rather than the corelation-robustness of the random oracle.

Without using the random oracle, an easy way to solve the second problem
is to let the Gen algorithm sample a random block-diagonal code matrix, and
directly includes it in the CRS. This, however, requires that the Gen algorithm
must take as input the circuit size bound L since the dimension of this code matrix
must exceed the size of circuit to be computed. Furthermore, the CRS is large
since its size now depends on the circuit size. As a result, the commit algorithm
cannot take the whole CRS as input. So instead we split the block-diagonal code
matrix, and only supply the small code matrix as input to the commit algorithm
so as to remove its dependency on the circuit size. To summarize, we set CRS :=
(

CRS′,CRS∗) ← Gen(1λ, L) where CRS′ := H1
l′,l and CRS∗ := H2

n′−l′,n−l. Notice
that the size of CRS′ only depends on the input size whereas CRS∗ depends on the
circuit size |C| ≤ L. The commit algorithm now takes as input

(

i, xi, si,CRS
′)

5 Here, by “size” of C, we mean the number of actions in the conforming protocol
used to compute C.

186 J. Bartusek et al.

whereas the compute algorithm still takes as input
(

i, xi, si,CRS, {cj}j∈[m] , C
)

.
We adopt these notations for CRS in all following sections.

Reusable CRS. Although the CRS in the resulting protocol is large, it can be
reused across an arbitrary polynomial number of multiparty silent NISC execu-
tions. This property will be crucial for our construction next section, so we give
more details here. After the CRS is sampled, an adversary may specify any poly-
nomial q(λ) number of multiparty silent NISC executions in which it would like to
participate using the same fixed CRS (but fresh preprocessing, commitment, and
compute phases). Security for each of these executions will still follow from the
LPN assumption. To see why, recall that the CRS is a dual-LPN matrix H, and is
only used in the security proof when appealing to the dual-LPN assumption. By
a straightforward hybrid argument, dual-LPN will hold with respect to a single
random matrix H for any polynomial q(λ) number of samples.

5 Reusable Two-Round MPC from LPN

In this section,we build on top of our previous result and showa compiler that takes
any multiparty silent NISC with large reusable CRS and produces a reusable two-
round MPC protocol. This section is organized as follows: we divide our compiler
into three parts, each part involving one specific transformation. We proceed and
give constructions of these transformations one by one in each subsection:

1. We define the notion of bounded FMS-MPC and show that multiparty silent
NISC with reusable large CRS implies bounded FMS-MPC.

2. We show that bounded FMS-MPC implies standard FMS-MPC
3. Finally, we appeal to [BGMM20], who show that FMS-MPC implies reusable

two-round MPC.

5.1 Multiparty Silent NISC with Reusable Large CRS → Bounded
FMS-MPC

We start by defining a relaxed notion of first message succinct MPC (FMS-
MPC), which was introduced in [BGMM20]. We call this new primitive a
bounded FMS-MPC, which can be naturally thought as a middle ground between
a multiparty silent NISC and a standard FMS-MPC.

Definition 6 (Bounded FMS-MPC). Let Gen be an algorithm that gener-
ates a CRS. We say that the protocol π∗ = (Gen,BFMS.MPC1,BFMS.MPC2,
BFMS.MPC3) is a bounded FMS-MPC protocol if it is a two-round MPC proto-
col with the following properties:

– Bounded circuit size: The Gen algorithm takes as input the security parameter
λ, a circuit size bound L, and outputs a CRS :=

(

CRS′,CRS∗). The size of
CRS′ only depends on an upper bound on input size, whereas the size of CRS∗

can be as large as L. Moreover, the protocol π∗ only supports circuits such
that |C| ≤ L.

Reusable Two-Round MPC from LPN 187

– Reusable CRS: The part CRS∗ only needs to be set up once, and can be reused
across an unbounded polynomial number of two-round MPC protocols.

– First message succinctness: The BFMS.MPC1 algorithm takes as input
(

1λ,CRS′, i, xi

)

. In particular, its runtime should not depend on the circuit
size |C|.
As our construction of bounded FMS-MPC from multiparty silent NISC is

very similar to the transformation given in [BGMM20, Section 5], we defer the
construction and security proof to the full version [BGSZ21]. In particular, we
prove the following theorem.

Theorem 6. Assuming a semi-honest multiparty silent NISC with large
reusable CRS and a maliciously-secure vanilla two-round MPC in the CRS
model, there exists a maliciously-secure bounded FMS-MPC protocol.

Due to results from last section and [DGH+20], we have the following corol-
lary.

Corollary 1. Fix any constant ε > 0 and let n = λ1/ε be a polynomial in the
security parameter. Assuming LPN with inverse polynomial error rate 1/n1−ε,
there exists a maliciously-secure bounded FMS-MPC protocol supporting circuits
C of size at most n.

5.2 Bounded FMS-MPC → FMS-MPC

In order to obtain standard FMS-MPC, we must allow for computation of a priori
unbounded polynomial size circuits. That is, we must support the computation
of unbounded polynomial size circuits using only a bounded polynomial size
CRS. A natural idea is then to use randomized encodings to break down the
computation of any unbounded polynomial size circuit into the computation of
a number of bounded polynomial size circuits, and use a bounded size (reusable)
CRS to compute each small circuit.

Indeed, any m-input polynomial-size circuit C : {0, 1}m·� → {0, 1}�′
admits

a randomized encoding, which can be written as a sequence of small circuits
{Gy : {0, 1}m·� × {0, 1}λ → {0, 1}s}y∈[n], where n depends on the size of C, but
each Gy has size p(λ) for some a priori fixed polynomial p(·). The correctness
of randomized encoding ensures that for any inputs x1, . . . , xm and random
coins v ← {0, 1}λ, one can recover the output Y := C (x1, . . . , xm) just given
{Gy(x1, . . . , xm, v)}y∈[n]. The security of randomized encoding guarantees that
this distribution is simulatable just given the output Y .

Now, one could naively compute n bounded FMS-MPC protocols in paral-
lel to determine the outputs of G1, . . . , Gn. However, the total number of first
round messages would now depend on |C|, violating first message succinctness.
To circumvent this issue, we delay the computation of those first round messages
to the second round. Following the GGM approach, we define a complete binary
tree based on the circuit being computed. This tree will have n leaves in total
and will be of depth d = log(n). The y’th leaf is associated with the randomized

188 J. Bartusek et al.

encoding Gy. Each internal node is associated with an expansion circuit E. This
circuit takes as input (x1, . . . , xm, v) and some additional secret randomness,
and generates two sets of fresh first round messages, one for each child node. By
computing all the expansion circuits using bounded FMS-MPC, we generate a
set of fresh first round messages for each leaf node, enabling computation of all
randomized encoding circuits using n more bounded FMS-MPC instances. Fur-
thermore, since the CRS of the bounded FMS-MPC has unbounded reusability,
it can be used by each node computation in this tree.

To fully compute this tree, each party needs to output its second round
message for each node computation in each level, and read all other parties’
second round messages. This allows it to recover a new set of first round messages
which is required for node computations in the next level. If we implement this
protocol naively, the number of rounds in total would match the depth of the
tree. Nonetheless, one can still compress it to just two rounds by repeatedly
applying the round collapsing transformation: In the first round, each party
i outputs its first round message of a bounded FMS-MPC for computing the
first expansion circuit (root node). In the second round, party i first outputs its
second round message for this bounded FMS-MPC. Then for each level k ∈ [2, d−
1], party i outputs 2k−1 garbled circuits which realizes its MPC2 functionality
at this level. That is, for each y ∈ [2k−1], it computes a garbled circuit of
MPC2 (E, (· , CRS∗), · , ·). This circuit hardwires the description of E and the
part CRS∗. It takes as input the part CRS′, party i’s first round state and all
first round messages for computing the yth expansion circuit in this level, and
outputs its second round message. In the last level, for each y ∈ [n], party i
computes a garbled circuit of MPC2 (Fy, (· , CRS∗), · , ·), where Fy computes
the randomized encoding Gy. These garbled circuits constitute party i’s second
round message.

In order to recover the input labels for each garbled circuit, we ask each
expansion circuit E to output the input labels which correspond to the correct
inputs for each party’s next garbled circuit. Each party will actually output
encryptions of all input labels along with each garbled circuit, and each expansion
circuit will output keys that can be used to decrypt only the correct input labels
for each party’s next garbled circuit.

It is worth noting that this use of “tree of MPC messages” differs somewhat
from how it is used in [AJJM20,BGMM20]. In particular, we build a tree of
polynomial size. In order to compute a single large circuit in the second round,
each party releases a garbled circuit for each node in the tree. During output
reconstruction, the entire tree is evaluated. In [AJJM20,BGMM20], to obtain
reusability, they set up a implicit tree of exponential size. Each time the parties
wish to compute a circuit in the second round, they each release a sequence of
garbled circuits that trace one root to leaf path in this exponentially-sized tree.

As a final point, since the size of the CRS in a FMS-MPC should only depend
on the security parameter λ, we must argue that the CRS we are using is small.
Notice that for every node in this tree, either the expansion circuit E or some
randomized encoding Gy is computed. The size of either circuit only depends
on λ. Therefore it suffices to set L = poly(λ) for some fixed polynomial when

Reusable Two-Round MPC from LPN 189

instantiating the bounded FMS-MPC. As a result, the CRS only depends on λ,
which is what is required for FMS-MPC.

Applying this transformation, we build a FMS-MPC (described in protocol
3) from bounded FMS-MPC.

Protocol 3 (FMS-MPC)
Let (Gen,MPC1,MPC2,MPC3) be a bounded FMS-MPC protocol, (Garble,GEval)
be a garbling scheme, (LabEnc, LabDec) be a label encryption scheme and
(CRE.Enc,CRE.Dec) be a computational randomized encoding scheme. Let PRG =
(G0,G1,H0,H1) be a length quadrupling PRG. The expansion circuit E is defined in
algorithm 7 and circuit Fy is defined in algorithm 8. Let L = max (|E|, |Fy|) and
CRS := (CRS′,CRS∗) ← Gen(1λ, L).

– FMS.MPC1

(

1λ,CRS′, i, xi

)

:

1. Sample (ri, vi) ← {0, 1}λ × {0, 1}λ and compute
(

st
(1)
i ,msg

(1)
i

)

← MPC1

(

1λ,CRS′, i, ((xi, vi), ri)
)

.

2. Set FMS.st
(1)
i :=

(

st
(1)
i , ri, vi

)

and FMS.msg
(1)
i := msg

(1)
i .

– FMS.MPC2

(

C,CRS,FMS.st
(1)
i ,

{

FMS.msg
(1)
j

}

j∈[m]

)

:

1. Compute [Gy]y∈[n] ← CRE.Enc
(

1λ, C
)

.
2. Define a complete binary tree of depth d = log(n) with n leaves. Associate

the yth leaf with the randomized encoding Gy.

3. Let r
(k,y)
i denotes party i’s secret randomness for computing the yth node at

level k. Set r
(1,1)
i := ri; compute r

(2,1)
i := G0

(

r
(1,1)
i

)

, r
(2,2)
i := G1

(

r
(1,1)
i

)

.

4. Compute k
(2,1)
i := H0

(

r
(1,1)
i

)

, k
(2,2)
i := H1

(

r
(1,1)
i

)

.

5. Compute msg
(2)
i ← MPC2

(

E,CRS, st
(1)
i ,

{

msg
(1)
j

}

j∈[m]

)

.

6. For each level k ∈ [2, d − 1] and for each y ∈ [1, 2k−1]:

(a) Compute
(

˜C
(k,y)
i , lab

(k,y)
i

)

← Garble
(

1λ, MPC2 (E, (· , CRS∗), · , ·)
)

.

(b) Compute elab
(k,y)
i ← LabEnc

(

K
(k,y)
i , lab

(k,y)
i

)

, where

K
(k,y)
i = PRF

(

k
(k,y)
i , (t, b)

)

t∈[l],b∈{0,1}
.

(c) Compute r
(k+1,2y−1)
i := G0

(

r
(k,y)
i

)

, r
(k+1,2y)
i := G1

(

r
(k,y)
i

)

;

k
(k+1,2y−1)
i := H0

(

r
(k,y)
i

)

, k
(k+1,2y)
i := H1

(

r
(k,y)
i

)

.

7. In the last level d, for each y ∈ [n]:

(a) Compute
(

˜C
(d,y)
i , lab

(d,y)
i

)

← Garble
(

1λ, MPC2 (Fy, (· , CRS∗), · , ·)
)

;

(b) Compute elab
(d,y)
i ← LabEnc

(

K
(d,y)
i , lab

(d,y)
i

)

where

K
(d,y)
i = PRF

(

k
(d,y)
i , (t, b)

)

t∈[l],b∈{0,1}
.

8. Set FMS.msg
(2)
i :=

(

msg
(2)
i ,

{

˜C
(k,y)
i , elab

(k,y)
i

}

k∈[2,d],y∈[1,2k−1]

)

.

190 J. Bartusek et al.

– FMS.MPC3

(

{

FMS.msg
(2)
j

}

j∈[m]

)

:

1. Compute
{(

̂K
(2,1)
i , ̂K

(2,2)
i

)}

i∈[m]
← MPC3

(

{

msg
(2)
j

}

j∈[m]

)

.

2. For each level k ∈ [2, d] and each y ∈ [1, 2k−1]:

(a) For each j ∈ [m]:

i. Compute ̂lab
(k,y)

j ← LabDec
(

̂K
(k,y)
j , elab

(k,y)
j

)

;

ii. Compute
(

msg
(2),(k,y)
j

)

← GEval
(

˜C
(k,y)
j , ̂lab

(k,y)

j

)

.

(b) If k < d, then compute
{(

̂K
(k+1,2y−1)
i , ̂K

(k+1,2y)
i

)}

i∈[m]
← MPC3

(

{

msg
(2),(k,y)
j

}

j∈[m]

)

.

(c) If k = d, compute

Gy ((x1, . . . , xm), v) ← MPC3

(

{

msg
(2),(d,y)
j

}

j∈[m]

)

.

3. Set Y ← CRE.Dec
(

1λ, C, {Gy((x1, . . . , xm), v)}y∈[n]

)

.

Algorithm 7 (Circuit E)
Input: {(xj , vj), rj}j∈[m].
Hardwired inputs: Description of a length-quadruple PRG : (G0,G1,H0,H1).

1. For each i ∈ [m] (Generating the left child):

(a) Compute CRS′ 0 ← Gen
(

1λ
)

.

(b) Compute
(

st
(1),0
i ,msg

(1),0
i

)

← MPC1

(

1λ,CRS′ 0, i, ((xi, vi),G0(ri))
)

.

2. For each i ∈ [m]:

(a) Set k0
i := H0(ri), z0

i :=

(

CRS′ 0, st
(1),0
i ,

{

msg
(1),0
j

}

j∈[m]

)

.

(b) Let l := |z0
i |. For t ∈ [l], set K0

i,t := PRF
(

k0
i , (t, z0

i [t])
)

.

(c) Set ̂K0
i :=

{

K0
i,t

}

t∈[l]
.

3. For each i ∈ [m] (Generating the right child):

(a) Compute CRS′ 1 ← Gen
(

1λ
)

.

(b) Compute
(

st
(1),1
i ,msg

(1),1
i

)

← MPC1

(

1λ,CRS′ 1, i, ((xi, vi),G1(ri))
)

.

4. For each i ∈ [m]:

(a) Set k1
i := H1(ri), z1

i :=

(

CRS′ 1, st
(1),1
i ,

{

msg
(1),1
j

}

j∈[m]

)

.

(b) Let l := |z1
i |. For t ∈ [l], set K1

i,t := PRF
(

k1
i , (t, z1

i [t])
)

.

(c) Set ̂K1
i =

{

K1
i,t

}

t∈[l]
.

5. Output
{

̂K0
i

}

i∈[m]
and

{

̂K1
i

}

i∈[m]
.

Reusable Two-Round MPC from LPN 191

Algorithm 8 (Circuit Fy)
Input: {(xj , vj), rj}j∈[m].
Hardwired input: the randomized encoding Gy.

1. Set v := v1 ⊕ · · · ⊕ vm.
2. Output Gy ((x1, . . . , xm), v).

In the full version [BGSZ21], we prove the following theorem, which, com-
bined with Corollary 1, gives the following corollary.

Theorem 9. There exists a polynomial p(·) such that, assuming a maliciously-
secure bounded FMS-MPC protocol supporting circuits of size at most p(λ), there
exists a maliciously-secure FMS-MPC protocol in the CRS model.

Corollary 2. There exists a constant ε > 0 such that, assuming LPN with
inverse polynomial error rate 1/n1−ε, there exists a maliciously-secure FMS-
MPC protocol in the CRS model.

5.3 FMS-MPC → Reusable Two-Round MPC

It has been shown in previous work [BGMM20] that any maliciously-secure FMS-
MPC protocol in the CRS model implies a maliciously-secure reusable two-round
MPC protocol in the CRS model. Thus, we immediately have the following
theorem.

Theorem 10. There exists a constant ε > 0 such that, assuming LPN with
inverse polynomial error rate 1/n1−ε, there exists a maliciously-secure reusable
two-round MPC protocol in the CRS model.

The Semi-honest Case. We have presented all of our results in this section
in the malicious-security setting, which requires a CRS. However, we remark
here that we can also achieve semi-honest secure reusable MPC in the plain
model from LPN. In fact, we claim that any maliciously-secure reusable MPC
in the CRS model plus semi-honest secure vanilla two-round MPC in the plain
model implies a semi-honest secure reusable MPC in the plain model. As this
transformation is nearly identical to that of [BGMM20, Section 5], we do not
provide a formal proof, but give the following sketch.

The vanilla two-round MPC can be used to compute a CRS and first round
messages of the reusable MPC, and release garbled labels of the CRS and first
round messages to all parties. In the second round, each party also releases
a garbled circuit that computes their second round message of the reusable
MPC. Anyone can combine the labels for the CRS and labels for the first round
messages with these garbled circuits to compute the second round messages and
thus the output.

192 J. Bartusek et al.

Acknowledgments. JB and SG were supported in part by DARPA under Agreement
No. HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and
research grants by the Sloan Foundation, Visa Inc., and Center for Long-Term Cyber-
security (CLTC, UC Berkeley). Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Government or DARPA.

References

[AHI11] Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-
key attacks and applications. In: Chazelle, B. (ed.) ICS 2011, pp. 45–60.
Tsinghua University Press, January 2011

[AIK05] Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private ran-
domizing polynomials and their applications (extended abstract). In: 20th
Annual IEEE Conference on Computational Complexity (CCC 2005), pp.
260–274 (2005)

[AIK09] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant
input locality. J. Cryptol. 22(4), 429–469 (2009)

[AJJM20] Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic
encryption in the plain model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020.
LNCS, vol. 12550, pp. 28–57. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64375-1 2

[BCG+19a] Boyle, E.: Efficient two-round OT extension and silent non-interactive
secure computation. In: ACM CCS 19, pp. 291–308. ACM Press (2019)

[BCG+19b] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 16

[BGI+01] Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidel-
berg (2001). https://doi.org/10.1007/3-540-44647-8 1

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 19

[BGMM20] Benhamouda, F., Jain, A., Komargodski, I., Lin, H.: Multiparty reusable
non-interactive secure computation from LWE. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 724–753.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6 25

[BGSZ21] Bartusek, J., Garg, S., Srinivasan, A., Zhang, Y.: Reusable two-round
MPC from LPN. Cryptology ePrint Archive, Report 2021/316 (2021).
https://ia.cr/2021/316

[BL18] Benhamouda, F., Lin, H.: k -round multiparty computation from k -round
oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 17

[BL20] Benhamouda, F., Lin, H.: Multiparty reusable non-interactive secure com-
putation. In: TCC (2020)

https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-030-77886-6_25
https://ia.cr/2021/316
https://doi.org/10.1007/978-3-319-78375-8_17

Reusable Two-Round MPC from LPN 193

[DGH+20] Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round
oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 26

[DHRW16] Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and
its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53015-3 4

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, Octo-
ber 2013

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC
from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 4

[GI14] Gilboa, N., Ishai, Y.: Distributed point functions and their applications.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 35

[GIS18] Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic
and black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS,
vol. 11239, pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03807-6 5

[GS17] Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from
bilinear maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press
(2017)

[GS18a] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 16

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers
efficiently (2003)

[JKPT12] Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient
zero-knowledge proofs from learning parity with noise. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 40

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49896-5 26

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp.
84–93. ACM Press, May 2005

https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-642-34961-4_40
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26

On the Bottleneck Complexity of MPC
with Correlated Randomness

Claudio Orlandi, Divya Ravi(B), and Peter Scholl

Aarhus University, Aarhus, Denmark
{orlandi,divya,peter.scholl}@cs.au.dk

Abstract. At ICALP 2018, Boyle et al. introduced the notion of the
bottleneck complexity of a secure multi-party computation (MPC) pro-
tocol. This measures the maximum communication complexity of any
one party in the protocol, aiming to improve load-balancing among the
parties.

In this work, we study the bottleneck complexity of MPC in the pre-
processing model, where parties are given correlated randomness ahead
of time. We present two constructions of bottleneck-efficient MPC pro-
tocols, whose bottleneck complexity is independent of the number of
parties:
1. A protocol for computing abelian programs, based only on one-way

functions.
2. A protocol for selection functions, based on any linearly homomor-

phic encryption scheme.
Compared with previous bottleneck-efficient constructions, our protocols
can be based on a wider range of assumptions, and avoid the use of fully
homomorphic encryption.

1 Introduction

Secure Multiparty Computation (MPC) [Yao86,GMW87,BGW88,CCD88]
allows a set of mutually distrusting parties to jointly perform a computation
on their private inputs in a way no information about their inputs is revealed,
except the output of the computation.

There are various fundamental metrics with respect to which the efficiency
of an MPC protocol can be measured such as round complexity, communication
complexity and computation complexity. Among these, communication complex-
ity, which measures the total number of bits communicated by honest parties
in the protocol, is often cited as one of the most important ones in practi-
cal applications. In this work we study a particular flavour of communication

Research supported by: the Concordium Blockhain Research Center, Aarhus Uni-
versity, Denmark; the Carlsberg Foundation under the Semper Ardens Research
Project CF18-112 (BCM); the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement No
803096 (SPEC); the Aarhus University Research Foundation (AUFF); the Indepen-
dent Research Fund Denmark (DFF) under project number 0165-00107B; the Digital
Research Centre Denmark (DIREC);.

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 194–220, 2022.
https://doi.org/10.1007/978-3-030-97121-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_8

On the Bottleneck Complexity of MPC with Correlated Randomness 195

complexity for MPC, namely bottleneck complexity (BC). While there has been
extensive research aimed at optimizing the communication complexity of MPC
protocols, most of these works do not take into account the fact that parties may
have asymmetric roles in the protocol, and communication may be unevenly dis-
tributed. The work of [BJPY18] addressed this concern by introducing bottleneck
complexity as a new efficiency metric.

Informally, bottleneck complexity is the maximum communication required
by any party within the protocol computation. To illustrate the difference
between communication complexity and bottleneck complexity, consider two
protocols – say, in the first protocol each party sends a bit to a central party
while in the second one, the parties communicate in a chain-like fashion with
party Pi sending one bit to Pi+1 (for i ∈ [1, n − 1], where n is the number of
parties). Both these protocols have total communication complexity Θ(n) but
differ significantly in their bottleneck complexities. The first protocol has Θ(n)
bottleneck complexity, while the second has O(1) bottleneck complexity. If the
receiving bandwidth of the central party in the first protocol becomes the bottle-
neck, the second protocol with low bottleneck complexity would be preferred in
most practical scenarios. With this motivation, the work of [BJPY18] initiated
the study of bottleneck complexity.

In the setting of bottleneck complexity, the focus is on protocols between
large number of parties, and the goal is designing protocols with bottleneck
complexity independent of the number of parties. Such protocols as thus referred
as being BC-efficient. On the lower bounds side, the work of [BJPY18] shows
that, for general functions, achieving even sublinear (in the number of parties
n) communication complexity is not always possible – even when no security is
required! On the positive side, they present a generic compiler based on fully-
homomorphic encryption (FHE) that transforms an insecure MPC protocol into
a secure MPC protocol while preserving the bottleneck complexity.

It is well known that homomorphic encryption (in one or other of its many
flavours) is a powerful tool for compiling protocols with low communication
complexity (see for instance [NN01,IP07,DFH12,AJL+12,LNO13]). However,
FHE is still relatively inefficient, and we only know how to construct it using
the learning with errors (LWE) assumption [BV11] or the heavy machinery of
indistinguishability obfuscation [CLTV15]. It is therefore very natural to ask the
question:

For which functions can we achieve low bottleneck complexity without using
FHE?

1.1 Our Contribution

In this work, we investigate the feasibility of BC-efficient MPC without using
heavy tools such as FHE. Instead, we focus on protocols which make use of
correlated randomness and “traditional” assumptions such as one-way functions
and (for one of our constructions) linearly homomorphic encryption (which can

196 C. Orlandi et al.

be instantiated with “90s” style assumptions based on discrete logarithms, fac-
toring, etc.). All of our protocols are secure against a semi-honest (passive)
adversary who may corrupt an arbitrary number of parties.

In this setting, we provide BC-efficient protocols for the following classes of
functions:

Abelian Programs. Abelian programs are defined as functions on the sum of
the parties’ inputs over an abelian group. More formally, an abelian program h
takes n elements from an abelian group G as input and outputs h(x1, . . . , xn) =
f(

∑n
i=1 xi) for some function f : G → {0, 1}. This is an expressive class of

functions that can be used to securely perform e.g., voting or linear classifiers
(see [EOYN21] for more details about applications of abelian programs).

As a warm-up, we design BC-efficient protocols for simple boolean functions
such as AND and XOR, which can be viewed as special cases of abelian programs.
These protocols incur bottleneck complexity of O(λ) and O(1) respectively. We
generalize the approach of these protocols and propose a BC-efficient protocol for
abelian programs that has bottleneck complexity O(λ2) (which is independent
of n), where λ denotes the security parameter. Our construction is based on
garbled circuits, and therefore can be built from one-way functions.

Selection Functions. A selection function is a function of the form f(x1 =
q, x2, . . . , xn) = xq, where P1’s input is a selection index q ∈ {2, . . . , n} and
the inputs of the other parties are in ZM (set of integers modulo M).

We design a BC-efficient protocol for selection functions that has bottleneck
complexity poly(λ) (independent of n), where λ denotes the security parameter.
Our construction uses additively homomorphic encryption and garbled circuits
as the main tools, which can be instantiated under standard number-theoretic
assumptions like decisional Diffie-Hellman, quadratic residuosity, N -th residuos-
ity or learning with errors.

On the Communication Pattern of BC-Efficient Protocols. We defer the detailed
high-level overviews of the protocols to the respective technical section and high-
light an important and common aspect of our BC-efficient constructions below.
As a starting point towards designing BC-efficient protocols, we begin by analyz-
ing what types of interaction patterns in MPC support the bottleneck complexity
as being independent of the number of parties. The most common interaction
pattern in MPC protocols is a complete network (where every pair of parties com-
municate with each other). Some other popular restricted interaction patterns
include ‘star’ (where all parties interact with a central party) [BGI+14,HIJ+16]
and ‘chain’ (where parties interact over a simple directed path traversing all
nodes) [HIJ+16,IMO18]. It is easy to see that the ‘chain’ interaction pattern is
promising to design BC-efficient protocols. This is because it involves each party
communicating with only a constant number of parties. However, we need two
additional properties that a BC-efficient protocol over a chain must satisfy: First,
the number of communication traversals or passes over the chain must also be
independent of n. Second, the size of the message communicated by each party

On the Bottleneck Complexity of MPC with Correlated Randomness 197

to its neighbour must also be independent of n. All our protocols thereby entail
a constant number of passes over a chain-like structure, where each message
communicated is independent of n. We refer to the technical sections for further
details.

Open Problems. As mentioned above, the study of bottleneck complexity in MPC
is inherently tied to the bottleneck complexity of protocols without security, since
not every function can be BC-efficient [BJPY18]. It remains an open question to
more thoroughly characterize which functions allow BC-efficient protocols in the
clear. With privacy, an interesting challenge is to obtain (even in the correlated
randomness model) a compiler that transforms a (possibly insecure) protocol
into a secure one with the same bottleneck complexity, while using non-FHE
assumptions as considered in this work.

1.2 Related Work

The most relevant work to ours is the work of [BJPY18] which introduced the
notion of bottleneck complexity. As mentioned previously, [BJPY18] presents a
generic compiler based on fully-homomorphic encryption (FHE) that transforms
an insecure MPC protocol into a secure MPC protocol while preserving the bot-
tleneck complexity. For the two-party setting, such a compiler was proposed by
the work of [NN01] (this compiler preserved communication complexity; however
the notions of bottleneck and communication complexity align in the two-party
case). The work of [FKLS20] in the massive parallel computation model focuses
on minimizing the storage/communication of servers (which is similar to our
goal of minimizing bottleneck complexity). However, similar to [BJPY18], their
compiler from an insecure to secure protocol in the parallel computation model
is based on FHE (which we wish to avoid).

Related to the setting of MPC with huge number of parties that we con-
sider in this work, the study of scalable MPC was initiated by [DI06] and
further explored in works of [DIK+08]. However, these works focus on opti-
mizing communication complexity relative to the circuit size. Similarly, sev-
eral works on optimizing communication complexity of MPC protocols such as
[Cou19,DNPR16,IKM+13] in the information-theoretic setting with correlated
randomness and [QWW18,ABJ+19] in the computational setting also focus on
regulating the dependence on circuit size. The protocols in these works incur
Ω(n) bottleneck complexity (which is inherent as shown by [BJPY18], since
these protocols are for arbitrary functions).

Another related line of work is MPC protocols that involve a one-pass ‘chain’
interaction pattern, which includes works such as [HIJ+16]. Further, the proto-
cols of [HLP11,GMRW13] that consider consider secure computation in a one-
pass client server model can also be adapted to a one-pass chain-based interaction
(as pointed out in [HIJ+16]). However, since these works restrict the interaction
to a ‘single’ pass, their constructions achieve residual security (as opposed to
standard security). The same holds for efficient non-interactive multiparty com-
putation (NIMPC) constructions in [HIKR18,EOYN21,BGI+14].

198 C. Orlandi et al.

Lastly, there are other notions that are related to bottleneck complexity
such as communication locality (defined for a party as number of total other
parties that the party communicates with) [BGT13] and message complexity
(that captures the total number of messages sent in the protocol but does not
focus on the size of the message) [IMO18]. However, the proposed protocols
optimizing these metrics are for arbitrary functions and incurs Ω(n) bottleneck
complexity.

2 Preliminaries

2.1 Notation

We denote the cryptographic security parameter as λ. We consider a set of
n = n(λ) parties {P1, . . . , Pn}, where n is polynomially-bounded. The parties
are connected by pair-wise secure and authentic channels, and each party is
modelled as a probabilistic polynomial time Turing (PPT) machine. We assume
that there exists a PPT adversary A, who can passively corrupt upto n − 1
parties. The set of elements {1, . . . , k} is denoted as [k].

2.2 Security Model

We prove the security of our protocols based on the standard real/ideal world
paradigm. A reader who is familiar with this may skip to Sect. 2.3. Essentially,
the security of a protocol is analyzed by comparing what an adversary can do in
the real execution of the protocol to what it can do in an ideal execution, that
is considered secure by definition (in the presence of an incorruptible trusted
party). In an ideal execution, each party sends its input to the trusted party
over a perfectly secure channel, the trusted party computes the function based
on these inputs and sends to each party its respective output. Informally, a
protocol is secure if whatever an adversary can do in the real protocol (where
no trusted party exists) can be done in the above described ideal computation.
In this work, the adversary is assumed to be passive (alternately, referred to as
being semi-honest) – the corrupt parties must follow the protocol specifications.
However, the adversary attempts to learn private information by observing the
view of the passively corrupt parties. We refer to [Can00] for further details
regarding the security model.

In more detail, let Π be a protocol and F be a functionality. Let I denote
the set of parties that are corrupt (of size at most n − 1). The “ideal” world
execution involves parties {P1, . . . , Pn}, an ideal adversary S who controls the
parties in I. The “real” world execution involves the PPT parties {P1, . . . , Pn},
and a real world adversary A who corrupts the parties in I passively. The view
of a party in the real world is defined to be its random tape, together with all
messages received during the execution of the protocol. In the ideal world, the
simulator S is given as input nothing but the corrupt parties’ inputs sent to the
trusted party and the outputs they receive from the trusted party. If S is able

On the Bottleneck Complexity of MPC with Correlated Randomness 199

to ‘simulate’ the real-world view with just this information, intuitively, security
must hold. This is formalized below.

We define the following distributions of random variables.

REALΠ(1λ, I;x1, . . . , xn) : suppose Π is run with security parameter λ where
each party Pi runs the protocol honestly using private input xi. Let Vi denote
the view of party Pi at the end of the protocol execution and let yi denote
the output of Pi. Output

({Vi}i∈I , (y1, . . . , yn)
)
.

IDEALF,S(1λ, I;x1, . . . , xn) : Let (y1, . . . , yn) ← F(x1, . . . , xn). Output(S(I, {xi, yi}i∈I), (y1, . . . , yn)
)

A protocol is secure against passive adversaries if the corrupted parties in
the real world have views that are indistinguishable from their views in the ideal
world.

Definition 1. A protocol Π securely realizes F if there exists a PPT ideal
world adversary S, such that for every subset of corrupt parties I and all inputs
x1, . . . , xn, the following two distributions are computationally indistinguishable:

REALΠ(1λ, I;x1, . . . , xn)
c≈ IDEALF,S(1λ, I;x1, . . . , xn)

2.3 Definitions

Informally, the bottleneck complexity of a protocol is the maximum communica-
tion complexity required by any party in the protocol execution. More formally,
we have:

Definition 2 (Bottleneck complexity of a Protocol [BJPY18]). Let
CCi(Π) denote the expected number of bits sent or received by Pi in an exe-
cution of Π, with worst-case inputs. The bottleneck complexity of an n-party
protocol Π is defined as BC(Π) = maxi∈[n]CCi(Π)

We note that while we keep the BC-complexity definition of [BJPY18] for con-
sistency, all our protocols satisfy a stronger notion of worse-case (as opposed to
expected) BC-complexity.

Definition 3 (Bottleneck complexity of a Function [BJPY18]). The bot-
tleneck complexity of an n-input function f is the minimum value of BC(Π)
when quantified over all n-party distributed protocols Π which securely evaluate
f .

We say that a protocol Π is BC-efficient, if the bottleneck complexity of Π is
independent of n. Formally, we require that there exists a polynomial p(λ) such
that for all n(λ) ∈ poly(λ), it holds that BC(Π) < p(λ).

Definition 4 (Abelian Programs). Let G be an abelian group, S1, . . . , Sn be
subsets of G, and HG

S1,...,Sn
be the set of functions h : S1 × · · · × Sn → {0, 1}

of the form h(x1, . . . , xn) = f(Σn
i=1xi), for some f : G → {0, 1}. We call such

functions h abelian programs.

200 C. Orlandi et al.

Note that the simple boolean functions of AND and XOR are abelian programs,
considering the abelian group G as Zn+1 (integers modulo n+1) and the subsets
Si (i ∈ [n]) as the set {0, 1}. AND(x1, . . . , xn) can be expressed as f(

∑n
i=1 xi)

where the addition is done modulo (n + 1) and f(x) outputs 1 only when x =
n and 0 otherwise. On the other hand, XOR(x1, . . . , xn) can be expressed as
f(

∑n
i=1 xi) where f(x) outputs x mod 2.

2.4 Primitives

Garbling Scheme. A garbling scheme, introduced by Yao [Yao82] and for-
malized by Bellare et al. [BHR12], enables a party to “encrypt” or “garble” a
circuit in such a way that it can be evaluated on inputs—given tokens or “labels”
corresponding to those inputs—without revealing what the inputs are.

Definition 5 (Garbling Scheme). A projective garbling scheme is a tuple of
efficient algorithms GC = (garble, eval) defined as follows.

garble(1λ, C) → (GC,K): The garbling algorithm garble takes as input the
security parameter λ and a boolean circuit C : {0, 1}� → {0, 1}m, and outputs
a garbled circuit GC and � pairs of garbled labels K = (K0

1 ,K1
1 , . . . ,K0

� ,K1
�).

For simplicity we assume that for every i ∈ [�] and b ∈ {0, 1} it holds that
Kb

� ∈ {0, 1}λ.
eval(GC,K1, . . . ,K�) → y: The evaluation algorithm eval takes as input the
garbled circuit GC and � garbled labels K1, . . . ,K�, and outputs a value y ∈
{0, 1}m.

We require the following properties of a projective garbling scheme:

Correctness. We say GC satisfies correctness if for any boolean circuit C :
{0, 1}� → {0, 1}m and x = (x1, . . . , x�) it holds that

Pr[eval(GC,K[x]) �= C(x)] = negl(λ),

where (GC,K) ← garble(1λ, C) with K = (K0
1 ,K1

1 , . . . ,K0
� ,K1

�), and K[x] =
(Kx1

1 , . . . ,Kx�

�).
Next, we formally define the security notions we require for a garbling scheme.

When garbled circuits are used in such a way that decoding information is used
separately, obliviousness requires that a garbled circuit together with a set of
labels reveals nothing about the input the labels correspond to, and privacy
requires that the additional knowledge of the decoding information reveals only
the appropriate output. In our work, we do not consider decoding information
separately (but rather, consider it to be included in the garbled circuit), so we
do not need obliviousness.

On the Bottleneck Complexity of MPC with Correlated Randomness 201

Privacy. Informally, privacy requires that a garbled circuit together with a set
of labels reveal nothing about the input the labels correspond to (beyond the
appropriate output and the side-information). For our constructions, we assume
the side-information to be the topology of the circuit, denoted as θ(C).

More formally, we say that GC satisfies privacy if there exists a simulator
simGC such that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2

+ negl(λ)

in the following experiment:

Lastly, we remark that one of our constructions requires the use of a
slightly modified garble algorithm that takes as additional input, the labels
of the garbled circuit. The modified syntax is as follows: garble(1λ, C,K =
(K0

1 ,K1
1 , . . . ,K0

� ,K1
�)) → GC. Accordingly, the simulator of the garbling

scheme simGC also takes as input one set of labels i.e. the syntax changes to
simGC(1λ, θ(C), C(x), {K1, . . . ,K�}) → GC. Note that most garbled circuits con-
structions, including Yao’s original construction, can be used in this way.

Additively Homomorphic Encryption. We consider linearly homomorphic
encryption over (ZM ,+), the ring of integers modulo M .

Definition 6 (Additively Homomorphic Encryption.). Let (ZM ,+) be the
ring of integers modulo M . An additively homomorphic encryption scheme over
ZM is a tuple AHE = (Keygen, Enc, Dec, Add, ScalMul) defined as:

Key Generation. The algorithm Keygen is a randomized algorithm that
takes as input the security parameter and outputs a public key pk and a secret
key pair sk : (pk, sk) ← Keygen(1λ).
Encryption. The randomized algorithm Enc takes as input the public key
pk and the message m ∈ ZM and outputs a ciphertext c: c ← Enc(pk,m; r)
(where r denotes the randomness used for encryption).
Decryption. The algorithm Dec takes as input the secret key sk and the
ciphertext c and outputs a plaintext m ∈ ZM (or ⊥ if the ciphertext is invalid):
m ← Dec(sk, c).

202 C. Orlandi et al.

Homomorphic Addition. The algorithm Add takes as input the public key pk
and two ciphertexts c1 and c2 and outputs a ciphertext c∗: c∗ ← Add(pk, c1, c2).
Scalar Multiplication. The algorithm ScalMul takes as input the public
key pk, a ciphertext c and an integer α ∈ ZM , and outputs a ciphertext
c′ : c′ ← ScalMul(pk, c, α).

We require the following properties of an AHE:

Correctness. An AHE is correct if for any m ∈ ZM ,

Pr
[

Dec(sk, c) �= m : (pk, sk) ← Keygen(1λ);
c ← Enc(pk,m)

]

≤ negl(λ)

(where the randomness is taken over the random coins of the algorithms)
Additive Homomorphism. An AHE satisfies additive homomorphism if for
any m1,m2 ∈ ZM , the following holds:

Pr

⎡
⎣Dec(sk, Add(pk, c1, c2)) �= m1 + m2 mod M :

(pk, sk) ← Keygen(1λ);
c1 ← Enc(pk, m1);
c2 ← Enc(pk, m2)

⎤
⎦ ≤ negl(λ)

Pr

[
Dec(sk, ScalMul(pk, c, m2)) �= m1 · m2 mod M :

(pk, sk) ← Keygen(1λ);
c ← Enc(pk, m1)

]
≤ negl(λ)

(where the randomness is taken over the random coins of the algorithms)

CPA Security. An AHE satisfies CPA security if for all PPT adversaries A,
for (msg0,msg1) ← A(1λ), if |msg0| = |msg1|,

Pr
[

A(pk, c) = b : (pk, sk) ← Keygen(1λ); b ← {0, 1};
c ← Enc(pk,msgb)

]

≤ 1
2

+ negl(λ)

(where the randomness is taken over the internal coin tosses of A, Keygen
and Enc).
Circuit Privacy. An AHE satisfies circuit privacy if there exists a simulator
S such that for any m1,m2 ∈ ZM the distributions

{sk,S(pk,m1 + m2 mod M)} and {sk, Add(pk, Enc(pk,m1), Enc(pk,m2))}
{sk,S(pk,m1 · m2 mod M)} and {sk, ScalMul(pk, Enc(pk,m1),m2)}

where (pk, sk) ← Keygen(1λ) are computationally indistinguishable.

Note that our definition of circuit privacy implies that Add and ScalMul re-
randomize the output ciphertext.

Additively-homomorphic encryption satisfying our requirements can be real-
ized from a variety of assumptions, including QR, DDH, Paillier, learning with
errors etc. In the case of DDH, we actually obtain AHE for small integer plain-
texts, rather than ZM . However, this is enough for our application, since our

On the Bottleneck Complexity of MPC with Correlated Randomness 203

construction never relies on wraparound modulo M , and we can always guar-
antee that messages are small by decomposing inputs into blocks and packing
into several ciphertexts. Finally, note that standard LWE-based AHE construc-
tions [Reg05] do not support an unbounded number of homomorphic operations;
however, in our application this is limited to O(n), so parameters can be chosen
accordingly.

3 BC-Efficient MPC for Abelian Programs

In this section, we present a BC-efficient MPC protocol for abelian programs.
As a warm-up, we begin with describing BC-efficient protocols for basic boolean
functions.

3.1 Protocol for AND

At a high-level, the BC-efficient protocol for AND proceeds as follows. The setup
maps the potential 1-input of each party to a random group element and dis-
tributes it to the respective party. In the online phase, the parties use either
the element received as part of the setup or a random element (depending on
whether their input is 1 or 0 respectively) to compute the sum incrementally
over a chain. The basic idea is that if all parties’ inputs are 1, the sum of these
group elements would be a special element, say Y , which can also be given as
part of the setup and thereby used to determine the output.

Unfortunately, the above protocol idea is susceptible to the residual function
attack1– suppose the interaction over the chain occurs from P1 to Pn and imagine
the adversary corrupts a subset of parties towards the end of the chain, say Pk

to Pn (where k could be any index between 2 to n). In such a case, it is easy
to see that the adversary can always learn whether the logical AND of the honest
parties’ inputs is 1 or not, irrespective of the corrupt parties’ inputs. This violates
security because as per the ideal functionality, the adversary must not learn this
information if any of the corrupt parties’ input is 0.

To counter this residual attack, the online phase of our protocol performs an
additional backwards pass over the chain i.e. from Pn to P1. Suppose Y ′ denotes
the sum computed at the end of the forward pass. The backward pass involves
n applications of a PRF in a nested manner starting from Y ′, once by each party
using its own PRF key (given as a part of the setup). Intuitively, this prevents
the residual attack by the adversary for the following reason – when an honest
party computes the PRF using its secret PRF key, the value Y ′ gets “fixed”. It
is no longer possible for the adversary to locally compute the output based on
the scenario when Y ′′ �= Y ′ was computed at the end of the forward pass of the
chain (as he does not know the secret PRF key of the honest party).

1 However, this approach suffices for residual security, as shown in the NIMPC protocol
of [HIKR18].

204 C. Orlandi et al.

Lastly, our protocol does another forward pass over the chain to distribute
the output. The formal description of the BC-efficient protocol for AND appears
in Fig. 1.

Fig. 1. ΠAND

On the Bottleneck Complexity of MPC with Correlated Randomness 205

Correctness. For correctness, note that when xi = 1 for each i ∈ [n], Y ′ =∑n
i=1 r

1
i = Y . Therefore, Z ′ == Z holds and the output y evaluates to 1 in such

a case (which is the correct output). Next we consider the case when the input
of at least one party is 0: Y ′ �= Y would hold (except with negligible probabil-
ity) and consequently Z ′ �= Z holds (except with negligible probability). The
parties output 0 (which is the correct output) in such a case with overwhelming
probability.

Security. To argue security, consider the case when the adversary corrupts n−1
parties passively and Pi denotes the only honest party. Further, assume that at
least one of the corrupt parties’ input is 0 (which is the non-trivial case where
adversary should learn nothing about xi; else the input of Pi can be derived
from the output itself). Firstly, the adversary learns nothing about xi from Yi,
as both r0i and r1i are random elements in G. Next, we claim that the adver-
sary learns no information about Z ′′

i = F
(
si,F(si+1,F(si+2, . . . ,F(sn, Y ′′) . . .))

)

computed on Y ′′ �= Y ′. This follows from security of the PRF – In more detail,
such an adversary could use the query Z ′′

i+1 = F(si+1,F(si+2, . . . ,F(sn, Y ′′) . . .))
to distinguish between the PRF F (where the key sampled is si) and a truly
random function; thereby breaking the security of the PRF. The above claim
ensures that for any Y ′′ �= Y ′, the adversary cannot deduce whether Z ′′ ←
F
(
s1,F(s2, . . .F(sn−2,F(sn−1,F(sn, Y ′′)) . . .)

)
computed at the end of Phase 2

with respect to Y ′′ would be identical to Z or not. We can thus conclude that
the adversary learns nothing beyond the output 0 and the privacy of Pi’s input
is maintained. This completes the informal security argument.

BC-Analysis. We analyze the communication incurred by a party, say Pi, in an
execution of ΠAND. First, we observe that throughout ΠAND, each party communi-
cates with at most two other parties (i.e. Pi−1 and Pi+1). Further, the messages
communicated (such as Yi, Zi, y) are of at most λ bits. It is therefore easy to see
that the bottleneck complexity of ΠAND is O(λ).

Extension to the Dual Case of OR Function. The above protocol extends natu-
rally to the dual case of the OR function. For computation of the OR of all parties’
input bits, the setup distributes random elements mapped to potential 0-inputs
(instead of 1-inputs as in ΠAND) and computes Y,Z accordingly. The parties use
the information received from the setup in case their input is 0 and sample a
random group element otherwise. The rest of the protocol remains the same. It
is easy to check that this yields a BC-efficient protocol for OR.

3.2 Protocol for XOR

We present the BC-efficient protocol ΠXOR for XOR in Fig. 2.
At a high-level, during ΠXOR, a correlated sharing of 0 is distributed as part

of the setup. The parties mask their inputs using their respective share (received
as part of the setup). In the online phase, the parties compute the XOR of their

206 C. Orlandi et al.

masked inputs in an incremental manner over a chain. It is easy to see that the
XOR of the masked inputs evaluates to the XOR of the parties’ inputs.

Note that, unlike the case of AND, ΠXOR does not need another pass over
the chain before output distribution. This is because, in the case of the XOR
function, standard security is the same as residual security. Lastly, we point that
the correlated sharing of 0 and addition of masked inputs is also used in the
NIMPC protocol for addition in [HIKR18]. While their protocol involves parties
sending masked inputs to a central party, we carry out the computation in an
incremental manner over a chain to preserve the BC-efficiency.

Fig. 2. ΠXOR

Correctness. For correctness, note that Xn = ⊕n
i=1Mi = ⊕n

i=1(xi ⊕mi) =
(⊕n

i=1

xi

) ⊕ (⊕n
i=1 mi

)
=

(⊕n
i=1 xi

) ⊕ 0 = ⊕n
i=1xi.

Security. For security, consider the case where there are at least two honest
parties, say Pi and Pj (the case of single honest party is trivial as the party’s
input can be deduced from the output of XOR). During the protocol, the adversary
learns Mi = xi ⊕mi and Mj = xj ⊕mj . Further since ⊕n

k=1mi = 0, the adversary
can deduce mi ⊕mj . However, this leaks nothing beyond xi ⊕xj which is allowed
as per ideal realization of XOR. This completes the informal security argument.

On the Bottleneck Complexity of MPC with Correlated Randomness 207

BC-Analysis. We analyze the communication incurred by a party, say Pi, in an
execution of ΠXOR. First, we observe that throughout ΠXOR each party communi-
cates with at most two other parties (i.e. Pi−1 and Pi+1). Further, the messages
communicated (such as Xi, y) are a single bit. It is therefore easy to see that the
bottleneck complexity of ΠXOR is O(1).

3.3 Protocol for Abelian Programs

Recall that an abelian program h can be expressed as h(x1, . . . , xn) = f(Σn
i=1xi),

for some f : G → {0, 1}, where G denotes an abelian group (Definition 4).
Towards securely computing such a function in a BC-efficient manner, we begin
with the following observation about the protocol design in Sect. 3.1 and Sect. 3.2
– At the end of the first forward pass, the parties obtain useful information
related to the sum of their inputs. Roughly speaking, this is subsequently used
to derive the output by applying some ‘special’ function. In the case of AND, this
‘special’ function essentially corresponds to checking if the sum is identical to a
fixed value that is given to the parties in advance; in the case of XOR, the ‘special’
function turns out to be just the identity function (as the sum computed at the
end of the first pass directly yields the output).

Extending this approach to an abelian program h(x1, . . . , xn) = f(Σn
i=1xi) =

f(Y), we first note that the useful information related to the sum of parties’ inputs
(that is computed at the end of the first forward pass) must be such that it does not
allow the adversary to learn the sum of the parties’ inputs i.e. Y . This is because
the output of h may not necessarily reveal Y . For this reason, the first forward
pass in our protocol computes a ‘masked’ sum of inputs, say Z = Y + R, where R
corresponds to a random mask that is unknown to the parties. Now, the output of h
can be derived from this masked sum by computing the ‘special’ function f(Z−R).

To realize the above computation in a BC-efficient manner, we use garbled cir-
cuits. The setup phase involves garbling the circuit corresponding to the ‘special’
function. In more detail, this circuit takes as input Z, has the mask R hard-coded
and computes f(Z −R). Further, to enable the parties to obtain labels for input
wires corresponding to Z, the setup additively shares all the labels of the garbled
circuit among the parties. Additive sharing of the input labels offers a two-fold
advantage – Firstly, it ensures that during the execution of the protocol, the
adversary learns at most one label per input wire. This counters residual attacks
by the adversary and maintains privacy of honest parties’ inputs. Specifically,
privacy of garbling guarantees that the adversary is unable to learn the mask R
(and therefore Y). Secondly, additive secret sharing supports reconstruction in
an incremental fashion. This allows the parties to carry out the reconstruction
of the appropriate label corresponding to Z while maintaining the BC-efficiency.

Based on the above high-level ideas, our BC-efficient construction Πabl has
the following structure. It begins with a forward pass to compute the masked sum
Z. Next, it does a backward pass where the parties use their respective additive
shares (received as part of the setup) and reconstruct the labels corresponding
to Z. Using these labels, the garbled circuit (received as a part of the setup)
computing f(Z − R) can be evaluated, which results in the output of h. The
formal description of Πabl appears in Fig. 3.

208 C. Orlandi et al.

Fig. 3. Πabl

On the Bottleneck Complexity of MPC with Correlated Randomness 209

Correctness. For correctness, note that Z computed by Pn at the end of Phase
1 is Z = Σn

i=1Mi = Σn
i=1(xi + ri) = Σn

i=1xi + Σn
i=1ri = Σn

i=1xi + R. Thus,
the output computed via the evaluation of the garbled circuit as f(Z − R) =
f(Σn

i=1xi) = h(x1, . . . , xn) is indeed the correct output.
BC-Analysis. We analyze the communication incurred by a party, say Pi, in an
execution of Πabl. First, we observe that throughout Πabl each party communi-
cates with at most two other parties (i.e. Pi−1 and Pi+1). Further, the messages
communicated (such as Yi, Z, {K ′

α,i}α∈[λ], y) are of size at most λ2. It is therefore
easy to see that the bottleneck complexity of Πabl is O(λ2).

We state the formal theorem below.

Theorem 1. Protocol Πabl securely computes the abelian program h against an
adversary corrupting upto n − 1 parties passively.

Proof. Let I and H = P \ I denote the set of indices corresponding to corrupt
and honest parties respectively. Let jmin and jmax denote the least and maxi-
mum index corresponding to an honest party, where the indices are in the range
{1, . . . , n}. To prove security, we define below a simulator S that simulates the
real-world view of the parties. Recall that S is given (I, {xi}i∈I , y) (see Sect. 2.2
for details about the security model).

Setup Simulation. Run (GC,
K = {K1, . . . ,Kλ}) ← simGC(1λ, θ(C), y), where
simGC denotes the simulator of the garbling scheme and θ(C) denotes the topol-
ogy of the circuit computing f(Z − R) (note that the topology is independent
of the hard-coded value R). For each i ∈ I, sample

(
ri, {K

(0)
α,i ,K

(1)
α,i}α∈[λ]) at

random. The view of corrupted Pi constructed by S at this stage comprises of
(
GC, ri, {K

(0)
α,i ,K

(1)
α,i}α∈[λ]

)
.

Phase 1 Simulation. Choose Yj at random on behalf of each honest Pj (j ∈ H).
For i ∈ I and j ∈ H, add Yj to a corrupt party Pi’s view if i = j + 1.

Phase 2 Simulation. Recall that for each i ∈ I, S knows xi and defined ri (during
the simulation of the setup) and therefore can compute Mi.

– Compute Z as Z = Yjmax +
∑n

k=j+1 Mk. Parse Z = (z1, z2, . . . , zλ).
– For each α ∈ [λ] and j ∈ H : If j �= jmin, sample K ′

α,j at random. Else (i.e.

for j = jmin), set K ′
α,jmin

such that K ′
α,jmin

+
∑jmin−1

i=1 K
(zα)
α,i = Kα. Note that

K
(zα)
α,i for i ∈ [jmin−1] corresponds to additive shares of corrupt parties which

were already defined by S during the setup.
– For i ∈ I and j ∈ H, add (Z,K ′

α,j) to a corrupt party Pi’s view if i = j − 1.

210 C. Orlandi et al.

Phase 3 Simulation. For i ∈ I and j ∈ H, add y to a corrupt party Pi’s view if
i = j + 1.

Below, we argue that the views of corrupt parties in the real and ideal world
are indistinguishable via a series of intermediate hybrids.

-Hyb0: Same as the real-world execution.
-Hyb1: Same as Hyb0, except that Yj for j ∈ H is sampled at random.
This is in contrast to the previous hybrid where Yj is computed as Yj =
Yj−1 +xj + rj . Since rj is uniformly distributed in G, this is indistinguishable
from the previous hybrid.
-Hyb2: Same as Hyb1, except for the way in which K ′

α,j for j ∈ H, α ∈ [λ] is
computed – For j �= jmin, K ′

α,j is chosen uniformly at random, whereas for

j = jmin, it is set such that K ′
α,jmin

+
∑jmin−1

i=1 K
(zα)
α,i = K

(zα)
α .

This is in contrast to the previous hybrid where K ′
α,j is computed as K ′

α,j ←
K ′

α,j+1 +K
(zα)
α,j . Since K

(zα)
α,j is distributed uniformly at random (conditioned

on Σn
k=1K

(zα)
α,k = K

(zα)
α), this is indistinguishable from the previous hybrid.

-Hyb3: Same as Hyb2, except that (GC,
K) is computed as (GC,
K) ←
simGC(1λ, θ(C), y), where θ(C) denotes the topology of the circuit computing
f(Z − R).
This is in contrast to Hyb2 where (GC,
K) is computed as (GC, {K

(zα)
α }α∈[λ]),

where (GC, {K
(0)
α ,K

(1)
α }α∈[λ]) ← garble(C, 1λ). It follows from privacy of the

garbling scheme (see Definition 5) that Hyb3 is indistinguishable from Hyb2.

Since Hyb3 corresponds to the ideal execution and every pair of consecutive
hybrids are indistinguishable, this completes the proof that the views of corrupt
parties in the real and ideal world are indistinguishable.

4 BC-Efficient Protocol for Selection Functions

In this section, we present a BC-efficient protocol Πsel for the selection function
f(x1 = q, x2, . . . , xn) = xq, where P1’s input is a selection index q ∈ {2, . . . , n}
and the inputs of the other parties are in ZM , the plaintext space of an additively
homomorphic encryption scheme.

As a starting point, note that the output of the selection function can be
viewed as

∑n
i=2(bi · xi), where bi ∈ {0, 1} denotes an indicator bit showing

whether i = q holds or not (i.e. bi = 1 if i = q and 0 otherwise). This seems
promising as such a computation can be carried out in a chain – each party
Pi computes (bi · xi), and these values can be aggregated while preserving BC-
efficiency as seen in Sect. 3. Unfortunately, this direct approach requires Pi to
know bi, which must not be allowed (as it is not revealed by output of f).
However, if Pi somehow had access to an encryption of bi instead, then the
above computation over the chain could be carried out under the hood of additive
homomorphic encryption; maintaining that bi remains private from Pi.

On the Bottleneck Complexity of MPC with Correlated Randomness 211

Next, we note that since bi depends on the input of party P1, it is not possible
to distribute encryptions of bi directly to Pi during the input-independent setup.
Therefore, to account for each possible value of x1 = q (where q ∈ [n]), the setup
distributes to each Pi (i ≥ 2) a look-up table containing n ciphertexts: among
these ciphertexts, the one corresponding to q = i would be an encryption of
bi = 1, while the others would correspond to encryptions of bi = 0. The idea is
to ‘point’ Pi to the appropriate ciphertext in the look-up table without revealing
bi. For this, a random cyclic-shift can be used, say using an offset r (unknown to
Pi). This offset r is given to P1 to enable her to compute the ‘pointer’ q′ = q+r.
Lastly, the encryption is assumed to be randomized, otherwise Pi could learn bi

by simply inspecting her look-up table (since all but one ciphertexts correspond
to encryptions of 0).

Based on the above ideas, we can obtain a BC-efficient construction for
securely computing the selection function, with O(n) storage costs, as follows (in
our final construction, we reduce the storage overhead). During the setup, each
Pi (i ≥ 2) receives a look-up table containing a ‘shifted’ sequence of n ciphertexts
(as explained above). Each of the look-up tables uses the same offset r for the
shift and P1 is given this offset r. The online phase begins with P1 computing the
appropriate pointer q′ = x1 + r = q + r, which is communicated over a forward
pass of the chain to all. During this pass, each party Pi uses the ciphertext at
index q′ of her look-up table (which would correspond to an encryption of bi)
to homomorphically compute an encryption of (bi · xi). These encryptions are
aggregated over the chain, resulting in the encryption of

∑n
i=2(bi ·xi) = xq at the

end of the forward pass. The final step is to compute the output by decrypting
this AHE output ciphertext. Possible ways to do this decryption in a BC- efficient
manner include either (a) incremental decryption (carried out over a chain) of
this ciphertext or (b) use garbled circuits. We opt for approach (b) to avoid the
additional requirement that the AHE used must support incremental decryption.

In the approach using garbled circuits for decryption, we consider a garbled
circuit that takes as input the AHE ciphertext, has the secret key of AHE hard-
coded and outputs the decryption. Similar to the protocol Πabl (Fig. 3), the input
labels of the garbled circuit are additively shared among the parties. This enables
them to reconstruct (over a backward pass of the chain) the appropriate label
corresponding to the output ciphertext and obtain the output via evaluation of
the garbled circuit.

While the above construction is indeed BC-efficient in the online phase,
observe that the setup involves parties receiving look-up tables of size n. We
avoid this in our final construction that achieves storage and computation com-
plexity also independent of n. The main idea is to ‘compress’ the look-up table
in a way that still allows party Pi to obtain the ciphertext corresponding to bi

(without revealing bi).

212 C. Orlandi et al.

Interestingly, this can be done using garbled circuits, thereby avoiding new
primitives or assumptions over the above described construction. As part of
the setup, each Pi is given a garbled circuit, say GCi which garbles a circuit C
described as follows: The circuit C has i, the public key of the AHE and the
randomness used for encryption hard-coded; it takes as input the index j and
outputs the encryption of bi (where bi = 1 if q = i holds and 0 otherwise).
Further, P1 is given the labels for input wires. The final construction differs
from the previous construction in the following aspects: (a) the ‘pointer’ sent
by P1 is the appropriate label corresponding to q (instead of the index q′ in the
look-up table approach). (b) Each Pi obtains the encryption of bi by evaluating
GCi using the label corresponding to q that it receives in the forward pass (instead
of obtaining the appropriate encryption directly from the look-up table).

To make the above approach work while preserving BC-efficiency, it is impor-
tant that the ‘pointer’ label given by P1 can be used by all parties to evaluate
their respective garbled circuits (analogous to P1 giving the same pointer index
to all in the lookup-table approach). This is because we cannot afford to make
P1 give n different pointers, one for each garbled circuit as that would inflate the
BC complexity. To enable the use of the same input label across the n garbled
circuits, we use a slightly modified garbling algorithm that takes as input the
labels corresponding to the input wires. The garbling algorithm of Yao [Yao86]
easily supports this.

Lastly, we point out that it may seem problematic to give P1 all the input
labels of the garbled circuits (computing the encryptions) as this would compro-
mise the privacy of garbling. However, we need to rely of privacy of garbling only
when P1 is honest. This is because an adversary corrupting P1 and Pi (i ≥ 2)
already knows bi. When P1 is honest, a potentially corrupt Pi (i ≥ 2) will have
access to only one set of input labels of GCi and privacy of garbling ensures that
Pi cannot learn bi. Thus, security is maintained.

The formal description of the protocol appears in Fig. 4.

Correctness. Correctness of garbling with respect to GCi for each Pi ∈ [n] and
correctness of AHE ensures that Z computed at the end of the first forward pass
corresponds to an encryption of

∑n
i=2(bi · xi) = xq (where bi = 0 for i �= q and

1 otherwise). It now follows from correctness of garbling with respect to GCDec
(that computes the decryption of an input AHE ciphertext) that the output y
computed is indeed the correct output xq.
BC-Analysis. We analyze the communication incurred by a party, say Pi, in an
execution of Πsel. First, we observe that throughout Πsel each party communi-
cates with at most two other parties (i.e. Pi−1 and Pi+1). Further, the messages
communicated (such as K, {K ′

α,i}α∈[λ], y) are of size at most λ2, for the GC wire
label shares, plus the size of one AHE ciphertext, which is poly(λ). It is therefore
easy to see that the bottleneck complexity of Πsel is poly(λ) and independent
of n.

On the Bottleneck Complexity of MPC with Correlated Randomness 213

Fig. 4. Πsel

214 C. Orlandi et al.

Extension to Larger Inputs. The protocol Πsel can be extended for the case
where the inputs of P2, . . . Pn are arbitary-length vectors i.e. xi ∈ Zk

M , by
running the scalar multiplication on each entry of the input vector. In more
detail, each Pi is still given a single garbled circuit GCi which he uses to com-
pute c′

i. However, each Pi would now compute a set of k ciphertexts {c∗
i,α ←

ScalMul(pk, c′
i, xi,α)}α∈[k] and {cti,α = Add(pk, cti−1,α, c∗

i,α)}α∈[k] accordingly,
where xi,α denotes the α’th entry of xi. This would introduce a multiplicative
factor of k (which is independent of n) in the BC complexity of Πsel, thereby
maintaining the BC-efficiency.

We state the formal theorem below.

Theorem 2. Protocol Πsel securely computes the selection function f(x1 =
j, x2, . . . , xn) = xj (where x1 ∈ {2, . . . , n} and xi ∈ ZM , i ≥ 2) against an
adversary corrupting upto n − 1 parties passively.

Proof. Let I and H = P \ I denote the set of indices corresponding to corrupt
and honest parties respectively. Let jmin and jmax denote the least and maxi-
mum index corresponding to an honest party, where the indices are in the range
{1, . . . , n}. To prove security, we define below a simulator S that simulates the
real-world view of the parties. Recall that S is given (I, {xi}i∈I , y) (we refer
to Sect. 2.2 for details about the security model).

Since the parties’ roles are asymmetric, we describe the simulation in two
parts based on whether P1 ∈ I or not. First, we describe the simulation for the
case when P1 ∈ I. As discussed previously, we do not rely on privacy of garbling
with respect to GCi (i ∈ I) in this case. However, privacy of garbling with respect
to GCDec is crucial.

Setup Simulation.

– Compute the values pk, GCi, {K̃
(0)
α , K̃

(1)
α }α∈[λ] for each i ∈ I as per the

protocol steps in Fig. 4.
– Sample
K = {K1, . . . ,Kλ} and run GCDec ← simGC(1λ, θ(C), y,
K), where
simGC denotes the simulator of the garbling scheme and θ(C) denotes the
circuit computing the decryption of an AHE input ciphertext. (Note that the
topology of the circuit is independent of the hard-coded values).

– For each i ∈ I, sample
({K

(0)
α,i ,K

(1)
α,i}α∈[λ]) at random.

The view of corrupted Pi (i ≥ 2) constructed by S at this stage comprises of(

pk, GCi, {K
(0)
α,i ,K

(1)
α,i}α∈[λ]

)

. The view of corrupted P1 constructed by S at this

stage comprises of
(
pk, {K̃(0)

α , K̃
(1)
α }α∈[λ], {K

(0)
α,1,K

(1)
α,1}α∈[λ], GCDec

)
.

On the Bottleneck Complexity of MPC with Correlated Randomness 215

Phase 1 Simulation.

– Recall that S knows x1 = (b1, . . . , bλ) and defined {K̃(0)
α , K̃

(1)
α }α∈[λ] during

the setup simulation and can therefore compute K = {K̃(bα)
α }α∈λ.

– On behalf of each honest Pj (j ∈ H), compute ctj ← SAHE(pk,m), where
m = y if x1 = q ≤ j and m = 0 otherwise. Here, SAHE refers to the simulator
of the AHE for circuit privacy (Definition 6).

For i ∈ I and j ∈ H, add (K, ctj) to a corrupt party Pi’s view if i = j + 1.

Phase 2 Simulation. This is similar to Phase 2 simulation of Theorem 1, which
we describe below for completeness. Recall that for each i ∈ I, S knows xi

and distributed GCi (during the simulation of the setup) and can therefore can
compute c∗

i .

- Compute Z by homomorphic addition of ctjmax and each c∗
k for k ∈ [j+1, n].

Parse Z = (z1, z2, . . . , zλ).
- For each α ∈ [λ] and j ∈ H : If j �= jmin, sample K ′

α,j at random. Else

(i.e. for j = jmin), set K ′
α,jmin

such that K ′
α,jmin

+
∑jmin−1

i=1 K
(zα)
α,i = Kα. Note

that K
(zα)
α,i for i ∈ [jmin − 1] corresponds to additive shares of corrupt parties

which were already defined by S during the setup.
- For i ∈ I and j ∈ H, add (Z,K ′

α,j) to a corrupt party Pi’s view if i = j − 1.

Phase 3 Simulation. For i ∈ I and j ∈ H, add y to a corrupt party Pi’s view if
i = j + 1.

Below, we argue that the views of corrupt parties in the real and ideal world
are indistinguishable via a series of intermediate hybrids.

-Hyb0: Same as the real-world execution.
-Hyb1: Same as the previous hybrid except that c∗

j for j ∈ H and j �= q is
computed as SAHE(pk, 0).
This is in contrast to the previous hybrid where c∗

j for j ∈ H and j �= q
is computed as ScalMul(pk, Enc(pk, 0), xj). Indistinguishability follows from
circuit privacy of the AHE.
-Hyb2: Same as the previous hybrid except that ctj for j ∈ H is computed as
SAHE(pk,m), where m = y if x1 = q ≤ j and m = 0 otherwise.

This is in contrast to the previous hybrid where ctj for j ∈ H is computed
as Add(pk, Enc(pk, 0), Enc(pk,m)), where m = y if x1 = q ≤ j and m = 0
otherwise. Indistinguishability follows from circuit privacy of the AHE.
-Hyb3: Same as Hyb2, except for the way in which K ′

α,j for j ∈ H, α ∈ [λ] is
computed – For j �= jmin, K ′

α,j is chosen uniformly at random, whereas for

j = jmin, it is set such that K ′
α,jmin

+
∑jmin−1

i=1 K
(zα)
α,i = K

(zα)
α .

This is in contrast to the previous hybrid where K ′
α,j is computed as K ′

α,j ←
K ′

α,j+1 +K
(zα)
α,j . Since K

(zα)
α,j is distributed uniformly at random (conditioned

on Σn
k=1K

(zα)
α,k = K

(zα)
α), this is indistinguishable from the previous hybrid.

216 C. Orlandi et al.

-Hyb4: Same as Hyb3, except that (GCDec,
K) is computed as GCDec ←
simGC(1λ, θ(C), y,
K), where
K = {K1, . . . ,Kλ} is sampled at random and
θ(C) denotes the topology of the circuit computing the decryption of an AHE
input ciphertext.

This is in contrast to Hyb3 where GCDec is computed as GCDec ←
garble(Csk, {K

(0)
α ,K

(1)
α }α∈[λ], 1λ) where {K

(0)
α ,K

(1)
α }α∈[λ] is sampled at ran-

dom and
K = {K
(zα)
α }α∈[λ] It follows from privacy of the garbling scheme

(see Definition 5) that Hyb4 is indistinguishable from Hyb3.

Since Hyb4 corresponds to the ideal execution and every pair of consecutive
hybrids are indistinguishable, this completes the proof that the views of corrupt
parties in the real and ideal world are indistinguishable for the case when P1 ∈ I.

Next, we describe the simulation for the case when P1 ∈ H. The main differ-
ence is that in this case we rely on privacy of garbling with respect to GCi (i ∈ I).
On the other hand, simulation of GCDec is not relevant here as the adversary (who
does not corrupt P1) does not have access to GCDec in the real-world execution
of the protocol.

Setup Simulation.

– For each i ∈ I : Sample pk, ri,Enc and compute c′
i = Enc(pk, 0; ri,Enc). Run

GCi ← simGC(1λ, θ(C), c′
i, {K̃1, . . . , K̃λ}), where simGC denotes the simulator

of the garbling scheme, {K̃1, . . . , K̃λ} are chosen at random and θ(C) denotes
the topology of the circuit Ci,pk,ri,Enc

described in Πsel (Fig. 4). Note that the
topology of the circuit is independent of the hard-coded values.

– For each i ∈ I, sample
({K

(0)
α,i ,K

(1)
α,i}α∈[λ]) at random.

The view of corrupted Pi (i ≥ 2) constructed by S at this stage comprises of(

pk, GCi, {K
(0)
α,i ,K

(1)
α,i}α∈[λ]

)

.

Phase 1 Simulation. On behalf of each honest Pj (j ∈ H), compute ctj ←
SAHE(pk, 0), where SAHE refers to the simulator of the AHE for circuit privacy
(Definition 6). For i ∈ I and j ∈ H, add (K = {K̃1, . . . , K̃λ}, ctj) to a corrupt
party Pi’s view if i = j + 1.

Phase 2 Simulation. Recall that for each i ∈ I, S knows xi and c′
i (during the

simulation of the setup) and can therefore compute c∗
i .

- Compute Z by homomorphic addition of ctjmax and each c∗
k for k ∈ [j+1, n].

Parse Z = (z1, z2, . . . , zλ).
- For each α ∈ λ and j ∈ H : Sample K ′

α,j at random.
- For i ∈ I and j ∈ H, add (Z,K ′

α,j) to a corrupt party Pi’s view if i = j − 1.

On the Bottleneck Complexity of MPC with Correlated Randomness 217

Phase 3 Simulation. For i ∈ I and j ∈ H, add y to a corrupt party Pi’s view if
i = j + 1.

Below, we argue that the views of corrupt parties in the real and ideal world
are indistinguishable via a series of intermediate hybrids.

-Hyb0: Same as the real-world execution.
-Hyb1: Same as the previous hybrid, except that y is sent by P1 in Phase 3
directly, without evaluating GCDec.

This is indistinguishable from the previous hybrid as the adversary’s view is
identical.

-Hyb2: Same as the previous hybrid except that GCi for i ∈ I outputs
Enc(pk, 0; ri,Enc).

This hybrid differs from the previous one only if i = q holds. In such a case,
c′
i corresponds to an encryption of 1 in the previous hybrid (as opposed to

encryption of 0 in Hyb2). This is indistinguishable from the previous hybrid
due to CPA security of AHE.

-Hyb3: Same as the previous hybrid except that honest parties Pj (j ∈ H)
compute c′

j as c′
j ← Enc(pk, 0; rj,Enc).

This hybrid differs from the previous one only if j = q holds. In such a case,
c′
j corresponds to an encryption of 1 in the previous hybrid (as opposed to

encryption of 0 in Hyb3). This is indistinguishable from the previous hybrid
due to CPA security of AHE.

-Hyb4: Same as the previous hybrid except that c∗
j for j ∈ H is computed as

SAHE(pk, 0).

This is in contrast to the previous hybrid where c∗
j is computed as c∗

j ←
ScalMul(pk, Enc(pk, 0), xj). Indistinguishability follows from circuit privacy
of the AHE.
-Hyb5: Same as the previous hybrid except that ctj for j ∈ H is computed as
SAHE(pk, 0).

This is in contrast to the previous hybrid where ctj is computed as
Add(pk, Enc(pk, 0), Enc(pk, 0)). Indistinguishability follows from circuit pri-
vacy of the AHE.

218 C. Orlandi et al.

-Hyb6: Same as Hyb5, except that GCi for i ∈ I is computed as GCi ←
simGC(1λ, θ(C), c′

i, {K̃1, . . . , K̃λ}), where {K̃1, . . . , K̃λ} are chosen at random
and θ(C) denotes the topology of the circuit Ci,pk,ri,Enc

described in Πsel

(Fig. 4).
This is in contrast to Hyb5 where GCi, {K̃1, . . . , K̃λ} are computed as GCi ←
garble(Ci,pk,ri,Enc

, {K̃
(0)
α , K̃

(1)
α }α∈[λ], 1λ). Here, {K̃(0)

α , K̃
(1)
α }α∈[λ] is sampled

at random and {K̃1, . . . , K̃λ} = {K
(bα)
α }α∈[λ] where q = (b1, . . . , bλ). It fol-

lows from privacy of the garbling scheme (see Definition 5) that Hyb6 is
indistinguishable from Hyb5.

Since Hyb6 corresponds to the ideal execution and every pair of consecutive
hybrids are indistinguishable, this completes the proof that the views of corrupt
parties in the real and ideal world are indistinguishable for the case when P1 ∈ H.

References

[ABJ+19] Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE
combiners to secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC
2019. LNCS, vol. 11891, pp. 199–228. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-36030-6 9

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 29

[BGI+14] Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S.,
Paskin-Cherniavsky, A.: Non-interactive secure multiparty computation.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
387–404. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44381-1 22

[BGT13] Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure
multi-party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 356–376. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36594-2 21

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: 20th ACM STOC, pp. 1–10. ACM Press, May 1988

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796.
ACM Press, October 2012

[BJPY18] Boyle, E., Jain, A., Prabhakaran, M., Yu, C.-H.: The bottleneck complex-
ity of secure multiparty computation. In: Chatzigiannakis, I., Kaklamanis,
C., Marx, D., Sannella, D. (eds.) ICALP 2018, LIPIcs, vol. 107, pp. 24:1–
24:16. Schloss Dagstuhl, July 2018

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106.
IEEE Computer Society Press, October 2011

https://doi.org/10.1007/978-3-030-36030-6_9
https://doi.org/10.1007/978-3-030-36030-6_9
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-642-36594-2_21
https://doi.org/10.1007/978-3-642-36594-2_21

On the Bottleneck Complexity of MPC with Correlated Randomness 219

[Can00] Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. J. Cryptol. 13(1), 143–202 (2000)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM
Press, May 1988

[CLTV15] Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of prob-
abilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 19

[Cou19] Couteau, G.: A note on the communication complexity of multiparty
computation in the correlated randomness model. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 473–503. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 17

[DFH12] Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with
low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 54–74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 4

[DI06] Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11818175 30

[DIK+08] Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable
multiparty computation with nearly optimal work and resilience. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 14

[DNPR16] Damg̊ard, I., Nielsen, J.B., Polychroniadou, A., Raskin, M.: On the
communication required for unconditionally secure multiplication. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
459–488. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53008-5 16

[EOYN21] Eriguchi, R., Ohara, K., Yamada, S., Nuida, K.: Non-interactive secure
multiparty computation for symmetric functions, revisited: more efficient
constructions and extensions. In: Malkin, T., Peikert, C. (eds.) CRYPTO
2021. LNCS, vol. 12826, pp. 305–334. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84245-1 11

[FKLS20] Fernando, R., Komargodski, I., Liu, Y., Shi, E.: Secure Massively parallel
computation for dishonest majority. In: Pass, R., Pietrzak, K. (eds.) TCC
2020. LNCS, vol. 12551, pp. 379–409. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-64378-2 14

[GMRW13] Gordon, S.D., Malkin, T., Rosulek, M., Wee, H.: Multi-party computation
of polynomials and branching programs without simultaneous interaction.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 575–591. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 34

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
A completeness theorem for protocols with honest majority. In: Aho, A.
(ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987

[HIJ+16] Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty
computation with general interaction patterns. In: Sudan, M. (ed.) ITCS
2016, pp. 157–168. ACM, January 2016

https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-662-53008-5_16
https://doi.org/10.1007/978-3-662-53008-5_16
https://doi.org/10.1007/978-3-030-84245-1_11
https://doi.org/10.1007/978-3-030-84245-1_11
https://doi.org/10.1007/978-3-030-64378-2_14
https://doi.org/10.1007/978-3-030-64378-2_14
https://doi.org/10.1007/978-3-642-38348-9_34
https://doi.org/10.1007/978-3-642-38348-9_34

220 C. Orlandi et al.

[HIKR18] Halevi, S., Ishai, Y., Kushilevitz, E., Rabin, T.: Best possible information-
theoretic MPC. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS,
vol. 11240, pp. 255–281. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03810-6 10

[HLP11] Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: com-
puting without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22792-9 8

[IKM+13] Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,
A.: On the power of correlated randomness in secure computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36594-2 34

[IMO18] Ishai, Y., Mittal, M., Ostrovsky, R.: On the message complexity of secure
multiparty computation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10769, pp. 698–711. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-76578-5 24

[IP07] Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 31

[LNO13] Lindell, Y., Nissim, K., Orlandi, C.: Hiding the input-size in secure two-
party computation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013.
LNCS, vol. 8270, pp. 421–440. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-42045-0 22

[NN01] Naor, M., Nissim, K.: Communication preserving protocols for secure func-
tion evaluation. In: 33rd ACM STOC, pp. 590–599. ACM Press, July 2001

[QWW18] Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and appli-
cations. In: Thorup, M. (ed.) 59th FOCS, pp. 859–870. IEEE Computer
Society Press, October 2018

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp.
84–93. ACM Press, May 2005

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-030-03810-6_10
https://doi.org/10.1007/978-3-030-03810-6_10
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-319-76578-5_24
https://doi.org/10.1007/978-3-319-76578-5_24
https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1007/978-3-642-42045-0_22
https://doi.org/10.1007/978-3-642-42045-0_22

Low-Communication Multiparty Triple
Generation for SPDZ from Ring-LPN

Damiano Abram(B) and Peter Scholl

Aarhus University, Aarhus, Denmark
{damiano.abram,peter.scholl}@cs.au.dk

Abstract. The SPDZ protocol for multi-party computation relies on a
correlated randomness setup consisting of authenticated, multiplication
triples. A recent line of work by Boyle et al. (Crypto 2019, Crypto 2020)
has investigated the possibility of producing this correlated randomness
in a silent preprocessing phase, which involves a “small” setup protocol
with less communication than the total size of the triples being produced.
These works do this using a tool called a pseudorandom correlation gen-
erator (PCG), which allows a large batch of correlated randomness to
be compressed into a set of smaller, correlated seeds. However, existing
methods for compressing SPDZ triples only apply to the 2-party setting.

In this work, we construct a PCG for producing SPDZ triples over
large prime fields in the multi-party setting. The security of our PCG
is based on the ring-LPN assumption over fields, similar to the work
of Boyle et al. (Crypto 2020) in the 2-party setting. We also present a
corresponding, actively secure setup protocol, which can be used to gen-
erate the PCG seeds and instantiate SPDZ with a silent preprocessing
phase. As a building block, which may be of independent interest, we
construct a new type of 3-party distributed point function supporting
outputs over arbitrary groups (including large prime order), as well as
an efficient protocol for setting up our DPF keys with active security.

1 Introduction

Multi-party computation (MPC) allows a set of parties to securely compute
on private inputs, while learning nothing but the desired result of the computa-
tion. Modern MPC protocols often use a source of secret, correlated randomness,
which can be distributed to the parties ahead of time, and used to help improve
efficiency of the protocol. This is especially important in the dishonest majority
setting, where up to n − 1 out of n parties may be corrupted, since these types
of protocols rely on expensive, ‘public key’-type cryptographic primitives.

For instance, the SPDZ family of protocols [DPSZ12,DKL+13], which
achieves active security with a dishonest majority, uses preprocessed, authen-
ticated multiplication triples, to achieve a very fast online phase where the
computation takes place. Multiplication triples, coming from the work of

Supported by the Aarhus University Research Foundation and Independent Research
Fund Denmark (DFF) under project number 0165-00107B (C3PO).

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 221–251, 2022.
https://doi.org/10.1007/978-3-030-97121-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_9

222 D. Abram and P. Scholl

Beaver [Bea92], are triples of random, secret-sharings of values a, b, c over some
ring, where c = a · b, and allow protocols to offload the heavy work of MPC mul-
tiplication to the preprocessing phase. Unfortunately, producing these triples,
although it can be done ahead of time, is still an expensive process in terms
of computation, communication and storage costs, since typically a very large
number of triples is required, for any reasonably complex computation.

Most current techniques for triple generation are either based on homo-
morphic encryption [DPSZ12,DKL+13,KPR18] or oblivious transfer [KOS16].
Homomorphic encryption is computationally expensive and also incurs moder-
ately high communication costs (especially due to the use of zero-knowledge
proofs for active security), while oblivious transfer is much cheaper computa-
tionally, but requires a large amount of bandwidth.

More recently, Boyle et al. [BCG+19b] proposed using pseudorandom corre-
lation generators to produce a large amount of correlated randomness without
interaction, starting from only a short set of correlated seeds. More concretely,
a PCG consists of a seed-generation algorithm, Gen, which outputs a set of cor-
related seeds κ0, . . . , κn−1, one given to each party. There is then an Expand
algorithm, which deterministically expands κi into a large amount of correlated
randomness Ri. The security requirements are that the expanded outputs (Ri)i

should be indistinguishable from a sample from the target correlation, and fur-
thermore, knowing a subset of the keys should not reveal any information about
the missing outputs (beyond what can be deduced from their evaluation). This
paradigm offers the potential to greatly reduce communication in the preprocess-
ing of MPC protocols, while also reducing storage costs for the necessary corre-
lated randomness, since the PCG seeds need only be expanded “on-demand”.

The first construction of a PCG for authenticated triples [BCG+19b] was
based on homomorphic encryption, and not so efficient in practice. However,
more recently, the authors proposed another construction [BCG+20] based on a
variant of the ring learning parity with noise (ring-LPN) assumption. By using
distributed point functions [GI14,BGI15] to compress secret-shared, sparse vec-
tors, this construction achieves much better concrete efficiency, as well as a good
compression rate.

Unfortunately, both of these PCGs for authenticated, SPDZ-style triples are
restricted to the 2-party setting. Note that unauthenticated triples, as used in
passively secure protocols, can be generated with a PCG in the multi-party
setting, with a transformation from [BCG+19b], however, this does not apply
to the more complex task of authenticated sharings.

1.1 Our Contributions

In this work, we investigate the possibility of constructing PCGs for SPDZ-style,
authenticated triples in the multi-party setting. As our main contributions, we
construct such a PCG based on the ring-LPN assumption over large prime fields,
and design an actively secure protocol for distributing the PCG seeds among
the parties. Our PCG allows expanding short, correlated seeds of size O(n3

√
N)

into N SPDZ triples for n parties. Meanwhile, our actively secure setup protocol

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 223

produces N SPDZ triples for n parties with O(n4
√

N) communication. Com-
pared with previous protocols for SPDZ [KPR18,KOS16], which use O(n2N)
communication, our protocol scales sublinearly in the number of triples, but is
less suitable for a large number of parties. (In the above, we ignore asymptotic
factors that only depend on the security parameter.)

Below, we expand on our results in a little more detail.

Background: Construction of [BCG+20]. We first briefly recall the 2-party
PCG for authenticated triples from [BCG+20]. Their construction relies on a
variant of the ring-LPN (or module-LPN) assumption, which works over the
polynomial ring R = F [X]/

(
F (X)

)
, for some finite field F and fixed polynomial

F (X). The assumption, for noise weight t and dimension c, states that the
distribution

{a, 〈a,e〉
∣
∣a ← Rc,e ← Rc s.t. wt(ei) = t}

is indistinguishable from random, when each ei ∈ R is a sparse polynomial of
degree < N , with up to t non-zero coefficients. In typical parameters, N will be
very large, while c is a small constant, and t the order of the security parameter.

The goal will be to produce a PCG that outputs 2-party, additive shares of
a random tuple (x, y, z, αx, αy, αz), where α ∈ F , x, y ← R and z = x · y ∈ R.
When R is chosen appropriately, such an authenticated triple over R can be
locally converted into a large batch of N triples over F .

To obtain a PCG, the construction picks vectors of sparse polynomials u,v ∈
Rc, and computes the tensor product u ⊗ v ∈ Rc2 . Each of these polynomial
products is still somewhat sparse, having at most t2 non-zero coordinates. The
idea is that the sparse u,v, as well as their products, can be secret-shared using
distributed point functions (DPFs) [GI14,BGI15,BGI16], which provide a way
to share sparse vectors in a succinct manner.

Given shares of these values, the parties can locally compute inner products
with the public vector a, to transform the sparse vectors u,v into pseudorandom
polynomials x = 〈a,u〉 and y = 〈a,v〉. Similarly, the shares of u ⊗ v can be
locally transformed into shares of xy, due to bilinearity of the tensor product.

The above blueprint gives additive shares of the (x, y, z) components of the
triple. This easily extends to obtain shares of (αx, αy, αz), since multiplying each
sparse vector by α ∈ F preserves its sparsity, so these can be distributed in the
same way.

Using 3-Party Distributed Point Functions. A natural approach to extend
the above to more than two parties, is to simply use multi-party DPFs. Unfor-
tunately, existing n-party DPFs [BGI15] scale badly, with a key size growing
exponentially in the number of parties. Instead, in the full version of [BCG+20],
Boyle et al. sketched an approach using 3-party DPFs, based on the observation
that the product αxy can be broken down into a sum of αixjyk, over parties
i, j, k ∈ [n]. This means that each of these terms only needs to be shared between
3 parties, so 3-party DPFs suffice.

224 D. Abram and P. Scholl

However, it turns out this approach is not so straightforward. An immedi-
ate challenge is that existing 3-party DPFs only output shares that are XOR-
sharings, or shares over Zp for small primes p; this excludes the important case
of Fp where p is a large prime, as often used in protocols like SPDZ. Therefore,
our first contribution is to construct a 3-party DPF suitable for this setting, by
modifying the DPF of Bunn et al. [BKKO20] to work with outputs over any
abelian group. Our modification introduces some leakage into the construction:
when two specific parties are corrupted, they now learn some information about
the secret index of the point function that is being hidden. Fortunately, it turns
out that for our application to SPDZ, this leakage is harmless, since it translates
to corrupt parties {Pj , Pk} learning information on the product xjyk, which Pj

and Pk already know if they collude.
An additional benefit of our DPF, beyond supporting more general outputs,

is that our key sizes are smaller than the 3-party DPF of [BKKO20] by around
a factor of 3.

PCG for Authenticated Triples. Given our 3-party DPF, we give the full
construction of a multi-party PCG for authenticated triples over a large field F .
The basic construction for producing N triples with n parties has seeds of size
O(n3t2

√
Nλ) bits, where λ is the security parameter and t is roughly λ, although

this can be optimized slightly with a more aggressive assumption. Compared
with the 2-party PCG of [BCG+20], we incur some extra costs moving to the
multi-party setting, since theirs scales with O(log N) and not O(

√
N). This is

due to the O(
√

N) seed size in our DPF, which is also inherited from previous
3-party DPFs [BGI15,BKKO20]1.

Efficient, Actively Secure Distributed Setup for 3-Party DPF. To
obtain our triple generation protocol, we need a way of securely setting up the
PCG seeds among the parties. The main necessary ingredient is a protocol for
distributing the keys in our 3-party DPF. Previously, Bunn et al. [BKKO20]
gave a secure protocol for setting up their 3-party DPF keys; however, as well as
being very complex, their protocol only has passive security and tolerates 1 out
of 3 corruptions. We therefore set out to design an actively secure protocol for
our 3-party DPF, tolerating any number of corruptions, while only introducing
a minimal communication overhead relative to the size of the underlying DPF
keys. Our starting point is a lightweight, passively secure setup protocol based
on OT and 2-party DPFs, which we combine with a recursive step to generate
the necessary “correction word” in the DPF keys. Using recursion here helps to
keep the communication overhead down in our protocol. We add active security,
by first replacing OT with authenticated OT, whereby the receiver’s choice bits
are authenticated using MACs. We then apply several consistency checks on the
DPF keys, including one inspired by a recent OT extension protocol [YWL+20],

1 In the 2-party setting, there are efficient DPFs with logarithmic key size [BGI15,
BGI16].

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 225

to prove that the parties behaved honestly. Here, we exploit the fact that the
OT choice bits were authenticated, which allows us to reliably perform linear
tests on these bits as part of our checks.

Our final setup protocol is very lightweight, and only communicates a small
constant factor (2–3x) more information than the size of the DPF keys. On top
of the inherent leakage in our DPF, the protocol introduces a small amount of
leakage, in the form of allowing the adversary to try and guess some information
about the secret point function. This is similar to leakage from other PCG setup
protocols based on LPN [BCG+19a,YWL+20], and essentially only translates
into an average of one bit of leakage on the (ring)-LPN secret.

Concrete Efficiency. We analyse the concrete efficiency of our actively secure
protocol for setting up the PCG seeds, and producing authenticated triples. The
main bottleneck is the distributed execution of the 3-party DPF, the only part
of the protocol with Ω(

√
N) complexity. We measure the efficiency of the con-

struction by considering its “stretch”, the ratio between the size of the produced
triples and the total communication. We observed that the stretch becomes
greater than 1 when N is above 224, meaning producing more than 16 million
multiplication triples. When N increases, the stretch improves, reaching values
close to 8 for N = 228. This comes, however, at a greater computational cost
as the latter scales as O(N log(N)). On the other hand, even for N = 220, our
construction performs significantly better than alternative approaches such as
Overdrive [KPR18], improving the communication complexity by at least a fac-
tor of 10. In this parameter regime, the 2-party PCG of [BCG+20] has practical
computational cost, and although we have not implemented our construction,
we believe the same will hold since it uses similar building blocks.

2 Notation and Preliminaries

We denote the multiplicative group of a finite field by F×. The ideal generated
by a polynomial F (X) ∈ F [X] is

(
F (X)

)
.

When dealing with bit sequences, with an abuse of notation, we identify
the sets {0, 1}k, F k

2 and F2k as different representations of the finite field with
2k elements. For this reason, when multiplying two elements a, b ∈ {0, 1}k, we
mean multiplication in F2k .

Throughout the paper, we will deal with protocols between an ordered set
of n parties, P1, . . . , Pn. We let H be the set of indices of honest parties, and C
the set of indices of corrupt ones.

The symbol [m] indicates the set {0, 1, 2, . . . ,m − 1} and �·	 denotes the
integral part of a real number. We represent vectors using bold font, the j-th
entry of a vector v is denoted by vj or v[j]. We indicate the scalar product by
〈·, ·〉 The function δy(·) denotes the Kronecker delta function, that is,

226 D. Abram and P. Scholl

δy(x) :=

{
1 if x = y,

0 otherwise.

Given two vectors u and v of dimensions l and m respectively, we denote their
outer product by u ⊗ v. Observe that this is an ml-dimensional vector whose
(im + j)-th entry is ui · vj . In a similar way, we define their outer sum u � v as
the ml-dimensional vector whose (im + j)-th entry is ui + vj .

We write a
$← S, where S is a set, to mean that a is randomly sampled

from S. Finally, λ denotes the security parameter and P represents a probability
measure.

Polynomial Rings. Let p be prime and N a positive integer. We will work
with the ring R := Fp[X]/

(
F (X)

)
, where F (X) is an irreducible, degree-N

polynomial in Z[X]. Similarly to the case of homomorphic encryption [SV14],
we will be interested in the case where F (X) factors completely modulo p into a
product of distinct, linear terms. In this case, we say that R is fully splittable, and
have the isomorphism R ∼= FN

p . This can be ensured, for instance, by choosing
N to be a power of 2 and the cyclotomic polynomial F (X) = XN + 1, with
p = 1 mod (2N).

2.1 Module-LPN

The security of our triple generation protocol relies on the Module-LPN assump-
tion with static leakage, a generalisation of Ring-LPN that was recently studied
by Boyle et al. [BCG+20]. We recap here its definition.

Definition 1 (Module-LPN with static leakage). Let R := Fp[X]/
(
F (X)

)
,

for a prime p and F (X) of degree N . Let t and c be two positive integers with

c ≥ 2. Let HWt be the distribution that samples t noise positions ω[i] $← [N]

and t payloads β[i] $← Fp, outputting the polynomial

e(X) :=
∑

i∈[t]

β[i] · Xω[i]

embedded in the ring R. Let A be a PPT adversary and consider the game
GModule-LPN

R,t,c,A (λ) described in Fig. 1. We say that the Rc-LPNt problem with static
leakage is hard if, for PPT adversary A, the advantage

AdvModule-LPN
R,t,c,A (λ) :=

∣
∣
∣
∣P

(
GModule-LPN

R,t,c,A (λ) = 1
)

−
1
2

∣
∣
∣
∣

is negligible in the security parameter λ.

Clearly, in the definition, we assume that the ring R and the values c and t
depends on the security parameter λ. Observe that the greater c and t are, the
harder the distinguishability becomes. A thorough analysis of the assumption

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 227

Fig. 1. The Module-LPN game.

can be found in [BCG+20], including for the case when the polynomial F (X)
splits completely into linear factors over F , i.e. when R ∼= FN .

Regarding the leakage, note that in Fig. 1, the adversary’s guesses are
restricted to before it learns the ring-LPN challenge; thus, even though there
may be many queries, the resulting leakage is very small: just 1 bit of informa-
tion on the secret (that is, the fact that all guesses were correct).

Choice of Error Distribution. The basic module-LPN definition assumes
each error polynomial is chosen uniformly, subject to having t non-zero coeffi-
cients. We can also improve efficiency with more structured errors, such as regular
errors, where the non-zero coordinates are more evenly spaced out, so that each
is guaranteed to lie in a unique interval of size N/t. We use this variant in our
efficiency estimates to improve parameters. Note that it has also been used pre-
viously [BCG+19b,BCG+20,YWL+20], and is conjectured to have essentially
the same security as the standard assumption.

2.2 Pseudorandom Correlation Generators

To obtain a low communication complexity, our protocol uses pseudorandom cor-
relation generators (PCGs) [BCG+19a,BCG+19b,BCG+20]. An n-party PCG
is a pair of algorithms, the first of which outputs n correlated seeds of relatively
small size. These can be, later on, locally expanded by the parties to obtain a
large amount of desired correlated randomness. Since the expansion phase does
not require any communication between the parties and the seed size is small
compared to the output, the hope is to design low-communication protocols that
securely generate and distribute the seeds to the parties. This allows the secure

228 D. Abram and P. Scholl

generation of large amounts of correlated randomness with low communication
complexity.

The syntax of a PCG is given firstly by the algorithm Gen, which on input
the security parameter, outputs n correlated keys κi, for i ∈ [n]. Secondly, the
Expand algorithm takes as input (i, κi), and produces an expanded output Ri.
The formal definition of a PCG, shown in the full-version of this work [AS21],
requires both a correctness property and a security property.

Essentially, correctness requires that the joint distribution of the parties’
outputs (R1, . . . , Rn) is indistinguishable from the target correlation Ccorr. The
security property states that the knowledge of a subset of the seeds leaks no
information about the other outputs, that could not already be inferred from
the knowledge of the expansion of the given seeds.

2.3 Distributed Point Functions

In [GI14], Gilboa and Ishai introduced distributed point functions (DPFs). A
point function is a function f whose support (i.e. the elements which have non-
zero image) contains at most one element. Therefore, if the domain has size N ,
we can regard f as an N -dimensional vector with at most one non-zero entry,
whose i-th entry, for i ∈ [N], corresponds to the evaluation f(i). We call such
vector a unit vector, and often refer to the index of the non-zero entry as the
special position and its value as the non-zero element.

An n-party DPF consists of a pair of algorithms, the first of which takes as
input the description of a point function f and outputs n succinct keys. These
can be, later on, locally evaluated by the parties on input x to obtain a secret-
sharing of f(x). DPFs and PCGs have some similarity, in that in both cases, we
have an initial phase in which correlated, succinct keys are generated, followed
by an evaluation phase that locally produces the desired output. The analogy
between the two notions is the reason why DPFs are often a key building block
of PCGs. Our protocol is no exception.

Definition 2 (DPF with leakage). Let (G,+) be an abelian group and let
N be a positive integer. An n-party distributed point function (DPF) for (N,G)
with leakage function Leak is a pair of PPT algorithms (DPFn

N .Gen,DPFn
N .Eval)

with the following syntax:

– On input 1lλ, ω ∈ [N] and β ∈ G, DPFn
N .Gen outputs n keys κ0, κ1, . . . , κn−1.

– On input (i, κi, x) for i ∈ [n] and x ∈ [N], DPFn
N .Eval outputs a value vi ∈ G.

Moreover, the following properties are satisfied

– (Correctness). For every x, ω ∈ [N] and β ∈ G,

P

(
n−1∑

i=0

vi = β · δω(x)

∣
∣
∣
∣
∣

(κ0, κ1, . . . , κn−1) ← DPFn
N .Gen(1lλ, ω, β)

vi ← DPFn
N .Eval(i, κi, x) ∀i ∈ [n]

)

= 1.

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 229

– (Security). There exists a PPT simulator Sim such that for every T � [n],
ω ∈ [N] and β ∈ G, the following distributions are computationally indistin-
guishable

{
(κi)i∈T |(κ0, κ1, . . . , κn−1) ← DPFn

N .Gen(1lλ, ω, β)
}

≡C

{
(κi)i∈T ← Sim

(
1lλ, T, Leak(T, ω, β)

)}
.

Essentially, correctness requires that the evaluation of the keys on x is a
secret-sharing of β if x = ω, or of 0 otherwise. Security instead states that
the information inferable from a subset of the keys is bounded by the leakage
function Leak, which takes as input the special position ω, the non-zero value β
and the set of corrupted parties T . In most cases, Leak just outputs the domain
size N and the codomain G of the point function. However, this will not happen
in the DPF on which our protocol relies.

We write DPFn
N .FullEval(i, κi) to mean the result of calling Eval on the entire

domain of the function, obtaining a secret-sharing of the full length-N unit
vector.

State-of-the-Art. Actually, very little is known about DPFs. In [BGI15], the
authors presented a 2-party DPF with O

(
log(N)

)
key size and an n-party con-

struction with O(
√

N) key size. In both cases, the only leakage is N and G,
however, while the 2-party construction allows outputs in any group G, the
multiparty DPF essentially works only when G = ({0, 1}l,⊕), or when G has
polynomial order. In [BKKO20], Bunn et al. presented an improved version of
the second algorithm for the 3-party case, however, obtaining again O(

√
N) key

size. As we will show in Sect. 3, this construction is also limited to outputs in
G = ({0, 1}l,⊕), and does not extend to e.g. Fp for a large prime p.

Distributed Sum of Point Functions. We use a simple extension of DPFs
to sums of point functions, as also done in [BCG+20]. A DSPF scheme DSPFn

N,t

consists of algorithms (DSPFn
N,t.Gen,DSPF

n
N,t.Eval), just as a DPF, except now

Gen takes as input a pair of length-t vectors ω,β ∈ [N]t × Gt, which define the
sum of point functions

fω ,β (x) =
∑

i∈[t]

β[i] · δω [i](x)

Observe that fω ,β can be represented as a sum of unit vectors. We will refer to
the latter as a multi-point vector.

The correctness property of a DSPF is then the same as a DPF, except we
require that

∑
i∈[n] vi = fω ,β (x), where vi = DSPFn

N,t.Eval(i, κi, x). The security
property is defined the same way as in a DPF.

Given a DPF, constructing a t-point DSPF can be done in the natural way,
using one DPF instance for each of the t points, and summing up the t outputs
of DPFn

N .Eval to evaluate the DSPF.

230 D. Abram and P. Scholl

3 Generalisation of the 3-Party DPF to Prime Fields

In this section, we first recap the 3-party DPF of [BKKO20], and then describe
our extension of this to support outputs modulo p for any prime p.

High-Level Description of [BKKO20]. The scheme assumes N , the domain size, is
a perfect square, and the codomain is F2l . It uses a PRG G : {0, 1}λ −→ F

√
N

2l . DPF
keys in their construction do not leak anything beyond the domain and codomain,
namely, the leakage function is given by Leak(T, ω, β) = (N, F2l) for every subset
of parties T � [3], special position ω ∈ [N] and non-zero value β ∈ F2l .

During key generation, the unit vector representing the point function is rear-
ranged into a

√
N ×

√
N matrix M . If we rewrite x ∈ [N] as x′√N + x′′ with

0 ≤ x′, x′′ <
√

N , the x-th element of the unit vector is moved to the x′-th row
and x′′-th column of the matrix M . We call the row containing β the special row.

M :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · · · · 0 · · · · · · · · · 0
0 0 · · · · · · 0 · · · · · · · · · 0
...

...
...

...
0 0 0 0
0 0 · · · 0 β 0 · · · · · · 0
0 0 0 0
...

...
...

...
0 0 · · · · · · 0 · · · · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

← ω′

↑
ω′′

The algorithm is essentially based on the observation that it is possible to com-
press a 3-party secret-sharing of a row of zeros. Indeed, it suffices to sample 3
random PRG seeds aj , bj , cj for every row j and give {aj , bj} to P0, {bj , cj} to
P1 and {cj , aj} to P2. To decompress, each party just has to evaluate the seeds
and XOR the results. We obtain a secret-sharing of zero since

(
G(aj) ⊕ G(bj)

)
⊕

(
G(bj) ⊕ G(cj)

)
⊕

(
G(cj) ⊕ G(aj)

)
= 0.

In order to not leak ω′, the parties need to obtain similar seeds for the special
row too. Observe that for every row, an adversary controlling two parties sees
two sets of seeds with only one element in common, therefore, security requires
that the property to hold for the special row too. For this reason, the algorithm
samples 4 PRG seeds aω′ , bω′ , cω′ , dω′ and gives {aω′ , dω′} to P0, {bω′ , dω′} to P1

and {cω′ , dω′} to P2. Observe how the property is still satisfied.
Although security is guaranteed, the seeds aω′ , bω′ , cω′ , dω′ are not a com-

pression of the special row. Indeed, by expanding them ad XORing the results
as for the other rows, we obtain a secret-sharing of a random vector

r := G(aω′) ⊕ G(bω′) ⊕ G(cω′) ⊕ G(dω′).

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 231

Observe that when there exists at least one honest party, one of the seeds remains
unknown to the adversary, therefore, r is always indistinguishable from random.
The DPF exploits this fact to include the correction word

CW := r ⊕ (
ω′′

︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0
︸ ︷︷ ︸√

N elements

)

to the key of every party. By adding the correction word to the expansion of the
seeds of the special row, we obtain exactly what we desire, however, we must find
a way to perform this operation without leaking the position ω′. The algorithm
solves the problem by including in the keys a secret-sharing [[y]]2 of the unit
vector having 1 in the special position ω′. Let yi[x′] denote the x′-th bit of Pi’s
share of y. By summing yi[x′] · CW to the expansion of the seeds, we add the
correction word only to the special row. To summarise, the evaluation algorithm
retrieves the row corresponding to the point that has to be evaluated, expands
the associated seeds and obliviously adds the correction word when necessary.

Prime Field Generalisation. In order to generate multiplication triples over
large prime fields F following the blueprint described in the introduction, we
needed a 3-party DPF with codomain F . Therefore, the first necessary step was
to generalise the construction of [BKKO20]. As we have already mentioned, our
modification requires weakening security, by introducing additional leakage.

The Issue. The main cause of problems is that large prime fields have character-
istic different from 2 and therefore addition and subtraction are different oper-
ations. Referring to the roadmap in the previous section, we can still compress
a secret-sharing of zero by sampling 3 PRG seeds aj , bj , cj and giving {aj , bj}
to P0, {bj , cj} to P1 and {cj , aj} to P2. However, the decompression requires
attention, indeed, when two parties have a seed in common, one of them has
to add its expansion to its secret-sharing, the other one has to subtract it. It
is therefore necessary to associate every seed in the keys with a bit, which will
be set if and only if the expansion of the seed has to be added. Whenever two
parties have a seed in common, the associated bits will be opposites.

This property has to be satisfied by the seeds of the special row too. One
possibility would be of course to do exactly the same as for the normal rows,
obtaining a secret-sharing of zero. However, that would not allow us to use the
correction word CW as it would leak the non-zero value β. The only other
possibility would be to sample 4 PRG seeds aω′ , bω′ , cω′ , dω′ as before and give
{aω′ , dω′} to P0, {bω′ , dω′} to P1 and {cω′ , dω′} to P2. Clearly, we have to asso-
ciate every seed with a bit expressing whether its expansion has to be added or
subtracted, but whatever way we do it for dω′ , there will always be two parties
with the same bit. If those two parties are corrupted, the value of ω′ is leaked
to them, compromising security of the DPF. On the other hand, this leakage
turned out not to be problematic for our application.

232 D. Abram and P. Scholl

Our Solution. We decided to generate the sign bits so that ω′ is leaked when
the last two parties are corrupted. Since these bits do not need to be random,
it is enough to ensure that the first party always subtracts the expansion of its
seeds, the second party always adds them and the last party always adds the
expansion of the first seed and subtracts the expansion of the second one. This
means that the seeds of the second and the third party now have to be ordered.
For instance, when j �= ω′, we can give {aj , bj} to P0, (bj , cj) to P1 and (aj , cj)
to P2. When instead j = ω′, we can give {aj , dj} to P0, (dj , bj) to P1 and (dj , cj)
to P2. The construction is secure as long as the seeds in common with the first
party are always in the first position of P1 and P2’s pairs (which are ordered). On
the other hand, it is crucial that the seeds of P0 are an unordered set, otherwise
ω′ would be leaked to the adversary when P0 and P1, or P0 and P2 are both
corrupted.

The fact that we do not need to protect ω′ from an adversary corrupting the
last two parties allows us to further improve the efficiency of the construction.
For instance, we can secret-share y only between the second and the third party
and remove the correction word from the key of the first party. Actually, since
y is a unit vector, we can further compress the secret-sharing using the 2-party
DPF of [BGI15], which has logarithmic key size.

Also, the seeds (aj , bj , cj) can be somewhat compressed. If we consider the
last seeds of the second and the third party, we observe that they coincide for
every j �= ω′. When instead j = ω′, the two seeds are independent. Essentially,
they form a secret-sharing over F2λ of a

√
N -dimensional unit vector having

special position ω′ and random non-zero element. Such a secret-sharing can
again be compressed using a 2-party DPF, such as from [BGI15,BGI16].

As a final optimization, it turns out the remaining seeds can also be com-
pressed by roughly a factor of 2. This technique relies on the fact that we can
generate the missing seeds using Random-OT tuples2, which can themselves be
compressed using a PCG based on the LPN assumption with logarithmic over-
head [BCG+19b]. We omit the details here for ease of presentation, but the
technique is used in our 3-party DPF protocol in Sect. 5.

Construction and Concrete Efficiency. Our 3-party DPF following the above
ideas is given in Fig. 2. The construction assumes the domain size is a perfect
square and has a prime field F as codomain. The size of the key κ0 is

√
N · 2λ

bits, while the size of κ1 and κ2 is dominated by
√

N ·(λ+log |F |)+O(log(N) ·λ)
bits. When |F | ≈ 2λ, this gives a total of around 6

√
Nλ bits for all three keys.

If we additionally apply the optimization mentioned above, and compress the
seeds using random OT and LPN, the total key size falls to 3

√
Nλ bits (ignoring

small log N terms), which is around 3x smaller than that of [BKKO20] (which
only works in groups of small characteristic, but on the other hand, does not
leak any information on ω).

2 Tuples
(
(X0, X1), (b, Xb)

)
where X0, X1

$← {0, 1}λ and b
$← {0, 1}.

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 233

Fig. 2. The prime field 3-party DPF

234 D. Abram and P. Scholl

Theorem 1. The construction described in Fig. 2 is a 3-party DPF for (N, F)
with leakage

Leak(T, ω, β) =

⎧
⎨

⎩

(
N, F

)
if T �= {1, 2},

(
N, F ,

⌊
ω/

√
N

⌋)
if T = {1, 2}.

The proof of Theorem 1 can be found in [AS21, Appendix A].

Extension to Distributed Sum of Point Functions. In later sections, we
will use a distributed sum of point functions, built on top of our 3-party DPF
in the naive way, as described in Sect. 2.3. Here, the leakage function is extended
to output �ωi/

√
N	, for each special position ωi, for i ∈ [t], when the set of

corruptions is T = {1, 2}.

4 Multiparty PCG for Triple Generation

In this section, we show how to use our 3-party DPF to construct a multi-party,
pseudorandom correlation generator for authenticated triple generation.

Authenticated Secret-Sharing. We produce additively secret-shared values with
information-theoretic MACs, as used in SPDZ [DPSZ12,DKL+13]. Here, an n-
party secret-sharing of x ∈ F is given by a tuple

�x� := (αi, xi,mx,i)i∈[n]

where (αi, xi,mxi
) are known to the i-th party. Each αi ∈ F is fixed for every

sharing x, and is a share of the global MAC key α =
∑

i αi. The shares xi ∈ F

and MAC shares mx,i ∈ F then satisfy
∑

i

xi = x,
∑

i

mx,i = α · x

We construct a PCG for the correlation which samples a random triple
(�x�, �y�, �z�), where x, y are random elements of the ring R = F [X]/F (X), and
z = x · y (while the MAC key α is a scalar in F). As discussed in Sect. 2, when p
is a suitable prime and F (X) is e.g. a cyclotomic polynomial of degree N , this is
equivalent to a batch of N triples over F , thanks to the CRT isomorphism R ∼= FN .

Note that it is easy to see that this correlation satisfies the reverse-samplable
requirement.

4.1 Construction

Our construction is given in Figs. 3 and 4. We combine 3-party DPFs with the
ring-LPN assumption, following the outline in the introduction (also sketched
in [BCG+20]).

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 235

In more detail, we will compress the x, y terms of the triple using sparse,
random polynomials ur(X), vr(X) ∈ R, for r ∈ [c]. Recall that if a ∈ Rc is a
public, random vector over R, then

x = 〈a,u〉 , y = 〈a,v〉
are computationally indistinguishable from random R elements, under the
module-LPN assumption.

We sample the ur, vr polynomials by first picking sparse ur
i , v

r
i for each party,

and summing up these shares. These are implicitly defined in steps 2 of Fig. 3,
which sample the non-zero coefficients and values of the polynomials.

Then, we use 2-party distributed (sums of) point functions to compress addi-
tive shares of the cross-products αj · ur

i , αj · vr
i and ur

i · vs
j , in steps 3–4. This

allows the parties to obtain shares of the MACs αx, αy, as well as the product
xy.

Finally, to obtain shares of αxy, we decompose this into a sum of products
αi · xj · yk, for every i, j, k ∈ [n]. By distributing shares of each term αi · ur

j · vs
k

using the 3-party DPF from Sect. 3, the parties can locally recover shares of αxy
in the evaluation stage.

Note that due to the leakage in our 3-party DPF, if Pj and Pk are both
corrupted, they learn something about the indices of the non-zero entries in
αi · ur

j · vs
k. However, since these indices are independent of αi, this leakage does

not give away anything that wasn’t already known to Pj and Pk.
In [AS21, Appendix B], we prove the following.

Theorem 2. Suppose that DSPF2
N,t, DSPF

2
2N,t2 and DSPF3

2N,t2 are secure dis-
tributed sums of point functions, and the Rc-LPNt assumption (Definition 1)
holds. Then the construction in Figs. 3 and 4 is a secure PCG for n-party authen-
ticated triples over R = F [X]/F (X).

Efficiency. Note that we can optimize the construction slightly, with the obser-
vation that in any 3-party DPF instance where two of i, j, k are equal, we can
instead use a 2-party DPF. This reduces the total number of 3-party DSPFs
from c2n2(n − 1) down to c2n(n − 1)(n − 2). Each DSPF has t2 points and a
domain of size 2N . There are also O(c2n2) 2-party DSPFs, however, since these
have logarithmic key size, their cost is dominated by the 3-party instances.

As a further optimization, we can rely on module-LPN with a regular error
distribution [BCG+20], where each of the t non-zero entries in an error vector is
sampled to be within a fixed range of length N/t. This reduces the domain size
of the DPFs from 2N and N down to 2N/t and N/t, respectively.

In Sect. 6, we analyze the concrete parameters of our PCG, and the efficiency
of our protocol for securely setting up the seeds and producing triples.

5 Distributed Setup for the 3-Party DPF

We now present an actively secure protocol that permits to distribute the keys
of the 3-party DPF described in Sect. 3. We start by giving an overview of the

236 D. Abram and P. Scholl

Fig. 3. PCGtriple - Part 1

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 237

Fig. 4. PCGtriple - Part 2

passively secure approach; later we will delve into the details, including active
security.

High-Level Overview. The protocol permits to derive a 3-party secret-sharing of
the unit-vector

(
ω︷ ︸︸ ︷

0, 0, . . . , 0, β, 0, 0, . . . , 0
︸ ︷︷ ︸

N

)

given secret-shared special position and non-zero value [[ω]]2 and [[β]]. Writing
ω = ω′√N + ω′′, and following the blueprint of our 3-party DPF, the protocol
samples a random Δ ∈ F2λ and shares the unit vectors

y = (
ω′

︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 0, . . . , 0
︸ ︷︷ ︸√

N

), Y = (
ω′

︷ ︸︸ ︷
0, 0, . . . , 0,Δ, 0, 0, . . . , 0
︸ ︷︷ ︸√

N

)

between the last two parties using a 2-party DPF. The shares of Y are regarded
as vectors of seeds.

238 D. Abram and P. Scholl

As we mentioned in Sect. 3, to derive the remaining seeds, we rely on oblivious
transfer (OT). Observe that for every position j ∈ [

√
N], the first party has to

generate two random seeds. Moreover, for every j, the last two parties have to
learn one of these seeds each. The discovered seeds coincide if and only if j = ω′.
We setup these seeds by running two sets of OTs, where the first party is sender
in both, and the other two parties play receiver in one set each. The receivers’
choice bits are determined based on the shares of y, which are random bits that
coincide if and only if j = ω′.

Assuming the availability of a 3-party secret sharing of

v = (
ω′′

︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0
︸ ︷︷ ︸√

N

),

the generation of the correction word is very simple: each party can just retrieve
its share of v and add or subtract the expansions of its seeds. The correction word
is obtained by broadcasting and adding the results. Once we have the correction
word, the DPF setup phase is complete. The only remaining question, then,
is how to derive the secret-sharing of v: since it is a unit-vector, we will use
recursion.

We now discuss the protocol more in detail, including the details of recursion
and active security. To simplify the presentation, we introduce some notation
and building blocks.

Double Exponential Representation. We assume that N is a double expo-
nential, that is, N = 22h

for some h ∈ N. In practice, this choice is rather
restrictive as the value of N grows very quickly. However, we only make this
assumption to simplify the description of a recursive step in our protocol, and
this step can easily be adapted to the case N = 2m without significantly affecting
the overall complexity3.

We define the double exponential function dE(·) as

dE(k) :=

{
2 if k = −1,

22k

otherwise.

We also use the following decomposition of integers, using a double exponential
basis. Its proof can be found in [AS21, Appendix C].

Lemma 1. Any ω ∈ [N] can be written in a unique way as

ω = x(−1) +
∑

i∈[h]

x(i) · dE(i)

for some x(i) ∈ [dE(i)] (depending on ω), for i ∈ [h] ∪ {−1}, i.e. 0 ≤ x(i) < 22i

if i ∈ [h] and x(−1) ∈ {0, 1}.
3 The protocol is more efficient when m is divisible by a power of 2.

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 239

Notation. Given a number ω ∈ [N], we denote its j-th bit by ωj , whereas
the j-th element of its double exponential notation is indicated by ω(j). Let
K := [h] ∪ {−1} and define

T :=
{

(k, j) | k ∈ K, j ∈ [dE(k)]
}

.

In the protocol we use h PRGs. The k-th one will be Gk : {0, 1}λ −→ F dE(k).
We will also rely on a tweakable correlation-robust hash function

H : {0, 1}λ × {0, 1}∗ −→ {0, 1}λ.

An important fact is that the protocol requires the cardinality of the field F to
be sufficiently close to 2λ. More specifically, consider the map Enc : {0, 1}λ −→ F

sending every string (x0, x1, . . . , xλ−1) to
∑

i∈[λ] xi · 2i. Let U be the uniform
distribution over {0, 1}λ and let V be the uniform distribution over F . In order to
be secure, the protocol requires the statistical distance between V and Enc(U) to
be negligible in the security parameter. It is possible to prove that this condition
is satisfied if and only if |p − 2λ|/2λ, where p = |F |, is negligible in λ.

We also define a set of sign bits ul
i with i ∈ [3] and l ∈ {0, 1}, by

ul
i :=

{
1 if i = 1, or i = 2 and l = 0
−1 otherwise.

These parameters will indicate whether we need to add or subtract the expansion
of the seeds in the 3-party DPF keys (see Sect. 3).

Finally, we define some matrices used to translate between different repre-
sentations. In the protocol, we use the set of matrices (Bk)k∈K, which allow us
to map an N -dimensional unit vector having special position ω ∈ [N] into a
dE(k)-dimensional unit vector with special position ω(k) and the same non-zero
value. We also use a matrix C ∈ F

log(N)×|T |
2 . This allows us to retrieve a binary

representation of η ∈ [N], given the unit-vector

(

η(k)
︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 0, . . . , 0
︸ ︷︷ ︸

dE(k)

)

for every k ∈ K. A formal description of the matrices (Bk)k and C can be found
in [AS21, Appendix D].

5.1 Resources

The protocol we are going to present relies on an authenticated Random-OT
functionality, which we instantiate using similar techniques to the TinyOT pro-
tocol [NNOB12]. We assume that every pair of parties (Pi, Pj) has access to
an instance F i,j

auth-ROT of this resource. The functionality F i,j
auth-ROT provides

240 D. Abram and P. Scholl

Random-OT tuples, i.e. upon every call, Pi, the sender, obtains two random
values X0,X1 ∈ {0, 1}λ, whereas Pj , the receiver, obtains a random choice bit b

and the value Xb. Additionally, F i,j
auth-ROT permits to perform linear operations

on the choice bits it stored. The results of these computations are output to
Pi and their correctness is guaranteed even when Pj is corrupted. Finally, the
resource can output random bits to Pj . The latter can be used in combination
with the choice bits in the computations. A formal description of F i,j

auth-ROT can
be found in [AS21, Appendix F], where we also show how to implement it with
low communication complexity using a Correlated-OT functionality.

In the protocol, we also use a black-box multiparty computation functional-
ity FMPC which allows n parties to perform computations over the prime field
F and over F2. A complete description can be found in [AS21, Figure 13]. The
functionality stores the inputs and results of the computations internally, pro-
viding the parties with handles. Each of the stored values is associated with one
of the domains F and F2 to which the element must belong. In the first case,
the handle of x is denoted by [[x]], whereas in the second case, the handle is
denoted by [[x]]2. Sometimes, we will abuse the notation and we will write [[x]]2
even if x �∈ {0, 1}, in that case, it is understood that the functionality stored x
bit by bit and the number of such bits depends only on the actual domain of
x. The functionality FMPC also features a 2-party DPF functionality, which, on
input the indexes of two parties i, j, a value [[β]] in F or F2λ , a power of 2 M and
[[ω]]2 ∈ [M], outputs to Pi and Pj a 2-party secret-sharing of the M -dimensional
unit vector having β in the ω-th position. The group on which the secret-sharing
is defined coincides with the field to which β belongs.

Finally, we will use a functionality FRand which provides all the parties with
random values sampled from the queried domains.

5.2 The Protocol

The functionality that our construction is going to implement is described in
Fig. 5. Observe that when the second and the third party are both corrupted the
special position of the unit vector is leaked to the adversary. Since the protocol
is based on the 3-party DPF described in Sect. 3, a leakage of this type was
unavoidable. The functionality also allows the adversary to test the inputs in
several occasions, every incorrect guess leading to an abort. In the triple gen-
eration protocol, the non-zero value β will be uniformly distributed in F×, so
any attempt of the adversary to guess it will fail with overwhelming probability.
The leakage about the special position will not instead constitute a problem as
it will be absorbed by the hardness of Module-LPN.

We can finally present our protocol. Its formal description can be found in
Figs. 6, 7 and 8.

Recursion. The protocol uses the 3-party DPF described in Fig. 2 recursively
in h levels indexed by k = 0, 1, . . . , h − 1. Once the k-th level is completed, the
parties obtain a secret-sharing over F of the unit vector

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 241

Fig. 5. The 3-party DPF functionality

vk+1 := (

ω̂(k+1)
︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0
︸ ︷︷ ︸

dE(k+1)

),

where ω̂(k + 1) := ω(−1) +
k∑

i=0

ω(i) · dE(i).

Observe that ω̂(h) = ω.
More in detail, suppose that the parties possess a secret-sharing over F of

vk . We aim to use it to securely generate 3-party DPF keys for the unit vector
vk+1 (see Fig. 2). Using the evaluation algorithm, the parties can then expand
the keys to obtain a secret-sharing of vk+1.

Rearranging vk+1 into a Matrix. First of all, observe that vk+1 is an Nk :=
dE(k + 1)-dimensional unit vector, whose special position is ω̂(k + 1). Notice
that

ω̂(k + 1) = ω(k) ·
√

Nk + ω̂(k) and 0 ≤ ω(k), ω̂(k) < dE(k) =
√

Nk.

In other words, when we rearrange vk+1 into a square matrix, following the
procedure described in Sect. 3, the special position ends up at the intersection

242 D. Abram and P. Scholl

between the ω(k)-th row and the ω̂(k)-th column. Observe that it is easy to
obtain a secret-sharing of ω(k) over F2 given a secret-sharing of ω over F2. Indeed,
ω(k) is described by a 2k-bit substring of the bit representation of ω.

The vectors y0, y1 and y2. Following the blueprint of the 3-party DPF described
in Sect. 3, the first ingredient needed to generate vk+1 is the vectors yk,1 and
yk,2, i.e. a secret-sharing over F of

yk := (

ω(k)
︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 0, . . . , 0
︸ ︷︷ ︸

dE(k)

) = yk,1 + yk,2.

At the beginning of our protocol, using the 2-party DPF procedure in FMPC,
the second and third party obtain a secret-sharing of the unit vector

y := (
ω︷ ︸︸ ︷

0, 0, . . . , 0, 1, 0, 0, . . . , 0
︸ ︷︷ ︸

N

).

By locally applying the matrix Bk on the shares, this also gives the shares yk,1

and yk,2. We recall that Bk maps an N -dimensional unit vector having special
position ω ∈ [N] into a dE(k)-dimensional unit vector with special position ω(k)
and the same non-zero value.

From F -Secret-Sharing to Binary Secret-Sharing. In the previous paragraph, we
described how it is possible to obtain a 2-party secret-sharing over F of the unit
vector yk . In order to securely generate the seeds in the DPF key, we will need to
convert this to a 2-party secret-sharing over the binary field F2. Using a standard
trick, we can do this conversion without any interaction.

Recall that |F | = p for a large prime p. Suppose that the two parties have
shares b1, b2 ∈ [p], where b1 +b2 ≡ b mod p, for some b ∈ {0, 1}, as we do for each
entry of yk . If the shares are random, then with overwhelming probability both
of them are non-zero, so over the integers, 2 ≤ b1+b2 < 2p and therefore b1+b2 =
b+p. Reducing both sides modulo 2, we get that (b1 mod 2)⊕(b2 mod 2) = b⊕1.
In other words, for every j ∈ [dE(k)], the second and the third parties can
obtain bits bj

k,1 := yj
k,1 mod 2 and bj

k,2 := yj
k,2 mod 2 that coincide if and only if

j = ω(k).
This procedure works only if both b1 and b2 are non-zero, and for that reason,

the parties abort if this is not satisfied. When the second and the third party are
both honest, the property condition holds with overwhelming probability. If one
of the parties is corrupted, however, FMPC allows the adversary to choose its
shares. An attacker can exploit this fact to retrieve information about ω, indeed,
it can select its shares so that the protocol aborts only if ω assumes particular
values (selective failure attack). The corresponding leakage is modelled in step
2 of F3-DPF (see Fig. 5).

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 243

Fig. 6. Π3-DPF - Part 1

244 D. Abram and P. Scholl

Fig. 7. Π3-DPF - Part 2

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 245

Fig. 8. Π3-DPF - Part 3

The Seed Generation - Part 1. We now turn to the task of generating the PRG
seeds used in the DPF. We start with the method for obtaining the last seeds
of the second and the third party, which, following the idea from Sect. 3, we
compress using a 2-party DPF. Recall that these seeds coincide for every position
j �= ω(k), whereas, when j = ω(k), they are independent. Using the 2-party DPF
command of FMPC, we can obtain a 2-party secret-sharing over F2λ of

(
ω︷ ︸︸ ︷

0, 0, . . . , 0,Δ, 0, 0, . . . , 0
︸ ︷︷ ︸

N

).

where Δ is sampled randomly by FMPC. Then, by applying the matrix Bk, this
can be translated into shares of

(

ω(k)
︷ ︸︸ ︷
0, 0, . . . , 0,Δ, 0, 0, . . . , 0
︸ ︷︷ ︸

dE(k)

).

for any k ∈ K. The only problem is that, in this way, the entries of the shares
in the special position are not independent, due to the fixed correlation Δ.
Therefore, to turn these shares into independent, random seeds, we apply the
correlation-robust hash function H to each entry.

246 D. Abram and P. Scholl

The Seed Generation - Part 2. Generating and distributing the remaining seeds
is more complex. We have previously explained how the second and third parties
derive, for each j ∈ [dE(k)], bits bj

k,1 and bj
k,2 that coincide if and only if j = ω(k).

Now, for every j ∈ [dE(k)], the second and the third party must learn one of
the seeds of the first party. The discovered seeds will coincide if and only if
j = ω(k). We can therefore generate and distribute the remaining seeds using
oblivious transfer (OT). Specifically, for every j ∈ [dE(k)], the first and the
second party can obtain their missing seeds by means of a “sender-random” OT,
i.e. an OT where the sender’s messages, corresponding to the seeds of the first
party, are random, while the receiver can choose its input. The first party will be
the sender, while the second party will be the receiver with choice bit bj

k,1. The
third party can then receive its missing seed by means of another, now standard,
OT. The sender, corresponding to the first party, will choose its messages to be
the same as in the “sender-random” OT, while the choice bit of the receiver, the
third party, will be bj

k,2. The two OTs are implemented using the random-OT
functionality Fauth-ROT. Note that this functionality ensures that the choice bits
are authenticated, which we rely on later, to check consistency of this stage and
achieve active security.

The Correction Word (Fig. 8). After obtaining the seeds, the only missing piece
of the DPF key is the correction word. Computing it is rather straightforward as
each party can just retrieve its share of vk and add or subtract the expansions
of its seeds using Gk

4. The correction word is obtained by broadcasting and
adding the results. Observe that if recursion had not been used, at this point of
the protocol, the parties would have needed to generate a secret-sharing of the√

N -dimensional vector vh−1. Direct approaches would have required O(
√

N)
communication, recursion instead allows us to compute that with O(4

√
N) com-

plexity.

The Base Case k = 0. We have explained how to derive a secret-sharing of vk+1

given a secret-sharing of vk . It remains to describe how to deal with the base
case, i.e. how to derive a secret-sharing of v0. Observe that v0 is a 2-dimensional
unit vector, where β occupies the ω(−1)-th position.

By using the same procedure described in the seed generation, for each posi-
tion of v0, the parties can obtain pairs of elements in {0, 1}λ of the form

if j �= ω(−1) : {aj
−1, b

j
−1}, (bj

−1, c
j
−1), (aj

−1, c
j
−1),

if j = ω(−1) : {aj
−1, d

j
−1}, (dj

−1, b
j
−1), (dj

−1, c
j
−1).

This time, we do not regard them as seeds anymore, but using the encoding
map Enc, we convert them into random elements in the field F . Observe that by
combining the elements with the coefficients ub

i , we can derive a secret-sharing
of zero when j �= ω(−1) and a secret-sharing of a random value z ∈ F when
j = ω(−1). Obtaining a secret-sharing of v0 is now easy, we simply need to
multiply each secret-sharing we have just computed by β · z−1. The operation
can be performed using FMPC.
4 Whether we need to add or subtract is specified by the sign multipliers ub

i .

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 247

Achieving Active Security. The protocol we just described allows the adversary
to deviate in several points. In order to regain control on the execution, we
relied on three different checks. Only the combination of all of them guarantees
security.

The first issue we encounter is in the seed generation. An adversary cor-
rupting both the second and third party can indeed discover all the seeds of
the first party by always inputting different choice bits in the OTs. With this
attack, the adversary would be able to retrieve β once the correction word is
computed. So, we designed the first check to fail in these situations. Specifically,
using Fauth-ROT, the check recomputes the sum of the OT bits input by the
receivers for every recursion level k. If the result is different from 1, the protocol
aborts.

When the second or third party are corrupted, by cleverly choosing the choice
bits of the OTs, the adversary can move the non-zero value β to a different posi-
tion η �= ω. The second check makes sure that this attack fails with overwhelm-
ing probability. This is achieved by recomputing η from the OT inputs using the
matrix C and Fauth-ROT. The result is obliviously compared to ω using FMPC,
the protocol aborts when they do not match.

The third check, inspired by [YWL+20], is probably the most important.
Essentially, it draws a random N -dimensional vector χ ∈ FN and checks that
the result of the linear combination 〈χ,vh〉 coincides with χω ·β. The procedure
counteracts any malicious behaviour in the generation of the correction words.
Moreover, in combination with the first check, it makes sure that, for every level
k, there exists only one position for which the choice bits of the OTs coincide.
On the other hand, the third check causes some leakage which is modelled in
step 4 of F3-DPF (see Fig. 5). We prove the following in [AS21, Appendix D].

Theorem 3. Let N = dE(h) be a double power of 2 and assume that F is a
security-parameter-dependent prime field of cardinality p such that |p − 2λ|/2λ

is negligible in λ. Let Gk : {0, 1}λ −→ F dE(k) be a PRG for every k ∈ [h] and let
H : {0, 1}λ ×{0, 1}∗ −→ {0, 1}λ be a tweakable correlation-robust hash function.
Then the protocol Π3-DPF UC-realises F3-DPF in the (FMPC,Fauth-ROT,FRand)-
hybrid model. Moreover, if all the parties are honest, Π3-DPF aborts with negli-
gible probability.

Complexity. The protocol Π3-DPF achieves low communication complexity. As
a matter of fact, in [BCG+20], the authors described how to implement the 2-
party DPF procedure of FMPC with O

(
log(N) ·poly(λ)

)
communication. We also

observe that the seed generation needs O(
√

N) OTs. Hence, Π3-DPF has O
(√

N ·
poly(λ)

)
communication complexity. A more detailed analysis of efficiency can

be found in [AS21, Section 7.1].

6 Offline Phase

We can finally describe our Offline phase protocol ΠOffline, which achieves sub-
linear communication complexity. It can be broken down into 3 procedures: an

248 D. Abram and P. Scholl

initialisation procedure in which the MAC key α is generated and secret-shared, a
triple generation procedure and an input mask generation procedure. The latter
is used to produce, for every j ∈ [n], random authenticated secret-shared ele-
ments �aj� whose value is known only to party Pj . As for multiplication triples,
input masks constitute an essential part of SPDZ as they are needed to provide
the inputs of the computation.

The protocol ΠOffline closely resembles PCGtriple. For this reason, we now give
only an informal description of its operation and we refer to [AS21, Section 6.1]
for a more thorough analysis. The protocol permits to generate N multiplication
triples with O

(√
N · poly(λ)

)
communication complexity and N input masks

with O
(
log(N) ·poly(λ)

)
communication complexity. The bottleneck of the triple

generation is the 3-party DPF. If future research proves the existence of 3-party
DPFs with logarithmic key size, we will probably be able to design multiparty
triple generation protocols with logarithmic communication complexity.

Multiplication Triples. The protocol uses the functionality F3-DPF as a black box.
During the initialisation procedure, each party Pi samples a random share αi for
the MAC key and inputs it in F3-DPF, fundamentally committing to its choice.

The multiplication triples are derived by executing the seed generation and
the evaluation of PCGtriple inside F3-DPF: at the very beginning, each party Pi

samples random special positions ωr
i ,ηr

i ∈ [N]t and random non-zero elements
βr

i ,γr
i ∈ F t for every r ∈ [c]. These values are input in F3-DPF. Using 2-DPF

and 3-DPF, it is then possible for Pi to obtain ui , ũi ,vi , ṽi ,wi and w̃i . Finally,
by sampling a random a ∈ Rc using FRand, the parties can compute the final
output, i.e. random authenticated secret-shared elements �x�, �y�, �z� ∈ R such
that z = x · y. We recall that R = F [X]/

(
F (X)

)
where F (X) is a degree-N

polynomial. If F (X) has N distinct roots in F , the tuple
(
�x�, �y�, �z�

)
can be

converted into N random multiplication triples by evaluating the shares5 over
the roots of F (X).

Input Masks. The generation of inputs masks is very similar but simpler. At
the beginning, the party Pj to which the masks are addressed samples random
special positions ωr ∈ [N]t and random non-zero elements βr ∈ F t for every
r ∈ [c], inputting them in F3-DPF. These values will be used to define the sparse
polynomial

ur(X) ←
∑

l∈[t]

βr[l] · Xωr[l]

Later on, for every i �= j, Pi and Pj can obtain a secret-sharing of αi · ur(X)
using 2-DPF. Finally, by sampling a random a ∈ Rc using FRand and relying
on the hardness of Module LPN, the shares can be converted into a random
authenticated secret-shared element �x� ∈ R. Since Pj knows ur(X) for every
r ∈ [c], it can also learn x. As a last operation, the shares are rerandomised
using a PRG. Observe that from �x�, we can derive N masks using the same
trick described for the multiplication triples.
5 The shares are elements of R and therefore polynomials.

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 249

Leakage. The main difference between ΠOffline and PCGtriple is that every exe-
cution of 2-DPF and 3-DPF has additional leakage. At first, it might seem that
the main issue arises when the last two players Pj and Pk of the 3-party DPF
procedure are corrupted. In such cases, the special positions (ωr

j � ηs
k)r,s∈[c] are

indeed revealed to the adversary. Notice, however, that this is no problem at all,
as the leaked values were chosen by the adversary itself at the beginning of the
protocol.

Regarding the remaining leakage, observe that when the adversary tries the
guess any non-zero element during 3-DPF, the procedure aborts with overwhelm-
ing probability. Indeed, the non-zero values are uniformly distributed in F×,
assuming that at least one party involved in 3-DPF is honest. Moreover, any
leakage concerning the special positions is absorbed by the hardness of module-
LPN with static leakage. For a formal discussion, see [AS21, Appendix E].

6.1 Concrete Efficiency

Table 1. Estimated seed size for producing N triples with the 3-party PCG over a
128-bit field, with 80-bit computational security.

N 220 224 228

c 2 4 8 2 4 8 2 4 8

w = ct 96 40 32 96 40 32 96 40 32

Comm. (MB) 308 114 109 1120 417 418 4329 1641 1650

Stretch 0.16 0.44 0.46 0.72 1.93 1.92 2.98 7.85 7.81

In Table 1, we estimate the concrete communication cost of our protocol, for
several sets of parameters with n = 3 parties and 80-bit computational security.
For further details and parameters for 128-bit security, we refer to the full ver-
sion [AS21, Section 7.2]. The “stretch” of the protocol is defined as the ratio of
the size of the uncompressed triples (3N field elements) and the total commu-
nication cost. We see that, when producing around a million triples (N = 220),
the stretch is still less than 1, meaning that the PCG does not achieve a good
compression factor. Nevertheless, even at this level, we do achieve a protocol for
generating triples with much lower communication than methods based on alter-
native techniques. For instance, using the Overdrive protocol based on homo-
morphic encryption [KPR18] requires almost 2GB of communication to generate
the same number of triples, which is more than 10x our protocol.

When moving to larger batch sizes, the stretch improves, going up to almost
8x with N = 228 and c ∈ {4, 8}. This gives a strong saving in communication,
but comes with larger computational costs due to the higher degree polynomial
operations needed for arithmetic in the ring R. In practice, since these opera-
tions cost O(N log N), it seems likely that the smaller sizes of N ≤ 224 will be
preferable.

250 D. Abram and P. Scholl

Acknowledgements. We thank the anonymous reviewers for their feedback, which
helped to improve the paper.

References

[AS21] Abram, D., Scholl, P.: Low-Communication Multiparty Triple Generation
for SPDZ from Ring-LPN. Cryptology ePrint Archive, 2021 (2021)

[BCG+19a] Boyle, E., et al.: Efficient two-round OT extension and silent non-
interactive secure computation. In: ACM CCS 2019. ACM Press, Novem-
ber 2019

[BCG+19b] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol.
11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26954-8 16

[BCG+20] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Effi-
cient pseudorandom correlation generators from ring-LPN. In: Miccian-
cio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171,
pp. 387–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56880-1 14

[Bea92] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

[BGI15] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
337–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46803-6 12

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements
and extensions. In: ACM CCS 2016. ACM Press, October 2016

[BKKO20] Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party dis-
tributed ORAM. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS,
vol. 12238, pp. 215–232. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57990-6 11

[DKL+13] Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical covertly secure MPC for dishonest majority – or: breaking the
SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40203-6 1

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 38

[GI14] Gilboa, N., Ishai, Y.: Distributed point functions and their applications.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 35

[KOS16] Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic
secure computation with oblivious transfer. In: ACM CCS 2016. ACM
Press, October 2016

https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35

Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 251

[KPR18] Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS,
vol. 10822, pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7 6

[NNOB12] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach
to practical active-secure two-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 40

[SV14] Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des.
Codes Cryptogr. 71(1), 57–81 (2014)

[YWL+20] Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension
for correlated OT with small communication. In: ACM CCS 20. ACM
Press, November 2020

https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-642-32009-5_40

Storing and Retrieving Secrets
on a Blockchain

Vipul Goyal1,2, Abhiram Kothapalli1, Elisaweta Masserova1(B), Bryan Parno1,
and Yifan Song1

1 Carnegie Mellon University, Pittsburgh, USA
vipul@cmu.edu, elisawem@cs.cmu.edu

2 NTT Research, Sunnyvale, USA

Abstract. A secret sharing scheme enables one party to distribute shares
of a secret to n parties and ensures that an adversary in control of t out of
n parties will learn no information about the secret. However, traditional
secret sharing schemes are often insufficient, especially for applications
in which the set of parties who hold the secret shares might change over
time. To achieve security in this setting, dynamic proactive secret sharing
(DPSS) is used. DPSS schemes proactively update the secret shares held
by the parties and allow changes to the set of parties holding the secrets.We
propose FaB-DPSS (FAst Batched DPSS) – a new and highly optimized
batched DPSS scheme. While previous work on batched DPSS [BDLO15]
focuses on a single client submitting a batch of secrets and does not allow
storing and releasing secrets independently, we allow multiple different
clients to dynamically share and release secrets. FaB-DPSS is the most
efficient robust DPSS scheme that supports the highest possible adver-
sarial threshold of 1

2
. We prove FaB-DPSS secure and implement it. All

operations complete in seconds, and we outperform a prior state-of-the-
art DPSS scheme [MZW+19] by over 6×.

Additionally, we propose new applications of DPSS in the context
of blockchains. Specifically, we propose a protocol that uses blockchains
and FaB-DPSS to provide conditional secret storage. The protocol allows
parties to store secrets along with a release condition, and once a (possi-
bly different) party satisfies this release condition, the secret is privately
released to that party. This functionality is similar to extractable wit-
ness encryption. While there are numerous compelling applications (e.g.,
time-lock encryption, one-time programs, and fair multi-party computa-
tion) which rely on extractable witness encryption, there are no known
efficient constructions (or even constructions based on any well-studied
assumptions) of extractable witness encryption. However, by utilizing
blockchains and FaB-DPSS, we can easily build all those applications.
We provide an implementation of our conditional secret storage protocol
as well as several applications building on top of it.

1 Introduction

In recent years, secret sharing schemes have received considerable attention.
While traditional secret sharing is a well-known cryptographic primitive which
has been extensively used in the context of secure multi-party computation,
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 252–282, 2022.
https://doi.org/10.1007/978-3-030-97121-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_10

Storing and Retrieving Secrets on a Blockchain 253

recently proactive secret sharing has become increasingly important. Similar to
traditional secret sharing, proactive secret sharing schemes enable one party
to distribute shares of a secret to n parties such that any t + 1 shares are
enough to reconstruct the secret, and an adversary in possession of t out of
n shares learns no information about the secret. In contrast to traditional secret
sharing, proactive secret sharing additionally considers the setting where the
adversary may eventually corrupt all participants over time, while corrupt-
ing no more than a certain threshold at any given time. In the context of
blockchains, proactive secret sharing has proven a useful alternative to cen-
tral storage for securing secret keys (which are used to sign transactions,
access cryptocurrency wallets, etc.). As pointed out in CHURP [MZW+19],
since blockchain nodes are typically allowed to freely leave or join a system
at any time, in this context it is critical to allow for dynamic changes in the
secret sharing committee. This is supported by dynamic proactive secret shar-
ing (DPSS) [DJ97,MZW+19,SLL08,BDLO15,ZSVR05,WWW02] which proac-
tively updates the secret shares held by the parties and allows changes to the
set of parties holding the secrets.

Scheme
Dynamic
setting

Adversary Threshold Network
Comm.
(amort.)

Comm.
(non-amort.)

[HJKY95] No Active t/n < 1/2 synch. O(n2) O(n2)
[CKLS02] No Active t/n < 1/3 asynch. O(n4) O(n4)
[DJ97] Yes Passive t/n < 1/3 asynch. O(n2) O(n2)
[WWW02] Yes Active t/n < 1/2 synch. exp(n) exp(n)
[ZSVR05] Yes Active t/n < 1/3 asynch. exp(n) exp(n)
[SLL08] Yes Active t/n < 1/3 asynch. O(n4) O(n4)
[BDLO15] Yes Active t/n < 1/2− ε synch. O(1) O(n3)
[MZW+19] Yes Active t/n < 1/2 synch. O(n2) O(n2)
This work Yes Active t/n < 1/2 synch. O(n) O(n2)

Fig. 1. Comparison of PSS Schemes. The Comm. columns show the communication
cost/secret in a hand-off round.

We introduce FaB-DPSS (FAst Batched DPSS) – a highly optimized batched
DPSS scheme. Especially in the context of secret storage on blockchains, batch-
ing is crucial as thousands of secrets might be stored and updated in parallel
at any given time. FaB-DPSS improves over prior work in multiple dimensions.
In contrast to previous work on batched DPSS [BDLO15], which focuses on a
single client submitting a batch of secrets and does not allow storing and releas-
ing secrets independently, we allow multiple different clients to dynamically and
independently share and release secrets. Among the robust schemes which allow
the highest-possible adversarial threshold of 1

2 (see Fig. 1), our protocol has the
best communication complexity. It is also the most concretely efficient scheme –
all operations complete in seconds (Sect. 8), and we outperform a prior state-of-
the-art DPSS scheme [MZW+19] by over 6×. These improvements are possible
because of our entirely new approach to the hand-off phase of the DPSS – instead
of relying on bivariate polynomials as is done in prior work [MZW+19], we use
a technique we dub “coupled sharings”.

254 V. Goyal et al.

In addition to FaB-DPSS, we propose a number of blockchain-based DPSS
applications, thus expanding the reach of DPSS in the context of blockchains.
The most important one can be seen as a blockchain-based alternative to
extractable witness encryption. Introduced by Garg et al. [GGSW13], a witness
encryption scheme is, roughly, a primitive that allows one to encrypt a message
with respect to a problem instance. Such a problem instance could be a sudoku
puzzle in a newspaper or an allegedly bug-free program, or more generally, any
NP search problem. If the decryptor knows a valid witness for the corresponding
problem instance, such as a sudoku solution or a bug in the program, she can
decrypt the ciphertext. Moreover, if a witness encryption scheme is extractable,
then an adversary able to learn any non-trivial information about the encrypted
message is also able to provide a witness for the corresponding problem instance.

Unfortunately, existing proposals for extractable witness encryption typi-
cally rely on differing-inputs obfuscation [BGI+12,ABG+13], a technique that
is computationally expensive and relies on strong cryptographic assumptions.
Responding to the lack of extractable witness encryption schemes based on stan-
dard assumptions, Garg et al. [GGHW14] suggest that it may be impossible.

Building upon blockchains and FaB-DPSS with a threshold of t/n < 1
2 , we

design eWEB – an efficient alternative to extractable witness encryption. It uses
only standard cryptographic assumptions, while respecting prior impossibility
results: Instead of resorting to expensive cryptographic machinery, it relies on
interaction with a dynamic set of nodes with an honest majority. We believe
this a favorable trade-off, as the honest majority setting has been repeatedly
used in practice, most notably in blockchains1. For simplicity, in the following
we will use the terms “dynamic set of nodes with an honest majority” and
“blockchain” interchangeably, and the same for “nodes” and “miners”. Roughly,
we allow users to encode a secret along with a release condition. A predefined set
of n nodes jointly and securely store the encoding and later privately release the
secret to a user who demonstrably satisfies the release condition. We provide a
formal proof of security of our construction, relying on the guarantees provided
by the blockchain setting (specifically, we will assume a set of miners such that
the majority of the selected miners are honest). As pointed out by Goyal and
Goyal [GG17], one way to select such a set of miners is by selecting miners who
were responsible for mining the last n blocks (where n is large enough). While it
might seem like using secret sharing in combination with a blockchain directly
provides a solution for conditional secret sharing, achieving a formally secure
solution is subtle and requires careful design, as well as a few tricks we introduce
in Sect. 5.2.

We note that the combination of blockchains and witness encryption has
proven remarkably powerful. Indeed, Liu et al. [LJKW18] propose a time-lock
encryption scheme that allows one to encrypt a message such that it can only be
decrypted once a certain deadline has passed, without relying on trusted third
parties or imposing high computational overhead on the receiver. The construc-
tion of Choudhuri et al. [CGJ+17] achieves fairness in multi-party computation

1 Other instantiations are possible as well, see Sect. 5.1.

Storing and Retrieving Secrets on a Blockchain 255

against a dishonest majority. Goyal and Goyal [GG17] present the first construc-
tion for one-time programs (that run only once and then “self-destruct”) that
does not use tamper-proof hardware.

Using our DPSS- and blockchain based eWEB scheme, practitioners can eas-
ily implement all these applications. Note that many of them [LJKW18,CGJ+17,
GG17] already rely on blockchains, implying that using eWEB does not add any
additional assumptions. We explain in detail how a number of these applications
can be achieved, and we implement and evaluate a few of them.

We also note that eWEB has already formed the basis of a follow-up work
on non-interactive MPC [GMPS21].

1.1 Our Results

As explained above, one of our main contributions is a new and highly efficient
DPSS scheme. More specifically, we achieve the following:

Theorem 1. Assuming secure point-to-point channels and assuming that the
t-SDH assumption holds, our construction satisfies the DPSS security definition
(Definition 1) for a fully malicious adversary satisfying a corruption threshold
t < 1

2n, where n is the total number of parties holding the secrets. The adver-
sary has the power to adaptively corrupt parties at any time. Our construction
achieves amortized complexity of O(n) and non-amortized complexity of O(n2).

Here, Definition 1 is a DPSS security definition which is based on an ideal
functionality, which behaves as follows:

– The functionality keeps track of the current committee.
– Upon receiving a secret storage request, the functionality stores the secret

and notifies the current committee about the storage request.
– Upon receiving a release request from more than t (the adversarial threshold)

number of parties in the current committee, the functionality either sends the
corresponding secret to the client if the release request was private, or to the
public otherwise.

Intuitively, this security definition requires that an adversary corrupting no
more than the allowed threshold of parties does not learn any information about
the secret through our protocol (secrecy) and cannot prevent an eligible party
from learning the secret (robustness).

We present and formally prove secure FaB-DPSS in Sect. 3. We note that
among the robust DPSS schemes which provide the highest-possible adversarial
threshold of t < 1

2n our batched construction achieves the best amortized com-
plexity – O(n), while the state of the art CHURP [MZW+19] achieves O(n2)
(see Fig. 1 for comparison). Simultaneously, we achieve the same non-amortized
complexity as CHURP – both works achieve O(n2). Our evaluation shows (see
Fig. 2 as well as Sect. 8.1) that FaB-DPSS outperforms CHURP in practice.

Next, we propose eWEB – a new cryptographic primitive which can be seen
as a blockchain-based alternative to extractable witness encryption. We give a
formal syntax for eWEB in Sect. 4.

256 V. Goyal et al.

Building upon FaB-DPSS and blockchains, we design and formally prove
secure an eWEB construction. For this, we assume that an adversary controls
some number of users and miners subject to the constraint that at any time
the majority of miners who are eligible to participate in the protocol are honest
(we explain how such a miner committee is chosen in Sect. 5.2). We assume that
eWEB is a core functionality for the underlying blockchain. We use blockchain
also for a PKI infrastructure and assume that each party has a unique identi-
fier that is known to other parties. Finally, we assume authenticated IND-CCA
secure encryption, collision-resistant hash functions and simulation extractable
non-interactive zero knowledge proofs of knowledge.

We implement and evaluate our eWEB protocol (Sect. 7).
Finally, we explain how time-lock encryption, dead-man’s switch, fair MPC,

one-time programs and proofs of receipts can be achieved using eWEB (Sect. 6).
As a more involved example, we propose an eWEB-based proof-of-concept vot-
ing protocol (Sect. 6.1). We implement and evaluate several of these applica-
tions (Sect. 8.3).

1.2 Related Work

We elaborate on the prior work of both DPSS and conditional secret release.

Prior Work on DPSS. Since the introduction of proactive secret sharing
by Herzberg et al. [HJKY95], many PSS schemes have been developed. These
schemes vary in terms of security guarantees, network assumptions (synchronous
or asynchronous), communication complexity and whether they can handle
dynamic changes in the committee membership. In Fig. 1 we provide a com-
parison.

Below, we compare FaB-DPSS in detail with the two constructions (Baron
et al. [BDLO15], CHURP [MZW+19]) that are most closely related to our pro-
tocol, as they are also the most efficient robust DPSS schemes to date.

In the best case, CHURP [MZW+19] achieves communication complexity
O(n2) plus O(n) · B to refresh each secret in the hand-off phase, where n is the
number of parties and B denotes the cost of broadcasting a bit. In the worst case
(where some corrupted party deviates from the protocol), it requires O(n2) · B
communication per secret.

In the single-secret setting, our protocol achieves the same asymptotic com-
munication complexity as CHURP. However, our protocol achieves amortized
communication complexity O(n) plus O(1) · B per secret in the best case, and
O(n2) plus O(n) · B per secret in the worst case. Batching is crucially important
in eWEB since there may be thousands of secrets stored at any given time.

While CHURP uses asymmetric bivariate polynomials to refresh a secret dur-
ing hand-off, we use a modified version of a technique of Damg̊ard et al. [DN07]
to prepare a batch of random secret sharings. Generating random secret shar-
ings is much more efficient than generating bivariate polynomials. Specifically,
each bivariate polynomial requires O(n) communication per party; i.e., O(n2)

Storing and Retrieving Secrets on a Blockchain 257

in total. On the other hand, we can prepare O(n) random sharings with the same
communication cost as preparing one bivariate polynomial. To benefit from it,
we use an entirely different way to refresh secrets.

The work of Baron et al. [BDLO15] focuses on a slightly different setting from
ours: they consider unconditionally secureDPSSwith a (1/2−ε) corruption thresh-
old, where ε is a constant. Their scheme has O(1) amortized communication per
secret. However, in the single-secret setting, it requires O(n3) communication to
refresh a secret. The authors use the party virtualization technique where every
virtual party is simulated by a set of real parties running a maliciously secure MPC
protocol. As discussed in [MZW+19], a high constant is hidden in the big O nota-
tion. For example, if ε = 1/6, i.e., the scheme is only secure with a 1/3 corruption
threshold, the virtualization requires to simulate at least 576 virtual parties with
each using a set of 576 real parties running a maliciously secure MPC protocol,
rendering the scheme very inefficient in practice.

Baron et al. use packed secret sharing [FY92] (in contrast to our batched secret
sharing), which allows the same client to storeO(n) secrets in one sharing by encod-
ing multiple secrets as distinct points of a single polynomial. Thus, refreshing each
sharing effectively refreshes a batch of O(n) secrets submitted by the same client
at the same time. However, this means that secrets in the same batch come from
a single client and can only be refreshed or reconstructed together. It is unclear if
merging batches submitted by different clients is possible. Thus, even if in eWEB
some secrets submitted by different clients were to be released at the same time,
Baron et al.’s scheme would not allow us to join these secrets in one batch to profit
from their low amortized communication complexity. Our scheme has one secret
per sharing: only supplementary random sharings are generated in a batch. This
allows to refresh (and release) each secret individually.

To reach O(1) amortized communication per secret, Baron et al. need a
(1/2 − ε) corruption threshold. Our scheme does not suffer from this corruption
threshold loss.

Extractable Witness Encryption and Conditional Secret Release. The
notion of witness encryption was introduced by Garg et al. [GGSW13]. Gold-
wasser et al. [GKP+13] proposed extractable security for witness encryption. In
their work a candidate construction was introduced that requires very strong
assumptions over multilinear maps. According to Liu et al. [LJKW18], exist-
ing witness encryption schemes have no efficient extraction methods. Garg et
al. [GGHW14] suggest that it even might be impossible to achieve extractable
witness encryption with arbitrary auxiliary inputs.

Nevertheless, as mentioned in Sects. 1 and 6, the notion of extractable witness
encryption has been extensively used in various cryptographic protocols [CGJ+17,
GG17,BH15,LJKW18], especially in conjunction with blockchains.

Concurrently to our preprint, Benhamouda et al. [BGG+20] published a
manuscript that also proposes conditionally storing secrets on a blockchain.
Unlike eWEB, their work is specific to proof-of-stake blockchains. Like us, they
design a new DPSS scheme, but they target a very specific (albeit intriguing)

258 V. Goyal et al.

use case—in their setting, the members of a committee must remain anony-
mous, even to the previous committee. They consider a stronger adversary who
can corrupt and uncorrupt previously honest parties, but they only tolerate
25% corruption, versus 50% for our scheme. They do not explain how to release
secrets without revealing witnesses to the miners. This is not trivial, as one
would not want to release the secret publicly or allow an adversary to reuse an
honest user’s witness. Finally, they do not provide a formal security definition
or implementation. Our work closes this gap.

Recently, a preprint by Gentry et al. [GHM+20] improved the adversarial
threshold of Benhamouda et al., allowing it to tolerate 1

2 − ε corruptions – fewer
than eWEB. While our amortized communication complexity is O(n), the amor-
tized complexity of Gentry et al. (building upon Benhamouda et al.’s work) is
an unspecified polynomial. Their setting and focus is different from ours.

Kokoris-Kogias et al. proposed Calypso [KKAS+18], a verifiable data man-
agement solution that relies on blockchains and threshold encryption. Calypso
targets a different use case than our eWEB system: it allows verifiable sharing
of data to parties that are explicitly authorized (either by the depositor or by a
committee of authorized parties) to have access rather than specifying a general
secret release condition that allows anyone who is able to satisfy this condition
to get the data. Kokoris-Kogias et al. do not provide a formal security definition
or formal security proof of their system. The major part of their work focuses
on the static committee of parties holding the secrets; the dynamic committee
setting is only discussed very briefly.

eWEB could be seen as a special case of proactive secure multi-party compu-
tation (PMPC) [OY91,BEDLO14,EOPY18]. However, while our DPSS scheme
could be used for PMPC, eWEB targets a different use case than general PMPC.
This allows for a much more efficient and largely non-interactive construction
compared to PMPC protocols, which typically have very high round complexity.

2 Preliminaries

In this section, we introduce the DPSS security definition. In the interest of space,
we introduce further building blocks in the full version of this paper [GKM+20].

2.1 DPSS Security Definition

A dynamic proactive secret-sharing scheme (DPSS) scheme allows a client to
distribute shares of a secret to n parties, so that an adversary in control of some
threshold number of parties t learns no information about the secret. The set of
parties holding secrets is constantly changing, and the adversary can “release”
some parties (users regain control of their systems) and corrupt new ones.

A DPSS scheme consists of the following three phases.

Setup. In each setup phase, one or more independent clients secret-share a
total of m secrets to a set of n parties, known as a committee, denoted by

Storing and Retrieving Secrets on a Blockchain 259

C = {P1, . . . , Pn}. After each setup phase, each committee member holds one
share for each secret s distributed during this phase.

Hand-off. As the protocol runs, the hand-off phase is periodically invoked to
provide the new committee with updated shares in such a way that the adversary
cannot use information from multiple committees to learn anything about the
secret. This process reflects parties leaving and joining the committee. After
the hand-off phase, all parties in the old committee delete their shares, and all
parties in the new committee hold a sharing for each secret s. The hand-off phase
is particularly challenging, since during the hand-off a total of 2t parties may be
corrupted (t parties in the old committee and t parties in the new committee).

Reconstruction. When a client (which need not be one who stored the secret)
asks for the secret reconstruction, that client and the current committee engage
in a reconstruction process to allow the client learn the secret.

At a high-level, the security of the DPSS scheme requires that it should
always be possible to recover the secret, and an adversary should not learn
any further information about the secret beyond what has been learned before
running the protocol. We formally model the security in Idealsafe. Note that we
slightly generalize the typical DPSS definition by supporting not only private
release to a client, but also a public release of the secret. In this case, the secret
is broadcast to all parties.

Ideal Secrecy: Idealsafe

1. Idealsafe receives a list C of parties as the first committee, and a corruption
threshold t. Idealsafe initializes an empty list L for the secrets.

2. Upon receiving a storage request (store, s) from a client, Idealsafe adds
the secret s to the end of list L, and sets the identifier id of the secret s
to be the number of secrets in L. Idealsafe sends id to all parties in the
current committee.

3. Upon receiving (change-committee, C′) from more than t parties in the
current committee C, Idealsafe changes the committee to the parties in C′

and sends the identities of C′ to all the parties in C.
4. Upon receiving (release, id, client) from more than t parties in the current

committee, Idealsafe scans list L for the secret s� that corresponds to the
identifier id. If such a secret does not exist, Idealsafe sets s� =⊥.

– If client �= public, Idealsafe sends s� to the client.
– Otherwise, Idealsafe broadcasts s�.

Definition 1. A dynamic proactive secret-sharing scheme is secure if for any
PPT adversary A and threshold t, there exists a simulator S with access to
Idealsafe (described in Ideal Secrecy), such that the view of A interacting with S
is computationally indistinguishable from the view in the real execution.

260 V. Goyal et al.

2.2 DPSS Definition Discussion

Our definition is slightly different from the original definition of PSS [OY91]. In
that definition, there is an additional “Recovery” phase where a party infected
by a virus reboots itself to remove the virus and recovers its share jointly with all
other parties. In our definition, however, we assume that a party regains control
automatically when the adversary releases it, and such a party can use fresh
randomness afterwards. To adapt to the original definition where a reboot is
needed for a party to remove the virus, this party backs up its share and reboots
itself before the next handoff phase. The backup guarantees that an honest party
does not lose its shares during the reboot. If this party is corrupted before the
reboot, then since the handoff phase will generate a new sharing for all parties,
there is no need to recover its old share.

3 Technical Overview – FaB-DPSS

In the following section we give an overview of our FaB-DPSS scheme and secu-
rity proof. We give the entire construction in the full version of this paper.

FaB-DPSS is based on Shamir Secret Sharing [Sha79]. In the following, we
assume the corruption threshold for each committee is fixed to t. We use [x]d to
denote a degree-d sharing, i.e., (d+1)-out-of-n Shamir sharing. It requires at least
d + 1 shares to reconstruct the secret, any d or fewer shares leak no information
about the secret. Note that Shamir’s scheme is additively homomorphic.

In the following, first we outline the adversarial model. Then we discuss the
hand-off phase of our scheme in the semi-honest case (Sect. 3.1) and explain how
it can be modified for the fully malicious case (Sect. 3.2). We solve the semi-honest
case through the introduction of the techique we dub “coupled sharings” combined
with the careful use of ideas from the MPC literature [DN07] and a few additional
tricks which allow us to achieve good amortized communication complexity. For
the fully malicious case, unlike in the MPC world, we must marry these techniques
with polynomial commitment schemes. We present the setup phase (Sect. 3.3) as a
special case of our hand-off phase, summarize our reconstruction phase (Sect. 3.4),
and provide intuition for our construction’s security proof (Sect. 3.5).

Adversary Model. We consider a computationally bounded fully malicious
adversary A with the power to adaptively choose parties to corrupt at any time.
A can corrupt any number of clients distributing secrets and learn the secrets
held by the corrupted clients. For each committee C with a threshold t < |C|/2,
A can corrupt at most t parties in C. When a party Pi is corrupted by A, A
fully controls the behavior of Pi and can modify Pi’s memory state. Even if A
releases its control of Pi, its memory may have already been modified; e.g., Pi’s
share might have been erased.

For a party Pi in both the old committee C and the new committee C′, if
A has the control of Pi during the hand-off phase, then Pi is considered to be
corrupted in both committees. If A releases its control before the hand-off phase

Storing and Retrieving Secrets on a Blockchain 261

in which the secret sharing is passed from C to C′, then Pi is only considered
corrupted in the old committee C. If A only corrupts Pi after the hand-off phase,
Pi is only considered corrupted in the new committee C′.

For simplicity, in the following, we assume that there exist secure point-to-
point channels between the parties and the corruption threshold is a fixed value
t. Our protocol can be easily adapted to allow different thresholds for different
committees (see the full version of this paper).

3.1 FaB-DPSS: Semi-honest Case

We first explain the high-level idea of our protocol in the semi-honest setting;
i.e., all parties honestly follow the protocol. The foundational idea in FaB-DPSS
is the introduction of so-called coupled sharings. By this, we mean two sharings
([r]t, [r̃]t) which have the same value (r = r̃), even though the particular shares
which lead to this value are different for the two sharings. Now, imagine a coupled
sharing ([r]t, [r̃]t) of a uniformly random value r. We let [r]t be held by the old
committee, and [r̃]t be held by the new committee. Suppose the secret sharing
we want to refresh is [s]t, held by the old committee. Then the old committee
will compute the sharing [s + r]t = [s]t + [r]t and reconstruct the secret s + r.
Since r is uniformly random, s + r does not leak any information about s. Now,
the new committee can compute [s̃]t = (s+ r)− [r̃]t. Since r̃ = r, we have s̃ = s.
This whole process is split into preparation and refresh phases:

– In the preparation phase, parties in the new committee prepare the coupled
sharing: two degree-t sharings of the same random value r(= r̃), denoted
by [r]t and [r̃]t. The old committee receives the shares of [r]t and the new
committee holds the shares of [r̃]t.

– In the refresh phase, the old committee reconstructs the sharing [s]t + [r]t
and publishes the result. The new committee sets [s̃]t = (s + r) − [r̃]t.

The rest of our protocol builds around this idea. We need to solve the following
challenges:

– How can committees prepare the coupled sharings?
– How can this preparation step be done as efficiently as possible?
– How can these sharings be used efficiently during the refresh step?

We start by answering the first two questions. In the following, let C denote
the old committee and C′ denote the new committee. Intuitively, the straw man
solution which allows to obtain one coupled sharing is the following:

1. Each party P ′
i ∈ C′ prepares a coupled sharing ([u(i)]t, [ũ(i)]t) of a random

value and distributes [u(i)]t to the old committee and [ũ(i)]t to the new com-
mittee.

2. All parties in the old committee compute [r]t =
∑n

i=1[u
(i)]t. All parties in

the new committee compute [r̃]t =
∑n

i=1[ũ
(i)]t.

Since for each i, u(i) = ũ(i), we have r = r̃.

262 V. Goyal et al.

Unfortunately, this way of preparing coupled sharings is wasteful since at
least (n − t) coupled sharings are generated by honest parties, which appear
uniformly random to corrupted parties. In order to get (n − t) random coupled
sharings instead of just 1, we borrow an idea from Damg̊ard and Nielsen [DN07].

In their work, parties need to prepare a batch of random sharings which will
be used in an MPC protocol. All parties first agree on a fixed and public Vander-
monde matrix MT of size n× (n− t). An important property of a Vandermonde
matrix is that any (n − t) × (n − t) submatrix of MT is invertible. To prepare
a batch of random sharings, each party Pi generates and distributes a random
sharing [u(i)]t. Next, all parties compute

([r(1)]t, [r(2)]t, . . . , [r(n−t)]t)T = M([u(1)]t, [u(2)]t, . . . , [u(n)]t)T,

and take [r(1)]t, [r(2)]t, . . . , [r(n−t)]t as output. Since any (n−t)×(n−t) submatrix
of M is invertible, given the sharings provided by corrupted parties, there is a
one-to-one map from the output sharings to the sharings distributed by honest
parties. Since the input sharings of the honest parties are uniformly random,
the one-to-one map ensures that the output sharings are uniformly random as
well [DN07].

Note that any linear combination of a set of coupled sharings is also a
valid coupled sharing. Thus, in our protocol, instead of computing ([r]t, [r̃]t) =∑n

i=1([u
(i)]t, [ũ(i)]t), parties in the old committee can compute

([r(1)]t, [r(2)]t, . . . , [r(n−t)]t)T = M([u(1)]t, [u(2)]t, . . . , [u(n)]t)T

and parties in the new committee can compute

([r̃(1)]t, [r̃(2)]t, . . . , [r̃(n−t)]t)T = M([ũ(1)]t, [ũ(2)]t, . . . , [ũ(n)]t)T

Now all parties get (n− t) random coupled sharings. The amortized commu-
nication cost per such sharing is O(n).

We now describe the refresh phase. For each sharing [s]t of a client secret
which needs to be refreshed, one random coupled sharing ([r]t, [r̃]t) is consumed.
Parties in the old committee first select a special party Pking. To reconstruct
[s]t +[r]t, parties in the old committee locally compute their shares of [s]t +[r]t,
and then send the shares to Pking. Then, Pking uses these shares to reconstruct
s+r and publishes the result. Finally, parties in the new committee can compute
[s̃]t = (s + r) − [r̃]t.

3.2 Moving to a Fully-Malicious Setting

In a fully-malicious setting, three problems might arise.

– During preparation, a party distributes an inconsistent degree-t sharing or
incorrect coupled sharing.

– During refresh, a party provides an incorrect share to Pking, causing a recon-
struction failure.

– Pking provides an incorrectly reconstructed value.

Storing and Retrieving Secrets on a Blockchain 263

We address these problems by checking the correctness of coupled sharings
in the preparation phase and relying on polynomial commitments to transform
a plain Shamir secret sharing into a verifiable one.

Checking the Correctness of Coupled Sharings. While it is possible to
check the correctness of each coupled sharing separately, we can increase effi-
ciency by utilizing the following trick: check if all of them are correct by check-
ing their random linear combination. It works since any linear combination of
coupled sharings is also a valid coupled sharing.

Note that in the process we need to to protect the privacy of every coupled
sharing ([u(i)]t, [ũ(i)]t) generated by a party P ′

i . We achieve it by having P ′
i

generate one additional random coupled sharing as a random mask, which is
denoted by ([μ(i)]t, [μ̃(i)]t).

Consider the following two sharings of polynomials of degree-(2n − 1):

[F (X)]t =
n∑

i=1

([μ(i)]t + [u(i)]t · X)X2(i−1),

[F̃ (X)]t =
n∑

i=1

([μ̃(i)]t + [ũ(i)]t · X)X2(i−1).

These two sharings have the following benefitial properties:

1. If all coupled sharings are correct, then ([F (λ)]t, [F̃ (λ)]t) is also a coupled
sharing for any λ. Otherwise, the number of λ such that ([F (λ)]t, [F̃ (λ)]t)
is a coupled sharing is bounded by 2n − 1. Thus, in order to test whether
all sharings are correct, it is sufficient to test ([F (λ)]t, [F̃ (λ)]t) at a random
evaluation point λ.

2. The coupled sharing ([u(i)]t, [ũ(i)]t) generated by P ′
i is masked by a ran-

dom coupled sharing ([μ(i)]t, [μ̃(i)]t) which is also generated by P ′
i . Thus, the

secrecy of ([u(i)]t, [ũ(i)]t) is preserved during the check of ([F (λ)]t, [F̃ (λ)]t).

Therefore, we first let all parties generate a random challenge λ. Parties in
the old committee compute [F (λ)]t and publish their shares. Parties in the new
committee compute [F̃ (λ)]t and publish their shares. Finally, all parties check
whether ([F (λ)]t, [F̃ (λ)]t) is a valid coupled sharing.

If the check fails (not all sharings are correct), we need to pinpoint parties who
distributed incorrect coupled sharings. Since each coupled sharing ([u(i)]t, [ũ(i)]t)
is masked by ([μ(i)]t, [μ̃(i)]t), it is safe to open the whole sharing ([μ(i)]t + [u(i)]t ·
λ, [μ̃(i)]t + [ũ(i)]t · λ) and check whether it is a valid coupled sharing. Since
([F (λ)]t, [F̃ (λ)]t) is a linear combination of the coupled sharings {([μ(i)]t +[u(i)]t ·
λ, [μ̃(i)]t+[ũ(i)]t ·λ)}n

i=1, at least one coupled sharing of {([μ(i)]t+[u(i)]t ·λ, [μ̃(i)]t+
[ũ(i)]t ·λ)}n

i=1 is inconsistent. In fact, we can find all inconsistent coupled sharings
with overwhelming probability with the help of polynomial commitments intro-
duced later. For each i, parties in the old committee compute [μ(i)]t +[u(i)]t ·λ and
publish their shares, and parties in the new committee compute [μ̃(i)]t + [ũ(i)]t · λ
and publish their shares. This way, we can tell which coupled sharings are incon-
sistent. This inconsistency in the coupled sharing distributed by some party P ′

i (in
the following, dealer) has two possible causes:

264 V. Goyal et al.

– The dealer P ′
i distributed an invalid coupled sharing (either the secrets were

not the same or one of the degree-t sharings was invalid).
– Some corrupted party Pj ∈ C ∪ C ′ provided an incorrect share during the

verification of the sharing distributed by the dealer P ′
i .

The first case implies that the dealer is a corrupted party. To distinguish the
first case from the second, we will rely on polynomial commitments, which can
be used to transform a plain Shamir secret sharing into a verifiable one so that
an incorrect share (e.g., in case 2) can be identified and rejected by all parties.

Relying on Polynomial Commitments. A degree-t Shamir secret sharing
corresponds to a degree-t polynomial f(·) such that: (a) the secret is f(0),
and (b) the i-th share is f(i). Thus, each dealer can commit to f by using a
polynomial commitment scheme to add verifiability.

A polynomial commitment scheme allows the dealer to open one evaluation of
f (which corresponds to one share of the Shamir secret sharing) and the receiver
can verify the correctness of this evaluation value. Essentially, whenever a dealer
distributes a share it also provides a witness which can be used to verify this
share. Informally, a polynomial commitment scheme satisfies three properties:

– Polynomial Binding: A commitment cannot be opened to two different poly-
nomials.

– Evaluation Binding: A commitment cannot be opened to two different values
at the same evaluation point.

– Hiding: A commitment should not leak any information about the committed
polynomial.

We use polynomial commitments as follows: in the beginning, each dealer
first commits to the sharings it generated and opens the shares to corresponding
parties. To ensure that each party is satisfied with the shares it received, there
is a following accusation-and-response phase:

1. Each party publishes (accuse, P ′
i) if the share received from P ′

i does not pass
the verification algorithm.

2. For each accusation made by Pj , P ′
i opens the j-th share to all parties, and

Pj uses the new share published by P ′
i if it passes the verification. Otherwise,

P ′
i is regarded as a corrupted party by everyone else.

Note that an honest party will never accuse another honest party. Also, if a
malicious party accuses an honest party, no more information is revealed to the
adversary than what the adversary knew already. Thus, it is safe to reveal the
share sent from P ′

i to Pj . After this step, all parties should always be able to
provide valid witnesses for their shares.

Recall that parties need to do various linear operations on the shares. In
FaB-DPSS we use the KZG commitment scheme [KZG10], which is linearly
homomorphic. Thus, even if a share is a result of a number of linear operations,
it is still possible for a party to compute the witness for this share. From now
on, each time a party sends or publishes a share, this party also provides the

Storing and Retrieving Secrets on a Blockchain 265

associated witness to allow other parties verify the correctness of the share.
Since honest parties will always provide shares with valid witnesses and there
are at least n − t ≥ t + 1 honest parties, all parties will only use shares that
pass verification. Intuitively, this solves the problem of incorrect shares provided
by corrupted parties since corrupted parties cannot provide valid witnesses for
those shares. Similarly, it should solve the problem of a malicious Pking, since he
cannot provide a valid witness for the incorrectly reconstructed value. However,
due to a subtle limitation of the KZG commitment scheme, we actually need to
add an additional minor verification step (see [GKM+20] for details).

See [GKM+20] for a complete description of the hand-off process.

3.3 FaB-DPSS Setup Phase

The setup phase uses a similar approach to the hand-off phase. First, the com-
mittee prepares random sharings. As in the hand-off phase, the validity of the
distributed shares is verified using the KZG commitment scheme. For each secret
s distributed by a client, one random sharing [r]t is consumed. The client receives
the whole sharing [r]t from the committee and reconstructs the value r. Finally,
the client publishes s + r. The committee then computes [s]t = s + r − [r]t.
See [GKM+20] for details.

3.4 FaB-DPSS Reconstruction Phase

When a client asks for the reconstruction of some secret s�, all parties in the
current committee simply send their shares of [s�]t and the associated witnesses
to the client. The client then reconstructs the secret using the first t + 1 shares
that pass the verification checks. See [GKM+20] for details.

3.5 Security of Our Construction

We give a high-level idea of our proof. The goal is to construct a simulator to
simulate the behaviour of honest parties. For each sharing, corrupted parties
receive at most t shares, which are independent of the secret. Thus, when an
honest party needs to distribute a random sharing, the simulator can send ran-
dom elements to corrupted parties as their shares without fixing the shares of
honest parties. Since we use the perfectly hiding variant of the KZG commit-
ment, the commitment is independent of the secret, and can be generated using
the trapdoor of the KZG scheme. Furthermore, we can adaptively open t shares
chosen by the adversary after the commitment is generated. This makes our
scheme secure against adaptive corruptions. We present the full formal security
proof of our scheme in [GKM+20].

266 V. Goyal et al.

4 DPSS Applications – eWEB Primitive

Our next goal is to expand the reach of DPSS. We ask the following question:

Is it possible to let users store secrets and specify release conditions for these
secrets in a way that allows (other) users to retrieve these secrets later on if

and only if they are able to satisfy the release condition?

Our goal is to achieve this without relying on trusted third parties. Instead,
we imagine a distributed storage of secrets which would allow for a high adver-
sarial threshold. We refine our question as follows:

Is it possible to let users store secrets with some group of parties and specify
release conditions for these secrets in a way that allows (other) users to

retrieve these secrets later on if and only if they are able to satisfy the release
condition? Furthermore, is it possible to achieve this if the adversary is able to

corrupt up to t < 1
2n number of parties storing the secrets?

We are able to answer these questions positively by utilizing DPSS and a
dynamic set with honest majority, PKI, and authenticated broadcast. We utilize
blockchains as a real-world system which provides the latter three primitives.
While we emphasize that technically our solution can be based on any other set
of parties with honest majority (supplemented with a PKI and authenticated
broadcast), for ease of exposition, in the following we will use “dynamic set with
honest majority” and “blockchains” interchangeably.

We now formally introduce the extractable witness encryption on a
blockchain (eWEB) primitive. We distinguish between users who deposit secrets
(depositors), users who request that a secret be released (requesters), and a
changing set of blockchain nodes (miners) who are executing these requests.

An eWEB system consists of the following, possibly randomized and inter-
active, subroutines:

SecretStore(M,F) → (id, {frag1, .., fragn}, F): A depositor stores a secret M
which can be released to a requester who knows a witness w s.t. F (w) is true.
After interacting with the depositor, each of the n miners obtains a “fragment”,
frag i, of the secret that is associated with the secret storage request with the
identifier id.

SecretsHandoff ({frag1
1, .., frag

1
n}, .., {fragm

1 , .., fragm
n }) →

({˜frag1
1, ..,

˜frag1
n}, .., {˜fragm

1 , .., ˜fragm
n }): Miners periodically execute this function

to hand over all m stored secrets from the old committee to the new committee.
Each miner i of the old committee possesses m fragments (one for each secret)
frag1

i , .., frag
m
i at the start of the hand-off protocol. Each miner i of the new

committee possesses m fragments (one for each secret) ˜frag1
i , ..,

˜fragm
i at the end

of the protocol.
SecretRelease(id, w) → M or ⊥ : A requester uses this function to request the

release of the secret with the identifier id. The requester specifies the witness
w to the release condition. Miners check whether the requester holds a valid
witness and if so, as a result of the interaction with the miners, the requester
obtains the secret M . Otherwise the function returns ⊥ (i.e., attempt failed).

Storing and Retrieving Secrets on a Blockchain 267

Security Definition. We provide a formal game-based secrecy definition in
[GKM+20]. Practically, this definition states that if an adversary is able to dis-
tinguish between the protocol executed with secret M0 and the protocol executed
with secret M1, then we can extract a valid witness for the release condition F
using this adversary. Intuitively, this notion is quite similar to the extractable
security of witness encryption, which states that if an adversary can distinguish
between two ciphertexts, then he can also extract a witness from the correspond-
ing problem instance. For robustness, intuitively we require that it is always pos-
sible for an honest requester to reconstruct a secret dealt by an honest depositor.

Remark 1. We also propose a variant of eWEB with a slightly relaxed security
notion we dub Public Witness security. Here, the secret is made public after a
single successful secret release. As we show in Sect. 6, this notion proves quite
useful in a number of applications.

5 Our eWEB Protocol Design

Before we introduce our eWEB construction, we provide an overview of the
assumptions that we rely on in our scheme (Sect. 5.1).

5.1 Assumptions

Adversary Model. We rely on blockchains and assume that eWEB is a core
functionality, which allows us to focus on the fundamental construction with-
out worrying about selfish mining or bribery attacks. The adversary is able to
control a polynomial number of users and miners, subject to the constraint
that the blockchain has (n

2 + 1, n)-chain quality, meaning that for each n
or more continuous blocks mined in the system, more than half were mined
by honest parties. As noted by [GG17], for proof of work blockchains, where
the probability of successful mining is proportional to the amount of com-
putational power, this assumption follows from the assumption that honest
miners possess the majority of the computational power in the system. We
assume this majority is “significant enough” (to, for example, defeat selfish min-
ing attacks [ES14] that would threaten Bitcoin’s security). For proof of stake
blockchains, where the probability of successful mining is proportional to the
amount of coins possessed by the miner, it follows from the assumption that
honest miners possess the majority of stake in the system. In practice, we pick
an n that is big enough to provide this property with only a very small error
probability. Honest majority assumptions are very common in the blockchain
space [GG17,CGJ+17,MZW+19,GHM+17,KKAS+18], especially in permis-
sioned blockchains, which often rely on BFT replication protocols, which in
turn usually assume an honest supermajority [ABB+18]. We assume that the
blockchain is an append-only log, and it is hard to modify or erase its contents.

We assume that once an adversary corrupts a party it remains corrupted. The
adversary cannot adaptively corrupt previously honest parties. When a party is
corrupted by the adversary, the adversary fully controls this party’s behaviour

268 V. Goyal et al.

and internal memory state. We do not distinguish between adversarial and honest
parties who behave maliciously unintentionally; e.g., those who have connection
issues and cannot access the blockchain to participate.

Infrastructure Model. It is common for public keys to be known in blockchains.
We require that additionally each party pi has a unique identifier, denoted by
pidi, that is known to all other parties. In practice, this identifier can be the
hash of the party’s public key. For simplicity, we present the scheme as if there
were authenticated channels between all parties in the system. In practice, these
channels can be realized using standard techniques such as signatures.

Communication Model. Our DPSS scheme assumes secure point-to-point com-
munication channels. In the decentralized blockchain setting of eWEB we prefer
not to make such an assumption, since using point-to-point channels could com-
promise nodes’ anonymity and lead to targeted attacks [MZW+19]. Instead,
we assume that parties communicate via an existing blockchain. We distin-
guish between posting a message on the blockchain (expensive) and using the
blockchain’s peer-to-peer network for broadcast (cheap). Point-to-point chan-
nels can be simulated using IND-CCA secure encryption and broadcasting the
ciphertexts.

Storage. We assume that, in addition to parties’ internal storage, there exists
some publicly accessible off-chain storage that is cheaper than on-chain one.
Thus, we store data off-chain and save only data hashes on-chain. Our system’s
robustness depends on the robustness of the off-chain storage. Thus, storage
systems with a reputation for high availability should be chosen. However mali-
cious off-chain storage does not impact the secrecy properties of our system
(see [GKM+20]. Alternatively, at a higher cost, we can use on-chain storage for
everything.

Cryptographic Assumptions. In addition to the assumptions outlined above, we
assume IND-CCA secure encryption, collision-resistant hash functions, simula-
tion extractable non-interactive zero knowledge proofs of knowledge, and (for
DPSS) the t-SDH assumption.

Blockchain Setting. eWEB can be built atop of any node set with honest majority
supplemented by a PKI. We present eWEB in the blockchain setting simply
because it is a system which already exists in practice (and because multiple
applications which rely on extractable witness encryption and which we try to
achieve already rely on blockchains [LJKW18,CGJ+17,GG17]).

We note that miners that behave honestly w.r.t. the blockchain protocol
might need further incentivization to behave honestly w.r.t. eWEB; otherwise
they might try to disrupt the execution of the eWEB protocol or leak their secret
shares. Our DPSS scheme has numerous checks that identify parties disrupting
correct protocol execution (see Sect. 3.2), which could translate to economic dis-
incentivization. Traitor-tracing secret sharing [GSS21] as well as trusted hard-
ware that can verify correct share deletion could be used as mechanisms that
ensure that miners are punished for leaking secrets entrusted to them. We leave
exploring these directions for future work.

Storing and Retrieving Secrets on a Blockchain 269

5.2 Our eWEB Construction

We now describe our eWEB scheme. Its key building block is a DPSS scheme
used in a black-box way. The initial committee are miners who mined the most
recent n blocks in the underlying blockchains.

Given a secret message M and a release condition F , the depositor stores the
release condition F on the blockchain and secret-shares M among the miners
using the secret storage (setup) algorithm of the DPSS scheme.

During the protocol’s periodically executed hand-off phase, the secrets are
passed from the miners of the old committee to the miners of the new committee
using the DPSS hand-off algorithm. The new committee consists of the miners
who mined the most recent n blocks. This keeps the size of the committee con-
stant and allows all parties to determine the current committee by looking at
the blockchain state. It is possible that some committee members receive more
information about the secrets than others - roughly, if a party mined m out
of the last n blocks, this party receives m

n of all the shares. This reflects the
distribution of the computing power (for POW blockchains) or stake (for POS
blockchains) in the system [GG17].

To retrieve a stored secret, a requester U needs to prove that they are eligible
to do so. This poses a challenge. An insecure solution is to just send a valid
witness w (F (w) = true) to the miners. One obvious problem with this solution
is that a malicious miner can use the provided witness to construct a new secret
release request and retrieve the secret himself. To solve this problem, instead
of sending the witness in clear, the user proves that they know a valid witness.
Thus, while the committee members are able to check the validity of the request
and privately release the secret to U , the witness remains hidden. In our scheme
we rely on non-interactive zero knowledge proofs (NIZKs) [BFM88]. Such proofs
allow one party (the prover) to prove validity of some statement to another
party (the verifier), such that nothing except for the validity of the statement is
revealed. In eWEB we specifically use simulation extractable non-interactive zero
knowledge proofs of knowledge, which allow the prover convince the verifier that
they know a witness to some statement. Note that extractability can be added to
any NIZK [ARS20,KZM+15]. We use NIZKs for relation R = {(pk,w) | F (w) =
true and pk = pk}, where F (·) is the release condition specified by the depositor
and pk is the public key of user U and is used to identify the user eligible to
receive the secret. After the miners verify the validity of the request, they engage
in the DPSS’s secret reconstruction with requester U to release the secret to U .

We provide the full secret storage protocol in Fig. 3. The hand-off protocol is
given in Fig. 4. The secret release protocol is in Fig. 5. Note that the asymptotics
of eWEB match those of our underlying DPSS scheme. Below, we elaborate on
additional details of our construction.

Subtleties of Point-to-Point Channels. As mentioned in Sect. 5.1, while
FaB-DPSS assumes secure point-to-point channels, we do not make such an
assumption in eWEB. Instead, we rely on authenticated encryption and Proto-
cols 1 and 2, executed whenever a message needs to be securely sent from one

270 V. Goyal et al.

party to another. It is used for all messages exchanged in eWEB, including the
underlying DPSS protocol. Whenever a party receives an encrypted message, it
performs an authentication check to ensure that a ciphertext received from some
party was generated by that party. This prevents the following malleability issue
- a malicious user desiring to learn a secret with the identifier id could generate
a new secret storage request with a function F̃ for which he knows a witness,
copy the DPSS messages sent by the user who created the storage request id to
the miners and later on prove his knowledge of a witness for F̃ to release the
corresponding secret. Without the authentication check, our scheme would be
insecure, and our security proof (see [GKM+20]) would not go through.

Protocol 1. MessagePreparation

1. For a message m to be sent by party Ps to party Pr, Ps computes the cipher-
text c ← Encpkr

(m|pids), where pkr is the public key of Pr and pids is the
party identifier of Ps.

2. Ps prepends the storage identifier id of his request and sends the tuple (id, c)
to Pr.

Protocol 2. AuthenticatedDecryption

1. Upon receiving a tuple (id, c) from party Ps over an authenticated channel, the
receiving party Pr decrypts c using its secret key sk to obtain m ← Decsk(c).

2. Pr verifies that m is of the form m′|pids for some message m′, where pids is
the identifier of party Ps.

3. If the verification check fails, Pr stops processing c and outputs an error
message.

Storage Identifiers. Each storage request has a unique identifier id. This can
be, e.g., the address of this particular transaction in the blockchain. It is used
for practical reasons, and is not relevant for the security of our construction.

Handling Large Secrets. Since the secret itself might be very large, it is
also possible to first encrypt the secret using a symmetric encryption scheme,
store the ciphertext publicly off chain and then secret-share the symmetric key
instead. Also, we store request parameters (such as release conditions or proofs)
off-chain, saving only the hash of the message on-chain.

5.3 Security Proof Intuition

We provide a formal proof of security in [GKM+20], showing that our scheme
satisfies the security definition for eWEB given in [GKM+20]. In this proof,
we rely on the zero-knowledge and simulation-sound extractability properties
of the NIZK scheme to switch from providing honest proofs to using simulated

Storing and Retrieving Secrets on a Blockchain 271

Protocol 3. SecretStore
1. The depositor executes NIZK’s KeyGen protocol to obtain a CRS: σ ←

KeyGen(1k).
2. The depositor computes hash requestHash ← H(F |σ), and publishes

requestHash on the blockchain. Let id be the storage identifier of the pub-
lished request.

3. The depositor stores the tuple (id, F |σ) offchain.
4. The depositor and the current members of the miner committee engage in

the DPSS Setup Phase.
5. Each committee member retrieves requestHash from the blockchain, F |σ from

the offchain storage, and verifies that requestHash is indeed the hash of F |σ:

requestHash
?= H(F |σ)

If this is not the case, the committee member aborts.
6. Ci stores (id, dpss-datai) internally, where dpss-datai is the data obtained from

the DPSS Setup Phase.

Protocol 4. SecretsHandoff

1. For each secret storage identifier id, the miners of the old and the new com-
mittee engage in the DPSS Handoff Phase for the corresponding secret.
Let dpss-dataid

i denote the resulting DPSS data corresponding to the storage
identifier id of party Ci of the new committee after the handoff phase.

2. For each secret storage identifier id, each miner of the new committee stores
(id, dpss-dataid

i) internally.

proofs. Next, we rely on the collision-resistance of the hash function to show
that any modification of the data stored offchain will be detected. Then, we rely
on the multi-message IND-CCA security of the encryption scheme to change all
encrypted messages exchanged between honest parties to encryptions of zero.
Finally, we rely on the security of our DPSS scheme to switch from honestly
executing the DPSS protocol to using a DPSS simulator. At this point, we can
show that either the adversary was able to provide a valid secret release request
for the challenge’s secret-release function, in which case we are able to extract a
witness from the provided NIZK proof (relying on the NIZK’s proof-of-knowledge
property), or the adversary did not provide a valid secret release request and in
this case we are able to “forget” the secret altogether, since it is never used.

272 V. Goyal et al.

Protocol 5. SecretRelease

1. To request the release of a secret with identifier id, the requester retrieves
requestHash from the blockchain, F |σ from off-chain storage, and verifies that
requestHash is indeed the hash of F |σ:

requestHash
?= H(F |σ)

If this is not the case, the requester aborts.
2. The requester computes a NIZK proof of knowledge of the witness for F and

his identifier pid:
π ← P (σ, pid, w),

3. The requester computes hash of the storage identifier, his identifier and the
proof to obtain requestHash∗ ← H(id|pid|π) and publishes requestHash∗ on
blockchain. Let id∗ be the identifier of the published request.

4. The requester stores (id∗, id|pid|π) offchain.
5. Each committee member retrieves requestHash∗ from the blockchain request

with the identifier id∗, id|pid|π from the offchain storage, and verifies that:

requestHash∗ ?= H(id|pid|π)

If not, the committee member aborts.
6. Each committee member retrieves requestHash from the blockchain request

with the identifier id, F |σ from the offchain storage, and verifies that:

requestHash
?= H(F |σ)

If not, the committee member aborts.
7. Each committee member Ci retrieves its share of the secret, dpss-datai, from

its internal storage.
8. Each committee member Ci checks if π is a valid proof using the NIZK’s

verification algorithm V :

V (σ, pid, π) ?= true

If so, Ci and party pid engage in the DPSS Reconstruction using dpss-datai.

6 Application Examples

In this section, we present some motivational application examples and briefly
explain the key ideas behind implementing each of them using our construction.

Time-Lock Encryption. Time-lock encryption, related to timed-release
encryption introduced by Rivest et al. [RSW96], allows one to encrypt a message
such that it can only be decrypted after a certain deadline has passed. Time-lock
encryption must satisfy a number of properties [LJKW18], such as the encrypter

Storing and Retrieving Secrets on a Blockchain 273

needs not be available for decryption and trusted parties are not allowed. Time-
lock encryption can be easily implemented using the PublicWitness scheme
(see [GKM+20]). Using this scheme, the encrypter executes SecretStore with a
secret release condition F specifying the time t when the data can be released.
Once the time has passed, a user who wishes to see the message submits a
SecretRelease request with the witness “The deadline has passed”. Miners check
whether the time is indeed past t and if so, release their fragments of the secret.
With a slight modification to our scheme, it is also possible to enable automatic
decryption - upon receiving a secret storage request with an “automatic” tag,
miners would place the identifier in a list and periodically check whether the
release condition holds for any request in this list.

Note that we evade the issue that some time-lock schemes [LJKW18] have:
even if the adversary becomes computationally more powerful, it does not allow
him to receive the secret message earlier. Additionally, we avoid the computa-
tional waste of timed-release encryption schemes [RSW96], which often require
the decrypter to, say, compute a long series of repeated modular squarings.

Dead-Man’s Switch. A dead-man’s switch is designed to be activated when
the human operator becomes incapacitated. Software versions of the dead-man’s
switch typically trigger a process such as making public (or deleting) some secret
data. The triggering event, for centralized software versions, can be a user failing
to log in for three days, a GPS-enabled mobile phone that does not move for a
period of time, or a user failing to respond to an automated email. A dead-man’s
switch can be seen as insurance for journalists and whistleblowers.

A dead-man’s switch can use our PublicWitness protocol as follows: the
user who wishes to setup the switch generates a SecretStore request with
the desired release condition. Such condition can be failing to post a signed
message on the blockchain for several days or anything publicly verifiable. As in
the time-lock example, we can either use the standard scheme where a person
(e.g., a relative or a friend) proves to the miners that the release condition has
been satisfied or define an “automatic” request where the miners periodically
check the release condition.

Fairness. eWEB can be used to support fair exchange, which ensures that two
parties receive each other’s inputs atomically. Using eWEB, Alice specifies a
release condition that requires a signature from her and from Bob, while Bob’s
release condition requires only a signature from Bob. Once both secrets are
posted, Alice verifies Bob’s release condition and posts her signature. When Bob
posts his signature, the committee releases both their secrets atomically. Fair
exchange can be used to build fair MPC [Yao82,GHY87].

Multi-party computation (MPC) is considered fair if it ensures that either
all parties receive the output of the protocol, or none. In the standard model,
fair MPC was proven to be impossible to achieve for general functions when
a majority of the parties are dishonest [Cle86]. However, we can achieve it by
simply adapting the construction of Choudhuri et al. [CGJ+17] to use our eWEB
protocol, instead of traditional witness encryption. Conveniently, Choudhuri et
al.’s scheme relies on a public bulletin board, which is most readily realized in

274 V. Goyal et al.

practice via a blockchain-based ledger. Thus, by replacing witness encryption
with our blockchain-based scheme, we do not add any extra assumptions to
Choudhuri et al.’s construction.

One-Time Programs. A one-time program, introduced by Goldwasser et al.
[GKR08], is a program that runs only once and then “self-destructs”. In the
same work they presented a proof of concept construction that relies on tamper-
proof hardware. Considerable work on one-time programs followed [GIS+10,
BHR12,AIKW15,DDKZ13], but all such schemes relied on tamper-proof hard-
ware. Goyal and Goyal [GG17], however, present the first construction for one-
time programs that does not rely on tamper-proof hardware (but does rely on
extractable witness encryption). As with fair MPC and Choudhuri et al.’s con-
struction, by replacing the witness encryption scheme with our eWEB protocol
in the Goyal and Goyal’s one-time program construction with public inputs, we
are not adding any extra assumptions since they already rely on blockchains.
Since eWEB reveals whether a secret was retrieved, additional mechanisms are
needed when the inputs submitted to the one-time program must be kept private.

Non-repudiation/Proof of Receipt. A protocol allows repudiation if one of
the entities involved can deny participating in all or part of the communication.
With eWEB, it is easy to provide a proof that a person received certain data. In
this case, the user providing the data stores it using the SecretStore protocol.
To satisfy the release condition F , a user with public identifier pid publishes a
signed message “User pid requests the message”. The miners then securely release
a secret to the user pid as specified by SecretRelease. The publicly verifiable
signature on the message “User pid requests the message” then serves as a proof
that party pid indeed received the data.

6.1 Voting Protocol

As a more detailed example, we show how eWEB can support a “yes-no” voting
application. Specifically, using eWEB, each voter can independently and asyn-
chronously cast their vote by secret sharing a −1 for a “no” or a 1 for a “yes”
(note that (0, 1) voting can be supported as well). When voting closes, the min-
ers release an aggregate of the votes. The vote of any specific client must be
kept private (guaranteed by eWEB’s secrecy), and no client should be able to
manipulate the result more than with his own vote.

To prevent improper votes, the committee must verify the correctness of the
secrets shared by the clients; i.e., that each s ∈ {−1, 1}. Our key idea is to let
each client first commit to its secret and then prove its correctness to the miners.
However, this requires the client to prove that the committed value is the same
as the value the client shared to the committee. To avoid this expensive check,
committee members instead compute the necessary commitment using the secret
shares they receive from the client (guaranteeing consistency by construction).

In [GKM+20], we show that the committee members can prepare Pedersen
commitments [Ped92] for all of the clients with constant amortized cost. For a
client’s secret s, the resulting commitment is of the form c = gshz, where z is a

Storing and Retrieving Secrets on a Blockchain 275

random value (known to the client) and g, h are publicly known generators with
h = gβ for some unknown β.

With such a commitment, the user can prove s ∈ {−1, 1} by proving s2 = 1.
To prove that s2 = 1, the client (who knows s and z) computes w = g2szhz2

and
publishes w to all parties. To check that s2 = 1, anyone can check that:

e(c, c) = e(g, g) · e(h,w).

Correctness. To show correctness, note that

LHS = e(gs+βz, gs+βz) = e(g, g)s2+2βsz+β2z2

RHS = e(g, g) · e(gβ , g2sz+βz2
) = e(g, g)1+2βsz+β2z2

.

If the equation holds, then s2 = 1 and thus the client’s vote is valid.
To compute the voting result the committee computes the sharing of the

result relying on the linear homomorphism of KZG commitments and Shamir’s
secret sharing, and then follows the usual SecretRelease procedure.

7 Implementation

We implement both FaB-DPSS and our eWEB scheme in about 2000 lines of
Python code. To perform the underlying field and curve operations, we add
Python wrappers around the C++ code of the Ate-Pairings library [Shi10]. For
networking, we rely on gRPC [gRP], and for hashing, we use SHA256. For our
NIZK scheme, we currently use Schnorr’s proof of knowledge [Sch90]. We make it
non-interactive via the Fiat-Shamir heuristic [FS86], thus simultaneously making
it simulation extractable [FKMV12].

Polynomial arithmetic is done over the polynomial ring Fp[X] for a 254-bit
prime p. For the KZG commitment scheme [KZG10], we use an ate pairing over
Barreto-Naehrig curves of the form y2 = x3+b for constant b over Fp with a 254-
bit prime p. We implement polynomial interpolation for polynomials of degree
n in time O(n log2 n) using an algorithm presented by Aho et al. [AHU74].

8 Experimental Evaluation

We evaluate FaB-DPSS and eWEB and show that:

1. FaB-DPSS outperforms the state-of-the-art (Sect. 8.1).
2. eWEB’s performance is dominated by FaB-DPSS.
3. Our eWEB prototype’s performance matches the expected asymptotics with

small constants (Sect. 8.2), making it practical to integrate with existing
blockchains.

We discuss microbenchmarks in [GKM+20].

276 V. Goyal et al.

22 23 24 25 26

1

2

3

4

Total Nodes

T
im

e
(s
)

DPSS LAN
CHURP LAN
DPSS WAN
CHURP WAN

Fig. 2. Handoff Times for our DPSS vs. CHURP. Error bars represent 95% confidence
interval.

Setup. We run experiments using CloudLab [DRM+19], an NSF-sponsored
testbed that provides compute nodes along with a configurable networking sub-
strate. We run experiments in both a LAN setting (∼0.2 ms ping) to focus on the
CPU overhead of our cryptography and a WAN setting (∼40 ms ping) to demon-
strate the networking overhead. In the LAN setting we use up to 128 machines
each with 8-core 2.00 GHz CPUs and 4 GB RAM. In the WAN setting we use up to
128 machines split between Salt Lake City, Utah and Madison, Wisconsin. These
machines have 8–10 cores and 2.00–2.4 GHz CPUs with 2–4 GB RAM.

Since eWEB is compatible with a wide range of blockchains, we abstract
away the blockchain and simulate it via a single trusted node. In practice, writes
to the blockchain will incur additional blockchain-specific latency.

8.1 DPSS Comparison

As Sect. 1.2 discusses, the most efficient prior DPSS schemes are CHURP
[MZW+19] and that of Baron et al. [BDLO15]. Since CHURP reports
[MZW+19, §6.3] that their performance dominates that of Baron et al., we focus
on CHURP.

In our experiment, we measure the time required for each scheme to handoff
secrets to a new committee in the optimistic case where parties behave honestly.
Both schemes have a fallback path for when malfeasance is detected; it adds an
O(n) factor to both schemes.

Figure 2 summarizes the average time for 50 runs. As expected from our
asymptotic analysis, FaB-DPSS increasingly out-performs CHURP as the num-
ber of nodes increases, to the point where our scheme is ∼7× faster than CHURP
with 64 nodes. The absolute difference will increase as committee sizes grow.

Note that the additional networking overhead in the WAN setting (∼40 ms
latency) only significantly affects the end-to-end latency for committees with
less than 8 members for both FaB-DPSS and CHURP. For larger committees,
computation dominates networking costs even with realistic latencies.

Storing and Retrieving Secrets on a Blockchain 277

8.2 eWEB Performance

We measure the costs of eWEB’s top-level operations (SecretStore,
SecretsHandoff , and SecretRelease) for the minimal Schnorr identification appli-
cation over an increasing number of committee members. In particular, given a
public key, committee members release the secret if a client proves (in zero-
knowledge) that they possess the associated secret key.

22 23 24 25 26
2−9
2−8
2−7
2−6
2−5
2−4
2−3
2−2
2−1

Total Nodes

T
im

e
(s
)

Store
Handoff
Release

Fig. 3. Time required for high-level eWEB steps on a LAN. Non-DPSS operations are
too small to see.

Figure 3 summarizes the average time for 150 runs (note the log-log scale).
Each bar shows the split between eWEB operations (e.g., preparing the
NIZK proof) and the underlying DPSS operations. Note that the time for
SecretsHandoff includes the amortized cost for the preparation phase that pro-
duces coupled sharings of random value used during the refresh phase. Similiarly
the time for SecretStore includes the amortized cost for the preparation phase
that produces sharings for random values used to distribute the initial secret.

The DPSS costs dominate, to the point where the time for eWEB opera-
tions cannot be seen. The performance results match our expectation of linear
asymptotic growth, and concretely costs ∼7.3 milliseconds/node, ∼10.7 millisec-
onds/node, and ∼3.0 milliseconds/node for the store, refresh, and release secret
operations respectively. This suggests if CloudLab allowed us to scale beyond 64
nodes per committee, we would expect eWEB to store, refresh, release secrets
in 7.3 s, 10.7 s, and 3.0 s respectively, even with a 1000-node committee.

8.3 Applications

We implement several applications on top of our eWEB protocol in order to
demonstrate practicality and efficiency for common use cases. As a baseline we
implement the minimal Schorr identification application: Given a public key,
committee members release a secret when provided a (zero-knowledge) proof
that a client possess the associated private key. Because the Schnorr identification
protocol only requires a few additional group operations for both the client and
committee members, this gives us the best view of eWEB’s core operational cost.

278 V. Goyal et al.

We additionally implement time-lock encryption and dead-man’s switch as
described in Sect. 6. In both applications, a claim that the prescribed amount
of time has passed is treated as the “witness”. In the latter application, we
additionally implement an update functionality that allows an operator to extend
the secret-release timeout if they provide a valid signature.

We implement the fair exchange (Sect. 6), where given valid signatures from
two clients, the committee releases both their secrets atomically.

Table 1 outlines the cost of eWEB applications for various committee sizes.

Table 1. Cost of eWEB applications. End-to-end latency including secret store, a
single handoff, and secret release. (50 trials)

Committee Size
4 8 16 32 64

Schnorr Identification 0.15 s 0.22 s 0.37 s 0.67 s 1.22 s
Time Lock Encryption 0.15 s 0.22 s 0.36 s 0.66 s 1.25 s
Dead-man’s Switch 0.15 s 0.23 s 0.37 s 0.68 s 1.23 s
Fair Exchange 0.19 s 0.27 s 0.44 s 0.78 s 1.45 s

9 Conclusion

We have introduced a new and highly efficient batched DPSS protocol – FaB-
DPSS. We also proposed eWEB – a new cryptographic primitive which allows
the blockchain to store and release secrets. We designed a proof of concept eWEB
protocol based on FaB-DPSS and implemented it. Additionally, we implemented
and evaluated several applications atop eWEB.

Acknowledgements. We thank Emanuel Jöbstl for helping us with the experimental
evaluation of this work.

Bryan Parno, Abhiram Kothapalli and Elisaweta Masserova were supported by a
fellowship from the Alfred P. Sloan Foundation, a gift from Bosch, NSF Grant No.
1801369, and by the CONIX Research Center, one of six centers in JUMP, a Semicon-
ductor Research Corporation (SRC) program sponsored by DARPA. Vipul Goyal and
Yifan Song were supported by the NSF award 1916939, the DARPA SIEVE program,
a Cylab Presidential Fellowship, a gift from Ripple, a DoE NETL award, a JP Morgan
Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab
seed funding award.

References

[ABB+18] Androulaki, E., et al.: Hyperledger fabric: a distributed operating system
for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys
Conference (2018)

Storing and Retrieving Secrets on a Blockchain 279

[ABG+13] Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs
obfuscation and applications. IACR ePrint, 2013/689 (2013)

[AHU74] Aho, A., Hopcroft, J., Ulman, J.: The Design and Analysis of Computer
Algorithms (1974)

[AIKW15] Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions
with constant online rate, or how to compress garbled circuit keys. SIAM
J. Comput. 44(2), 433–466 (2015)

[ARS20] Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: obtaining
simulation extractable subversion and updatable SNARKs generically.
IACR ePrint, 2020:62 (2020)

[BDLO15] Baron, J., Defrawy, K.E., Lampkins, J., Ostrovsky, R.: Communication-
optimal proactive secret sharing for dynamic groups. In: Malkin, T.,
Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS,
vol. 9092, pp. 23–41. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-28166-7 2

[BEDLO14] Baron, J., El Defrawy, K., Lampkins, J., Ostrovsky, R.: How to with-
stand mobile virus attacks, revisited. In: Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing (2014)

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications. In: Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing (1988)

[BGG+20] Benhamouda, F., et al.: Can a public blockchain keep a secret? In:
Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1 10

[BGI+12] Barak, B., et al.: On the (im) possibility of obfuscating programs. J. ACM
(JACM) 59(2), 1–48 (2012)

[BH15] Bellare, M., Hoang, V.T.: Adaptive witness encryption and asymmetric
password-based cryptography. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 308–331. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46447-2 14

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 10

[CGJ+17] Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in
an unfair world: fair multiparty computation from public bulletin boards.
In: Proceedings of the 2017 ACM Conference on Computer and Commu-
nications Security (2017)

[CKLS02] Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous ver-
ifiable secret sharing and proactive cryptosystems. In: Proceedings of the
9th ACM Conference on Computer and Communications Security (2002)

[Cle86] Cleve, R.: Limits on the security of coin flips when half the processors
are faulty. In: Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing (1986)

[DDKZ13] Durnoga, K., Dziembowski, S., Kazana, T., Zaja̧c, M.: One-time programs
with limited memory. In: Lin, D., Xu, S., Yung, M. (eds.) Inscrypt 2013.
LNCS, vol. 8567, pp. 377–394. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-12087-4 24

[DJ97] Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access struc-
tures and its applications. Technical report, Citeseer (1997)

https://doi.org/10.1007/978-3-319-28166-7_2
https://doi.org/10.1007/978-3-319-28166-7_2
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-662-46447-2_14
https://doi.org/10.1007/978-3-662-46447-2_14
https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-319-12087-4_24
https://doi.org/10.1007/978-3-319-12087-4_24

280 V. Goyal et al.

[DN07] Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty
computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74143-5 32

[DRM+19] Duplyakin, D., et al.: The design and operation of CloudLab. In: Proceed-
ings of the USENIX Annual Technical Conference (ATC), July 2019

[EOPY18] Eldefrawy, K., Ostrovsky, R., Park, S., Yung, M.: Proactive secure multi-
party computation with a dishonest majority. In: Catalano, D., De Prisco,
R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 200–215. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 11

[ES14] Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable.
In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp.
436–454. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45472-5 28

[FKMV12] Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-
malleability of the Fiat-Shamir transform. In: Galbraith, S., Nandi, M.
(eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-34931-7 5

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[FY92] Franklin, M., Yung, M.: Communication complexity of secure computa-
tion. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on
Theory of Computing (1992)

[GG17] Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results
using blockchains. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 529–561. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-70500-2 18

[GGHW14] Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of
differing-inputs obfuscation and extractable witness encryption with aux-
iliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 518–535. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 29

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing (2013)

[GHM+17] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand:
scaling byzantine agreements for cryptocurrencies. In: Proceedings of the
26th Symposium on Operating Systems Principles (2017)

[GHM+20] Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-
index PIR and applications. Cryptology ePrint Archive, Report 2020/1248
(2020)

[GHY87] Galil, Z., Haber, S., Yung, M.: Cryptographic computation: secure fault-
tolerant protocols and the public-key model (extended abstract). In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 135–155.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 10

[GIS+10] Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryp-
tography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2 19

https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-319-98113-0_11
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1007/3-540-48184-2_10
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19

Storing and Retrieving Secrets on a Blockchain 281

[GKM+20] Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing
and retrieving secrets on a blockchain. Cryptology ePrint Archive, Report
2020/504 (2020). https://eprint.iacr.org/2020/504

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: How to run turing machines on encrypted data. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40084-1 30

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 3

[GMPS21] Goyal, V., Masserova, E., Parno, B., Song, Y.: Blockchains enable non-
interactive MPC. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol.
13043, pp. 162–193. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-90453-1 6

[gRP] gRPC: A high performance, open-source universal RPC framework.
https://grpc.io/

[GSS21] Goyal, V., Song, Y., Srinivasan, A.: Traceable secret sharing and applica-
tions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827,
pp. 718–747. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84252-9 24

[HJKY95] Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret shar-
ing or: how to cope with perpetual leakage. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-44750-4 27

[KKAS+18] Kokoris-Kogias, E., et al.: Verifiable management of private data under
byzantine failures. IACR ePrint, 2018/209 (2018)

[KZG10] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to
polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17373-8 11

[KZM+15] Kosba, A., et al.: CØCØ: a framework for building composable zero-
knowledge proofs. IACR ePrint, 2015/1093 (2015)

[LJKW18] Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock
encryption. Des. Codes Crypt. 86(11), 2549–2586 (2018)

[MZW+19] Maram, S.K.D., et al.: Churp: dynamic-committee proactive secret shar-
ing. In: Proceedings of the 2019 ACM Conference on Computer and Com-
munications Security (2019)

[OY91] Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Pro-
ceedings of the ACM Symposium on Principles of Distributed Computing
(1991)

[Ped92] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable
secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
46766-1 9

[RSW96] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-
release crypto (1996)

[Sch90] Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 22

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

https://eprint.iacr.org/2020/504
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-030-90453-1_6
https://doi.org/10.1007/978-3-030-90453-1_6
https://grpc.io/
https://doi.org/10.1007/978-3-030-84252-9_24
https://doi.org/10.1007/978-3-030-84252-9_24
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/0-387-34805-0_22

282 V. Goyal et al.

[Shi10] Shigeo, M.: High-speed software implementation of the optimal ate pair-
ing over Barreto-Naehrig curves. In: International Conference on Pairing-
Based Cryptography (2010). https://github.com/herumi/ate-pairing

[SLL08] Schultz, D.A., Liskov, B., Liskov, M.: Mobile proactive secret sharing.
In: Proceedings of the Twenty-Seventh ACM Symposium on Principles of
Distributed Computing (2008)

[WWW02] Wong, T.M., Wang, C., Wing, J.M.: Verifiable secret redistribution for
archive systems. In: IEEE Security in Storage Workshop (2002)

[Yao82] Yao, A.C.: Protocols for secure computations. In: Foundations of Com-
puter Science (1982)

[ZSVR05] Zhou, L., Schneider, F.B., Van Renesse, R.: APSS: proactive secret sharing
in asynchronous systems. ACM Trans. Inf. Syst. Secur. 8(3), 259–286
(2005)

https://github.com/herumi/ate-pairing

CNF-FSS and Its Applications

Paul Bunn1(B), Eyal Kushilevitz2, and Rafail Ostrovsky3

1 Stealth Software Technologies, Inc., Los Angeles, USA
paul@stealthsoftwareinc.com

2 Computer Science Department, Technion, Haifa, Israel
eyalk@cs.technion.ac.il

3 Department of Computer Science and Department of Mathematics,
University of California, Los Angeles, USA

rafail@cs.ucla.edu

Abstract. Function Secret Sharing (FSS), introduced by Boyle, Gilboa
and Ishai [BGI15], extends the classical notion of secret-sharing a value
to secret sharing a function. Namely, for a secret function f (from a class
F), FSS provides a sharing of f whereby succinct shares (“keys”) are dis-
tributed to a set of parties, so that later the parties can non-interactively
compute an additive sharing of f(x), for any input x in the domain of f .
Previous work on FSS concentrated mostly on the two-party case, where
highly efficient schemes are obtained for some simple, yet extremely use-
ful, classes F (in particular, FSS for the class of point functions, a task
referred to as DPF – Distributed Point Functions [GI14,BGI15]).

In this paper, we concentrate on the multi-party case, with p ≥ 3
parties and t-security (1 ≤ t < p). First, we introduce the notion of
CNF-DPF (or, more generally, CNF-FSS), where the scheme uses the
CNF version of secret sharing (rather than additive sharing) to share
each value f(x). We then demonstrate the utility of CNF-DPF by pro-
viding several applications. Our main result shows how CNF-DPF can

P. Bunn—This work was supported by DARPA and NIWC Pacific under contract
N66001-15-C-4065. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes not withstanding any copyright notation thereon.
The views, opinions, and/or findings expressed are those of the author(s) and should
not be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.
E. Kushilevitz—Supported by ISF grant 2774/20, BSF grant 2018393, and NSF-BSF
grant 2015782.
R. Ostrovsky—Supported in part by DARPA under Cooperative Agreement HR0011-
20-2-0025, by DARPA and NIWC Pacific under contract N66001-15-C-4065, NSF
grant CNS-2001096, US-Israel BSF grant 2015782, Google Faculty Award, JP Mor-
gan Faculty Award, IBM Faculty Research Award, Xerox Faculty Research Award,
OKAWA Foundation Research Award, B. John Garrick Foundation Award, Teradata
Research Award, Lockheed-Martin Research Award and Sunday Group. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for governmental purposes
not withstanding any copyright annotation therein. The views, opinions, and/or find-
ings expressed are those of the author(s) and should not be interpreted as representing
the official views or policies of the Department of Defense or the U.S. Government.

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 283–314, 2022.
https://doi.org/10.1007/978-3-030-97121-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_11

284 P. Bunn et al.

be used to achieve substantial asymptotic improvement in communica-
tion complexity when using it as a building block for constructing stan-
dard (t, p)-DPF protocols that tolerate t > 1 (semi-honest) corruptions
(of the p parties). For example, we build a 2-out-of-5 secure (standard)
DPF scheme of communication complexity O(N1/4), where N is the
domain size of f (compared with the current best-known of O(N1/2) for
(2, 5)-DPF). More generally, with p > dt parties, we give a (t, p)-DPF
whose communication grows as O(N1/2d) (rather than O(

√
N) that fol-

lows from the (p − 1, p)-DPF scheme of [BGI15]). (We ignore here terms
that depend on the number of parties, p, the security parameter, etc. See
precise statements in the main body of the paper below)

We also present a 1-out-of-3 secure CNF-DPF scheme, in which each
party holds two of the three keys, with poly-logarithmic communication
complexity. These results have immediate implications to scenarios where
(multi-server) DPF was shown to be applicable. For example, we show
how to use such a scheme to obtain asymptotic improvement (O(log2 N)
versus O(

√
N)) in communication complexity over the 3-party protocol

of [BKKO20].

Keywords: Secret Sharing · Function Secret Sharing (FSS) ·
Replicated Secret Sharing (CNF)

1 Introduction

Function Secret Sharing (FSS) [BGI15] provides a sharing of a secret function f ,
from a class of functions F , between p parties, such that each party’s share of f
(also termed “key”) is succinct (in terms of the size of the truth-table represent-
ing f) and such that the parties can locally compute (additive) shares of f(x),
for any input x, without further interaction. While efficient FSS schemes are
currently known only for limited classes of functions (and impossibility results
demonstrate other classes of functions for which no efficient FSS scheme can
exist), FSS has found enormous utility in distributed and multi-party proto-
cols, due to its low communication overhead. Indeed, the FSS paradigm has
proven to be incredibly powerful even for the most basic of function classes:
Point Functions, which output a non-zero value at only a single point in their
domain. FSS for the class of point functions is known as DPF (Distributed
Point Functions). Since DPF and FSS were introduced [GI14,BGI15], they have
found applications in many areas of cryptography (see Sect. 1.3 below for more
details). For the case of p = 2 parties, highly efficient (both theoretically and
practically) DPF schemes, with poly-logarithmic communication (in N) are
known [GI14,BGI15,BGI16a], based on the minimal assumption that one-way
functions (OWF) exist. This clearly implies (1, p)-DPF schemes for any p > 2.
Obtaining similar results for the multiparty case, with t > 1, is an open problem
and, to the best of our knowledge, the only known result in the FSS setting,
based on OWF alone, is a (p−1, p)-DPF scheme of communication proportional
to

√
N from [BGI15] (and a protocol with similar communication for the special

case of (2, 3)-DPF in [BKKO20]).

CNF-FSS and Its Applications 285

CNF secret-sharing [ISN87] (also known as “replication-based secret-sharing”
in [GI99]) has found great utility in a variety of applications, including: Verifiable
Secret Sharing and MPC protocols [Mau02], PIR [BIK05] and others.1 A (t, p)-
CNF secret-sharing works by first additively breaking the secret value s to � =(
p
t

)
random shares {sT }

T∈
(
[p]
t

), subject to their sum satisfying
∑

T∈
(
[p]
t

) sT = s,

and then distributing each share sT to all parties not in T . It satisfies t-secrecy
since, for any set T of t parties, all parties in T miss the share sT .2 In the
present work, we adapt the same approach in the context of FSS and introduce
the notion of CNF-FSS (and the analogous notion of CNF-DPF, when the class
of functions being shared are point functions) whereby, given an input x, the
parties obtain a CNF-secret-sharing of f(x).3 We then explore the power of this
new notion by constructing CNF-DPF schemes and by getting applications of
these constructions. Specifically, in Sect. 1.1 we describe our main result – for
the case of p parties and 1 < t < p, we show how to use CNF-DPF schemes
to obtain improved standard DPF schemes; then, in Sect. 1.2, we deal with the
special case p = 3, t = 1, where CNF-sharing is useful in some applications.

1.1 Improved Multiparty DPF with t > 1 from CNF-DPF

As mentioned, [GI14] and subsequent works demonstrated highly efficient 1-
out-of-2 DPF schemes (with logarithmic communication in the size of the DPF
domain), but much less is known for the p > 2 and secrecy threshold t > 1 case.
A trivial solution for (p−1)-out-of-p DPF is to additively share the truth-table of
the point function fx,v : [N] → F as a string. However, this approach has commu-
nication complexity O(N ·m), where N is the size of the domain of fx,v and m is
its output length (note that this trivial solution is, in fact, information-theoretic).
A more efficient (p− 1)-out-of-p DPF solution is given by [BGI15] and has com-
munication of essentially O(

√
N) (more precisely O(

√
N · 2p ·(λ+m)), where λ is

the security parameter).4 For the special case p = 3, a scheme with O(
√

N) com-
munication was also pointed out in [BKKO20]. When making stronger assump-
tions than the existence of OWF, additional results are known: for example, using
PK assumptions and operations, specifically seed-homomorphic PRG, [CBM15]
also achieve a scheme with communication that depends on

√
N , but has better

dependency on p and, under the LWE assumption, a (p − 1, p)-FSS scheme for
all functions can be constructed [DHRW16].
1 In fact, CNF secret sharing is a special case of formula-based secret sharing [BL88];

similar generalizations are in principle possible also in the context of FSS.
2 CNF sharing immediately implies additive sharing, by arbitrarily assigning each

share sT to one of the parties who hold it (i.e., a party not in T), and each party’s
share being the sum of all (at least one) shares assigned to it.

3 In our constructions, this is often achieved by having each party receive multiple
overlapping keys, in CNF form, that encode the DPF function; however, in general,
this is not a requirement. For formal definitions, see Sect. 2 (including Remark 1).

4 In [BGI15], the range may be a group, as they only need the additive structure. How-
ever, we require a Ring structure for the range, since we will also use multiplication.
For concreteness, we can think of the field GF [2m], represented by m-bit strings.

286 P. Bunn et al.

In this paper, we show how to get better communication complexity, when
one can settle for smaller values of t. The high-level idea is as follows. First, we
construct, as an intermediate tool, a (t, p)-CNF-DPF scheme. The key-generation
algorithm Gen of our (t, p)-CNF-DPF scheme, produces � =

(
p
t

)
keys {KT }

T∈
(
[p]
t

)

and gives each key KT to each party not in T (i.e., to each party in [p]\T). This
is done by invoking the key-generation algorithm of [BGI15] for the (� − 1, �)-
DPF case. Algorithm Eval of [BGI15] can be applied to any input y and any key
KT , and together these � values give an additive sharing of fx,v(y) with � values.

Our next idea is to view the domain [N] of the point function as a d-
dimensional cube, where each dimension is of size M = N1/d. This allows to
express the point function fx,v as the product of d point functions f1, . . . , fd, on
much smaller domain of size M and apply CNF-DPF sharing to each fi. Finally,
the property of CNF sharing is that with the right relations between p, t and d
(specifically, when p > td) non-interactive multiplication is possible, since the
replication guarantees that each term in the product is known to some party.

These results are presented in detail in Sect. 3. As an example, we get a (stan-
dard) (2, 5)-DPF scheme with communication O(N1/4) (instead of O(N1/2))
and, more generally, with p > dt parties, we get a (t, p)-DPF with communica-
tion O(N1/2d ·

√
2pt · pt · d · (λ + m)). In fact, one can also obtain a scheme with

information-theoretic security and communication complexity O(N1/d ·pt ·d ·m)
by just replacing the CNF-DPF above (based on [BGI15]) with a naive CNF
sharing of the truth table of each fi.

Our results may be useful in several cases where DPF was already shown to be
relevant. For instance, consider Binary CPIR (i.e., Computational Private Infor-
mation Retrieval schemes where servers’ answers are a single bit) or, more gen-
erally, CPIR with constant answer length. Binary PIR schemes are useful in the
context of retrieving long records, and have connections with locally decodable
codes (LDC). The fact that DPF schemes imply Binary CPIR schemes with the
same complexity was shown in [GI14,BGI15] and this connection holds also for
the t-private version of DPF and CPIR schemes. Hence, our (t, p)-DPF schemes
with communication ≈ O(N1/2d) (for p = dt + 1 parties) imply (t, p)-binary-
CPIR with similar complexity. Before, to get (t, p)-binary-CPIR, one could use a
number of servers p that is exponential in t, to get much better communication
complexity. Specifically, one could get information-theoretic Binary PIR with
communication No(1) using p = 3t servers (by combining [BIW07] with [Efr09]),
or Binary CPIR of poly-logarithmic communication using p = 2t servers (by
combining [BIW07] with a 2-server DPF, as pointed out in [GI14]). Or, with a
moderate number of servers p, one could use a binary (information theoretic)
PIR with communication ≈ O(N1/d) (again, for p = dt+1) [DIO98,BIK05]. We
essentially get a quadratic improvement in this regime of parameters. Similar
improvements can be applied also to the PIR writing model [OS97].

CNF-FSS and Its Applications 287

1.2 1-out-of-3 CNF-DPF

Motivated by applications, we give a special treatment for the 3-party case.
A (1, 3) standard DPF scheme of poly-logarithmic communication complexity
is easy to achieve just by using solutions for the (1, 2)-case and not utilizing
the third party at all. However, in some settings, (2,3)-DPF may be required,
for which only schemes of communication O(

√
N) are known. For example,

in [BKKO20] a so-called Distributed ORAM (DORAM) scheme is presented that
relies on (2, 3)-DPF. We observe that [BKKO20] does not need the full strength
of (2,3)-security and, instead, can rely on a (1, 3)-DPF, provided an appropri-
ate “CNF” replication of keys between the 3 parties (i.e., there are still 3 keys,
as in the (2, 3) case, but each of them is known to 2 of the parties, which can
clearly only give 1-security). Note that this does not seem trivial to achieve:
if we start from a (2,3)-DPF scheme then we can easily get a (1, 3)-CNF-DPF
but with much higher communication than what we aim for, and if we start
from a (1, 3)-DPF and give each key to 2 parties, then security is lost. Neverthe-
less, we show (in Sect. 4) how to construct a (1, 3)-CNF-DPF scheme, while still
maintaining poly-logarithmic communication. Hence, improving the asymptotic
communication of the scheme from [BKKO20].5

While we focus on the case of 1-out-of-3 CNF-DPF, as our construction is
similar in spirit to the 2-party DPF scheme of [BGI15], the same modifications
that are proposed in [BGI15] to extend DPF to FSS for related function classes
(e.g. “sparse” vectors or matrices, step functions, interval functions, etc.) are
applicable for our 1-out-of-3 scheme as well; details and additional discussion
will be provided in the full version.

Additionally, (1, 3)-CNF-DPF schemes have features that may be useful in
other applications. The most basic one is the ability to perform multiplication;
that is, given two point functions f and g that are shared using a (1, 3)-CNF-DPF
scheme, and any evaluation points x and y, the parties can (non-interactively)
generate additive shares of the product6 f(x) · g(y). The reason is that f(x) is
the sum of 3 values, each of which is known to 2 parties, and similarly g(y) is
the sum of 3 values, each known to 2 parties, so their product contains 9 terms
each known to (at least) one party. (A similar observation is what we use for the
general (t, p)-case (see below), and what is used in other contexts where CNF
secret sharing is used; see, e.g., [BIK05].) Similarly, we can multiply a point
function by a (secret-shared) value a to get additive shares of a · f(x), as well as
other generalizations. We note that the ability to perform non-interactive mul-
tiplication(s), in CNF-FSS schemes, can be used to extend the known function

5 In order to use our (1, 3)-CNF-DPF scheme as a subprotocol of [BKKO20], it must
be converted into a distributed (dealerless) protocol. While generic techniques exist
to perform this conversion, using these would decrease overall performance of the
resulting protocol. In the full version we show how our (1, 3)-CNF-DPF can be con-
verted into a distributed protocol in a black-box manner, while maintaining polylog
communication (though this conversion does incur a hit in round-complexity over
the protocol of [BKKO20]: log rounds versus constant-round).

6 As mentioned, for the product to be defined we need the range of the functions to
be a ring rather than just a group.

288 P. Bunn et al.

classes for which standard FSS is available. For example, FSS for functions that
involve the product of two sparse matrices, or of a sparse vector times a (secret-
shared) pseudo-random matrix, can be readily built using CNF-FSS. (See below
for comparison with a related notion from [BGI16b].)

1.3 Related Work

Distributed point functions (DPF) were introduced by Gilboa and Ishai [GI14]
who gave efficient constructions of (2-party) DPF schemes, based on the mini-
mal assumption of OWF, together with a spectrum of useful applications, such
as improved schemes for 2-server (computational) PIR, “PIR writing” (PIW)
and related problems. Boyle, Gilboa and Ishai [BGI15], generalized this notion
to other classes of functions, obtaining the notion of Function Secret Sharing
(FSS). They present various FSS schemes, for DPF and other classes and, of
particular relevance to the present work, they presented the first non-trivial
solution for multi-party DPF. Further extension and optimizations of FSS are
given in [BGI16b]. In particular, this paper presents the notion of FSS product
operator, that allows to combine FSS schemes for classes F1,F2 to an FSS for
the class of their products. For a more detailed discussion and a comparison of
this operator with our construction, see Sect. 3.2.

The related notion of Homomorphic Secret Sharing (HSS), which is “dual”
to FSS (in the sense that it switches roles between functions and inputs), was
introduced in [BGI16a] and further studied in [BGI+18b]. It allows for sharing
a value x between p parties, so that given a function f ∈ F , each party may
(non-interactively) apply Eval to its share of x (and a representation of f) so as
to get a sharing of f(x). In particular, [BGI16a] gives a 2-party FSS for a wide
class of functions such as branching programs (though, under a stronger assump-
tion, DDH, and with 1/poly error probability). This result yields 2-party secure
computation protocols with communication sub-linear in the circuit size. Other
applications of FSS include silent OT extension and pseudorandom correlation
generation for simple correlations [BCG+19], and many more.

Another application that makes use of DPF for p > 2 parties is Dis-
tributed ORAM (DORAM), where read/write operations into memory are done
obliviously (see, e.g., [LO13,ZWR+16,DS17,GKW18,JW18,KM19,BKKO20,
HV20]). Concretely, [BKKO20] use a (2, 3)-DPF scheme in order to construct
efficient 3-party DORAM. They use overlaps between the keys of pairs of servers,
to invoke PIR/PIW schemes that rely on replication of information. This serves
as one motivation for the study of CNF-sharing in the present paper. Before the
work of [BKKO20], Doerner and Shelat [DS17] used 2-party DPF to construct
what can be viewed as a DORAM protocol in the two-party setting. In com-
paring [DS17] and [BKKO20] as multiparty DORAM protocols: the former has
superior communication complexity (polylog N versus

√
N) but inferior round-

complexity (logarithmic in N versus constant-round). Applying the results in the
current paper to [BKKO20], the communication complexity improves from

√
N

to polylog (albeit with a cost of logarithmic round-complexity), thus matching
the asymptotic communication complexity of [DS17]7.
7 This is demonstrated in the full version.

CNF-FSS and Its Applications 289

In [CBM15], the authors describe a multi-server system called Riposte for
anonymous broadcast messaging, with various features. They use the general
notion of (t, p)-DPF, hence giving motivation for improving the communication
complexity of such schemes. While concentrating on a 3-server system (using
2-party DPF), they also present a (p − 1, p)-DPF scheme of O(

√
N) communi-

cation. (It differs from the scheme of [BGI15] by using also PK assumptions and
operations, specifically seed-homomorphic PRGs, and also their scheme does not
have the 2p term for communication.) A follow-up paper describes the Express
system [ECZB19], in a 2-server setting and using 2-party DPF. They also men-
tion the need for improved multi-party DPFs. Finally, Blinder [APY20] is a
scalable system for so-called Anonymous Committed Broadcast. As with the pre-
vious systems, Blinder also uses DPF as a building block but concentrates on
the multi-server case.

As mentioned, the CNF version of secret sharing [ISN87] is useful in
many applications, including VSS and MPC (e.g. [Mau02,IKKP15,AFL+16,
FLNW17]), PIR [BIK05], etc. In the context of share conversion, it was shown
in [CDI05] that shares from the CNF scheme can be locally converted to shares
of the same secret from any other linear scheme realizing the same access struc-
ture (e.g., shares from the (t, p)-CNF scheme can be converted to shares for the
t-out-of-p Shamir scheme).

1.4 Organization

We provide the requisite definitions and notation in Sect. 2. We then describe
our improved t-out-of-p secure DPF schemes in Sect. 3, and our 1-out-of-3 secure
CNF-DPF construction, with poly-logarithmic communication complexity, in
Sect. 4.

2 Model and Definitions

Notation: We use [a..b] to denote the integers in the (closed) interval from a to
b, and [b] to denote [1..b]. We further denote by

(
[b]
t

)
the collection of all subsets

of [b] of size t.

Definition 1 FSS [BGI15,BGI16a]. A t-out-of-p Function Secret Sharing
scheme ((t, p)-FSS, for short) for a class of functions F = {f : D → G},
with input domain D and output domain an abelian group (G,+), is a pair of
PPT algorithms FSS = (Gen,Eval) with the following syntax:

– Gen(1λ, f): On input the security parameter λ and a description of a function
f ∈ F , outputs p keys: {κ1, . . . , κp};

– Eval(i, κi, x): On input an index i ∈ [p], key κi, and input string x ∈ D,
outputs a value (“share”) yi ∈ G;

satisfying the following correctness and secrecy requirements:

290 P. Bunn et al.

Correctness. For all f ∈ F , x ∈ D:

Pr

[

{κ1, . . . , κp} ←R Gen(1λ, f) :
p∑

i=1

Eval(i, κi, x) = f(x)

]

= 1.

Security. For any subset of indices I ⊂ [p] with size |I| ≤ t, there exists a PPT
simulator Sim such that for any polynomial-size function sequence fλ ∈ F , the
following distributions are computationally indistinguishable:
{

{κ1, . . . , κp} ←R Gen(1λ, f) : {κi}i∈I
}

≈C

{
{κ1, . . . , κ|I|} ←R Sim(1λ, D,G)

}
.

We now extend the original FSS definition to Conjunctive Normal Form
(CNF) FSS. This is similar to Definition 1, except that the output of Eval, over
all p parties, should be a legal (t, p)-CNF secret-sharing of f(x) (rather than
additive secret sharing). That is, let St denote the set of subsets of [p] of size
t (there are

(
p
t

)
such subsets) and, for any i ∈ [p], let T Pi

t ⊂ St denote the
subsets of St that do not contain index i (there are

(
p−1

t

)
such subsets). Then

the algorithm Eval of a (t, p)-CNF-FSS scheme produces, for each party i ∈ [p],
all the shares of f(x) corresponding to T Pi

t .

Definition 2. A t-out-of-p CNF-FSS (also denoted (t, p)-CNF-FSS) scheme for
a class of functions F = {f : D → G} with input domain D and output domain
an abelian group (G,+) is a pair of PPT algorithms CNF-FSS = (Gen,Eval)
with the following syntax:

– Gen(1λ, f): On input the security parameter λ and a description of a function
f ∈ F , outputs p keys: {κ1, . . . , κp};

– Eval(i, κi, x): On input an index i ∈ [p], key κi, and input string x ∈ D,
outputs a sequence of a =

(
p−1

t

)
values Yi := {yT }

T∈T Pi
t

in G
a;

satisfying the following consistency, correctness and secrecy requirements:

Consistency. For every function f ∈ F , input x ∈ D, pair of distinct parties
i, i′ ∈ [p], and set T ∈ St that does not contain i or i′ (i.e. T ∈ T Pi

t ∩T Pi′
t), when

producing keys {κ1, . . . , κp} ←R Gen(1λ, f) and getting yi,T ∈ Yi for this T ∈
T Pi

t from Eval(i, κi, x) (among other outputs) and, similarly, yi′,T ∈ Yi′ for this
same T ∈ T Pi′

t from Eval(i′, κi′ , x) then, with probability 1, we have yi,T = yi′,T .
Denote by yT this common share value held by all parties i /∈ T . Correctness.
For all f ∈ F, x ∈ D: let {κ1, . . . , κp} ←R Gen(1λ, f) and let yT , for all T ∈ St,
as defined above. Then, with probability 1, we have:

∑
T∈St

yT = f(x).

Security. For any subset of indices I ⊂ [p] with size |I| ≤ t, there exists a PPT
simulator Sim such that for any polynomial-size function sequence fλ ∈ F , the
following distributions are computationally indistinguishable:
{

{κ1, . . . , κp} ←R Gen(1λ, f) : {κi}i∈I
}

≈C

{
{κ1, . . . , κ|I|} ←R Sim(1λ, D,G)

}
.

CNF-FSS and Its Applications 291

Remark 1. The above definition requires only that the outputs of Eval, i.e. Yi =
{yT }

T∈T Pi
t

, over all parties i, is a legal CNF secret sharing (of f(x)). A stricter
requirement that some of our constructions satisfy is that: (1) the keys them-
selves are in a CNF form, i.e. that each party i receives keys Ki := {κT }

T∈T Pi
t

;
and (2) each share yT is computed only from κT . Satisfying (1) and (2) immedi-
ately implies that the shares are consistent and are in CNF form. Our CNF-DPF
schemes in Sect. 3 have this property; while the (1,3)-CNF-DPF scheme of Sect. 4
satisfies (1) but not (2). That is, for the (1,3)-CNF-DPF scheme of Sect. 4, the
keys are in CNF format, but Eval needs to operate on both keys of each party in
order to produce its two shares.

Additionally, we will require the definitions of several variants of standard
DPF for our (1,3)-CNF-DPF scheme of Sect. 4, which for clarity are defined as
they are needed in Sect. 4.2.

3 t-out-of-p DPF from CNF-DPF

In this section, we discuss standard (i.e. non-CNF) DPF for p > 2 parties,
and security threshold t > 1. As mentioned in Sect. 1.1, in contrast to the case
t = 1, where very efficient poly-logarithmic solutions are known, even with p = 2
parties, the communication complexity in the general case of (t, p)-DPF (and
more generally (t, p)-FSS) is much less understood.

We begin with a fixed choice of parameters t = 2 and p = 5 and demonstrate
in Sect. 3.1 below how CNF-DPF can be used to construct an improved (stan-
dard) (2, 5)-DPF scheme. We then generalize this approach in Sect. 3.2 to show
how to construct (t, p)-DPF from CNF-DPF for a variety of parameters t and p.

3.1 Example: 2-out-of-5 DPF

To demonstrate our ideas, we start with a concrete example of t = 2 and p = 5,
and present a (2, 5)-DPF of communication O(N1/4). As a first step towards this
goal, we construct a (2,5)-CNF-DPF scheme B with communication O(

√
N). For

this, we use the (standard) (q−1, q)-DPF scheme of [BGI15], with q =
(
5
2

)
= 10.

This gives 10 keys K1, . . . , K10 so that any set of 9 keys gives no information
about the point function f , and those keys allow for producing additive shares
for the value f(y), for any input y. Next, associate with each key Ki (i ∈ [10])
a distinct subset T ∈

(
[5]
2

)
and give Ki to the 3 parties outside the set T (or,

equivalently, do not give Ki only to the 2 parties in T). In other words, the key
κj of party j in our scheme B consists of all the keys Ki that correspond to
sets T with j /∈ T (there are 6 =

(
4
2

)
such sets). Our B.Eval algorithm, on input

κj , simply works by applying the Eval algorithm of [BGI15] to each Ki that κj

contains, separately. This gives a (2, 5)-CNF scheme B as needed: 10 shares/keys
K1, . . . , K10, where each pair of parties misses exactly one of them. Therefore,
the view of this pair of parties in B is identical to the view of a corresponding
set of 9 parties in the [BGI15] scheme, which is 9-secure (for q = 10).

292 P. Bunn et al.

Next, assume for convenience, that N = M2. In this case, we can view
points in the domain [N] as pairs of elements in [M] (e.g., we can view the point
x ∈ [N] as (x1, x2) ∈ [M] × [M]). Similarly, we can view the truth table of the
function fx,v : [N] → F as an M × M matrix, with v in position (x1, x2) and 0’s
elsewhere. With this view, we can write the point function fx,v as the product
of two point functions (on a smaller domain) fx1,v, fx2,1 : [M] → F. That is, for
every y = (y1, y2), we have fx,v(y) = fx1,v(y1) · fx2,1(y2) (because if y = x then
y1 = x1 and y2 = x2 so the product will be v · 1 = v and, otherwise if y
= x,
the product will be 0 as either the row satisfies y1
= x1 or the column satisfies
y2
= x2). The Gen algorithm will apply the B.Gen algorithm twice to generate
10 keys {K1, . . . , K10} for fx1,v, and 10 keys {K ′

1, . . . , K
′
10} for fx2,1; and then,

distribute each set of keys, {Ki} and {K ′
i}, to the 5 parties according to the CNF

associations, as described above. The Eval algorithm, on input y = (y1, y2), is
applied with those keys to get additive sharing of fx1,v(y1) (into 10 shares that
we denote u1, . . . , u10); and similarly to get additive sharing of fx2,1(y2) (into 10
shares that we denote v1, . . . , v10). That is, we have:

fx,v(y) = fx1,v(y1) · fx2,1(y2) =
10∑

i=1

ui ·
10∑

j=1

vj =
∑

i,j∈[10]

ui · vj .

Finally, we observe that because B is a CNF-DPF scheme, the CNF sharing
guarantees that for each pair (i, j), there is (at least one) party that knows both
values ui, vj (since ui is not known only to 2 parties and vj is not known only to
2 parties but we have p = 5 parties). Hence, we can allocate the product ui · vj ,
for each pair (i, j), to one of the 5 parties, which will compute it and include it
in its share. So letting ak denote party k’s sum of all the pairs (i, j) allocated to
it, the desired output value fx,v(y) is additively shared across the 5 parties as:
a1 + . . . + a5, as desired.

Correctness of the above scheme follows by the description. 2-security follows
since the information known to each pair of parties T is only what they got in two
invocations of the CNF-DPF scheme B. Since B is 2-secure this keeps the func-
tions fx1,v, fx2,1 secret. Other than that, everything else is local computations
that each party does on its own while applying Eval. As for the communication
complexity (i.e., key sizes), both invocations of B and our final scheme have
communication of O(

√
M · (λ + m)) = O(N1/4 · (λ + m)) where, as above, m

denotes the output length of the point function and λ is the security parameter.

3.2 Extending to General t-out-of-p DPF

Next, we generalize the above example. Suppose one wants to secret-share a
point function with security threshold t, and has p ≥ dt + 1 parties available
for the sharing, for some d (e.g., in the example, p = 5 and t = d = 2). Then,
our next result shows how this can be done with communication complexity
≈ O(N1/2d).

CNF-FSS and Its Applications 293

Theorem 3. Let t, p, d be such that p = dt + 1. Then, assuming OWF exists,
there is a (standard, computational) (t, p)-DPF scheme Π with communication
O(N1/2d ·

√
2pt · pt · d · (λ + m)).

Note that we usually think of p (and hence also t and d) as being “small” and
of N as being the main parameter, so the not-so-good dependency on p (which
is inherited from [BGI15]) is secondary.

Remark 2. Our result uses the (p − 1)-out-of-p DPF protocol of [BGI15] and,
as such, the result is limited to DPF functions where the range is a group G of
characteristic two. Concretely, they consider functions with range {0, 1}m which
we view as F = GF [2m], as we require a ring structure. While it is not explic-
itly stated in the conference version of [BGI15], the full version will include a
generalization of the (p − 1)-out-of-p DPF protocol for more general groups G

(private communication with authors of [BGI15]), and this generality is trans-
ferrable to our constructions. Specifically, for “small” q, a simple modification
allows generalization to G = Zq, and this can be further generalized to larger
groups Zm for m that is a product of distinct primes, by utilizing the Chinese
Remainder Theorem in the Eval algorithm. Note that these ranges are what is
needed for most applications of DPFs in the literature.

Proof. Assume for concreteness that N = Md, and view each input in the
domain as a vector of d values, e.g. x = (x1, . . . , xd) ∈ [M]d. Then the truth
table of the point function fx,v can be viewed as a d-dimensional cube with v
at position x = (x1, . . . , xd), and 0’s elsewhere. Next, view the point function
fx,v : [N] → F as the product of d point functions fxi,vi

: [M] → F, where
v =

∏d
i=1 vi (e.g., v1 = v, v2 = . . . = vd = 1). Hence, we have, for all input

y = (y1, . . . , yd) in the domain of fx,v:

fx,v(y) =
d∏

i=1

fxi,vi
(yi).

As in the example, the idea will be to share each of the d “smaller” point func-
tions fxi,vi

separately, using a CNF-DPF scheme Bi, in such a way that during
the evaluation stage we can combine the outcomes of the d evaluations to obtain a
(standard) additive sharing of fx,v(y). To construct each B, we use as a building
block the (q − 1, q)-DPF scheme of [BGI15], with q =

(
p
t

)
. Invoking the [BGI15]

scheme with these parameters generates q keys, which we denote {KT }
T∈

(
[p]
t

),

and each B.Gen distributes each KT to all parties in [p] \ T . Meanwhile, each
B.Eval works by applying the Eval algorithm of the [BGI15] scheme for each
key KT separately. By construction, this is indeed a CNF-sharing scheme. The
t-security of B follows from the fact that each set T of t parties misses the share
KT and by the (q−1)-security of the [BGI15] scheme (assuming OWF). The size
of the keys in the [BGI15] scheme (on domain of size M) is O(

√
M · 2q · (λ+m))

and each of the p parties gets
(
p−1

t

)
< pt of them, and also q < pt so all together

O(
√

M · 2pt · pt · (λ + m)). The key-generation algorithm of our scheme, Π.Gen,

294 P. Bunn et al.

works by invoking the algorithm B.Gen d times, once for each point function
fxi,vi

. Denote the keys generated by the i-th invocation by {Ki,T }
i∈[d],T∈

(
[p]
t

).

The algorithm Π.Eval, on input y = (y1, . . . , yd), works as follows: Denote by
Si,T the share obtained by applying the Eval algorithm of [BGI15] on Ki,T and yi.
By the correctness of the underlying [BGI15] scheme, we have that fxi,vi

(yi) =∑
Ti∈

(
[p]
t

) Si,Ti
, and hence:

fx,v(y) =
d∏

i=1

fxi,vi
(yi) =

d∏

i=1

⎛

⎜
⎜
⎝

∑

Ti∈
(
[p]
t

)
Si,Ti

⎞

⎟
⎟
⎠ =

∑

T1,...,Td∈
(
[p]
t

)

(
d∏

i=1

Si,Ti

)

.

Consider any term of the form
∏d

i=1 Si,Ti
. Each of the shares Si,Ti

is not known
only to the t parties in Ti, so all together at most d ·t parties miss any of d shares
of this term. Since p > d ·t, there is (at least) one party that knows all the shares
of this term and can compute it. Assign each term to, say, the lexicographically
first party (by index) that knows this term, and let aj , for j ∈ [p], be the sum
of all terms assigned to the j-th party. We get that, as needed:

p∑

j=1

aj =
∑

T1,...,Td∈
(
[p]
t

)

(
d∏

i=1

Si,Ti

)

= fx,v(y),

In terms of t-security: this follows since we invoke d times (independently) the
t-secure scheme B. The size of keys is therefore d times larger than the size of
keys in B, i.e. O(

√
M · 2pt · pt · (λ + m) · d) = O(N1/2d ·

√
2pt · pt · d · (λ + m)). �

Remark 3. We observe that setting e.g. v1 = v, and then insisting that for all
i > 1: {fxi,vi

} has range {0, 1} instead of F (with vi := 1 for all such i), removes
the factor of m in the communication complexity of all of the {fxi,vi

} (except
for fx1,v1), and consequently the overall complexity of Π in Theorems 3 and 4
can be reduced (by a factor of m for Theorem 4 below, and by a factor of m in
one of the additive terms for Theorem 3, which is meaningful when m >> λ).

Note that the above scheme, as with most FSS/DPF schemes, provides com-
putational security. However, it is possible to get information-theoretic security
with only a relatively small loss (essentially replacing the N1/2d term in the
communication of the above scheme with N1/d) and, in fact, getting a slightly
better dependency on p. More precisely:

Theorem 4. Let t, p, d be such that p = dt + 1. Then, there is a (standard,
information-theoretically-secure) (t, p)-DPF scheme Π with communication
complexity O(N1/d · pt · d · m).

Proof. The proof is very similar to the previous construction above, except that
we replace all invocations of the (computational) scheme from [BGI15] for cre-
ating q =

(
p
t

)
key shares, with the naive (but information-theoretically secure)

CNF-FSS and Its Applications 295

scheme where the truth table is just CNF-shared as a string (with parameters
(t, p)). When applied to point functions with domain size M and output length
m, the key size of each of the p parties is at most M · m · q = M · m ·

(
p
t

)
. The

scheme then proceeds as above, by CNF-sharing the d point functions on domain
of size M = N1/d. The correctness and security arguments are similar to the
above. The key size is O(M · pt · d · m) = O(N1/d · pt · d · m). �

Similarly, one can plug the (p − 1, p)-DPF scheme of [CBM15] to the con-
struction of CNF-DPF in Theorem 3. This scheme relies on the existence of
seed-homomorphic PRG [BLMR13] (compared to the minimal assumption of
OWF, as in standard DPF schemes), and has better dependency on p, i.e., com-
munication of O(

√
N ·poly(p) · (λ+m)). Hence, we can get a (t, p)-DPF scheme,

like in Theorem 3, under the same assumption as [CBM15], with somewhat
better communication of O(N1/2d · poly(pt) · d · (λ + m)).

It is instructive to compare our technique with that of [BGI16b] (and its full
version in [BGI18a]). Concretely, [BGI18a, Thm. 3.22] shows how to combine
(t, p1)-FSS for a class F1 and a (t, p2)-FSS for a class F2 into a (t, p1 · p2)-FSS
for the class of products (they term this “FSS product operator”). The main
difference between our construction and their transformation is that the number
of parties in their transformation grows very quickly. This means that, even if
combined with our idea of decomposing the point function fx,v : [N] → F to
a product of d point functions with smaller domains, fxi,vi

: [M] → F, the
[BGI16b] product will require number of parties which is exponential in d, while
we only use p = dt + 1 parties. For example, in the case t = 2 we get, in
Sect. 3.1 above, (2,5)-DPF with communication O(N1/4), while combining two
(2, 3)-DPFs, using [BGI16b], will result in a (2,9)-scheme (with communication
O(N1/4), using our decomposition). Also, [BGI18a, Thm. 3.23] can be viewed
as a special case of our construction for t = 1; note that we focus in this paper
on t ≥ 2, as for t = 1 highly efficient DPF constructions are already known.

Determining the exact communication complexity of multi-party DPF, as
a function of t and p, remains an intriguing open problem. This holds even in
concrete special cases, such as p = 4, t = 2, where we do not know of a (2, 4)-DPF
scheme with complexity o(

√
N) (while, as mentioned in the Introduction, (2, 4)-

Binary-CPIR has a very efficient solution by combining DPF with [BIW07]).

4 1-out-of-3 CNF-DPF

In this section we present a 1-out-of-3 secure CNF-DPF protocol that achieves
poly-log communication (in the domain size N := |D|). Our construction com-
bines ideas from the original 1-out-of-2 protocol of [BGI15] with the 2-out-of-3
protocol of [BKKO20], whereby we seek to get the communication efficiency of
the former, but extended to the 3-party setting as is treated by the latter. Before
giving the formal presentation of our construction, we provide some insight on
the main ideas of how we convert the O(

√
N) protocol of [BKKO20] into the

poly-log(N) protocol presented below.

296 P. Bunn et al.

4.1 Overview of Construction

In [BKKO20], the Gen algorithm partitions the domain size N into
√

N “blocks”
of size

√
N , and to each block 1 ≤ j ≤

√
N , each key will be assigned a pair of

PRG seeds {xj , yj}. In the notation below, the superscript Pi for i ∈ [3] denotes
the key index,8 and PR (respectively PL) refers to a PRG seed associated with
a key to the “right” (respectively, to the “left”) of key P, where we view the key
indices as a cycle: P1 → P2 → P3 → P1, e.g. for P = P1, we have: PR = P2 and
PL = P3. Also, for the DPF scheme of [BKKO20], the terminology “on-block”
index j ∈ [

√
N] refers to the index of the unique block that contains α ∈ D that

defines the point function. Similarly, in a binary tree partitioning of [N] used in
our construction, a node ν in this binary tree is “on-path” if the leaf-node with
index α ∈ [N] is a descendent of ν.

With this notation, the PRG seeds in [BKKO20] satisfy:9

For On-Block Indices j For Off-Block Indices j

xP1
j
= xP2

j
= xP3
j xP

j = yPL
j

yP1
j = yP2

j = yP3
j yP

j = xPR
j

(1)

In this paper, to avoid the
√

N cost of dealing the seeds as per (1), as moti-
vated by the paradigm of [BGI15] we “partition” the domain D via a binary
tree, where the leaf-level has N = |D| nodes. Then, instead of dealing the PRG
seeds for every node in the binary tree, we only deal seeds at the root, and then
describe a process (which uses extra auxiliary information dealt for each level)
to generate PRG seeds for the rest of the nodes in the binary tree. This pro-
cess is described formally in Sect. 4.3 below, but we mention here the important
invariant that is maintained at every node ν in the binary tree:

For On-Path Nodes ν For Off-Path Nodes ν

xP
ν = zPL

ν xP
ν = yPL

ν = zPR
ν

yP1
ν = yP2

ν = yP3
ν yP

ν = zPL
ν = xPR

ν

zP
ν = xPR

ν zP
ν = xPL

ν = yPR
ν

(2)

In comparing (2) to (1), notice first that instead of each key consisting of
two PRG seeds, they each have three PRG seeds now: {xj , yj , zj}. To clarify
the nature of this extra seed, it will be convenient to (temporarily) modify the
notation slightly: for an off-path block, in (1) the first key has PRG seeds {a, b},

8 We write the key index as a superscript (not a subscript) to avoid confusion with the
node index ν (denoted as a subscript). The choice of P over a simpler index i ∈ [3]
is to avoid confusion with an exponent (since it is a superscript), and the specific
choice of “P” is for “Party,” as FSS typically associates each key κ with a party P.

9 The on-block property that seeds {xP
j }P are not equal to each other, as described

in (1), is intended to capture intuition. More formally, the requirement is that the
on-block seeds {xP

j }P are independent and (pseudo-)randomly generated.

CNF-FSS and Its Applications 297

the second key has seeds {b, c}, and the third key has seeds {c, a}.10 So there
are a total of three distinct seeds {a, b, c} across all keys, and each key is missing
exactly one of these three seeds for (1). Then the extra seed in each key of (2)
is simply the third “missing seed.”

Meanwhile, for the on-path block, in (1) the first key has PRG seeds {a, d},
the second key has seeds {b, d}, and the third key has seeds {c, d}.11 So there are
a total of four distinct seeds {a, b, c, d} across all keys, with seed d being common
to all three keys, and each of the other three seeds appearing in exactly one key.
Thus, unlike in off-block positions where each key was missing one of the three
seeds, in the on-block position each key is missing two of the four seeds. Then,
in (2), each key is given one of the two missing seeds, namely the missing seed
of the key on their “right.” In sticking with the present notation, we can view
the extra seed z included with each key as: zP1 = b, zP2 = c, and zP3 = a.

The two main points here are:

(i) Including an extra seed as part of the keys is necessary in order to iteratively
generate the seeds on lower nodes in the binary tree. In [BKKO20], there was
no iterative (tree) structure, but rather everything was flat: The domain D
was partitioned into

√
N blocks of

√
N elements. But in following the binary

tree approach of [BGI15] in attempt to minimize communication of the Gen
algorithm, we need an iterative procedure to generate seeds on lower nodes
in the binary tree. As in [BGI15], the difficult step is when the procedure
attempts to specify the seeds on the children nodes of an on-path parent: one
child node remains on-path, while the other becomes off-path. Maintaining
the proper invariant (that on-path seeds should look like the left column of
(2), while off-path seeds should look like the right column of (2)) will require
keys to have partial information about the two “missing” seeds, which is why
our algorithm provides one of the missing seeds as part of each key.

(ii) On the other hand, including one of the “missing” seeds as part of each key
is exactly why the 2-out-of-3 security of [BKKO20] is reduced to 1-out-of-3
security in our protocol: If any two parties collude, they can easily link their
own extra/missing seed that they were dealt with the node for which their
partner also has that seed, and thus the secret path is revealed. However,
even though this restricts our protocol to 1-out-of-3 security, we observe
that providing one of the two “missing seeds” as part of each key is exactly
the property we require for CNF sharing of the Gen keys.

10 The overlapping nature of the PRG seeds, in a CNF format, is the important point;
formally, to link the notations, set a = xP1 = yP3 , b = xP2 = yP1 , and c = xP3 =
yP2 .

11 The fact that there is one common seed “d” across all three keys, and that the other
seeds are all distinct, is the important point here; formally, to link the two notations,
set a = xP1 , b = xP2 , c = xP3 , and d = yP1 = yP2 = yP3 .

298 P. Bunn et al.

Expanding more on (i) above, we provide an overview of how the two child nodes
of an on-path node have correct values (i.e. values satisfying the invariant of (2)).
Fix an on-path node μ on level l, and denote as the three sets of values on μ (as
would be obtained by invoking the Eval algorithm using each of the three keys):

κP1 seeds for on-path parent node μ : {a, d, b}
κP2 seeds for on-path parent node μ : {b, d, c}
κP3 seeds for on-path parent node μ : {c, d, a} (3)

where we have used in (3) that invariant (2) applies on the on-path node μ. Then
in generating values on the children nodes of μ, the on-path child has keys:12

κP1 seeds for μ ’s on-path child: {q ⊕ G∗(a), q ⊕ G∗(d), q ⊕ G∗(b)}
κP2 seeds for μ ’s on-path child: {q ⊕ G∗(b), q ⊕ G∗(d), q ⊕ G∗(c)}
κP3 seeds for μ ’s on-path child: {q ⊕ G∗(c), q ⊕ G∗(d), q ⊕ G∗(a)} (4)

where q is a random length-λ bit string and G∗ ∈ {GL, GR} (which of these
G∗ equals depends on whether the on-path child of μ is the left or right child).
Meanwhile, the off-path child will have keys:

κP1 seeds for μ ’s off-path child: {q ⊕ G∗(b), q ⊕ G∗(c), q ⊕ G∗(a)}
κP2 seeds for μ ’s off-path child: {q ⊕ G∗(c), q ⊕ G∗(a), q ⊕ G∗(b)}
κP3 seeds for μ ’s off-path child: {q ⊕ G∗(a), q ⊕ G∗(b), q ⊕ G∗(c)} (5)

Notice that both (4) and (5) satisfy the appropriate invariant in (2). Also notice
that the values in (4) can be generated directly from the same key’s correspond-
ing values on parent node μ (from (3)), whereas the values in (5) cannot (e.g.
each of the new y values require knowledge of the “missing” seed value on parent
node μ). Namely, the ability for each key to generate the center (“y”) seed values
as in (5) will come from extra information that is provided by the “Correction
Word” component of each Gen key (see (7), and notice the xPL term, which to
emphasize is not xP but rather is the x seed value from the “left” key κPL , and
this exactly corresponds to the “missing” seed value for key κP).

4.2 Variants of DPF

We introduce (somewhat informally) a few variants of DPF that will be used as
building blocks for our protocol below. Formal definitions, as well as concrete
instantiations of these, can be found in the full version.

12 The formulas used for (4) and (5) come from (16), where we assumed “sibling control
bit” values bP1 = bP2 = bP3 = 0 for the on-path child of μ, and that bP1 = bP2 =
bP3 = 1 for the off-path child of μ. The other cases for valid sibling control bits
would produce different key values, but the intuition for how values match or not is
similar.

CNF-FSS and Its Applications 299

Definition 5 (Informal). A 1-out-of-p Matching-Share DPF (MS-DPF) is
defined analogously as ordinary DPF, except that instead of the requirement that∑

i Eval(i, κi, β) = 0 for every β
= α in the domain of the point function fα,v,
we require: ∀β
= α : Eval(1, κ1, β) = Eval(2, κ2, β) = · · · = Eval(p, κp, β), where
p is the number of parties.

Remark 4. Note that MS-DPF as defined above is strictly speaking not FSS
for the class of point functions: because all Eval shares match on every input
β
= α, the actual function that an MS-DPF protocol represents looks random.
However, based on the close relation to point functions (indeed, for the two-party
case (p = 2) with (G,+) = (Zm

2 ,XOR), MS-DPF is identical to ordinary DPF),
we stick with the “DPF” terminology.

Definition 6 (Informal). A t-out-of-p DPF+ is defined analogously as ordi-
nary DPF, except that instead of the requirement that

∑
i Eval(i, κi, α) = v,

for the point function fα,v, we have a concrete specification of the exact value
of Eval(i, κi, α) for each i. Namely, DPF+ allows specification of p values
{v1, . . . , vp}, such that ∀i : Eval(i, κi, α) = vi.

Finally, we combine the two definitions above, of MS-DPF and DPF+, and get:

Definition 7 (Informal). A 1-out-of-p MS-DPF+ scheme has Correctness
properties: ∀β
= α : Eval(1, κ1, β) = Eval(2, κ2, β) = · · · = Eval(p, κp, β), and
meanwhile at the special input point α ∈ D: ∀i : Eval(i, κi, α) = vi.

We use MS-DPF+ in our (1, 3)-CNF-DPF construction (constructions of each of
the DPF variants is straightforward; see the full version).

Claim 8. Assuming OWF , there exists a (1, 3)-MS-DPF+ scheme with com-
munication O(λ log(N)).

4.3 Detailed Construction of 1-out-of-3 CNF-DPF

For any point function fα,v ∈ F with domain D (of size N := |D|) and range a
finite abelian group13 (G,+) (of size m := |G|), we demonstrate the following:

Theorem 9. Assuming OWF , there is a (1, 3)-CNF-DPF scheme with commu-
nication O(m + λ log2(N)).

We prove Theorem 9 constructively: the Gen and Eval algorithms are presented
in this section, and Appendix A details the proof that the resulting scheme
enjoys the stated complexity and satisfies the consistency, correctness, and secu-
rity requirements of Definition 2. Our construction assumes the existence of a

13 For most applications, G = Z
B
2 , so addition (XOR over a bitstring) and multiplica-

tion are defined. While Sect. 4.3 focuses on characteristic two groups, which covers
the majority of applications in the literature, extending to arbitrary (finite, abelian)
groups is straightforward (only (17) and the definition of final correction word W
require modification). A demonstration of this fact is presented in the full version.

300 P. Bunn et al.

PRG G : {0, 1}λ → {0, 1}2λ+4 for security parameter λ, and a pseudorandom
“convert” function Ĝ : {0, 1}λ → G. To fix notation, when G is applied to a seed
x on a node μ, it stretches that seed to two new seeds plus four more bits, with
one new seed and two bits going to each child node of node μ. To emphasize this,
we write G(xμ) =

(
GL(xμ),HL(xμ), ĤL(xμ)

)
,

(
GR(xμ),HR(xμ), ĤR(xμ)

)
,

where GL, GR : {0, 1}λ → {0, 1}λ are zero stretch PRGs; and HL, ĤL,HR, ĤR :
{0, 1}λ → {0, 1} all output a single bit. The L and R subscripts on each PRG
emphasize how the outputs of the PRGs will be applied, namely when generating
values on the Left and Right child nodes of a given parent node μ.

GenAlgorithm.

1. Values at Root (level 0). At the root node of the tree, for each index P ∈ [3],
choose PRG seeds {xP , yP , zP} which are random subject to the constraints
of the left (On-Path) column of (2). Our algorithm will also require that, for
each key P, each node ν in the binary tree has “control bits” {cP

ν } associated
with it. These “on-path” control bits should appear random, subject to the
constraint that they sum to one if and only if node ν is on-path. We will also
associate a second set of control bits {bP

ν } to each node; these will satisfy a
similar property as the “on-path” control bits, except with the condition that
they sum to one if and only if ν’s sibling is on-path (for the root node ν,
which has no sibling, we demand the “sibling” control bits sum to zero).
Thus, at the root node, also choose sibling control bits {bP} and on-path
control bits {cP} which are random subject to the constraints of (6). Each
key will actually include four total control bits (as these are CNF-shared
across keys) at the root: {bP , bPR , cP , cPR}.

“Sibling” Control Bit b “On-Path” Control Bit c

⊕

P
bP
ν =

{
0 if ν’s sibling is off-path
1 if ν’s sibling is on-path

⊕

P
cP
ν =

{
0 if ν is off-path
1 if ν is on-path

(6)

2. Correction Words. For each level 1 ≤ l ≤ log(N) and each P ∈ [3], let {κP
l }

denote the keys to a MS-DPF+ protocol for fl = f
(α)l−1,{v

P1
l ,v

P2
l ,v

P3
l }, and

let {κ̂P
l } denote the keys to a MS-DPF+ protocol for f̂l = f̂

(α)l,{v̂
P1
l ,v̂

P2
l ,v̂

P3
l },

for functions fl and f̂l defined as follows.14 First, for each level l, the Gen
algorithm will generate uniformly random λ-bit strings {pl, ql}. Then, if ν = νl

denotes the unique on-path node at level l, and μ = μl denotes its parent node,
then fl is the MS-DPF+ function:

14 Recall that MS-DPF+ functions fl and f̂l are not technically point functions (see
Definition 5 and the ensuing remark). Also, for notation, (α)l−1 (as the special point

in the domain of fl = f
(α)l,{v

P1
l

,v
P2
l

,v
P3
l

}) and (α)l (for f̂l = f̂
(α)l,{v̂

P1
l

,v̂
P2
l

,v̂
P3
l

})

denote the first l − 1 bits (respectively l bits) of α; whereas αl (as it appears in (7)
and (8)) denotes the lth bit of α.

CNF-FSS and Its Applications 301

f
(α)l−1,{v

P1
l ,v

P2
l ,v

P3
l } : {0, 1}l−1 → {0, 1}2λ, with vP

l = (vP
L , vP

R), where:

(vP
L , vP

R) =
(
GL(xPL

μ) ⊕ (1 ⊕ αl) · (ql ⊕ pl), GR(xPL
μ) ⊕ αl · (ql ⊕ pl)

)
(7)

where xPL
μ is the first on-path seed of PL (see Step 3 below), and αl is the

lth bit of α. Meanwhile, f̂l is the MS-DPF+ function:

f̂
(α)l,{v̂

P1
l ,v̂

P2
l ,v̂

P3
l } : {0, 1}l → {0, 1}λ, with v̂P

l =
{

pl if bPL
ν = 0

ql if bPL
ν = 1 (8)

The above MS-DPF+ keys will serve as the “correction words” for the PRG
seeds. Notice that we use MS-DPF+ (instead of just dealing correction words
directly as a common term across all three keys) because we require each key use
a slightly different correction word. Indeed, as motivated in Sect. 4.1, the first
correction word (corresponding to fl and keys {κP

l }) encodes the “missing” seed
information that allows each key to overlap (as per CNF sharing) with the values
from the other key(s). Meanwhile, the second correction word (corresponding to
f̂l and keys {κ̂P

l }) ensures that for the next on-path node at the next level l,
each key is still missing information on exactly one of the four distinct seeds on
that node.

In addition to the correction words, the Gen algorithm will produce “cor-
rection bits,” which will ensure correct (i.e. respecting (6)) values for {bP} and
{cP} on each level. To simplify notation in the definition of the correction bits,
we define the following values:15

hL := HL(xP1
μ) ⊕ HL(xP2

μ) ⊕ HL(xP3
μ) ⊕ HL(yP1

μ)

hR := HR(xP1
μ) ⊕ HR(xP2

μ) ⊕ HR(xP3
μ) ⊕ HR(yP1

μ)

ĥL := ĤL(xP1
μ) ⊕ ĤL(xP2

μ) ⊕ ĤL(xP3
μ) ⊕ ĤL(yP1

μ)

ĥR := ĤR(xP1
μ) ⊕ ĤR(xP2

μ) ⊕ ĤR(xP3
μ) ⊕ ĤR(yP1

μ) (9)

where μ denotes the on-path node on level l − 1. Now, for each level l, each key
will include four “correction bits” {rl, sl, tl, ul}, defined as follows:

rl =
{

hL if αl = 0
1 ⊕ hL if αl = 1 sl =

{
1 ⊕ hR if αl = 0
hR if αl = 1

tl =

{
1 ⊕ ĥL if αl = 0
ĥL if αl = 1

ul =

{
ĥR if αl = 0
1 ⊕ ĥR if αl = 1

(10)

3. Compute On-Path Seed Values. For each level l, use the correction words and
bits (from the previous step) to generate seeds for the following level, as per
the formulas in (15) and (16) (see Step 1c of the Eval Algorithm).

4. Final Correction Word. Define the final correction word W := v ⊕G Q ∈ G,
where v is the non-zero value of the target point function fα,v, and Q is:

Q := Ĝ(xP1
ν̂) ⊕G Ĝ(xP2

ν̂) ⊕G Ĝ(xP3
ν̂) �G 3 · Ĝ(yP1

ν̂) ∈ G, (11)

15 For clarity, we suppress the level l in the subscript in the notation of (9).

302 P. Bunn et al.

where �G denotes the negation of the group operation in G,16 and Ĝ :
{0, 1}λ → G is a map that converts a random λ-bit string into a pseudo-
random group element in G.

As the final output, for each P ∈ [3], the Gen algorithm outputs keys:

κP := ({xP , yP , zP}, {bP , bPR , cP , cPR}, W

∀ 1 ≤ l ≤ log(N) : {κP
l }, {κ̂P

l }, {rl, sl, tl, ul}) (12)

EvalAlgorithm.
The Eval(κP , i, β) algorithm is an iterative procedure where we start at the root
of the binary tree, and define a procedure for traversing the tree (along the path
of input β ∈ D)17 whereby, at each step, we use the current node’s values (plus
the Gen key) to compute the values of the next node on the path. Formally, for
any current node μ on level l of the path of β, with seed values {xP

μ , yP
μ , zP

μ } and
(CNF-shared) control bits {bP

μ , bPR
μ , cP

μ , cPR
μ }, we demonstrate how to generate

corresponding values for the next node ν on the path of β, corresponding to
node μ’s left or right child (depending on whether βl is zero or one).

1. Traverse Tree per β ∈ D. For each level 1 ≤ l ≤ log(N), let ν denote the cur-
rent node on the path18 of β at level l, and let μ denote ν’s parent node. The
previous iteration19 of this step output values on parent node μ: {xP

μ , yP
μ , zP

μ }
and {bP

μ , bPR
μ , cP

μ , cPR
μ }. Also, recall from (12) that for the current level l the

Gen algorithm output the MS-DPF+ keys κP
l and κ̂P

l ; as well as the correc-
tion bits {rl, sl, tl, ul}. Output the following corresponding values for node ν
as follows:
(a) Generating CNF-sharing of sibling control bits: {bP

ν , bPR
ν }.

Set {bP
ν , bPR

ν } as follows:

bP
ν =

⎧
⎨

⎩

cP
μ · rl ⊕ HL(xP

μ) ⊕ HL(yP
μ) if ν is left child of μ

cP
μ · sl ⊕ HR(xP

μ) ⊕ HR(yP
μ) if ν is right child of μ

bPR
ν =

⎧
⎨

⎩

cPR
μ · rl ⊕ HL(yP

μ) ⊕ HL(zP
μ) if ν is left child of μ

cPR
μ · sl ⊕ HR(yP

μ) ⊕ HR(zP
μ) if ν is right child of μ

(13)

16 For characteristic two groups, �G = ⊕G; but we use this notation in (11) so as to
minimize changes when we extend to arbitrary finite abelian groups G.

17 The binary representation β = β1β2 . . . βlog(N) of input β ∈ D naturally defines a
path down a binary tree (of depth log(N)) by interpreting βl = 0 to indicate going
to the left child of the current node at level l, and moving right at level l if βl = 1.

18 Formally, if we index (0-based) the nodes on any level l, then the (binary represen-
tation of the) index of ν is: β1β2 . . . βl.

19 If l = 1 then μ is the root node and the values on μ are directly from the Gen key.

CNF-FSS and Its Applications 303

(b) Generating CNF-sharing of on-path control bits: {cP
ν , cPR

ν }.
Set {cP

ν , cPR
ν } as follows:

cP
ν =

⎧
⎨

⎩

cP
μ · tl ⊕ ĤL(xP

μ) ⊕ ĤL(yP
μ) if ν is left child of μ

cP
μ · ul ⊕ ĤR(xP

μ) ⊕ ĤR(yP
μ) if ν is right child of μ

cPR
ν =

⎧
⎨

⎩

cPR
μ · tl ⊕ ĤL(yP

μ) ⊕ ĤL(zP
μ) if ν is left child of μ

cPR
μ · ul ⊕ ĤR(yP

μ) ⊕ ĤR(zP
μ) if ν is right child of μ

(14)

(c) Generating Seeds {xP
ν , yP

ν , zP
ν }. First, to set notation: Let G∗ = GL

(respectively G∗ = GR) if ν is the left (respectively right) child of μ.
Also, let wP

ν := Eval(κP
l , μ) and let ŵP

ν := Eval(κ̂P
l , ν).20 Recall from (7)

that wP
ν ∈ {0, 1}2λ, so let wP

∗ be the first (respectively the last) λ bits of
wP

ν if ν is the left (respectively right) child of its parent. We condition on
the {bP

ν , bPR
ν } values that were output in Step 1a above:

Case I: bP
ν
= bPR

ν . Then set {xP
ν , yP

ν , zP
ν } as follows:

xP
ν = G∗(yP

μ) ⊕ bP
ν · (G∗(yP

μ) ⊕ wP
∗) ⊕ ŵP

ν

yP
ν = G∗(xP

μ) ⊕ bP
ν · (G∗(xP

μ) ⊕ G∗(zP
μ)) ⊕ ŵP

ν

zP
ν = wP

∗ ⊕ bP
ν · (wP

∗ ⊕ G∗(yP
μ)) ⊕ ŵP

ν (15)

Case II: bP
ν = bPR

ν . Then set {xP
ν , yP

ν , zP
ν } as follows:

xP
ν = G∗(xP

μ) ⊕ bP
ν · (G∗(xP

μ) ⊕ G∗(zP
μ)) ⊕ ŵP

ν

yP
ν = G∗(yP

μ) ⊕ bP
ν · (G∗(yP

μ) ⊕ wP
∗) ⊕ ŵP

ν

zP
ν = G∗(zP

μ) ⊕ bP
ν · (G∗(zP

μ) ⊕ G∗(xP
μ)) ⊕ ŵP

ν (16)

2. Apply Final Correction Word. After terminating the above step at the leaf
node ν on level l = log(N), the above iterative procedure has output values on
ν: {xP

ν , yP
ν , zP

ν } and {bP
ν , bPR

ν , cP
ν , cPR

ν }. Then, as per the definition of (1, 3)-
CNF-FSS, Eval(P, κP , β) outputs

(
3−1
1

)
= 2 values in G, which are:

Eval(P, κP , β) :=
(
Ĝ(xP

ν) �
G
Ĝ(yP

ν) ⊕
G
cP
ν ·W, Ĝ(zP

ν) �
G
Ĝ(yP

ν) ⊕
G
cP
ν
R · W

)

(17)

20 Recall that {κP
l , κ̂P

l } were output as part of the Gen key, and they correspond to
the MS-DPF+ protocols described by (7)–(8). Also, notice that wP

ν comes from
evaluating MS-DPF+ key κP

l at point μ (the location of the parent node), whereas
ŵP

ν comes from evaluating MS-DPF+ key κ̂P
l at point ν; this is why the domains of

the two MS-DPF+ functions {fl, f̂l} differ by a factor of two (one extra bit for f̂l).

304 P. Bunn et al.

A Proof of Theorem 9

We argue how the scheme described in Sect. 4.3 enjoys the stated communica-
tion complexity and satisfies each of the requisite properties of CNF-DPF (see
Definition 2).

Communication. The size of each Gen key is O(m + λ log2(N)):

– O(λ) for each of the original PRG seeds {xP , yP , zP}.
– O(1) for the four control bits on the root node {bP , bPR , cP , cPR}.
– O(m) for the W ∈ G (recall m = log(|G|)).
– For each 1 ≤ l ≤ log(N): O(λ log(N)) for the collection of MS-DPF+ keys

{κP
l , κ̂P

l } (see Claim 8). Adding these costs for each level l yields total cost
of these keys: O(λ log2(N)).

Consistency. That the protocol of Sect. 4.3 satisfies the Consistency property
of CNF-FSS (see Definition 2) requires showing, among other things, that for
each P ∈ [3] and for each P̂ := PR, that the control bits observe CNF-sharing:

bPR
ν = b

̂P
ν and cPR

ν = c
̂P
ν (18)

In other words, (18) is emphasizing that the formulas for bPR
ν and cPR

ν in (the
bottom equations of) (13) and (14) generate the same bits as (the top equations
of) the corresponding formulas for b

̂P
ν and c

̂P
ν in (13) and (14), for P̂ = PR. For

example, when computing the bottom formulas of (13) and (14) for P = P1, the
values output there (which are for PR = P2) match the values that are output
for key P2 in (the top part of) the equations (13) and (14).

We make an inductive argument to demonstrate CNF-sharing of the control
bits (as per (18)) holds for all nodes ν. At the root, (18) is true by construction
of values {bP

ν } and {cP
ν } in Step 1 of the Gen algorithm. Now for any non-root

node ν, let μ denote its parent, and assume that (18); we use the formulas in (13)
and (14) to demonstrate that (18) also holds for ν. To fix notation, fix P ∈ [3],
and let P̂ = PR denote the right key of P.

Case1 : μ is off-path. In the Correctness argument above, we demonstrated

that (2) is satisfied for the seeds on every node. Since μ is off-path: xP
μ = z

̂P
μ ,

yP
μ = x

̂P
μ , and zP

μ = y
̂P
μ . Plugging in these relations into (13) for bPR

ν :

If ν is left child of μ: bPR
ν = cPR

μ · rl ⊕ HL(yP
μ) ⊕ HL(zP

μ)

= c
̂P
μ · rl ⊕ HL(x ̂P

μ) ⊕ HL(y ̂P
μ) = b

̂P
ν

If ν is right child of μ: bPR
ν = cPR

μ · sl ⊕ HR(yP
μ) ⊕ HR(zP

μ)

= c
̂P
μ · sl ⊕ HR(x ̂P

μ) ⊕ HR(y ̂P
μ) = b

̂P
ν

where we have applied the inductive argument that cPR
μ = c

̂P
μ for parent node

μ for the center equality of each case above.

CNF-FSS and Its Applications 305

Case 2: μ is on-path. Since μ is on-path: zP
μ = x

̂P
μ and yP

μ = y
̂P
μ . Plugging in

these relations into (13) for bPR
ν :

If ν is left child of μ: bPR
ν = cPR

μ · rl ⊕ HL(yP
μ) ⊕ HL(zP

μ)

= c
̂P
μ · rl ⊕ HL(y ̂P

μ) ⊕ HL(x ̂P
μ) = b

̂P
ν

If ν is right child of μ: bPR
ν = cPR

μ · sl ⊕ HR(yP
μ) ⊕ HR(zP

μ)

= c
̂P
μ · sl ⊕ HR(y ̂P

μ) ⊕ HR(x ̂P
μ) = b

̂P
ν

The argument that cPR
ν = c

̂P
ν is similar, using tl fori rl, ul for sl, and Ĥ for H.

With (18) verified, Consistency follows immediately from the invariants of
(2), both for the case ν is on-path (i.e. β = α) and off-path (i.e. β
= α); see (17).

Security. We provide a sketch of the proof here, which captures the intuition
of the argument; the full proof is relegated to the extended version.

We argue that the components of any Gen key κP (see (12)) are independent
from each other and either truly random or masked with pseudorandom values
whose seeds are known only to other parties (and not to party P). In fact,
the information of κP related to the root node is randomly chosen, and the
information related to the other levels of the tree is masked using pseudorandom
values not known to P. Based on this, a simulator that simply outputs random
values according to the key structure will satisfy Definition 2, which we recall
here (updated for our case of security threshold t = 1):

{
{κ1, . . . , κp} ←R Gen(1λ, fα,v) : κi

}
≈C

{
κ ←R Sim(1λ, D,G)

}
. (19)

The proof follows an inductive argument (on the depth of the binary tree),
and argues that assuming a simulator that outputs random values satisfies (19)
for depth l−1, the extra values output by Gen in (12) for level l do not threaten
the validity of the same simulator (i.e. one that is simply outputting random
values) for the extra layer of the tree. More concretely, we will demonstrate the
existence of a related simulator21:

∀1 ≤ l ≤ log N :
{
{κP1 , κP2 , κP3} ←R Gen(1λ, fα,v) : ((κP)l, xPL

νl
)
}

≈C
{
(κ)l ←R Sim(1λ, D,G), x ←R {0, 1}λ : ((κ)l, x)

}
, (20)

where νl refers to the on-path node at level l, (κP)l refers to the components
of key κP from Gen steps 1–3 through level l (i.e. everything from (12) except
21 The existence of a simulator as in (20) is actually stronger than what we need to

argue (19). Technically, it would be sufficient to argue the existence of a simulator:

∀1 ≤ l ≤ log N :
{

{κP1 , κP2 , κP3} ←R Gen(1λ, fα,v) : ((κP)l, xPL
νl

)
}

≈C

{
((κ)l, x) ←R Sim(1λ, D,G)

}

and then to prove that xPL
νl is (computationally) independent of (κP)l. While this

is possible, our proof demonstrates the existence of the stronger simulator of (20).

306 P. Bunn et al.

the final correction word W and the per-level values for levels in [l + 1.. log N]),
and xPL

νl
refer to the seed values x on node νl that are associated with the

key κPL to the left of the provided key κP .22 The reason that the existence
of a simulator as per (20) (and more specifically, where this simulator simply
outputs random values as per the structure of (κP)l) implies the existence of a
simulator as per (19) is based on the formulas dictating how the Gen algorithm
computes the extra seed values on level l: {κP

l }, {κ̂P
l }, {rl, sl, tl, ul}. Namely,

investigating the formulas for these extra values on level l ((7), (8), (9), and
(10)), each formula has a term involving xPL

μ for the value of xPL on node μ

on level l − 1, and consequently as long as the value of xPL
μ on parent level

l − 1 cannot be distinguished from uniform, the new Gen key values on level l:
{κP

l }, {κ̂P
l }, {rl, sl, tl, ul} will also be indistinguishable from uniform. Notice

that for each 1 ≤ l ≤ log N , (20) explicitly excludes the final correction word
W from both sides. However, the last step of the argument has the same spirit,
whereby the existence of the xPL

ν term (for on-path leaf node ν) in W implies
that W is indistinguishible from uniform.

We proceed with an inductive argument, demonstrating that all the values
output by the Gen algorithm respect the security invariant, and then demonstrate
how the security invariant implies that all values output by the Gen algorithm
appear uniformly random (and independent of one another).

– Step 1: Values at Root. The seeds {xP, yP, zP} are chosen uniformly at random
(subject to the constraint in (2), i.e. that there is a single common seed yP

that is common across all three keys, and that the other two seeds of each key
overlap with exactly one of the seeds from each of the other two keys) and, in
particular, the seeds are chosen independently from the point function fα,v

parameters, α and v. Similarly, the sibling control bits {bP, bPR} and on-path
control bits {cP, cPR} are also chosen uniformly at random (subject to the
constraint in (6)) and independently from the parameters α and v.

– Step 2.i: For each1 ≤ l ≤ log(N): MS − DPF+keys {κP
l , κ̂P

l }.

Note that the security of the underlying MS-DPF+ schemes for fl and f̂l

ensure that {vPL

l , vPR

l } and {v̂PL

l , v̂PR

l } cannot be distinguished from ran-
dom even for someone holding (κP)l (and thus holding κP

l and κ̂P
l , which

in particular reveals vP
l = (vP

L , vP
R) and v̂P

l ; see (7)–(8)). That v̂P
l do not

leak information about parameters α or v follows from the fact that (8) indi-
cates that v̂P

l is uniformly random. Meanwhile, that vP
l = (vP

L , vP
R) does not

leak information about parameters α or v is argued as follows: For the base
case (l = 1), the formula for vPL indicates dependence on GL(xPL

μ) (respec-
tively vPR depends on GR(xPL

μ)), where μ is the on-path node on the parent
level, i.e. μ is the root node if l = 1. Since (as mentioned in Step 1 above)

22 Note that (20) is motivated by the CNF-sharing of the keys (or more precisely, the
seeds), whereby each key κP has overlapping information from one of the other keys
(in this case κPR), but is missing information from the third key (in this case κPL).
In particular, this is why it is the seed of the left key xPL that is referenced in (20),
as well as in (7) and (8).

CNF-FSS and Its Applications 307

xPL
μ cannot be distinguished from uniform by information in κP , it follows

that vP
l also cannot be distinguished from uniform (also, pseudorandomness

of G = (GL, GR) implies there is no dependence on the two components
(vP

L , vP
R) of vP

l). For the inductive case (1 < l ≤ log N), we follow the same
argument, except now we use the Security Invariant (20) (plus pseudoran-
domness of the PRG G) inductively to argue that xPL

μ from the parent level
l − 1 cannot be distinguished from uniform, and therefore vP

l also appears
uniformly random.

– Step 2.ii: For each1 ≤ l ≤ log(N): CorrectionBits {rl, sl, tl, ul}.
As can be seen in (10), each correction bit depends on one of the values
{hL, hR, ĥL, ĥR}, and, as per (9), each of these values in turn appears uni-
formly random due to its dependence on xPL

μ for parent node μ (as was
argued above in Step 2.i). Furthermore, pseudorandomness of H, Ĥ implies
that there is no dependency between the correction bit values and any other
values dealt as part of the Gen key κP .

– Step 3: Final Correction Word W .
While W = v ⊕ Ĝ(xP1

ν̂) ⊕ Ĝ(xP2
ν̂) ⊕ Ĝ(xP3

ν̂) ⊕ Ĝ(yP1
ν̂) involves the secret

parameter v, the Security Invariant applied to on-path leaf node ν̂ implies that
W contains a term (xPL

ν̂) that cannot be distinguished from random by P,
and therefore v remains completely hidden. Furthermore, pseudorandomness
of Ĝ implies that there is no dependency between W and any other values
dealt as part of the Gen key κP .

Correctness. We demonstrate for any input β ∈ D and for each P ∈ [3]:

∑

P
Eval(P, κP , β) =

{
(0G, 0G) if β
= α
(v, v) if β = α

(21)

(Recall that in a (1, 3)-CNF scheme, Eval outputs for each party a pair of values,
one per key, and the sum of all left values and the sum of all right values should
both equal f(β), which for DPF is either 0G or v, depending on whether input β
equals α.) To show (21) holds, we first show that at every iteration of Step 1 of
the Eval procedure, that the values {xP

ν , yP
ν , zP

ν } and {bP
ν , bPR

ν , cP
ν , cPR

ν } respect
the invariants listed in tables (2) and (6), respectively. Then, once this is shown,
(21) follows immediately since:

First coordinate of
⊕

P G

Eval(P, κP , β) :

=
⊕

P G

(
Ĝ(xP

ν) �G Ĝ(yP
ν) ⊕G cP

ν · W
)

=
((

Ĝ(xP1
ν)�G Ĝ(yP1

ν)
)
⊕G

(
Ĝ(xP2

ν)�G Ĝ(yP2
ν)

)
⊕G

(
Ĝ(xP3

ν)�G Ĝ(yP3
ν)

))
⊕G

W ·
⊕

P G

cP
ν

=
((

Ĝ(xP1
ν)�G Ĝ(yP1

ν)
)
⊕G

(
Ĝ(xP2

ν)�G Ĝ(yP2
ν)

)
⊕G

(
Ĝ(xP3

ν)�G Ĝ(yP3
ν)

))
⊕G

308 P. Bunn et al.

(v ⊕G Q) ·
⊕

P G

cP
ν (22)

Notice from (2) that:
(
Ĝ(xP1

ν) �G Ĝ(yP1
ν)

)
⊕G

(
Ĝ(xP2

ν) �G Ĝ(yP2
ν)

)
⊕G

(
Ĝ(xP3

ν) �G Ĝ(yP3
ν)

)

=
{

Ĝ(xP1
ν)) ⊕G Ĝ(xP2

ν)) ⊕G Ĝ(xP3
ν)) �G 3 · Ĝ(yP1

ν)) = Q if β = α
0G if β
= α

Also, notice that (6) implies that23:

⊕

P G

cP
ν =

{
1 if ν̂ = ν is on-path ⇔ β = α
0 if ν̂
= ν is off-path ⇔ β
= α

(23)

Thus (22) becomes:

First coordinate of
⊕

P G

Eval(P, κP , β) :

=
{

Q ⊕G (v ⊕G Q) · 1 = v if β = α
0G ⊕G (v ⊕G Q) · 0 = 0G if β
= α

(24)

Meanwhile, the case for the second coordinate of
∑

P Eval(P, κP , β) is similar,
since the {cPR

ν } obey (6) in the same way that {cP
ν } do, and the symmetry (in

terms of (2)) of each key’s first two PRG seeds {xP
ν , yP

ν } and each key’s second
two PRG seeds {yP

ν , zP
ν }.

Thus, it remains to show that the invariants of (2) and (6) apply at every
node in the binary tree. We argue this fact recursively, by demonstrating that as
long as the invariants (2) and (6) hold on a parent node μ, then these invariants
will continue to hold for both of μ’s children. We kick off the recursive argument
by noting that the root note (which is necessarily on-path) satisfies (2) and (6) by
construction (see Step 1 of the Gen algorithm). For the inductive step, consider
an arbitrary node ν on level 1 ≤ l ≤ log(N), and let μ denote ν’s parent. We do
a case analysis based on whether ν is the left or right child of μ:

Case 1: ν is the left child of μ.

SiblingControlBits {bP
ν }.

Looking at formula (13) for generating the sibling control bits {bP
ν , bPR

ν } on ν:
∑
P

bP
ν =

∑
P

(
cP
μ · rl ⊕ HL(xP

μ) ⊕ HL(yP
μ)

)

= rl ·
∑
P

cP
μ ⊕

((
HL(xP1

μ) ⊕ HL(yP1
μ)

) ⊕ (
HL(xP2

μ) ⊕ HL(yP2
μ)

) ⊕ (
HL(xP3

μ) ⊕ HL(yP3
μ)

))

=

{
rl ⊕ hL if µ is on-path

0 if µ is off-path
(25)

23 (23) assumes G has characteristic two, so that (6), ⊕G.

CNF-FSS and Its Applications 309

where we have used in (25) that
∑

P cP
μ = 1 if parent node μ is on-path and

otherwise the sum equals zero (as per (6)); and from (2) that:
(
HL(xP1

μ) ⊕ HL(yP1
μ)

)
⊕

(
HL(xP2

μ) ⊕ HL(yP2
μ)

)
⊕

(
HL(xP3

μ) ⊕ HL(yP3
μ)

)

=
{

HL(xP1
μ)) ⊕ HL(xP2

μ)) ⊕ HL(xP3
μ)) ⊕ HL(yP1

μ)) = hL if μ is on-path
0 if μ is off-path

Thus, if μ is off-path, then both ν and its sibling are also off-path, and {bP
ν }

satisfies the requisite property of (6). Meanwhile, if μ is on-path, then exactly
one of ν or its sibling is on-path. Since we are in the case that ν is the left child
of μ, then ν is on-path if and only if αl = 0. In particular if μ is on-path:

∑

P
bP
ν = rl ⊕ hL =

{
hL ⊕ hL = 0 if αl = 0 ⇔ ν’s sibling is off-path
1 ⊕ hL ⊕ hL = 1 if αl = 1 ⇔ ν’s sibling is on-path

where we used (10) to replace rl conditioned on whether αl is 0 or 1. The
argument for the “right” sibling control bits {bPR

ν } mirrors the above argument,
since

∑
P cP

μ =
∑

P cPR
μ (per (18)) and {(xP

μ , yP
μ)}P = {(yP

μ , zP
μ)}P (per (2)).

On-PathControlBits {cP
ν }.

Looking at formula (14) for generating the on-path control bits {cP
ν , cPR

ν } on ν:
∑
P

cP
ν =

∑
P

(
cP
μ · tl ⊕ ĤL(xP

μ) ⊕ ĤL(yP
μ)

)

= tl ·
∑
P

cP
μ ⊕

((
ĤL(xP1

μ)⊕ ĤL(yP1
μ)

)
⊕
(
ĤL(xP2

μ) ⊕ ĤL(yP2
μ)

)
⊕
(
ĤL(xP3

μ) ⊕ ĤL(yP3
μ)

))

=

{
tl ⊕ ĥL if µ is on-path

0 if µ is off-path
(26)

where we have used in (26) that
∑

P cP
μ = 1 if parent node μ is on-path and

otherwise the sum equals zero (per (6)); and from (2) that:
(
ĤL(xP1

μ) ⊕ ĤL(yP1
μ)

)
⊕

(
ĤL(xP2

μ) ⊕ ĤL(yP2
μ)

)
⊕

(
ĤL(xP3

μ) ⊕ ĤL(yP3
μ)

)

=
{

ĤL(xP1
μ)) ⊕ ĤL(xP2

μ)) ⊕ ĤL(xP3
μ)) ⊕ ĤL(yP1

μ)) = ĥL if μ is on-path
0 if μ is off-path

Thus, if μ is off-path, then both ν and its sibling are also off-path, and {cP
ν }

satisfies the requisite property of (6). Meanwhile, if μ is on-path, then exactly
one of ν or its sibling is on-path. Since we are in the case that ν is the left child
of μ, then ν is on-path if and only if αl = 0. In particular if μ is on-path:

∑

P
cP
ν = tl ⊕ ĥL =

{
1 ⊕ ĥL ⊕ ĥL = 1 if αl = 0 ⇔ ν is on-path
ĥL ⊕ ĥL = 0 if αl = 1 ⇔ ν is off-path

310 P. Bunn et al.

where we used (10) to replace tl conditioned on whether αl = 0 or αl = 1. The
argument for the “right” sibling control bits {cPR

ν } mirrors the above argument,
since

∑
P cP

μ =
∑

P cPR
μ (per (18)) and {(xP

μ , yP
μ)}P = {(yP

μ , zP
μ)}P (per (2)).

Seeds {xP
ν , yP

ν , zP
ν }.

Demonstrating that the formulas for the next-level seeds in (15)–(16) maintain
the seed invariants of (2) is straightforward, but requires a case analysis based
on whether the current node is on-path or off-path.

Case Analysis of Correctness for 1-out-of-3 CNF-DPF.
We prove the new seed values on ν, computed as per (15)–(16), obey (2) by
doing a case analysis, broken down by ν’s location (on-path, sibling is on-path,
both self and sibling are off-path), as well as on the {bP

ν , bPR
ν } values on ν. Before

proceeding, recall the notation for wP
∗ (see Step (1c) of the Eval algorithm): the

first (respectively last) λ bits of Eval(κP
l , ν) if ν is the left (respectively right)

child of its parent, where κP
l denotes the MS-DPF+ key for level l (see (7) in

Step 2 of the Gen algorithm); and also the notation for ŵP
ν = Eval(κ̂P

l , ν), and
for G∗ = GL (resp. GR) if ν is the left (resp. right) child of its parent.

For each case below, we present a table which shows what each key’s new
seed values on node ν will be, given ν’s position (on/off path) and the seed values
that were present on ν’s parent node μ. The tables indicate, for each key, which
seed formula ((15) vs. (16)) are used to derive the new seed values on ν.

Case A: Parent μ is off-path. Because parent node μ is off-path, its position (at
depth l−1) does not correspond to the DPF index (α)l−1 of MS-DPF+ function
fl; and similarly, neither of its children nodes are at position (α)l, and therefore
they do not correspond to the DPF index of f̂l. Therefore, wP1∗ = wP2∗ = wP3∗ and
ŵP1

ν = ŵP2
ν = ŵP3

ν (by definition of fl and f̂l; see Step 2 of the Gen algorithm),
and so we suppress player superscripts and write simply w∗ and ŵν . Also, since μ
is off-path, the seeds on μ satisfy invariant (2), and for convenience we will denote
the three keys’ seeds on off-path parent node μ as: κP1 = {a, b, c}, κP2 = {b, c, a},
κP3 = {c, a, b}. Finally, since μ is off-path, so is ν and its sibling, and thus by
the invariant of (6), we have that

⊕
P bP

ν = 0. Thus, there are four possibilities
for the values of (bP1

ν , bP2
ν , bP3

ν): (0, 0, 0), (0, 1, 1), (1, 0, 1), or (1, 1, 0). We do a
case-analysis just of the first two; the latter two are similar to the second:

Case A.1: {bP
ν } = (0, 0, 0) :

κP1 (via (16)) κP2 (via (16)) κP3 (via (16))

xP
ν G∗(a) ⊕ ŵν G∗(b) ⊕ ŵν G∗(c) ⊕ ŵν

yP
ν G∗(b) ⊕ ŵν G∗(c) ⊕ ŵν G∗(a) ⊕ ŵν

zP
ν G∗(c) ⊕ ŵν G∗(a) ⊕ ŵν G∗(b) ⊕ ŵν

CNF-FSS and Its Applications 311

Case A.2: {bP
ν } = (0, 1, 1) :

κP1 (via (15)) κP2 (via (16)) κP3 (via (15))

xP
ν G∗(b) ⊕ ŵν G∗(a) ⊕ ŵν w∗ ⊕ ŵν

yP
ν G∗(a) ⊕ ŵν w∗ ⊕ ŵν G∗(b) ⊕ ŵν

zP
ν w∗ ⊕ ŵν G∗(b) ⊕ ŵν G∗(a) ⊕ ŵν

Case B: Parent μ is on-path; ν is on-path. Because parent node μ is on-path, its
position (at depth l−1) corresponds to the DPF index (α)l−1 of MS-DPF+ func-
tion fl; and similarly ν on-path means that its position is (α)l which corresponds
to the DPF index of f̂l. Therefore, wP

∗ follows (7) and ŵP
ν follows (8):

wP
∗ =

{
vP

L = GL(xPL
μ) ⊕ ql ⊕ pl if ν is the left child

vP
R = GR(xPL

μ) ⊕ ql ⊕ pl if ν is the right child (27)

ŵP
ν = v̂P

l =
{

pl if bP
ν = 0

ql if bP
ν = 1 (28)

where {pl, ql} are uniform random values chosen for each level 1 ≤ l ≤ log(N),
and we have used that, since ν is on-path, then αl = 1 (respectively αl = 0)
when ν is the left child (respectively right child) of μ. Also, since μ is on-path,
the seeds on μ satisfy invariant (2), and for convenience we will denote the
three keys’ seeds on on-path parent node μ as: κP1 = {a, d, b}, κP2 = {b, d, c},
κP3 = {c, d, a}. Finally, since ν is on-path, its sibling is off-path, and thus by
the invariant of (6), we have that

⊕
P bP

ν = 0. Thus, there are four possibilities
for the values of (bP1

ν , bP2
ν , bP3

ν): (0, 0, 0), (0, 1, 1), (1, 0, 1), or (1, 1, 0). We do a
case-analysis just of the first two; the latter two are similar to the second:

Case B.1: {bP
ν } = (0, 0, 0) :

κP1 (via (16)) κP2 (via (16)) κP3 (via (16))

xP
ν G∗(a) ⊕ pl G∗(b) ⊕ pl G∗(c) ⊕ pl

yP
ν G∗(d) ⊕ pl G∗(d) ⊕ pl G∗(d) ⊕ pl

zP
ν G∗(b) ⊕ pl G∗(c) ⊕ pl G∗(a) ⊕ pl

Case B.2: {bP
ν } = (0, 1, 1) :

κP1 (via (15)) κP2 (via (16)) κP3 (via (15))

xP
ν G∗(d) ⊕ ql G∗(c) ⊕ pl G∗(b) ⊕ pl

yP
ν G∗(a) ⊕ ql G∗(a) ⊕ ql G∗(a) ⊕ ql

zP
ν G∗(c) ⊕ pl G∗(b) ⊕ pl G∗(d) ⊕ ql

312 P. Bunn et al.

Case C:μ is on-path, ν is off-path. Because parent node μ is on-path, its position
(at depth l − 1) corresponds to the DPF index (α)l−1 of MS-DPF+ function fl;
and similarly ν off-path means that its position is does not correspond to (α)l,
the DPF index of f̂l. Therefore, ŵP1

ν = ŵP2
ν = ŵP3

ν (by definition of f̂l; see Step
2 of the Gen algorithm), and so we suppress player superscripts and write simply
ŵν . Meanwhile, per (7) we have that wP

∗ = vP
L = GL(xPL

μ) if ν is the left child,
and otherwise wP

∗ = vP
R = GR(xPL

μ), since ν is off-path and parent μ is on-path,
then αl = 1 (respectively αl = 0) when ν is the left child (respectively right
child) of μ. Also, since μ is on-path, the seeds on μ satisfy invariant (2), and for
convenience we will denote the three keys’ seeds as above. Finally, since ν is off-
path but parent node μ is on-path, the sibling of ν must be on-path, and thus by
the invariant of (6), we have that

⊕
P bP

ν = 1. Thus, there are four possibilities
for the values of (bP1

ν , bP2
ν , bP3

ν): (1, 1, 1), (0, 0, 1), (0, 1, 0), or (1, 0, 0). We do a
case-analysis just of the first two; the latter two are similar to the second:

Case C.1: {bP
ν } = (1, 1, 1) :

κP1 (via (16)) κP2 (via (16)) κP3 (via (16))

xP
ν G∗(b) ⊕ ŵν G∗(c) ⊕ ŵν G∗(a) ⊕ ŵν

yP
ν G∗(c) ⊕ ŵν G∗(a) ⊕ ŵν G∗(b) ⊕ ŵν

zP
ν G∗(a) ⊕ ŵν G∗(b) ⊕ ŵν G∗(c) ⊕ ŵν

Case C.2: {bP
ν } = (0, 0, 1) :

κP1 (via (16)) κP2 (via (15)) κP3 (via (15))

xP
ν G∗(a) ⊕ ŵν G∗(d) ⊕ ŵν G∗(b) ⊕ ŵν

yP
ν G∗(d) ⊕ ŵν G∗(b) ⊕ ŵν G∗(a) ⊕ ŵν

zP
ν G∗(b) ⊕ ŵν G∗(a) ⊕ ŵν G∗(d) ⊕ ŵν

Case 2: ν is the right child of μ.
The argument for this case is essentially identical to Case 1, making the sym-
metric replacements of HL → HR, rl → sl, and tl → ul. Details are provided in
the full version. �

References

[AFL+16] Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput
semi-honest secure three-party computation with an honest majority. In:
CCS, pp. 805–817. ACM Press (2016)

[APY20] Abraham, I., Pinkas, B., Yanai, A.: Blinder: MPC based scalable and
robust anonymous committed broadcast. In: CCS. ACM Press (2020)

CNF-FSS and Its Applications 313

[BCG+19] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 16

[BGI15] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 12

[BGI16a] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 19

[BGI16b] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and
extensions. In: CCS, pp. 1292–1303. ACM Press (2016)

[BGI18a] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and
extensions (2018). https://eprint.iacr.org/2018/707.pdf

[BGI+18b] Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homo-
morphic secret sharing. In: ITCS, pp. 21:1–21:21 (2018)

[BIK05] Beimel, A., Ishai, Y., Kushilevitz, E.: General constructions for
information-theoretic private information retrieval. J. Comput. Syst. Sci.
71(2), 213–247 (2005)

[BIW07] Barkol, O., Ishai, Y., Weinreb, E.: On locally decodable codes, self-
correctable codes, and t-private PIR. In: Charikar, M., Jansen, K., Rein-
gold, O., Rolim, J.D.P. (eds.) APPROX/RANDOM -2007. LNCS, vol.
4627, pp. 311–325. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74208-1 23

[BKKO20] Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party dis-
tributed ORAM. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS,
vol. 12238, pp. 215–232. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57990-6 11

[BL88] Benaloh, J., Leichter, J.: Generalized secret sharing and monotone func-
tions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 3

[BLMR13] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40041-4 23

[CBM15] Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous mes-
saging system handling millions of users. In: IEEE SP, pp. 321–338. IEEE
Computer Society (2015)

[CDI05] Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-
sharing and applications to secure computation. In: Kilian, J. (ed.) TCC
2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30576-7 19

[DHRW16] Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and
its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53015-3 4

https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://eprint.iacr.org/2018/707.pdf
https://doi.org/10.1007/978-3-540-74208-1_23
https://doi.org/10.1007/978-3-540-74208-1_23
https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4

314 P. Bunn et al.

[DIO98] Di-Crescenzo, G., Ishai, Y., Ostrovsky, R.: Universal service-providers for
database private information retrieval. In: PODC, pp. 91–100. ACM Press
(1998)

[DS17] Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS,
pp. 523–535. ACM Press (2017)

[ECZB19] Eskandarian, S., Corrigan-Gibbs, H., Zaharia, M., Boneh, D.: Express: low-
ering the cost of metadata-hiding communication with cryptographic pri-
vacy. CoRR, abs/1911.09215(v1) (2019)

[Efr09] Efremenko, E.: 3-query locally decodable codes of subexponential length.
In: STOC, pp. 39–44. ACM Press (2009)

[FLNW17] Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure
three-party computation for malicious adversaries and an honest majority.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211,
pp. 225–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 8

[GI99] Gilboa, N., Ishai, Y.: Compressing cryptographic resources. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 591–608. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1 37

[GI14] Gilboa, N., Ishai, Y.: Distributed point functions and their applications.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 35

[GKW18] Gordon, S.D., Katz, J., Wang, X.: Simple and efficient two-server ORAM.
In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274,
pp. 141–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03332-3 6

[HV20] Hamlin, A., Varia, M.: Two-server distributed ORAM with sublinear com-
putation and constant rounds (2020). https://eprint.iacr.org/2020/1547

[IKKP15] Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure
computation with minimal interaction, revisited. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 359–378. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 18

[ISN87] Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general
access structure. In: Globecom, pp. 99–102. IEEE (1987)

[JW18] Jarecki, S., Wei, B.: 3pc ORAM with low latency, low bandwidth, and fast
batch retrieval (2018). https://eprint.iacr.org/2018/347.pdf

[KM19] Kushilevitz, E., Mour, T.: Sub-logarithmic distributed oblivious RAM
with small block size. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol.
11442, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17253-4 1

[LO13] Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
377–396. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36594-2 22

[Mau02] Maurer, U.: Secure multi-party computation made simple. In: SCN, pp.
14–28 (2002)

[OS97] Ostrovsky, R., Shoup, V.: Private information storage. In: STOC, pp. 294–
303. ACM Press (1997)

[ZWR+16] Zahur, S., et al.: Revisiting square-root ORAM: efficient random access in
multi-party computation. In: IEEE Symposium on Security and Privacy,
pp. 218–234. IEEE (2016)

https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/3-540-48405-1_37
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-030-03332-3_6
https://doi.org/10.1007/978-3-030-03332-3_6
https://eprint.iacr.org/2020/1547
https://doi.org/10.1007/978-3-662-48000-7_18
https://eprint.iacr.org/2018/347.pdf
https://doi.org/10.1007/978-3-030-17253-4_1
https://doi.org/10.1007/978-3-030-17253-4_1
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-36594-2_22

Cryptographic Protocols

Efficient Verifiable Partially-Decryptable
Commitments from Lattices

and Applications

Muhammed F. Esgin1,2(B), Ron Steinfeld1, and Raymond K. Zhao1

1 Faculty of Information Technology, Monash University, Clayton, Australia
{Muhammed.Esgin,Ron.Steinfeld,Raymond.Zhao}@monash.edu

2 CSIRO’s Data61, Melbourne, Australia

Abstract. We introduce verifiable partially-decryptable commitments
(VPDC), as a building block for constructing efficient privacy-preserving
protocols supporting auditability by a trusted party. A VPDC is an exten-
sion of a commitment along with an accompanying proof, convincing a
verifier that (i) the given commitment is well-formed and (ii) a certain
part of the committed message can be decrypted using a (secret) trap-
door known to a trusted party.

We first formalize VPDCs and then introduce a general decryption
feasibility result that overcomes the challenges in relaxed proofs arising
in the lattice setting. Our general result can be applied to a wide class
of Fiat-Shamir based protocols and may be of independent interest.

Next, we show how to extend the commonly used lattice-based
‘Hashed-Message Commitment’ (HMC) scheme into a succinct and effi-
cient VPDC. In particular, we devise a novel ‘gadget’-based Regev-style
(partial) decryption method, compatible with efficient relaxed lattice-
based zero-knowledge proofs. We prove the soundness of our VPDC in
the setting of adversarial proofs, where a prover tries to create a valid
VPDC output that fails in decryption.

To demonstrate the effectiveness of our results, we extend a private
blockchain payment protocol, MatRiCT, by Esgin et al. (ACM CCS ’19)
into a formally auditable construction, which we call MatRiCT-Au, with
very low communication and computation overheads over MatRiCT.

Keywords: Lattice · Zero Knowledge · Verifiable
Partially-Decryptable Commitment · Auditable RingCT · Accountable
Ring Signature

1 Introduction

Commitment schemes and accompanying zero-knowledge proofs (ZKPs) have
become crucial tools used in countless privacy-preserving protocols. For exam-
ple, they are extensively used in privacy-aware blockchain applications such as
Monero and Zcash cryptocurrencies to hide sensitive information such as user
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 317–348, 2022.
https://doi.org/10.1007/978-3-030-97121-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_12

318 M. F. Esgin et al.

identities and transaction amounts. In many such privacy-preserving applica-
tions, there is a need for auditability, i.e., the ability of a trusted third-party to
revoke the privacy or anonymity of the protocol, in order to catch or punish mis-
behaving entities. For instance, it is well known that the privacy features of cryp-
tocurrencies have been exploited by cyber criminals to hide their illegal financial
activities, and some level of government oversight may be required in future to
allow such activities to be traced by law authorities. Many applications where
such an auditability feature is needed exist, including group signatures [5], fair
exchange [1], key escrow [23] and e-voting. To enable the auditability property of
the privacy protocol, we would like the protocol to use a decryptable commitment
scheme, supporting a trapdoor decryption algorithm that enables the authority
with some trapdoor to recover a message from a given commitment.1 At the
same time, to prevent malicious parties from escaping the auditability property,
the protocol must support a verifiable decryptable commitment, which allows
protocol parties to verify that a commitment is decryptable by the authority,
while still hiding its contents from all other parties.

A problem similar to constructing verifiable decryptable commitments has
been previously studied under the name of verifiable encryption [4] in the classi-
cal setting of DL-based and factoring-based public-key cryptography. The app-
roach here is to use a public-key encryption scheme as the commitment (with the
secret key known to the authority), and attach to it a zero-knowledge proof of
plaintext knowledge in order to turn it into a verifiable commitment. This app-
roach was extended to the post-quantum lattice-based setting in [18], instantiat-
ing the encryption scheme by a variant of Regev’s encryption scheme [21] based
on (Ring/Module)-LWE. We note that Regev’s encryption scheme can also be
viewed as a decryptable short message variant of the ‘Unbounded-Message Com-
mitment’ (UMC) scheme [3] (see the full version of this paper on IACR’s ePrint
archive). Despite allowing Regev-style decryption, UMC also has the practical
efficiency drawbacks we discuss below.

The use of verifiable Regev encryption as in [18] can result in very long com-
mitments and communication overheads in typical applications. This is because
both the randomness length and commitment length of Regev-encryption com-
mitments have an additive term proportional to the dimension of the message
vector. In typical lattice-based ZKPs such as [7,9,10,12], the structure of the pro-
tocol requires the prover to send commitments to a large number of messages
including masking randomness values as well as auxiliary terms, in addition
to the commitment of the ‘real’ message which needs to be decrypted by the
opening authority (e.g., the payment amount, or payer/payee identity in cryp-
tocurrencies). The protocol also requires the prover to send masked variants of
the commitment randomness. Both those factors lead to long proofs with Regev
encryption commitments. To illustrate, in the MatRiCT cryptocurrency protocol
of [12], an aggregated binary proof is used (see [12, Section 1.2]) to significantly

1 We note here that our notion of a decryptable commitment is different from a trap-
door commitment. For a given commitment and a message, the latter allows a trap-
door holder to find a properly distributed opening randomness for the commitment.

Verifiable Partially-Decryptable Commitments from Lattices 319

reduce the proof length. In this proof, it is necessary to commit to individual
bits of integers by separate ring elements so that each bit can be manipulated
independently. As a result, the total message dimension in a commitment over
the underlying polynomial ring Rq is in the order of several hundreds (the ‘real’
message is still a few hundreds dimensional). If one were to use a Regev-style
encryption for this commitment, the commitment alone would cost around 100–
200 KB. In comparison, this commitment costs only about 13 KB in MatRiCT
thanks to the use of a compressing commitment.

To reduce the length of commitments/proofs, an alternative approach
(used in [12]) to Regev-encryption commitments is to instead use lattice-based
‘Hashed-Message Commitments’ (HMC), where message hashing leads to a short
commitment dimension independent of the total dimension of the committed
messages. In HMC, message hashing is achieved by multiplying the (long) mes-
sage vector by a random ‘fat’ (i.e., compressing) matrix and one relies on the
hardness of (Ring/Module)-SIS to accomplish the binding property. However,
in our context of decryptable commitments, the lack of a unique decryption for
such HMC commitments (due to compression) makes them not directly suitable.
Therefore, we study HMC in the partial decryption setting where the commit-
ted message has two parts: (i) a decryptable message (that contains the ‘real’
message the authority wants to recover), and (ii) a non-decryptable/auxiliary
message (that contains other auxiliary terms that need not be recovered). This
way, we can achieve both of our succinctness and (partial) decryptability goals
simultaneously. We note that a straightforward combination of using UMC for
the decryptable part of the message and HMC for the non-decryptable message
part, although it deals with the auxiliary terms, still suffers from an overhead of
at least two commitments plus the large cost of a UMC commitment. In contrast
to HMC, the latter UMC commitment dimension over Rq is linear in the mes-
sage dimension over Rq, which is over 100 in the context of MatRiCT discussed
above.

An initial attempt to overcome the above-mentioned efficiency issues
of UMC-like commitments in constructing VPDCs, was proposed in [12,
Section 6.1], where a method of incorporating a lightweight Regev-style decryp-
tion trapdoor into an HMC commitment was proposed. However, although a
promising direction to combine the best of both HMC and Regev encryption
commitments, the work of [12] does not give a full solution to the problem, as
it does not address two main technical challenges that we now explain.

Firstly, the decryption algorithm in [12] is only analyzed for honestly-created
commitments without a rigorous framework. The analysis against adversarially-
created commitments/proofs that pass the verification check, which is an impor-
tant requirement in the auditability setting of VPDCs, is missing. We recall that
for the underlying efficient ZKPs of opening for the HMC scheme we study in
this work (see, e.g., [9,10]), the ZKP soundness only guarantees the existence
of a relaxed commitment opening (m, r, y) of a commitment C, satisfying the
relaxed opening relation

320 M. F. Esgin et al.

(yC = Comck(ym; r)) ∧ (y ∈ ΔC) ∧ (m ∈ M), (1)

where y is a short non-zero relaxation factor, ΔC is the set of challenge differences
and M is a public message space. Observe that the message opening m is proven
to be in some set M, which is important for our analysis, and for example,
M = {0, 1}v for some v ≥ 1 for the proof systems in [9,10,12]. Also, note that
the relaxation factor y is unknown to the decryption algorithm as it is part of
the prover’s secret. Thus, it is not clear how one could enable such a decryption
feature in the setting of relaxed proofs as the decryptor does not even know
what to decrypt exactly. The work by Lyubashevsky and Neven [18] addresses
this problem in the setting of verifiable Regev encryption. Particularly in [18],
it is shown that choosing a random y from the set of possible relaxation factors
is in fact a good way to go, and the expected running time for their decryption
algorithm is shown to be proportional to the number of random oracle queries
made by the prover to generate the protocol transcript2. However, this result
is specific to the Fiat-Shamir (FS) protocol3 and the Regev-style decryption
described in [18].

A second technical challenge in constructing an HMC-based partially
decryptable commitment following the approach of [12] is that even if a suitable
relaxation factor y is known by the decryption algorithm, decrypting the commit-
ment with the Regev-style trapdoor key does not directly yield the decryptable
message, but reveals a noisy inner-product (over the underlying polynomial ring
Rq) of the message with a known random vector a, of the form 〈ya,m〉 + e for
some short noise term e (and y the relaxation factor). This leaves the question
of how to efficiently recover the message m from this noisy information. The
work of [12] addressed this issue only for small message spaces (and honestly
generated commitments) by performing an exhaustive search over all possible
messages, which is very restrictive and computationally expensive. How to make
decryption work efficiently for exponentially large message spaces and guarantee
the decryption soundness even against adversarially constructed commitments
having such a relaxed opening has since remained unaddressed.

1.1 Our Contributions

Verifiable Partially-Decryptable Commitments. In this work, we first for-
malize the notion of a Verifiable Partially-Decryptable Commitment (VPDC),
which is closely related to proofs of plaintext knowledge and verifiable encryp-
tion. In particular, a VPDC extends a commitment scheme C and a matching
Non-Interactive Zero-Knowledge Proof (NIZK) Σ of opening for C by adding a
trapdoor key generation algorithm CAddTd and a matching decryption algorithm

2 We refer to [18] for methods that can be used to restrict an attacker from making a
lot of random oracle queries.

3 We call a public-coin proof made non-interactive via the Fiat-Shamir transformation
as a Fiat-Shamir (FS) protocol.

Verifiable Partially-Decryptable Commitments from Lattices 321

CDec for C. The VPDC ensures that any valid commitment-proof pair (C, π) can
be (partially) decrypted using the (secret) trapdoor td output by CAddTd.

The above notion is similar to verifiable encryption except that C is not
an encryption, but rather a commitment. The differences, as pointed out in
the introduction, are as follows. First, a commitment scheme in general allows
for a more succinct encoding of a message (i.e., can be compressing unlike an
encryption) and is readily compatible with many existing proof systems (see,
e.g., [2,3,9–12]), hence has a matching NIZK already available. Second, in a
VPDC, there are two message spaces: (i) a decryptable message space D, whose
elements can be committed and recovered in decryption, and (ii) an auxiliary
message space U , whose elements can be used to create a commitment, but are
not decryptable. As a result, a VPDC eliminates the need for an additional
set of requirements due to an encryption scheme, avoids potential compatibility
issues and enables partial decryption while still permitting a succinct encoding
of the whole message (together with additional auxiliary terms). We therefore
believe VPDCs can serve as an important building block in constructing efficient
cryptographic schemes supporting accountability, such as group signatures, fair
exchange protocols, key escrow and e-voting.

Generalized Analysis of Decryption Feasiblity for relaxed ZKPs. To
address the first main technical challenge of handling relaxed ZKPs in decryp-
tion of VPDCs, we show how to abstract and generalize the decryption algorithm
of [18] that works only for the specific Regev-based (UMC-like) encryption con-
sidered therein, to design an efficient decryption algorithm for any VPDC satis-
fying a few natural properties. In particular, the expected number of iterations
until the decryption function terminates is about the number of random oracle
queries made by the prover in generating the transcript to be decrypted as in
[18]. Our general result is applicable to any VPDC whose underlying NIZK is
derived via the Fiat-Shamir transform in the random oracle model from a Sigma
protocol satisfying a variant of special soundness that is satisfied by all known
instantiations of such Sigma protocols.

A Novel Gadget-Based Regev-Style Decryption for HMC. Building on
the above general foundations, we construct a VPDC extending one of the most
commonly used lattice-based commitment schemes, namely HMC4. For example,
the HMC scheme is an integral part of one of the most efficient post-quantum
ring signatures and set membership proofs in [11], arising from [9,12], as well as
sublinear-sized arithmetic circuit satisfiability proofs in [2].

In particular, to address the second main technical challenge, we introduce
an HMC-compatible trapdoor decryption method that works even when the
decryptable message opening is proven to be in a set of exponential size (such as
2256). We analyze this method in the setting of adversarially-created VPDC out-
puts and provide decryption soundness guarantees. As opposed to the trapdoor
decryption of [12], where the trapdoor decryption yields 〈ya,m〉 + e for a ran-

4 This distinguishes our VPDC construction from the verifiable encryption scheme
of [18], that extends a UMC-type commitment scheme.

322 M. F. Esgin et al.

dom vector a, small noise e and relaxation factor y (which is hard to decrypt),
our new Regev-style partial trapdoor embeds a structured ‘gadget’ vector t̄g in
place of a in the HMC submatrix corresponding to the decryptable message.
With this, trapdoor decryption of a commitment yields t̄y〈g,m〉+e for a ‘large’
integer t̄, which is efficiently decryptable by exploiting the structure of the gadget
vector t̄g using a rounding procedure similar to standard Regev decryption. The
runtime of our new trapdoor decryption is polylogarithmic in the message space
size |D| and we prove that it works correctly even against adversarially-generated
commitments and ZKPs, as long as the system modulus q is sufficiently large
and the message is proven to be a part of a decryptable message space D.

Our lightweight Regev-style ‘partial trapdoor’ also avoids the heavyweight
machinery of ‘full’ lattice trapdoors a-la [19], and still supports SIS-style HMC
commitment, compatible with efficient ZKP techniques used in [9,12]. Using
the ‘full’ trapdoors in [19] in our commitments (with ternary coordinate trap-
door vectors) requires SIS matrices with n rows and m ≥ n log q columns over
the underlying ring, while the ‘partial trapdoor’ commitments we use, m = 2n
columns are sufficient (still with ternary coordinate trapdoor vectors). We save
a significant factor ≈ log q in both public parameter length and the length of
masked messages in the ZKP protocol, for the same security level.

MatRiCT-Au: Auditable RingCT Based on Standard Lattice Assump-
tions. As an application of our compact lattice-based VPDC, we show how it
can enable an extension of the lattice-based RingCT-like private cryptocurrency
protocol MatRiCT [12] easily and efficiently into an auditable variant we call
MatRiCT-Au, where an auditor with access to a (secret) trapdoor can revoke
the anonymity of certain users (e.g., in case of misbehaviour). The auditability
feature can be optional (i.e., each user individually decides whether and by whom
she wants to be audited) or enforced by a simple public check. Our construction
allows adversarially-generated transactions to be audited, whereas, in [12], the
discussion about auditability is incomplete, as the decryption method given there
may fail in the adversarial transaction setting, potentially allowing adversaries
to avoid auditability. Furthermore, the proposal in [12] requires an exhaustive-
search-based approach while we can very efficiently run Audit function over
a message space of size > 2128. To analyze auditability formally in confidential
transactions, we also extend the formal model for RingCT-like protocols in [12] to
add the auditability property and prove formally that MatRiCT-Au is auditable.
We compute concrete parameters for MatRiCT-Au and present implementation
results5. Our evaluation demonstrates the practicality of MatRiCT-Au, and in
particular there are very little communication and computation overheads intro-
duced over the original MatRiCT protocol [12] as shown in Table 1 (see the full
version of this paper for more run-time results).

We believe that our new techniques will find further applications in the
settings where accountable anonymity is desired. Particularly, our extension
of HMC into a VPDC with soundness against adversarially-created outputs
5 The source code of our MatRiCT-Au implementation is available at https://gitlab.

com/raykzhao/matrict au.

https://gitlab.com/raykzhao/matrict_au
https://gitlab.com/raykzhao/matrict_au

Verifiable Partially-Decryptable Commitments from Lattices 323

Table 1. Comparison between MatRiCT [12] and MatRiCT-Au (this work).

Anonymity level 1/10 1/100

of inputs → # of outputs 1 → 2 2 → 2 1 → 2 2 → 2

Proof MatRiCT [12] 93 110 103 120

Size MatRiCT-Au 96 113 106 123

Spend/Verify MatRiCT [12] 242/20 375/23 360/31 610/40

Runtimes MatRiCT-Au 233/21 414/25 402/33 654/42

Parameters MatRiCT [12] PK Size: 4.36 KB Moduli: < 253.0

MatRiCT-Au PK Size: 4.36 KB Moduli: < 255.3

extends the group (or accountable ring) signature in [12] so as to enable effi-
cient anonymity revocation (i.e., opening of a group signature) against cheating
signers. Interesting research directions from here would be, for example, to design
efficient post-quantum e-voting, auction and anonymous credential schemes by
exploiting the accountable anonymity provided by our VPDC.

1.2 Our Results and Techniques

A Novel Gadget-Based Regev-Style Decryption for HMC. Suppose that
we work over a cyclotomic ring Rq = Zq[X]/(Xd + 1), and have a binary secret
vector b ∈ {0, 1}v ⊂ Rv

q that forms the decryptable message to be recovered in
decryption. As explained above, in a typical application protocol, we commit to
this message b together with a non-decryptable message u as C = Comck(b,u; r)
under some commitment randomness r. The application protocol also proves
knowledge of a relaxed opening of C (i.e., knowledge of (y, b′,u′, r′) such that
yC = Comck(yb′,u′; r′) and b′ ∈ {0, 1}v). For simplicity, let us consider the case
y = 1. After dealing with this case, we will discuss how we lift the restriction of
y = 1 using our generalized decryption analysis results from Sect. 4.

The HMC commitment we use has the form C = Comck(b,u; r) = Ar+Bb+
Cu and we recover the decrypted message as an element of Rt for some t ≥ 1.
To allow trapdoor decryption of b, but not r and u, our trapdoor key generation
algorithm embeds a Regev-style ‘gadget trapdoor ’ into the last row t�B of matrix
B and a Regev-style ‘error trapdoor ’ into the last row t�A (resp. t�C) of matrix A

(resp. C). That is, for the ‘gadget trapdoor’ matrix, we have B =
(
B′

t�B

)
with

‘gadget trapdoor’ row t�B = s′�B′ + e�
B + t̄g�, where t̄ = 	q/t
, eB is a short

error, s′ is a random secret, and g� is a ‘gadget’ vector with coordinates of the
form (2iXj)i<τ,j<d where 2τ ≤ t. While for the ‘error trapdoor’ matrices, we

have A =
(
A′

t�A

)
and C =

(
C ′

t�C

)
with ‘error trapdoor’ rows t�A = s′�A′ + e�

A

and t�C = s′�C ′ + e�
C , where eA,eC are short errors. Let s� = (−s′�, 1) be the

trapdoor. We remark that in the prior work [12], the matrix B was a random

324 M. F. Esgin et al.

SIS matrix with no decryption trapdoor, which led to an inefficient exhaustive
search decryption over the message space.

Now, it is easy to observe that C ′ := 〈s, C〉 = e+〈t̄g, b〉, where e := (〈eA, r〉+
〈eB , b〉 + 〈eC ,u〉) is a small error. Thanks to the structure of the gadget vector
t̄g�, the integer coefficients of 〈t̄g, b〉 are multiples of the large integer t̄ and
encode the bits of the decryptable message b in their binary representation.
Thus, b can be recovered from C ′ in the decryption algorithm by rounding out
the small error term e to a multiple of t̄ and performing binary decomposition,
whereas the non-decryptable message/randomness u, r only contribute to the
error term e.

To apply our gadget-based Regev-style decryption for HMC to adverserially-
generated commitments with a relaxed proof of opening, we apply the general
result of Theorem 1. To apply the latter theorem, we give a generalized decryp-
tion algorithm for our Regev-style HMC trapdoor and analyse (in Theorem 2
in Sect. 5.5) its correctness and soundness against (i) ‘false rejection’ decryp-
tion errors (where the algorithm fails to recover a decryptable message open-
ing, even though the latter exists), as well as (ii) ‘false acceptance’ decryption
errors (where the algorithm recovers a different decryptable message than the
one in the valid opening), respectively. For (i), to recover the decryptable mes-
sage b even for adverserial commitments C with a non-trivial relaxed opening
yC = Comck(yb,u; r) with some short relaxation factor y, our decryption algo-
rithm recovers y〈g, b〉 mod t after rounding 〈s, yC〉 to a multiple of t̄, and we rely
on invertibility of relaxation factors y mod t to recover b. For (ii), we show that
a mildly larger choice of modulus q than needed for (i) guarantees that incor-
rect (non-unique) decryptable messages are never returned by our decryption
algorithm, even with adverserial commitments/proofs and relaxation factors y.

We remark that the high-level structure of our HMC gadget-based Regev-
style decryption trapdoor is similar to the full LWE inversion trapdoor of [19],
but there are several important technical differences due to our HMC setting that
are crucial to our scheme’s efficiency and security. First, our use of the gadget
during decryption is in some sense ‘dual’ to its use in [19]: in the LWE inversion
problem considered in [19], the LWE secret s is assumed to be uniformly random
mod q (rather than ‘short’), so that trapdoor decryption yields c = G·s+e′ for a
gadget matrix G and short error vector e′. Here, to efficiently recover the ‘large’
coordinate secret s from c, the gadget matrix G is constructed to have log q
powers of 2 (up to q/2) along each of its columns so that the mapping s �→ G ·s
effectively performs bit decomposition of the coordinates of s. This approach
expands the dimension of s by a factor log q to allow recovery of each bit of
each coordinate of s from the corresponding row of Gs. Whereas in our ‘dual’
HMC decryption algorithm, the decryptable message s is binary (and hence
‘short’), so that when our trapdoor decryption similarly yields c = G · s + e′,
we can choose the gadget matrix G = g� to have powers of 2 along its row so
that the mapping s �→ G · s performs binary reconstruction of integers whose
bits are the coordinates of s. Our approach compresses the dimension of s to
a single element over the underlying ring, and minimises the dimension of the

Verifiable Partially-Decryptable Commitments from Lattices 325

underlying matrices/commitments. Hence, our algorithm can also be viewed as
a more efficient inversion trapdoor for LWE in ‘dual’ knapsack form (c = Bb for
‘short’ b and ‘fat’ B) rather than the more usual ‘primal’ form (c = As+ e for
‘short’ e and ‘tall’ A) addressed in [19]. A second difference from [19] is our use
of error trapdoors for the HMC submatrices corresponding to non-decryptable
message/randomness. And thirdly, as outlined above, our decryption algorithm
analysis handles the adverserial commitment case with relaxed opening proofs,
whereas [19] only analyses decryption for honestly created LWE samples.

MatRiCT-Au Application. To show the usefulness of our novel decryption
method in practice, we apply it in the setting of MatRiCT [12]. In MatRiCT, a
commitment B encodes (i) an index in binary form that identifies the real user
creating the transaction, and (ii) the bits of the transaction amount. Therefore,
we can apply our novel decryption method to decrypt this commitment. Overall,
in addition to revoking the anonymity, we can enable an auditor to recover the
hidden transaction amount. This is similar in spirit to traceable range proofs
[15] (though the techniques are completely different).

Recently, a newer version of MatRiCT was published in [11]. Our techniques
apply also to this newer version, called MatRiCT+, and the overhead of extend-
ing MatRiCT+ to support auditability is just an increase of about 20% in proof
size. We discuss further details in the full version of this paper.

Organization of the Paper. Section 2 covers preliminaries. We introduce the
formal definitions of a VPDC in Sect. 3. Our generalized analysis of decryption
runtime for relaxed ZKPs is introduced in Sect. 4. Then, in Sect. 5, we provide,
along with the ordinary HMC scheme, the details of our new lattice-based VPDC,
its decryption algorithm, and its adversarial soundness and run-time analyses.
We discuss how VPDC can be used to construct MatRiCT-Au in Sect. 6 and,
due to limited space, provide the full details relating to MatRiCT-Au in the full
version of this paper on IACR’s ePrint archive. Particularly, our extended formal
model for RingCT-like protocols, the full description of MatRiCT-Au (including
parameter setting and implementation details), and the security discussions of
MatRiCT-Au are provided in the full version.

2 Preliminaries

For an odd modulus q, the ring of integers modulo q, Zq = Z/qZ, is repre-
sented by the range

[− q−1
2 , q−1

2

]
. To denote column vectors and matrices, we

use bold-face lower-case letters such as x and bold-face capital letters such as
V , respectively (hence, x� denotes a row vector). (x,y) is used to denote con-
catenation of the two vectors x and y to form a single longer vector. For a

vector x = (x0, . . . , xn−1), we define the following norms ‖x‖ =
√∑n−1

i=0 x2
i ,

‖x‖∞ = maxi |xi| and ‖x‖1 =
∑n−1

i=0 |xi|. When considering a norm of a poly-
nomial f , we define the same norms on the coefficient vector of f . For a vec-

tor f = (f0, . . . , fs−1) of polynomials, we further define ‖f‖ =
√∑s−1

i=0 ‖fi‖2,

326 M. F. Esgin et al.

‖f‖1 =
∑s−1

i=0 ‖fi‖1 , ‖f‖∞ = maxi ‖fi‖∞ . The Hamming weight of the (con-
catenated) coefficient vector of f is denoted by HW(f). U(S) denotes uniform
distribution on a set S.

Capital letters such as C denote commitments, and we write Sd·k when a total
of kd coefficients are sampled from a set S in order to generate k polynomials in
R = Z[X]/(Xd + 1) of a power-of-2 degree d. SB denotes the set of polynomials
in R, where each coefficient has an absolute value bounded by B ∈ Z

+.

2.1 Security Assumptions

In our applications, we use a commitment scheme whose security relies on the
following well-known lattice problems.

Definition 1 (M-SISn,m,q,βSIS
). Given A ← Rn×m

q sampled uniformly at ran-
dom, the Module-SIS (M-SIS) problem asks to find a short x ∈ Rm

q such that
Ax = 0 over Rq and 0 < ‖x‖ ≤ βSIS.

Definition 2 (M-LWEn,m,q,B). The Module-LWE (M-LWE) problem asks to
distinguish between the following two cases: (i) (A,As + e) for A ← Rm×n

q , a
secret vector s ← S

n
B and an error vector e ← S

m
B , and (ii) (A, t) for A ← Rm×n

q

and t ← Rm
q .

It is known that the secret s can equivalently be sampled from U(Rn
q).

2.2 Zero-Knowledge Proofs

A Relaxed NIZK Σ = (K,P,V) for relation Rσ and its relaxed counterpart R′
σ

with Rσ ⊆ R′
σ (parameterized by a common reference string σ) and their corre-

sponding languages Lσ = {u : ∃r s.t. (u, r) ∈ Rσ} and L′
σ = {u : ∃r s.t. (u, r) ∈

R′
σ} respectively, consists of the following algorithms (here, u denotes a language

member and r denotes a witness):

σ ← K(1λ) : is the PPT common reference string generation algorithm of Σ that
outputs a common reference string σ.

π ← PH(σ, u, r) : is the PPT prover algorithm of Σ that, given a common refer-
ence string σ, access to a random oracle H and a language member u and a
witness r with (u, r) ∈ Rσ, outputs a proof π.

0/1 ← VH(σ, u, π) : is the PPT verification algorithm of Σ that, given a common
reference string σ, access to a random oracle H and a language member u
and proof π, outputs 0 (invalid) or 1 (valid).

We remark that our lattice-based constructions regard the commitment key
as part of the CRS σ (a similar issue arises in both DL-based Pedersen and
lattice-based commitments). We refer to the full version of this paper for the
standard definitions of completeness, soundness and zero-knowledge for NIZK
proofs.

Verifiable Partially-Decryptable Commitments from Lattices 327

Our VDPC construction is based on a NIZK obtained using the Fiat-Shamir
(FS) transform [13] applied to an interactive Zero-Knowledge Sigma protocol
ΣI = (KI,PI,VI) for relations Rσ,R′

σ (parameterised by a common reference string
σ) with a challenge space C and public-private inputs (u, r) with same notations
for relations as above. We refer to the full version of this paper for the standard
definitions of completeness, special soundness and honest-verifier zero-knowledge
for Sigma protocols. The FS heuristic transforms ΣI into a NIZK using a random
oracle H, by letting the prove algorithm compute the verifier’s challenge from
the common reference string σ, public input u, and commitment message w,
setting x = H(σ, u, w).

2.3 Commitment Schemes

A commitment scheme C = (CKeygen,Commit,COpen) consists of three algo-
rithms:

pp = (ck,M,R) ← CKeygen(1λ) : is a PPT key generation algorithm returning
pp containing a commitment key ck and descriptions of message space M and
randomness space R. Note pp is an implicit input to the remaining algorithms.

(C, o) ← Commit(m) : is a PPT commitment algorithm which for message m ∈
M, outputs a commitment C to m together with an opening o.

0/1 ← COpen(C, o) : is a deterministic poly-time opening algorithm that given
commitment C and opening o, checks whether o is a valid opening of C.

An opening o of a commitment is a tuple containing a message m, randomness
r, and possibly also relaxation factors used by the opening algorithm (e.g., the
relaxation factor y used in the lattice-based HMC commmitment in Sect. 5.1).
We write m(o) to denote the message part of opening o. We refer to the full
version of this paper for standard definitions of correctness, hiding and binding
properties of commitment schemes.

3 VPDC: Verifiable Partially-Decryptable Commitments

A VPDC is an extension of two building blocks: (1) a (non-decryptable) com-
mitment scheme C, and (2) a NIZK relaxed proof of opening protocol Σ for C.
The VPDC adds a new trapdoor key generation algorithm CAddTd to embed a
hidden partial decryption trapdoor td in the commitment key of C, such that
with this trapdoor, efficient partial decryption of commitments accompanied by
a valid relaxed proof of opening is possible, using the VPDC’s partial decryp-
tion algorithm CDec. In particular, for VPDC, we view the commitment scheme’s
message space M as the product of two sets D and U , where D is the decryptable
message space and U is the auxiliary message space. For a commitment opening
o, we let μ(o) denote the decryptable message part of o.

Formally, a Verifiable Partially-Decryptable Commitment scheme VPDC =
(C,Σ,CAddTd,CDec) consists of a (non-decryptable) commitment scheme C =

328 M. F. Esgin et al.

(CKeygen,Commit,COpen) with message space M = D × U (the decryptable
message space D and auxiliary message space U respectively), and a matching
NIZK relaxed proof of opening protocol Σ = (K,P,V) for C, a trapdoor key
generation algorithm CAddTd and a partial decryption algorithm CDec.

We say that the underlying NIZK Σ is a matching NIZK relaxed proof of
opening for C if:

– On input 1λ, the CRS generation algorithm K returns a CRS of the form σ =
(pp, σ′), where pp = (ck,M,R) is C’s public parameters pp ← CKeygen(1λ).
(i.e. Σ has pp in its CRS).

– Σ satisfies the standard completeness, soundness and zero-knowledge proper-
ties with respect to the following commitment opening relations RC,pp ⊆ R′

C,pp

(parameterised by the commitment key pp from the CRS):

RC,pp = {(C, o) : ∃(m, r) ∈ (M × R) with (C, o) = Commit(m; r)}

and
R′
C,pp ⊆ RCOpen

C,pp := {(C, o) : COpen(C, o) = 1} .

In addition to the algorithms (CKeygen,Commit,COpen) of C and the algo-
rithms (K,P,V) of Σ, VPDC adds two new algorithms to enable decryptability,
with the following syntax:

(cktd, td) ← CAddTd(ck,D,U) : a PPT algorithm that on input a commitment
key ck and a description of the decryptable and auxiliary message spaces D
and U such that M = D × U , outputs a ‘trapdoored’ commitment key cktd

and a partial decryption trapdoor td.
μ′ ← CDectd(C, π) : is a probabilistic algorithm that on input a commitment C

with a corresponding proof π and a trapdoor td, outputs a message μ′ ∈ D.

We now list several additional properties for a VPDC, all of which are enjoyed
by our construction:

Succinctness: The bit length of the commitment should depend only poly-
logarithmically on the bit length of the auxiliary message.6

Additive Homomorphism: The commitment message and randomness spaces
are subsets of modules with operations (+, ·) over some underlying scalar ring
R, the commitment space is a subset of a module with operations (⊕,⊗) over
R, and there exists a set S ⊆ R of scalars, such that for all messages m1,m2 ∈
M, randomness r1, r2 ∈ R and scalar α ∈ S, we have C = α ⊗ C1 ⊕ C2 for
(C, ·) := Commit(α · m1 + m2;α · r1 + r2), (C1, ·) := Commit(m1; r1) and
(C2, ·) := Commit(m2; r2).

Small Integer Decryptable Message Space: The decryptable message space
D ⊂ Rv is of the form D := Zv

B, where ZB ⊆ Z is a set of integers of
small maximum absolute value B = λo(1), and v is the decryptable message
dimension over the underlying scalar ring R.

6 Note that succinctness cannot be achieved for the decryptable message.

Verifiable Partially-Decryptable Commitments from Lattices 329

The succinctness property is essential for the efficient application of our
VPDC in ZKPs. For our concrete VPDC construction, U is a much bigger set
than D. Thus, one can commit to auxiliary terms together with the target mes-
sage to be decrypted under a single succinct commitment to save significant
communication thanks to the commitment’s compression feature (which is not
available in encryption-based commitments). Here, we stress that partial decryp-
tion (as opposed to full decryption) is an important feature, not a drawback. If
we required full decryption, then we would not be able to achieve succinctness.
Similarly, the additively homomorphic property is needed to support efficient
(e.g., ‘Schnorr-like’ [22]) ZKPs that rely on this property. Note that such a
homomorphism is needed also for the non-decryptable message parts. This pre-
cludes a simple VPDC solution that would commit by hashing the auxiliary
message part with a non-homomorphic collision-resistant hash function. The
‘Small Integer Decryptable Message Space’ property is required to efficiently
support certain classes of ZK proofs needed in applications, such as the binary
proofs, range proofs and 1-out-of-N proofs in [9,12,14]. Here, the fact that the
message coordinates are integers, rather than general ring elements, allows for
independent manipulation of the committed decryptable message coordinates
(e.g., for computing an integer vector inner-product or independent evaluation
of a quadratic function on all message coordinates) as needed in the verification
of such ZK proofs. Their smallness bound (size B = λo(1)) allows the length of
such proofs to be kept short.

It is important to note that our VPDC model allows all of the following three
properties together within the same environment:

– one can commit to any message in M, where decryption is (computationally)
infeasible. Such commitments are simply ordinary commitments and in this
case, the commitment key ck should be used.

– one can commit to any message μ in D together with an auxiliary message
in U , where recovery of μ is possible using td. In this case, the commitment
key cktd should be used.

– one can commit to any message in M, where decryption is not necessarily
needed. Here, both commitment keys ck or cktd can be used and commitments
created this way are easily compatible with the rest of the protocol.

We require that C satisfies the standard correctness, hiding and binding
properties of commitment schemes. Furthermore, we recall that NIZK proof
Σ is required to be a matching NIZK for C (see above), and so satisfies the
completeness, (relaxed) soundness and zero-knowledge properties for relations
(RC,pp,R

′
C,pp) defined above.

In addition, as a partially-decryptable extension of a given commitment
scheme C and matching ZK proof Σ, we would like the VPDC’s trapdoor key
generation algorithm for C to preserve the functionality and security properties
of C and Σ. Accordingly, we say that C (resp. Σ) satisfies the VPDC trapdoor key
variants of correctness, hiding, and binding properties for C (respectively, the
trapdoor key variants of completeness, (relaxed) soundness and zero-knowledge
for Σ) if the properties are still satisfied when the commitment key generation

330 M. F. Esgin et al.

calls pp = (ck,M,R) ← CKeygen in C (resp. its call in K of Σ) are followed
by the trapdoor commitment key generation calls (cktd, td) ← CAddTd(ck) and
pp′ = (cktd,M,R) replaces pp. For ease of reference, we define from hereon
(cktd, td,M,R) ← CKeygenTd(1λ) as the function that runs (ck,M,R) ←
CKeygen(1λ) and (cktd, td) ← CAddTd(ck), and returns (cktd, td,M,R). The
following commitment Key Indistinguishability property for a VPDC suffices for
this purpose (see Proposition 1).

Key Indistinguishability. A VPDC scheme is said to satisfy key indistin-
guishability if any PPT adversary A wins the following game with probability
1/2 + negl(λ):

1. pp0 = (ck,M,R) ← CKeygen(1λ),
2. pp1 ← (cktd,M,R), where (cktd, td) ← CAddTd(ck).

3. b
$← {0, 1},

4. b′ ← A(ppb).
5. A wins the game if b′ = b.

The following proposition is immediate from the fact that the trapdoor key
td does not appear in the view of the adversary in the security games defining
the trapdoor key variants of the C and Σ properties. Therefore, by key indistin-
guishability, any attack against the VPDC trapdoor key variant properties of C
(resp. Σ) would imply a corresponding attack contradicting the assumed (non
trapdoor key variant) property of C (resp. Σ).

Proposition 1. If a VPDC scheme VPDC = (C,Σ,CAddTd,CDec) satisfies key
indistinguishability, then C (resp. Σ) satisfies the VPDC trapdoor key variants of
correctness, hiding, and binding properties for C (respectively, the VPDC trapdoor
key variants of completeness, (relaxed) soundness and zero-knowledge for Σ).

In some applications, it is desirable to strengthen the binding requirement for
the VDPC so it holds even against attackers that are given the partial decryption
trapdoor key td (e.g. in our blockchain application as we do not want auditors
to create fake proofs). We call this requirement trapdoor-binding.

Trapdoor-Binding. A VPDC is (computationally) trapdoor-binding if, for
(pp, td) ← CKeygenTd(1λ), the following probability (over the randomness
of PPT A and CKeygen) is negligible

Pr[(C, o, o′) ← A(pp, td) : m(o) �= m′(o) ∧ COpen(C, o) = COpen(C, o′) = 1].

We capture the decryptability requirements for VPDC by the Decryption
Soundness and Decryption Feasibility properties defined as follows.

Decryption Soundness. A VPDC scheme is said to satisfy Decryption Sound-
ness if any PPT adversary wins the following Exp:Soundness game with
negl(λ) probability.

Verifiable Partially-Decryptable Commitments from Lattices 331

1. P := (cktd, td,M,R) ← CKeygenTd(1λ)
2. (C, π) ← A(P),
3. b ← Vcktd(C, π),
4. μ′ ← CDectd(C, π).

A wins the game if b = 1 and one of the following conditions holds

(i) There exists no opening o such that COpen(C, o) = 1, or
(ii) There exists an opening o such that COpen(C, o) = 1 and μ(o) �= μ′.

Decryption Feasibility. A VPDC scheme is said to satisfy Decryption Fea-
sibility if, for any α ≥ 1 and any PPT adversary A, if b = 1 in Step 3 of
game Exp:Soundness above, the running time of CDectd(C, π) in Step 4 of
game Exp:Soundness is at most α · TA · poly(λ), except with probability
≤ 1

α + poly
(

TA
2λ

)
, where TA is the runtime of A.

Remark 1 (Decryption Soundness). The decryption soundness property captures
the informal requirement that it should be infeasible for an attacker to output
a maliciously-created commitment and proof (C, π) that passes the V verifica-
tion check, but where C cannot be decrypted into the correct decryptable mes-
sage μ using the trapdoor decryption algorithm CDectd. The latter may occur
either because of the non-existence of a decryptable message opening (case i), or
because of the existence multiple decryptable message openings that may cause
a ‘false accept’ decryption error (case ii).

Remark 2 (Decryption Feasibility). The decryption feasibility requirement cap-
tures the property that the decryption algorithm does not run for ‘too long’.
Here, a too long decryption time corresponds to exceeding the attacker run-
time by a super-polynomial factor. Jumping ahead to our construction, simi-
larly to [18], this attacker time corresponds to the number of queries made by
the attacker to a certain random oracle. Such a runtime as given in our decryp-
tion feasibility definition (arising from our results generalizing those of [18]) is
currently the best one can achieve for relaxed proofs, where the relaxation factor
is unknown to the decryptor.

There are examples of VPDC-like constructions in the literature satisfying
some but not all of our desired properties. For example, the proofs of plaintext
knowledge in general are an example, where the commitment is an encryption
scheme and U = ∅. For a lattice-based construction, one may see the discussions
in [18, Section 3.3] and [7]. The “extractable” commitment scheme in [12] is
another (weaker) example, where the decryption soundness holds only against
honest provers and decryption runtime is linear in |D|. The main motivation for
our VPDC notion is that we want the additional properties of succinctness (i.e.,
C should be compressing, which is not possible for encryption) and decryption
feasibility and soundness against cheating provers. These properties are achieved
by our concrete construction VPDCHMC (Sect. 5).

332 M. F. Esgin et al.

4 Generalized Decryption Feasibility for Relaxed Proofs

In this section, we study the decryption algorithms for relaxed NIZK proofs and
show a general result on the Partial-Decryption Feasibility of any VPDC in which
the underlying NIZK Σ is derived from a suitable interactive Sigma protocol ΣI

using the Fiat-Shamir (FS) transform. Our result generalizes previous results
of [18]. The discussion is kept abstract in this section to preserve the generality
of our results. Our concrete lattice-based instantiation of decryption algorithms
is given in the next section.

The questions we focus on are as follows. If one is given a valid transcript
tr = (C,w, x, z) for Σ and a trapdoor td that enables recovering a message from a
well-formed commitment of the form x̄C for an unknown relaxed opening factor
x̄ (also known as a relaxation factor) and a known commitment C, how should
one precisely design the overall decryption algorithm? Moreover, what is the
expected number of iterations until the decryption algorithm terminates?

To answer these questions, we prove the general result in Theorem 1 below
for the generic decryption algorithm given in Algorithm 1. This approach first
allows us to put our decryption methodology into a general framework. Then,
we identify the connections between the components of Algorithm 1 that must
be satisfied so that the decryption runs in polynomial time. As the result can be
applied to any suitable functions F,Rec, V ′ in Algorithm 1, we can use this result
to analyze the run-time of different decryption methods. Besides the Partial-
Decryption Feasibility, there is, of course, also the Partial-Decryption Soundness
aspect that depends on the concrete instantiation of CDec, which will be analyzed
in the next section.

Our Partial-Decryption Feasibility result applies to VPDCs in which the
underlying NIZK Σ is derived via the FS transform from an interactive Sigma
protocol with the following mild variant of the special soundness property, that
we call existential special-soundness. This property relaxes the standard PPT
efficiency requirement for extractor E , but requires that the extracted witness
contains a component (relaxation factor x̄ = x − x′ in Schnorr-like protocols)
depending on only the two input transcript challenges via a poly-time com-
putable function F (the latter syntactic requirement is used in our decryption
compatibility definition below). Therefore, the existential special-soundness is
directly implied by the standard special-soundness property for a large class of
known Schnorr-like Sigma protocols, in which E is efficient, and F (x, x′) = x−x′.

Definition 3 (Existential Special-Soundness). We say that a Sigma pro-
tocol ΣI = (KI,PI,VI) for relations RC,pp,R

′
C,pp (parameterised by a common

reference string pp) with a challenge space C and public-private inputs (C, o),
satisfies existential special-soundness if the following holds.

• Existential special-soundness: There exists an extractor E and a deter-
ministic poly-time algorithm F such that, given (pp, σ′) ← KI(1λ) and two
accepting protocol transcripts tr = (C,w, x, z) and tr′ = (C,w, x′, z′) with
x �= x′, computes an extracted witness of the form ō = (x̄, ō′) where

Verifiable Partially-Decryptable Commitments from Lattices 333

Algorithm 1. CDectd(tr)
INPUT: tr = (C, π = (w, x, z)) ΣI protocol transcript; td trapdoor
OUTPUT: (m′, x′) such that V ′(m′) = 1 for some validity check V ′

1: loop

2: x′ $← C � Choose a random challenge
3: x̄ = F (x, x′) � F (x, x′) = x − x′ for 2-sound FS proofs
4: m′ = Rec(x̄, tr, td) � Tries to decrypt a well-formed commitment
5: if V ′(m′) = 1 then � Check if the recovered message is “valid”
6: return (m′, x′)
7: end if
8: end loop

x̄ = F (x, x′), satisfying (C, ō) ∈ R′
C,pp with probability 1 − negl(λ) over the

choice of σ.

The following definition captures the properties of a decryption algorithm
CDec that are sufficient to ensure it terminates in feasible time, if the underlying
Sigma protocol ΣI satisfies existential special-soundness.

Definition 4 (Compatible CDec). Let VPDC = (C,Σ,CAddTd,CDec) with
Σ a matching NIZK relaxed proof of opening for C, and Σ is obtained from a
Sigma protocol ΣI using the Fiat-Shamir transform.

We say that CDec is compatible with Σ if it satisfies the following properties:

P1 : CDec has a structure as in Algorithm 1, where Rec is a PPT algorithm.
P2 : On input td (generated by running (cktd, td,M,R) ← CKeygenTd(1λ)) and

any tr, if, for some loop iteration, Step 3 of CDec computes a “good” x̄ (such
that there exists an opening of the form ō = (x̄, ō′) satisfying (C, ō) ∈ R′

C,pp),
then CDec terminates in this loop iteration, i.e. Rec recovers a message m′

deemed “valid” by V ′(m′) = 1.

The function Rec in Algorithm 1 is a procedure that recovers the message
from a well-formed commitment and will be instantiated depending on our
decryption method. One may imagine it being similar to the decryption of Regev
encryption scheme. However, the Rec function always returns a message m′ that
may simply be useless. Therefore, there is an additional check V ′ to make sure
that the given message is “valid” (where “valid” is protocol-dependent).

Theorem 1 below shows that the only task required to use our results is
to design a compatible decryption algorithm as in Definition 4 (as existential
special-soundness is implied by special-soundness). In essence, this task itself
reduces to making sure that the message recovery algorithm Rec returns a “valid”
message from any given “good” x̄ for the relaxed relation R′

C,pp. In the next
section, we will show how our VPDC allows the recovery of the same message
used to create the proof transcript.

To make it easier to read Theorem 1, let us interpret it in the case of ‘Schnorr-
like’ FS proofs that work as follows. For a homomorphic commitment Commit

334 M. F. Esgin et al.

(we use additive notation as it is the case in the lattice setting), let C =
Commit(r) be an input commitment whose opening the prover wants to prove
knowledge of. The prover computes a ‘masking’ commitment w = Commit(ρ)
for some masking value ρ. Then, she computes a challenge x ← H(pp,C,w),
followed by a response z = ρ + x · r, where r is the prover’s witness. The verifi-
cation V in this case checks w + x · C

?= Commit(z). It is easy to see from here
that this proof has the ‘2-soundness’ property, i.e., a knowledge extractor can
extract a (relaxed) opening of C given two ‘rewinded’ accepting transcripts with
distinct challenges. In particular, given accepting (C,w, x, z) and (C,w, x′, z′)
with x �= x′, we have x̄C = Commit(z̄) for x̄ := x−x′ and z̄ := z −z′. Therefore,
the concrete functions in this case are F (x, x′) = x − x′ and (C, (x̄, z̄)) ∈ R′

C,pp

iff x̄C = Commit(z̄), i.e., R′
C,pp in Theorem 1 corresponds to the relaxed commit-

ment opening relation COpen(C, (x̄, m̄, r̄)) where z̄ = (m̄, r̄). Here, (x̄, z̄) serves
as an extracted witness/opening for C. It is easy to see that the existential
special-soundness property follows from the special-soundness of the ‘Schnorr-
like’ protocol. Although in the setting of the Schnorr proof of knowledge of
discrete-log [22], one may further recover an exact opening of u by computing
z̄/x̄, this approach does not work in the lattice variants [16,17] as z̄/x̄ must be
short (relative to the system modulus q), which cannot be guaranteed unless
some costly measures are implemented7.

Theorem 1. Let VPDC = (C,Σ,CAddTd,CDec) with Σ a matching NIZK
relaxed proof of opening for C, and Σ is obtained from a Sigma protocol ΣI using
the Fiat-Shamir transform with random oracle H : {0, 1}∗ → C.

If ΣI satisfies Existential Special Soundness (Definition 3), CDec is compat-
ible with Σ (Definition 4) and |C| ≥ 2λ, then VPDC satisfies Decryption Feasi-
bility.

Concretely, let Ĥ and D̂ be the random coins of H and CDec, respectively,
and T be the number of loop iterations in the execution of CDec in Step 6 of
game Exp:Soundness when b = 1. Then, for any A that makes at most qH − 1
queries to H and any positive α,

Pr
Ĥ,D̂

[T ≥ α · qH] ≤ 1
α

+ 2 ·
√

qH

α · |C| +
qH

|C| . (2)

Proof (Theorem 1). The proof follows essentially the same blueprint as in the
proof of [18, Lemma 3.2], but we show precisely where the properties in the
theorem statement are needed.

Let pp be some public parameters. For a given tr = (C,w, x, z) of ΣI, define
the set of “good” challenges Gtr as follows

Gtr = { x′ ∈ C : ∃z′ : VI(C,w, x′, z′) = 1 } . (3)

Here, VI denotes the verification algorithm of ΣI. Let G be the event that A
produces tr with |Gtr| > f for f =

⌈√
|C|

αqH

⌉
.

7 For example, exact lattice proofs (see, e.g., [7]) require around 40–50 KB in compar-
ison to 2–3 KB for relaxed lattice proofs.

Verifiable Partially-Decryptable Commitments from Lattices 335

Claim: For any valid tr = (C,w, x, z), if CDec chooses x′ with x′ ∈ Gtr \ {x},
then CDec terminates.
The claim follows from the following facts. If the assumption of the claim
holds, then there exist (C,w, x, z) (as the input) and (C,w, x′, z′) such that
VI(C,w, x, z) = VI(C,w, x′, z′) = 1 by the definition of Gtr. Then, by the exis-
tential special soundness of ΣI, there exists (x̄, ō′) such that x̄ = F (x, x′) and
(C, (x̄, o′)) ∈ R′

C,pp. Now, by the property P2 of CDec, the claim follows.
As a result, the probability that CDec terminates in one iteration is at least

|Gtr|−1
|C| . Therefore, we have

ExpD̂

[
T | AH outputs tr

] ≤ |C|
|Gtr| − 1

, and also (4)

ExpD̂

[
T | AH outputs tr ∧ G

] ≤ |C|
f

. (5)

We say that “AH outputs tri” if AH outputs tr = (C,w, x, z) such that the
output of A’s i-th random oracle query is x. As in [18], without loss of generality,
we consider an adversary A that (1) makes qH random oracle queries, (2) uses
one of the random oracle outputs in his output transcript and (3) only makes
random oracle queries for transcripts tri with |Gtri | > f as we are conditioning
on G. Then, similar to [18], we have the following

ExpĤ,D̂ [T | G]=
qH∑
i=1

Pr
Ĥ

[AH outputs tri | G
]
ExpD̂

[
T | AH outputs tri ∧ G

]
. (6)

For each random oracle query made by A for a transcript tri, the probability (over
Ĥ) that A outputs tri is at most the probability that the random oracle query
output is in Gtri , as otherwise there exists no response z such that VI(C,w, x, z) =
1. Therefore, each tri can be output with probability at most |Gtri

|
|C| . Then, using

this fact and (4), we get

ExpĤ,D̂ [T | G] ≤
qH∑
i=1

|Gtri |
|C|

|C|
|Gtri | − 1

≤ qH · max
i=1,...,qH

(|Gtri |
|Gtri | − 1

)
≤ qH(f + 1)

f
.

For any random oracle query, the probability that A outputs a transcript with
|Gtr| ≤ f is at most f/|C|. Therefore, we have

Pr
Ĥ,D̂

[¬G] ≤ f · qH

|C| . (7)

Using now Markov’s inequality and (7), we get

Pr
Ĥ,D̂

[T ≥ αqH] = Pr
Ĥ,D̂

[T ≥ αqH | G] Pr
Ĥ,D̂

[G] + Pr
Ĥ,D̂

[T ≥ αqH | ¬G] Pr
Ĥ,D̂

[¬G]

≤ ExpĤ,D̂ [T | G]

α · qH
+ Pr

Ĥ,D̂
[¬G] ≤ f + 1

α · f
+

f · qH

|C| =
1
α

·
(

1 +
1
f

)
+

f · qH

|C| .

336 M. F. Esgin et al.

Plugging in the value of f =
⌈√

|C|
αqH

⌉
proves the result. ��

5 HMC-Based VPDC from Lattices

5.1 Instantiation of (Ordinary) HMC

We start by describing the (ordinary) Hashed-Message Commitment (HMC)
scheme C underlying our lattice-based VPDC. Let n,m, q be positive integers
with m > n. If we want to commit to a v1-dimensional ‘real’ message over Rq

for v1 ≥ 1 together with a v2-dimensional auxiliary message for v2 ≥ 0, then
HMC is instantiated as follows.

– CKeygen(1λ) : Sample A ← Rn×m
q , B ← Rn×v1

q and C ← Rn×v2
q . Output

ck = G = [A ‖B ‖C] ∈ R
n×(m+v1+v2)
q , message space M = D × U with

D := S
v1
α and U := S

v2
β , and R := S

m
B for some α, β,B ≥ 1.

– Commitck(m,u) : Sample r ← S
m
B . Output C and o = (1,m,u, r), where

C =,m,ur = G · (r,m,u)� = A · r + B · m + C · u.

– COpenck(C, (y,m′,u′, r′)) : If yC =, ym′,u′r′, ‖(r′, ym′,u′)‖ ≤ γcom, and
dim(m′) = v1, dim(u′) = v2 and dim(r′) = m over Rq, return 1. Otherwise,
return 0.

One can easily observe that HMC is additively homomorphic. Moreover, note
that the opening algorithm is relaxed, where an additional relaxation factor
y ∈ Rq is involved. This relaxation is needed to obtain efficient lattice-based
ZKPs. For classical commitment schemes such as Pedersen commitment, the
relaxation factor is always 1. The same is true for honestly-created lattice-based
commitments. However, efficient lattice-based ZKPs do not always prove that
this is the case. For example, for the exact proof of knowledge of a commitment
opening with y = 1 as in [7], the proof length is more than 40 KB while a relaxed
variant leads to a proof length of only a few KBs. Therefore, the relaxation factor
can be a non-trivial value when created by a cheating prover (that still succeeds
in the ZKP verification). For HMC used within our VPDC below, we say that
the trapdoor-binding property is satisfied w.r.t. to the same relaxation factor if
the relaxation factors in o and o′ in the binding definition in Sect. 3 are restricted
to be the same. This same-relaxation trapdoor-binding property is sufficient for
our applications as well as many prior ones, e.g., [9,10,12], and can be based on a
harder variant of the MSIS problem than the general trapdoor-binding property
(see Lemma 1).

We remark that in some applications, the COpen algorithm checks a slightly
different relation than above, of the form yC = Comck(m′,u′; r′), where the
relaxation factor y does not multiply the decryptable message. However, in this
paper, we need the stronger variant in the above definition. Despite the relaxation
factor, HMC defined above is still (computationally) binding and hiding as we
will discuss in Lemma 1.

Verifiable Partially-Decryptable Commitments from Lattices 337

5.2 Instantiation of NIZK

Our lattice-based VPDC can be instantiated with any suitable Schnorr-like
lattice-based relaxed NIZK proofs of opening for HMC commitments derived
from a Sigma protocol via the Fiat-Shamir transform, such as the one-shot
relaxed binary proof protocols in [9,11,12]. For compatibility with such pro-
tocols, we define the challenge space

Cd
w,p = {x ∈ Z[X] : deg(x) < d ∧ HW(x) = w ∧ ‖x‖∞ ≤ p}.

The same set is also defined in [9] and |Cd
w,p| =

(
d
w

)
(2p)w. Thus, given d, it is

easy to set (w, p) such that |Cd
w,p| > 2256. Throughout the manuscript, we assume

that (d,w, p) is set so that |Cd
w,p| is exponentially large. We also let ΔCd

w,p denote
the set of differences of challenges in Cd

w,p except for the zero element. We design
our VPDC to work with the following definition of relaxed “well-formedness”
of a commitment relation. We refer the reader to Lemma 2 in the Sect. 6 for
a concrete example of such a relaxed NIZK protocol Σ in our cryptocurrency
protocol application.

Definition 5 (γ-valid commitment opening relation R′
C,pp). We say that

o := (y, (m,u, r)) is a γ-valid opening of a commitment C with a decryptable
message space D, denoted by (C, o) ∈ R′

C,pp, if the following holds:

– y ∈ ΔCd
w,p,

– m ∈ D,
– yC = Comck(ym,u; r),
– ‖(ym,u, r)‖ ≤ γ for γ ∈ R

+,
– dim(m) = v1, dim(u) = v2 and dim(r) = m over Rq.

The above relation definition is very similar to COpen except that we addi-
tionally have the first two requirements. For our proof systems (as in Schnorr-
like proofs), the commitment w of the Fiat-Shamir protocol as given in Sect. 4
is uniquely determined by the rest of the proof output. Hence, it need not be
included in the non-interactive proof transcript and therefore its notation is
omitted in the rest of the paper.

5.3 VPDC Trapdoor for HMC

Now, we present our gadget-based Regev-style VPDC trapdoor algorithm
CAddTd for our lattice-based VPDC based on the HMC commitment described
in Sect. 5.1.

Our trapdoor s is designed to allow partial decryption of the latter HMC
commitment, i.e., to recover the decryptable binary message m ∈ {0, 1}v1

from the commitment C = Comck(m,u; r) = G ·
⎛
⎝ r

m
u

⎞
⎠, where G =

[A ‖B ‖C] ∈ R
n×(m+v1+v2)
q is the commitment key matrix, and r and u

338 M. F. Esgin et al.

are the short non-decryptable commitment randomness and auxiliary mes-
sage, respectively. Our trapdoor s is embedded into the matrix G such that
s� · G ≈ [0, t̄g�,0] ∈ Rm+v1+v2

q (with the approximate equality up to a ‘short’
error vector) where t̄g� (with t̄ = 	q/t
) is a large gadget vector of the form
t̄ · (1, 2, 22, . . . , 2τ−1,X,X · 2, . . . , X · 2τ−1, . . .). This means that VPDC partial
decryption of the commitment C can be carried out by computing s�C ≈ t̄g�m.
The (approximately) 0 entries in s� · G annihilate the non-decryptable r and
u vectors in decryption (these vectors only contribute to the short error terms
in the approximate equality), whereas the gadget vector t̄g� entry of s� · G
‘selects’ the decryptable message m and compresses its dimension by recon-
structing and packing groups of τ bits in m into the integer coefficients of
1,X,X2, . . . in the ring element g�m. To achieve the desired trapdoor condition
s�[A ‖B ‖C] ≈ [0, t̄g�,0], for the ‘selection’ gadget, we embed a Regev-style
LWE decryption ‘gadget trapdoor ’ into the last row t�B of matrix B, setting
t�B ≈ s′�B′ + t̄g�, where B′ consists of the top n − 1 rows of B and s′ ∈ Rn−1

q

is random, and we use the form s = (−s′, 1) for the trapdoor. For the annihilat-
ing 0 entries of s� ·G, we embed a Regev-style ‘error trapdoor ’ into the last rows
t�A (resp. t�C) of matrices A (resp. C), setting them to ≈ s′�A′ (resp. ≈ s′�C ′),
where A′ (resp. C′) denote the top n− 1 rows of A (resp. C). Due to the errors
in the above approximate equalities, to an attacker not knowing the secret trap-
door s′, the trapdoor rows of matrix G are indistinguishable from uniformly
random rows, assuming the hardness of the rank-(n − 1) M-LWE problem with
respect to the secret s′.

We now summarise our new gadget-based Regev-style HMC VPDC construc-
tion and start with instantiating CAddTd.

– CAddTd(ck) : Let ck = [A ‖B ‖C] ∈ R
n×(m+v1+v2)
q where A =

[
A′

a�

]
for

A′ ∈ R
(n−1)×m
q and a ∈ Rm

q , B =
[
B′

b�

]
for B′ ∈ R

(n−1)×v1
q and b ∈ Rv1

q , and

C =
[
C ′

c�

]
for C ′ ∈ R

(n−1)×v2
q and c ∈ Rv2

q . Sample s′ ← Rn−1
q , e0 ← S

m
Be

,

e1 ← S
v1
Be

, and e2 ← S
v2
Be

, and set Atd =
[
A′

t�0

]
, Btd =

[
B′

t�1

]
, Ctd =

[
C ′

t�2

]

where t0 = A′�s′ + e0, t1 = B′�s′ + e1 + t̄g and t2 = C ′�s′ + e2, with

g� := (20X0, . . . , 2τ−1X0, 20X1, . . . , 2τ−1X1, . . . , 20Xd′
, . . . , 2�−1Xd′

) ∈ Rv1 ,

τ :=
⌈

v1
d

⌉
, d′ := 	 v1

τ
 (note that d′ ≤ d) and � := v1 mod τ ∈ {0, . . . , τ − 1}.

Output (cktd, td) = ([Atd ‖Btd ‖Ctd], s) where s =
(−s′

1

)
.

The following lemma follows from the hiding/binding properties of standard
HMC commitments, and the M-LWE based key indistinguishability property of
CAddTd. The proof is given in the full version of this paper.

Verifiable Partially-Decryptable Commitments from Lattices 339

Lemma 1. Let the ring Rq split into s fields Fp1 , . . . ,Fps
with p =

min{p1, . . . , ps}. If n·s
pm−n+1 is negligible, then HMC under ‘trapdoored’ commit-

ment keys as output by CAddTd defined above is

– correct if γcom ≥ √B2md + (γyαd)2v1 + β2v2d,
– computationally trapdoor γcom-binding with respect to the same relaxation

factor (resp. γcom-binding) if M-SISn−1,m+v1+v2,q,2γcom
is hard (resp. if M-

SISn−1,m+v1+v2,q,2
√

dγY ·γcom
is hard, where γY := maxy∈Y ‖y‖, and Y is the

set of valid relaxation factors accepted by COpen; for our VPDC, it suffices
to use Y := ΔCd

w,p as in Definition 5).
– computationally hiding if M-LWEm−n,m,q,B and M-LWEn−1,m+v1+v2,q,B prob-

lems are hard.

Additionally, if M-LWEm−n,m,q,B and M-LWEn−1,m+v1+v2,q,B problems are
hard, any commitment vector is computationally indistinguishable from a uni-
formly random element in Rn

q .

Note that there are two main differences in Lemma 1 compared to the
assumptions required for standard HMC (see [12, Lemma 2.3],[6, Lemma 3.4]): (i)
the module rank of M-SIS is reduced by 1 (from n to n−1), and (ii) the hardness
of M-LWEn−1,m+v1+v2,q,B is additionally required. As mentioned before, bind-
ing w.r.t. the same relaxation factor is sufficient for many applications (including
ours) since the reduction creates a challenge commitment with a known exact
opening (i.e., y = 1) and recovers another relaxed opening by rewinding the
adversary. The former exact opening can be multiplied by the relaxation factor
of the latter to solve an M-SIS problem.

5.4 Gadget-Based Regev-Style Decryption for HMC

We now present the decryption algorithm CDecGR for our lattice-based VPDC.
When a commitment key with a trapdoor is used to generate a proof, the ZKPs
we use prove knowledge of an opening (y,m,u, r) of a commitment C such that

yC = Comcktd(ym,u; r) = Atdr + Btdym + Ctdu. (8)

Note that the opening message is also multiplied by the relaxation factor y.
From here, we can try to eliminate the randomness r and the auxiliary message
u by multiplying both sides by the secret trapdoor s. However, the decryptor
does not know what y is. For an honest user, we simply have y = 1, but for
adversarially-generated proofs, that may not be the case. Thankfully, we can
use our new results from Sect. 4 to overcome this problem. Let us first present
the full procedure in Algorithm 2. In this algorithm, the decrypted message is
encoded as an element of Rt for some positive integer t, and we define the integer
t̄ := 	q/t
. We also use the following two functions. The function BDτ,v1(m

′′)
performs bit decomposition of the coefficients of the Rt-encoded message m′′ =
m′′

0 + m′′
1X + · · · + m′′

d−1X
d−1 and returns the resulting binary vector message

m′ = (m′
0, . . . ,m

′
v1−1) ∈ {0, 1}v1 . Namely, for j ∈ {0, . . . , v1 − 1}, it sets m′

j to

340 M. F. Esgin et al.

Algorithm 2. CDecGR(C, x, td, v1)
INPUT: a commitment C ∈ Rn

q ; a challenge x ∈ Cd
w,p; trapdoor td = s ∈ Rn

q ; the
dimension v1 such that D = {0, 1}v1

OUTPUT: (m′, x′) ∈ D × Cd
w,p

1: loop
2: x′ ← Cd

w,p

3: y′ = x − x′ � y′ = 1 is assumed to be tried first
4: C′ = 〈s, y′C〉
5: C′′ = Rndt̄(C

′) where t̄ = �q/t�
6: m̄′ = (t̄)−1 · C′′ ∈ R � Note that C′′ is a multiple of t̄ in R
7: m′′ = (y′)−1 · m̄′ ∈ Rt � If y′ is not invertible in Rt, restart from Step 2
8: m′ = BDτ,v1(m

′′)
9: e′ = C′ − C′′

10: if (‖e′‖∞ < ‖e‖bnd,∞) and (m′′ ∈ [0, . . . , 2τ − 1]d) then
11: return (m′, x′)
12: end if
13: end loop

the k-th bit of the coefficient m′′
�j/τ	 where k := j mod τ . The function Rndt̄(C ′)

rounds each coefficient of C ′ ∈ R to the nearest integer multiple of t̄.
As mentioned in Sect. 4, an important task is to prove that the message

returned by the decryption algorithm (Algorithm 2) is “valid”. We prove this in
Theorem 2 below so that, for a commitment C with a valid NIZK relaxed proof
of opening and a sufficiently large q, the message output by Algorithm 2 is the
same as the one used to generate the commitment C. In the theorem below, we
show the decryption feasibility (which relies on the results from Sect. 4) and also
the decryption soundness of our construction.

Theorem 2 (HMC Decryption). Let VPDCHMC = (C,Σ,CAddTd,CDecGR)
denote our lattice-based VPDC construction with HMC commitment scheme C,
Σ a matching NIZK relaxed proof of γ-valid opening relation R′

C,pp as in Defi-
nition 5, with D := {0, 1}v1 . Suppose that Σ is obtained from a Sigma protocol
ΣI using the Fiat-Shamir transform with random oracle H : {0, 1}∗ → C, ΣI sat-
isfies Existential Special Soundness (Definition 3), that for any fixed x ∈ Cd

w,p,
x − x′ ∈ ΔCd

w,p is invertible in Rt except with negligible probability pni over the
uniformly random choice of x′ ∈ Cd

w,p and |Cd
w,p| ≥ 2λ.

For an adversary A against soundness game Exp:Soundness making qH − 1
queries to its random oracle, let

‖e‖bnd,∞ :=
√

(m + v1 + v2)dBeγ + 2pw(2τ − 1) + t/2. (9)

Suppose that t ≥ 2τ and

t̄ := 	q/t
 >4pw‖e‖bnd,∞ + t(1/2 + 2pw). (10)

Then the following holds:

Verifiable Partially-Decryptable Commitments from Lattices 341

1. Decryption Feasibility: The scheme VPDCHMC satisfies Decryption Feasi-
bility. Concretely, the number of iterations T of the loop over x′ in CDecGR

is upper bounded by α · qH , except with probability at most 1
α + 2

√
qH

α·|Cd
w,p| +

qH

|Cd
w,p| + αqHpni.

2. Decryption soundness: The scheme VPDCHMC satisfies Decryption Sound-
ness. Concretely, we have

AdvExp:Soundness(A) ≤ qH/|Cd
w,p|.

Proof (Theorem 2). Decryption Feasibility: To prove the run-time claim, we
apply Theorem 1. For this, we need to show that the assumptions of Theorem 1
are satisfied. First, by our assumption on ΣI, the existential special-soundness
property is satisfied. For the compatibility of CDecGR and ΣI, the property
P1 is satisfied by structure of the algorithm CDecGR. For the property P2, we
show that if y′ in some iteration of the loop in Step 3 of Algorithm CDecGR is
‘good’ in the sense that y′ is invertible in Rt and there exists a γ-valid opening
(y′,m,u, r) of C as in Definition 5, then decryption will terminate and return
m′ = m. Let us denote by E0 the bad event that y′ is not invertible in Rt.
We first observe that E0 occurs with negligible probability, i.e. Pr[E0] ≤ αqHpni
over at most αqH iterations of CDecGR, since at each iteration y′ = x − x′

where x′ sampled uniformly from Cd
w,p independently of x. Now we show that

P2 holds if E0 does not occur. Indeed, by γ-validity of (y′,m,u, r), we have
y′C = Atdr + Btdy′m + Ctdu and m ∈ {0, 1}v1 .

Multiplying the γ-valid relation by s�, defining 〈e0, r〉+〈e1, y′m〉+〈e2,u〉 :=
e, and using s� · Atd = e�

0 , s� · Btd = t̄g� + e�
1 and s� · Ctd = e�

2 , we
have 〈s, y′C〉 = t̄y′〈g,m〉 + e over Rq. Writing y′〈g,m〉 = (y′〈g,m〉 mod t) +
t	y′〈g ,m 〉

t �, we get the following equality over Rq:

〈s, y′C〉 = t̄(y′〈g,m〉 mod t) + e + ẽ, (11)

where ẽ := t̄t · 	y′〈g ,m 〉
t � mod q. We have ‖t̄(y′〈g,m〉 mod t)‖∞ ≤ 	q/t
(t −

1)/2 ≤ q/2 − t̄/2. Hence, if ‖e + ẽ‖∞ < t̄/2, there is no wraparound mod
q on the right hand side of (11), and since t̄y′〈g,m〉 is a multiple of t̄ in
R, the rounded polynomial C ′′ = Rndt̄(C ′) (recall C ′ = 〈s, y′C〉 mod q) will
be equal to t̄(y′〈g,m〉 mod t) and decryption will succeed and return m. It
remains to show that ‖e + ẽ‖∞ < t̄/2. By the Schwartz inequality, ‖e‖∞ ≤
‖(e0,e1,e2)‖ · ‖(r, ym,u)‖ ≤ √

(m + v1 + v2)dBeγ using ‖(r, ym,u)‖ ≤ γ by
γ-validity. Also, writing t̄ = q/t − ε for 0 ≤ ε < 1, we have ‖ẽ‖∞ = ‖(q/t − ε)t ·
	y′〈g ,m 〉

t � mod q‖∞ = ‖εt · 	y′〈g ,m 〉
t �‖∞ ≤ ‖t	y′〈g ,m 〉

t �‖∞ ≤ t/2 + ‖y′〈g,m〉‖∞,
and ‖y′〈g,m〉‖∞ ≤ ‖y′‖1‖〈g,m〉‖∞ ≤ (2pw)(2τ − 1) using ‖y′‖1 ≤ 2pw
and ‖〈g,m〉‖∞ ≤ 2τ − 1 since m ∈ {0, 1}v1 . Overall, we have ‖e + ẽ‖∞ ≤
‖e‖∞ + ‖ẽ‖∞ ≤ √

(m + v1 + v2)dBeγ + (2pw)(2τ − 1) + t/2 := ‖e‖bnd,∞, which
is less than t̄/2 by condition (10), as required.

Decryption Soundness: To show the decryption soundness claim, let E1

denote the event that A wins and case (i) in Exp:Soundness occurs, i.e.,

342 M. F. Esgin et al.

V(C, x,z) = 1 but a γ-valid opening (C, y, (m,u, r)) of C with y = x − x′′

and x′′ ∈ Cd
w,p does not exist. Similarly, let E2 be the event that A wins and

case (ii) in Exp:Soundness occurs, i.e., V(C, x,z) = 1 and a γ-valid opening
(C, y, (m,u, r)) of C with y = x− x′′ and x′′ ∈ Cd

w,p exists, but CDecGR returns
the wrong message m′ �= m. We show that Pr[E1] + Pr[E2] ≤ qH

|Cd
w,p| .

We first claim that Pr[E1] ≤ qH

|Cd
w,p| . Indeed, for each H-query of A of the

form (pp,C, ·), we have that for any query answer x′ �= x, there does not exist
a z′ such that V(C, x′,z′) = 1 (otherwise, by existential special-soundness of
the protocol ΣI, a γ-valid opening (C, y, (m,u, r)) of C with y = x − x′ would
exist, a contradiction with E1). It follows that Pr[E1] is upper bounded by the
probability that A receives the special challenge x for which a z exists in one of
the ≤ qH queries to H. Since the special challenge is returned with probability
1/|Cd

w,p| in each query, the claimed bound on Pr[E1] follows.
Next, we claim that Pr[E2] = 0. On the one hand, if E2 occurs, then the

existence of the γ-valid opening (C, y, (m,u, r)) of C with y = x − x′′ means
that yC = Atdr + Btdym + Ctdu. Similarly to (11), multiplying the latter by
s� gives us the following relation over Rq:

〈s, yC〉 = t̄(y〈g,m〉 mod t) + e + ẽ, (12)

where e := 〈e0, r〉 + 〈e1, ym〉 + 〈e2,u〉 and ẽ := t̄t · 	y〈g ,m 〉
t � mod q. The same

bound ‖e‖bnd,∞ on ‖e + ẽ‖ applies by the same argument as in the run-time
proof, based on Schwartz inequality. On the other hand, let y′ = x − x′ be the
value chosen in the iteration of the loop in CDecGR for which the message m′ is
returned. Then m̄′ = t̄(y′〈g,m′〉 mod t) ∈ R, and we get the following relation
over Rq:

〈s, yC〉 = t̄(y′〈g,m′〉 mod t) + e′, (13)

where ‖e′‖∞ < ‖e‖bnd,∞ by the decryption check of CDecGR.
We now multiply (12) by y′ and subtract (13) multiplied by y. Let b1 :=

y′(y〈g,m〉 mod t) ∈ R, b2 := y(y′〈g,m′〉 mod t) ∈ R. Note that b1 − b2 =
y′y〈g,m−m′〉 mod t. Writing b1−b2 = (y′y〈g,m−m′〉 mod t)+ t	 b1−b2

t � gives
the following relation over Rq:

t̄(y′y〈g,m − m′〉 mod t) = y′(e + ẽ) − ye′ − ẽ′, (14)

where ẽ′ := t̄t	 b1−b2
t � mod q. We claim that the relation (14) leads to a contra-

diction, so that Pr[E2] = 0. To see this, first observe that the relation actually
holds over R, not just Rq. Indeed, there is no wraparound mod q in the left hand
side of (14), since the left hand side norm is at most ‖	q/t
 · t/2‖∞ < q/2. Since
m−m′ �= 0, and m−m′ ∈ {−1, 0, 1}v1 , we have ‖〈g,m−m′〉‖∞ ≤ 2τ − 1 < t
so 〈g,m − m′〉 �= 0 mod t. Note that y is non-zero in R (since γ-validity of
(C, y, (m,u, r)) implies y ∈ ΔCd

w,p) and y′ is also non-zero in R (since it caused
termination of CDecGR and hence is invertible in Rt) and R is an integral
domain, the left hand side of (14) is a non-zero multiple of t̄ in R. But the

Verifiable Partially-Decryptable Commitments from Lattices 343

norm of the error terms on the right-hand side of (14) is bounded as follows.
First, ‖y′(e + ẽ) − ye′‖∞ < ‖y′‖1‖e + ẽ‖∞ + ‖y‖1‖e′‖∞ ≤ 4pw‖e‖bnd,∞ using
‖y′‖1 ≤ 2pw, ‖y‖1 ≤ 2pw, ‖e + ẽ‖∞ < ‖e‖bnd,∞ and ‖e′‖∞ < ‖e‖bnd,∞. Also,
‖ẽ′‖∞ = ‖t̄t	 b1−b2

t � mod q‖∞ ≤ t	 b1−b2
t � ≤ t(12 +2pw) using |t̄t mod q| < t, and

‖	 b1−b2
t �‖∞ ≤ 1

2 + 2pw using ‖b1‖∞ ≤ ‖y′‖1‖y〈g,m〉 mod t‖∞ ≤ (2pw)(t/2) ≤
pw, and similarly, ‖b2‖∞ ≤ pw. Overall, the norm of the right-hand side of (14)
is bounded as ‖y′(e + ẽ) − ye′ − ẽ′‖∞ < 4pw‖e‖bnd,∞ + t(12 + 2pw), which is
smaller than t̄ by condition (10). So, the left-hand side cannot be a non-zero
multiple of t̄ in R, implying the claimed contradiction. This completes the proof
that Pr[E2] = 0 and the claimed soundness bound. ��

5.5 Generalized Decryption

Our gadget-based Regev-style decryption trapdoor presented in the previous
section, which handles a binary decryptable message space D = {0, 1}v1 , can
be readily generalised to handle more general decryptable message spaces D =
({0, . . . , β−1}[X]<δ)v1 whose coordinates are polynomials in the ring R of degree
< δ with β-ary coefficients for some positive integers δ, β > 1. This generalisation
can naturally be achieved via the appropriate generalisation of the reconstruction
gadget vector g, by setting

g� := (β0X0, . . . , βτ−1X0, β0Xδ, . . . , βτ−1Xδ, . . . , β0Xd′δ, . . . , β�−1Xd′δ) ∈ Rv1 ,

with τ :=
⌈

v1
�d/δ	

⌉
, d′ := 	 v1

τ
 ≤ 	d/δ
. The decryption soundness result, The-
orem 2, directly extends to this generalised case with the term 2τ replaced by
βτ .

5.6 Succinctness of Our HMC-Based VPDC

An HMC commitment C as defined in Sect. 5.1 costs nd log q bits, i.e.,

bitlen(C) = nd log q. (15)

We show that we can choose parameters such that succinctness of the VPDC
is satisfied, i.e., bitlen(C) = logO(1)(bitlen(u)), where bitlen(u) is the bit length of
honestly generated auxiliary messages, assuming the following very mild assump-
tions: (i) v1/d = O(log λ) and (ii) γ = (λ‖u‖)O(1), a condition that is typically
satisfied by the soundness extractor of the associated ZKP. The auxiliary message
space is defined as U := S

v2
B with B = λO(1). Then bitlen(u) := dv2 log(2B). Set

d = Θ(λ), v1 = Θ(λ) (with v1/d = O(log λ)), v2 = λO(1), p = O(1), w = Θ(λ)
(so that |Cd

w,p| ≥ (d/w − 1)w ≥ 2λ), Be = Θ(1) and n,m = Θ(log γ). As a result,
we have t = O(2τ) = O(2v1/d) = λO(1).

In general, we require two conditions to be satisfied: decryption soundness
requirements and M-SIS security requirements (note that M-LWE security affects
the number of columns of the commitment matrix, and thus not the commitment
size). Let us analyze these two aspects.

344 M. F. Esgin et al.

(1) Partial-Decryption Soundness and Feasibility (Theorem 2):

q > Ω(tpwγBe

√
d(m + v1 + v2) + t2pw) = Ω(λO(1)γ log γ). (16)

(2) M-SIS security (Lemma 1): The hardness of M-SISn,m,q,βSIS requires (see
[9, Section 1.2]):

nd log q ≥ Ω(λ log2(βSIS)) = Ω(λ log2(γ)). (17)

Note that βSIS = 2γ as given in Lemma 1. We can satisfy both conditions
with some log q = Θ(log(λγ)) (ignoring log log γ). With this choice, we get
commitment length bitlen(C) = nd log q = Θ(λ log2(γ)). To show it is polylog
in bitlen(u), it suffices to show that log γ = logO(1)(bitlen(u)). Assuming that
γ = (λ‖u‖)O(1), we have log γ ≤ O(log(λ‖u‖)) = O(log λ + log(dv2) + log B) =
logO(1)(bitlen(u)), as required.

6 Extending MatRiCTto Auditable Setting

Having dealt with the core task of constructing and analysing a VPDC, we
now explain how our VPDC construction can be applied to extend a privacy-
preserving confidential transaction blockchain protocol MatRiCT [12] to the
auditable setting. Unlike the auditability feature of the original MatRiCT pro-
tocol, where auditing may fail against adversarially-created transactions, our
auditable MatRiCT variant, called MatRiCT-Au, takes advantage of our VPDC
to efficiently provide auditability soundness guarantees against adverserial trans-
actions. More specifically, we show that only minor modifications to MatRiCT
are sufficient to add the auditability feature. As the whole MatRiCT protocol is
quite involved, in this section, we only briefly review MatRiCT, focusing on the
specific parts of the protocol which we modify.

MatRiCT follows the blueprint of RingCT-like [20] private blockchain pay-
ment protocols, in which there are two main entities: (i) spenders/payers, who
create transactions together with a proof of validity, and (ii) verifiers, who check
that the proof and transaction is valid. The goal of the private payment proto-
col is to enable users to conduct transactions on blockchain while hiding sensi-
tive transaction information such as the payer/payee identities and the payment
amount. Once such information is concealed from the verifiers, it gets harder to
validate transactions as we cannot, for example, simply check that the transac-
tion amount is positive and the total balance of the transaction is zero (i.e., the
amount spent equals the amount received). To this end, the payers create a NIZK
proof showing that they are not creating an invalid transaction, for example, by
proving that the balance is preserved.

To hide the payer identity, MatRiCT makes use of a 1-out-of-N NIZK proof
(or a ring signature), where the identity of the real payer is hidden within a
set of possible payers. This involves committing to the unary representation of
an index � ∈ [0, N − 1]. To hide the payment amount, a commitment to the

Verifiable Partially-Decryptable Commitments from Lattices 345

bits of the transaction amount is used. In fact, the bits representing the user
index and those representing the transaction amount are committed in a single
commitment. To enable an authority to recover these two critical data pieces,
we apply our new VPDC from Sect. 5 for this commitment, so that the VPDC
decryption algorithm recovers (i) the real payer’s index among N users, and (ii)
the transaction amount. Let us investigate more details.

In MatRiCT, an HMC commitment B = Comck(b,u; r) is computed, where
b is a binary vector over Rq̂ for some q̂ ∈ Z

+ (i.e., b = (b0, b1, . . .) such that
bi ∈ {0, 1} ⊂ Rq̂), u is some short auxiliary message and r is some short ran-
domness. Here, the binary vector b is comprised of three components: (i) the
unary representation of an index � that identifies the real payer (i.e., spender)
index among N parties in a ring signature or a 1-out-of-N proof, (ii) the bits
in the binary representation of all output amounts, and (iii) the bits in the so-
called “corrector values”. Our target is to recover the first two components in
decryption so that the authority can learn the two hidden data pieces mentioned
above. Note that the payer indeed proves in zero-knowledge that she owns the
�-th public key and that certain bits (with known indices) in b construct the
output coins. Hence, recovering b guarantees that the real payer index and the
output amounts (and thus the transaction amount) are revealed.

As it is expensive to perform an exact binary proof on B, MatRiCT performs
a relaxed binary proof on B. Let us recall a simplified version of the relation
proven in MatRiCT for the commitment B, which also applies to our variant
MatRiCT-Au.

Lemma 2. Assume that q̂ is sufficiently large and that HMC is γbin-binding
for some γbin that depends on the system parameters. For an input commitment
B ∈ Rn̂

q̂ and a commitment key ck = Ĝ = [A ‖B ‖C] defined over Rq̂, our
binary proof proves knowledge of (y, b, ĉ, r̂) such that

– y ∈ ΔCd
w,p, ĉ ∈ Rv2

q̂ and r̂ ∈ Rm̂
q̂ for some v2, m̂ ≥ 1,

– yB = Comck(yb, ĉ; r̂) = Ar̂ + Byb + Cĉ,
– All coordinates bi of b are in {0, 1}, i.e., b ∈ {0, 1}v1 ⊂ Rv1

q̂ , where v1 =
kβ + Sr + �log(M + S − 1)�(r − 1) for parameters k, β satisfying N = βk,
M,S denoting the number of input/output accounts and r denoting the bit
length of each amount,

– ‖(yb, ĉ, r̂)‖ ≤ γB for some γB ∈ R
+ with γB < q̂.

The above relation is effectively what we study in Definition 5 with D = {0, 1}v1 .
So, the extension we need to make over MatRiCT is to let the spender use
the VPDC from Sect. 5 for the commitment B. In particular, the spender just
needs to update ck = Ĝ with a ‘trapdoored’ commitment key cktd generated
by CAddTd. This simply means that the spender replaces the last row of ck =
Ĝ with trapdoor rows published by an authority. This way, the authority in
possession of the corresponding trapdoor td can execute CDecGR (Algorithm 2)
to recover the vector b, which in turn reveals the real payer index � ∈ [0, N − 1]
and the transaction amount, which is equal to the sum of the output amounts.
In particular, since the commitment algorithm for our VPDC remains exactly

346 M. F. Esgin et al.

the same as the standard HMC commitment algorithm used in MatRiCT, our
VPDC can be directly plugged in and used with the same efficient NIZK proof of
transaction well-formedness used in MatRiCT. For the invertibility of challenge
differences in Rt as required in Theorem 2, we use the results of [8,11].

For the concrete parameter setting in MatRiCT with N = 100, we have
dim(b) = v1 = 291 as (k, β) = (1, N) and (M,S, r) = (1, 2, 64) with the first
kβ = 100 bits having exactly a single ‘1’. As a result, there are more than 2191

possibilities for b (i.e., |D| > 2191). Hence, it is infeasible to do an exhaustive
search over D (as done in [12]) for decryption. As our new decryption’s run-
time is polylogarithmic in |D|, we can efficiently execute it. In particular, as
we discuss in the full version of this paper, to guarantee auditability soundness
against adversarially-created commitments based on our VPDC security bounds
while maintaining the same security level as MatRiCT against best-known lat-
tice attacks, we only need to increase (i) the system modulus q̂ to a 55-bit value
from a 53-bit value and (ii) the commitment matrix dimensions slightly. As
shown in the full version of this paper, the decryption runs very fast despite the
exponentially large message space.

It is important to note here that MatRiCT and MatRiCT-Au crucially relies
on an aggregate binary proof for compactness, where many messages are commit-
ted together inside a single commitment B. Therefore, the additional succinct-
ness feature of VPDC plays an important role. If one were to replace this HMC
commitment with an encryption (or an encryption-like commitment as in [3]),
the proof/commitment length would significantly increase (as also discussed in
the introduction) due to the large input message dimension (several hundreds)
over the polynomial ring Rq̂.

In the full version of this paper, we describe MatRiCT-Au in full details,
and show that addition of a trapdoor as in CAddTd is effectively the only mod-
ification required over MatRiCT. We instantiated MatRiCT-Au concretely and
implemented it in C/C++ (see the full version). We compare MatRiCT and
MatRiCT-Au in Table 1. Our results show that the overhead of MatRiCT-Au
over MatRiCT is very small in both communication and computation.

References

1. Bao, F., Deng, R.H., Mao, W.: Efficient and practical fair exchange protocols with
off-line TTP. In: IEEE S&P, pp. 77–85. IEEE Computer Society (1998)

2. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

3. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

4. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 8

https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-540-45146-4_8

Verifiable Partially-Decryptable Commitments from Lattices 347

5. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

6. Esgin, M.F.: Practice-oriented techniques in lattice-based cryptography. Ph.D. the-
sis, Monash University (2020). https://doi.org/10.26180/5eb8f525b3562

7. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new
techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64834-3 9

8. Esgin, M.F., Steinfeld, R., Liu, D., Ruj, S.: Efficient hybrid exact/relaxed lattice
proofs and applications to rounding and VRFs. Cryptology ePrint Archive, Report
2022 (2022)

9. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

10. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-
Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 4

11. Esgin, M.F., Steinfeld, R., Zhao, R.K.: MatRiCT+: more efficient post-quantum
private blockchain payments. Cryptology ePrint Archive, Report 2021/545 (2021).
http://ia.cr/2021/545. (to appear at IEEE S&P 2022)

12. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient,
scalable and post-quantum blockchain confidential transactions protocol. In: ACM
CCS, CCS 2019, pp. 567–584. ACM (2019). (Full version at http://ia.cr/2019/
1287)

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

14. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

15. Li, W., Wang, Y., Chen, L., Lai, X., Zhang, X., Xin, J.: Fully auditable privacy-
preserving cryptocurrency against malicious auditors (2019). http://ia.cr/2019/
925

16. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

17. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

18. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 293–
323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 11

19. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.26180/5eb8f525b3562
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-21568-2_4
http://ia.cr/2021/545
http://ia.cr/2019/1287
http://ia.cr/2019/1287
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
http://ia.cr/2019/925
http://ia.cr/2019/925
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41

348 M. F. Esgin et al.

20. Noether, S.: Ring signature confidential transactions for monero. Cryptology ePrint
Archive, Report 2015/1098 (2015). http://ia.cr/2015/1098

21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009). Preliminary version in STOC 2005

22. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

23. Young, A., Yung, M.: Auto-recoverable auto-certifiable cryptosystems. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 17–31. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054114

http://ia.cr/2015/1098
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/BFb0054114

Making Private Function Evaluation
Safer, Faster, and Simpler

Yi Liu1,3 , Qi Wang1,2(B) , and Siu-Ming Yiu3

1 Research Institute of Trustworthy Autonomous Systems and Guangdong Provincial
Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer

Science and Engineering, Southern University of Science and Technology,
Shenzhen 518055, China

liuy7@mail.sustech.edu.cn, wangqi@sustech.edu.cn
2 National Center for Applied Mathematics Shenzhen,

Southern University of Science and Technology, Shenzhen 518055, China
3 Department of Computer Science, The University of Hong Kong,

Pokfulam, Hong Kong SAR, China
smyiu@cs.hku.hk

Abstract. In the problem of two-party private function evaluation
(PFE), one party PA holds a private function f and (optionally) a pri-
vate input xA, while the other party PB possesses a private input xB .
Their goal is to evaluate f on xA and xB , and one or both parties may
obtain the evaluation result f(xA, xB) while no other information beyond
f(xA, xB) is revealed.

In this paper, we revisit the two-party PFE problem and provide sev-
eral enhancements. We propose the first constant-round actively secure
PFE protocol with linear complexity. Based on this result, we fur-
ther provide the first constant-round publicly verifiable covertly (PVC)
secure PFE protocol with linear complexity to gain better efficiency. For
instance, when the deterrence factor is ε = 1/2, compared to the passively
secure protocol, its communication cost is very close and its computation
cost is around 2.6×. In our constructions, as a by-product, we design a
specific protocol for proving that a list of ElGamal ciphertexts is derived
from an extended permutation performed on a given list of elements. It
should be noted that this protocol greatly improves the previous result
and may be of independent interest. In addition, a reusability property
is added to our two PFE protocols. Namely, if the same function f is
involved in multiple executions of the protocol between PA and PB, then
the protocol could be executed more efficiently from the second execu-
tion. Moreover, we further extend this property to be global, such that it
supports multiple executions for the same f in a reusable fashion between
PA and arbitrary parties playing the role of PB.

Keywords: Extended permutation · Private function evaluation ·
Publicly verifiable covert security · Secure two-party computation

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 349–378, 2022.
https://doi.org/10.1007/978-3-030-97121-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_13&domain=pdf
http://orcid.org/0000-0003-1722-6746
http://orcid.org/0000-0001-9780-5443
https://doi.org/10.1007/978-3-030-97121-2_13

350 Y. Liu et al.

1 Introduction

The two-party private function evaluation (PFE) problem considers the scenario
where a party PA holds a private function f and (optionally) a private input xA

while the other party PB has another private input xB . These two parties intend
to compute f(xA, xB) without the existence of a third party. Finally, one or both
parties may obtain f(xA, xB), while they cannot deduce any other information
beyond their specified outputs during the interaction. As a special case of secure
computation, note that PFE is different from the notion of standard secure
function evaluation (SFE). The key difference is that the function f is commonly
known by participants in SFE, while f should remain private in PFE, in the sense
that everything about the function, except an upper bound on its size and the
lengths of both input and output, is hidden.

Both data and algorithms are valuable in numerous real-world scenarios, such
as medical and commercial applications. For instance, we consider the follow-
ing business scenario between a traditional enterprise and an algorithm-driven
company. The traditional enterprise has a dataset, while the algorithm-driven
company holds a powerful data mining algorithm that can process this dataset.
On the one hand, the algorithm-driven company does not intend to disclose the
algorithm. On the other hand, since the dataset may contain sensitive data,
the traditional enterprise is unwilling to reveal the dataset to others. We note
that this dilemma can be solved by a PFE protocol that allows the traditional
enterprise to receive the result of privately running the algorithm on the dataset.

It is trivial to design a PFE protocol based on fully homomorphic encryption
(FHE) schemes [17]. However, the efficiency of FHE schemes is still prohibitive,
and researchers attempted to design PFE in the setting of traditional multi-
party computation (MPC). In the literature, some PFE protocols specify a lim-
ited set of functions, such as polynomials [12,31,35] and low-depth circuits [38],
while others are general-purpose, focusing on functions implemented by arbi-
trary (polynomial-size) circuits [1]. In this paper, we work on general-purpose
PFE protocols, and thus the PFE protocols mentioned in the rest of this paper
are assumed to be general-purpose.

To construct general-purpose PFE protocols, there exist two main
approaches. The first approach reduces the PFE problem to the problem of
secure computation for universal circuits (UC) (see [2,18,24,26,29,30,40,42]).
UC refers to a sequence of circuits U = {Un}n∈N, each of which can take as
input (the description of) a circuit C of size n and a valid input x, and out-
put C(x) ← Un(C, x). Therefore, we can combine UC with traditional MPC
techniques, such as Yao’s garbled circuits [28,41], to obtain PFE protocols. The
major goal of this line of work is to reduce the size of UC and improve the tra-
ditional MPC techniques. However, a noted barrier of UC-based PFE protocol
is that a (Boolean) UC has (optimal) size |Un| = Θ(n log n) [40], where the con-
stant factor (more than 12 for the state-of-the-art result [30]) and the low-order
terms are significant. Hence, when the size of a circuit used for evaluation is
relatively large, the considerable expansion of its size caused by the use of UC
makes UC-based PFE prohibitive.

Making Private Function Evaluation Safer, Faster, and Simpler 351

The second approach avoids the usage of UC. In 2011, Katz and Malka [22]
proposed a constant-round passively secure two-party PFE protocol applied on
Boolean circuits, and the protocol achieves linear complexity in circuit size.
This linear-complexity PFE protocol has asymptotically less computation and
communication complexity than UC-based PFE protocols that have complexity
Θ (n log n). Very recently, an implementation [20] of the passively secure PFE
protocol [22] showed that this protocol outperforms the state-of-the-art UC-based
PFE protocol not only in communication but also in total running time, e.g., it
is ∼ 3.3× faster in a LAN and ∼ 7.0× faster in a WAN for private circuits of size
106. Subsequently, the work [33] introduced a general framework for designing
PFE protocols. This general framework captures the idea of [22] and provides a
slight improvement in communication cost. In addition, a PFE protocol based on
oblivious evaluation of switching networks (OSN) was provided in [33] and was
later improved in [8]. However, it is shown [2,7] that OSN-based PFE protocols
have Θ(n log n) computation and communication complexities limit their usage
when the size of circuits is considerable. More recently, a passively secure re-
executable PFE protocol with linear complexity was proposed in [7]. With this
reusability property, it is shown [7] that this protocol has significantly better
performance than the PFE protocol in [22] and [33] when the protocol is executed
any number (more than one) of times for the same function by the same two
parties.

Since parties may deviate from the protocol to gain more advantages, such
as learning the other party’s input and affecting the output of the protocol,
it is more realistic to consider PFE protocols that are secure under stronger
security models. Unfortunately, even though the line of work for PFE protocols
with linear complexity has better performance theoretically and experimentally,
existing protocols are mainly focused on the semi-honest model, and very few
results managed to provide protocols in stronger security models.

To the best of our knowledge, only two papers considered PFE protocols
with linear complexity that are secure against malicious adversaries. The seminal
work [22] introduced how to compile their passively secure PFE protocol to be
secure against malicious PB, i.e., the party that provides the private input xB , via
specific efficient zero-knowledge protocols. However, the security of the compiled
protocol is not full-fledged, and the function provider PA is required to be semi-
honest. The subsequent work [34] proposed an actively secure PFE framework
with linear complexity based on the results in [33]. However, the number of
rounds in this protocol is equal to the number of gates for the evaluated circuit.
This will simply become a bottleneck when the size of the circuit is considerable.

Besides the malicious model, there is no PFE protocol with linear complex-
ity in other security models. We notice that the publicly verifiable covert (PVC)
model is particularly useful for many scenarios that PFE protocols may apply to.
Covert security was introduced by Aumann and Lindell [4]. It serves as a com-
promise between semi-honest and malicious security definitions, and thereby pro-
vides a more realistic security guarantee than semi-honest security and has sig-
nificantly less overhead than malicious security. Informally, a malicious party is

352 Y. Liu et al.

still allowed to covertly deviate from the protocol execution in this model. How-
ever, this misbehavior will be detected by honest parties with a certain probability
ε, which is called deterrence factor. The fear of being caught will deter partici-
pants from acting maliciously and deviating from the protocol. The PVC security
notion that enhances the covert security model was introduced by Asharov and
Orlandi in 2012 [3]. PVC security guarantees that once the misbehavior of a mali-
cious party is caught, honest parties could generate a publicly verifiable certificate
to persuade others, including those outside the protocol, that the malicious party
is cheating. Meanwhile, it should be guaranteed that this malicious party learns no
information about the inputs of honest parties even when the certificate is given.
This notion significantly strengthens the covert security model especially when
parties’ reputations are important. A general PVC-secure two-party computation
protocol was proposed in [3] based on garbled circuits and the Signed-OT tech-
nique. Then the Signed-OT protocol was improved in [25] to obtain a more efficient
PVC-secure protocol. Subsequently, an elegant protocol [21] using a derandomized
approach was proposed in 2019. Avoiding the use of costly Signed-OT, this proto-
col is more efficient than the previous protocols. In the meantime, another proto-
col [43] introduced a notion called financially secure computation that combines
a PVC-secure protocol with blockchain. Very recently, compilers that can trans-
form a two-party passively secure protocol to a PVC-secure protocol were intro-
duced [14,15,39]. It is easy to see that PVC security is useful for two-party PFE
protocols in many realistic scenarios. Note that all existing results for two-party
PVC security [3,14,15,21,25,39] are only designed for SFE, i.e., the function f is
publicly known. Although UC can be integrated into these frameworks to derive a
PVC-secure PFE protocol, so far there is no PVC-secure PFE protocol with linear
complexity.

Therefore, the following question is open so far:

Can we construct a constant-round actively secure and a constant-round
PVC-secure PFE protocols with linear complexity in the two-party setting
while avoiding strong primitives such as FHE?

In this paper, we answer this question. In addition, we borrow the idea of [7]
to realize a reusability property for our protocols and further extend it globally.
A comparison of main properties for all PFE protocols with linear complexity is
summarized in Table 1.

1.1 Our Results

We summarize our results and main contributions in this paper as follows.

Active security. We provide the first constant-round actively secure PFE pro-
tocol with linear complexity in the two-party setting. More precisely, we
design a constant-round two-party PFE protocol that is secure against mali-
cious function owner PA and semi-honest private input provider PB. Then by
leveraging classical MPC results for security against malicious PB providing
private input values, such as the approach used in [22], we can automatically

Making Private Function Evaluation Safer, Faster, and Simpler 353

Table 1. Comparison of the main properties for all PFE protocols with linear com-
plexity.

Paper Security # Round Reusable?

[22] Passive Constant No.

[33] Passive Constant No.

[34] Active # Gates No.

[7] Passive Constant Yes, for two parties.

This paper Active Constant Yes, global reusability.

This paper PVC Constant Yes, global reusability.

obtain the desirable actively secure protocol. Our protocol is composed of an
initiation phase and an evaluation phase.

PVC security. Based on the techniques of our actively secure PFE protocol, we
design the first constant-round PVC-secure PFE protocol with linear com-
plexity in the two-party setting to gain much better efficiency. This protocol
inherits the two-phase structure. It is noted that the additional overhead to
achieve PVC security is very light from both computation and communication
aspects, e.g., when the deterrence factor is ε = 1/2, compared to the passively
secure protocol, its communication cost is very close and its computation cost
is around 2.6×.

Efficiency improvement. We provide the sub-protocol ΠEncEP
zk as a core com-

ponent for our actively secure and PVC-secure protocols. This protocol is
designed for proving that a list of ElGamal [16] ciphertexts is derived from
an extended permutation (see Definition 3) performed on a given list of ele-
ments. A generic construction for such a purpose was originally given in [34],
and it is left open whether it is possible to construct such a protocol in a spe-
cific approach to gaining better performance. Our protocol answers this open
problem, and improves the generic construction [34] significantly: the com-
munication cost of our protocol is less than 1/56 of the generic construction,
and the computation cost is less than 36%.

Reusability (simplified follow-up executions). The reusability property is
added to both of our two PFE protocols. When two specified parties intend
to evaluate the same private function f on different private inputs, they only
need to go through the initiation phase at one time and then execute the
evaluation phase multiple times with different inputs. Moreover, we extend
this property globally. Namely, once an initiation for a private f is performed
by the function owner PA, arbitrary private input providers playing the role
of PB can benefit from the reusability property for f .

2 Preliminaries

We use |S| to denotes the size of a set S and ‖S‖ to denote the number of bits
required to represent elements in the set S. We write x ←$ S for uniformly sam-

354 Y. Liu et al.

pling an element x from the set S. For a positive integer n, let [n] = {1, . . . , n}.
For a bit string x, we use x[i] to represent the ith bit of x. We write a vector
named a as �a = (a1, . . . , an), and use �0 and �1 to denote a vector where all entries
are equal to 0 and 1 when its dimension is clear in the context, respectively. Let
�a�b = (a1b1, . . . , anbn) denote the Hadamard product of two vectors �a and �b,
�a ◦�b = (a1, . . . , ana

, b1, . . . , bnb
) the concatenation of vectors, �aT�b =

∑
i aibi the

inner product, and �g�a =
∏

i gai
i the multi-exponentiation. For a scalar c and a

vector �a, the scalar product is c�a = (ca1, . . . , can).
Let κ be the computational security parameter, and κ is written in unary as

input to all algorithms. A function f in a variable κ mapping natural numbers
to [0, 1] is negligible if f(κ) = O (κ−c) for every constant c > 0. We say that
1 − f is overwhelming if f is negligible.

Given a seed ∈ {0, 1}κ, we can use a pseudorandom function with seed as the
key in the CTR mode to derive sufficiently many pseudorandom numbers and
use them as random coins for operations in protocols.

We use Com to denote the (non-interactive) commitment scheme. We write
decom as the random coins for a commitment, which can be used to open this
commitment. The commitment scheme Com achieves (computationally) bind-
ing and hiding properties. We will use a signature scheme (KGen,Sig,Vf) that
is existentially unforgeable under chosen-message attacks (EUF-CMA) for our
PVC-secure protocol in Sect. 4.

The oblivious transfer (OT) functionality FOT is presented below. Let ΠOT

be the protocol that securely realizes a parallel version of FOT.

Functionality FOT

Private inputs: PA has input x ∈ {0, 1}λ and PB has input {(Ai,0, Ai,1)}i∈[λ].

Upon receiving x ∈ {0, 1}λ from PA and {(Ai,0, Ai,1)}i∈[λ] from PB, the function-
ality sends {Ai,x[i]}i∈[λ] to PA.

The security of our protocol relies on the decisional Diffie-Hellman (DDH)
assumption as follows.

Definition 1. The decisional Diffie-Hellman (DDH) assumption in a cyclic
group G = 〈g〉 of prime order q ∈ Θ(2κ) is that given (ga, gb) for a, b ←$Zq, gab

is computationally indistinguishable from a random element in G.

Under the DDH assumption, we have the following lemma.

Lemma 1 ([36]). Under the DDH assumption for the cyclic group G of prime
order q ∈ Θ(2κ), for any positive integer n = poly(κ), given g1, . . . , gn ←$G, we
have that (gα1

1 , . . . , gαn
n) is computationally indistinguishable from (gα

1 , . . . , gα
n)

for α, α1, . . . , αn ←$Zq.

It is well-known that the DDH assumption implies the discrete logarithm
assumption, which is equivalent to the following assumption.

Making Private Function Evaluation Safer, Faster, and Simpler 355

Definition 2. The discrete logarithm relation assumption in a cyclic group G

of prime order q ∈ Θ (2κ) is that for any positive integer n = poly(κ), given
g1, . . . , gn ←$G, it is computationally hard to find a1, . . . , an ∈ Zq, such that
∃ai
= 0 ∈ Zq∧

∏n
i=1 gai

i = 1. We call
∏n

i=1 gai
i = 1 a nontrivial discrete logarithm

relation.

We use the ElGamal encryption scheme in our protocol. This encryption
scheme is over the cyclic group G = 〈g〉 of prime order q, and it is indistinguish-
able under chosen plaintext attack (IND-CPA) under the DDH assumption for
G. We provide the description of algorithms for the scheme as follows.

Key Generation. This algorithm takes as input the security parameter 1κ,
picks s ←$Zq, and sets h ← gs. Then the algorithm outputs the public key
pk ← (G, q, g, h) and the private key sk ← s.

Encryption. This algorithm takes as input a message m ∈ G and a public key
pk, and returns the ciphertext c ← (c(0) = gr, c(1) = mhr) for r ←$Zq.

Decryption. This algorithm takes as input a ciphertext c = (c(0), c(1)) and a
key pair (pk, sk), and returns m ← c(1)/(c(0))s.

The ElGamal encryption scheme is multiplicatively homomorphic, such that the
multiplication result of two ciphertexts is the ciphertext of the multiplication
result of the two corresponding plaintexts. Computing the power of a ciphertext
c also derives the ciphertext for the power of the corresponding plaintext of c.

2.1 Circuit Representation and Extended Permutation

Here, we introduce an approach to describing Boolean circuits with arbitrary fan-
out (see an example circuit Cf in Fig. 1). For a circuit, we call a wire outgoing
wire (denoted by OW) if it is an input wire of the circuit or output wire of
a gate. Meanwhile, a wire is called incoming wire (denoted by IW) if it is the
input wire of a gate. Outgoing wires are connected with incoming wires, in the
sense that each incoming wire connects with exactly one outgoing wire while an
outgoing wire may connect with an arbitrary number (including 0) of incoming
wires. Suppose that a circuit consists of θ gates, n input bits, and m output bits.
Then this circuit has n + θ outgoing wires and 2θ incoming wires. For a gate
Gi, its output wire is the outgoing wire OWn+i and its two input wires are the
incoming wires IW2i−1 and IW2i. The last m gates are the output gates of the
circuit. Figure 1(b) lists all gates (Gi)i inside the circuit Cf . A formal description
of the connections between incoming wires and outgoing wires is captured by [33]
via extended permutation.

Definition 3 ([33]). For positive integers N and M , a mapping π : [N] → [M]
is an extended permutation (EP) if for every x ∈ [N], there exists one y ∈ [M],
such that y = π(x).

Given an index of an incoming wire, π maps it to the index of the outgoing wire
that connects with this incoming wire (see example in Fig. 1(c)). Note that differ-
ent from the one-to-one correspondence mapping of the standard permutation,
EP allows to replicate or omit elements during the mapping.

356 Y. Liu et al.

OW1

OW2

OW3

OW4

OW6

OW7

OW8
OW9

OW10

OW5

OW11

IW1

IW2

IW3

IW4

IW5

IW6

IW7

IW8

IW9

IW10

IW11

IW12

G3

G1

G2

G4

G5

G6

(a) Circuit Cf assembled by (Gi)i∈θ

OW6 OW7 OW8 OW9 OW10 OW11

OW3 OW4 OW1 OW2OW2 OW3 OW8 OW7OW6 OW6 OW7 OW5

IW1 IW2 IW3 IW4 IW5 IW6 IW7 IW8 IW9 IW10 IW11 IW12

G1 G2 G3 G4 G5 G6

(b) Gates (Gi)i∈θ

IW1 IW2 IW3 IW4 IW5 IW6 IW7 IW8 IW9 IW10 IW11 IW12

OW2OW1 OW3 OW4 OW5 OW6 OW7 OW8

(c) Wire connections and EP πf

Fig. 1. A circuit Cf and the illustration of its wire connections and EP πf .

Given a set of gates (Gi)i∈[θ], the circuit owner PA holding the description of
a circuit Cf can follow the (randomized) procedure below to assign (Gi)i∈[θ] to
positions of gates in Cf and derive an EP πf from the resulting circuit assembled
by this set of gates.

1. Sort indices for non-output gate positions of Cf in a topological order, such
that if the output wire of the ith gate is connected with the input wire of the
jth gate, then i must be smaller than j. The indices of output gates are from
θ − m + 1 to θ.

2. Pick a random standard permutation πR. For non-output gates with indices
i ∈ [θ − m], the position for the ith gate of Cf is assigned to gate GπR(i).

3. For all output gates with indices i = θ − m + 1, . . . , θ, assign gate Gi to the
position of the ith gate.

4. Extract the EP πf for connections of outgoing wires and incoming wires from
the resulting circuit.

When we consider a circuit that only includes one type of gates, e.g., NAND
gates, the circuit can be exactly described by the corresponding EP. Now given
πf , it is easy to derive the description of the circuit. Our protocol indeed leverages
this idea and assumes that circuits only consist of NAND gates for simplicity.

2.2 Building Blocks

In Table 2, we present two zero-knowledge ideal functionalities FDH
zk and FEncEP

zk

associated with the relations RDH and REncEP for the cyclic group G = 〈g〉 of
prime order q as building blocks for our protocols. We will introduce how to
instantiate them in Sect. 3.

3 PFE Protocol for Active Security

In this section, we introduce our constant-round two-party PFE protocol. This
protocol is secure against malicious PA and semi-honest PB. Note that it is

Making Private Function Evaluation Safer, Faster, and Simpler 357

Table 2. Relations and their zero-knowledge ideal functionalities.

Relation Functionality

RDH = {(G, q, {gi}i∈[N], {hi}i∈[N]) | ∃x, s.t.
∧

i∈[N](hi = gx
i)} FDH

zk

REncEP = {(G, q, g, h, {gi}i∈[M], {(c(0)i , c
(1)
i)}i∈[N]) | ∃{ri}i∈[N], π, s.t.

c
(0)
i = gri ∧ c

(1)
i = gπ(i)h

ri ∧ π is an EP. }
FEncEP

zk

straightforward to obtain a constant-round actively secure PFE protocol with
linear complexity by leveraging classical MPC results, such as the approach used
in [22], to compile the protocol to be secure against malicious (circuit grabler)
PB providing private input values.

In PFE, a party PA has a private Boolean circuit input Cf (implementing
a function f) and private input xA ∈ {0, 1}nA , whereas the other party PB has
private input xB ∈ {0, 1}nB . We present the ideal functionality FactivePFE for
our protocol in the following. Here we consider the more general case that the
circuit holder PA has an input xA ∈ {0, 1}nA , and it is not difficult to modify
the protocols to the case that PA has the private input Cf only. For the sake of
simplicity, we assume that only one party will receive the evaluation result. It is
also possible to modify the protocol such that both parties can receive the final
result (see [19, Section 2.5.2]).

Functionality FactivePFE

Pre-agreement: The circuit consists of θ gates, m output wires, and n(= nA +
nB) input wires.
Private inputs: PA has a Boolean circuit input Cf and input xA ∈ {0, 1}nA ,
whereas the other party PB has input xB ∈ {0, 1}nB .

1. If an input of the form aborti from the party Pi for i ∈ {A, B} is received,
the ideal functionality sends ⊥ to both parties and terminates.

2. If an input circuit Cf satisfying the pre-agreement from PA is received, store
Cf .

3. If xA ∈ {0, 1}nA from PA and xB ∈ {0, 1}nB from PB are received and an
input circuit Cf is stored, the ideal functionality computes Cf (xA, xB).
(a) If Pi (which is corrupted by A) is allowed to learn Cf (xA, xB), then it

sends Cf (xA, xB) to Pi.
(b) Otherwise, the ideal functionality sends nothing to the corrupted Pi. Then

if the message continue from A is received, the ideal functionality sends
Cf (x1, x2) to the honest party. Otherwise, if aborti is received from A on
behalf of the corrupted Pi, it sends ⊥ to the honest party.

3.1 Full Description of the Protocol

We now give a full description of our protocol ΠactivePFE. Our protocol consists
of two phases: initiation and evaluation. In the initiation phase, two parties
prepare required data for later evaluations of Cf . Then given the preprocessed
data from the initiation phase, PA and PB evaluate Cf on their inputs xA and

358 Y. Liu et al.

xB in the evaluation phase. At the end of the protocol, parties obtain their
outputs specified by FactivePFE, i.e., the evaluation result Cf (xA, xB) or nothing.
For the first execution of the protocol, PA and PB together execute the initiation
phase and evaluation phase sequentially. Then, if the two parties would like to
evaluate the same circuit Cf on different inputs, they now only need to execute
the evaluation phase using the information previously generated in the initiation
phase. This reusability property will be further extended to global reusability
(see Remark 2). Note that in our protocols, we consider the Boolean circuit Cf

only consists of NAND gates for simplicity. We use the cyclic group G = 〈g〉 of
prime order q as above.

Here, we briefly present the main flow of the protocol. In the initiation phase,
PA derives an EP from her private circuit Cf and establishes connections of wire
labels between incoming and outgoing wires, while PB’s tasks are to assist PA

and ensure that PA honestly follows the protocol. Then in the evaluation phase,
different from the standard paradigm of garbled circuits, we let PB obliviously
garble (all gates of) the circuit for PA. Then PA can evaluate the corresponding
garbled circuit, since she knows the topology of her circuit and the connections
of wire labels established in the initiation phase.

In this initiation phase, PB first chooses a list G of M = n + θ − m different
elements from G and sends G to PA. This list G will be used to derive the
labels of outgoing wires except those that are output wires of the circuit. After
receiving the list G, PA generates an ElGamal encryption key pair. Then PA

derives the EP πf from the circuit Cf following the procedure in Sect. 2.1. Now
PA performs the EP πf on G and encrypts all elements of the resulting list
to obtain the list Φ, where the ith encrypted elements in Φ are of the form
gπ(i). The list Φ is then sent to PB. The EP here is to establish the connections
between the outgoing wires (except output wires of the circuit since they do not
connect with other wires) and the incoming wires for the further generation of
wire labels, and the resulting list is encrypted to hide the EP from PB. Then
PA picks a list T = [t1, . . . , tN] for ti ∈ Zq as the blinding factors. Using the
homomorphic property, PA can compute the tith power of the plaintext of ci

for all ci’s in Φ and obtain the resulting list Φ′, where the ith element is the
encryption of gti

πf (i)
. We note that here ti is used to blind the encrypted values

in Φ, such that PB still does not know the base gπf (i) when the element gti

πf (i)
is

given later, and thus πf and Cf are hidden. Finally, PA helps PB to decrypt all
elements of Φ′ to derive P = [p1, . . . , pN], where pi = gti

πf (i)
. In Fig. 2, we give

an illustration of the procedure that the circuit owner PA will go through in the
initiation phase for the previous example (Fig. 1).

During this procedure, to gain active security, it is important that PA should
prove in zero-knowledge that her operations are valid using the building blocks
in Sect. 2.2. After the initiation phase, PB holds the two lists G and P , while PA

holds the list T , together with lists G and P .
At the beginning of the evaluation phase, PB generates labels for all wires. For

the output wires of the circuit, PB randomly generates wire labels representing 0
and 1 from G. For labels of other wires, PB first picks randomly two values α0 ∈

Making Private Function Evaluation Safer, Faster, and Simpler 359

g2 g3 g3 g4 g1 g2 g8 g6 g6 g7 g7 g5

g2g1 g3 g4 g5 g6 g7 g8

g2
t1 g3

t2 g3
t3 g4

t4 g1
t5 g2

t6 g8
t7 g6

t8 g6
t9g7

t10g7
t11g5

t12

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
Blinding

Extended Permutation

Fig. 2. Procedure of the circuit owner PA in the initiation phase. The values in the
dotted-line box are encrypted values that are hidden from PB.

Zq and α1 ∈ Zq. Then, all incoming-wire and outgoing-wire labels, except the
outgoing wires that are output wires of the circuit (whose have been generated),
are generated via computing the values in the lists P and G to the power of α0

and α1, respectively, for values 0 and 1. Here, each element pi in P is for an
incoming wire IWi, and the pair of its wire labels is computed via (v0

i , v1
i) ←

(pα0
i , pα1

i), i.e., (v0
i , v1

i) = (gtiα0
πf (i)

, gtiα1
πf (i)

). Similarly, for an outgoing wire OWi,
the pair of wire labels (w0

i , w1
i) ← (gα0

i , gα1
i) is computed using gi in G. PB now

can garble all θ gates of the circuit that are composed solely of NAND gates for
PA one by one using these labels via a classical approach for garbling gates as
we will introduce later. Then PB sends these garbled gates to PA. Note that PB

is unaware of the EP πf (and the topology of Cf). An illustration for wire labels
with respect to garbled gates for the previous example (Fig. 1) is given in Fig. 3.
Note that all input-wire labels of the circuit are generated and possessed by PB,
and thus PB picks out the input-wire labels corresponding to his input xB and
sends his garbled inputs to PA. Meanwhile, PA could retrieve the garbled inputs
corresponding to her input xA from PB through OT. This approach inherits from
the standard approach of gabled circuits. Now since PA knows the topology of the
circuit, the list of blinding factors T , and input-wire labels, she can re-construct

G1 G2 G3 G4 G5 G6

g2
t1 g3

t2 g3
t3 g4

t4 g1
t5 g2

t6 g8
t7 g6

t8 g6
t9 g7

t10 g7
t11g5

t12

g7g6 g8 g9 g10 g11

OW6 OW7 OW8 OW9 OW10 OW11

IW1 IW2 IW3 IW4 IW5 IW6 IW7 IW8 IW9 IW10 IW11 IW12(
gt1α0
2
gt1α1
2

)(
gt2α0
3
gt2α1
3

) (
gt3α0
3
gt3α1
3

)(
gt4α0
4
gt4α1
4

) (
gt5α0
1
gt5α1
1

)(
gt6α0
2
gt6α1
2

) (
gt7α0
8
gt7α1
8

)(
gt8α0
6
gt8α1
6

) (
gt9α0
6
gt9α1
6

)(
gt10α0
7
gt10α1
7

) (
gt11α0
7
gt11α1
7

)(
gt12α0
5
gt12α1
5

)

(
gα0
6
gα1
6

) (
gα0
7
gα1
7

) (
gα0
8
gα1
8

) (
gα0
9
gα1
9

) (
gα0
10
gα1
10

) (
gα0
11
gα1
11

)

Fig. 3. Wire labels with respect to garbled gates for the circuit Cf .

360 Y. Liu et al.

the garbled circuit assembled by the received garbled gates and evaluate the
garbled circuit using both parties’ input-wire labels {xi}i∈[n].

We now introduce the approach to garbling gates and evaluating the garbled
circuit assembled by garbled gates. Two algorithms (Gb,Eval) are involved here.

The algorithm Gb is invoked by PB to generate garbled gates (in a one-
by-one manner) for PA. According to the circuit representation approach in
Sect. 2.1, a gate Gi consists of two input wires, i.e., incoming wires, with indices
2i − 1 and 2i, and one output wire, i.e., an outgoing wire, with index n + i.
For such a gate, Gb takes as input the gate index i, the two pairs of input-
wire labels (v0

2i−1, v
1
2i−1) and (v0

2i, v
1
2i), together with the pair of output-wire

labels (w0
n+i, w

1
n+i), and prepares four ciphertexts: ca,b

i ← Enci
va
2i−1,vb

2i
(wa·b

n+i) for
a, b ∈ {0, 1} for a dual-key cipher Enc. Gb outputs the set of garbled gates
{GGi}i∈[θ]. Here GGi = {ca,b

i }a,b∈{0,1}, where ca,b
i are randomly permuted.

Eval is invoked by PA to evaluate the garbled circuit that consists of garbled
gates generated by PB. It takes as input a set of garbled gates {GGi}i∈[θ], a set
of input-wire labels {xi}i∈[n], the list of blinding factors T = {ti}i∈[N], and an
EP πf . This algorithm first derives the description of the corresponding circuit
Cf from πf . Now starting from (outgoing-wire) labels {xi}i∈[n], Eval computes
incoming-wire labels from the corresponding outgoing-wire labels and evaluates
garbled gates one by one following the topographical order of the circuit to
obtain the final output-wire labels. Without loss of generality, for an outgoing
wire OWi, we denote its label in hand by wb

i , where b ∈ {0, 1}. Note that each
outgoing wire may connect with some incoming wires that are the input wires
of some gates. Assume that an incoming wire IWj is connected with OWi, i.e.,
i = πf (j). PA can obtain the wire label of IWj by computing the tjth power
of wb

i , i.e., (wb
i)

tj . It is easy to verify that (wb
i)

tj = g
αbtj

i = pαb
j = vb

j , i.e., the
result is the input-wire (incoming-wire) label we want. When having two input-
wire (incoming-wire) labels (vb

2i−1, v
b′
2i), where b, b′ ∈ {0, 1}, for a garbled gate

GGi, the algorithm can decrypt GGi using these two labels as keys (via a simple
reverse approach of Enc) and obtain the non-⊥ resulting output-wire (outgoing-
wire) label wb·b′

n+i. It is easy to see that the values of the wire b and b′ are hidden
from PA during this procedure. Since Eval follows the topology of the circuit,
input-wire labels of a gate are always ready when we proceed to evaluate that
gate. Finally, Eval returns the decrypted output-wire labels of the output gates.

The dual-key cipher Enc here can be constructed based on the random oracle
(denoted by H : G × G × {0, 1}∗ → {0, 1}‖G‖×τ) in a standard way: to garble a
gate with index i, we let Enci

va
2i−1,vb

2i
(wa·b

n+i) = H(va
2i−1, v

b
2i, i)⊕wa·b

n+i,
1 and further

optimizations exist, e.g., a variant of the point-and-permute optimization [6]
(see [7]). This garbling scheme is secure under the random oracle model, and we
refer readers to see more information in the full version [32].

We provide the formal descriptions of the protocol below.

1 The operator ⊕ here is applied on the bit-representation of the right group element,
and τ specifies the length of proper padding to ensure the check of correct decryption.

Making Private Function Evaluation Safer, Faster, and Simpler 361

Protocol ΠactivePFE

Pre-agreement: Both parties agree on a cyclic group G = 〈g〉 of prime order q,
where DDH assumption holds. They also have the pre-agreement that Cf consists
of θ gates, m output wires, and n(= nA +nB) input wires. We denote the number
of incoming wires by N ← 2θ and the number of outgoing wires except those that
are output wires of the circuit by M ← n + θ − m.
Private inputs: PA has a Boolean circuit input Cf and input xA ∈ {0, 1}nA ,
whereas the other party PB has input xB ∈ {0, 1}nB .

Initiation Phase

In this phase, PA has private circuit input Cf , while PB has no input.

1. PB picks gi ←$G for i ∈ [M], such that all gi’s are different, and collects them
as a list G = [g1, . . . , gM]. Then, PB sends G to PA.

2. PA picks s ←$Zq and computes h ← gs. The public key and private key of
the ElGamal encryption then is denoted by pk = (G, q, g, h) and sk = s,
respectively.
PA derives an EP πf from Cf . Then PA performs πf on the elements of G and
encrypts all resulting elements using pk to derive the list Φ = [c1, c2, . . . , cN],
where ci is the encryption of gπf (i) for i ∈ [N].
PA picks ti ←$Zq for i ∈ [N], such that all ti’s are different, and stores the
list T = [t1, . . . , tN] for the evaluation phase. PB computes the tith power of
each plaintext gπf (i) of ci via the multiplicatively homomorphic property of
the ElGamal encryption to obtain c′

i. Let the resulting list Φ′ = [c′
1, . . . , c

′
N].

PA computes the information for decryption of all ciphertexts c′
i (remember

that c′
i = (c

′(0)
i , c

′(1)
i)), i.e., PA computes di ← (c

′(0)
i)s for i ∈ [N].

PA sends h, Φ, Φ′, and {di}i∈[N] to PB. Then PA uses the functionalities
FEncEP

zk to prove to PB that she has performed a valid EP on G to obtain Φ.
Meanwhile, PA uses FDH

zk to prove to PB her knowledge of s, i.e., the private
key, for (g, {c

′(0)
i }i∈[N]) and (h, {di}i∈[N]), together with her knowledge of ti

for the two-tuple ciphertexts ci and c′
i for all i ∈ [N].

3. PB decrypts all c′
i’s to obtain the plaintexts pi ← c

′(1)
i · d−1

i , and stores a list
P = [p1, . . . , pN] for the evaluation phase.

Evaluation phase

In this phase, PA has private input πf (for Cf) and xA, and PB has private
input xB . PB holds the two lists G and P derived in the initiation phase, while
PA holds the lists T , G, and P . This phase could be executed multiple times for
different input xA and xB once the two parties finish the initiation phase.

1. For output wires of the circuit, PB picks w0
i , w1

i ←$G for i = M+1, . . . , M +m
as the wire labels. Then PB picks α0, α1 ←$Zq. For input wires of the circuit
and output wires of non-output gates, i.e., all outgoing wires except output
wires of the circuit, PB computes labels w0

i ← gα0
i and w1

i ← gα1
i for i ∈ [M].

For all incoming wires, PB computes labels v0
i ← pα0

i and v1
i ← pα1

i for i ∈ [N].
PB computes {GGi}i∈[θ] ← Gb({i, (v0

2i−1, v
1
2i−1), (v

0
2i, v

1
2i), (w

0
n+i, w

1
n+i)}i∈[θ]).

Here, for a gate with index i, (v0
2i−1, v

1
2i−1) and (v0

2i, v
1
2i) are the labels of the

two input wires, and (w0
n+i, w

1
n+i) are the labels of the output wire.

362 Y. Liu et al.

2. PA and PB execute FOT. PB uses as input {(w0
i , w1

i)}i∈[nA], while PA uses as
input all bits of xA ∈ {0, 1}nA . At the end, PA receives her garbled inputs

{xi = w
xA[i]
i }i∈[nA].

3. PB derives xnA+i ← w
xB [i]
nA+i for i ∈ [nB] as his garbled inputs. Then PB sends

GC = {GGi}i∈[θ] and {xnA+i}i∈[nB] to PA. If PA is allowed to know the evalu-
ation result, PB also sends the garbled output mapping {(w0

M+i, w
1
M+i)}i∈[n]

to PA.
4. PA computes the garbled output: {yi}i∈[m] ← Eval(GC, {xi}i∈[nA+nB], T, πf).

If PA is allowed to know the evaluation result y ∈ {0, 1}m, PA can derive and
output y from the garbled output mapping he has received. If PB is allowed to
know the evaluation result, PA sends {yi}i∈[m] to PB so that PB could derive
and output the final result. If the output-wire labels are not consistent with
those PB generated, PB outputs ⊥.

We present the theorem for the security of the protocol ΠactivePFE below.

Theorem 1. If the dual-key cipher is constructed based on the random oracle
as above and the DDH assumption of G holds, the protocol ΠactivePFE securely
realizes FactivePFE in the presence of malicious PA and semi-honest PB in the
(FOT,FEncEP

zk ,FDH
zk)-hybrid world.

The proof of this theorem can be found in the full version [32].
We note that there exist protocols that securely realize FOT (e.g., [11,23]),

such that these protocols can be executed in parallel with constant-round and have
linear complexity in the number of PB’s input wires nA(≤ n � θ). Meanwhile,
there exist protocols (e.g., [13] that can be compiled by Fiat-Shamir heuristic to be
non-interactive) that securely realizes FDH

zk , such that the complexity of the total
execution of the protocols is linear in N(= 2θ), i.e., linear in the number of gates
θ. In Sect. 3.2, we will give a realization of FEncEP

zk that can also be compiled to
be non-interactive and has linear complexity. Therefore, the protocol ΠactivePFE

can be instantiated as a constant-round PFE protocol with linear complexity. By
leveraging classical MPC results, such as the approach used in [22], our protocol
can be compiled to be secure against malicious PB and still preserves constant-
round and linear complexity. Hence, we obtain a constant-round actively secure
PFE protocol in the two-party setting with linear complexity.

Remark 1. The approach in [22] consider the case that PA only provides a circuit
Cf , while in some scenarios, PA may also provide a private input xA. For this
case, we could simply use standard techniques, such as XOR-tree [27], to prevent
malicious PB launching selective-failure attacks.

In the following theorem, we show that executing the evaluation phase mul-
tiple times when the protocol involves the same circuit Cf (and EP πf) does not
sacrifice the security of the protocol ΠactivePFE. The proof of this theorem is put
in the full version [32].

Theorem 2. The evaluation phase of ΠactivePFE can be securely executed multi-
ple times for a fixed circuit Cf . In other words, the protocol that executes one
initiation phase and multiple evaluation phases is secure against malicious PA

and semi-honest PB.

Making Private Function Evaluation Safer, Faster, and Simpler 363

We note that every execution of the evaluation phase in the view of PB is to
generate a set of new garbled gates, and the efforts to achieve reusability are
mainly devoted to preventing PA from learning additional information. There-
fore, when we use classical MPC results, such as the approach used in [22], for
the protocol, it is obvious that this reusability property still holds.

Remark 2. It is important that all messages from PB in the initiation phase,
including those from PB in the protocols that securely realize FDH

zk and FEncEP
zk

(in Sect. 3.2) are all random. Meanwhile, after the initiation phase, PB does not
possess any private information. Therefore, we can make the initiation phase
non-interactive via borrowing the idea of Fiat-Shamir heuristic. Now PA can use
the random oracle to generate messages of PB (using all previous messages),
simulate the interaction, and publish her messages in this simulated interaction
at one time. Via this approach, the protocol is globally reusable for the same
circuit Cf . This means that all parties playing the role of PB can retrieve PA’s
messages and verify the correctness of these published messages. Then it is suffi-
cient for them to directly start the evaluation phase with PA for the fixed private
circuit Cf multiple times using P and G derived in this simulated interaction.
No interaction for initiation phase is needed between PA and a potential party
playing the role of PB. This is a new feature, since the reusability of previous
PFE protocols with linear complexity [7] is locally reusable, such that PA needs
to interactively perform a setup for a fixed circuit with a specified PB, and the
reusability only works for the two parties that perform such a setup together.

3.2 Realization of Functionality FEncEP
zk

In this section, we introduce an approach securely realizing the functionality
FEncEP

zk . We would like to note that although EP is a generalization of permu-
tation (shuffle), it seems that its corresponding zero-knowledge protocol cannot
be constructed by simply modifying or invoking a shuffle protocol, e.g., [5,9].
That may be the main reason why [34] failed to provide such a specific protocol
for EP by extending shuffle protocols (see Appendix B of [34] for their thoughts
on failed attempts) and they only provided a protocol in a generic approach. In
what follows, we provide an efficient and specific protocol for FEncEP

zk .
We firstly introduce the basic idea of our protocol. The job of the prover

in FEncEP
zk is to convince the verifier that the plaintexts of a list of ciphertexts

Φ = [c1, . . . , cN] is derived from an EP that performs on a list of elements
G = [g1, . . . , gM]. In other words, the plaintext of each ciphertext in Φ is one of
the elements in G. Notice that this is equivalent to saying that the plaintext of
a ciphertext ci is �g�ei =

∏M
j=1 g

eij

j , where the vector �ei = (ei1, . . . , eiM) is of the
form that exact one entry is 1 and all other entries are 0, i.e.,

eij =

{
1 if ci encrypts gj ,

0 otherwise.

The vector �ei satisfies such a condition if and only if �1T�ei = 1 and �ei�ei = �ei. The
condition �1T�ei = 1 implies that the sum of all entries of �ei is equal to 1. The

364 Y. Liu et al.

condition �ei�ei = �ei implies that �ei(�ei − �1) = �0, i.e., each entry of the vector is
either 0 or 1. These two conditions conclude that �ei is of the form that exact one
entry is 1 and all other entries are 0. In addition, the corresponding ciphertext
ci is of the form (gri , �g�eihri), which is reminiscent of ElGamal or Pedersen [37]
commitment schemes and can be regarded as a commitment to the vector �ei.
Therefore, the prover’s goal is to prove that each “committed” vector �ei satisfies
�1T�ei = 1 and �ei�ei = �ei, in a zero-knowledge manner. We note that it is possible
for the prover to simultaneously prove the conditions for all �ei’s.

For the proof of the condition �1T�ei = 1, let the verifier pick a challenge
ω ←$Zq. Then using the homomorphic property, both parties compute C =
(
∏N

i=1(c
(0)
i)ωi

,
∏N

i=1(c
(1)
i)ωi

), which can be regarded as a commitment to the
vector �e =

∑N
i=1 ωi�ei. Since ω is random, if

∑N
i=1 ωi(�1T�ei) =

∑N
i=1 ωi holds,

then �1T�ei = 1 holds for all i ∈ [M] with an overwhelming probability. Let
Ω ← ∑N

i=1 ωi. Since
∑N

i=1 ωi(�1T�ei) = �1T�e and �e is committed in C, it is enough
for the prover to prove that �1T�e = Ω holds if the prover is computationally
bounded.

We could follow a similar approach for the proof of the condition �ei�ei = �ei.
Let the verifier pick a random challenge x ∈ Zq. Then, using the homomor-
phic property, both parties compute c�d = (

∏N
i=1(c

(0)
i)xi

,
∏N

i=1(c
(1)
i)xi

), which
can be regarded as a commitment to �d =

∑N
i=1 xi�ei. Since x is randomly

chosen, if
∑N

i=1 xi�ei�ei − �d = �0 holds, then �ei�ei = �ei holds for all i ∈ [N]
with an overwhelming probability. Moreover, let the verifier pick another ran-
dom challenge y ∈ Zq and define a bilinear map ∗ : Z

M
q × Z

M
q → Zq by

(a1, . . . , aM) ∗ (b1, . . . , bM) =
∑M

j=1 ajbjy
j . Similarly, if �ei ∗ �ei −�1 ∗ �ei = 0, then

�ei�ei = �ei holds with an overwhelming probability. Hence, since the vectors �ei’s
and �d have been committed in ci’s and c�d, it is enough for the prover to prove
that

∑N
i=1 xi�ei ∗ �ei −�1 ∗ �d = 0 holds if the prover is computationally bounded.

It is important to note that all gi’s are generated by PB, and thus a compu-
tationally bounded PA cannot find a non-trivial discrete logarithm relation for
{gi}i∈[M] except a negligible probability. This guarantees the soundness of the
protocols. Now we present the protocol ΠEncEP

zk between a prover P and a verifier
V below. Two sub-protocols ΠSum

zk and ΠZero
zk then follow respectively. In these

protocols, V always verifies whether the received messages are of correct form,
and rejects once they are not. These protocols are all public-coin honest-verifier
zero-knowledge, and we can compile them to be non-interactive and secure via
Fiat-Shamir heuristic to obtain the protocols we want.

Protocol ΠEncEP
zk

Public Inputs: A cyclic group G = 〈g〉 of prime order q, where DDH assumption
holds. The public key of the ElGamal encryption scheme pk = (G, q, g, h). A list of
elements G = [g1, . . . , gM]. A list of ElGamal ciphertexts Φ = [c1, . . . , cN], where

ci = (c
(0)
i , c

(1)
i). Elements in G and Φ all belong to the group G.

Making Private Function Evaluation Safer, Faster, and Simpler 365

Witness: P has an EP π and a list R = [r1, . . . , rN] that are random coins of
ciphertexts in Φ, where ri ∈ Zq.

1. For i ∈ [N], P derives a vector 	ei = (ei,1, . . . , ei,M) ∈ Z
M
q from π, such that

the encrypted value of ci can be represented by 	g�ei . For the EP π, this vector
is of the form where exact one entry is 1 and all other entries are all 0.

2. V picks an element ω ←$Zq and sends it to P. Both parties compute C ←
(C(0) =

∏N
i=1(c

(0)
i)ωi

, C(1) =
∏N

i=1(c
(1)
i)ωi

). P computes 	e ← ∑N
i=1 ωi	ei and

r�e ← ∑N
i=1 ωiri. Both parties compute Ω ← ∑N

i=1 ωi. P proves to V the

following relation RSum for 	y = 	1 via the protocol ΠSum
zk :

{(G, q, g, h, G, C, Ω, 	y) | ∃(e, r�e) : C(0) = gr�e ∧ C(1) = 	g�ehr�e ∧ 	yT	e = Ω} .

3. V picks two elements x, y ←$Zq and sends them to P. Both parties compute

c�di
← (c

(0)
�di

= (c
(0)
i)xi

, c
(1)
�di

= (c
(1)
i)xi

) for i ∈ [N] and also c�d ← (c
(0)
�d

=
∏N

i=1(c
(0)
i)xi

, c
(1)
�d

=
∏N

i=1(c
(1)
i)xi

) and c−�1 ← (
∏M

i=1 g−1
i , 1). P computes 	di ←

xi	ei and r�di
← xiri for i ∈ [N], 	d ← ∑N

i=1
	di, and r�d =

∑N
i=1 r�di

. Define a

bilinear map ∗ : ZM
q ×Z

M
q → Zq by (a1, . . . , aM)∗(b1, . . . , bM) =

∑M
j=1 ajbjy

j .

P proves to V the following relation RZero via the protocol ΠZero
zk :

{(G, q, g, h, G, Φ, {c�di
}i∈[N], c�d, c−�1) | ∃({	ei, ri, 	di, rdi}i∈[N], 	d, r�d) :

(∀i ∈ [N], c
(0)
i = gri ∧ c

(1)
i = 	g�eihri ∧ c

(0)
�di

= g
r�di ∧ c

(1)
�di

= 	g
�dih

r�di)

∧c
(0)
�d

= gr�d ∧ c
(1)
�d

= 	g
�dhr�d ∧

N∑

i=1

	ei ∗ 	di −	1 ∗ 	d = 0} .

Theorem 3. The protocol ΠEncEP
zk is an honest-verifier zero-knowledge argument

of knowledge for REncEP.

The proof of this theorem can be found in the full version [32].
The protocol ΠSum

zk between a prover P and a verifier V below uses the idea
mentioned in [10] for recursing the protocol and halving the statement in each
recursion. Thus, ΠSum

zk has logarithmic communication cost. Throughout this
protocol, we assume that the parameter M is a power of 2. If needed, one can
easily pad the inputs to ensure that this holds as in [10].

Protocol ΠSum
zk

Public Inputs: A cyclic group G = 〈g〉 of prime order q, where DDH assumption
holds. The public key of the ElGamal encryption scheme pk = (G, q, g, h). An
ElGamal ciphertexts C = (C(0), C(1)). An element Ω ∈ Zq. Two vectors 	g =
(g1, . . . , gM) and 	y = (y1, . . . , yM) of length M . Denote the length of vectors 	g
and 	y by � = M . Let c�e ← C(1). Both parties initiate an element c′

�e ← gΩ .
Witness: The prover P has witness 	e, r�e.

Statement: There exist 	e and r�e, such that C(0) = gr�e ∧ c�e = 	g�ehr�e ∧ c′
�e = g�yT�e.

366 Y. Liu et al.

– V picks u ←$G and sends u to P. P initiates ρ�e = 0, and ρ′
�e = 0. Then two

parties engage in the procedure below to prove the statement:
There exist 	e, r�e, ρ�e, and ρ′

�e, such that C(0) = gr�e ∧ c�e = 	g�euρ�ehr�e ∧
c′
�e = g�yT�euρ′

�e .
– If � = 1, we denote the only element in 	e, 	g, and 	y by ē, ḡ, and ȳ, respectively.

Let γ ← gȳ. Now c�e, c′
�e, and C(0) are of the form c�e = ḡēuρ�ehr�e , c′

�e = γēuρ′
�e ,

and C(0) = gr�e , respectively. P and V follow the procedure as follows.
1. P picks x1, x2, x3, x4 ←$Zq, and sends a1 ← ḡx1ux2hx3 , a2 ← γx1ux4 ,

a3 ← gx3 to V.
2. V sends α ←$Zq to P.
3. P sends z1 ← x1 + αē, z2 ← x2 + αρ�e, z3 ← x3 + αr�e, and z4 ← x4 + αρ′

�e

to V.
4. V verifies whether equations ḡz1uz2hz3 = a1c

α
�e , γz1uz4 = a2(c

′
�e)

α, and
gz3 = a3(C

(0))α hold. If they all hold, V outputs accept. Otherwise, V
outputs reject.

– If � = 1, P and V follow the following procedure.
1. We write 	e = 	eL ◦ 	eR, 	g = 	gL ◦ 	gR, and 	y = 	yL ◦ 	yR. P computes

vL ← 	g�eL
R uρL , vR ← 	g�eR

L uρR , v′
L ← g�yT

R�eLuρ′
L , and v′

R ← g�yT
L�eRuρ′

R ,
where ρL, ρR, ρ′

L, ρ′
R ←$Zq. Then P sends vL, vR, v′

L, and v′
R to V.

2. V sends α ←$Zq to P.
3. P computes 	e′ = α	eL + α−1	eR of length �′ = �/2, and also computes

ρ�e′ ← ρ�e + α2ρL + α−2ρR and ρ′
�e′ ← ρ′

�e + α2ρ′
L + α−2ρ′

R. Both parties

compute c�e′ ← c�ev
α2

L vα−2

R and c′
�e′ ← c′

�e(v
′
L)α2

(v′
R)α−2

, and two vectors

	g′ ← 	gα−1

L 	gα
R and 	y′ ← α−1	yL + α	yR of length �′ = �/2. It is easy to

verify that c�e′ = 	g′�e
′
uρ�e′ hr�e and c′

�e′ = g
�y′T�e′

uρ′
�e′ .

4. Both parties recurse on ΠSum
zk for the same C(0), (G, q, g, h), u but using

c�e′ , c′
�e′ , 	g′, 	y′ in place of c�e, c′

�e, 	g, 	y. P in the recursion uses the same r�e,
but uses ρ�e′ , ρ′

�e′ , 	e′ in place of ρ�e, ρ′
�e, 	e. We use �′ = �/2 in place of � to

denote the length of vector 	g′, 	y′, and 	e′.

Theorem 4. The protocol ΠSum
zk is an honest-verifier zero-knowledge argument

of knowledge for the relation RSum.

The proof of this theorem can be found in the full version [32].
The protocol ΠZero

zk between a prover P and a verifier V below borrows the
idea of the zero argument in [5]. We tailor the protocol to support the ElGamal
encryption scheme and introduce how to further reduce the communication cost
in Remark 3.

Protocol ΠZero
zk

Public Inputs: A cyclic group G = 〈g〉 of prime order q, where DDH assumption
holds. The public key of the ElGamal encryption scheme pk = (G, q, g, h). A list

G = [g1, . . . , gM]. Two lists of ElGamal ciphertexts {c
(0)
�ui

, c
(1)
�ui

}i∈[
], {c
(0)
�vi

, c
(1)
�vi

}i∈[
].
The description of the bilinear map ∗ for a variable y.
Witness: The prover P has witness {	ui, r�ui}i∈[
], {	vi, r�vi}i∈[
].

Making Private Function Evaluation Safer, Faster, and Simpler 367

Statement: There exist {	ui, r�ui}i∈[
] and {	vi, r�vi}i∈[
], such that c
(0)
�ui

= gr�ui ,

c
(1)
�ui

= 	g�uihr�ui , c
(0)
�vi

= gr�vi , c
(1)
�vi

= 	g�vihr�vi for all i ∈ [�], and
∑

i=1 	ui ∗ 	vi = 0.

1. P picks 	u0, 	v
+1 ←$Z
M
q and r�u0 , r�v�+1 ←$Zq. Then P computes c�u0 ← (c

(0)
�u0

=

gr�u0 , c
(1)
�u0

= 	g�u0hr�u0) and c �v�+1 ← (c
(0)

�v�+1
= g

r�v�+1 , c
(1)

�v�+1
= 	g�v�+1h

r�v�+1). P

computes for φ = 0, . . . , 2�

dφ ←
∑

0≤i≤
 ,1≤j≤
+1
j=
+1−φ+i

	ui ∗ 	vj .

P picks rdφ ←$Zq for φ ∈ {0, . . . , 2�}\{�+1} and computes cdφ ← gdφh
rdφ for

φ ∈ {0, . . . , 2�}\{�+1}. For φ = �+1, both parties set rd�+1 ← 0 and cd�+1 ←
1, After the computation, P sends c�u0 , c�v�+1 , and {cdφ}φ∈{0,...,2
}\{
+1} to V.

2. V sends x ←$Zq to P.
3. P computes 	u ← ∑

i=0 xi	ui, r�u ← ∑

i=0 xir�ui , 	v ← ∑
+1

j=1 x
−j+1	vj , r�v ←
∑
+1

j=1 x
+1−jr�vj , and t ← ∑2

φ=0 xφrdφ , and sends 	u, r�u, 	v, r�v, t to V.

4. V outputs accept if all equations
∏

i=0(c
(0)
�ui

)xi

= gr�u ,
∏

i=0(c
(1)
�ui

)xi

= 	g�uhr�u ,
∏
+1

j=1(c
(0)
�vj

)x�+1−j

= gr�v ,
∏
+1

j=1(c
(1)
�vj

)x�+1−j

= 	g�vhr�v , and
∏2

φ=0 cxφ

dφ
= g�u∗�vht

hold. Otherwise, V outputs reject.

Theorem 5. The protocol ΠZero
zk is an honest-verifier zero-knowledge argument

of knowledge for the relation RZero.

The proof of this theorem can be found in the full version [32].

Remark 3. We can further reduce the communication cost of ΠZero
zk . Notice

that in Step 1, P needs to commit to all elements in {dφ}φ=0,...,2
. We could
include a list of 2 + 1 random elements of G, e.g., H = {hφ}φ=0,...,2
, in the
common reference string. P can thus commit to {dφ}φ=0,...,2
 by computing
c�d ← (gr�d ,

∑2

φ=0 h

dφ

φ hr�d) for r�d ←$Zq. P now only needs to send c�d to verifier
instead of {cdφ

}φ∈{2,...,2
}\{
+1}, and does not need to send t to V in Step 3. Alter-
natively, P proves to V the following statement for �y = [x0, . . . , x
, 0, x
+2, x2
]
and D = �u ∗ �v via the protocol ΠSum

zk in Step 4:

{(G, q, g, h,H, c�d,D, �y) | ∃(�d, r�d) : c
(0)
�d

= gr�d ∧ c
(1)
�d

= �h
�dhr�d ∧ �yT�d = D} .

Following this approach, we reduce the linear communication cost of send-
ing dφ’s to the logarithmic communication cost of using ΠSum

zk . Similarly, P

can avoid directly sending �v and r�v, i.e., the opening for c�v = (c(0)�v , c
(1)
�v) =

(
∏
+1

j=1(c
(0)
�vj

)x�+1−j

,
∏
+1

j=1(c
(1)
�vj

)x�+1−j

). Now P only sends �u and r�u in Step 3, and
V only verifies the two equations related to �u and r�u in Step 4. Then, P sends
D = �u ∗�v to V and proves the following statement for �y = [y1u1, . . . , y

MuM] via
the protocol ΠSum

zk in Step 4:

{(G, q, g, h,G, c�v,D, �y) | ∃(�v, r�v) : c
(0)
�v = gr�v ∧ c

(1)
�v = �g�vhr�v ∧ �yT�v = D} .

368 Y. Liu et al.

4 PFE Protocol for PVC Security

In this section, we introduce the first constant-round PVC-secure PFE protocol
with linear complexity in the two-party setting based on the results in Sect. 3.
The corresponding ideal functionality FcovertPFE is given in the following.

Functionality FcovertPFE

Pre-agreement: The circuit Cf consists of θ gates, m output wires, and n(=
nA + nB) input wires.
Private inputs: PA has a Boolean circuit input Cf and input xA ∈ {0, 1}nA ,
whereas the other party PB has input xB ∈ {0, 1}nB .

1. If an input of the form aborti from the party Pi for some i = {A, B} is
received, the ideal functionality sends ⊥ to both parties and the ideal execu-
tion terminates.

2. If a circuit Cf satisfying the pre-agreement from PA is received, store Cf .
3. If an input of the form blatantCheat from PB is received, the ideal functionality

sends corrupted to both parties and terminates.
4. If an input of the form cheat from PB is received and PA’s inputs Cf and xA

were received previously:
– With probability ε, the ideal functionality sends corrupted to both parties

and terminates.
– With probability 1 − ε, the ideal functionality sends (undetected, xA, Cf)

to PB. If PA is allowed to receive the output, the ideal functionality waits
for y ∈ {0, 1}m from the adversary A, sends y to PA, and terminates.

5. If input xA ∈ {0, 1}nA from PA and xB ∈ {0, 1}nB from PB are received and
an input circuit Cf is stored, the ideal functionality computes Cf (xA, xB).
(a) If PA (when she is corrupted by A) is allowed to learn Cf (xA, xB), then

it sends Cf (xA, xB) to PA.
(b) Otherwise, the ideal functionality sends nothing to PA. Then if continue

from A is received, the ideal functionality sends Cf (x1, x2) to the honest
PB. Otherwise, if abortA is received from A on behalf of the corrupted
PA, it sends ⊥ to the honest PB.

We give the PVC-security definition for our PFE protocol ΠcovertPFE as fol-
lows.

Definition 4. A two-party PFE protocol ΠcovertPFE along with algorithms Blame
and Judge is publicly verifiable covert secure with ε-deterrent if the following
conditions hold.

PVC security The protocol ΠcovertPFE, which might output cert if the honest
party detects covert cheating, securely realizes FcovertPFE with ε-deterrent.

Public verifiability If the honest party outputs cert during the protocol execu-
tion, then the output of the algorithm Judge for cert is 1, except a negligible
probability.

Defamation freeness If one party is honest, the probability that the other mali-
cious party generates a certificate cert for which Judge outputs 1 is negligible.

Making Private Function Evaluation Safer, Faster, and Simpler 369

4.1 Full Description of the Protocol

In the two-party case, active security implies covert security with public verifia-
bility, since we could regard attempts to cheat as abortions. Therefore, techniques
for dealing with malicious PA are workable for the PVC-secure setting.

Here we briefly introduce the main idea of our PVC-secure protocol ΠcovertPFE.
Recall that in Remark 2, we describe how to make the initiation phase non-
interactive. This approach can also be adopted here in ΠcovertPFE. Thus, we now
do not need to consider malicious PB in the initiation phase. We can reuse the
initiation phase of ΠactivePFE for ΠcovertPFE, with the exception that we include G
in the common reference string to simplify the proof of security. Note that this
small change does not hinder the protocol from achieving global reusability.

In the evaluation phase of ΠactivePFE, PA receives the garbled circuit and
garbled inputs, evaluates the garbled circuit, and derives the resulting outputs
or sends garbled outputs back to PB. It is easy to see that PA has no chance
to cheat in the protocol. Even if PA sends incorrect garbled outputs to PB, the
incorrect garbled outputs will still be rejected by PB due to the authenticity of
the garbling. Hence, we only need to focus on the security against covert PB.

To achieve covert security, we follow the same paradigm of all existing work,
i.e., parties generate λ instances of a passively secure protocol, check the correct-
ness of λ−1 randomly chosen instances, and take the result of the unopened one.
In addition, we use a derandomized approach to supporting efficient correctness
check in our protocol. More concretely, PB needs to pick for each instance a
seed to generate random coins during the execution of that instance (including
the circuit garbling and OT protocol). PA then uses OT protocol to retrieve all
but one of the seeds, such that PB is unaware of which instances are checked.
Now given the seeds, PA can easily check the correctness of the corresponding
instances. To prevent PB leaking inputs, PB commits to his pairs of input-wire
labels in random order with randomness derived from the seed and send these
two commitments to PA for each instance. Hence, PA can effectively check the
correctness of these commitments using the seed for opened instance, while PB’s
inputs are preserved. After the check, PA points out the unopened instance, and
now one of the two commitments for her input wires needs to be opened by PB

as his garbled input to enable PA to evaluate the unopened garbled circuit.
To add public verifiability to the approach above, we let PB sign all transcripts

that have been produced before the time when PA reveals the index of the
unopened instance. In addition, for each instance, let PA commit to a random
seed at the beginning of the protocol and uses this seed to derived random
coins during her execution of the instance. This commitment will be included
in PB’s transcript and signed by PB, such that it can prevent PA from defaming
honest PB. If PB deviates from an instance checked by PA, PA can generate a
certificate that includes related transcripts and PB’s signature on them for that
instance, such that it allows a third party to verify this proof of misbehavior.
Since PB cannot realize in time that the instance in which he deviates from the
protocol has been checked by PA, he cannot abort before PA has collected enough
materials to generate the certificate.

370 Y. Liu et al.

Our protocol ΠcovertPFE is given in the following. Since parties need to commit
to transcripts of the OT executions in the protocol, the description directly uses
the protocol ΠOT that securely realizes a parallel version of FOT.

Protocol ΠcovertPFE

Pre-agreement: Both parties agree on a cyclic group G = 〈g〉 of prime order
q, where DDH assumption holds. They also have the pre-agreement about Cf : θ
gates, m output wires, n(= nA + nB) input wires, N = 2θ incoming wires, and
M = n + θ − m outgoing wires except output wires of the circuit. The common
reference string includes a list G = [g1, . . . , gM] ∈ G

M , where all gi’s are different.
Private inputs: PA has a Boolean circuit input Cf and input xA ∈ {0, 1}nA ,
whereas the other party PB has input xB ∈ {0, 1}nB and keys (vk, sigk) for a
signature scheme. PA knows the verification key vk.

Initiation Phase

1. PA picks s ←$Zq and computes h ← gs. Denote the public and private keys
of the ElGamal encryption by pk = (G, q, g, h) and sk = s, respectively.
PA derives an EP πf from Cf . Then PA permutes elements of G according
to πf and encrypts all resulting elements using pk to derive the list Φ =
[c1, c2, . . . , cN], where ci is the encryption of gπf (i) for i ∈ [N].
PA picks ti ←$Zq for i ∈ [N], such that all ti’s are different, and stores the
list T = [t1, . . . , tN] for the evaluation phase. PB computes the tith power of
each plaintext gπf (i) of ci via the multiplicatively homomorphic property of
the ElGamal encryption (using pk) to obtain c′

i. Let the resulting list Φ′ =
[c′

1, . . . , c
′
N]. PA computes the information for decryption of all ciphertexts c′

i

(remember that c′
i = (c

′(0)
i , c

′(1)
i)), i.e., PA computes di ← (c

′(0)
i)s for i ∈ [N].

PA sends h, Φ, Φ′, and {di}i∈[N] to PB. Then PA uses the functionality FEncEP
zk

to prove to PB that she has performed a valid EP on G to obtain the list of
ciphertexts Φ. Meanwhile, PA uses FDH

zk to prove to PB her knowledge of s,
i.e., sk, for (g, {c

′(0)
i }i∈[N]) and (h, {di}i∈[N]), together with her knowledge of

ti for the two-tuple ciphertexts ci and c′
i for all i ∈ [N].

2. PB decrypts all c′
i’s to obtain the plaintexts via pi ← c

′(1)
i · d−1

i . PB stores a
list P = [p1, . . . , pN] for the evaluation phase.

Evaluation phase

0. PA chooses uniform κ-bit strings {seedA
j }j∈[λ], computes cseed

A
j ← Com(seedA

j)

and sends {cseedA
j }j∈[λ] to PB.

PB chooses uniform κ-bit strings {seedB
j ,witnessj}j∈[λ], while PA picks ĵ ←$ [λ]

and sets bĵ = 1 and bj = 0 for j = ĵ. PB and PA run λ executions of ΠOT.
In the jth execution, PB uses as input (seedB

j ,witnessj) and PA uses as input
bj with randomness derived from seedA

j . At the end, PA has {seedB
j }j �=ĵ and

witnessĵ. Let us denote the transcript of the jth execution by transj .
1. For j ∈ [λ], using the randomness derived from seedB

j , PB picks w0
i,j , w

1
i,j ←$G

for i = M + 1, . . . , M + m and α0,j , α1,j ←$Zq. PB also computes wire
labels and produces garbled gates as in ΠactivePFE. At the end, PB obtains
the resulting collection of garbled gates GCj = {GGi,j}i∈[θ], PA’s input-wire

Making Private Function Evaluation Safer, Faster, and Simpler 371

labels {(w0
i,j , w

1
i,j)}i∈[nA], PB’s input-wire labels {(w0

nA+i,j , w
1
nA+i,j)}i∈[nB],

and output-wire labels of the garbled circuit {(w0
M+i,j , w

1
M+i,j)}i=1,...,m.

2. PA and PB are involved in λ executions of ΠOT. In the jth execution, PB

uses as input (w0
i,j , w

1
i,j)i∈[nA], while PA uses as input xA if j = ĵ and 0nA

otherwise, and random coins of PA and PB are derived from seedA
j and seedB

j ,

respectively. At the end, PA obtains her garbled input {xi = w
xA[i]
i,ĵ }i∈[nA].

Let hOT
j denote the hash value of the transcript for the jth execution of ΠOT.

3. (a) For all j ∈ [λ], PB computes cxB
i,j,b ← Com(wb

nA+i,j) for all i ∈ [nB]

and b ∈ {0, 1}. Let hOj be the hash value of {(w0
M+i,j , w

1
M+i,j)}i=1,...,m.

PB then computes cj ← Com(GCj , {cxB
i,j,b}i∈[nB],b∈{0,1}, hOj), where two

elements in each pair (cxB
i,j,0, c

xB
i,j,1) are permuted in random order. The

random coins of commitments and permutations are derived from seedB
j .

(b) PB generates σj ← Sigsigk(G, P, j, cseed
A
j , transj , h

OT
j , cj) for j ∈ [λ].

Then PB sends {cj , σj}j∈[λ] to PA.
4. PA verifies that whether all σj ’s are valid. If not, PA halts and outputs ⊥.

Then PA calls Blame({hOT
j , cj}j∈[λ]\{ĵ}). If the output is cert, PB sends cert to

PB, outputs corrupted, and halts. Otherwise, PA sends (ĵ, {seedB
j }j �=ĵ,witnessĵ)

to PB. PB verifies that these values are all consistent with those he has sent
in Step 0 and aborts if not.

5. PB assigns xnA+i ← w
xB [i]
nA+i,ĵ for i ∈ [nB]. Then PB sends GCĵ, {xnA+i}i∈[nB],

{cxB
i,j,b}i∈[nB],b∈{0,1} (in the same order as Step 3a), and hOĵ , together with

decomcĵ and {decomc
xB
i,j,xB [i]}i∈[nB], to PA. If PA is allowed to know the evalu-

ation result, PB also sends the garbled output mapping {(w0
M+i, w

1
M+i)}i∈[m]

to PA.
6. PA outputs ⊥ and aborts if Com(GCj , {cxB

i,ĵ,b}i∈[nB],b∈{0,1}, hOĵ ; decomcĵ) = cĵ,

for some i ∈ [nB], Com(xnA+i; decom
c
xB
i,j,xB [i]) /∈ {cxB

i,j,0, c
xB
i,j,1}, or hOĵ is not

consistent (if it is verifiable).
PA computes {yi}i∈[m] ← Eval(GCĵ, {xi}i∈[n], T, πf). If PA is allowed to know
the evaluation result, PA can thereby derive the output. If yi /∈ {w0

i , w1
i }

for some i ∈ {M + 1, . . . , M + m}, PA outputs ⊥. If PB is allowed to know
the evaluation result, PA sends {yi}i∈[m] to PB so that PB could derive the
result. If the output-wire labels are not consistent with those PB generated,
PB outputs ⊥.

In the following, we provide the algorithms Blame and Judge used in
ΠcovertPFE.

Algorithm Blame

Specified parameters: G, P , {transj , σj , seed
A
j , decomseedA

j , seedB
j }j∈[λ]\{ĵ}.

Inputs: {hOT
j , cj}j∈[λ]\{ĵ}.

1. For all j = ĵ, simulate PB’s computation in steps 1, 2, and 3a, and particularly
compute ĥOT

j and ĉj . Let J be the set of indices, such that for j ∈ J , (ĥOT
j , ĉj) =

(hOT
j , cj).

2. (a) If |J | = 0, the algorithm returns accept.

372 Y. Liu et al.

(b) If |J | ≥ 1, the algorithm picks j ←$ J and outputs a certificate cert =

(P, j, transj , h
OT
j , cj , σj , seed

A
j , decomseedA

j).

Algorithm Judge

Inputs: A verification key vk for the signature scheme, a certificate cert =

(P, j, transj , h
OT
j , cj , σj , seed

A
j , decomseedA

j), common reference string G.

1. Compute cseed
A
j ← Com(seedA

j ; decomseedA
j).

2. If Vf((G, P, j, cseed
A
j , transj , h

OT
j , cj), σj) = 0, output 0.

3. Simulate the execution of ΠOT that involves transj (Step 0 of the evaluation
phase). In this simulation, the input of PA is 0, random coins are derived from
seedA

j , and the incoming messages of PB are those included in transj . Check
whether messages sent by PA are consistent with that of transj and output 0
if not. Otherwise, denote PA’s output of this simulation of ΠOT by seedB

j .
4. Use seedA

j and seedB
j to simulate the execution of Steps 1, 2, and 3a of the

evaluation phase, and particularly compute ĥOT
j and ĉj .

5. (a) If (ĥOT
j , ĉj) = (hOT

j , cj), output 0.
(b) If ĉj = cj , output 1.
(c) If the first message for which ĥOT

j = hOT
j corresponds to PA, output 0.

Otherwise, output 1.

We present the theorem for the security of the protocol ΠcovertPFE as follows.

Theorem 6. If the commitment algorithm Com is computationally binding and
hiding, the hash function is modeled as a random oracle, the garbling scheme is
secure under the random oracle model, the DDH assumption of G holds, perfectly
correct protocol ΠOT UC-realizes FOT, and the signature scheme (KGen,Sig,Vf)
is EUF-CMA, then the protocol ΠCovertPFE along with Blame and Judge is publicly
verifiable covert secure with deterrence factor ε = 1 − 1

λ in the (FEncEP
zk ,FDH

zk)-
hybrid world.

The proof of this theorem can be found in the full version [32]. Following the same
discussion as ΠactivePFE, it is easy to see that ΠcovertPFE could be instantiated as a
constant-round PVC-secure PFE protocol with linear complexity. Similarly, it is
straightforward that we have the theorem below, and Remark 2 is also applicable
to ΠcovertPFE to achieve global reusability.

Theorem 7. Once the initiation phase for a private circuit Cf is executed, every
subsequent execution of the evaluation phase of ΠcovertPFE does not degenerate the
security of ΠcovertPFE.

5 Analysis

5.1 Performance of ΠEncEP
zk

In Table 3, we provide from two directions the communication cost of each part
of ΠEncEP

zk for one execution of ΠEncEP
zk with parameters M and N in the honest-

verifier zero-knowledge setting. Note that ΠZero+
zk is the optimized protocol of

Making Private Function Evaluation Safer, Faster, and Simpler 373

ΠZero
zk according to the idea introduced in Remark 3. The row of remaining is

for the communication cost of ΠEncEP
zk excluding the cost of sub-protocols. Since

messages sent from V to P are random messages in all protocols, we can leverage
the random oracle and compile these protocols to be non-interactive via the
Fiat-Shamir heuristic. Using this approach, the communication cost now only
takes into account the cost from P to V.

Table 3. Communication cost of each part of ΠEncEP
zk with parameters M and N .

Protocols Bits from P to V Bits from V to P

ΠSum
zk (4�log2 M� + 3)‖G‖ + 4‖Zq‖ ‖G‖ + (�log2 M� + 1)‖Zq‖

ΠZero
zk (2N + 4)‖G‖ + (2M + 3)‖Zq‖ ‖Zq‖

ΠZero+
zk (4�log2(2N + 3)� + 4�log2 M� +

12)‖G‖ + (M + 10)‖Zq‖
2‖G‖ + (�log2(2N + 3) + �log2 M� + 3)‖Zq‖

Remaining 0 3‖Zq‖

We give comparisons between the previous generic work [34] and our protocol
ΠEncEP

zk (using the optimized protocol ΠZero+
zk) in Tables 4 and 5. From Table 4,

we can see that the (non-interactive) communication cost of our protocol is
around M‖Zq‖. In comparison, the protocol in [34] cannot be compiled to be non-
interactive. Its total communication cost is around (34N‖G‖ + 22N‖Zq‖) bits.
For a regular circuit, we always have M < N . Meanwhile, we have ‖G‖ > ‖Zq‖.
Hence, the number of the transmitted bits of the previous generic protocol is at
least 56× larger than ours.

Table 4. Communication cost comparison between the previous generic work [34] and
ΠEncEP

zk in this paper with parameters M and N .

Protocols Bits from P to V Bits from V to P

[34] ∼ (32N‖G‖ + 12N‖Zq‖) ∼ (2N‖G‖ + 10N‖Zq‖)

This paper ∼ (4�log2(N)� +
8�log2 M�)‖G‖ + M‖Zq‖

∼ (�log2 N� + 2�log2 M�)‖Zq‖

Table 5. Computation cost comparison between the previous generic work [34] and
ΠEncEP

zk in this paper with parameters M and N .

Protocols Time P Expos Time V Expos

[34] ∼ 59N ∼ 52N

This paper ∼ (16N + 11M) ∼ (10N + 3M)

In Table 5, we count the total number of exponentiations that P and V need
to perform in these two protocols. It is easy to see that the execution of our
protocol should be much faster than the protocol in [34].

374 Y. Liu et al.

5.2 Performance of Our PFE Protocols

In this paper, we provide the first constant-round actively secure PFE protocol
with linear complexity and the first constant-round PVC-secure PFE protocol
with linear complexity in the two-party setting. Furthermore, our constructions
have comparably good performance with existing passively secure PFE protocols.

The same initiation phase of the two protocols can be compiled to be non-
interactive, and the resulting non-interactive information for the initiation phase
is around (8N‖G‖ + 2M‖Zq‖) bits. The linear constant-round passively secure
PFE protocols in [22] and [33] do not achieve reusability, but we can still divide
them into the same two phases, such that the phase for preprocessing the circuit
Cf is the initiation phase, and the phase for generating, sending the garbled
circuit, and evaluating that circuit is the evaluation phase. The communication
cost of the initiation phase of the optimized protocol in [22], the protocol in [33],
and the protocol in [7] are (2M + 6N)‖G‖ bits, (2M + 4N)‖G‖ bits, and (M +
N)‖G‖ bits, respectively. We can see that our protocol is competitive, even if it
is actively secure. We also remark that since the protocols in [22] and [33] do
not achieve reusability. Their initiation phases require to be executed every time
when the same circuit Cf is involved, while the cost of the initiation phase can be
amortized to multiple executions if a protocol achieves reusability. Meanwhile,
the initiation phase of the protocol in [7] is interactive, and it does not achieve
global reusability. In comparison, the initiation phase of our protocol could be
non-interactive, and it achieves global reusability.

It is shown that the linear passively secure PFE protocol in [7] outperforms
the protocols in [22] and [33] when it is executed any number (more than one)
of time for a fixed private circuit. Here, we reason that our PVC-secure protocol
does not have too much overhead compared with the passively secure protocol
in [7] in the evaluation phase. The additional communication cost of ΠcovertPFE

compared with the passively secure protocol in [7] mainly includes the following.

1. The λ executions of ΠOT in Step 0 for seed transmission.
2. The extra λ − 1 executions of ΠOT for input-wire labels retrieval in Step 2.
3. The λ tuples of {cj , σj} sent in Step 3.

4. The messages {cxB

i,j,b}i∈[nB],b∈{0,1}, hOĵ , decomcĵ , and {decomc
xB
i,j,xB [i]}i∈[nB]

sent in Step 5.

Let us analyze the cost of ΠcovertPFE for the deterrence factor ε = 1/2, i.e.,
λ = 2. The additional communication cost of Step 1 and Step 3 is constant now.
Meanwhile, the additional communication cost of Step 2 and Step 4 now only
depends on the input length n of the circuit. For most regular circuits, this cost
is significantly smaller than the dominant communication cost of transmitting
the garbled gates, which is bounded by O (θ) for circuit size θ. The additional
computation cost for both parties is mainly from the cost of generating the
corresponding GCj ’s to compute the commitments cj ’s for checked instances.
Therefore, for the evaluation phase, the computation cost of both parties in our
PVC-secure PFE protocol with ε = 1/2 is only around 2.6× that of the passively
secure PFE protocol [7], and thus it is acceptable.

Making Private Function Evaluation Safer, Faster, and Simpler 375

Finally, let us see the size of the certificate in our PVC-secure PFE protocol.
Note that all elements other than the list P inside a certificate do not depend
on the size of the private circuit Cf . If the initiation phase is compiled to be
non-interactive, we can assume that all parties have already held the messages
generated in the initiation phase, including P . Now we do not need to include
P in the certificate, and the size of the certificate is constant.

Acknowledgments. We thank the reviewers for their detailed and helpful comments.
Y. Liu and Q. Wang were partially supported by the Shenzhen fundamental research
programs under Grant no. 20200925154814002 and Guangdong Provincial Key Lab-
oratory (Grant No. 2020B121201001). Y. Liu and S.-M. Yiu were also partially sup-
ported by ITF, Hong Kong (ITS/173/18FP) and the funding from HKU-SCF FinTech
Academy.

References

1. Abadi, M., Feigenbaum, J.: Secure circuit evaluation. J. Cryptol. 2(1), 1–12 (1990).
https://doi.org/10.1007/BF02252866

2. Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scalable uni-
versal circuits. J. Cryptol. 33(3), 1216–1271 (2020)

3. Asharov, G., Orlandi, C.: Calling out cheaters: covert security with public veri-
fiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
681–698. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 41

4. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. J. Cryptol. 23(2), 281–343 (2010)

5. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

6. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, Baltimore, Maryland, USA, 13–17 May 1990,
pp. 503–513. ACM (1990)

7. Bicer, O., Bingol, M.A., Kiraz, M.S., Levi, A.: Highly efficient and re-executable
private function evaluation with linear complexity. IEEE Trans. Dependable Secure
Comput. https://doi.org/10.1109/TDSC.2020.3009496

8. Bingöl, M.A., Biçer, O., Kiraz, M.S., Levi, A.: An efficient 2-party private function
evaluation protocol based on half gates. Comput. J. 62(4), 598–613 (2019)

9. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

10. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21–23 May 2018, San Francisco,
California, USA, pp. 315–334. IEEE Computer Society (2018)

https://doi.org/10.1007/BF02252866
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1109/TDSC.2020.3009496
https://doi.org/10.1007/978-3-662-49896-5_12

376 Y. Liu et al.

11. Canetti, R., Sarkar, P., Wang, X.: Blazing fast OT for three-round UC OT exten-
sion. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS,
vol. 12111, pp. 299–327. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45388-6 11

12. Chang, Y., Lu, C.: Oblivious polynomial evaluation and oblivious neural learning.
Theor. Comput. Sci. 341(1–3), 39–54 (2005)

13. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

14. Damg̊ard, I., Orlandi, C., Simkin, M.: Black-box transformations from passive to
covert security with public verifiability. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 647–676. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1 23

15. Faust, S., Hazay, C., Kretzler, D., Schlosser, B.: Generic compiler for publicly veri-
fiable covert multi-party computation. In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12697, pp. 782–811. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77886-6 27

16. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178. ACM
(2009)

18. Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit constructions.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 443–470.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 16

19. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Con-
structions. Information Security and Cryptography, Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14303-8

20. Holz, M., Kiss, Á., Rathee, D., Schneider, T.: Linear-complexity private func-
tion evaluation is practical. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.)
ESORICS 2020. LNCS, vol. 12309, pp. 401–420. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-59013-0 20

21. Hong, C., Katz, J., Kolesnikov, V., Lu, W., Wang, X.: Covert security with public
verifiability: faster, leaner, and simpler. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11478, pp. 97–121. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17659-4 4

22. Katz, J., Malka, L.: Constant-round private function evaluation with linear com-
plexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
556–571. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 30

23. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
724–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 35

24. Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 699–728. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 27

https://doi.org/10.1007/978-3-030-45388-6_11
https://doi.org/10.1007/978-3-030-45388-6_11
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-030-56880-1_23
https://doi.org/10.1007/978-3-030-56880-1_23
https://doi.org/10.1007/978-3-030-77886-6_27
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-030-59013-0_20
https://doi.org/10.1007/978-3-030-59013-0_20
https://doi.org/10.1007/978-3-030-17659-4_4
https://doi.org/10.1007/978-3-030-17659-4_4
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-49890-3_27

Making Private Function Evaluation Safer, Faster, and Simpler 377

25. Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model (almost)
for free. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
210–235. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 9

26. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8 7

27. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

28. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

29. Lipmaa, H., Mohassel, P., Sadeghian, S.: Valiant’s universal circuit: improvements,
implementation, and applications. Cryptology ePrint Archive, Report 2016/017
(2016). https://ia.cr/2016/017

30. Liu, H., Yu, Yu., Zhao, S., Zhang, J., Liu, W., Hu, Z.: Pushing the limits of valiant’s
universal circuits: simpler, tighter and more compact. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 365–394. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1 13

31. Liu, Y., Wang, Q., Yiu, S.-M.: Blind polynomial evaluation and data trading. In:
Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12726, pp. 100–129.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78372-3 5

32. Liu, Y., Wang, Q., Yiu, S.M.: Making private function evaluation safer, faster, and
simpler. Cryptology ePrint Archive, Report 2021/1682 (2021). https://ia.cr/2021/
1682

33. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for
private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 33

34. Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function evalu-
ation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
486–505. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 26

35. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

36. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

37. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

38. Sander, T., Young, A.L., Yung, M.: Non-interactive cryptocomputing for nc1. In:
40th Annual Symposium on Foundations of Computer Science, FOCS 1999, 17–18
October 1999, New York, NY, USA, pp. 554–567. IEEE Computer Society (1999)

39. Scholl, P., Simkin, M., Siniscalchi, L.: Multiparty computation with covert secu-
rity and public verifiability. Cryptology ePrint Archive, Report 2021/366 (2021).
https://ia.cr/2021/366

40. Valiant, L.G.: Universal circuits (preliminary report). In: Chandra, A.K.,
Wotschke, D., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 8th Annual
ACM Symposium on Theory of Computing, Hershey, Pennsylvania, USA, 3–5 May
1976, pp. 196–203. ACM (1976)

https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://ia.cr/2016/017
https://doi.org/10.1007/978-3-030-84245-1_13
https://doi.org/10.1007/978-3-030-78372-3_5
https://ia.cr/2021/1682
https://ia.cr/2021/1682
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/3-540-46766-1_9
https://ia.cr/2021/366

378 Y. Liu et al.

41. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27–29
October 1986, pp. 162–167. IEEE Computer Society (1986)

42. Zhao, S., Yu, Yu., Zhang, J., Liu, H.: Valiant’s universal circuits revisited: an
overall improvement and a lower bound. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11921, pp. 401–425. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34578-5 15

43. Zhu, R., Ding, C., Huang, Y.: Efficient publicly verifiable 2PC over a blockchain
with applications to financially-secure computations. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, 11–15 November
2019, pp. 633–650. ACM (2019)

https://doi.org/10.1007/978-3-030-34578-5_15
https://doi.org/10.1007/978-3-030-34578-5_15

Two-Round Oblivious Linear Evaluation
from Learning with Errors

Pedro Branco1(B), Nico Döttling2, and Paulo Mateus1

1 SQIG - IT, University of Lisbon, Lisbon, Portugal
2 Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany

Abstract. Oblivious Linear Evaluation (OLE) is the arithmetic ana-
logue of the well-know oblivious transfer primitive. It allows a sender,
holding an affine function f(x) = a + bx over a finite field or ring, to
let a receiver learn f(w) for a w of the receiver’s choice. In terms of
security, the sender remains oblivious of the receiver’s input w, whereas
the receiver learns nothing beyond f(w) about f . In recent years, OLE
has emerged as an essential building block to construct efficient, reusable
and maliciously-secure two-party computation.

In this work, we present efficient two-round protocols for OLE over
large fields based on the Learning with Errors (LWE) assumption, pro-
viding a full arithmetic generalization of the oblivious transfer protocol
of Peikert, Vaikuntanathan and Waters (CRYPTO 2008). At the tech-
nical core of our work is a novel extraction technique which allows to
determine if a non-trivial multiple of some vector is close to a q-ary
lattice.

1 Introduction

Oblivious Linear Evaluation (OLE) is a cryptographic primitive between a sender
and a receiver, where the sender inputs an affine function f(x) = a + bx over a
finite field F, the receiver inputs an element w ∈ F, and in the end the receiver
learns f(w). The sender remains oblivious of the receiver’s input w and the
receiver learns nothing beyond f(w) about f . OLE can be seen as a generalization
of the well-known Oblivious Transfer (OT) primitive.1 In fact, just as secure
computation of Boolean circuits can be based on OT, secure computation of
arithmetic circuits can be based on OLE [2,20,22].

In recent years, OLE has emerged as one of the most promising avenues to
realize efficient two-party secure computation in different settings [1,2,6,11,13,
21,22]. Interestingly, OLE has found applications, not just in the secure computa-
tion of generic functions, but also in specific tasks such as Private Set Intersection
[18,19] or Machine Learning related tasks [23,28].

1 It is easy to see that, if we consider the affine function f : {0, 1} → {0, 1} such that
f(b) = m0 + b(m1 − m0), OLE trivially implements OT.

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 379–408, 2022.
https://doi.org/10.1007/978-3-030-97121-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_14

380 P. Branco et al.

Other aspects that set OLE apart from OT are reusability, meaning that the
first message of a protocol is reusable across multiple executions,2 and the fact
that even a semi-honest secure OLE can be used to realize maliciously secure
two-party computation [21].

Although OLE secure against semi-honest adversaries is complete for
maliciously-secure two-party computation [21], this comes at the cost of effi-
ciency and, thus, is it always preferable to start with a maliciously-secure one.
Moreover, some applications of OLE even ask specifically for a maliciously-secure
one [18]. Given this state of affairs and the importance of OLE in constructing
two-party secure computation protocols, we ask the following question:

Can we build efficient and maliciously-secure two-round OLE protocols from
(presumed) post-quantum hardness assumptions?

1.1 Our Results

In this work, we give an affirmative answer to the question above. Specifically,
we present two simple, efficient and round-optimal protocols for OLE based
on the hardness of the Learning with Errors (LWE) assumption [31], which is
conjectured to be post-quantum secure.

Before we start, we clarify what type of OLE we obtain. OLE comes in many
flavors, one of the most useful being vector OLE where the sender inputs two
vectors a = a, b = b ∈ F

� and the receiver obtains a linear combination of them
z = a + wb ∈ F

� [6]. For simplicity, we just refer to this variant as OLE.
Both of our protocols implement the functionality in just two-rounds and

have the following properties:

– Our first protocol (Sect. 5) for OLE achieves statistical security against a cor-
rupted receiver and computational semi-honest security against a corrupted
sender based on LWE. Additionally, we show how we can extend this protocol
to implement batch OLE, a functionality similar to OLE where the receiver
can input a batch of values {xi}i∈[k′], instead of just one value.

– Our main technical innovation is a new extraction technique which allows to
determine if a vector z ∈ Z

n
q is of the form z = sA + αe, where the matrix

A ∈ Z
k×n
q is given, and the unknown s ∈ Z

k
q , α ∈ Zq and short vector e are to

be determined. We provide an algorithm which solves this problem efficiently
given a trapdoor for the lattice Λ⊥

q (A). We believe that this contribution
is of independent interest. In particular, our extractor immediately leads to
an efficient simulation strategy for the PVW protocol [29] even for super-
polynomial moduli q.

2 While two-party reusable non-interactive secure computation (NISC) is impossible in
the OT-hybrid model [11], reusable NISC for general Boolean circuits is known to be
possible in the (reusable) OLE-hybrid model assuming one-way functions [11]. The
result stated above is meaningful only if we have access to a reusable two-round OLE
protocol. The only efficient realizations of this primitive are based on the Decisional
Composite Residuosity (DCR) and the Quadratic Residuosity assumptions [11].

Two-Round Oblivious Linear Evaluation from Learning with Errors 381

– We then show how to extend our OLE protocol to provide malicious security
for both parties (Sect. 6). The protocol makes λ invocations of a two-round
Oblivious Transfer protocol (which exists under LWE [29,30]), where λ is the
security parameter. By instantiating the OT with the LWE-based protocols
of [29,30], we preserve statistical security against a malicious receiver.

1.2 Related Work and Comparison

In the following, we briefly review some proposals from prior work and com-
pare them with our proposal. We only consider schemes that are provable UC-
secure as our protocols. OLE can be trivially implemented using Fully/Somewhat
Homomorphic Encryption (e.g., [23]) but these solutions are usually just proven
secure against semi-honest adversaries and it is unclear how to extend secu-
rity against malicious adversaries without relying on generic approaches such
as Non-Interactive Zero-Knowledge (NIZK) proofs.3 OLE can also be trivially
implemented using generic solutions for two-party secure computation (via OT)
such as [32]. However, these solutions fall short in achieving an acceptable level
of efficiency.

The work of Döttling et al. [14,15] proposed an OLE protocol with uncondi-
tional security, in the stateful tamper-proof hardware model. The protocol takes
only two rounds, however further interaction with the token is needed by the
parties.

In [22], a semi-honest protocol for oblivious multiplication was proposed,
which can be easily extended to a OLE protocol. The protocol is based on noisy
encodings. Based on the same assumption, [17] proposed a maliciously-secure
OLE protocol, which extends the techniques of [22]. However, their protocol
takes eight rounds of interaction.

Chase et al. [11] presented a round-optimal reusable OLE protocol based
on the Decisional Composite Residuosity (DCR) and the Quadratic Residuosity
(QR) assumptions. The protocol is maliciously-secure and, to the best of our
knowledge, it is the most efficient protocol for OLE proposed so far. However, it
is well-known that both the DCR and the QR problems are quantumly insecure.

Recently, two new protocols for OLE based on the Ring LWE assumption
were presented in [5,10]. Both protocols run in two rounds but the protocol of
[5] either requires a PKI or a setup phase, and the protocol of [10] is secure only
against semi-honest adversaries.

We also remark that our protocols implement vector OLE where the sender’s
input are vectors over a field, as in [17].

In Table 1, a brief comparison between several UC-secure OLE protocols is
presented.

3 As an example consider the work of [11], where the Paillier cryptosystem is extended
into an OLE protocol with malicious security and the construction is highly non-
trivial.

382 P. Branco et al.

Table 1. Comparison between different OLE schemes.

Hardness Assumption Setup Assumption Rounds Reusability Security

[22] Noisy Encodings OT 3 - semi-honest

[14] - Stateful tamper 2 ✗ malicious
proof hardware

[17] Noisy Encodings OT 8 - malicious

[11] DCR & QR CRS 2 ✓ malicious

[5] RLWE PKI/Setup 2 ✗ malicious

[10] RLWE - 2 - semi-honest

This work LWE CRS 2 ✓ malicious receiver

LWE CRS & OT 2 ✗ malicious

1.3 Open Problems

Our first protocol is secure against semi-honest senders and, thus, it is trivially
reusable. However, our fully maliciously-secure protocol (in Sect. 6) does not
have reusability of the first message. Hence, the main open problem left in our
work is the following: Can we construct a reusable maliciously-secure two-round
OLE protocol based on the LWE assumption?

2 Technical Outline

We will now give a brief overview of our protocol. In abuse of notation, we drop
the transposition operator for transposed vectors and always assume that vectors
multiplied from the right side are transposed.

2.1 The PVW Protocol

Our starting point is the LWE-based oblivious transfer protocol of Peik-
ert, Vaikuntanathan and Waters [29], which is based on Regev’s encryption
scheme [31]. Since our goal is to construct an OLE protocol, we will describe the
PVW scheme as a F2 OLE rather than the standard OT functionality. Assume
for simplicity that the LWE modulus q is even.

The PVW scheme uses a common reference string which consists of a random
matrix A ∈ Z

n×m
q and a vector a ∈ Z

m
q , which together syntactically form a

Regev public key. Given the CRS (A,a), the receiver, whose input is a choice bit
b ∈ {0, 1} chooses a uniformly random s ∈ Z

n
q and a e ∈ Z

m
q from a (short) LWE

error distribution, e.g. a discrete gaussian. The receiver now sets z = sA+e−b·a.
In other words, if b = 0 then (A, z) is a well-formed Regev public key, whereas
if b = 1 then (A, z + a) is a well-formed Regev public key.

The receiver now sends z to the sender who proceeds as follows. Say the
sender’s input are v0, v1 ∈ {0, 1}. The sender now encrypts v0 under the public
key (A, z) and v1 under (A,a) using the same randomness r. Specifically, the
sender chooses r ∈ Z

m from a wide enough discrete gaussian, sets c = Ar,
c0 = zr + q

2v0 and c1 = ar + q
2v1. Now the sender sends (c, c0, c1) back to the

Two-Round Oblivious Linear Evaluation from Learning with Errors 383

receiver. The receiver then computes and outputs y = �b · c1 + c0 − sc�2. Here
�·�2 denotes the rounding operation with respect to q/2.

To see that this scheme is correct, note that

b · c1 + c0 − sc = bar + b · q

2
v1 + zr + ·q

2
v0 − sAr

= bar + b · q

2
v1 + (sA + e − ba)r + ·q

2
v0 − sAr

=
q

2
(bv1 + v0) + er.

Since both e and r are short, er is also short and we can conclude that y =
�b · c1 + c0 − sc�2 = bv1 + v0.

Security. Security against semi-honest senders follows routinely from the hard-
ness of LWE. We will omit the discussion on security against malicious senders
for now and focus on security against malicious receivers.

The basic issue here is that a malicious receiver may choose z not of the form
z = sA + e − ba but rather arbitrarily.

It can now be argued that except with negligible probability over the choice

of a, one of the matrices A0 =
(
A
z

)
or A1 =

(
A

z + a

)
does not have a short

vector in its row-span. We can then invoke the Smoothing Lemma [27] to argue
that given c = Ar either zr or (z + a)r is statistically close to uniform. In the
first case we get that (c, c0, c1) statistically hides v0 = v0 + 0 · v1, in the second
case v0 + v1 = v0 + 1 · v1 is statistically hidden. In order to simulate, we must
determine which one of the two cases holds.

In [29] this is achieved as follows. First, the matrix A is chosen together with
a lattice trapdoor [16,26] which allows to efficiently decode a point x ∈ Z

m
q to the

point in the row-span of A closest to x (given that x is sufficiently close to the
row-span of A). The PVW extractor now tries to determine whether there is a
short vector in the row-span of A0 by going through all multiples αz of z (for
α ∈ Zq) and testing whether αz is close to the row-span of A. If such an α is
found, we know by the above argument that given Ar and zr it must hold that
(z+a)r is statistically close to uniform, and the simulator can set the extracted
choice bit b to 0. On the other hand, if no such α is found, it sets the extracted
choice bit to 1 since we know that in this case zr is statistically close to uniform
given Ar and (z + a)r.

A severe drawback of this method is that the extractor must iterate over all
α ∈ Zq. Consequently, for the extractor to be efficient q must be of polynomial
size. A recent work of Quach [30] devised an extraction method for superpoly-
nomial modulus q by using Hash Proof Systems (HPS)4. To make this approach
work the underlying Regev encryption scheme must be modified in a way that
unfortunately deteriorates correctness and prohibits linear homomorphism.

4 Despite numerous efforts, HPS in the lattice setting fall short in efficiency when
comparing to their group-based counterpart.

384 P. Branco et al.

2.2 An Oblivious Linear Evaluation Protocol Based on PVW

We will now discuss our OLE modification of the PVW scheme. The basic idea
is very simple: We will modify the underlying Regev encryption scheme to sup-
port a larger plaintext space, namely Zq1 for a modulus q1 and exploit linear
homomorphism over Zq1 , which will lead to an OLE over Zq1 .

Concretely, let q = q1 · q2 for a sufficiently large q2. We have the same CRS
as in the PVW scheme, i.e. a random matrix A ∈ Z

n×m
q and a random vector

a ∈ Z
m
q . Now the receiver’s input is a x ∈ Zq1 , and he computes z by z =

sA + e − x · a (where s and e are as above). The sender’s input is now a pair
v0, v1 ∈ Zq1 , and the sender computes c = Ar, c0 = zr+q2v0 and c0 = ar+q2v1
(again r as above). Given (c, c0, c1) the receiver can recover y by computing
y = �x · c1 + c0 − sc�q1 . Here �·�q1 is as usual defined by �u�q1 = ·�u/q2�. We
can establish correctness as above:

x · c1 + c0 − sc = xar + x · q2v1 + zr + q2v0 − sAr

= xar + xq2v1 + (sA + e − xa)r + q2v0 − sAr

= q2(xv1 + v0) + er.

Now, given that e and r are sufficiently short, specifically such that er is shorter
than q2/2 it holds that y = �x ·c1+c0−sc�q1 = xv1+v0 and correctness follows.

A detailed description of the protocol is presented in Sect. 5.5 The protocol
described there directly implements vector OLE, instead of just OLE as pre-
sented above.

Security. Security against semi-honest senders follows, just as above, routinely
from the LWE assumption. But for superpolynomial moduli q1 (which, in the
OLE setting, is the case we are mostly interested in) we are seemingly at an
impasse when it comes to proving security against malicious receivers: In this
case, the PVW extractor is not efficient and Quach’s technique [30] is incompat-
ible with our reliance on linear homomorphism of the Regev encryption scheme.

Consequently, we need to devise an alternative method of extracting the
receiver’s input x. The core idea of our extractor is surprisingly simple: While
PVW choose the matrix A together with a lattice trapdoor, we will instead

choose the matrix A′ =
(
A
a

)
together with a lattice trapdoor T ∈ Z

m×m (i.e.

a short square matrix T such that A′T = 0). This is possible as the vector a is
also provided in the CRS.

How does this help us to extract a x̃ ∈ Zq from the malicious receiver’s
message z? Let z ∈ Z

m
q be arbitrary, write z as z = sA − x · a + αd for some

s ∈ Z
n
q , x ∈ Zq, α ∈ Zq and a d ∈ Z

m of minimal length. In other words, there
exists no d∗ with ‖d∗‖ < ‖d‖ such that z can be written as z = s∗A+α∗d∗−x∗a
for some s∗, x∗ and α∗.

5 The protocol presented in Sect. 5 is presented in a slightly, but equivalent, form.

Two-Round Oblivious Linear Evaluation from Learning with Errors 385

Then it holds that

(c, c0, c1) = (Ar, zr + q2v0,ar + q2v1) (1)
= (Ar, (sA − x · a + αd)r + q2v0,ar + q2v1) (2)
= (Ar, sAr − xar + αdr + q2v0,ar + q2v1) (3)
≈s (u, su − xu + αdr + q2v0, u + q2v1) (4)
≡ (u, su − xu′ + xq2v1 + αdr + q2v0, u

′) (5)
= (u, su + αdr − xu′ + q2(xv1 + v0), u′) (6)
≈s (Ar, sAr + αdr − xar + q2(xv1 + v0),ar) (7)
= (Ar, zr + q2(xv1 + v0),ar). (8)

In other words, we can simulate (c, c0, c1) given only xv1 + v0. In the above
derivation, (4) holds as by the partial smoothing lemma [7] as (Ar,ar,dr) =
(A′r,dr) ≈s (u′,dr) = (u, u,dr) where u ∈ Z

m
q and u ∈ Zq are uniformly

random. Equation (5) follows by a simple substitution u → u′ − q2v1, where
u′ ∈ Zq is also uniformly random. Equation (7) follows analogously to (4) via
the smoothing lemma.

Efficient Extraction. It remains to be discussed how we can efficiently recover
x from z given the lattice trapdoor T for Λ⊥

q (A′). We will recover the represen-
tation z = s∗A + α∗d∗ − x∗a. Note that we can write z = s′A′ + αd, where
s′ = (s,−x). Setting f = zT we get

f = zT = (s′A′ + αd)T = αdT.

Assuming that d is sufficiently short, it holds that d′ = dT is also short. We
will now solve the equation system αd′ = f , in which f is known, for α and d′.
Write f = (f1, . . . , fm) and d′ = (d′

1, . . . , d
′
m). Then we get the equation system

f1 = αd′
1, . . . , fm = αd′

m.

We can eliminate α using the first equation and obtain the equations

−f2d
′
1 + f1d

′
2 = 0, . . . ,−fmd′

1 + f1d
′
m = 0.

Now assume for simplicity f1 is invertible, i.e. f1 ∈ Z
×
q . Then we can express

the above equations as

−(f2/f1) · d′
1 + d′

2 = 0, . . . ,−(fm/f1) · d′
1 + d′

m = 0.

Consequently, it is sufficient to find the first coordinate d′
1 to find all other

d′
j = (fj/f1) · d′

1.
To find the first coordinate d′

1, we rely on the fact that solving the Shortest
Vector Problem (SVP) in a two-dimensional lattice can actually be done in
polynomial time (and essentially independently of the modulus q) [24]. Consider
the lattice Λj defined by Λj = Λ⊥

q (bj), where bj = (−fj/f1, 1). First note that

386 P. Branco et al.

d′
j = (d′

1, d
′
j) is a short vector in Λi. Furthermore, notice that det(Λj) = q as the

second component of bj is 1 (bj is primitive). Letting B = ‖d′
j‖, we can then

argue via Hadamard’s inequality that any vector v ∈ Λi shorter than q/B must
be linearly dependent with d′

j .
By applying a SVP solver, we are able to find the shortest vector gj =

(g(1)j , g
(2)
j) in Λi. Observe that d′

1 must be a multiple of g
(1)
j for all j = 2, . . . , n

(otherwise, gj would not be the shortest solution of the SVP instance). Hence,
d′
1 can be computed by taking the least common multiple of g

(1)
1 , . . . , g

(1)
n .

Having recovered d′ ∈ Z
m, we can recover d by solving the linear equation

system dT = d′ over Z to recover d. Finally, given d we can efficiently find
s′ ∈ Z

n+1
q and α ∈ Zq using basic linear algebra by solving the equation system

s′A′ = z − αd. Given s′ we can set x to s′
n+1. If no solution is found in this

process we set x = 0 by default. Now notice that we can write

z = s′A′ + αd = sA + xa + αd,

where s = (s′
1, . . . , s

′
n). We remark that for a prime modulus q the above analysis

readily applies, whereas for composite moduli we need to take into account
several fringe cases.

Using a variant of the Smoothing Lemma [7] we can finally argue that
(Ar, zr + q2v0,ar + q2v1) only contains information about xv1 + v0, but leaks
otherwise no information about v0, v1.

2.3 Applications to PVW OT

Note that by setting q1 = 2 our OLE protocol realizes exactly the PVW proto-
col [29]. Thus, our new extraction mechanism immediately improves the PVW
protocol by allowing the modulus q to be superpolynomial. Furthermore, we can
combine our extractor with the smoothing technique of Quach [30] to obtain a
UC-secure variant of the PVW protocol with reusable CRS without the correct-
ness and efficiency penalties incurred by Quach’s protocol.

2.4 Extending to Malicious Adversaries

It might seem that Quach’s smoothing technique [30] immediately allows us to
prove security against malicious senders as well. And indeed, by choosing a as
a well-formed LWE sample a = s∗A + e∗ we can extract the sender’s input
v0, v1 from c, c0, c1. However, the issue presents itself slightly different: In the
real protocol the receiver computes and outputs y = �x ·(c1−s∗c)+c0−sc�q1 . If
c, c0, c1 are well-formed this is indeed a linear function in x. However, if c1 − s∗c
or c0 − sc is not close to a multiple of q2, then this is a non-linear function!
But by the functionality of OLE in the ideal model we have to compute a linear
function. Observe that this is not an issue in the case of OT (i.e. q1 = 2), as in
this case any 1-bit input function is a linear function. To overcome this issue for
OLE, we need to deploy a technique which ensures that c, c0, c1 are well-formed.

Two-Round Oblivious Linear Evaluation from Learning with Errors 387

In a nutshell, the idea to make the protocol secure against malicious senders
is to use a cut-and-choose-style approach using a two-round OT protocol6, which
exists under various assumptions [12,29,30]. Using the OT, the receiver is able
to check if the vectors cj = Arj provided by the sender are well-formed. More
precisely, our augmented protocol works as follows:7

1. The receiver computes z = sA + e − xa for a uniform input x (in Sect. 6 we
show how to remove the condition of x being uniform). Additionally, it runs
λ instances of the OT in parallel (playing the role of the receiver), with input
bits (b1, . . . , bλ) ←$ {0, 1}λ chosen uniformly at random; and sends the first
messages of each instance.

2. For j ∈ [λ], the sender (with input (v0, v1)) computes cj = Arj , c0,j =
zrj + q2u0,j and c1,j = arj + q2u1,j for a gaussian rj and uniform (u0,j , u1,j .
It sets M0,j = (rj , u0,j , u1,j) and M1,j = (v̄0,j = v0 + u0,j , v̄1,j = v1 + u1,j)
and inputs (M0,j ,M1,j) into the OT. Moreover, cj , c0,j , c1,j are sent to the
receiver in the plain.

3. If bj = 0, the receiver can check that the values cj , c0,j , c1,j are indeed well-
formed, i.e. it holds cj = Arj , c0,j = zrj + q2u0,j , c1,j = arj + q2u1,j and rj

is short. If bj = 1, the receiver obtains a random OLE u0,j +xu1,j (which can
be obtained by computing y = �x · c1,j + c0,j − scj�q1). This random OLE
instance can be derandomized by computing yj = v̄0,j +xv̄0,j − (u0,j +xu1,j).
If yj coincides at all the positions where bj = 1, then it outputs this value.
Else, it aborts.

Security against an unbounded receiver in the OT-hybrid model essentially
follows the same reasoning as in the previous protocol.

We now argue how we can build the simulator Sim against a corrupted sender.
Sim checks for which of the positions j, the message M0,j is well-formed. If all
but a small number of them are well-formed, Sim proceeds; else, it aborts. Then,
having recovered the randomness (rj , u0,j , u1,j), Sim can extract a pair (v0,j , v0,1)
from (cj , c0,j , c1,j). If (v0,j , v0,1) coincides in at least half of the positions, then
Sim outputs this pair; else, if no such pair exists, Sim aborts.

3 Preliminaries

Throughout this work, λ denotes the security parameter and PPT stands for
“probabilistic polynomial-time”.

Let A ∈ Z
k×n
q and x ∈ Z

n
q . Then ‖x‖ denotes the usual �2 norm of a vec-

tor x. Moreover, ‖A‖ = maxi∈[m]{
∥∥a(i)∥∥} where a(i) is the i-th column of A.

For a vector b ∈ {0, 1}k, we denote its weight, that is the number of non-null
coordinates, by wt(b).

6 The approach is similar in spirit as previous works, e.g. [25].
7 The construction actually works for any OLE scheme that is secure against semi-

honest senders and malicious receivers. In the technical sections we present the
generic construction.

388 P. Branco et al.

If S is a (finite) set, we denote by x ←$ S an element x ∈ S sampled according
to a uniform distribution. Moreover, we denote by U(S) the uniform distribution
over S. If D is a distribution over S, x ←$ D denotes an element x ∈ S sampled
according to D. If A is an algorithm, y ← A(x) denotes the output y after
running A on input x.

A negligible function negl(n) in n is a function that vanishes faster than the
inverse of any polynomial in n.

Given two distributions D1 and D2, we say that they are ε-statistically indis-
tinguishable, denoted by D1 ≈ε D2, if the statistical distance is at most ε.

The function lcm(i1, . . . , ij) between j integers i1, . . . , ij is the smallest inte-
ger a ∈ Z such that a is divisible by all i1, . . . , ij .

Error-Correcting Codes. We define Error-Correcting Codes (ECC). An ECC
over Zq is composed by the following algorithms ECCq′,q,�,k,δ = (Encode,Decode)
such that: i) c ← Encode(m) takes as input a message m ∈ Z

�
q′ and outputs a

codeword c ∈ Z
k
q ; ii) m ← Decode(c̃) takes as input corrupted codeword c̃ ∈ Z

k
q

and outputs a message m ∈ Z
�
q′ if ‖c̃ − c‖ ≤ δ where c ← Encode(m). In this

case, we say that ECC corrects up to δ errors. We say that ECC is linear if any
linear combination of codewords of ECC is also a codeword of ECC.

An example of such code is the primitive lattice of [26] which allows for
efficient decoding and fulfills all the properties that we need. In this code, q = q′

and � < k.
Alternatively, if m ∈ Z

�
q′ for q′t = q for some t ∈ N, we can use the encoding

c = t ·m which is usually used in lattice-based cryptography (e.g., [4]). Decoding
a corrupted codeword c̃ works by rounding �c̃�q′ = �(1/t) · c̃� mod q′.

3.1 Universal Composability

UC-framework [9] allows to prove security of protocols even under arbitrary
composition with other protocols. Let F be a functionality, π a protocol that
implements F and Z be a environment, an entity that oversees the execution
of the protocol in both the real and the ideal worlds. Let IDEALF,Sim,Z be a
random variable that represents the output of Z after the execution of F with
adversary Sim. Similarly, let REALG

π,A,Z be a random variable that represents
the output of Z after the execution of π with adversary A and with access to
the functionality G.

A protocol π UC-realizes F in the G-hybrid model if for every PPT adversary
A there is a PPT simulator Sim such that for all PPT environments E , the dis-
tributions IDEALF,Sim,Z and REALG

π,A,Z are computationally indistinguishable.
In this work, we only consider static adversaries. That is, parties involved in

the protocol are corrupted at the beginning of the execution.
We now present the ideal functionalities that we will use in this work.

CRS functionality. This functionality generates a crs and distributes it between
all the parties involved in the protocol. Here, we present the ideal functionality
as in [29].

Two-Round Oblivious Linear Evaluation from Learning with Errors 389

GCRS functionality

Parameters: An algorithm D.

– Upon receiving (sid,Pi,Pj) from Pi, GCRS runs crs ← D(1κ) and returns
(sid, crs) to Pi.

– Upon receiving (sid,Pi,Pj) from Pj , GCRS returns (sid, crs) to Pj .

OT functionality. Oblivious Transfer (OT) can be seen as a particular case of
OLE. We show the ideal OT functionality below.

FOT functionality

Parameters: sid ∈ N known to both parties.

– Upon receiving (sid, (M0,M1)) from S, FOT stores (M0,M1) and ignores
future messages from S with the same sid;

– Upon receiving (sid, b ∈ {0, 1}) from R, FOT checks if it has recorded
(sid, (M0,M1)). If so, it returns (sid,Mb) to R and (sid, receipt) to S, and
halts. Else, it sends nothing, but continues running.

OLE functionality. We now present the OLE functionality. This functionality
involves two parties: the sender S and the receiver R.

FOLE functionality

Parameters: sid, q, k ∈ N and a finite field F known to both parties.

– Upon receiving
(
sid, (a,b) ∈ F

k × F
k
)

from S, FOLE stores (a,b) and
ignores future messages from S with the same sid;

– Upon receiving (sid, x ∈ F) from R, FOLE checks if it has recorded
(sid, (a,b)). If so, it returns (sid, z = a + xb) to R and (sid, receipt) to
S, and halts. Else, it sends nothing but continues running.

Batch OLE functionality. Here we define a batch version of the functionality
defined above. In this functionality, the receiver inputs several OLE inputs at the
same time. The sender can then input an affine function together with an index
corresponding to which input the receiver should receive the linear combination.
The formal description of the functionality is presented in the full version of the
paper [8].

3.2 Lattices and Hardness Assumptions

Notation. Let B ∈ R
k×n be a matrix. We denote the lattice generated by B by

Λ = Λ(B) = {xB : x ∈ Z
k}.8 The dual lattice Λ∗ of a lattice Λ is defined by

Λ∗ = {x ∈ R
n : ∀y ∈ Λ,x · y ∈ Z}. It holds that (Λ∗)∗ = Λ.

8 The matrix B is called a basis of Λ(B).

390 P. Branco et al.

We denote by γB the ball of radius γ centered on zero. That is

γB = {x ∈ Z
n : ‖x‖ ≤ γ}.

A lattice Λ is said to be q-ary if (qZ)n ⊆ Λ ⊆ Z
n. For every q-ary lattice Λ,

there is a matrix A ∈ Z
k×n
q such that

Λ = Λq(A) = {y ∈ Z
n : ∃x ∈ Z

k
q ,y = xA mod q}.

The orthogonal lattice Λ⊥
q is defined by {y ∈ Z

n : AyT = 0 mod q}. It holds
that 1

q Λ⊥
q = Λ∗

q .
Let ρs(x) be probability distribution of the Gaussian distribution over R

n

with parameter s and centered in 0. We define the discrete Gaussian distribution
DS,s over S and with parameter s by the probability distribution ρs(x)/ρ(S) for
all x ∈ S (where ρs(S) =

∑
x∈S ρs(x)).

For ε > 0, the smoothing parameter ηε(Λ) of a lattice Λ is the least real
number σ > 0 such that ρ1/σ(Λ∗ \ {0}) ≤ ε [27].

Useful Lemmata. The following lemmas are well-known results on discrete Gaus-
sians over lattices.

Lemma 1 ([3]). Let σ > 0 and x ←$ DZn,σ. Then we have that

Pr
[‖x‖ ≥ σ

√
n
] ≤ negl(n).

The next lemma is a consequence of the smoothing lemma [27] and it tells us
that AeT is uniform, when e is sampled from a discrete Gaussian for a proper
choice of parameters.

Lemma 2 ([16]). Let q ∈ N and A ∈ Z
k×n
q be a matrix such that n =

poly(k log q). Moreover, let ε ∈ (0, 1/2) and σ ≥ ηε(Λ⊥
q (A)). Then, for

e ←$ DZm,σ,
AeT mod q ≈2ε uT mod q

where u ←$ Z
k
q .

The partial smoothing lemma tells us that the famous smoothing lemma [27]
still holds even given a small leak.

Lemma 3 (Partial Smoothing [7]). Let q ∈ N, γ > 0 be a real number, A ∈
Z

k×n
q and σ, ε > 0 be such that ρq/σ(Λq(A) \ γB) ≤ ε. Moreover, let D ∈ Z

m×k
q

be a full-rank matrix with Λ⊥
q (D) = {x ∈ Z

n : x · yT = 0,∀y ∈ Λq(A) ∩ γB}.
Then we have that

AxT mod q ≈ε A(x + u)T mod q

where x ←$ DZn,σ and u ←$ Λ⊥
q (D) mod q.

Recall Hadamard’s inequality.

Two-Round Oblivious Linear Evaluation from Learning with Errors 391

Theorem 1 (Hadamard’s inequality). Let Λ ⊆ R
n be a lattice and let

e1, . . . , en be a basis of Λ. Then it holds that

det(Λ) ≤
n∏

i=1

‖ei‖.

The following two lemmas give us an upper-bound on and the value of the
determinant of a two-dimensional lattice Λ⊥

q (a) for a ∈ Z
2
q.

Lemma 4. Let q ∈ N, B ∈ R and a ∈ Z
2
q such that a �= 0. Let e, e′ ∈ Z

2

such that e, e′ ∈ Λ⊥
q (a), ‖e‖ , ‖e′‖ < B and e, e′ are linearly independent over

Z. Then det
(
Λ⊥

q (a)
) ≤ B2.

The proof is presented in the full version of the paper [8].
We will need the following simple Definition and Lemma.

Definition 1. Let q be a modulus. We say that a vector a ∈ Z
n
q is primitive,

if the row-span of of a� is Zq. In other words it holds that every z ∈ Zq can be
expressed as z = 〈a,x〉 for some x ∈ Z

n
q .

Lemma 5. Let q be a modulus an let a ∈ Z
n
q be primitive. Then it holds that

det(Λ⊥(a)) = q.

The proof is presented in the full version of the paper [8].
The following lemma states that, for two-dimensional lattices, we can effi-

ciently find the shortest vector of the lattice.

Lemma 6 ([24]). Let q ∈ N, and let Λ ⊆ Z
2 be a q-ary lattice. There exists an

algorithm SolveSVP that takes as input (a basis of) Λ and outputs the shortest
vector e ∈ Λ. This algorithm runs it time O(log q).

We will also need the following lemma which states that any sufficiently
short vector of the lattice Λ⊥

q (a) must be a multiple of the shortest vector e′ ←
SolveSVP(a).

Lemma 7. Let q ∈ N, B <
√

q, a ∈ Z
2
q be a primitive 2-dimensional vector such

that a �= 0, and e ∈ Z
2 be the shortest vector of the lattice Λ⊥

q (a). If ‖e‖ < B

then for any e′ ∈ Z
2 such that e′ ∈ Λ⊥

q (a) and ‖e′‖ < B we have that e′ = te
for some t ∈ Z, i.e., e′ is a multiple of e over Z.

Proof. We have that e, e′ ∈ Λ⊥
q (a) and ‖e‖ , ‖e′‖ < B. Assume towards

contradiction that e, e′ are linearly dependent over Z. Then by Lemma 4
det

(
Λ⊥

q (ai)
) ≤ B2.

On the other hand, we have that det
(
Λ⊥

q (a)
)

= q by Lemma 5. Then q ≤ B2

and thus
√

q ≤ B, which contradicts the assumption that B <
√

q. We conclude
that e must be a multiple of e′ over the integers.

392 P. Branco et al.

The LWE Assumption. The Learning with Errors assumption was first presented
in [31]. The assumption roughly states that it should be hard to solve a set linear
equations by just adding a little noise to it.

Definition 2 (Learning with Errors). Let q, k ∈ N where k ∈ poly(λ),
A ∈ Z

k×n
q and β ∈ R. For any n = poly(k log q), the LWEk,β,q assumption holds

if for every PPT algorithm A we have

|Pr [1 ← A(A, sA + e)] − Pr [1 ← A(A,y)]| ≤ negl(λ)

for s ←$ {0, 1}k, e ←$ DZn,β and y ←$ {0, 1}n.

Regev proved in [31] that there is a (quantum) worst-case to average-case
reduction from some problems on lattices which are believed to be hard even in
the presence of a quantum computer.

Trapdoors for Lattices. Recent works [16,26] have presented trapdoors functions
based on the hardness of LWE.

Lemma 8 ([16,26]). Let τ(k) ∈ ω
(√

log k
)

be a function. There is a pair of
algorithms (TdGen, Invert) such that if (A, td) ← TdGen(1λ, n, k, q) then:

– A ∈ Z
k×n
q where n ∈ O(k log q) is a matrix whose distribution is 2−k close to

the uniform distribution over Z
k×n
q .

– For any s ∈ Zk
q and e ∈ Z

n
q such that ‖e‖ < q/(

√
nτ(k)), we have that

s ← Invert(td, sA + e).

In the lemma above, td corresponds to a short matrix T ∈ Z
n×n (that is,

‖T‖ < B, for some B ∈ R and B determines the trapdoor quality [16,26]) such
that AT = 0 and T−1 can be easily computed. To invert a sample of the form
y = sA + e, we simply compute yT = sAT + eT = eT. The error vector e can
be easily recovered by multiplying by T−1.

Observe that, if (A, tdA) ← TdGen(1λ, n, k, q), then Λ(A) has no short vec-
tors. That is, for all y ∈ Λ(A), then ‖y‖ > B = q/(

√
nτ(k)) [26]. If this does

not happen, then the algorithm Invert would not output the right s for a non-
negligible number of cases.

4 Finding Short Vectors in a Lattice with a Trapdoor

In this section, we provide an algorithm that, given a matrix A ∈ Z
k×n
q together

with the corresponding lattice trapdoor tdA (in the sense of Lemma 8), we can
decide if a vector a ∈ Z

n
q is close to the row-span of A, i.e. if a is close to the

lattice Λq(A), and even find the closest vector in Λq(A).
To keep things simple, we will only consider the case where q is either a prime

or the product of a “small” prime q1 and a “large” prime q2.
Before providing the algorithm, we will first prove the following structural

result about equation systems of the form y = re(mod q), where y ∈ Z
n
q is

given and r ∈ Zq and a short e ∈ Z
n are to be determined.

Two-Round Oblivious Linear Evaluation from Learning with Errors 393

Lemma 9. Let q be a modulus and let B2 ≤ q. Let y ∈ Z
n
q be a vector such

that there is an index i for which yi ∈ Z
∗
q . Assume wlog that y1 ∈ Z

∗
q . Define

the q-ary lattice Λ as the set of all x = (x1, . . . , xn) ∈ Z
n for which it holds that

−yi/y1 ·x1+xi = 0(mod q) for i = 2, . . . , n. Now let r ∈ Zq and e ∈ Z
n be such

that y = r · e. Then e ∈ Λ. Furthermore, all x ∈ Λ with ‖x‖ ≤ B are linearly
dependent. In other words, if there exists a x ∈ Λ\{0} with ‖x‖ ≤ B, then there
exists a x∗ ∈ Λ such that every x ∈ Λ with ‖x‖ ≤ B can be written as x = t · x∗

for a t ∈ Z.

Proof. First not that if y = r · e for an r ∈ Zq and an e ∈ Z
n, then it holds

routinely that −yi/y1·e1+ei = 0 for all i = 2, . . . , n. We will now show the second
part of the lemma, namely that if there exists an x ∈ Λ\{0} with ‖x‖ ≤ B, then
any such x can be written as x = t · x∗ for a x′ ∈ Λ, which is the shortest non-
zero vector in Λ. Let x = (x1, . . . , xn) ∈ Z

n and define the shortened vectors
xi = (x1, xi) ∈ Z

2. Note that since ‖x‖ ≤ B, it also holds that ‖xi‖ ≤ B. Further
define the lattices Λi ⊆ Z

2 (for i = 2, . . . , n) via the equation −yi/y1x1 +xi = 0,
and observe that xi ∈ Λi. Further let x∗

i = (x∗
1,i, x

∗
i) be the shortest non-zero

vector in Λi. Set x†
1 = lcm(x∗

1,2, . . . , x
∗
1,n) and x†

i = x∗
i · x†

1/x∗
1,i, and set set

x† = (x†
1, . . . , x

†
n). Note that x† ∈ Λ. We claim that x can be written as x = t·x†,

hence x† is the shortest vector in Λ.
Since ‖xi‖ ≤ B it follows by Lemma 7 that we can write xi as xi = ti · x∗

i

for a ti ∈ Z. That is x1 = ti · x∗
1,i and xi = ti · x∗

i . Now, since x∗
1,i divides x1 for

i = 2, . . . , n, it also holds that x†
1 = lcm(x∗

1,2, . . . , x
∗
1,n) divides x1. Thus write

x1 = t† · x†
1 for some t†, and it follows that

t† · x†
i = t† · x∗

i · x†
1/x∗

1,i

= x∗
i · x1/x∗

1,i

= x∗
i · ti

= xi,

for i = 2, . . . , n. We conclude that x = t† · x†.

The proof of Lemma 9 suggest an approach to recover e for y: Compute
the shortest vectors of the two-dimensional lattices Λi and use them to find the
shortest vector e† in Λ. Since e is a multiple of e†, e† also must be a short
solution to y = r†e†.

The following algorithm receives as input a vector y and allows us to find
(r, e) such that re = y mod q and e is a short vector (if such a vector exists).

Construction 1. Let q be a modulus and let n = poly(λ). Let y ∈ Z
n
q be such

that at least one component yi is invertible, i.e. yi ∈ Z
∗
q . Without loss of gener-

ality, we assume that this component is y1.

RecoverErrorq,n(y, B):

– Parse y ∈ Z
n
q as (y1, . . . , yn) and B > 0. If ‖y‖ ≤ B output y.

394 P. Branco et al.

– Since yi ∈ Z
∗
q , compute for all i = 2, . . . , n vi = yi · (y1)−1 over Zq, and set

ai = (vi − 1).
– For i = 2, . . . , n consider the lattice Λi = Λ⊥

q (ai) ⊆ Z
2 and run SolveSVP(Λi)

to obtain e∗
i ∈ Λi. Parse ei = (e∗

1,i, e
∗
i).

– Compute e†
1 = lcm (e1,2, . . . , e1,n).

– For all i = 2, . . . , n, set αi = e†
1/e1,i ∈ Z

– Set e†
i = αi · e∗

i .
– Set e† = (e†

1, . . . , e
†
n) and r† = y1 · (e†

1)
−1 ∈ Zq

– If
∥∥e†∥∥

∞ < B, output (r†, e†). Else, output ⊥.

Lemma 10. Given that B2 ≤ q and the vector y is of the form y = re for some
r ∈ Zq and e ∈ Z

n with ‖e‖∞ ≤ B, and further there exists an yi ∈ Z
∗
q , then

RecoverErrorq,n(y, B) outputs a pair (r†, e†) with y = r† · e† for an r† ∈ Zq and
e† ∈ Z

n with
∥∥e†∥∥ ≤ B. Furthermore, e is a short Z-multiple of e†, i.e. e and

e† are linearly dependent. The algorithm runs in time poly(log q, n).

Proof. We first analyze the runtime of the algorithm. Note that, since Λi has
dimension 2, then SolveSVP runs in time O(log q) by Lemma 6. All other proce-
dures run in time poly(log q, n).

We will now show that algorithm RecoverError is correct. Let

y = r · e ∈ Z
n
q (9)

for an r ∈ Zq and a e ∈ Z
n with ‖e‖∞ ≤ B. We claim that algorithm

RecoverError, on input y outputs an r∗ ∈ Zq and a e∗ ∈ Z
n with ‖e∗‖∞ ≤ ‖e‖∞.

We can expand (9) as the following non-linear equation system:

y1 = r · e1

...
yn = r · en.

Eliminating r via the first equation, using that y1 ∈ Z
∗
q we obtain the equation

system

−y2 · y−1
1 · e1 + e2 = 0

...

−yn · y−1
1 · e1 + en = 0,

i.e. we conclude that any solution to the above problem must also satisfy this
linear equation system. Now write vi = yi/y1 and set ai = (−vi, 1) and ei =
(e1, ei). The above equation system can be restated as for all i = 2, . . . , n that
ei ∈ Λi = Λ⊥(ai).

Since ‖e‖∞ ≤ B, it immediately follows that ‖ei‖∞ ≤ B. Note further that
all vectors ai ∈ Z

2
q are primitive (as their second component is 1). Now, let e∗

i

Two-Round Oblivious Linear Evaluation from Learning with Errors 395

be the shortest (non-zero) vector in Λi. As by the above argument ei ∈ Λi and
‖ei‖∞ < B, it follows by Lemma 7 that ei must be of the form ei = ri · e∗

i for
an ri ∈ Z.

Parsing e∗
i as e∗

i = (e∗
i,1, e

∗
i), the above implies for all i that e1 = ri · e∗

i,1, in
other words e∗

i,1 divides e1. But this means that also the least common multiple
e†
1 of the e∗

i,1 divides e1, i.e. e1 = tie
†
1. Consequently, it holds that |e†

1| ≤ |e1|.
Now set αi = e†

1/e∗
1,i and e†

i = αi ·e∗
i . Since |e†

1| ≤ |e1|, it must hold that αi ≤ ri

(as the linear combination ei = ri · e∗
i is unique) and therefore

∥∥∥e†
i

∥∥∥
∞

≤ ‖ei‖∞.

Now parse e†
i = (e†

1, e
†
i) and set e† = (e†

1, . . . , e
†
n). It follows that

∥∥e†∥∥
∞ ≤ B. By

the above it follows that e† is a B-short solution to the linear equation system.
It follows that r† = y1 · (e†

1)
−1 ∈ Zq provides us a solution to the non-linear

system.

Algorithm RecoverError requires that the vector y has a component in Z
∗
q .

If the modulus q is prime, then the existence of such a component follows from
y �= 0. However, this is generally not the case for composite moduli q. We will
now present an algorithm RecoverError+ which also covers composite moduli of
the form q is of the form q = q1 · q2, where q2 is a “large” prime and q1 is either
1 or a small prime.

Construction 2. Let q be a modulus of the form q = q1 · q2 (where the factors
q1 and q2 are explicitly known) and let n = poly(λ). Let y ∈ Z

n
q .

RecoverError+q,q1,q2,n(y, B):

– If it holds for all i that q1|yi, proceed as follows:
• Compute ȳ = y mod q2 (i.e. ȳ ∈ Z

n
q2)• Compute (r0, e) = RecoverErrorq2,n(ȳ)

• Set r1 = (q1)−1r0
• Let r′

1 be the lifting of r1 to Zq and set r = q1 · r′
1 ∈ Zq.

• Output (r, e)
– Otherwise, if it holds for all i that q2|yi proceed as follows:

• Compute ȳ = y mod q1 (i.e. ȳ ∈ Z
n
q1)• Set ē = (q2)−1 · ȳ ∈ Z

n
q2 (Note that q2 has an inverse modulo q1 as q1 and

q2 are co-prime).
• Lift ē to an e ∈ [−q1/2, q2/2]n ⊆ Z

n for which e mod q1 = ē.
• Set r = q2.
• Output (r, e).

– In the final case, there must exist components yi and yj such that q1 � yi and
q2 � yj. Proceed as follows:

• If q2 � yi it holds that yi ∈ Z
∗
q . Likewise, if q1 � yj it holds that yj ∈

Z
∗
q . If one of these two trivial cases happen compute and output (r, e) =

RecoverErrorq,n(y).
• Otherwise, set yn+1 = yi + yj and y′ = (y, yn+1) ∈ Z

n+1
q . Compute

(r, e′) = RecoverErrorq,n+1(y′). Set e = e′
1,...,n ∈ Z

n. If ‖e‖ ≤ B Output
(r, e), otherwise try this step again for yn+1 = yi − yj and output (r, e).

396 P. Branco et al.

Lemma 11. Let q = q1 · q2, where q1 ≤ 2B is either 1 or a prime and q2 > B2

is a prime. If y is of the form y = r′e′ for some r′ ∈ Zq and e′ ∈ Z
n with

‖e′‖∞ ≤ B, then RecoverError+q,q1,q2,n(y, B) outputs a pair (r, e) with ‖e‖∞ ≤ B
such that y = r · e. The algorithm runs in time poly(log q, n).

Proof. It follows routinely that RecoverError+q,q1,q2,n(y, B) runs in polynomial
time. We will proceed to the correctness analysis and distinguish the same cases
as RecoverError+.

– In the first case, given that y = r′ ·e′ (for a e′ ∈ Z
n with ‖e′‖∞ ≤ B) it holds

that ȳ = r̄′ · e′, where r̄′ = r mod q2. Consequently, as q2 > B2 it holds that
RecoverErrorq2,n(ȳ) will output a pair (r0, e) with ‖e‖∞ ≤ B such that r0 · e
mod q2 = ȳ. Now it holds that

(r · e) mod q2 = q1 · (q1)−1 · r0 · e = r0 · e = ȳ = y mod q2.

Furthermore, it holds that (r ·e) mod q1 = q1 · r′
1 ·e = 0 = y mod q1. Thus,

by the Chinese remainder theorem it holds that r · e = y.
– In the second case, if for all i that q2|yi, then it holds that ‖e‖∞ ≤ q1/2 ≤ B.

Furthermore, it holds that (r · e) mod q1 = (q2 · (q2)−1ē) mod q1 = ē = y
mod q1 and (r ·e) mod q2 = (q2 ·e) mod q2 = 0 = y mod q2. Consequently,
by the Chinese remainder theorem it holds that r · e = y.

– In the third case, if q2 � yi or q1 � yj correctness follows immediately from
the correctness of RecoverError, as in this case either yi or yj is the required
invertible component. Thus, assume that q1|yi but q2 � yi and q2|yj but q1 � yj .
It holds that (yi ±yj) mod q2 = yi mod q2 �= 0 and (yi ±yj) mod q1 = ±yj

mod q1 �= 0. Consequently, yi ± yj ∈ Z
∗
q . Finally given that yi = r · ei and

yj = r · ej with |ei|, |ej | ≤ B, it holds that yi ± yj = r · (ei ± ej) and either
|ei + ej | ≤ B or |ei − ej | ≤ B. Consequently, for one of these two cases
correctness follows from the correctness of RecoverError, as in this case y′ is
of the form y′ = r · e′ for an e′ ∈ Z

n with ‖e′‖∞ ≤ B.

We now present the main result of this section. The algorithm presented in
Construction 3 allows us decide if a given vector a is close to the row-span of A,
if A is generated together with a lattice trapdoor.

Construction 3. Let q = q1 · q2 be a product of primes, (A, tdA) ←
TdGen(1λ, n, k, q) and let RecoverError+ be the algorithm from Construction 2.

InvertCloseVector(tdA,a, B):

– Parse tdA = T ∈ Z
n×n, a ∈ Z

n
q and B > 0. Let C ∈ R be such that ‖T‖ < C.

– Compute z = aT.
– Run Γ ← RecoverError+q,q1,q2,n(z, B′) where B′ = BC

√
n. If Γ =⊥, abort the

protocol. Else, parse Γ = (r†, e†).
– Let t ∈ Z be the smallest integer for which ẽ = t · e†T−1 ∈ Z

n (t is the least
common multiple of the denominators of e†T−1).

Two-Round Oblivious Linear Evaluation from Learning with Errors 397

– Check if ‖ẽ‖ < B and recover x′, r such that x′A + r · ẽ = a (using gaussian
elimination).

– If ‖e‖ > B output ⊥. Else, output (x′, r, ẽ).

Theorem 2. Let C = C(λ) > 0 be a parameter, let q = q1 · q2, where q1 ≤
2BC

√
n is either 1 or a prime and q2 > B2C2n is a prime. Let TdGen be the

algorithm from Lemma 8 and RecoverErrorq,n be the algorithm of Construction
1. Let (A, tdA) ← TdGen(q, k) where A ∈ Z

k×n
q and tdA = T ∈ Z

n×n with
‖T‖ < C. If there are x ∈ Z

k
q and r ∈ Zq such that a = xA + re for some

e ∈ Z
n such that ‖e‖ ≤ B (where e is the shortest vector with this property),

then the algorithm InvertCloseVector outputs (x, r, e).

Proof. Assume now that e is the shortest vector for which we can write a =
xA + re for some x and r. Then it holds that

y = aT = xAT + reT = re′ mod q

where e′ = eT and where the last equality holds because AT = 0 mod q. Note
that ‖e′‖ < ‖e‖ ‖T‖ √

n ≤ BC
√

n = B′.
By Lemma 10, RecoverError(y, B′) will recover a pair (r†, e†) satisfying y =

r† · e†, and e† is the shortest vector with this property. By Lemma 9 it holds
that e′ and e† are linearly dependent, i.e. it holds that e′ = t† ·e†. Thus, it holds
that e = e′T−1 = t† ·e†T−1. Since the t computed by RecoverError(y, B′) is the
shortest integer for which t ·e†T−1 ∈ Z

n, it must hold that t = t†. Thus it holds
that ẽ = e. This concludes the proof.

5 Oblivious Linear Evaluation Secure Against
a Corrupted Receiver

In this section, we present a semi-honest protocol for OLE based on the hardness
of the LWE assumption. The protocol implements functionality FOLE defined in
Sect. 3.

5.1 Protocol

We begin by presenting the protocol.

Construction 4. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let k, n, �, �′, q ∈ Z such that q is as in Theorem 2, n = poly(k log q) and �′ ≤ �, and
let β, δ, ξ ∈ R such that q/C > β

√
n (where C ∈ R is as in Theorem 2), δ > β > 1

and β > q/δ. Additionally, let ECC�′,�,ξ = (ECC.Encode,ECC.Decode) be an ECC
over Zq. We present the protocol in full detail.

GenCRS(1λ):

– Sample A ←$ Z
k×n
q and a ←$ Z

n
q .

– Output crs = (A,a).

398 P. Branco et al.

R1 (crs, x ∈ Zq):

– Parse crs as (A,a).
– Sample s ←$ Z

k
q and an error vector e ←$ DZn,β.

– Compute a′ = sA + e − xa.
– Output ole1 = a′ and st = (s, x).

S

(
crs, (z0, z1) ∈

(
Z

�′
q

)2

, ole1

)
:

– Parse crs as (A,a) and ole1 as a′.
– Sample R ←$ DZn×�,δ.
– Compute C = AR ∈ Z

k×�
q , t0 = a′R + ECC.Encode(z0) and t1 = aR +

ECC.Encode(z1).
– Output ole2 = (C, t0, t1).

R2 (crs, st, ole2):

– Parse ole2 as (C, t0, t1) and st as (s, x) ∈ Z
k
q × Zq.

– Compute y ← ECC.Decode(xt1 + t0 − sC). If y =⊥, abort the protocol.
– Output y ∈ Z

�′
q .

5.2 Analysis

Theorem 3. (Correctness). Let ECC�′,�,ξ be a linear ECC where ξ ≥ √
�βδn.

Then the protocol presented in Construction 4 is correct.

Proof. To prove correctness, we have to prove that R2 outputs z0 + xz1, where
(z0, z1) is the input of S.

We have that

ỹ = xt1 + t0 − sC

= xaR + xẑ1 + a′R + ẑ0 − sAR

= xaR + xẑ1 + (sA + e − xa)R + ẑ0 − sAR

= xẑ1 + ẑ0 + e′

where e′ = eR, ẑ1 ← ECC.Encode(z1) and ẑ0 ← ECC.Encode(z0). Now since
ECC is a linear code over Zq′ , then

xẑ1 + ẑ0 = x · ECC.Encode(z1) + ECC.Encode(z0)
= ECC.Encode(xz1 + z0)

Finally, by Lemma 1, we have that ‖e‖ ≤ β
√

n. Moreover, if r(i) is a column
of R, then

∥∥r(i)∥∥ ≤ δ
√

n. Therefore, each coordinate of e′ has norm at most
‖e‖ · ∥∥r(i)∥∥ ≤ βδn. We conclude that ‖e′‖ ≤ √

�βδn. Since ECC corrects errors
with norm up to ξ ≥ √

�βδn, the output of ECC.Decode(ỹ) is exactly z0 + x1z1.

Two-Round Oblivious Linear Evaluation from Learning with Errors 399

Theorem 4 (Security). Assume that the LWEk,β,q assumption holds, q is as
in Theorem 2, q/C > β

√
n (where C ∈ R is as in Theorem 2), δ > β > 1,

β > q/δ and n = poly(k log q). The protocol presented in Construction 4 securely
realizes the functionality FOLE in the GCRS-hybrid model against:

– a semi-honest sender given that the LWEk,β,q assumption holds;
– a malicious receiver where security holds statistically.

Proof. We begin by proving security against a computationally unbounded cor-
rupted receiver.

Simulator for corrupted receiver: We describe the simulator Sim. Let
(TdGen, Invert) be the algorithms described in Lemma 8 and InvertCloseVector
be the algorithm of Theorem 2.

– CRS generation: Sim generates (A′, tdA′) ← TdGen(1λ, k + 1, n, q) and

parse A′ =
(
A
a

)
where A ∈ Z

k×n
q and a ∈ Z

n
q . Additionally, parse tdA′ as

T ∈ Z
n×n and let C ∈ R be such that ‖T‖ < C. It publishes crs = (A,a)

and keeps tdA′ to itself.
– Upon receiving a message a′ from R, Sim runs (s̃, α, e) ← InvertCloseVector

(tdA′ ,a′, B) where B = β
√

n. There are two cases to consider:
• If s̃ =⊥, then Sim samples t0, t1 ←$ Z

�
q and C ←$ Z

k×�
q . It sends ole2 =

(C, t0, t1).
• Else if s̃ �=⊥, then Sim sets x = s̃k+1 where s̃k+1 is the (k+1)-th coordinate

of s̃. It sends x to FOLE. When it receives a y ∈ Z
�′
q from FOLE, Sim samples

a uniform matrix U′ ←$ Z
(k+1)×�
q , which is parsed as U′ =

(
U
u

)
, and a

matrix R ←$ DZn×�,δ. It sets

C = U

t0 = s̃U′ + αeR + ECC.Encode(y)
t1 = u.

It sends ole2 = (C, t0, t1).

We now proceed to show that the real-world and the ideal-world executions
are indistinguishable. The following lemma shows that the CRS generated in the
simulation is indistinguishable from one generated in the real-world execution.
Then, the next two lemmas deal with the two possible cases in the simulation.

Lemma 12. The CRS generated above is statistically indistinguishable from a
CRS generated according to GenCRS.

Proof. The only thing that differs in both CRS’s is that the matrix A′ =
(
A
a

)

is generated via TdGen in the simulation (instead of being chosen uniformly).
By Lemma 8, it follows that the CRS is statistically indistinguishable from one
generated using GenCRS.

400 P. Branco et al.

Lemma 13. Assume that s̃ =⊥. Then, the simulated execution is indistinguish-
able from the real-world execution.

Proof. We prove that no (computationally unbounded) adversary can distinguish
both executions, except with negligible probability. First, note that, if s̃ =⊥
where (s̃, α, e) ← InvertCloseVector(tdA′ ,a′, B), then for any (α, s, x) ∈ Zq ×
Z

k
q × Zq we have that a′ = sA + xa + αe for an e with ‖e‖ > β

√
n since,

by Theorem 2, only in this case algorithm InvertCloseVector fails to invert a′.

In other words, consider the matrix Â =
(
A′

a′

)
. If a′ is of the form described

above, then the matrix Â has no short vectors in its row-span. That is, there is
no vector v �= 0 in Λq(Â) such that ‖v‖ ≤ β

√
n. This is a direct consequence of

the definition of algorithm InvertCloseVector of Theorem 2.
Hence ρβ(Λq(Â) \ {0}) ≤ negl(λ). Moreover, we have that

ρβ(Λq(Â) \ {0}) ≥ ρ1/β(Λq(Â) \ {0})

≥ ρ1/δ(Λq(Â) \ {0})

≥ ρ1/(qδ)(Λq(Â) \ {0})

= ρ1/δ(qΛq(Â) \ {0})

= ρ1/δ((Λ⊥
q (Â))∗ \ {0})

where the first and the second inequalities hold because δ > β > 1 by hypothesis
and the last equality holds because 1

q Λ⊥
q (Â) = Λq(Â)∗. Since

ρ1/δ((Λ⊥
q (Â))∗ \ {0}) ≤ negl(λ)

then δ ≥ ηε(Λ⊥(Â)), for ε = negl(λ). Moreover n = poly(k log q) by assumption.
Thus the conditions of Lemma 2 are met.

Therefore, we can switch to a hybrid experiment where ÂR mod q is
replaced by Û ←$ Z

(k+2)×� incurring only negligible statistical distance. That
is, ⎛

⎝C
t1
t0

⎞
⎠ =

⎛
⎝A

a
a′

⎞
⎠R +

⎛
⎝ 0

ẑ1
ẑ0 + ẽ

⎞
⎠ ≈negl(λ) Û +

⎛
⎝ 0

ẑ1
ẑ0 + ẽ

⎞
⎠ ≈negl(λ) U

where ẑj is the encoding ECC.Encode(zj) for j ∈ {0, 1}.
We conclude that, in this case, the real-world and the ideal-world execu-

tion (where Sim just sends a uniformly chosen triple (C, t0, t1)) are statistically
indistinguishable.

Lemma 14. Assume that s̃ �=⊥. Then, the simulated execution is indistinguish-
able from the real-world execution.

Proof. In this case, a′ = s̃A + αe for some s̃ ∈ Z
k
1 and e ∈ Z

n such that
‖e‖ < β

√
n. The proof follows the following sequence of hybrids:

Two-Round Oblivious Linear Evaluation from Learning with Errors 401

Hybrid H0. This is the real-world protocol. In particular, in this hybrid, the
simulator behaves as the honest sender and computes

t0 = a′R + ECC.Encode(z0) = s̃A′R + αeR + ECC.Encode(z0) mod q

t1 = aR + ECC.Encode(z1) mod q

C = AR mod q

for some α ∈ Zq \ {0} and where A′ =
(
A
a

)
.

Hybrid H1. This hybrid is similar to the previous one, except that Sim computes
t0 = s̃U′ +αeR+ECC.Encode(z0), C = U and t1 = u+ECC.Encode(z1), where

U′ =
(
U
u

)
←$ Z

(k+1)×�
q .

Claim 1. |Pr [1 ← A : A plays H0] − Pr [1 ← A : A plays H1]| ≤ negl(λ).

To prove this claim, we will resort to the partial smoothing lemma (Lemma
3). Using the same notation as in Lemma 3, consider γ = β

√
n. Then, we have

that
negl(λ) ≥ ρβ(Λq(A′) \ γB) ≥ ρq/δ(Λq(A′) \ γB)

since, by assumption, β > q/δ and where A′ =

⎛
⎝A

a
a′

⎞
⎠.

Hence, by applying Lemma 3, we obtain

A′R mod q ≈negl(λ) A′(R + X) mod q

for X ←$ Λ⊥(e) (here, in the notation of Lemma 3, we consider D = e).
We now argue that A′X mod q ≈negl(λ) U′ for U′ ←$ Z

(k+1)×�
q . Let B ∈

Z
n×k′
q be a basis of Λ⊥(e), that is, eB = 0. Let us assume for the sake of con-

tradiction that A′B does not have full rank (hence, A′X mod q is not uniform
over Z

(k+1)×�
q). Then, there is a vector v ∈ Z

k+1
q such that vA′B = 0.

Since B is a basis of Λ⊥(e), this means that vB ∈ (Λ⊥(e))⊥ = Λ(e). In other
words, vA′ = t · e for some t ∈ Zq. Consequently, we have e = t−1vA′ and thus
e is in the row-span of A′, that is, Λ(A′) has a vector of norm shorter than β

√
n.

However, this happens only with negligible probability over the uniform choice
of A and, thus, we reach a contradiction. We conclude that A′B needs to have
full rank. Now, since X is sampled uniformly from Λ⊥(e), we have that A′X is
uniform over Z

(k+1)×�
q . Thus, A′X mod q ≈negl(λ) U′ where U′ ←$ Z

(k+1)×�
q .

Hybrid H2. This hybrid is similar to the previous one, except that Sim com-
putes t0 = s̃U′ + αeR + ECC.Encode(y), C = U and t1 = u, where U′ =(
U
u

)
←$ Z

k×�
q .

This hybrid corresponds to the simulator for the corrupted receiver.

402 P. Branco et al.

Claim 2. |Pr [1 ← A : A plays H1] − Pr [1 ← A : A plays H2]| ≤ negl(λ).

Since u is uniformly at random, then it is statistically indistinguishable from
u′ −ECC.Encode(z1) where u′ ←$ Z

�
q is a uniformly random vector. Thus, replac-

ing the occurrences of u by u′ − ECC.Encode(z1), we obtain

(C, t0, t1) = (U, s̃U′ + αeR + ECC.Encode(z0),u + ECC.Encode(z1))

≈negl(λ)

(
U, s̃U

′
+ αeR + ECC.Encode(z0),u′

)

=
(
U, s̃−(k+1)U + αeR + ECC.Encode(z0) + xECC.Encode(z1),u′)

= (U,xU + αeR + y,u′)

where U
′

is the matrix whose rows are equal to U′, except for the (k + 1)-th
which is equal to u′ − ECC.Encode(z1), x = s̃k+1 is the (k + 1)-th coordinate of
s̃ and s̃−(k+1) ∈ Z

k
q is the vector s̃ with the (k + 1)-th coordinate removed.

This concludes the description of the simulator for the corrupted receiver.
We now resume the proof of Theorem 4 by presenting the simulator for the
semi-honest sender.

Simulator for corrupted sender. We describe how the simulator Sim proceeds: It
takes S’s inputs (z0, z1) and sends them to the ideal functionality FOLE, which
returns nothing. It simulates the dummy R by sampling a′ ←$ Z

n
q and sending it

to the corrupted sender.
It is trivial to see that both the ideal and the real-world executions are

indistinguishable given that the LWEk,q,β assumption holds.

5.3 Batch OLE

We now show how we can extend the protocol described above in order to imple-
ment a batch reusable OLE protocol, that is, in order to implement the func-
tionality FbOLE described in Sect. 3.

This variant improves the efficiency of the protocol since the receiver R can
commit to a batch of inputs {xi}i∈[k′], and not just one input, using the same
first message of the two-round OLE. Hence, the size of the first message can
be amortized over the number of R’s inputs, to achieve a better communication
complexity.

Construction 5. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let k, n, �, �′, q, k′ ∈ Z such that q is as in Theorem 2 and n = poly((k + k′) log q),
and let β, δ, ξ ∈ R such that q√

nτ(k)
> β (where τ(k) = ω(

√
log k) as in Lemma

8), δ > β > 1, β > q/δ and n = poly((k + k′) log q). Additionally, let ECC�′,�,ξ =
(ECC.Encode,ECC.Decode) be an ECC over Zq.

GenCRS(1λ): This algorithm is similar to the one described in Construction 4
except that crs = (A,a1, . . . ,ak′) where ai ←$ Z

n
q for i ∈ [k′]

Two-Round Oblivious Linear Evaluation from Learning with Errors 403

R1

(
crs, {xj}j∈[k′] ∈ Zq

)
: The algorithm is similar to the one described in Con-

struction 4, except that it outputs ole1 = a′ and st = (s, {xi}i∈[k′]), where

a′ = sA + e −
(∑k′

i=1 xiai

)
.

S

(
crs, (z0, z1) ∈

(
Z

�′
q

)2

, ole1, j ∈ [k′]
)

: This algorithm is similar to the one

described in Construction 4, except that; i) it computes t1 = −ajR; ii) It
computes wi = aiR for all i ∈ [k′] such that i �= j; and iii) it outputs
ole2 = (C, t0, t1, {wi}i
=j , j) (where j corresponds to which xj the receiver R
is supposed to use in that particular execution of the protocol) and {}.
R2(crs, st, ole2): This algorithm is similar to the one described in Construction
4, except that it outputs

z0 + xjz1 = y ← ECC.Decode

⎛
⎝t0 + xjt1 −

⎛
⎝sC +

∑
i
=j

xiwi

⎞
⎠

⎞
⎠ .

It is easy to see that correctness holds following a similar analysis as the one
of Theorem 3. We now state the theorem that guarantees security of the scheme.

Theorem 5 (Security). Assume that the LWEk,β,q assumption holds, q ∈ N

is as in Theorem 2, q/C > β
√

n (where C ∈ R is as in Lemma 8), δ > β > 1,
β > q/δ and n = poly((k + k′) log q). The protocol presented in Construction 5
securely realizes the functionality FbOLE in the GCRS-hybrid model against:

– a semi-honest sender given that the LWEk,β,q assumption holds;
– a malicious receiver where security holds statistically.

The proof of the theorem stated above essentially follows the same blueprint
as the proof of Theorem 4, except that the simulator for the corrupted receiver
extracts the first k′ coordinates {xj}j∈[k′] of x and sends these values to FbOLE .
From now on, it behaves exactly as the simulator in the proof of Theorem 4.
Indistinguishability of executions follows exactly the same reasoning.

Communication Efficiency Comparison. Comparing with the protocol presented
in Construction 4, this scheme achieves the same communication complexity for
the receiver (that is, the receiver message is of the same size in both construc-
tions). On the other hand, the sender’s message now depends on k′.

6 OLE from LWE Secure Against Malicious Adversaries

In this section, we extend the construction of the previous section to support
malicious sender. The idea is to use a cut-and-choose approach via the use of an
OT scheme in two rounds and extract the sender’s input via the OT simulator.

404 P. Branco et al.

6.1 Protocol

Construction 6. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let OLE = (GenCRS,R1,S,R) be a two-round OLE protocol which is secure against
malicious receivers and semi-honest senders and OT = (GenCRS,R1,S,R2) be a
two-round OT protocol. We now present the protocol in full detail.

GenCRS(1λ):

– Run crsOLE ← OLE.GenCRS(1λ) and crsOT ← OT.GenCRS(1λ).
– Output crs = (crsOLE, crsOT).

R1 (crs, x ∈ Zq):

– Parse crs as (crsOLE, crsOT).
– Sample x1, x2 ←$ Zq such that x1 + x2 = x.
– Compute (ole1,1, st1,1) ← OLE.R1(crsOLE, x1) and (ole1,2, st1,2) ←

OLE.R1(crsOLE, x2).
– Additionally, choose uniformly at random b = (b1, . . . , bλ) ←$ {0, 1}λ and

compute (ot1,i, s̃ti) ← OT.R1(crsOT, bi) for all i ∈ [λ].
– Output ole1 = (ole1,1, ole1,2, {ot1,i}i∈[λ]) and st =

(
st1,1, st1,2, {s̃ti}j∈[λ]

)
.

S
(
crs, (z0, z1) ∈ Z

�
q, ole1

)
:

– Parse crs as (crsOLE, crsOT) and ole1 as (ole1,1, ole1,2, {ot1,i}i∈[λ]).
– Sample z1,1, z1,2 ←$ Z

�
q such that z1,1 + z1,1 = z1.

– For all j ∈ [λ], do the following:
• Sample random coins rj,1, r2 ←$ {0, 1}λ.
• Compute ole2,j,1 ← OLE.S(crsOLE, ole1,1, (u0,j,1,u1,j,1); rj,1) for uni-

formly chosen u0,j,1,u1,j,1 ←$ Z
�′
q . Additionally, compute ole2,j,2 ← OLE.S

(crsOLE, ole1,2, (u0,j,2,u1,j,2); rj,2) for uniformly chosen u0,j,2,u1,j,2 ←$

Z
�′
q .

• Set M0,j = (rj,1, rj,2,u0,j,1,u1,j,1,u0,j,2,u1,j,2) and M1,j = (u0,j,1 +
z0,u1,j,1 + z1,1,u0,j,2 + z0,u1,j,2 + z1,2). Compute ot2,j ← OT.S
(crsOT, ot1,j , (M0,j ,M1,j)).

– Output ole2 = {ole2,j,1, ole2,j,2, ot2,j}j∈[λ].

R2(crs, st, ole2):

– Parse ole2 as {ole2,j,1, ole2,j,2, ot2,j}j∈[λ] and st as
(
st1,1, st1,2, {s̃ti}j∈[λ]

)
.

– For all j ∈ [λ], do the following:
• Recover Mbj ,j ← OT.R2(crsOT, s̃ti).
• If bj = 0, parse M0,j = (rj,1, rj,2,u0,j,1,u1,j,1,u0,j,2,u1,j,2). Compute

ole′
2,j,1 ← OLE.S(crsOLE, ole1,1, (u0,j,1,u1,j,1); rj,1)

and
ole′

2,j,2 ← OLE.S(crsOLE, ole1,2, (u0,j,2,u1,j,2); rj,2).

If ole′
2,j,1 �= ole2,j,1 or if ole′

2,j,1 �= ole2,j,1, abort the protocol.

Two-Round Oblivious Linear Evaluation from Learning with Errors 405

• If bj = 1, parse M1,j as (v0,j,1,v1,j,1,v0,j,2,v1,j,2). Compute yj,1 ←
OLE.R2(crsOLE, ole2,j,1, stj,1) and yj,2 ← OLE.R2(crsOLE, ole2,j,2, stj,2).
Compute wj,1 = v0,j,1 +x1ṽ1,j,1 −yj,1 and wj,2 = v0,j,2 +x2ṽ1,j,2 −yj,2.

– Let I1 ⊆ [λ] be the set of indices j such that bj = 1 and let {wj,1,wj,2}j∈I1 .
If w1 = wj,1 = wj′,1, w2 = wj,2 = wj′,2 and w = wj,1 +wj,2 = wj′,1 +wj′,2
for all pairs (j, j′) ∈ I21 then output w. Else abort the protocol.

6.2 Analysis

We now proceed to the analysis of the protocol described above.

Theorem 6 (Correctness). Assume OLE and OT implement the functionali-
ties FOLE and FOT. Then the protocol presented in Construction 6 is correct.

Theorem 7 (Security). Let q = 2ω(log λ). Assume that OLE implements
FOLE against malicious receivers and semi-honest sender and that OT imple-
ments the functionality FOT. The protocol presented in Construction 6 securely
realizes the functionality FOLE in the GCRS-hybrid model against static malicious
adversaries.

The proof of the theorem is presented in the full version of the paper available
at [8].

On the choice of the modulus q. The scheme presented above is only secure if
q is chosen to be superpolynomial in λ. The scheme can be adapted to support
fields of polynomial size by running λ instances of the underlying OLE, instead
of running only two instances.

6.3 Instantiating the Functionalities

We now discuss how we can instantiate the underlying functionalities FOT and
FOLE (secure against semi-honest receivers) used in the protocol described above.

When we instantiate FOT with the OT schemes from [29,30] and FOLE (secure
against semi-honest receivers) with the scheme from Sect. 5, we obtain a mali-
ciously secure OLE protocol with the following properties:

1. It has two rounds;
2. It is statistically secure against a malicious receiver since the the OT of [29,

30] and the scheme from Sect. 5 are statistically secure against a malicious
receiver.

3. Security against a malicious sender holds under the LWE assumption since
both the schemes of [29,30] are secure against malicious senders and the
scheme from Sect. 5 is secure against semi honest senders under the LWE
assumption.

406 P. Branco et al.

Acknowledgment. Pedro Branco thanks the support from DP-PMI and FCT (Por-
tugal) through the grant PD/BD/135181/2017. Part of the work was done while the
author was at CISPA.

Pedro Branco and Paulo Mateus are partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference UIDB/50008/2020 (Insti-
tuto de Telecomunicações via actions QuRUNNER, QUESTS) and Projects Quantum-
Mining POCI-01-0145-FEDER-031826, PREDICT PTDC/CCI-CIF/29877/2017 and
QuantumPrime PTDC/EEI-TEL/8017/2020.

Nico Döttling was supported by the Helmholtz Association within the project
“Trustworthy Federated Data Analytics” (TFDA) (funding number ZT-I- OO1 4).

References

1. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 8

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp.
120–129 (2011)

3. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296(4), 625–636 (1993). http://eudml.org/doc/165105

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

5. Baum, C., Escudero, D., Pedrouzo-Ulloa, A., Scholl, P., Troncoso-Pastoriza, J.R.:
Efficient protocols for oblivious linear function evaluation from ring-LWE. In:
Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 130–149.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6 7

6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, pp. 896–912. Association for Computing Machinery, New York
(2018). https://doi.org/10.1145/3243734.3243868

7. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from
LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 14

8. Branco, P., Döttling, N., Mateus, P.: Two-round oblivious linear evaluation from
learning with errors. Cryptology ePrint Archive, Report 2020/635 (2020). https://
ia.cr/2020/635

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136–145 (2001)

10. de Castro, L., Juvekar, C., Vaikuntanathan, V.: Fast vector oblivious linear evalu-
ation from ring learning with errors. Cryptology ePrint Archive, Report 2020/685
(2020). https://eprint.iacr.org/2020/685

11. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 462–488. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 15

https://doi.org/10.1007/978-3-319-63688-7_8
http://eudml.org/doc/165105
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-030-57990-6_7
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1007/978-3-030-03810-6_14
https://ia.cr/2020/635
https://ia.cr/2020/635
https://eprint.iacr.org/2020/685
https://doi.org/10.1007/978-3-030-26954-8_15

Two-Round Oblivious Linear Evaluation from Learning with Errors 407

12. Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious
transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 768–797. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 26

13. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: efficient
actively secure two-party computation from oblivious linear function evaluation.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, pp. 2263–2276. Association for Computing Machinery,
New York (2017). https://doi.org/10.1145/3133956.3134024

14. Döttling, N., Kraschewski, D., Müller-Quade, J.: Statistically secure linear-rate
dimension extension for oblivious affine function evaluation. In: Smith, A. (ed.)
ICITS 2012. LNCS, vol. 7412, pp. 111–128. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32284-6 7

15. Döttling, N., Kraschewski, D., Müller-Quade, J.: David & Goliath oblivious affine
function evaluation - asymptotically optimal building blocks for universally com-
posable two-party computation from a single untrusted stateful tamper-proof hard-
ware token. Cryptology ePrint Archive, Report 2012/135 (2012). https://eprint.
iacr.org/2012/135

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008).
https://doi.org/10.1145/1374376.1374407

17. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 22

18. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 6

19. Ghosh, S., Simkin, M.: The communication complexity of threshold private set
intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 1

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pp. 307–328 (2019)

21. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: LevioSA:
lightweight secure arithmetic computation. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, pp.
327–344. Association for Computing Machinery, New York (2019). https://doi.org/
10.1145/3319535.3354258

22. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

23. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency
framework for secure neural network inference. In: Proceedings of the 27th USENIX
Conference on Security Symposium, SEC 2018, pp. 1651–1668. USENIX Associa-
tion, USA (2018)

https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1145/3133956.3134024
https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-642-32284-6_7
https://eprint.iacr.org/2012/135
https://eprint.iacr.org/2012/135
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1145/3319535.3354258
https://doi.org/10.1145/3319535.3354258
https://doi.org/10.1007/978-3-642-00457-5_18

408 P. Branco et al.

24. Lempel, M., Paz, A.: An algorithm for finding a shortest vector in a two-
dimensional modular lattice. Theor. Comput. Sci. 125(2), 229–241 (1994). http://
www.sciencedirect.com/science/article/pii/030439759200021I

25. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

26. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

27. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaus-
sian measures. SIAM J. Comput. 37(1), 267–302 (2007). https://doi.org/10.1137/
S0097539705447360

28. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38 (2017)

29. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

30. Quach, W.: UC-secure OT from LWE, revisited. In: Galdi, C., Kolesnikov, V.
(eds.) SCN 2020. LNCS, vol. 12238, pp. 192–211. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-57990-6 10

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC 2005, pp. 84–93. ACM, New York (2005). https://doi.org/
10.1145/1060590.1060603

32. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science (SFCS 1982), pp. 160–164 (1982)

http://www.sciencedirect.com/science/article/pii/030439759200021I
http://www.sciencedirect.com/science/article/pii/030439759200021I
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-030-57990-6_10
https://doi.org/10.1007/978-3-030-57990-6_10
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603

Improved Constructions of Anonymous
Credentials from Structure-Preserving

Signatures on Equivalence Classes

Aisling Connolly1(B), Pascal Lafourcade2(B), and Octavio Perez Kempner3,4(B)

1 Worldline Global, Paris, France
aislingmconnolly@gmail.com

2 LIMOS, University Clermont Auvergne, Clermont-Ferrand, France
pascal.lafourcade@uca.fr

3 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
4 be-ys Research, Clermont-Ferrand, France

octavio.perez.kempner@ens.fr

Abstract. Anonymous attribute-based credentials (ABCs) are a pow-
erful tool allowing users to authenticate while maintaining privacy.
When instantiated from structure-preserving signatures on equivalence
classes (SPS-EQ) we obtain a controlled form of malleability, and hence
increased functionality and privacy for the user. Existing constructions
consider equivalence classes on the message space, allowing the joint ran-
domization of credentials and the corresponding signatures on them.

In this work, we additionally consider equivalence classes on the
signing-key space. In this regard, we obtain a signer-hiding notion, where
the issuing organization is not revealed when a user shows a credential. To
achieve this, we instantiate the ABC framework of Fuchsbauer, Hanser,
and Slamanig (FHS, Journal of Cryptology ’19) with a recent SPS-EQ
scheme (ASIACRYPT ’19) modified to support a fully adaptive NIZK
from the framework of Couteau and Hartmann (CRYPTO ’20). We also
show how to obtain Mercurial Signatures (CT-RSA, 2019), extending the
application of our construction to anonymous delegatable credentials.

To further increase functionality and efficiency, we augment the set-
commitment scheme of FHS19 to support openings on attribute sets
disjoint from those possessed by the user, while integrating a proof of
exponentiation to allow for a more efficient verifier. Instantiating in the
CRS model, we obtain an efficient credential system, anonymous under
malicious organization keys, with increased expressiveness and privacy,
proven secure in the standard model.

Keywords: Anonymous credentials · Mercurial signatures · SPS-EQ

1 Introduction

Considering access to online services, designing protocols to manage the infor-
mation users can be requested to present is of utmost importance to protect
the user. A first step in the literature developed the concept of attribute-based
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 409–438, 2022.
https://doi.org/10.1007/978-3-030-97121-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_15

410 A. Connolly et al.

credentials (ABC), to model how users could show a credential, containing a set
of attributes, to access different services.

Subsequently, the development of anonymous attribute-based credentials
made it possible protect the holders identity when showing a credential. Users
could present a credential disclosing no information other than that revealed by
the attributes they choose to show (anonymity), while also ensuring that the pro-
vided information is authentic (unforgeability). Proposed alternatives consider a
third property unlinkability which ensures that multiple showings of the same cre-
dential cannot be linked. Credential systems that support an arbitrary number of
unlinkable showings are said to be multi-show. In contrast, those that only allow
a single use of an issued credential in an unlinkable fashion are called one-show .

Initial progress was made with respect to one-show constructions. Here, blind
signatures are issued on commitments to attributes so that users can later show
the signature and disclose some of the attributes, while proving knowledge of
those left unrevealed. Examples include [4,9], and [30].

In the multi-show setting, pioneering constructions (based on Camenisch and
Lysyanskaya’s (CL) signatures [12,13]) such as the one underlying the Idemix
credential system [52] rely on randomizing the signature to then prove in zero-
knowledge the correspondence between the set of attributes (disclosed and undis-
closed), and the signature.

A major drawback from such an approach is that the zero-knowledge proof
used during showings is of variable-length and may require multiple sub-proofs
On the other hand, more recent constructions (e.g., [11,14,24,32,38,46,49])
apply other techniques based on different lines of work to adapt the signature
and the message without using Zero-Knowledge Proofs of Knowledge (ZKPoK),
providing constant-size showings.

The concept of ABC has been recently extended to consider multi-authority
credentials (e.g., [23,38,48]), where users obtain a single credential for a set of
attributes not necessarily issued by a single authority. In this work we consider
the classical setting (single authority issuance).

1.1 Limitations of State-of-the-art ABCs

Constructions in the classical setting differentiate from each other by the expres-
siveness they provide, their efficiency, on whether or not they provide non-
interactive features, on their security model, and on how and if they manage
revocation features. Achieving all these properties simultaneously has been chal-
lenging and tends to rely on complex or non-standard assumptions.

When considering state-of-the-art credential systems, there are five lines of
work with respect to the underlying signature scheme that is used to build them;
(1) CL signatures [13]: Idemix [52] and [49]. (2) Aggregatable signatures: [14]
and [38]. (3) Sanitizable signatures: [15]. (4) Redactable signatures: [11] and [46].
(5) Structure-Preserving Signatures on Equivalence Classes (SPS-EQ): [32].

Proof settings. All previous work with the exception of [49] rely on security
proofs in the Generic Group Model (GGM) [47]. Our first motivation is to provide
an alternative to [49], building on [32] without relying on the GGM.

Improved Constructions of Anonymous Credentials from SPS-EQ 411

Table 1. Signatures comparison including pairings and exponentiations.

Scheme |σ| |pk| Sign Verify ChgRep Assumptions

[40] 8|G1| + 9|G2| (2 + �)|G2| 29E 11P 19P+38E SXDH

Section 5 9|G1| + 4|G2| (2 + �)|G2| 10E 11P 19P+21E extKerMDH, SXDH

Signer-hiding properties. Showing protocols of previous constructions
(including [49]), verify signatures with a key that belongs to the authority that
issued the credential. This restricts the use of ABC in scenarios where one would
like to verify a valid credential without linking it to a particular authority.

Concrete efficiency. Most alternatives provide similar efficiency at the
asymptotic level. Yet, an up-to-date fine-grained analysis on their concrete effi-
ciency lacks in the literature.

1.2 Summary of Contributions

We follow the ABC and SPS-EQ line of work from Fuchsbauer, Hanser and
Slamanig [32], improving over prior work in the following ways:

1. We extend the set-commitment scheme from [32] to build a more expressive
credential system allowing the generation of witnesses for disjoint sets ([32]
allows only selective disclosure of attributes).

2. We instantiate the ABC from [32], with a new SPS-EQ scheme based on
the one from [40] also using a CRS, a tight reduction, and under weaker
assumptions. Thus, we move away from a security proof in the GGM when
compared to the work from [32], and obtain a more efficient ABC than the
one resulting from instantiating [32] with [40] (see Table 1).

3. We incorporate a proof of exponentiation to outsource part of computational
cost from the verifier to the prover, which can be useful in some settings.

4. We adapt the signature scheme to build an SPS-EQ where one not only can
randomize the message together with the signature, but also the correspond-
ing public key used to verify the signature using a proof of well-formedness.
Thus, users can hide the identity of the signer during showings.

By doing so, the verifier can check a signature using a randomized public key,
knowing that it comes from a valid authority but not which one. Unlike solutions
using ring signatures where it is the signer (credential issuer) who chooses the
ring size, we let users do it independently (relying on SPS-EQ and an efficient
proof of correct randomization alone). Hence, once users get a credential from
a valid authority they can decide on the anonymity set themselves whenever
they use their credential. This approach is better aligned with the concept of
self sovereign identity and related applications that seek to empower users giving
them full control on their identity.

Along the way, we also describe how to build mercurial signatures [20] with
security proofs in the standard model (assuming a CRS). All the previous ones
[20,21] have security proofs in the GGM. Consequently, our signature construc-
tion can also be used to build delegatable anonymous credentials [5,17] as well.

412 A. Connolly et al.

SPS [35]

OR-Proof [19]

OR-Proof [41]

OR-Proof [46]

OR-Proof [42]

SPS-EQ [41]

ABC [33]

SCDS

PoE [51]

DS [36]

SC [33]

Our work

OR-Proof [19] Signer-Hiding

Fig. 1. Summary of building blocks used in this work. Dashed boxes represent replaced
building blocks while grey boxes are used to highlight our contributions. When appli-
cable, references inside each box indicate the related previous work.

1.3 Roadmap

We begin by presenting related work with a focus on the development of SPS-
EQ and set-commitment schemes (Sect. 2) followed by the required cryptographic
background in Sect. 3. Our first contribution, extending the set-commitment
scheme (SC) in [32] to support non-membership proofs for disjoint sets (DS), is
presented in Sect. 4. We also define here the proof of exponentiation (PoE), which
can be seen as an optional plug-in to gain efficiency in this new set-commitment
scheme (SCDS).

In Sect. 5 we present our SPS-EQ scheme. It uses a new malleable NIZK
argument based on a recent work from Couteau and Hartmann [19], which we
use to replace the one underlying [40].

In [32] the authors discuss a concurrently secure variant of their ABC based
on a trapdoor commitment scheme to implement ZKPoK, assuming the exis-
tence of one-way functions and a CRS. Since our SPS-EQ makes use of a CRS,
we instantiate the previous variant with it, incorporate a Pedersen commit-
ment scheme to compute the relevant ZKPoK, and adapt the rest to our set-
commitment scheme and the proof of exponentiation (second and third contri-
butions). Thus, we dedicate Sect. 6 to present the resulting ABC.

Subsequently, we extend the previous construction to support another NIZK
argument that allows to hide the identity of the signer during showings. This
allows us to build another ABC as our fourth contribution. Furthermore, we also
outline in this section how to perform revocation and build mercurial signatures.

In Fig. 1 we summarize the dependencies between the different building blocks
used in the previously mentioned sections highlighting our contributions.

Finally, a detailed comparison on the concrete efficiency of our constructions
when compared to other state-of-the-art alternatives is provided in Sect. 8, while
the conclusions of this work are presented in Sect. 9.

Improved Constructions of Anonymous Credentials from SPS-EQ 413

2 Background and Related Work

2.1 Structure-Preserving Signatures on Equivalence Classes

In [36], Hanser and Slamanig introduced a novel structure preserving signa-
ture (SPS) scheme that allowed joint randomization of messages and their cor-
responding signatures, coining Structure-Preserving Signatures on Equivalence
Classes (SPS-EQ). They observed that if one considers a prime-order group G

and defines the projective vector space (G∗)�, there is a partition into equiva-
lence classes given by the following relation R: m ∈ (G∗)� ∼R m∗ ∈ (G∗)� ⇐⇒
∃ μ ∈ Z

∗
p : m∗ = μm. If the discrete logarithm problem is hard in G and one

restricts the vector components to be non-zero, given two vectors m and m∗, it is
difficult to distinguish whether they were randomly sampled or if they belong to
the same equivalence class. Hence, Hanser and Slamanig defined SPS-EQ as SPS
that produce signatures on an equivalence class instead of messages alone. Given
a message and its corresponding signature, SPS-EQ provides a controlled form of
malleability in which one can publicly (without requiring access to the secret key)
adapt a signature to change the representative (message). The equivalence rela-
tion provides indistinguishability on the message space if the DDH assumption
holds. If additionally, updated signatures are distributed like fresh signatures,
message-signature pairs falling into the same class are unlinkable. For unlinka-
bility to hold, signatures should also be randomized when adapting them to a
new representative of the class. As described in [32], given a representative and
its corresponding signature, a random representative of the same class with an
adapted signature are indistinguishable from a random message-signature pair.

Since their introduction, SPS-EQ have been used to build several crypto-
graphic protocols (e.g., [2,3,10,26,29–31]). They have been used in anonymous
credentials [24,32,36], and delegatable anonymous credential systems, in this
case under the name of mercurial signatures [20,21], which are an extension of
the equivalence classes to the signing keys. State-of-the-art constructions focus
on building schemes under weaker assumptions and with tight security. The first
step was the work from Fuchsbauer and Gay [28]. Subsequently, Khalili et al.
[40] proposed a new SPS-EQ which is, to the best of our knowledge, the only
one under standard assumptions and with a tight security reduction to date.

The construction of [28] is based on the family of Matrix-Diffie-Hellman
assumptions [27]. They first modify an affine MAC from [6] to obtain a lin-
ear structure-preserving MAC, which is made publicly verifiable using a known
technique in the context of SPS [41]. This allows to use a tag to randomize both
the signature and message.

The resulting scheme is secure under a weaker notion of unforgeability (EUF-
CoMA). In [40], authors observe that using a structure-preserving MAC such as
the one from [28] has an inherent problem in the security game. As messages
and Matrix Decision Diffie-Hellman challenges belong to the same source group
of the bilinear group, one cannot do better than EUF-CoMA security following
this approach. Consequently, they proposed to use an OR-Proof based on that
in [34] to then construct tightly secure structure-preserving MACs based on the
key encapsulation mechanism of Gay et al. in [33]. This allows to circumvent

414 A. Connolly et al.

the previous issue and obtain the first EUF-CMA secure SPS-EQ scheme with
a tight security reduction under standard assumptions.

In this work, we present an SPS-EQ scheme where the OR-based proof in [40]
is replaced by the one in [19], while adapting other building blocks accordingly.

2.2 Accumulators and Set-Commitments

In [25], Derler, Hanser and Slamanig revisited the notion of cryptographic accu-
mulators and proposed a unified formal model which included the notions of
undeniability and indistinguishability for accumulators, complementing the clas-
sical ones of correctness and collision-freeness. They showed how to construct
a commitment scheme using an indistinguishable accumulator in a black-box
manner. The relation stems from the fact that indistinguishability and collision-
freeness of accumulators resemble those of hiding and binding for commitments.

In subsequent work [36], Hanser and Slamanig built an ABC with constant-
size credentials and constant-size showings (for selective disclosure of attributes)
based on a polynomial commitment scheme with factor openings. They departed
from the work of Kate et al. on constant-size polynomial commitments [39] with
the following observations; (1) If a credential is seen as a set of attributes mapped
to roots of a monic polynomial, then one can generate a polynomial commitment
of constant-size to represent the credential using the approach from [39]. (2)
Instead of evaluating the polynomial at certain points, what is important to
prove possession of an attribute is to open factors of the polynomial instead. (3)
If one can open multiple factors in constant-size, a showing involving a selective
disclosure of attributes can be done in constant-size as well.

As a result they proposed an indistinguishable bilinear accumulator ([43])
with batch membership proofs (i.e., factor opening), which was subsequently
re-stated as a set-commitment scheme in a follow-up work [32].

A drawback of the ABC from [32] is that the achieved level of expressiveness
is limited. It allows only to show proofs for the conjunction of attributes in
arbitrary subsets of attributes encoded in the credential (selective disclosure).
Another potential issue is that verification involves a number of exponentiations
that are linear in the size of the subset to be verified. This is undesirable when
verification of the credential should be fast.

Thakur [50] proposed a series of protocols for batch membership and non-
membership proofs for bilinear accumulators using proofs of exponentiation (an
idea previously introduced for accumulators in groups of unknown order by
Boneh et al. [8] and by Wesolowski [51]) to shift the computational cost from the
verifier to the prover. The main idea is to replace some of the exponentiations
by a single polynomial division and to use of a non-interactive proof obtained
via the Fiat-Shamir transform.

Batch proofs in the bilinear accumulator setting can be traced back to the
works by Papamanthou et al. [44] and by Ghosh et al. [35]. The latter presents
the same underlying ideas of the (non)membership proofs provided by Thakur,
and a Zero-Knowledge Dynamic Universal Accumulator, which strengthens the
notion of indistinguishability using the randomization ideas from [25].

Improved Constructions of Anonymous Credentials from SPS-EQ 415

Table 2. Asymptotic complexities of ABC systems where n is the number of attributes
in the credential and k the number of disclosed ones during a showing.

Scheme [13] [14] [15] [11] & [32] [49] [46] [38] Section 6

Issuing n-attr. credential

Comm. O(n) O(n) O(n) O(1) O(n) O(1) O(n) O(1)

User O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)

Issuer O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)

Showing k-of-n attributes (selective disclosure)

|ek| O(n) O(n) O(n) O(n) O(n) O(n2) O(n) O(n)

Comm. O(n) O(1) O(k) O(1) O(1) O(1) O(1) O(1)

User O(n) O(n) O(k) O(n − k) O(n − k) O(n − k) O(1) O(max{n − k, k})
Verifier O(n) O(n) O(k) O(k) O(k) O(k) O(n) O(1)

More recently, a new set-commitment scheme including set intersection and
set difference operations was proposed in [49]. It provides more expressiveness
when compared to the one from [32] but under a weaker hiding notion.

We incorporate the previous ideas from [25,35], and [50] to extend the set-
commitment scheme from [32] to support disjoint sets (batch non-membership
proofs), while also allowing a faster verification and a stronger hiding notion.
Thus, we obtain a set-commitment scheme that is more expressive than the one
in [32] and almost as expressive as [49] (but better in efficiency and strength).

2.3 Attribute-Based Credentials

We recall in Table 2 the asymptotic complexities for the issuing and showing
protocols, considering recent credential systems from each of the lines of work
mentioned in the introduction, and our construction in Sect. 6. For showing pro-
tocols we consider the selective disclosure of attributes (i.e., the ability to show
multiple attributes while hiding others during a showing). While the work from
[38] (based on aggregatable signatures) is the only one with O(1) complexity
for the user during a showing, this is obtained at the cost of a more expensive
verifier. Our work achieves O(1) complexity for the verifier but keeping better
asymptotics for the user. A more detailed comparison on the concrete efficiency
of ABC’s (as well as an implementation benchmark) was provided in [49], but
the recent works from [46] and [38] were not included. Therefore, we provide an
updated comparison for the most efficient ones in Sect. 8.

2.4 Signer-Hiding

Independent and concurrent work by Bobolz et al. [7] also addressed the problem
of hiding the identity of a credential issuer/signer under the notion of issuer-
hiding. There, the authors propose a sligthly different setting to avoid using an
OR-like proof as done in this work. In brief, the authors consider access policies
of the form {σi, pki}i∈[n], where σi is a signature on a given authority’s public
key pki produced by the verifier. As a result, users can prove the correspondence
between a public key (defined in the policy) and the credential verification under

416 A. Connolly et al.

that public key in zero knowledge, using a NIZK independent to the number
of public keys defined in the policy. In this regard, we note that our work is
compatible with their formalization and, furthermore, under the previous setting
such NIZK can be avoided in our case. Since we use mercurial signatures, it would
suffice to randomize the access policy and the user credential consistently.

3 Preliminaries

Notation. Let BGGen be a p.p.t algorithm that on input 1λ with λ the security
parameter, returns a description BG = (p, G1, G2, GT , P1, P2, e) of an asymmetric
bilinear group where G1, G2, GT are cyclic groups of prime order p with �log2
p� = λ, P1 and P2 are generators of G1 and G2, and e : G1 × G2 → GT is an
efficiently computable (non-degenerate) bilinear map. BG is said to be of Type-3
if no efficiently computable isomorphisms between G1 and G2 are known. For
all a ∈ Zp, we denote by [a]s = aPs ∈ Gs the implicit representation of a in Gs

for s ∈ {1, 2, T}. For matrices (or vectors) A, B we extend the pairing notation
to e([A]1, [B]2) := [AB]T ∈ GT . Sampling r from set S uniformly at random is
denoted by r

$← S. Finally, we use the notation A(x; y) to indicate that a value
y (usually computed internally by A), is being passed directly to A on input x.
Assumptions. We recall the Diffie-Hellman assumptions in the billinear group
setting and the algebraic framework from [27] and [42], including a generalization
of the Strong Diffie-Hellman assumption from [32], in the full version (Appendix
A from [18]). Besides, we will also use the following generalization of the KerMDH
assumption introduced in [19]. It allows an adversary to extend the given matrix
but requiring it to output multiple, linearly independent vectors in the kernel.

Dk-extKerMDHAssumption. Let Dk be a matrix distribution, l, k ∈ N, and s ∈
{1, 2}. We say that the Dk-extKerMDH assumption holds in Gs relative to BGGen,
if for every BG

$← BGGen(1λ), D $← Dk, and all p.p.t. adversaries A the following
probability is negligible.

Pr

⎡
⎣

[C]3−s ∈ G
l+1×k+l+1
3 ∧ [B]s ∈ G

l×k
s

∧ [C]3−s[D′]s = 0
∧ rank(C) ≥ l + 1

∣∣∣∣∣∣
BG

$← BGGen(1λ);D $← Dk

([C]3−s, [B]s)
$← A(BG, [D]s)

[D′]s := [DB]s

⎤
⎦

Characteristic Polynomial. For a set X with elements in Zp, we refer to
ChX (X) =

∏
x∈X (X + x) =

∑i=n
i=0 ci · Xi (a monic polynomial of degree n = |X |

and defined over Zp[X]) as its characteristic polynomial. For a group generator
P , ChX (s)P can be efficiently computed (e.g., using the Fast Fourier Transform)
when given (siP)|X |

i=0 but not s. This is because ChX (s)P =
∑i=n

i=0 (ci · si)P .
In addition to exploiting properties of characteristic polynomials, we will also

use the Schwartz-Zippel lemma and the Extended Euclidean Algorithm (EEA)
in our constructions following the ideas from [35].

Lemma 1 (Schwartz-Zippel). Let q1(x), q2(x) be two d-degree polynomials
from Zp[X] with q1(x) = q2(x), then for s

$← Zp, the probability that q1(x) =
q2(x) is at most d/p, and the equality can be tested in time O(d).

Improved Constructions of Anonymous Credentials from SPS-EQ 417

3.1 Non-interactive Zero-Knowledge Arguments and Malleable
Proof Systems

We next define fully adaptive NIZK arguments (i.e., the crs does not depend on
the language distribution or language parameters), and the notions of malleable
proof systems given in [16] and [40] respectively.
NIZK Syntax. A fully adaptive NIZK Π for a family of language distribution
{Dpp}pp consists of four probabilistic algorithms:

PGen(1λ): On input 1λ generates public parameters pp, a crs and a trapdoor td.
Prove(crs, ρ, x, w): On input a crs, a language description ρ ∈ Dpp and a statement

x with witness w, outputs a proof π for x ∈ Lρ.
Verify(crs, ρ, x, π): On input a crs, a language description ρ ∈ Dpp, a statement

x and a proof π, accepts or rejects the proof.
SimProve(crs, td, ρ, x): Given a crs, the trapdoor td, a language description ρ ∈

Dpp and a statement x, outputs a simulated proof for the statement x ∈ Lρ.

The following properties need to hold for NIZK arguments with respect to a
family of language distributions Dpp.
Perfect Completeness.

Pr

[
Verify(crs, ρ, x, π) = 1

∣∣∣∣∣
(pp, crs, td) $← PGen(1λ); ρ ∈ Supp(Dpp);

(x,w) ∈ Rρ;π
$← Prove(crs, ρ, x, w)

]
= 1

Computational Soundness. For every efficient adversary A,

Pr

[
Verify(crs, ρ, x, π) = 1

∧ x /∈ Lρ

∣∣∣∣∣
(pp, crs, td) $← PGen(1λ);

ρ ∈ Supp(Dpp); (π, x) $← A(crs, ρ)

]
≈ 0

where the probability is taken over PGen.
Perfect Zero-Knowledge. For all λ, all (pp, crs, td) ∈ Supp(PGen(1λ)), all
ρ ∈ Supp(Dpp) and all (x,w) ∈ Rρ, the distributions Prove(crs, ρ, x, w) and
SimProve(crs, td, ρ, x) are identical.

Let RL be the witness relation associated to a language L, then a
controlled malleable proof system is accompanied by a family of efficiently
computable n-ary transformations T = (Tx, Tw) such that for any n-tuple
{(x1, w1), . . . , (xn, wn)} ∈ Rn

L it holds that (Tx(x1, . . . , xn),Tw(w1, . . . , wn)) ∈
RL. Intuitively, such a proof system allows when given valid proofs {Ωi}i∈[n]

for words {xi}i∈[n] with associated witnesses {wi}i∈[n] to publicly compute a
valid proof Ω for word x := Tx(x1, . . . , xn) corresponding to witness w :=
Tw(w1, . . . , wn) using an additional algorithm ZKEval which is defined as fol-
lows:
ZKEval(crs, T , (xi, Ωi)i∈[n]) takes as input a common reference string crs, a trans-
formation T ∈ T , words x1, . . . , xn and their corresponding proofs Ω1, . . . , Ωn,
and outputs a new word x′ := Tx(x1, . . . , xn) and proof Ω′.

Proofs computed by ZKEval should be indistinguishable from freshly com-
puted proofs for the resulting word x′ and corresponding witness w′. This notion
is captured by the following definition.

418 A. Connolly et al.

Derivation Privacy. A NIZK proof system Π, malleable with respect to a set
of transformations T defined on some relation R is derivation private, if for all
p.p.t adversaries A, the following probability is negligible,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

crs
$← PGen(1λ), b $← {0, 1}

(st, ((xi, wi), Ωi)i∈[q], T) $← A(crs),
if (T /∈ T ∨ (∃ i ∈ [q] : (Verify(crs, xi, Ωi) = 0) ∨ (xi, wi) /∈ R)
return ⊥,
else if b = 0 : Ω ← Prove(crs, Tx((xi)i∈[q]), Tw((wi)i∈[q])),
else if b = 1 : Ω ← ZKEval(crs, T, (xi, πi)i∈[q]),
b′ $← A(st, Ω)

: b = b′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

4 A Set-Commitment Scheme Supporting Disjoint Sets

We extend the set-commitment scheme in [32] to support non-membership proofs
for disjoint sets, while also including an optional proof of exponentiation to
replace most of the exponentiations in the verifier (outsourcing them to the
prover) with a single polynomial division. To do so, we borrow the previously
mentioned ideas in [25,35,50], and adapt them to the Type-3 setting.
SCDS Syntax. A set-commitment scheme supporting disjoint sets (SCDS) con-
sists of the following p.p.t algorithms:

Setup(1λ, 1q) is a probabilistic algorithm which takes as input a security param-
eter λ and an upper bound q for the cardinality of committed sets, both in
unary form. It outputs public parameters pp (including an evaluation key ek),
and discards the trapdoor key s used to generate them. Z

∗
p \ {s} defines the

domain of set elements for sets of maximum cardinality q.
TSetup(1λ, 1q) is equivalent to Setup but also returns the trapdoor key.
Commit(pp,X) is a probabilistic algorithm which takes as input pp and a set

X with 1 ≤ |X | ≤ q. It outputs a commitment C on set X and opening
information O.

Open(pp, C,X , O) is a deterministic algorithm which takes as input pp, a com-
mitment C, a set X , and opening information O. It outputs 1 if and only if
O is a valid opening of C on X .

OpenSS(pp, C,X , O,S) is a deterministic algorithm which takes as input pp, a
commitment C, a set X , opening information O, and a non-empty set S. If
S is a subset of X committed to in C, OpenSS outputs a witness wit that
attests to it. Otherwise, outputs ⊥.

OpenDS(pp, C,X , O,D) is a deterministic algorithm which takes as input pp, a
commitment C, a set X , opening information O, and a non-empty set D. If
D is disjoint from X committed to in C, OpenDS outputs a witness wit that
attests to it. Otherwise, outputs ⊥.

VerifySS(pp, C,S,wit) is a deterministic algorithm which takes as input pp, a
commitment C, a non-empty set S, and a witness wit. If wit is a valid witness
for S a subset of the set committed to in C, it outputs 1 and otherwise ⊥.

Improved Constructions of Anonymous Credentials from SPS-EQ 419

VerifyDS(pp, C,D,wit) takes as input pp, a commitment C, a non-empty set D,
and a witness wit. If wit is a valid witness for D being disjoint from the set
committed to in C, it outputs 1 and otherwise ⊥.

PoE(pp,X , α) takes as input pp, a non-empty set X , and a randomly-chosen value
α. It computes a proof of exponentiation for the characteristic polynomial of
X and outputs a proof πQ and a witness Q.

A SCDS scheme is secure if it satisfies the properties of correctness, binding,
hiding, and soundness. These notions are defined next, modified to suit the
scheme, but following the usual convention.
Correctness. An SCDS scheme is correct if for all q > 0, all λ > 0, all pp ∈
[Setup(1λ, 1q)], all non-empty S ⊆ X and all non-empty D : D ∩ X = ∅, the
following probabilities equal 1:

1. Pr
[
(C,O) $← Commit(pp,X) : Open(pp, C,X , O) = 1

]

2. Pr

[
(C,O) $← Commit(pp,X);
wit ← OpenSS(pp, C,X , O,S)

: VerifySS(pp, C,S,wit) = 1
]

3. Pr

[
(C,O) $← Commit(pp,X);
wit ← OpenDS(pp, C,X , O,D)

: VerifyDS(pp, C,D,wit) = 1
]

Binding. An SCDS scheme is binding if for all q > 0 and all p.p.t adversaries
A, the following probability is negligible,

Pr

[
pp

$← Setup(1λ, 1q),
(C,X , O,X ′, O′) $← A(pp)

:
Open(pp, C,X , O) = 1 ∧

Open(pp, C,X ′, O′) = 1 ∧ X = X ′

]

Hiding. We say that an SCDS scheme is hiding if for all q > 0 and all p.p.t
adversaries A with access to OSS, an opening oracle which allows queries for
sets X ′ ⊆ X0 ∩ X1, and to ODS, for sets X ′ s.t. X ′ ∩ {X0 ∪ X1} = ∅, there is a
negligible function ε(·) such that:

Pr

⎡
⎢⎢⎢⎣

b
$← {0, 1}; pp $← Setup(1λ, 1q);

(X0,X1, st)
$← A(pp);

(C,O) $← Commit(pp,Xb);
b∗ $← AOSS(pp,C,Xb,O,·),ODS(pp,C,Xb,O,·)(st, C)

: b∗ = b

⎤
⎥⎥⎥⎦ − 1

2
≤ ε(k).

where X0 and X1 are two distinct sets s.t. 1 ≤ |Xb| ≤ q.
If the above holds for ε ≡ 0, the scheme is said to be perfectly hiding.
Soundness. An SCDS scheme is sound if for all q > 0 and all p.p.t adversaries
A, the following probabilities are negligible,

1. Pr

[
pp

$← Setup(1λ, 1q);
(C,X , O,S,wit) $← A(pp)

:
S � X ∧ OpenSS(C,X , O) = 1

∧ VerifySS(C,S,wit) = 1

]

2. Pr

[
pp

$← Setup(1λ, 1q);
(C,X , O,D,wit) $← A(pp)

:
D ∩ X = ∅ ∧ OpenDS(C,X , O) = 1

∧ VerifyDS(C,D,wit) = 1

]

420 A. Connolly et al.

Fig. 2. Our SCDS construction

4.1 Construction

Our construction is presented in Fig. 2. As in [32] we use a special opening for
the case in which the commited set contains the trapdoor to achieve perfect
correctness and perfect hiding. To prove that a given set is disjoint with respect
to the commited set, the EEA is computed to obtain the Bézout coefficients.
This way, equality is checked randomizing q1, q2 and using a single PPE. Finally,
the PoE computes a polynomial division, and produces the corresponding proof.

Improved Constructions of Anonymous Credentials from SPS-EQ 421

Theorem 1. The SCDS construction from Fig. 2 is correct and perfectly hid-
ing. Furthermore, if the q-co-DL (resp. q-co-GSDH) assumption holds, SCDS is
computationally binding (resp. sound).

Proof. The proof strategy follows closely that of [32]. We extend these proofs
in a similar manner to consider disjoint sets. The full proof is provided in [18]
(Appendix B).

5 Our SPS-EQ Construction

The starting point for the SPS-EQ construction in [40] was the tightly secure
SPS from [34], which builds on a structure-preserving MAC (based on the works
from [33] and [37]) and a NIZK OR-Proof from [45]. To couple with equivalence
classes, the authors proposed a way to adapt the OR-Proof so that it could be
randomized and malleable. Unfortunately, as the CRS used in the OR-Proof from
[45] was incompatible with the required randomization properties, the authors
were forced to build a QA-NIZK on top to overcome the limitation.

In this section we introduce a new SPS-EQ scheme based on the one from
[40], which we obtain replacing the underlying OR-Proof from [45] with one
given in [19], while adapting accordingly. As a result we obtain a more efficient
signature scheme based on a new malleable OR-NIZK argument. Before giving
the intuition of our construction, we recall the syntax and security properties
for SPS-EQ introduced in [32] and [40].
SPS-EQ Syntax. An SPS-EQ consists of the following p.p.t algorithms:

ParGen(1λ) is a probabilistic algorithm which takes as input a security parameter
λ and returns public parameters pp including an asymmetric bilinear group,
but without the related trapdoor.

TParGen(1λ) is like the ParGen algorithm but it also returns the trapdoor.
KGen(pp,
) is a probabilistic algorithm which takes as input pp and a vector

length
 > 1, and outputs a key pair (sk, pk).
Sign(pp, sk,m) is a probabilistic algorithm which takes as input pp, a represen-

tative m ∈ (G∗
i)

� for class [m]R, a secret key sk, and outputs a signature
σ′ = (σ, τ) (potentially including a tag τ) on the message m.

ChgRep(pp,m, (σ, τ), μ, pk) is a probabilistic algorithm which takes as input pp,
a representative message m ∈ (G∗

i)
�, a signature σ (and potentially a tag τ),

a scalar μ and a public key pk. It computes an updated signature σ′ on new
representative m∗ = μm and returns (m∗, σ′).

Verify(pp,m, (σ, τ), pk) is a deterministic algorithm which takes as input pp, a
representative message m, a signature σ (potentially including a tag τ) and
public key pk. If σ is a valid signature on m it outputs 1 and 0 otherwise.

Correctness. An SPS-EQ scheme over (G∗
i)

� is correct if for any λ ∈ N, any

 > 1, any pp

$← ParGen(1λ), any pair (sk, pk), any message m ∈ (G∗
i)

�, and any
μ ∈ Z

∗
p, the following holds:

422 A. Connolly et al.

Pr
[
Verify(m,Sign(sk,m), pk) = 1

]
= 1, and

Pr
[
Verify(ChgRep(m,Sign(sk,m), μ, pk), pk) = 1

]
= 1.

EUF-CMA. An SPS-EQ scheme over (G∗
i)

� is existentially unforgeable under
adaptively chosen-message attacks, if for all
 > 1 and p.p.t adversaries A with
access to a signing oracle Sign, the following probability is negligible,

Pr

⎡
⎢⎣
pp

$← ParGen(1λ),
(sk, pk) $← KGen(pp,
),
([m]∗i , σ

∗) $← ASign(sk,·)(pk)
:

[m∗]R = [m]R ∀ [m]i ∈ Q ∧
Verify([m]∗i , σ

∗, pk) = 1

⎤
⎥⎦ ,

where Q is the set of queries that A has issued to the signing oracle Sign. Note
that in the tag-based case this oracle returns (σi, τi).

The following notion is based on Definition 10 from [40], which defines per-
fect adaption of signatures in the CRS model. Perfect adaption mandates that
signatures output by the algorithm ChgRep are distributed identically to new
signatures on the respective representative. When this notion is defined consid-
ering adversaries who could maliciously generate signing keys, one obtains the
strongest possible notion for perfect adaption. Unlike [40], we opt to explicitly
state that perfect adaption is defined with respect to the message space. We do
this, as later on we will introduce a new a definition for perfect adaption with
respect to the key space.
Perfect adaption of signatures (under malicious keys in the honest param-
eters model) with respect to the message space: An SPS-EQ over Sm per-
fectly adapts signatures with respect to the message space if for all tuples
(pp, pk, [m]i, σ, μ) where pp

$← ParGen(1λ), [m]i ∈ Sm, μ ∈ Z
∗
p, and Verify([m]i,

σ, pk) = 1, we have that the output of ChgRep([m]i, (σ, τ), μ, pk) is ([μ ·m]i, σ∗),
with σ∗ being a uniformly random element in the space of signatures, conditioned
on Verify([μ · m]i, σ∗, pk) = 1.

5.1 Our Malleable NIZK Argument

Our malleable NIZK argument is based solely on the fully-adaptive OR-Proof
from [19]. This allows us to circumvent the randomization problem in the OR-
Proof from [45], and to avoid the need to build a QA-NIZK atop.

As a result, we reduce the number of exponentiations required in the proving
and ZKEval algorithms, which leads to a more efficient signature scheme. This
comes at the cost of relying on the L1-1-extKerMDH assumption. We argue that
the change is justified as the extKerMDH is a natural extension of the KerMDH
assumption and in this case, the assumption is also falsifiable.
Intuition. We look for a NIZK proof which can be randomizable and malleable
so that randomized proofs look like fresh proofs, while the malleability allows to
update the proof statements. The goal is to obtain derivation privacy, which is
crucial to perform the change of representative in the signature scheme.

The fully-adaptive NIZK argument from [19] is based on a challenge z =
z0 + z1, where z is in the CRS, and z0 and z1 are elements of the proof and

Improved Constructions of Anonymous Credentials from SPS-EQ 423

Fig. 3. Malleable NIZK argument for language L∨
A0,A1

chosen such that the equation holds. To randomize a proof we need to random-
ize z0 and z1 and so, instead of checking the original equation we will check
for linear combinations of the equation αz = z0 + z1. We modify the original
proof to compute a random α and add an extra element Z = αP1 to the proof.
Consequently, the verification algorithm will now check an extra pairing.

As observed in [40], the malleability of the OR-NIZK proof can be achieved
by using a tag and a second NIZK for that tag with shared randomness. We
follow the same approach. The resulting malleable NIZK argument for the OR-
language (for fixed A0 and A1) is defined below and presented in Fig. 3.

L∨
A0,A1

= {[x]1 ∈ G
2k
1 |∃ w ∈ Z

k
p : [x]1 = [A0]1 · w ∨ [x]1 = [A1]1 · w},

Theorem 2. The protocol in Fig. 3 is a fully adaptive NIZK argument for the
OR-language L∨

A0,A1
if the falsifiable L1-(4k + 1)-extKerMDH assumption holds

in G2.

Proof. The proof follows [19] and is provided in [18] (Appendix C).

5.2 Signature Construction

Our construction is shown in Fig. 4, where the higlighted sections note the main
differences to the scheme presented in [40]. In [18] (Appendix H), we also show how
to extend it to obtain mercurial signatures (later explained in Section 7.1).

424 A. Connolly et al.

Fig. 4. Our SPS-EQ scheme.

Theorem 3. The SPS-EQ in Fig. 4 perfectly adapts signatures (under malicious
keys in the honest parameter model) with respect to the message space.

To prove Theorem 3 we follow almost verbatim the original proof from [40].

Proof. For all [m]1 and pk = ([K0A]2, [KA]2), a signature σ=([u1]1, [t]1, Ω1,
[z0]2, [z1]2, Z1) generated according to the CRS ([A]2, [A0]1, [A1]1, [z]2) satisfy-
ing the verification algorithm must be of the form: σ = (K�

0 [A0]1r1 + K�[m]1,
[A0]1r1, [A0]s1, [A1]d11 − z1[A0]1r1, [z0]2r1 + [s1]2, [d11]2, [z0]2, [z1]2, Z1). A sig-
nature output by ChgRep has the form σ = (K�

0 [A0]1(μr1 + βr2)+K�[μm]1,
[A0]1(μr1 + βr2), [A0]α(μs1 + βs2), [A1]α(μd11 + βd21) − z1[A0]1α(μr1 + βr2),
α([z0]2(μr1 + βr2) + μ[s1]2 + β[s2]2), α(μ[d11]2 + β[d21]2), α[z0]2, α[z1]2, αZ1), for
new independent randomness α, β and μ so is a random element in the space
of all signatures. Furthermore, the signature output by ChgRep is distributed
identically to a fresh signature on message [m]1 output by Sign. �

Improved Constructions of Anonymous Credentials from SPS-EQ 425

Theorem 4. If the KerMDH and MDDH assumptions hold, the SPS-EQ in Fig. 4
is unforgeable.

Proof. The proof is provided in [18] (Appendix D).

6 Extending the ABC Model from [32]

In this section we present a new ABC model which extends [32] to consider
NAND showing proofs and the use of a CRS (denoted as pp). A NAND showing
proof allows users to demonstrate that a given set of attributes is not present in
their credential. The core differences in this extended ABC model follow natu-
rally from (1) the addition of disjoint sets in the SCDS scheme in Sect. 4, and
(2) the removal of the key verification algorithm (as we work with a CRS).
ABC Syntax. An ABC scheme consists of the following p.p.t algorithms:

Setup(1λ, 1q) takes a security parameter λ and an upper bound q for the size of
attribute sets, and outputs public parameters pp discarding any trapdoor.

TSetup(1λ, 1q) similar to Setup but it also returns a trapdoor (if any).
OrgKeyGen(pp) takes pp as input and outputs an organization key pair (osk, opk).
UserKeyGen(pp) takes pp as input and outputs a user key pair (usk, upk).
Obtain(pp, usk, opk,X) and Issue(pp, upk, osk,X) are run by a user and the orga-

nization respectively, who interact during execution. Obtain takes as input pp,
the user’s secret key usk, an organization’s public key opk, and an attribute
set X of size |X | < t. Issue takes as input pp, a user public key upk, the
organization’s secret key osk, and an attribute set X of size |X | < t. At the
end of this protocol, Obtain outputs a credential cred on X for the user or ⊥
if the execution failed.

Show(pp, opk,X ,S,D, cred) and Verify(pp, opk,S,D) are run by a user and a
verifier respectively, who interact during execution. Show takes as input pp,
an organization public key opk, a credential cred for the attribute set X ,
potentially non-empty sets S ⊆ X , D � X representing attributes sets being a
subset (S) or disjoint (D) to the attribute set (X) committed in the credential.
Verify takes as input pp, an organization public key opk, the sets S and D.
At the end, Verify outputs 1 or 0 indicating whether or not the credential
showing was accepted.

6.1 Security Properties

The following notions are based on the security model from [32] (Sect. 5.1), which
we adapt to consider the use of a crs (pp) and NAND showing proofs. Informally,
an ABC scheme is secure if it has the following properties:

Correctness. A showing of a credential with respect to a non-empty sets S and
D of attributes always verify if the credential was issued honestly on some
attribute set X with S ⊂ X and D � X .

426 A. Connolly et al.

Unforgeablility. Given at least one non-empty set S ⊂ X or D � X , a user
in possession of a credential for the attribute set X cannot perform a valid
showing for D ⊂ X nor for S � X . Moreover, no coalition of malicious users
can combine their credentials and prove possession of a set of attributes which
no single member has. This holds even after seeing showings of arbitrary
credentials by honest users (thus, covering replay attacks).

Anonymity. During a showing, no verifier and no (malicious) organization (even
if they collude) is able to identify the user or learn anything about the user,
except that she owns a valid credential for the shown attributes. Furthermore,
different showings of the same credential are unlinkable.

To introduce the corresponding formal definitions, the following global vari-
ables and oracles are listed below.
Global variables. At the beginning of each experiment, either the experiment
computes an organization key pair (osk, opk) or the adversary outputs opk. In
the anonymity game there is a bit b, which the adversary must guess.

In order to keep track of all honest and corrupt users, we introduce the sets
HU, and CU, respectively. We use the lists UPK, USK, CRED, ATTR and OWNR to track
user public and secret keys, issued credentials and corresponding attributes and
to which user they were issued. Furthermore, we use the sets JLoR and ILoR to
store which issuance indices and corresponding users have been set during the
first call to the left-or-right oracle in the anonymity game.
Oracles. Considering an adversary A the oracles are as follows:

OHU(i) takes as input a user identity i. If i ∈ HU ∪ CU, it returns ⊥. Otherwise,
it creates a new honest user i by running (USK[i], UPK[i]) $← UsrKGen(opk),
adding i to the honest user list HU and returning UPK[i].

OCU(i, upk) takes as input a user identity i and (optionally) a user public key upk;
if user i does not exist, a new corrupt user with public key upk is registered,
while if i is honest, its secret key and all credentials are leaked. In particular,
if i ∈ CU or if i ∈ ILoR (that is, i is a challenge user in the anonymity game)
then the oracle returns ⊥. If i ∈ HU then the oracle removes i from HU and adds
it to CU; it returns USK[i] and CRED[j] for all j with OWNR[j] = i. Otherwise
(i.e., i /∈ HU ∪ CU), it adds i to CU and sets UPK[i] ← upk.

OObtIss(i,X) takes as input a user identity i and a set of attributes X . If i /∈ HU,
it returns ⊥. Otherwise, it issues a credential to i by running

(cred,�) $← Obtain(pp, USK[i], opk,X), Issue(pp, UPK[i], osk,X).

If cred = ⊥, it returns ⊥. Else, it appends (i, cred,X) to (OWNR, CRED, ATTR)
and returns �.

OObtain(i,X) lets the adversary A, who impersonates a malicious organization,
issue a credential to an honest user. It takes as input a user identity i and a
set of attributes X . If i /∈ HU, it returns ⊥. Otherwise, it runs

(cred, ·) $← Obtain(pp, USK[i], opk,X), ·),
where the Issue part is executed by A. If cred = ⊥, it returns ⊥. Else, it
appends (i, cred,X) to (OWNR, CRED, ATTR) and returns �.

Improved Constructions of Anonymous Credentials from SPS-EQ 427

OIssue(i,X) lets the adversary A, who impersonates a malicious user, obtain a
credential from an honest organization. It takes as input a user identity i and
a set of attributes X . If i /∈ CU, it returns ⊥. Otherwise, it runs

(·, I) $← (·, Issue(pp, UPK[i], osk,X)),

where the Obtain part is executed by A. If I = ⊥, it returns ⊥. Else, it appends
(i,⊥,X) to (OWNR, CRED, ATTR) and returns �.

OShow(j,S,D) lets the adversary A play a dishonest verifier during a showing by
an honest user. It takes as input an index of an issuance j and attributes sets
S and D. Let i

$← OWNR[j]. If i /∈ HU, it returns ⊥. Otherwise, it runs

(S, ·) $← Show(pp, opk, ATTR[j],S,D, CRED[j]), ·)
where the Verify part is executed by A.

OLoR(j0, j1,S,D) is the challenge oracle in the anonymity game where A must
distinguish (multiple) showings of two credentials CRED[j0] and CRED[j1]. The
oracle takes two issuance indices j0 and j1 and attribute sets S and D. If
JLoR = ∅ and JLoR = {j0, j1}, it returns ⊥. Let i0

$← OWNR[j0] and i1
$←

OWNR[j1]. If JLoR = ∅ then it sets JLoR
$← {j0, j1} and ILoR

$← {i0, i1}. If
i0, i1 = HU ∨ S � ATTR[j0] ∩ ATTR[j1] ∨ D ∩ {ATTR[j0] ∪ ATTR[j1]} = ∅, it
returns ⊥. Else, it runs

(S, ·) $← (Show(opk, ATTR[jb],S,D, CRED[jb]), ·),
(with b set by the experiment) where the Verify part is executed by A.

Correctness. An ABC system is correct, if for all λ > 0, all t > 0, all X with
0 < |X | ≤ t and all ∅ = S ⊂ X and ∅ = D � X with 0 < |D| ≤ t it holds that:

Pr

⎡
⎢⎢⎢⎢⎢⎣

pp
$← Setup(1λ, 1q);

(osk, opk) $← OrgKGen(pp);
(usk, upk) $← UsrKGen(pp);
(cred,�) $← (Obtain(pp, usk, opk,X),
Issue(pp, upk, osk,X))

: (�, 1) $← (Show(pp, opk,X ,S,
D, cred),Verify(pp, opk,S,D))

⎤
⎥⎥⎥⎥⎥⎦

= 1.

Unforgeability. An ABC system is unforgeable, if for all λ > 0, all q > 0 and
p.p.t adversaries A having oracle access to O := {OHU,OCU,OObtIss,OIssue,OShow}
the following probability is negligible.

Pr

⎡
⎢⎢⎢⎣

pp
$← Setup(1λ, 1q);

(osk, opk) $← OrgKGen(pp);
(S,D, st) $← AO(pp, opk);
(·, b∗) $← (A(st),Verify(pp, opk,S,D))

:
b∗ = 1 ∧
∀ j : OWNR[j] ∈ CU =⇒
(S /∈ ATTR[j] ∨ D ∈ ATTR[j])

⎤
⎥⎥⎥⎦

Anonymity. An ABC system is anonymous, if for all λ > 0, all
q > 0 and all p.p.t adversaries A having oracle access to O :=
{OHU,OCU,OObtain,OIssue,OShow,OLoR} the following probability is negligible.

Pr

[
pp

$← Setup(1λ, 1q); b $← {0, 1}; (opk, st) $← A(pp);
b∗ $← AO(st)

: b∗ = b

]
− 1

2

428 A. Connolly et al.

7 Our ABC Construction

As previously explained in Sect. 1.3, our ABC scheme is based on the one from
[32]. The main changes are the following:

– As we use a signature scheme that relies on a CRS, we move the parameters
of the set-commitment scheme from the organization’s key pair to the public
parameters pp that include the previous CRS. Furthermore, we instantiate
the ZKPoK’s using Pedersen commitments and the construction from [22], as
suggested in [32] (Remark 1).

– Our showing protocol can be instantiated with two sets S and D, one to
compute AND proofs (selective disclosure) and one to compute NAND proofs.

– We integrate the proof of exponentiation to the showing protocol1.

Intuition. We begin explaining the difference to [32] with respect to malicious
organizations as it clarifies the changes introduced in the issuing protocol. We
recall that in this context the term malicious organizations refers to organi-
zations whose key-pairs are generated in a way that trapdoor information is
included. Such trapdoor information could later be used by an organization
to break anonymity, provided that extra information (a transcript of a given
showing protocol containing a credential issued by the organization) is available.
The ABC scheme from [32] defines a ZKPoK in the issuing protocol (ΠRO) for
which the organization needs to prove knowledge of the corresponding secret key
to avoid the previous scenario. Since the signing keys in our SPS-EQ need to
be generated using the CRS (which includes the matrix A), we do not need to
request a ZKPoK from the organization in the issuing protocol as the signature’s
verification algorithm a pairing involving the matrix A and the organization’s
public key opk = (B,C) is used to check the signature. Hence, a signature that
verifies rules out that 1) someone impersonated the issuer signing with a different
secret key, and 2) that the public key was maliciously generated. Regarding the
showing protocol, the only changes are the addition of NAND and exponentia-
tion proofs. For the latter, we require the verifier to randomly pick the challenge
and send it to the user.

For ease of exposition, we present the resulting construction (Scheme 1) in
Fig. 5 considering selective disclosures only. We highlight in gray the required
changes to do NAND proofs, but both types of proofs could be computed while
executing a single showing. If so, a NAND proof increases bandwidth by 4 ele-
ments (two from G1 and two from G2), as the PoE can reuse the same challenge.

Theorem 5. Scheme 1 is correct.

Theorem 6. If the q-co-DL assumption holds, the ZKPoK’s have perfect ZK,
SCDS is sound, and SPS-EQ is EUF-CMA secure, then Scheme 1 is unforgeable.

Theorem 7. If the DDH assumption holds, the ZKPoK’s have perfect ZK, and
the SPS-EQ perfectly adapts signatures, then Scheme 1 is anonymous.
1 The security of this integration is discussed in [18] (Appendix J).

Improved Constructions of Anonymous Credentials from SPS-EQ 429

Proof. Proof of Theorem 6 follows closely to that presented in [32] but extended
to include disjoint sets. Proof of Theorem 7 also follows that in [32] with the
exception that we work with a CRS and an accordingly modified definition of
perfect adaption. All proofs are provided in [18] (Appendix E).

7.1 Revocation Strategies

The natural approach to revocation would be to follow that described in [24]
where they use the fact that randomization of a credential is compatible with the
randomization of the accumulator and its corresponding witness. This approach
requires the revocation authority to compute and maintain the witness list. As
it uses the accumulator from [1], the cost of non-membership proofs is linear
in the size of the accumulator (i.e., revoked users), and this should be done at
least once by the manager for every user. If, instead, the dynamic variant is used
(as discussed in [24]), then users could be given their non-membership witness
once and subsequently update it with a single constant size operation. Other
approaches for revocation are discussed in [18] (Appendix F).

7.2 Signer-Hiding

We recall that our signature scheme is based on the one from [40] and that we are
using the credential framework of [32]. Therefore, as we have k = 1 and
 = 3,
the public keys consist of two vectors [B]2 ∈ (G∗

2)
2 and [C]2 ∈ (G∗

2)
3, where the

secret keys have the form sk = (K0,K) with K0
$← (Z∗

p)
2×2 and K $← (Z∗

p)
3×2.

With this in mind, we can naturally define equivalence relationships on the key
spaces Ssk = {(Z∗

p)
2×2 × (Z∗

p)
3×2} and Spk = {(G∗

2)
2 × (G∗

2)
3} as follows:

Rsk = {(sk, s̃k) ∈ Ssk × Ssk | ∃ ρ ∈ Z
∗
p s.t s̃k = ρ · sk}

Rpk = {(pk, p̃k) ∈ Spk × Spk | ∃ ρ ∈ Z
∗
p s.t p̃k = ρ · pk}

If we have a list of public keys (B1,C1), ..., (Bn,Cn) and define the equiva-
lence class of each public key as before ((B′

i,C
′
i) = (Bi,Ci)·ρ), we can efficiently

prove that a given public key (B′
i,C

′
i) belongs to the equivalence class of one

of the public keys (B1,C1), ..., (Bn,Cn) for some (Bi,Ci). The idea is to use a
generalized version of the OR-Proof from [19], and building a generalized NIZK
OR-Proof for the AND statements of the two components. The new language is
defined as follows (remember we use
 = 3):

L∨
(Bi∧Ci)i∈[n]

= {(B′
i,C

′
i) ∈ G

2×�
2 | ∃ ρ ∈ Z

∗
p : ∨ (B′

i = Bi · ρ ∧ C′
i = Ci · ρ)i∈[n]}

The resulting NIZK argument is given in Fig. 6.

Theorem 8. The proof system given in Fig. 6 is a fully-adaptive NIZK argu-
ment for the language L∨

(Bi∧Ci)i∈[n]
.

Proof. The proof follows from Theorem 19 in [19]. The only difference is that
we rely on the AND composition for sigma protocols to compile the one in [19]
using the same challenge for both proofs.

430 A. Connolly et al.

Fig. 5. Scheme 1.

Improved Constructions of Anonymous Credentials from SPS-EQ 431

Fig. 6. Fully adaptive NIZK argument for L∨
(Bi∧Ci)i∈[n]

We now explain how the above NIZK can be used to hide the identity of
a signer. First, we need to consider a scenario in which n-authorities can issue
credentials to different sets of users. As we are in the classical setting, we also
assume that every user gets a credential from one of the n-authorities and that
the organization keys are certified and publicly available.

When showing a credential, the verifier needs to check the signature using
the corresponding public key. The idea is to use the above NIZK proof so that
a user can randomize the public key and present this randomized key to the
verifier, which in turn will check the NIZK to verify that the public key is valid
(i.e., it belongs to the equivalence class of one of the n-authorities).

Signatures need to be adapted by the users so that they can be verified with
the randomized public key. Therefore, we consider the definition of mercurial
signatures [20], which includes algorithms ConvertPK, ConvertSK and ConvertSig,
and introduce the following notion.

Perfect adaption of signatures (under malicious keys in the honest
parameters model) with respect to the key space; An SPS-EQ over a mes-
sage space Sm perfectly adapts signatures with respect to the key space Spk

if for all tuples (pp,[pk]j ,[m]i,(σ, τ),ρ) where pp
$← ParGen(1λ), [pk]j ∈ Spk,

[m]i ∈ Sm, Verify([m]i, (σ, τ), [pk]j) = 1 and ρ ∈ Z
∗
p, we have that the output

of ConvertSig([m]i, (σ, τ), ρ, [pk]j) is σ∗, with σ∗ being a random element in the
space of signatures, conditioned on Verify([m]i, σ∗,ConvertPK([pk]j , ρ)) = 1.

ConvertSig is analogous to the ChgRep algorithm, but restricted to act on
the equivalence class defined by the key space. The algorithms ConvertPK and
ConvertSK are just defined to abstract the computation of new representatives.

As our signature construction is compatible with the joint executions of the
algorithms ChgRep and ConvertSig, we define below a general notion for perfect
adaption where the ChgRep algorithm acts on all the equivalence classes.

432 A. Connolly et al.

Perfect adaption of signatures (under malicious keys in the honest param-
eters model); An SPS-EQ over Sm perfectly adapts signatures with respect
to the key space Spk if for all tuples (pp, [pk]j , [m]i, (σ, τ), μ, ρ) where pp

$←
ParGen(1λ), [pk]j ∈ Spk, [m]i ∈ Sm, Verify([m]i, (σ, τ), [pk]j) = 1 and μ, ρ ∈ Z

∗
p

we have that the output of ChgRep([m]i, (σ, τ), μ, ρ, [pk]j) is ([μ · m]i, σ∗),
with σ∗ being a random element in the space of signatures, conditioned on
Verify([μ · m]i, σ∗,ConvertPK([pk]j , ρ)) = 1.

Theorem 9. The above extension applied to the SPS-EQ from Fig. 4 perfectly
adapts signatures (under malicious keys in the honest parameter model).

Proof. It follows from the security of SPS-EQ and the definition of perfect adap-
tion for mercurial signatures (Appendix D and H from [18]).

We now formalize the signer-hiding notion and show that our construction
satisfies it as it perfectly adapts signatures.
Signer-Hiding. An ABC system supports signer-hiding if for all λ > 0, all
q > 0, all n > 0, all t > 0, all X with 0 < |X | ≤ t, all ∅ = S ⊂ X and ∅ = D � X
with 0 < |D| ≤ t, and p.p.t adversaries A, the following holds.

Pr

⎡
⎢⎢⎢⎢⎢⎣

pp
$← Setup(1λ, 1q);

∀ i ∈ [n] : (oski, opki)
$← OrgKGen(pp);

(usk, upk) $← UsrKGen(pp); j $← [n];
(cred,�) $← (Obtain(usk, opkj ,X), Issue(upk, oskj ,X));
j∗ $← AOShow(pp,S,D, (opki)i∈[n])

: j∗ = j

⎤
⎥⎥⎥⎥⎥⎦

≤ 1
n

where the oracle OShow is defined as in Sect. 6.

Theorem 10. If the underlying signature scheme is a SPS-EQ which perfectly
adapts signatures (under malicious keys in the honest parameter model), the
resulting ABC from Sect. 7.2 supports signer-hiding.

Proof. Let us first observe that the adversary can guess the bit j∗

with probability 1/n. By definition of perfect adaption, for all tuples
(pp, [opk]j , [m]i, (σ, τ), μ, ρ) s.t (σ, τ) $← Sign(pp, oskj , [m]i), we have that [μ ·m]i
and [ρ·opk]j are identically distributed in the message and key spaces, where ([μ·
m]i, σ∗) ← ChgRep([m]i, (σ, τ), μ, ρ, [opk]j) and [ρ · opk]j ← ConvertPK(opkj , ρ).
Furthermore, we also have that σ∗ is a random element in the space of signatures
conditioned on Verify([μ · m]i, σ∗, [ρ · opk]j) = 1. Therefore, an adversary with
access to [μ · m]i, σ∗ and [ρ · opk]j can only guess the bit j∗ with probability at
most 1/n. �

Integration with our ABC scheme. As our NIZK argument is fully adap-
tive, users can choose the size of the anonymity set (i.e., the set of public keys
in the OR-Proof). We find this approach much simpler than using delegatable
credentials to achieve a similar result as users do not need to interact with the
organizations to compute the NIZK proof nor to adapt the signature. Moreover,

Improved Constructions of Anonymous Credentials from SPS-EQ 433

there is no need to use pseudonyms for public and secret keys. We essentially
compute public key’s pseudonyms “on-the-fly” guaranteeing that the signature
adaption is done with respect to a valid public key. In other words, our NIZK
argument is a proof of correct randomization, where the same randomizer is
used to adapt the signature and generate a pseudonymous public key. A com-
plete figure for the proposed ABC, including the signer-hiding extension as well
as NAND proofs, is given in [18] (Appendix I).
Efficiency analysis. As the proof size is 9n − 1 for an anonymity set of n-
authorities, communication bandwidth will no longer be constant. Nevertheless,
given the previously mentioned advantages we believe that this is a fair trade-off
for the added functionality. In terms of computational cost, it is also substantially
more efficient than similar variants (see, for instance, Table 2 from [19]).

8 Comparison of State-of-the-art ABC

We provide comparisons on the efficiency of state-of-the-art ABC and ours
(Sect. 7) on Table 3. For ease of exposition, we list the work from [32] next to
ours, and consider an instantiation of it in the CRS model, and using the same
ZKPoK’s as the ones used in Sect. 7.

When looking at a whole, the work from Sanders [46] presents very good
results while also allowing showings to prove relationships between attributes
and to consider malicious keys. Nevertheless, security of the related construction
is proven in the GGM model and thus, falls short in that aspect. The same also
applies to the works from [38] and [32].

While for the comparisons only the classical setting (credentials are issued by
a single authority) was considered, it is worth to mention that [38] does consider
multi-authorities. As authors point out, in order to allow multi-authorities they
base their construction on aggregate signatures, and obtain the most efficient
showing for the users. Their security model follows the game-based approach
from [32] but because of the multi-authority setting, they also consider malicious
credential issuers, with adaptive corruptions, and collusions with malicious users.
Unfortunately, this is done assuming that the keys are honestly generated.

[49] uses a set-commitment scheme which alongside an SDH-based signature,
leads to a credential system that supports a variety of show proofs for complex
statements among which AND and NAND are included. For this reason, we
also compare our work with the one from [49] considering NAND showings.
In terms of security models, authors provide a formalization for impersonation
attacks and prove their scheme secure against impersonation under active and
concurrent attacks. The security of their ABC scheme is proven in the standard
model and providing a tight reduction.

Considering the different trade-offs, our ABC provides very similar perfor-
mance when compared to [32] and it is not too distant from the most efficient
ones either. Unlike the rest, it can be adapted to different scenarios in case that
reducing the verification cost is not needed, and it can also be efficiently adapted
to provide revocation features. Furthermore, as for many practical applications

434 A. Connolly et al.

Table 3. Efficiency of ABCs considering issuing and showing interactions (the number
of pairings is marked in bold).

ABC [46] [38] [49] [32] Section 7

Parameters size (n-attributes)

ek (n2+n+2
2)G1 + nG2 (2n + 2)G2 (n + 1)G1 + (n +

1)G2

(n + 1)G1 + (n +

1)G2

(n + 1)G1 + (n +

1)G2

Cred 2G2 4G1 1G1 + 6Zp 3G1 + 1G2 + 2Zp 18G1 + 6G2 + 3Zp

Bandwidth

Issue 4G2 + 2Zp nG1 3G1+(n+3)Zp 12G1 + 1G2 + 8Zp 14G1 + 11G2 + 7Zp

Show 2G1 + 2G2 + 1GT
+ 2Zp 3G1 + 1Zp 3G1 + 5Zp 10G1 + 1G2 + 8Zp 18G1 + 14G2 + 4Zp

k-of-n attributes (AND)

Usr (2(n-k) + 2)G1 ,2G2 , 1 6G1 (6 + n-k)G1 (11 + n-k)G1 ,1G28, (20 + n-k)G1 ,

(k-1)G2 ,19

Ver (k+1)G1 ,1GT
,5 4G1 ,2nG2 ,3 5G1 ,(k + 1)G2 ,3 4G1 ,(k + 1)G2 ,10 10G1 ,16

k-of-n attributes (NAND)

Usr N/A N/A (6 + n)G1 N/A (31 + n)G1 ,

(9 + 2k)G2 ,19

Ver N/A N/A (2k + 5)G1 ,

(k + 3)G2 ,3

N/A 10G1 ,17

the ability to perform AND and NAND showings suffices, we also achieve a good
level of expressiveness too. Finally, the signer-hiding feature makes it suitable
for scenarios in which the rest of the alternatives struggle.

9 Conclusions and Future Work

Our results explore multiple paths to extend the ABC framework of [32] to
include more applications and scenarios where it can be used. In order to improve
expressiveness of the set-commitment scheme in [32] we allow openings on sets of
attributes disjoint from those possessed by a user. We also enhance efficiency by
employing the trick of allowing the prover to compute a proof of exponentiation
leaving the verifier only to compute a polynomial division.

Our signature scheme is based on [40] where we adapt the SPS-EQ scheme by
alleviating the need to build a QA-NIZK incorporating results from the recent
framework of [19]. With this fully adaptive NIZK, we find further interesting
applications by looking at equivalence classes on the key-space. We develop a
signer-hiding notion to allow a credential-bearing user to hide their issuing orga-
nization upon presentation of the credential. As we increasingly see cases of
(algorithmic) bias against users, notions such as this are of growing importance.
Moreover, we also present interesting directions to integrate revocation features.

We worked in the classical setting where each credential is issued by a single
authority. It would be interesting to follow the related work on aggregatable
signatures to see if we could lift SPS-EQ to the multi-authority setting.

While our set-commitment scheme is more expressive than [32] it is still less
expressive than [49]. Hence, it would be interesting to see if the set-commitment
scheme introduced there would yield greater expressiveness to the ABC scheme

Improved Constructions of Anonymous Credentials from SPS-EQ 435

from this work. Likewise, to verify if the stronger security notions presented here,
could enhance the construction in [49].

Acknowledgements. We thank the anonymous reviewers for their valuable feed-
back. The European Commission partially supported Octavio Perez Kempner’s work
as part of the CUREX project (H2020-SC1-FA-DTS-2018-1 under grant agreement No
826404).

References

1. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7 20

2. Backes, M., Hanzlik, L., Kluczniak, K., Schneider, J.: Signatures with flexible pub-
lic key: introducing equivalence classes for public keys. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 405–434. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 14

3. Backes, M., Hanzlik, L., Schneider-Bensch, J.: Membership privacy for fully
dynamic group signatures. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pp. 2181–2198. CCS 2019, Association
for Computing Machinery, New York, NY, USA (2019)

4. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Proceedings of
the ACM Conference on Computer and Communications Security, pp. 1087–1098,
November 2013

5. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

6. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 23

7. Bobolz, J., Eidens, F., Krenn, S., Ramacher, S., Samelin, K.: Issuer-hiding
attribute-based credentials. In: Conti, M., Stevens, M., Krenn, S. (eds.) Cryptology
and Network Security, pp. 158–178. Springer, Cham (2021)

8. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 20

9. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge (2000)

10. Bultel, X., Lafourcade, P., Lai, R.W.F., Malavolta, G., Schröder, D., Thyagara-
jan, S.A.K.: Efficient invisible and unlinkable sanitizable signatures. In: Lin, D.,
Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 159–189. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17253-4 6

11. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: definitions and practical constructions. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 262–288.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 11

https://doi.org/10.1007/978-3-642-00862-7_20
https://doi.org/10.1007/978-3-030-03329-3_14
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-17253-4_6
https://doi.org/10.1007/978-3-662-48800-3_11

436 A. Connolly et al.

12. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

13. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

14. Canard, S., Lescuyer, R.: Anonymous credentials from (Indexed) aggregate signa-
tures. In: Proceedings of the 7th ACM Workshop on Digital Identity Management,
DIM 2011, pp. 53–62. Association for Computing Machinery, New York, NY, USA
(2011)

15. Canard, S., Lescuyer, R.: Protecting privacy by sanitizing personal data: a new
approach to anonymous credentials. In: Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security, ASIA CCS
2013, pp. 381–392. Association for Computing Machinery, New York, NY, USA
(2013)

16. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 18

17. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

18. Connolly, A., Lafourcade, P., Perez Kempner, O.: Improved constructions of anony-
mous credentials from structure-preserving signatures on equivalence classes. Cryp-
tology ePrint Archive, Report 2021/1680 (2021). https://ia.cr/2021/1680

19. Couteau, G., Hartmann, D.: Shorter non-interactive zero-knowledge arguments and
ZAPs for algebraic languages. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12172, pp. 768–798. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56877-1 27

20. Crites, E.C., Lysyanskaya, A.: Delegatable anonymous credentials from mercurial
signatures. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 535–555.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 27

21. Crites, E.C., Lysyanskaya, A.: Mercurial signatures for variable-length messages.
Proc. Privacy Enhancing Technol. 2021(4), 441–463 (2021)

22. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

23. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for
DNFs from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021.
LNCS, vol. 12696, pp. 177–209. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-77870-5 7

24. Derler, D., Hanser, C., Slamanig, D.: A new approach to efficient revocable
attribute-based anonymous credentials. In: Groth, J. (ed.) IMACC 2015. LNCS,
vol. 9496, pp. 57–74. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27239-9 4

25. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-16715-2 7

https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://ia.cr/2021/1680
https://doi.org/10.1007/978-3-030-56877-1_27
https://doi.org/10.1007/978-3-030-56877-1_27
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/978-3-030-77870-5_7
https://doi.org/10.1007/978-3-030-77870-5_7
https://doi.org/10.1007/978-3-319-27239-9_4
https://doi.org/10.1007/978-3-319-27239-9_4
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-16715-2_7

Improved Constructions of Anonymous Credentials from SPS-EQ 437

26. Derler, D., Slamanig, D.: Highly-efficient fully-anonymous dynamic group signa-
tures. In: Proceedings of the 2018 on Asia Conference on Computer and Com-
munications Security, ASIACCS 2018, pp. 551–565. Association for Computing
Machinery, New York, NY, USA (2018)

27. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

28. Fuchsbauer, G., Gay, R.: Weakly secure equivalence-class signatures from standard
assumptions. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp.
153–183. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 6

29. Fuchsbauer, G., Gay, R., Kowalczyk, L., Orlandi, C.: Access control encryption for
equality, comparison, and more. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp.
88–118. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 4

30. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal
blind signatures in the standard model from weaker assumptions. In: Zikas, V., De
Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44618-9 21

31. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 12

32. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2018). https://doi.org/10.1007/s00145-018-9281-4

33. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 133–160. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 5

34. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (Almost) tightly secure
structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 8

35. Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.:
Zero-knowledge accumulators and set algebra. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 67–100. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 3

36. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 26

37. Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 17

38. Hébant, C., Pointcheval, D.: Traceable constant-size multi-authority credentials.
Cryptology ePrint Archive, Report 2020/657 (2020)

39. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-319-76581-5_6
https://doi.org/10.1007/978-3-662-54388-7_4
https://doi.org/10.1007/978-3-319-44618-9_21
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-662-53890-6_3
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11

438 A. Connolly et al.

40. Khalili, M., Slamanig, D., Dakhilalian, M.: Structure-preserving signatures on
equivalence classes from standard assumptions. In: Galbraith, S.D., Moriai, S.
(eds.) Advances in Cryptology - ASIACRYPT 2019, pp. 63–93. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34618-8 3

41. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 14

42. Morillo, P., Ràfols, C., Villar, J.L.: The Kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 729–
758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 27

43. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

44. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of opera-
tions on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
91–110. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 6

45. Ràfols, C.: Stretching Groth-Sahai: Nizk proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) Theory of Cryptography, pp. 247–276. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7 10

46. Sanders, O.: Efficient redactable signature and application to anonymous creden-
tials. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS,
vol. 12111, pp. 628–656. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45388-6 22

47. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

48. Sonnino, A., Al-Bassam, M., Bano, S., Meiklejohn, S., Danezis, G.: Coconut:
threshold issuance selective disclosure credentials with applications to distributed
ledgers. In: The Network and Distributed System Security Symposium (NDSS)
(2019)

49. Tan, S.-Y., Groß, T.: MoniPoly—an expressive q-SDH-based anonymous attribute-
based credential system. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12493, pp. 498–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64840-4 17

50. Thakur, S.: Batching non-membership proofs with bilinear accumulators. IACR
Cryptol. ePrint Arch. 2019, 1147 (2019)

51. Wesolowski, B.: Efficient verifiable delay functions (extended version). J. Cryptol.
33(4), 2113–2147 (2020)

52. Zurich, I.R.: Specification of the identity mixer cryptographic library v2.3.0. (2013)

https://doi.org/10.1007/978-3-030-34618-8_3
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-642-22792-9_6
https://doi.org/10.1007/978-3-662-46497-7_10
https://doi.org/10.1007/978-3-030-45388-6_22
https://doi.org/10.1007/978-3-030-45388-6_22
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-030-64840-4_17
https://doi.org/10.1007/978-3-030-64840-4_17

Traceable PRFs: Full Collusion
Resistance and Active Security

Sarasij Maitra1 and David J. Wu2(B)

1 University of Virginia, Charlottesville, VA, USA
sm3vg@virginia.edu

2 University of Texas at Austin, Austin, TX, USA
dwu4@cs.utexas.edu

Abstract. The main goal of traceable cryptography is to protect
against unauthorized redistribution of cryptographic functionalities.
Such schemes provide a way to embed identities (i.e., a “mark”) within
cryptographic objects (e.g., decryption keys in an encryption scheme,
signing keys in a signature scheme). In turn, the tracing guarantee
ensures that any “pirate device” that successfully replicates the under-
lying functionality can be successfully traced to the set of identities used
to build the device.

In this work, we study traceable pseudorandom functions (PRFs). As
PRFs are the workhorses of symmetric cryptography, traceable PRFs are
useful for augmenting symmetric cryptographic primitives with strong
traceable security guarantees. However, existing constructions of trace-
able PRFs either rely on strong notions like indistinguishability obfus-
cation or satisfy weak security guarantees like single-key security (i.e.,
tracing only works against adversaries that possess a single marked key).

In this work, we show how to use fingerprinting codes to upgrade a
single-key traceable PRF into a fully collusion resistant traceable PRF,
where security holds regardless of how many keys the adversary pos-
sesses. We additionally introduce a stronger notion of security where
tracing security holds even against active adversaries that have oracle
access to the tracing algorithm. In conjunction with known constructions
of single-key traceable PRFs, we obtain the first fully collusion resistant
traceable PRF from standard lattice assumptions. Our traceable PRFs
directly imply new lattice-based secret-key traitor tracing schemes that
are CCA-secure and where tracing security holds against active adver-
saries that have access to the tracing oracle.

1 Introduction

Traitor tracing [CFN94] and software watermarking schemes [BGI+01,BGI+12]
are cryptographic primitives for protecting against the unauthorized distribution

D. J. Wu—Research supported by NSF CNS-1917414, CNS-2045180, and a Microsoft
Research Faculty Fellowship.

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 439–469, 2022.
https://doi.org/10.1007/978-3-030-97121-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_16

440 S. Maitra and D. J. Wu

of software. In both settings, a content distributor can embed some special infor-
mation (e.g., a “mark” or a “tag”) into a program in a way that preserves the
functionality of the program while ensuring that it is difficult for an adversary to
remove the tag from the program without destroying its functionality. Schemes
that provide strong security guarantees have typically focused on cryptographic
programs. Specifically, traitor tracing schemes focus on protecting the decryp-
tion functionality in a (public-key) encryption scheme [CFN94,BSW06,BN08,
GKW18,Zha20] while software watermarking has focused on symmetric primi-
tives like pseudorandom functions (PRFs) [CHN+16,KW17,QWZ18,YAYX20]
and on public-key primitives such as public-key encryption or digital signa-
tures [GKM+19,Nis20].

Traceable PRFs. In this work, we study traceable PRFs, a notion recently
introduced by Goyal et al. [GKWW21]. Recall first that a PRF [GGM84] is a
keyed function PRF(k, ·) whose input/output behavior is computationally indis-
tinguishable from a truly random function. As PRFs are the workhorses of sym-
metric cryptography, traceable PRFs are sufficient to augment a wide range of
symmetric primitives with tracing capabilities: this can include notions such as
symmetric encryption (which corresponds to secret-key traitor tracing), message
authentication codes, or symmetric challenge-response authentication systems.

In a traceable PRF, the holder of the PRF key k can issue “marked” keys kid
associated with an identity id. First, the marked key kid can be used to evaluate
the PRF almost everywhere: namely, there is an efficient evaluation algorithm
Eval where Eval(kid, x) = PRF(k, x) for all but a negligible fraction of elements in
the domain. Moreover, there is a tracing algorithm Trace that takes any “useful”
program D and outputs at least one of the identity keys kid that was used to
construct D. More precisely, if an adversary that has keys kid1 , . . . , kidq manages
to create a “useful” program D, the tracing algorithm on program D should
successfully output at least one of the identities id1, . . . , idq.1

The question is how to define the “usefulness” of a program D. In the set-
ting of watermarkable PRFs [CHN+16], a program D is considered useful only
if D(x) = PRF(k, x) on at least a (1/2 + ε)-fraction of elements in the domain;
in other words, programs are considered useful if they exactly preserve the out-
put of the original PRF on most inputs. Goyal et al. [GKWW21] showed that
this security notion is inadequate in settings where an adversarial program can
break the security of a particular application without necessarily replicating
the exact input/output behavior of the PRF. To address the weaknesses of the
prevailing security notions for watermarking, Goyal et al. strengthened the “use-
fulness” definition on a program D to capture all programs that can successfully
break (weak) pseudorandomness of the PRF. Specifically, any efficient program
D that is able to distinguish a sequence (x1,PRF(k, x1)), . . . , (xn,PRF(k, xn))
from (x1, f(x1)), . . . , (xn, f(xn)) with probability 1/2 + ε, where x1, . . . , xn are

1 While it might seem more natural to require that Trace outputs all of the identities
id1, . . . , idq, this requirement is impossible since an adversary can build its program
D from just one of the keys it requested (and ignore all of the other ones).

Traceable PRFs: Full Collusion Resistance and Active Security 441

random domain elements, f is a truly random function, and ε is non-negligible,
is considered to be useful. In other words, the tracing algorithm should success-
fully extract an identity from any efficient distinguisher D that can distinguish
PRF evaluations on random domain elements.

Collusion Resistance. An important property in the study of traceable cryptog-
raphy is collusion resistance, which requires that tracing security holds even if
the adversary obtains multiple marked keys. We say a scheme is “fully collusion
resistant” if security holds against adversaries that can obtain any unbounded
polynomial number of keys.

Goyal et al. [GKWW21] gave two constructions of traceable PRFs: (1) a
single-key construction from standard lattice assumptions where security holds
against an adversary that holds a single marked key; and (2) a collusion resistant
construction from indistinguishability obfuscation [BGI+01]. A natural question
is whether we can obtain a collusion resistant traceable PRF from standard
lattice assumptions. Such a construction would have the advantage of being
plausibly post-quantum secure and also provides a more direct instantiation
than going through the full power of indistinguishability obfuscation.

Fully collusion resistant constructions of related notions such as traitor
tracing (i.e., traceable encryption) [GKW18,CVW+18] and watermarkable
PRFs [YAYX20] are known from standard lattice assumptions.

Active security. Traceable PRFs and traitor tracing schemes come in several
varieties. Some schemes support public tracing where anyone is able to run the
tracing algorithm, while others only support secret tracing where knowledge
of a secret key is needed to run the tracing algorithm. Existing lattice-based
constructions of traceable PRFs and traitor tracing only support secret tracing.

In the secret tracing setting, existing security models only consider adver-
saries that do not have access to the tracing key. However, in practical scenar-
ios where traitor tracing schemes may be deployed, it makes sense to consider
active adversaries that may make multiple attempts to try and evade the trac-
ing algorithm (or even worse, cause the tracing algorithm to falsely implicate
an honest user). Certainly, any scheme that supports public tracing ensures
robustness against such active adversaries, but the same does not hold in the
secret-tracing setting. In this work, we model the capabilities of an active adver-
sary by introducing a stronger security model in the secret tracing setting where
we additionally allow the adversary to make queries to the tracing oracle. We
view our notion to be an intermediate notion between secret tracing and public
tracing. A similar intermediary notion was previously considered in the setting
of watermarkable PRFs [QWZ18,KW19,YAL+19].

This Work. In this work, we show how to generically augment traceable PRFs
with collusion resistance and active security through the use of fingerprinting

442 S. Maitra and D. J. Wu

codes [BS95].2 We summarize our main results below and provide a more detailed
technical overview in Sect. 1.1.

– Collusion resistance: We describe a generic transformation that transforms
any single-key traceable PRF with domain X , range {0, 1}ρ, and polynomial-
size identity space I into a fully collusion resistant traceable PRF over the
same domain, range, and identity space. A limitation of our construction is
that the marked keys kid are long: |kid| scales polynomially with the size |I|
of the identity space.
We note that collusion resistance is meaningful and non-trivial to achieve
even when the identity space is polynomial. For example, existing lattice-
based traceable PRFs [GKWW21] are completely insecure if the adversary
obtains just two marked keys (in fact, the adversary can recover the PRF
secret key from any two marked keys). Moreover, in the closely-related setting
of traitor tracing, many existing schemes only achieve full collusion resistance
assuming a polynomial number of identities (e.g., [BSW06,GKSW10,Zha20,
GQWW19]); in each of these examples, at least one of the scheme parameters
grows polynomially with the number of identities, thus limiting the size of the
identity space supported by the scheme.

– Active Security: We describe a generic transformation that takes any single-
key traceable PRF and compiles it into a traceable PRF with active security
(i.e., where the adversary is allowed to have access to the tracing oracle).
Combined with collusion resistant fingerprinting codes that support tracing
queries [YAYX20], we obtain collusion resistant traceable PRFs with active
security. We note that existing constructions of collusion resistant finger-
printing codes only support an a priori bounded polynomial number of trac-
ing queries. The same limitation extends to our collusion resistant traceable
PRFs with active security.

We capture these results in the following (informal) theorem:

Theorem 1.1 (Informal). Let λ be a security parameter and take any poly-
nomial n = n(λ). Let TPRF0 be a single-key secretly-traceable PRF with domain
X , range {0, 1}ρ, and any identity space containing at least two identities. Then
there exists a fully collusion resistant secretly-traceable PRF TPRF with domain
X , range {0, 1}ρ, and identity space {1, . . . , n}. Moreover, for any polynomial
Q = Q(λ), TPRF is fully collusion resistant against an active adversary that
makes up to Q queries to the tracing oracle. The size of the marked keys in TPRF
is poly(λ, n,Q) · |k0|, where |k0| denotes the size of a marked key in TPRF0.

Applying the above transformation to the single-key traceable PRF of
Goyal et al. [GKWW21], we obtain the first fully collusion resistant traceable
PRF from standard lattice assumptions. This puts traceable PRFs on par with
the best-known results for watermarkable PRFs [YAYX20], while retaining the
2 The fingerprinting codes we rely on in this work [BS95,Tar03,YAL+19] are

information-theoretic objects and do not require making additional computational
assumptions.

Traceable PRFs: Full Collusion Resistance and Active Security 443

benefits of the significantly stronger tracing security provided by traceable PRFs.
We summarize this instantiation in the following corollary to Theorem 1.1:

Corollary 1.2 (Collusion Resistant Traceable PRF). Under the sub-
exponential hardness of LWE (with a sub-exponential modulus-to-noise ratio),
there exists a fully collusion resistant traceable PRF with secret tracing and a
polynomial identity space. The traceable PRF is secure against active adversaries
making up to Q tracing queries, for any a priori bounded polynomial Q = Q(λ).

Applications to Traitor Tracing. As noted in Goyal et al. [GKWW21], traceable
PRFs immediately give rise to symmetric traitor tracing schemes. Here, we note
that if the underlying traceable PRFs provide active security, we obtain fully col-
lusion resistant traitor tracing schemes with security against active adversaries.
We also note that since PRFs can be directly used to construct a CCA-secure
symmetric encryption scheme (and more generally, an authenticated encryption
scheme [BN00]), our traceable PRF immediately implies a traitor tracing scheme
for an authenticated encryption scheme. Previous constructions of traitor trac-
ing (e.g., [GKW18,CVW+18]) typically only consider chosen plaintext security
(CPA-security) for the underlying encryption scheme. At the same time, the
existing lattice-based traitor tracing schemes have the advantage that they sup-
port public encryption and have short marked keys. We provide more details in
Sect. 4.

1.1 Construction Overview

In this section, we provide a high-level overview of our generic transformations
(Theorem 1.1). We provide the technical details in Sect. 3.

Fingerprinting Codes. Our construction combines a single-key (i.e., non-
collusion-resistant) traceable PRF with a collusion resistant fingerprinting
code [BS95]. A fingerprinting code is an information-theoretic primitive defined
over an alphabet Σ and an identity space I. Here, we consider binary codes
so Σ = {0, 1} and a polynomial-sized identity space I = [n] = {1, . . . , n}. A
fingerprinting code is described by two main algorithms (Gen,Trace):

– The code generator algorithm Gen is a randomized algorithm that outputs
a codebook Γ = {w̄(i)}i∈[n] together with a tracing key tk. We say that
w̄(i) ∈ {0, 1}� is the “codeword” associated with the ith identity and we refer
to its length � as the length of the code.

– The trace algorithm Trace takes as input the tracing key tk and a word w̄∗ ∈
{0, 1}� and outputs a subset S ⊆ [n].

Given a collection of codewords W = {w̄(id1), . . . , w̄(idt)} ⊆ Γ , we say that a
word w̄ ∈ {0, 1}� is feasible for W if for all i ∈ [�], there exists j ∈ [t] such that
w̄i = w̄

(idj)
i . In words, every bit in w̄ agrees with the corresponding bit in one of

the codewords in W . We define the feasible set F (W) ⊆ {0, 1}� for W to be the
set of words that are feasible for W .

444 S. Maitra and D. J. Wu

Security for a fingerprinting code is defined by the following game between an
adversary and a challenger. The challenger starts by sampling a codebook Γ and
a tracing key tk. The adversary is allowed to adaptively request for codewords
w̄(id) ∈ Γ on identities id ∈ I of its choosing. Let T ⊆ I be the set of identities
queried by the adversary and let W = {w̄(id)}id∈T ⊆ Γ be the set of associated
codewords the adversary receives. At the end of the game, the adversary outputs
a word w̄∗ ∈ F (W) and wins if Trace(tk, w̄∗) outputs a set S where either S = ∅

or S �⊆ T . We say that a fingerprinting code is secure if no adversary A can win
this game with non-negligible probability (taken over the code-generation and
tracing randomness).

We note that fingerprinting codes can be used to directly construct collusion
resistant traitor tracing [BN08,BP08]. In these settings, the resulting scheme
satisfies a weaker threshold notion of traitor tracing where tracing succeeds only
if the adversary outputs a decoder that succeeds with probability at least 1/2+ε
for a predetermined and fixed ε. In contrast, the standard tracing definitions used
for traceable PRFs and traitor tracing allows tracing a decoder that succeeds for
arbitrary inverse polynomial ε. In this work, we show how to use fingerprinting
codes to upgrade a non-collusion-resistant traceable PRF to a collusion resistant
one without weakening the traceability guarantee. Recently, Zhandry [Zha20]
introduced new techniques to compile a threshold traitor tracing scheme into
one without the threshold limitation. It is not clear whether those techniques
extend to the traceable PRF setting (in fact, it does not seem straightforward to
even construct a traceable PRF with a threshold security notion directly from
fingerprinting codes).

Collusion Resistant Traceable PRFs. Our main construction relies on the
simple observation that the xor function is a “combiner” for PRFs.
Namely, if PRF1, . . . ,PRF� : K × X → {0, 1}ρ are PRF candidates, then
PRF((k1, . . . , k�), x) :=

⊕
i∈[�] PRFi(ki, x) is a secure PRF as long as at least

one of the PRFi is secure.
Let TPRFnc be a single-key (i.e., non-collusion-resistant) traceable PRF, and

let Γ = {w̄(i)}i∈[n] be a fingerprinting code for the set [n], where each codeword
w̄(i) ∈ {0, 1}�. Our construction will use � independent copies of TPRFnc, where
each copy is used to embed a single bit of the codeword. In more detail, the PRF
key is a tuple of � independent PRF keys (msk1, . . . ,msk�) for TPRFnc. The PRF
evaluation is defined to be

Eval((msk1, . . . ,msk�), x) =
⊕

i∈[�]

TPRFnc.Eval(mski, x).

A marked key for an identity id consists of a tuple of marked keys (sk1, . . . , sk�)
where each ski is mski marked with the bit w̄

(id)
i . Pseudorandomness of this

construction also follows from pseudorandomness of TPRFnc.
To trace a distinguisher D, we use the above combiner property: any algo-

rithm that can break (weak) pseudorandomness of
⊕

i∈[�] TPRFnc.Eval(mski, ·)
can also break (weak) pseudorandomness of TPRFnc.Eval(mskj , ·) for every

Traceable PRFs: Full Collusion Resistance and Active Security 445

j ∈ [�]. In particular, it is straightforward to take a distinguisher D and convert
it into a distinguisher Dj for TPRFnc.Eval(mskj , ·); recall here that in the secret-
tracing setting, the tracing algorithm has the master secret key of the traceable
PRF. The tracing algorithm runs the underlying single-key tracing algorithm on
each distinguisher Dj to obtain sets T1, . . . , T�. It uses the sets Tj to construct
a codeword w̄∗ ∈ {0, 1}� as follows: if 0 ∈ Tj , then set w̄∗

j = 0. Otherwise, set
w̄∗

j = 1. The final output of the tracing algorithm is obtained by running the
decoding algorithm for the fingerprinting code on the extracted word w̄∗.3

We argue that tracing security reduces to security of the underlying single-
key traceable PRF and of the fingerprinting code. Suppose the adversary asks
for keys on identities id1, . . . , idq and manages to produce a useful distinguisher
D. The argument then proceeds as follows:

– Let W = {w̄(id1), . . . , w̄(idq)} be the set of codewords for the fingerprinting
code that are associated with the identities queried by the adversary. As long
as the word w̄∗ extracted by the tracing algorithm is contained in the feasible
set of W , then security of the fingerprinting code guarantees that tracing
security holds.

– By construction, w̄∗ ∈ {0, 1}�. This means that w̄∗ ∈ F (W) as long as for
every index i ∈ [�] where w̄

(idj)
i = w̄

(id1)
i for all j ∈ [q], w̄∗

i = w̄
(id1)
i . In

other words, if all of the codewords corresponding to identities requested
by the adversary have the same bit in a particular position, then the corre-
sponding bit in w̄∗ must also match. But this property directly follows by
single-key tracing security. Namely, if the codewords corresponding to iden-
tities requested by the adversary all match in a particular index i ∈ [�], then
the adversary only obtains one marked version of mski.4 As described above,
if D is a useful distinguisher, then it can be used to obtain a useful distin-
guisher for any of the underlying traceable PRFs. We use D to obtain a useful
distinguisher Di for the ith traceable PRF. Since the adversary only possesses
a single marked key for the ith PRF (marked with the bit w̄

(id1)
i), single-key

tracing security ensures that tracing distinguisher Di correctly recovers w̄
(id1)
i .

Essentially, single-key security of the traceable PRF binds the adversary to
strategies that conform to the restrictions of the fingerprinting code model. This
in turn yields a fully collusion resistant traceable PRF.

Active Security. The second security property we consider in this work is active
security, where tracing security holds even if an adversary has oracle access to
the tracing algorithm. We start by considering active security in the single-key
setting. Intuitively, security in this setting should almost follow from single-
key tracing security. This is because if a distinguisher is “useful,” then secu-
rity requires that the tracing algorithm outputs the single identity id that the
3 To avoid falsely implicating an honest user, we also run a statistical test to check

that the distinguisher is “sufficiently good.” We refer to Sect. 3 for more details.
4 For this step to work, we need to first derandomize the key-generation algorithm. This

can be done via the standard approach of deriving the key-generation randomness
from a PRF. We refer to Sect. 3 for the full construction and analysis.

446 S. Maitra and D. J. Wu

adversary requested. Conversely, if the distinguisher is “useless” (e.g., outputs a
random guess), the tracing algorithm should output ∅ to avoid false implication
of an honest user.

In some sense then, the adversary in the single-key security game should be
able to “predict” the output of the tracing function in advance. If this is true,
then the tracing oracle is no longer useful to the adversary and security reduces
to the setting without tracing queries. However, the catch is handling distin-
guishers which are somewhere in between “useful” and “useless.” For instance,
the adversary might start with a useful distinguisher and construct distinguishers
with progressively decreasing distinguishing advantage until it observes a change
in the behavior of the tracing algorithm; where this occurs can leak information
about the secret tracing key.

More precisely, the tracing algorithm in a traceable PRF takes a distinguisher
D and a threshold ε as input. The requirement is that if D has distinguishing
advantage at least 1/2 + ε, then running the tracing algorithm with threshold ε
will correctly identify at least one corrupted user. However, if D’s distinguishing
advantage is less than 1/2 + ε, then the only guarantee provided by the tracing
algorithm is that it does not falsely implicate an honest user; in this case, it can
either output a compromised identity or the empty set.

Our approach to achieving active security is through introducing an efficient
statistical test CheckDis for deciding whether a distinguisher is “useful” (in which
case the tracing algorithm always outputs the single corrupted identity) or “not
useful” (in which case the tracing algorithm always outputs ∅). Importantly, this
test can be run by the adversary itself, so the tracing oracle does not provide
the adversary additional information. The CheckDis algorithm is very simple:
it takes a distinguisher D and a threshold ε and estimates the distinguishing
advantage of D. The algorithm satisfies two properties:

– If the distinguishing advantage of D is at least 1/2+ε, then CheckDis outputs
1 with overwhelming probability.

– If CheckDis outputs 1, then the distinguishing advantage of D is at least
1/2 + ε/4 with overwhelming probability.

We now modify the tracing algorithm to first run CheckDis on the distinguisher.
If CheckDis fails, then the tracing algorithm always outputs ∅; the first property
guarantees that this will never happen to a “good” distinguisher. If CheckDis
succeeds, then run the tracing algorithm with distinguishing threshold ε/4; the
second property ensures that the tracing algorithm correctly outputs the com-
promised identity in this case. Finally, since CheckDis can be computed by the
adversary, it is possible for the adversary to simulate for itself the output of
the tracing queries without access to the tracing oracle. Thus, in the single-key
setting, it is straightforward to achieve active security essentially for free.

To obtain a collusion resistant traceable PRF with active security, we can
apply our generic transformation based on fingerprinting codes. While the gen-
eral transformation still applies, security will require that the underlying finger-
printing code remains secure in the presence of tracing queries. Currently, there
exist collusion resistant fingerprinting codes that are secure against adversaries

Traceable PRFs: Full Collusion Resistance and Active Security 447

that make an a priori bounded polynomial number of tracing queries [YAYX20].
In conjunction with our compilers, this yields a collusion resistant traceable PRF
that is secure against adversaries that can make a bounded number of tracing
queries. Constructing fingerprinting codes that are secure against an unbounded
polynomial number of tracing queries is an interesting open problem, and a con-
struction would immediately yield traceable PRFs (and correspondingly, traitor
tracing schemes) with active security.

1.2 Additional Related Work

In this section, we discuss some additional results on traitor tracing and water-
marking.

Traitor Tracing. Traitor tracing has been studied extensively and numer-
ous constructions of traitor tracing have been proposed based on combinato-
rial techniques [CFN94,NP98,SSW01,CFNP00,SSW01,BN08] as well as alge-
braic techniques [BSW06,GKSW10,LPSS14,KT15,NWZ16,GKW18,CVW+18,
GKW19,GQWW19]. Some of these schemes are secure against bounded collu-
sions [CFN94,SSW01,LPSS14,KT15,NWZ16] while others are fully collusion
resistant [BSW06,GKSW10,GKW18,CVW+18,GQWW19,Zha20]. We refer to
these works and the references therein for further information.

Traitor Tracing from Fingerprinting Codes. Fingerprinting codes can be directly
combined with public-key encryption to obtain traitor tracing schemes (though
not traceable PRFs) [BN08]. As noted earlier, the resulting traitor tracing
scheme satisfies a weaker threshold tracing guarantee. Our work shows that by
combining fingerprinting codes with an existing (non-collusion-resistant) tracing
scheme, it is possible to obtain full collusion resistance without the threshold
restriction.

In the setting of watermarkable PRFs, Yang et al. [YAL+19] showed how
to use fingerprinting codes to upgrade a non-collusion-resistant watermarkable
PRF to a collusion resistant one. Their approach relies on concatenating the
outputs of many watermarkable PRFs and only supports tracing adversaries
that preserve the entirety of the PRF output (i.e., this precludes applications
from truncating the PRF output). Overall, both the size of the marked keys
and the length of the PRF output of their scheme scale polynomially with the
number of identities. Our collusion resistant traceable PRF has long keys, but
the length of the PRF output is independent of the number of identities. For
instance, this property enables symmetric traitor tracing with short ciphertexts.

Watermarking. Barak et al. [BGI+01,BGI+12] and Hopper et al. [HMW07]
provided the first rigorous definitions of software watermarking. Multiple
works have subsequently studied constructions of watermarking for sym-
metric primitives [CHN+16,BLW17,KW17,YAL+18,QWZ18,KW19,YAL+19,
YAYX20] and public-key primitives [GKM+19,Nis20]. Goyal et al. [GKWW21]
recently highlighted some definitional issues with watermarking for PRFs and
introduced the notion of traceable PRFs.

448 S. Maitra and D. J. Wu

2 Preliminaries

Notation. We write λ (oftentimes implicitly) to denote the security parameter.
For a positive integer n ∈ N, we write [n] to denote the set {1, . . . , n}. For a
finite set S, we write x

r← S to denote that x is sampled uniformly from S. For
a distribution D, we write x ← D to denote that x is sampled from D. For an
event E, we write ¬E to denote its complement. For finite sets X and Y, we
write Funs[X ,Y] to denote the set of all functions from X to Y.

We say that a function f is negligible in the parameter λ if f(λ) = o(1/λc) for
all c ∈ N. We denote this by writing f(λ) = negl(λ). We write poly(λ) to denote a
function bounded by a fixed polynomial in λ. We say an event E (parameterized
by a security parameter λ) happens with negligible probability if Pr[E] = negl(λ)
and that it happens with overwhelming probability if Pr[¬E] = negl(λ). We
say an algorithm A is efficient if it runs in probabilistic polynomial time in the
length of its input. We say that two families of distributions D1 = {D1,λ}λ∈N and
D2 = {D2,λ}λ∈N are computationally indistinguishable if no efficient adversary
can distinguish samples from D1 and D2 except with negligible probability. We
will also use standard Chernoff/Hoeffding bounds in our analysis:

Fact 2.1 (Hoeffding’s Inequality [Hoe63]). Let X1, . . . , Xn be independent
random variables where 0 ≤ Xi ≤ 1 for all i ∈ [n]. Let S =

∑
i∈[n] Xi and let

E[S] denote the expected value of S. Then, for any t ≥ 0,

Pr[|S − E[S]| ≥ nt] ≤ 2−Ω(nt2).

Finally, we recall the definition of a pseudorandom function [GGM84]:

Definition 2.2 (Pseudorandom Function [GGM84]). A pseudorandom
function (PRF) with key-space K, domain X and range Y is an efficiently-
computable function PRF : K × X → Y with the property that for all efficient
adversaries A, there exists a negligible function negl(·) such that

Pr[AOb(·)(1λ) = b : k
r← K, f

r← Funs[X ,Y], b r← {0, 1}] ≤ 1
2

+ negl(λ),

where Ob(x) outputs PRF(k, x) if b = 0 and f(x) if b = 1.

2.1 Fingerprinting Codes

In this section, we recall the formal definition of a fingerprinting code from Boneh
and Shaw [BS95]. To construct traceable PRFs with active security, we require
the fingerprinting code to satisfy collusion resistance against adversaries that are
allowed to make tracing queries [YAYX20].

Definition 2.3 (Feasible Set [BS95]). Let W = {w̄(1), . . . , w̄(t)} ⊆ {0, 1}�.
We say that a word w̄ ∈ {0, 1}� is feasible for W if for all i ∈ [�], there exists
j ∈ [t] such that w̄i = w̄

(j)
i . We define the feasible set F (W) ⊆ {0, 1}� of W to

be the set of all words in {0, 1}� that are feasible for W .

Traceable PRFs: Full Collusion Resistance and Active Security 449

Definition 2.4 (Fingerprinting Code [BS95, adapted]). A fingerprinting
code FC with n codewords is a pair of efficient algorithms (Gen,Trace) with the
following properties:

– Gen(1λ) → (tk, Γ) : On input the security parameter λ ∈ N, the code-
generation algorithm outputs a tracing key tk and a dictionary Γ =
{w̄(i)}i∈[n]. Here, w̄(i) ∈ {0, 1}� for some parameter � > 0. We refer to �
as the code length.

– Trace(tk, w̄∗) → S: On input the tracing key tk and a word w̄∗ ∈ {0, 1}�, the
decoding algorithm outputs a set S ⊆ [n].

Definition 2.5 (Collusion Resistance with Tracing Queries [YAYX20,
adapted]). Let FC = (Gen,Trace) be a fingerprinting code with n codewords. For
an adversary A, we define the fingerprinting code experiment ExptFCFC

A (λ) as
follows:

Experiment ExptFCFC
A (λ):

– The challenger starts by sampling (tk, Γ = {w̄(i)}i∈[n]) ← Gen(1λ). It
also initializes an empty set W ← ∅.

– The adversary is given access to the following oracles:
• Encode query: On input an index i ∈ [n], the challenger replies with

w̄(i) ∈ {0, 1}�. The challenger adds w̄(i) to W .
• Tracing query: On input a word w̄∗ ∈ {0, 1}�, if w̄∗ /∈ F (W),

the challenger replies with ⊥. Otherwise, if w̄∗ ∈ F (W), then the
challenger computes S ← Trace(tk, w̄∗). If S �= ∅ and w̄(id) ∈ W for
all id ∈ S, the challenger replies with S. Otherwise, the experiment
halts with output 1.

– After the adversary A finishes making its queries, the experiment halts
with output 0 (if it has not already halted).

We say that FC is fully collusion resistant in the presence of Q tracing queries if
for all security parameters λ ∈ N and all adversaries A making up to Q tracing
queries, there exists a negligible function negl(·) such that

Pr[ExptFCFC
A (λ) = 1] ≤ negl(λ).

When we allow Q to be an arbitrary polynomial, we say that FC is fully collusion
resistant in the presence of tracing queries.

Fact 2.6 (Fingerprinting Codes). We recall the following results on the
existence of collusion resistant fingerprinting codes (with and without tracing
queries):

– For all λ ∈ N and n ∈ N, there exists a fingerprinting code that is fully
collusion resistant without tracing queries (i.e., Q = 0) with code length
� = poly(n, λ) [BS95,Tar03]. Specifically, the Tardos instantiation [Tar03]
yields a construction with code-length � = O(λn2 log n).

450 S. Maitra and D. J. Wu

– For all λ ∈ N, n ∈ N, and Q = poly(λ) there exists a fingerprinting code
that is fully collusion resistant in the presence of Q tracing queries with code
length � = poly(n, λ,Q) [YAYX20].

2.2 Traceable PRFs

In this section, we recall the formal definition of a traceable PRF
from [GKWW21]. We note that our transformations will rely on a stronger
notion of tracing security we call “strong tracing” (see Definition 2.12). Existing
constructions of traceable PRFs [GKWW21] satisfy this security notion (Remark
2.13). Finally, we introduce our notion of tracing security against active adver-
saries that have oracle access to the tracing algorithm (Definition 2.14).

Definition 2.7 (Traceable PRFs [GKWW21]). Let λ be a security param-
eter. A traceable PRF scheme (in the secret-tracing setting) with domain X ,
range Y, and identity space [n] where n = n(λ) is a tuple of four algorithms
TPRF = (Setup,KeyGen,Eval,Trace) with the following properties:

– Setup(1λ) → msk: The setup algorithm takes as input the security parameter
λ and outputs a master secret key msk.

– KeyGen(msk, id) → skid: The key generation algorithm takes as input the mas-
ter secret key msk and an identity id ∈ [n], and outputs a secret key skid.

– Eval(sk, x) → y: The evaluation algorithm takes as input a secret key sk (which
could be the master key msk), an input x ∈ X , and outputs a value y ∈ Y.

– TraceD(msk, 1z) → T : The tracing algorithm has oracle access to an oracle-
aided distinguisher DO and takes as input the master secret key msk and a
parameter z. It outputs a set of identities T ⊆ [n]. Note that the tracing
algorithm must includes a description of how to implement the oracle O used
by the oracle-aided distinguisher.

Correctness. The basic correctness requirement for a traceable PRF is that the
behavior of the marked key agrees with the original key on all but a negligible
fraction of the domain. We recall this below:

Definition 2.8 (Key Similarity). A traceable PRF TPRF = (Setup,KeyGen,
Eval,Trace) with domain X , range Y, and identity space [n] satisfies key simi-
larity if for every security parameter λ ∈ N, every identity id ∈ [n], there exists
a negligible function negl(·) where

Pr
[

Eval(msk, x) �= Eval(skid, x) :
msk ← Setup(1λ)

skid ← KeyGen(msk, id), x r← X

]

≤ negl(λ).

Remark 2.9 (Stronger Notions of Correctness). Definition 2.8 requires that
marked keys agree with unmarked keys on all but a negligible fraction of the
domain. Goyal et al. [GKWW21] also consider a stronger notion of key indis-
tinguishability that requires that it is computationally difficult to find domain
elements where the marked key and the unmarked key differ. We note that our

Traceable PRFs: Full Collusion Resistance and Active Security 451

generic transformations in Sect. 3 can be shown to preserve this stronger notion
of correctness. For ease of exposition in this work, we focus on the simpler notion
of key similarity.

Definition 2.10 (Weak Pseudorandomness). A traceable PRF TPRF =
(Setup,KeyGen,Eval,Trace) with domain X , range Y, and identity space [n] sat-
isfies weak pseudorandomness if for all efficient adversaries A, there exists a
negligible function negl(·) such that

Pr
[
AOb(1λ) = b : msk ← Setup(1λ), f r← Funs[X ,Y], b r← {0, 1}

]
≤ negl(λ),

where the weak PRF challenge oracle Ob samples x
r← X and outputs

(x,Eval(msk, x)) if b = 0 and (x, f(x)) if b = 1.

Remark 2.11 (On Weak Pseudorandomness). Similar to Goyal et al. [GKWW21],
we use weak pseudorandomness as our primary security notion for traceable PRFs.
As discussed in [GKWW21, §3.1], tracing is only feasible against adversarial strate-
gies that contain “global” information about the behavior of the PRF (i.e., adver-
saries that can break weak pseudorandomness). We do note that it is still possible
for traceable PRFs to independently satisfy the usual notion of strong pseudoran-
domness (and indeed, the constructions of Goyal et al. do). All of the transforma-
tions developed in this work preserve strong pseudorandomness.

Definition 2.12 (Secure Tracing). Let TPRF = (Setup,KeyGen,Eval,Trace)
be a traceable PRF with domain X and range Y and identity space [n]. For
a function ε = ε(λ) and adversary A, we define the tracing experiment
ExptTPRFTPRF

A,ε (λ) as follows:

Experiment ExptTPRFTPRF
A,ε (λ):

– msk ← Setup(1λ)
– D ← AEval(msk,·),KeyGen(msk,·)(1λ)
– T ← TraceD(msk, 11/ε(λ))

Let Sid be the set of identities A submits to the key-generation oracle
KeyGen(msk, ·). Based on the output of ExptTPRFTPRF

A,ε , we define the follow-
ing set of (probabilistic) events and their corresponding probabilities (which are
a functions of λ and parameterized by A, ε):

– GoodDisA,ε: This is the event where Pr[DOb(1λ) = b : b
r← {0, 1}, f

r←
Funs[X ,Y]] ≥ 1/2 + ε(λ), where the probability is taken over the coins of D,
and the oracle Ob is the weak PRF challenge oracle: namely, Ob samples x

r←
X and outputs (x,Eval(msk, x)) if b = 0 and (x, f(x)) if b = 1. Intuitively,
this says that a distinguisher D is an ε-good distinguisher if D can break weak
pseudorandomness of the underlying PRF with advantage ε = ε(λ).

452 S. Maitra and D. J. Wu

– CorrectTrA,ε: This is the event where T �= ∅∧T ⊆ Sid. This event corresponds
to the tracing algorithm successfully outputting one or more of the keys the
adversary possesses.

– BadTrA,ε: This is the event where T �⊆ Sid. This event corresponds to the
tracing algorithm outputting a key that the adversary did not request (i.e.,
falsely implicating an honest user).

We say that an adversary A is admissible for the secure tracing experiment if
the distinguisher D it outputs is efficiently-computable. A traceable PRF scheme
TPRF satisfies secure tracing if for every λ ∈ N, and every efficient and admissi-
ble adversary A, and every inverse polynomial function ε(λ) = 1/poly(λ), there
exists a negligible function negl(·) such that

Pr[BadTrA,ε] ≤ negl(λ) and Pr[CorrectTrA,ε] ≥ Pr[GoodDisA,ε]−negl(λ). (2.1)

The first property states that the tracing algorithm cannot falsely implicate an
honest user with non-negligible probability and the second property requires that
the probability of the tracing algorithm correctly identifying at least one corrupt
user be at least as high as the probability that the adversary outputs an ε-good
distinguisher. We say that TPRF satisfies strongly-secure tracing if for every
λ ∈ N, every efficient and admissible adversary A, and every inverse polynomial
function ε(λ) = 1/poly(λ), there exists a negligible function negl(·) where

Pr[BadTrA,ε] ≤ negl(λ) and Pr[GoodDisA,ε ∧ ¬CorrectTrA,ε] ≤ negl(λ).

Remark 2.13 (Strong Tracing). Strong tracing requires that the probability that
the adversary outputs an ε-good distinguisher and yet, tracing fails, be negligible.
This means that if the adversary outputs an ε-good distinguisher with non-
negligible probability, then tracing succeeds with overwhelming probability. This
is not required by the standard tracing definition. A simple calculation shows
that strong tracing security implies standard secure tracing. First,

Pr[GoodDisA,ε] = Pr[GoodDisA,ε∧CorrectTrA,ε]+Pr[GoodDisA,ε∧¬CorrectTrA,ε].

Strong secure tracing implies that Pr[GoodDisA,ε ∧ ¬CorrectTrA,ε] ≤ negl(λ).
Thus,

Pr[CorrectTrA,ε] ≥ Pr[CorrectTrA,ε ∧ GoodDisA,ε] ≥ Pr[GoodDisA,ε] − negl(λ).

Existing construction of traceable PRFs [GKWW21] all satisfy this stronger
notion. In fact, the analysis of existing constructions show that Pr[CorrectTrA,ε |
GoodDisA,ε] ≥ 1 − negl(λ); namely, whenever the adversary outputs a useful
distinguisher, the tracing algorithm successfully recovers one of the identities.

Definition 2.14 (Secure Tracing against Active Adversaries). We say
a traceable PRF TPRF = (Setup,KeyGen,Eval,Trace) satisfies secure tracing
against active adversaries (i.e., is actively secure) if Definition 2.12 holds even if
the adversary A in experiment ExptTPRFTPRF

A,ε has oracle access to a tracing ora-
cle O(msk, ·, ·) that takes as input the description of an efficiently-computable

Traceable PRFs: Full Collusion Resistance and Active Security 453

distinguisher D and the tracing parameter 1z (encoded in unary) and outputs
TraceD(msk, 1z). We say TPRF satisfies secure tracing against Q-bounded active
adversaries if Definition 2.12 holds against all efficient adversaries A that makes
at most Q queries to the tracing oracle O(msk, ·, ·) in ExptTPRFTPRF

A,ε .

Remark 2.15 (Comparison with [GKWW21]). Definition 2.12 is slightly sim-
pler than the corresponding definition from [GKWW21]. Namely, the definition
in [GKWW21] required that for all efficient adversaries A, every polynomial q,
and non-negligible function ε, there exists a negligible function negl(·) such that
for all λ ∈ N where ε(λ) > 1/q(λ), Eq. 2.1 holds. Our formulation is equivalent;
we refer to [Zha20, Remark 4] for a similar type of modification in the context
of traitor tracing.

Remark 2.16 (Special Evaluation Queries). The secure tracing definition from
Goyal et al. [GKWW21] also allows the adversary to make special evaluation
queries where the adversary can request evaluations on inputs x ∈ X under dif-
ferent identity keys. We do not focus on this setting since existing constructions
of (non-collusion-resistant) traceable PRFs based on standard lattice assump-
tions do not support special evaluation queries. Special evaluation queries are
not essential to realizing applications like traitor tracing from traceable PRFs.

3 Traceable PRF Constructions

In this section, we introduce our generic transformations (Constructions 3.3 and
3.6) for constructing traceable PRFs with active security and full collusion resis-
tance (based on any single-key traceable PRF). In both of our constructions, we
need an algorithm to estimate the success probability of a distinguisher. We use
a standard approach based on Chernoff/Hoeffding bounds (Fact 2.1):

Definition 3.1 (CheckDis). Let λ be a security parameter, and let TPRF =
(Setup,KeyGen,Eval,Trace) be a traceable PRF with domain X , range Y, and
identity space [n]. Given a distinguisher D, we define the algorithm CheckDis:

– CheckDisD(msk, 1z): On input the master secret key msk, a parameter z ∈ N,
and given oracle access to a distinguisher D, the CheckDis algorithm proceeds
as follows:

• Let N = λz2. For each i ∈ [N], sample bi
r← {0, 1}, initialize an empty

table T, and compute b′
i ← DObi

(msk)(1λ), where the oracle Obi
is imple-

mented as follows:
∗ If bi = 0, sample x

r← X , compute y ← Eval(msk, x), and output
(x, y).

∗ If bi = 1, sample x
r← X and check if there is already a mapping of

the form x �→ y in T. If so, output (x, y). Otherwise, sample y
r← Y,

add (x, y) to T, and output (x, y).
• Let t be the number of indices i ∈ [N] where bi = b′

i. If t > N(1/2+1/(2z))
occurs, then output 1. Otherwise, output 0.

454 S. Maitra and D. J. Wu

Lemma 3.2 (Distinguisher Success Probability). Take any z = z(λ). Let
TPRF = (Setup,KeyGen,Eval,Trace) be a traceable PRF, and sample msk ←
Setup(1λ). Take any candidate distinguisher D, and let Ob be the weak PRF
challenge oracle from Definition 2.12. Then the following properties hold:

– Suppose Pr[DOb(msk)(1λ) = b : b
r← {0, 1}] ≥ 1/2 + 1/z. Then,

Pr[CheckDisD(msk, 1z) = 1] ≥ 1 − negl(λ).
– Suppose CheckDisD(msk, 11/ε) = 1. Then, with overwhelming probability over

the randomness of CheckDis, we have that Pr[DOb(msk)(1λ) = b : b
r← {0, 1}] ≥

1/2 + 1/(4z).

Proof. Both properties follow via Chernoff/Hoeffding bounds (Fact 2.1).

3.1 Tracing Security with Active Adversaries

We first show how to generically transform any single-key traceable PRF satis-
fying strong tracing security into a single-key traceable PRF with strong tracing
security against active adversaries (Definition 2.14).

Construction 3.3 (Actively Secure Single-Key Traceable PRF). Let
λ ∈ N be a security parameter. Let TPRF0 = (Setup0,KeyGen0,Eval0,Trace0) be
a secret-key traceable PRF with domain X , range Y and identity space [n]. We
construct a traceable PRF TPRF = (Setup,KeyGen,Eval,Trace) with the same
domain, range, and identity space as follows:

– Setup(1λ) → msk: On input the security parameter λ, the setup algorithm
samples msk ← Setup0(1λ).

– Eval(sk, x) → y: Output y ← Eval0(sk, x).
– KeyGen(msk, id) → skid: Output skid ← KeyGen0(msk, id).
– TraceD(msk, 1z) → T : On input the master secret key msk and the parameter

z, the tracing algorithm outputs ∅ if CheckDisD(msk, 1z) outputs 0. Other-
wise, output TraceD

0 (msk, 14z).

Theorem 3.4 (Correctness and Weak Pseudorandomness). If TPRF0

satisfies weak pseudorandomness (resp., key similarity), then TPRF in Construc-
tion 3.3 also satisfies weak pseudorandomness (resp., key similarity).

Proof. This is immediate since Setup, KeyGen, and Eval simply invokes the cor-
responding algorithm in TPRF0.

Theorem 3.5 (Tracing Security). If TPRF0 is a single-key strongly-secure
traceable PRF, then TPRF in Construction 3.3 is a single-key strongly-secure
traceable PRF with active security.

Due to space limitations, we defer the proof of Theorem 3.5 to the full version
of this paper [MW21].

Traceable PRFs: Full Collusion Resistance and Active Security 455

3.2 Collusion Resistant Traceable PRFs

We now introduce our main construction of a fully collusion resistant traceable
PRF from any single-key traceable PRF (in conjunction with a fingerprinting
code). We refer to Sect. 1.1 for an overview of the construction.

Construction 3.6 (Collusion Resistant Traceable PRF). Let λ ∈ N be a
security parameter and n = n(λ) be the number of identities. Our construction
relies on the following ingredients:

– Let TPRFnc = (TPRFnc.Setup,TPRFnc.KeyGen,TPRFnc.Eval,TPRFnc.Trace)
be a (single-key) secret-key traceable PRF with domain X , range {0, 1}ρ

and identity space {0, 1}.
– Let FC = (FC.Gen,FC.Trace) be a fingerprinting code with n codewords and

code length �.
– Let R be the randomness space for TPRFnc.KeyGen and let PRF : K × ([�] ×

{0, 1}) → R be a pseudorandom function (with key-space K and domain
[�] × {0, 1}).

We construct a fully collusion resistant secret-key traceable PRF TPRF =
(Setup,KeyGen,Eval,Trace) with domain X , range {0, 1}ρ, and identity space
[n] as follows:

– Setup(1λ) → msk: On input the security parameter λ, the setup algorithm
starts by sampling mski ← TPRFnc.Setup(1λ) for each i ∈ [�]. In addi-
tion, it samples k

r← K and (tkFC, Γ) ← FC.Gen(1λ). It outputs msk =
(msk1, . . . ,msk�, Γ, tkFC, k).

– Eval(sk, x) → y: On input a secret key sk = (sk1, . . . , sk�, Γ, tkFC, k) and an
input x ∈ X , the evaluation algorithm computes yi ← TPRFnc.Eval(ski, x) for
each i ∈ [�], and outputs y ←

⊕
i∈[�] yi.

– KeyGen(msk, id) → skid: On input the master secret key msk =
(msk1, . . . ,msk�, Γ = {w̄(i)}i∈[n], tkFC, k) and an identity id ∈ [n], the key-
generation algorithm computes randomness ri ← PRF(k, (i, w̄(id)

i)) and sam-
ples ski ← TPRFnc.KeyGen(mski, w̄

(id)
i ; ri) for each i ∈ [�]. It outputs sk =

(sk1, . . . , sk�,⊥,⊥,⊥).5
– TraceD(msk, 1z) → T : On input the master secret key msk =

(msk1, . . . ,msk�, Γ, tkFC, k) and the parameter z, the tracing algorithm pro-
ceeds as follows:

• If CheckDisD(msk, 1z) outputs 0, output ∅.
• Otherwise, define the oracle-aided distinguisher DO

i as follows:
* On input the security parameter λ, start running algorithm DO′

(1λ).
* Whenever D makes a query to its oracle O′, the distinguisher Di

makes a query to its own oracle O to obtain a sample (x, y). Algorithm
Di computes y′ ← y ⊕

(⊕
j �=i TPRFnc.Eval(mskj , x)

)
and replies to

D with the sample (x, y′).
5 The ⊥’s are added so that msk and sk have the same format (and can both be used

as an input to the evaluation algorithm).

456 S. Maitra and D. J. Wu

• For each i ∈ [�], run Ti ← TPRFnc.Trace
Di(mski, 14z). If 0 ∈ Ti, set

w̄∗
i = 0; otherwise, set w̄∗

i = 1.
• Output FC.Trace(tkFC, w̄∗).

Theorem 3.7 (Weak Pseudorandomness). If TPRFnc satisfies weak pseu-
dorandomness, then TPRF in Construction 3.6 also satisfies weak pseudoran-
domness.

Proof. This follows from the fact that xor-ing the outputs of a (weak) PRF pre-
serves (weak) pseudorandomness. More formally, suppose there exists an efficient
adversary A that breaks weak pseudorandomness of Construction 3.6. We use A
to construct an adversary B that breaks the weak pseudorandomness of TPRFnc

as follows:

1. For i ∈ [� − 1], algorithm B samples a key mski ← TPRFnc.Setup(1λ).
2. Whenever A makes an oracle query, algorithm B queries its own oracle to

obtain an output (x, y). It compute y′ ← y ⊕
(⊕

i∈[�−1] Eval(mski, x)
)

and
replies to A with (x, y).

The weak PRF challenger is used to simulate the evaluations of the �th copy of
TPRFnc. If the challenger replies with PRF evaluations, then B perfectly sim-
ulates the pseudorandom distribution for A while if the challenger replies with
uniform random value, then B perfectly simulates the truly random distribution.

Theorem 3.8 (Key Similarity). If TPRFnc satisfies key similarity, then
TPRF in Construction 3.6 also satisfies key similarity.

Proof. Take any identity id ∈ [n], and sample msk ← Setup(1λ), skid ←
KeyGen(msk, id), x

r← X . In this case, msk = (msk1, . . . ,msk�, Γ, tkFC, k) where
mski ← TPRFnc.Setup(1λ) and skid = (sk1, . . . , sk�,⊥,⊥,⊥) where ski ←
TPRFnc.KeyGen(mski, id). Key similarity of TPRFnc implies that

Pr[TPRFnc.Eval(mski, x) �= TPRFnc.Eval(ski, x)] ≤ negl(λ).

By a union bound, with probability 1 − negl(λ), Eval(mski, x) = Eval(ski, x) for
all i ∈ [�], and the claim follows. ��

Theorem 3.9 (Tracing Security). Let Q = Q(λ) be an arbitrary polynomial.
If TPRFnc is a strongly-secure single-key traceable PRF with security against Q-
bounded active adversaries, FC is a fully collusion resistant fingerprinting code
in the presence of Q tracing queries, and PRF is a secure PRF, then Construc-
tion 3.6 is a fully collusion resistant strongly-secure traceable PRF with security
against Q-bounded active adversaries. If TPRFnc and FC are both secure against
adversaries that can make an unbounded number of tracing queries, then the
same holds for Construction 3.6.

Proof. Fix a security parameter λ ∈ N and take any inverse polynomial function
ε(λ) = 1/poly(λ). Consider an execution of experiment ExptTPRFTPRF

A,ε . We now
define the following sequence of hybrid experiments:

Traceable PRFs: Full Collusion Resistance and Active Security 457

– Hyb0: This is the real security experiment ExptTPRFTPRF
A,ε (λ).

– Hyb1: Same as Hyb0 except the challenger samples f
r← Funs[[�] × {0, 1},R]

and computes f(·) instead of PRF(k, ·).
– Hyb2: Same as Hyb1, except on every tracing query and at the end of the

game when A outputs its distinguisher, the experiment additionally checks
the following two conditions. Let (D, 1z) be the distinguisher and tracing
parameter the adversary submits in its tracing query (or outputs at the end
of the experiment6).

• CheckDisD(msk, 1z) outputs 1.
• The word w̄∗ ∈ {0, 1}� computed by TraceD(msk, 1z) satisfies w̄∗ /∈ F (W),

where F (W) is the feasible set of W = {w̄(idj)}j∈[Q], id1, . . . , idQ ∈ [n] are
the identities A submitted to the key-generation oracle prior to outputting
D, and Γ = {w̄(i)}i∈[n] is the set of codewords sampled by Setup.

If both conditions hold, then the experiment sets the Bad flag and aborts
with output ⊥.

For an event E, we write Hybi[E] to denote the indicator random variable that is
1 if event E occurs in an execution of Hybi and 0 otherwise. In the following, we
will consider events E that are functions of the “experiment’s messages:” these
include the adversary’s queries, the challenger’s responses, and the adversary’s
output in the experiment.

Lemma 3.10. Let E be an efficiently-checkable event that is a function
of (msk1, . . . ,msk�, Γ, tkFC) and the experiment’s messages in ExptTPRFTPRF

A,ε .
If PRF is secure, then for all efficient adversaries A, we have that
|Pr[Hyb0[E] = 1] − Pr[Hyb1[E] = 1]| ≤ negl(λ).

Proof. Suppose there exists efficient A where |Pr[Hyb0[E] = 1] − Pr[Hyb1[E] =
1]| ≥ ε′ for some non-negligible ε′. We use A to construct an adversary B that
breaks security of PRF as follows:

1. Algorithm B starts by sampling a key mski ← TPRFnc.Setup(1λ) for each
i ∈ [�]. It also samples (tkFC, Γ = {w̄(i)}i∈[�]) ← FC.Gen(1λ).

2. Algorithm B starts running A. Whenever A makes an evaluation or a trace
query, algorithm B responds according to the specification of the real scheme
(Construction 3.6). Observe that neither of these queries depend on the PRF
key k.

3. When A makes a key-generation query on an identity id ∈ [n], algorithm
B queries the PRF challenger on input (i, w̄(id)

i) and obtains output ri ∈ R
for each i ∈ [�]. It then computes ski ← TPRFnc.KeyGen

(
mski, w̄

(id)
i ; ri

)
and

replies to A with (sk1, . . . , sk�,⊥,⊥,⊥).
4. At the end of the game, algorithm B outputs 1 if event E occurs and 0

otherwise.

6 The tracing parameter for the final output is set to be z = 1/ε.

458 S. Maitra and D. J. Wu

Algorithm B is efficient since deciding E can be efficiently computed as a function
of (msk1, . . . ,msk�, Γ, tkFC) and the experiment’s messages. All of these quantities
are known to B. By construction, if ri ← PRF(k, (i, w̄(id)

i)) where k
r← K, then

B perfectly simulates the distribution in Hyb0. If ri ← f(i, w̄(id)
i) where f

r←
Funs[[�] × {0, 1},R], then B perfectly simulates the distribution in Hyb1. Thus,
algorithm B’s distinguishing advantage is exactly ε′.

Lemma 3.11. Let E be any event that depends only on the experiment’s mes-
sages and msk. If TPRFnc is a strongly secure single-key traceable PRF with
security against Q-bounded active adversaries, then for all efficient Q-bounded
active adversaries A, |Pr[Hyb1[E] = 1] − Pr[Hyb2[E] = 1]| ≤ negl(λ).

Proof. Suppose there exists efficient A where |Pr[Hyb1[E] = 1] − Pr[Hyb2[E] =
1]| = ε′ for some non-negligible ε′. Since the only difference between Hyb1 and
Hyb2 is the additional checks in Hyb2, it must be the case that in an execution of
Hyb1 or Hyb2, algorithm A outputs a distinguisher D and a tracing parameter
1z (either as part of a tracing query or at the end of the experiment) that causes
Hyb2 to set the Bad flag. We use A to construct an algorithm B for experiment
ExptTPRFTPRFnc

B,1/(4z):

1. Algorithm B begins by sampling an index i∗ r← [�] and a bit b∗ r← {0, 1}. It
makes a key-generation query to its challenger on the bit b∗ to obtain a key
sk∗.

2. For all i �= i∗, algorithm B samples a key mski ← TPRFnc.Setup(1λ). It also
samples (tkFC, Γ = {w̄(i)}i∈[�]) ← FC.Gen(1λ).

3. Algorithm B initializes an empty table T and starts running A. Whenever A
makes an oracle query, algorithm B responds as follows:

– Evaluation queries: On input x ∈ X , algorithm B computes yi ←
TPRFnc.Eval(mski, x) for all i �= i∗. It makes an evaluation query to its
challenger on input x to obtain a value yi∗ ∈ {0, 1}ρ. It replies to A with
yi∗ ⊕

(⊕
i�=i∗ yi

)
.

– Key-generation queries: If w̄
(id)
i∗ �= b∗, then algorithm B aborts the

experiments and outputs ⊥. Otherwise, algorithm B sets ski∗ ← sk∗. Next,
for each i �= i∗, B checks if there exists a mapping (i, w̄(id)

i) �→ r
i,w̄

(id)
i

in

T. If not, it samples a random r
i,w̄

(id)
i

r← R and adds (i, w̄(id)
i) �→ r

i,w̄
(id)
i

to

T. Algorithm B then computes ski ← TPRFnc.KeyGen(mski, w̄
(id)
i ; r

i,w̄
(id)
i

)
for each i �= i∗. Algorithm B gives A the tuple (sk1, . . . , sk�,⊥,⊥,⊥).

– Tracing queries: On input a distinguisher D and a tracing parameter
1z, algorithm B starts by computing CheckDisD(msk, 1z), where it uses
the procedure for simulating evaluation queries to compute Eval(msk, x)
in CheckDis. If CheckDis outputs 0, then B replies to A with ∅.

Otherwise, if CheckDis outputs 1, for i �= i∗, algorithm B computes
Ti by emulating an execution of TPRFnc.Trace

Di(mski, 14z). Whenever
TPRFnc.Trace

Di makes a query to the oracle-aided algorithm DO
i , algo-

rithm B implements the logic as follows:

Traceable PRFs: Full Collusion Resistance and Active Security 459

• When TPRFnc.Trace makes an oracle query to Di on input 1λ, algo-
rithm B starts running DO′

(1λ).
• When D makes an oracle query to its oracle O′, algorithm B treats

it as if Di made a query to O, and computes the oracle’s response
(x, y) according to the specification in TPRFnc.Trace. Algorithm B
then makes an evaluation query to its challenger on input x to receive
yi∗ and computes y′ ← y⊕

(⊕
j �=i,i∗ TPRFnc.Eval(mskj , x)

)
⊕yi∗ , and

gives the pair (x, y′) to D as the response from O′.
Let Ti be the output of this emulated execution of TPRFnc.Trace

Di

(mski, 14z). Next, to compute Ti∗ , algorithm B defines the oracle-aided
algorithm DO

i∗ according to the specification of the real tracing algorithm:
• On input the security parameter λ, run DO′

(1λ).
• Whenever D makes a query to its oracle O′, the distinguisher Di∗

makes a query to its own oracle to obtain a sample (x, y). Algorithm
Di∗ computes y′ ← y ⊕

(⊕
j �=i∗ TPRFnc.Eval(mskj , x)

)
and replies to

D with the same (x, y′).
Algorithm B submits a tracing query on DO

i∗ to its challenger to obtain
a set Ti∗ . If Ti∗ �= {b∗}, algorithm B halts and outputs Dnc = Di∗ .
Otherwise, for each i ∈ [�], if 0 ∈ Ti, it sets w̄∗

i = 0, and otherwise, it sets
w̄∗

i = 1. It replies to A with FC.Trace(tkFC, w̄∗).
4. After A has finished making queries (and assuming B has not yet aborted),

then A outputs a distinguisher D. Algorithm B constructs the oracle-aided
algorithm DO

nc using the same procedure as in DO
i∗ in the above description

for simulating tracing queries. Finally, it outputs Dnc as its distinguisher.

By construction, algorithm B perfectly simulates an execution of experiment
Hyb1 for A unless A makes a key-generation query that causes B to abort. By
assumption, in an execution of Hyb1, algorithm A will output a distinguisher D
and a tracing parameter 1z (either as part of a tracing query or at the end of
the experiment) that satisfies the following properties:

– CheckDisD(msk, 1z) outputs 1.
– Let id1, . . . , idq ∈ [n] be the identities A submitted to the key-generation ora-

cle prior to outputting (D, 1z) and let Γ = {w̄(i)}i∈[n] be the set of codewords
w̄(i) ∈ {0, 1}� sampled by Setup. Then, there exists an index j ∈ [�] with the
following two properties:

• w̄
(idi)
j = w̄

(id1)
j for all i ∈ [q]; and

• Tj �= {w̄(id1)
j }, where Tj ← TPRFnc.Trace

Dj (mskj , 14z), and Dj is the
oracle-aided distinguisher as defined in Construction 3.6.

Algorithm B samples the index i∗ and the bit b∗ uniformly at random (and
independently of the view of the adversary). Observe that if i∗ = j and
b∗ = w̄

(id1)
j , algorithm B does not abort the simulation, and instead, out-

puts the distinguisher Di∗ . Thus, with probability at least ε′/(2�), algorithm
B does not abort and successfully outputs a distinguisher Dnc. We now argue

460 S. Maitra and D. J. Wu

that this implies events GoodDisB,1/(4z) and ¬CorrectTrB,1/(4z). In the following,
we write mski∗ to denote the master secret key sampled by the challenger in
ExptTPRFTPRFnc

B,1/(4z). By construction, algorithm B simulates an execution of Hyb1
with msk = (msk1, . . . ,msk�, Γ, tkFC,⊥).

– Let OA,b(msk) and OB,b(mski∗) be the weak PRF challenge oracles from
Definition 2.12 in ExptTPRFTPRF

A,ε and ExptTPRFTPRFnc

B,1/(4z), respectively. Since

CheckDisD(msk, 1z) = 1, we appeal to Lemma 3.2 and conclude that with
probability 1 − negl(λ),

Pr[DOA,b(1λ) = b : b
r← {0, 1}] ≥ 1/2 + 1/(4z).

Consider the probability that Pr[DOB,b(mski∗)
nc (1λ) = b : b

r← {0, 1}]. By con-
struction, for any oracle O, DO

nc(1
λ) outputs DO′

(1λ), where Dnc simulates
oracles queries to O′ by issuing a query to O to obtain (x, y), computing
y′ ← y ⊕

(⊕
j �=i∗ TPRFnc.Eval(mskj , x)

)
, and replying with (x, y′). We claim

that if O ≡ OB,b(mski∗), then the oracle O′ that Dnc simulates for D is
precisely O′ ≡ OA,b(msk).

• Suppose O ≡ OB,0(mski∗). The output of O is a pair (x, y) where x
r← X

and y ← Eval(mski∗ , x). By construction of Dnc, the output of O′ is then
a pair (x, y′) where x

r← X and

y′ = TPRFnc.Eval(mski∗ , x) ⊕
⎛
⎝⊕

i�=i∗
TPRFnc.Eval(mski, x)

⎞
⎠ = Eval(msk, x).

This is precisely the output distribution of OA,0(msk).
• Suppose O ≡ OB,1(mski∗). The output of O is a pair (x, y) where

x
r← X and y

r← {0, 1}ρ. In this case, the distribution of y′ = y ⊕(⊕
i�=i∗ TPRFnc.Eval(mski, x)

)
is uniform over {0, 1}ρ since y is sampled

independently of mski and x for all i. As such, the output distribution of
O′ precisely coincides with the output distribution of OA,1(msk).

By the above analysis,

Pr[D
OB,b(mski∗)
nc (1

λ
) = b : b

r← {0, 1}] = Pr[D
OA,b(msk)

(1
λ
) = b : b

r← {0, 1}] ≥ 1/2 + 1/(4z).

Thus, the event GoodDisB,1/(4z) holds.
– Next, let T ← TPRFnc.Trace

Di∗ (mski∗ , 14z) where Di∗ is constructed from D
as specified in Construction 3.6. In the reduction, algorithm B constructs Dnc

from D in exactly the same way. By assumption, we have that T �= {b∗}.
This means that the output of TPRFnc.Trace

Dnc(mski∗ , 14z) is also not {b∗}.
However, since B makes a single key-generation query to its challenger on
identity b∗, this means that event ¬CorrectTrB,1/(4z) occurs.

We conclude that Pr[GoodDisB,1/(4z) ∧ ¬CorrectTrB,1/(4z)] ≥ ε′/(2�) − negl(λ),
which is non-negligible.

Traceable PRFs: Full Collusion Resistance and Active Security 461

Lemma 3.12. Let D be the distinguisher the adversary outputs at the
end of the experiment. We define ProbGoodDis to be the event where
CheckDisD(msk, 11/ε) = 1. If FC is fully collusion resistant in the presence of
Q + 1 tracing queries, then for all adversaries A in Hyb2, Pr[ProbGoodDis ∧
¬CorrectTrA,ε] ≤ negl(λ).

Proof. Suppose there is an adversary A in Hyb2 where Pr[Hyb2[ProbGoodDis ∧
¬CorrectTrA,ε] = 1] = ε′ for some non-negligible ε′. We use A to construct an
adversary B for the fingerprinting code security game:

1. Algorithm B samples mski ← TPRFnc.Setup(1λ) for each i ∈ [�]. It also ini-
tializes an initially empty table T.

2. Algorithm B starts running A. Whenever A makes an oracle query, algorithm
B does the following:

– Evaluation queries: On input x ∈ X , B computes yi ←
TPRFnc.Eval(mski, x) and replies to A with y ←

⊕
i∈[�] yi.

– Key-generation queries: On input id ∈ [n], B makes an encode query
to its oracle to obtain a codeword w̄(id) ∈ {0, 1}�. Then, for each i ∈ [�],
algorithm B checks if there exists a mapping (i, w̄(id)

i) �→ r
i,w̄

(id)
i

in T. If

not, it samples a random r
i,w̄

(id)
i

r← R and adds (i, w̄(id)
i) �→ r

i,w̄
(id)
i

to T.

Algorithm B then computes ski ← TPRFnc.KeyGen(mski, w̄
(id)
i ; r

i,w̄
(id)
i

) for
each i and replies to A with the tuple (sk1, . . . , sk�,⊥,⊥,⊥)

– Tracing queries: On input a distinguisher D and a tracing param-
eter 1z, algorithm B first runs CheckDisD(msk, 1z) where msk =
(msk1, . . . ,msk�,⊥,⊥,⊥). If CheckDis outputs 0, output ∅. Otherwise,
algorithm B computes the bits w̄∗

i using the same procedure as in TraceD

for each i ∈ [�]. It then submits a tracing query w̄∗ ∈ {0, 1}� to its
challenger. If the challenger replies with ⊥, then B halts and outputs ⊥.
Otherwise, if the challenger replies with a set S ⊆ [n], algorithm B replies
to A with S.

3. After A finishes making its queries, algorithm A outputs a distinguisher D.
Algorithm B again computes w̄∗

i using the same procedure as in TraceD for
each i ∈ [�]. It submits a tracing query w̄∗ ∈ {0, 1}� to its challenger.

We claim that B either perfectly simulates an execution of Hyb2 for A or the
experiment ExptFCFC

B outputs 1. First, algorithm B perfectly simulates the eval-
uation and key-generation queries. We consider the tracing queries. Let D be
the distinguisher and 1z be the tracing parameter that A submits to the tracing
oracle.

– If CheckDisD(msk, 11/ε) outputs 0, then the output in Hyb2 is ∅, which
matches the behavior of B.

– Alternatively, if CheckDisD(msk, 1z) outputs 1, then the word w̄∗ ∈ {0, 1}�

is computed using the same procedure as in Hyb2. If w̄∗ ∈ F (W), where
W = {w̄(idj)}j∈[Q], id1, . . . , idQ ∈ [n] are the identities A submitted to the

462 S. Maitra and D. J. Wu

key-generation oracle prior to outputting D, and Γ = {w̄(i)}i∈[n] is the code-
book sampled by the challenger for the fingerprinting code, then either the
simulation is correct or experiment ExptFCFC

B outputs 1. If w̄∗ /∈ F (W), then
the output in Hyb2 is ⊥, which matches the behavior of B.

Thus, either B perfectly simulates an execution of Hyb2 for A or the experiment
ExptFCFC

B outputs 1.
It suffices to show that in the case where B perfectly simulates the execu-

tion of Hyb2, the experiment ExptFCFC
B also outputs 1 with probability at least

ε′. By assumption, in Hyb2, with probability ε′, algorithm A will output a dis-
tinguisher D that satisfies ProbGoodDis and ¬CorrectTrA,ε (and the experiment
does not abort). Since ProbGoodDis occurs (and the experiment does not abort),
TraceD(msk, 11/ε) computes a word w̄∗ ∈ {0, 1}� where w̄∗ ∈ F (W), where
W = {w̄(idj)}j∈[Q] and id1, . . . , idQ ∈ [n] are the identities algorithm B makes
to the encode oracle (when responding to A’s key-generation queries). Since the
output of TraceD(msk, 11/ε) in this case is FC.Trace(tkFC, w̄∗), and ¬CorrectTrA,ε

occurs, this means that FC.Trace(tkFC, w̄∗) outputs a non-empty set S that con-
tains an identity id′ where id′ /∈ {id1, . . . , idQ}. In this case, experiment ExptFCFC

B
outputs 1 and the claim holds.

Lemma 3.13. If FC is a fully collusion resistant in the presence of Q+1 tracing
queries, then for all adversaries A in Hyb2, Pr[BadTrA,ε] ≤ negl(λ).

Proof. Take an adversary A in Hyb2, and let D be the distinguisher that A
outputs at the end of Hyb2. Let Sid ⊆ [n] be the set of identities that A submits
to the key-generation oracle in Hyb2. Consider the output of TraceD(msk, 11/ε).
We consider two possibilities:

– Suppose CheckDisD(msk, 11/ε) outputs 0. Then the Trace algorithm outputs
∅ and BadTrA,ε does not occur.

– Suppose CheckDisD(msk, 11/ε) outputs 1. For BadTrA,ε to occur in this case,
the Trace algorithm must output a set T where ∅ �= T �⊆ Sid. But this means
¬CorrectTrA,ε occurs in addition to the event ProbGoodDis (from Lemma
3.12). By Lemma 3.12, this event occurs with negligible probability. pagina-
tion ��

Combining Lemmas 3.10–3.13, we have that in Hyb0 ≡ ExptTPRFTPRF
A,ε , for all

efficient adversaries A,

Pr[CheckDisD(msk, 11/ε) = 1 ∧ ¬CorrectTrA,ε] ≤ negl(λ) and Pr[BadTrA,ε] ≤ negl(λ),

where D is the distinguisher A outputs at the end of the experiment. To complete
the proof, we compute the probability of the event GoodDisA,ε ∧ ¬CorrectTrA,ε.
By Lemma 3.2, if GoodDisA,ε holds, then CheckDisD(msk, 11/ε) = 1 with proba-
bility 1 − negl(λ). Correspondingly,

Pr[GoodDisA,ε ∧ ¬CorrectTrA,ε] ≤ negl(λ),

and the claim follows. ��

Traceable PRFs: Full Collusion Resistance and Active Security 463

4 An Application: Traitor Tracing with Active Security

In this section, we introduce stronger security notions for traitor tracing in the
secret-key setting, and then show that our new traceable PRFs directly yields
constructions of these notions. We strengthen existing definitions along two main
axis:

– CCA-security: We require that the underlying encryption scheme itself is
secure against chosen-ciphertext attacks (i.e., “CCA-secure”) [NY90,RS91,
DDN00]. CCA-security (and in the symmetric setting, authenticated encryp-
tion), is essential for guaranteeing security against active adversaries. Previ-
ous definitions of traitor tracing only required that the underlying encryption
scheme be secure against chosen plaintext attacks (i.e., “CPA-secure”), which
is inadequate in the presence of active adversaries.

– Secure tracing against active adversaries: Like many recent
works [GKW18,CVW+18,Zha20], our construction only supports secret trac-
ing. Analogous to the setting of traceable PRFs, we can consider a stronger
tracing requirement where secure tracing holds even if the adversary has
access to a tracing oracle. This models active adversaries that can make mul-
tiple attempts to try and evade the traitor tracing algorithm (and can observe
the behavior of the tracing authority in response to each of those attempts).

We first recall the definition of traitor tracing, specialized to the secret-key
setting. Our definitions are adapted from those of Goyal et al. [GKW18] and
Zhandry [Zha20].

Definition 4.1 (Traitor Tracing [GKW18,Zha20, adapted]). Let λ be a secu-
rity parameter. A secret-key traitor tracing scheme with message space M and
identity space [n] where n = n(λ) is a tuple of five algorithms TT = (Setup,
KeyGen,Enc,Dec,Trace) with the following properties:7

– Setup(1λ) → msk: The setup algorithm takes as input the security parameter
λ, and outputs a master secret key msk.

– KeyGen(msk, id) → skid: The key-generation algorithm takes the master secret
key msk and an identity id ∈ [n] and outputs a secret key skid.

– Enc(msk,m) → ct. The encryption algorithm takes the master secret key msk
and a message m ∈ M and outputs a ciphertext ct.

– Dec(sk, ct) → m. The decryption algorithm takes as input a secret key sk
(which could be the master key msk) and a ciphertext ct and outputs a message
m ∈ M ∪ {⊥}.

– TraceD(msk, 1z,m0,m1) → T . The tracing algorithm has oracle access to a
program D, and takes as input the master secret key msk, a parameter z, and
two messages m0,m1 ∈ M. It outputs a set T ⊆ [n].

Moreover, the traitor tracing scheme should satisfy the following correctness
property:
7 More generally, the message space M = {Mλ}λ∈N can also be parameterized by the

security parameter λ. For simplicity of notation, we omit this parameterization here.

464 S. Maitra and D. J. Wu

– Correctness: For all polynomials n = n(λ), there exists a negligible function
negl(·) such that for all λ ∈ N, all identities id ∈ [n] and all messages m ∈ M,

Pr[Dec(msk,Enc(msk,m)) �= m : msk ← Setup(1λ)] ≤ negl(λ)

and

Pr[Dec(KeyGen(msk, id),Enc(msk,m)) �= m : msk ← Setup(1λ)] ≤ negl(λ).

Security. There are two main security requirements on a traitor tracing scheme.
The first is that the underlying encryption scheme is semantically secure and the
second is tracing security. As noted above, most existing definitions of traitor
tracing only consider these notions in a “passive setting” (i.e., CPA security and
tracing security where the adversary does not have access to the tracing oracle).
In this work, we consider active notions of both security notions. Namely, we
require that the underlying encryption scheme satisfy CCA-security and that
tracing security holds even if the adversary has access to the tracing oracle. We
define these notions formally below:

Definition 4.2 (CCA Security). A secret-key traitor tracing scheme TT =
(Setup,KeyGen,Enc,Dec,Trace) is CCA-secure if for every efficient and admis-
sible algorithm A, there exists a negligible function negl(·) such that for all λ ∈ N ,

Pr
[
AOb(msk,·,·),Dec(msk,·)(1λ) = b : msk ← Setup(1λ), b r← {0, 1}

]
≤ 1

2
+ negl(λ),

where Ob(msk,m0,m1) outputs Enc(msk,mb). We say that A is admissible if for
all queries ct that algorithm A submits to the decryption oracle Dec(msk, ·), it is
the case that ct was not previously output by the encryption oracle Ob.

Definition 4.3 (Tracing Security against Active Adversaries). Let TT =
(Setup,KeyGen,Enc,Dec,Trace) be a secret-key traitor tracing scheme with mes-
sage space M and identity space [n] where n = n(λ). For a function ε = ε(λ)
and adversary A, we define the tracing experiment ExptTTTT

A,ε(λ) as follows:

Experiment ExptTTTT
A,ε(λ)

– msk ← Setup(1λ).
– (D,m0,m1) ← AKeyGen(msk,·),Enc(msk,·),Dec(msk,·)

– T ← TraceD(msk, 11/ε(λ),m0,m1).

Let Sid be the set of identities algorithm A submits to the key-generation oracle.
Based on the output of ExptTTTT

A,ε above experiment, we define the following set
of (probabilistic) events and the corresponding probabilities (which are functions
of λ and parameterized by A, ε):

Traceable PRFs: Full Collusion Resistance and Active Security 465

– GoodDisA,ε: This is the event where Pr[DOb(1λ) = b : b
r← 0, 1] ≥ 1/2 + ε(λ),

where oracle Ob is the semantic security challenge oracle (with msk hard-
wired) that outputs Enc(msk,mb). This property says that the distinguisher D
output by A can successfully distinguish between encryptions of m0 and m1.8

– CorrectTrA,ε: This is the event where T �= ∅ ∧T ⊆ S. This event corresponds
to the tracing algorithm successfully outputting one or more of the keys the
adversary possesses.

– BadTrA,ε: T �⊆ S. This event corresponds to the tracing algorithm outputting
a key that the adversary did not request.

A traitor tracing scheme T satisfies secure tracing if for every λ ∈ N, every
efficient adversary A, and every inverse polynomial function ε(λ) = 1/poly(λ),
there exists a negligible function negl(·) such that

Pr[BadTrA,ε] ≤ negl(λ) and Pr[CorrectTrA,ε] ≥ Pr[GoodDisA,ε]−negl(λ). (4.1)

Similar to the case with traceable PRFs (Definition 2.14), we say that TT satis-
fies secure tracing against active adversaries if Eq. 4.1 holds even if the adversary
A in ExptTTTT

A,ε has oracle access to a tracing oracle O(msk, ·, ·, ·, ·) that takes
as input the description of a distinguisher D, the tracing parameter 1z, and two
messages m0 and m1, and outputs TraceD(msk, 1z,m0,m1). We say TT satis-
fies secure tracing against Q-bounded active adversaries if secure tracing holds
against all efficient adversaries that makes at most Q queries to the tracing
oracle O(msk, ·, ·, ·, ·).

4.1 Traceable PRFs to Traitor Tracing

It is well known that PRFs can be used to construct authenticated encryption
schemes (e.g., via the “encrypt-then-MAC” paradigm [BN00]). Not surprising,
instantiating the encryption scheme with a traceable PRF and composing with
an arbitrary MAC (without any tracing guarantees) directly yields a traitor trac-
ing scheme where the underlying encryption scheme is an authenticated encryp-
tion (and hence, trivially satisfies CCA-security). Moreover, if the underlying
traceable PRF is secure against (Q-bounded) active adversaries, then the result-
ing traitor tracing scheme is also secure against (Q-bounded) active adversaries.
We state the construction below:

Construction 4.4 (Secret-Key Traitor Tracing with Active Security).
Let λ ∈ N be a security parameter. Let TPRF = (TPRF.Setup,TPRF.KeyGen,
TPRF.Eval,TPRF.Trace) be a traceable PRF with domain X , range {0, 1}ρ, and
identity space [n]. Let PRF : K × (X × {0, 1}ρ) → {0, 1}λ be a secure PRF.
We construct a secret-key traitor tracing scheme with message space {0, 1}ρ as
follows:
8 In the public-key setting considering in previous works, it is unnecessary to give

D oracle access to the encryption algorithm, since the distinguisher can simulate
encryption queries itself using the public key. In the secret-key setting, we provide
the adversary oracle access to the encryption algorithm.

466 S. Maitra and D. J. Wu

– Setup(1λ): Run TPRF.msk ← TPRF.Setup(1λ) and k
r← K. Output msk =

(TPRF.msk, k).
– KeyGen(msk, id): On input msk = (TPRF.msk, k), output skid = (TPRF.skid, k)

where TPRF.skid ← TPRF.KeyGen(TPRF.msk, id).
– Enc(msk,m): On input msk = (TPRF.msk, k), sample x

r← X , and compute
y ← TPRF.Eval(TPRF.msk, x)⊕m, τ ← PRF(k, (x, y)). Output the ciphertext
ct ← (x, y, τ).

– Dec(sk, ct): On input sk = (TPRF.sk, k) and ct = (x, y, τ), check if
PRF(k, (x, y)) = τ . If the check fails, output ⊥. Otherwise, output
TPRF.Eval(TPRF.sk, x) ⊕ y.

– TraceD(msk, 1z,m0,m1): On input msk = (TPRF.msk, k), the parameter z,
messages m0,m1 ∈ {0, 1}ρ, and a distinguisher D, define the oracle-aided
traceable PRF distinguisher D̂Ô that operates as follows:

• Sample a bit β
r← {0, 1}.

• Run the distinguisher D. Whenever D makes a query to its encryption
oracle, algorithm D̂ makes a query to its oracle Ô to obtain a value (x, y).

• Compute z ← y⊕mβ and τ ← PRF(k, (x, z)). Algorithm D̂ replies to D’s
query with the ciphertext ct = (x, z, τ).

• Eventually, algorithm D outputs a bit β′ ∈ {0, 1}. Algorithm D̂ outputs
0 if β = β′ and 1 otherwise.

Output TPRF.TraceD̂(TPRF.msk, 12z).

Correctness and Security Analysis. Correctness and security of Construction 4.4
follows directly from correctness and security of the underlying traceable PRF.
We state the formal theorems here.

Theorem 4.5 (Correctness). If TPRF satisfies key similarity, then TT from
Construction 4.4 is correct.

Proof. Take any message m ∈ M. Sample msk ← Setup(1λ), and let
ct = (x, y, τ) ← Enc(msk,m). If we write msk = (TPRF.msk, k), then y =
TPRF.Eval(msk, x)⊕m. Clearly, decryption with the master secret key correctly
recovers m. For any identity id ∈ [n], decryption with skid ← KeyGen(msk, id)
succeeds as long as TPRF.Eval(TPRF.skid, x) = TPRF.Eval(TPRF.msk, x) where
TPRF.skid ← TPRF.KeyGen(TPRF.msk, id). Since x is uniform over X , this fol-
lows by key similarity of TPRF. ��

We now state the security theorems, but defer their proofs to the full version
of this paper [MW21].

Theorem 4.6 (Authenticated Encryption). If TPRF satisfies weak pseudo-
randomness and PRF is secure, then TT from Construction 4.4 is an authenti-
cated encryption scheme, and correspondingly, CCA-secure.

Theorem 4.7 (Tracing Security). If TPRF satisfies secure tracing, then TT
from Construction 4.4 also satisfies secure tracing. If TPRF is secure against
(Q-bounded) active adversaries, then so is TT.

Traceable PRFs: Full Collusion Resistance and Active Security 467

Remark 4.8 (Longer Message Space). While Construction 4.4 only suffices to
encrypt messages whose length ρ coincides with the output length of the PRF, as
long as ρ = Ω(λ), it is easy to extend to arbitrary-length messages using standard
key encapsulation techniques. Namely, we would use Construction 4.4 to encrypt
a symmetric key k for an authenticated encryption scheme (that supports long
messages), and then encrypt the message with the authenticated encryption
scheme. As long as the key encapsulation mechanism supports tracing, the same
extends to the composed scheme.

Acknowledgments. We thank the anonymous reviewers for helpful feedback on the
presentation.

References

BGI+01. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 1

BGI+12. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM
59(2), 1–48 (2012)

BLW17. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions pri-
vately. In: PKC, pp. 494–524 (2017)

BN00. Bellare, M., Namprempre, C.: Authenticated encryption: relations among
notions and analysis of the generic composition paradigm. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-44448-3 41

BN08. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In:
ACM CCS, pp. 501–510 (2008)

BP08. Billet, O., Phan, D.H.: Efficient traitor tracing from collusion secure
codes. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp.
171–182. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85093-9 17

BS95. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. In:
Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 452–465.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 36

BSW06. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing
with short ciphertexts and private keys. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 34

CFN94. van Tilborg, H.C.A., Jajodia, S. (eds.): Encyclopedia of Cryptography and
Security. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-
5906-5

CFNP00. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Trans.
Information Theory 46(3), 893–910 (2000)

CHN+16. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.:
Watermarking cryptographic capabilities. In: STOC, pp. 1115–1127 (2016)

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-540-85093-9_17
https://doi.org/10.1007/978-3-540-85093-9_17
https://doi.org/10.1007/3-540-44750-4_36
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/978-1-4419-5906-5
https://doi.org/10.1007/978-1-4419-5906-5

468 S. Maitra and D. J. Wu

CVW+18. Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-
tracing from LWE made simple and attribute-based. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 341–369. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 13

DDN00. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J.
Comput. 30(2), 391–437 (2000)

GGM84. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions (extended abstract). In: FOCS, pp. 464–479 (1984)

GKM+19. Goyal, R., Kim, S., Manohar, N., Waters, B., Wu, D.J.: Watermarking
public-key cryptographic primitives. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 367–398. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 12

GKSW10. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient
fully collusion-resilient traitor tracing and revocation schemes. In: ACM
CCS, pp. 121–130 (2010)

GKW18. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from
learning with errors. In: STOC, pp. 660–670 (2018)

GKW19. Goyal, R., Koppula, V., Waters, B.: New approaches to traitor tracing
with embedded identities. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019.
LNCS, vol. 11892, pp. 149–179. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-36033-7 6

GKWW21. Goyal, R., Kim, S., Waters, B., Wu, D.J.: Beyond software watermarking:
traitor-tracing for pseudorandom functions. In: Tibouchi, M., Wang, H.
(eds.) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021.
LNCS, vol. 13092. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-92078-4 9

GQWW19. Goyal, R., Quach, W., Waters, B., Wichs, D.: Broadcast and trace with Nε

ciphertext size from standard assumptions. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 826–855. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 27

HMW07. Hopper, N., Molnar, D., Wagner, D.: From weak to strong watermarking.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 20

Hoe63. Hoeffding, W.: Probability inequalities for sums of bounded random vari-
ables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

KT15. Kiayias, A., Tang, Q.: Traitor deterring schemes: using bitcoin as collateral
for digital content. In: ACM CCS, pp. 231–242 (2015)

KW17. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from stan-
dard lattice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 503–536. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 17

KW19. Kim, S., Wu, D.J.: Watermarking PRFs from lattices: stronger security
via extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11694, pp. 335–366. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26954-8 11

LPSS14. Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k -LWE
and applications in traitor tracing. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 315–334. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 18

https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-030-36033-7_6
https://doi.org/10.1007/978-3-030-36033-7_6
https://doi.org/10.1007/978-3-030-92078-4_9
https://doi.org/10.1007/978-3-030-92078-4_9
https://doi.org/10.1007/978-3-030-26954-8_27
https://doi.org/10.1007/978-3-540-70936-7_20
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-662-44371-2_18

Traceable PRFs: Full Collusion Resistance and Active Security 469

MW21. Maitra, S., Wu, D.J.: Traceable PRFs: full collusion resistance and active
security. Cryptology ePrint Archive, Report 2021/1675 (2021). https://ia.
cr/2021/1675

Nis20. Nishimaki, R.: Equipping public-key cryptographic primitives with water-
marking (or: a hole is to watermark). In: Pass, R., Pietrzak, K. (eds.) TCC
2020. LNCS, vol. 12550, pp. 179–209. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-64375-1 7

NP98. Naor, M., Pinkas, B.: Threshold traitor tracing. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0055750

NWZ16. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to
embed arbitrary information in a key. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9666, pp. 388–419. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 14

NY90. Naor, M., Yung, M.: Public-key cryptosystems provably secure against
chosen ciphertext attacks. In: STOC, pp. 427–437 (1990)

QWZ18. Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under stan-
dard assumptions: public marking and security with extraction queries.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240,
pp. 669–698. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03810-6 24

RS91. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-46766-1 35

SSW01. Staddon, J., Stinson, D.R., Wei, R.: Combinatorial properties of frame-
proof and traceability codes. IEEE Trans. Information Theory 47(3),
1042–1049 (2001)

Tar03. Tardos, G.: Optimal probabilistic fingerprint codes. In: STOC, pp. 116–125
(2003)

YAL+18. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Unforgeable watermarking
schemes with public extraction. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 63–80. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 4

YAL+19. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Collusion resistant watermark-
ing schemes for cryptographic functionalities. In: Galbraith, S.D., Moriai,
S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 371–398. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 14

YAYX20. Yang, R., Au, M.H., Yu, Z., Xu, Q.: Collusion resistant watermarkable
PRFs from standard assumptions. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12170, pp. 590–620. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56784-2 20

Zha20. Zhandry, M.: New techniques for traitor tracing: size N1/3 and more from
pairings. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12170, pp. 652–682. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56784-2 22

https://ia.cr/2021/1675
https://ia.cr/2021/1675
https://doi.org/10.1007/978-3-030-64375-1_7
https://doi.org/10.1007/978-3-030-64375-1_7
https://doi.org/10.1007/BFb0055750
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/978-3-030-03810-6_24
https://doi.org/10.1007/978-3-030-03810-6_24
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/978-3-319-98113-0_4
https://doi.org/10.1007/978-3-319-98113-0_4
https://doi.org/10.1007/978-3-030-34578-5_14
https://doi.org/10.1007/978-3-030-56784-2_20
https://doi.org/10.1007/978-3-030-56784-2_22
https://doi.org/10.1007/978-3-030-56784-2_22

Tools

Radical Isogenies on Montgomery Curves

Hiroshi Onuki(B) and Tomoki Moriya

Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan
{onuki,tomoki moriya}@mist.i.u-tokyo.ac.jp

Abstract. We work on some open problems in radical isogenies. Radical
isogenies are formulas to compute chains of N -isogenies for small N and
proposed by Castryck, Decru, and Vercauteren in Asiacrypt 2020. These
formulas do not need to generate a point of order N generating the
kernel and accelerate some isogeny-based cryptosystems like CSIDH. On
the other hand, since these formulas use Tate normal forms, these need
to transform Tate normal forms to curves with efficient arithmetic, e.g.,
Montgomery curves. In this paper, we propose radical-isogeny formulas
of degrees 3 and 4 on Montgomery curves. Our formulas compute some
values determining Montgomery curves, from which one can efficiently
recover Montgomery coefficients. And our formulas are more efficient for
some cryptosystems than the original radical isogenies. In addition, we
prove a conjecture left open by Castryck et al. that relates to radical
isogenies of degree 4.

Keywords: Post-quantum cryptography · Radical isogenies ·
Montgomery curves · CSIDH

1 Introduction

Recent developments in quantum computers raise the importance of research on
post-quantum cryptography (PQC), which is resistant to attacks using quan-
tum computers. Isogeny-based cryptography is one of the promising candidates
for PQC. Indeed, an isogeny-based cryptosystem SIKE is one of the 3rd-round
alternate candidates in the NIST PQC competition [1]. An advantage of isogeny-
based cryptography is that it has smaller public and private keys and ciphertext
than other candidates for PQC. On the other hand, the computational costs of
encryption and decryption in isogeny-based cryptography are relatively high.

The first isogeny-based cryptosystem was proposed by Couveignes [11] and
by Rostovtsev and Stolbunov [20,22] independently. Their cryptosystem uses an
action of the ideal class group of an order of an imaginary quadratic field on
a set of ordinary elliptic curves. The action is calculated by isogenies between
these elliptic curves. Isogenies between supersingular elliptic curves were brought
to cryptography by Charles, Lauter, and Goren [9]. They proposed a crypto-
graphic hash function based on supersingular isogenies. The security of their
hash function is based on the hardness of path-finding in supersingular isogeny

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 473–497, 2022.
https://doi.org/10.1007/978-3-030-97121-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_17

474 H. Onuki and T. Moriya

graphs. Subsequently, Jao and De Feo [16] constructed a key-exchange proto-
col based on the hardness of a similar problem. Their protocol, SIDH (Super-
singular Isogeny Diffie-Hellman), underlies SIKE. Castryck, Lange, Martindale,
Panny, and Renes [7] proposed another key-exchange protocol using supersin-
gular isogenies, CSIDH (commutative SIDH). As the scheme of Couveignes and
Rostovtsev-Stolbunov, CSIDH uses an action of the ideal class group of an order
of an imaginary quadratic field. On the other hand, CSIDH uses a set of Fp-
isomorphism classes of supersingular elliptic curves, and the action is calculated
by isogenies defined over Fp, where p is a large prime number. There are many
protocols based on CSIDH, e.g., signature schemes, SeaSign [12] and CSI-FiSh
[2]. In addition, public-key encryption schemes, SiGamal [19] and InSIDH [15],
use the group action in CSIDH.

It is known that an isogeny can be computed from points in its kernel by
using Vélu’s formulas [24]. For accelerating the computation of isogeny-based
cryptosystems, many variants of Vélu’s formulas are considered. There are the
formulas on Montgomery curves [10,13], Edwards curves [8,17], and Hessian
curves [4]. In addition, Bernstein, De Feo, Leroux, and Smith [4] proposed a new
algorithm that reduces the cost to compute an isogeny of degree � from O(�) to
Õ(

√
�).

Castryck, Decru, and Vercauteren [6] proposed new formulas, radical isoge-
nies, that compute a chain of isogenies of the same degree. They showed that
radical isogenies are more efficient for small degrees than other isogeny formulas.
In particular, they showed that radical isogenies accelerate a variant of CSIDH.

In CSIDH, we need to compute isogenies of small degrees over Fp repeatedly.
These isogenies correspond to the actions of ideal classes. To compute an isogeny
by Vélu’s formula, we need a generator of the kernel of the isogeny. We obtain
the generator from a random point on the domain of the isogeny by scalar
multiplication. Let E be an elliptic curve such that (0, 0) on E has order � and
ϕ an isogeny with kernel generated by (0, 0). Then a radical-isogeny formula
gives the codomain E′ of ϕ such that an isogeny with kernel generated by (0, 0)
on E′ is not the dual isogeny ϕ̂. The coefficients of E′ are in the smallest field
containing the coefficients of E and an �-th root of a rational expression in the
coefficients of E. In CSIDH, if � is odd, then there is only one �-th root in Fp.
Therefore, we can determine the codomain uniquely and apply radical isogenies
iteratively.

On the other hand, if � is even, then there are two choices of an �-th root in
Fp, i.e., x and −x have the same �-th power. Castryck, Decru, and Vercauteren
[6] conjectured a radical-isogeny formula of degree 4 that corresponds to the
action of an ideal of norm 4 and left it as an open problem.

Another crucial open problem is to reduce the costs of transformations
between elliptic curves in radical isogenies. Radical isogenies need to transform
an elliptic curve to another curve on which the point (0, 0) has order �. In par-
ticular, the calculation of radical isogenies are as follows:

1. Take a starting curve E as a Montgomery curve.
2. Find a point P ∈ E of order �.

Radical Isogenies on Montgomery Curves 475

Table 1. The costs of radical isogenies in CSIDH and CSURF. The formulas of degree
4 are only applied to CSURF. The letters E, M, A, and I denote exponentiation,
multiplication, addition, and inversion on Fp, respectively. The latter α in the table
represents 2E+ 2M+ 6A+ I if the exponent of the ideal of norm two is negative, and
zero otherwise.

Degree 3 Degree 4

Formulas in [6] Our formula Formulas in [6] Our formula

Isogeny E+ 3M+ 12A E+ 5M+ 12A E+ 3M+ 5A+ I E+ 3M+ 4A+ I

Transform from
Montgomery(−)

> E None > 3E 3A+ α

Transform to
Montgomery(−)

> 3E > 3M+ 9A+ I > 3E E+ 4M+ 6A

3. Transform E to a curve F such that the image of P in F is (0, 0).
4. Apply radical isogenies of degree � to F iteratively.
5. Transform the last codomain of the radical isogenies to a Montgomery curve.
6. Calculate isogenies of another degree.

The reason to use Montgomery curves is that Montgomery curves have efficient
point addition formulas. Furthermore, if the degree � is large, then the formulas
on Montgomery curves is more efficient than radical isogenies. The computa-
tional costs of the transformations between Montgomery curves and curves used
in radical isogenies are relatively high. Therefore, it is important to reduce these
costs.

Contribution

We work on some open problems in radical isogenies. In particular, we propose
radical-isogeny formulas of degrees 3 and 4 on Montgomery curves and prove the
conjecture on radical isogenies of degree 4. Since our formulas have an efficient
method to calculate Montgomery coefficients, our formulas reduce the costs of
the transformations. Table 1 summarizes the computational costs of our formulas
and the formulas in [6] in CSIDH and CSURF, a variant of CSIDH by [5].

Let E be a Montgomery curve, P a point on E of order 3 with x-coordinate
t, and E′ a Montgomery curve that is the codomain of an isogeny with kernel
generated by P . Our formula of degree 3 gives the x-coordinate of a point of order
3 on E′ by a rational expression in a cube root of t. Though the computational
cost of our formula is higher than that of the original radical isogeny of degree
3, there is a simple formula to compute the Montgomery coefficient of E from t.
Therefore, our formula could improve the computational cost in some cases.

For degree 4, we give a radical-isogeny formula between Montgomery coeffi-
cients. In addition, our formula can be simplified by using a modified Montgomery
coefficient, which is defined by 4(A+2) or 4(−A+2), where A is a Montgomery

476 H. Onuki and T. Moriya

coefficient. The computational cost of our formula is slightly less than that of
the original radical isogeny of degree 4. In CSURF, we need a transformation
between Montgomery curves if the action of an ideal of norm two with a negative
exponent. This transformation occurs in half of the keys in CSURF. Although
the cost of this transformation is relatively high, it is less than the cost of trans-
formation in the original radical isogenies of degree 4.

In addition, our formula of degree 4 proves the conjecture on radical isogenies
of degree 4 by [6]. We obtain this result using the explicit formula to transform
a Tate normal form to a Montgomery curve.

Organization

Section 2 introduces mathematical tools and previous works we refer to in this
paper. Section 3 gives new formulas over arbitrary fields. In Sect. 4, we attempt
to obtain a simpler form of radical isogenies. In particular, we consider a pair
of a curve and its �-cyclic subgroup instead of a pair of a curve and an order-�
point on it. Section 5 applies the formulas in Sect. 3 to isogenies over Fp. We
compare the computational costs of our formulas and that of the original radical
isogenies. In addition, we prove the conjecture on radical isogenies of degree 4.
Finally, Sect. 6 concludes this paper.

2 Preliminaries

This section gives a summary of the mathematical background of this paper and
introduces previous works. We refer the reader to Silverman [21] for Sect. 2.1
and Diamond and Shurman [14] for Sect. 2.2.

2.1 Elliptic Curves and Isogenies

Let K be a field. An elliptic curve over K is a smooth projective curve over
K of genus one with a specified base point over K. For an elliptic curve E, we
denote its specified base point by OE . An elliptic curve E has an abelian group
structure with identity OE . For an extension field L over K, we denote the set
of points on E defined over L by E(L). Then E(L) is a subgroup of E. For an
integer n, we denote the multiplication-by-n map on an elliptic curve by [n]. The
n-torsion subgroup of E is {P ∈ E | [n]P = OE} and denoted by E[n]. If the
characteristic char(K) is coprime to n, we can define the Tate pairing, which is
a bilinear map

tn : E(K)[n] × E(K)/nE(K) → K×/(K×)n,

where E(K)[n] is the set of points defined over K in E[n].
Let E and E′ be elliptic curves over K. An isogeny ϕ : E → E′ is a non-

constant morphism such that ϕ(OE) = OE′ . The isogeny ϕ induces an injection
ϕ∗ : K(E′) → K(E) between the function fields of the curves. The degree of ϕ

Radical Isogenies on Montgomery Curves 477

is the degree of the field extension K(E)/ϕ∗(K(E′)). We denote this by deg ϕ.
We say that ϕ is separable (resp. inseparable) if the extension K(E)/ϕ∗(K(E′))
is separable (resp. inseparable). The degree of ϕ is finite, and the cardinality
of kerϕ is less than or equal to deg ϕ. Furthermore, if ϕ is separable, then we
have #ker ϕ = deg ϕ. Conversely, given a finite subgroup Ψ of E, there exists a
separable isogeny with kernel Ψ . In addition, the codomain of an isogeny with
kernel Ψ is unique up to isomorphism. We denote the codomain by E/Ψ . We
call a separable isogeny whose kernel is an n-cyclic group an n-isogeny. For an
isogeny ϕ : E → E′, there exists the unique isogeny ϕ̂ : E′ → E such that ϕ̂ ◦ ϕ
is the multiplication-by-deg ϕ map on E. We call ϕ̂ the dual isogeny of ϕ. We
have deg ϕ̂ = deg ϕ and that the dual isogeny of ϕ̂ is ϕ.

2.2 Congruence Subgroups and Enhanced Elliptic Curves

Let N be a positive integer. The principal congruence subgroup of level N is

Γ (N) =
{(

a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡

(
1 0
0 1

)
(mod N)

}
,

where SL2(Z) is the special linear group of degree 2 over Z, i.e., the set of 2-by-2
matrices over Z having determinant 1. A congruence subgroup of level N is a
subgroup of SL2(Z) that includes Γ (N). We define two congruence subgroups

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡

(∗ ∗
0 ∗

)
(mod N)

}
,

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod N)

}
,

where ∗ means unspecified. We define an action of SL2(Z) on the upper half
plane H in C by (

a b
c d

)
z =

az + b

cz + d
.

Then we define sets Y (N) = Γ (N)\H, Y0(N) = Γ0(N)\H, and Y1(N) =
Γ1(N)\H. Furthermore, we can extend the action of SL2(Z) to H∗ := H ∪
Q ∪ {∞}, and define X(N) = Γ (N)\H∗, X0(N) = Γ0(N)\H∗, and X1(N) =
Γ1(N)\H∗. The sets X(N), X0(N), and X1(N) have structures of compact Rie-
mann surfaces and are called Modular curves. The points in Y (N), Y0(N), and
Y1(N) correspond to enhanced elliptic curves over C. An enhanced elliptic curve
for Γ0(N) is an ordered pair (E,C), where E is an elliptic curve over C and C
is an N -cyclic subgroup of E. Two enhanced elliptic curves (E,C) and (E′, C ′)
for Γ0(N) are equivalent if there exists an isomorphism E → E′ that takes C to
C ′. We write this as (E,C) ∼ (E′, C ′). The set of equivalence classes is denoted
by

S0(N) = {enhanced elliptic curves for Γ0(N)}/ ∼ .

The equivalence class of an enhanced elliptic curve (E,C) is denoted by [E,C].
We define an enhanced elliptic curve for Γ1(N) as a pair of an elliptic curve over

478 H. Onuki and T. Moriya

C and a point of order N on the curve, and an enhanced elliptic curve for Γ (N)
as a pair of an elliptic curve over C and an ordered pair of points that generates
the N -torsion subgroup of the curve. Sets S1(N) and S(N) are defined similarly
to S0(N). Then there are one-to-one correspondences

Y0(N) ↔ S0(N), Y1(N) ↔ S1(N), and Y (N) ↔ S(N).

In these correspondences, the natural projections in residues correspond to the
natural projection in enhanced elliptic curves. For example, consider the natural
projection Y0(p) → Y (1) for a prime p. This projection corresponds to omitting
the p-cyclic subgroup from an enhanced elliptic curve. Here, the index [Γ (1) :
Γ0(p)] = p + 1 corresponds to the number of p-cyclic subgroups of an elliptic
curve.

For an arbitrary algebraically closed field, we can define enhanced elliptic
curves and the sets S0(N), S1(N), and S(N) in the same way. We use the same
notation for these as over C.

2.3 Montgomery Curves

We give the definition and basic properties of Montgomery curves [18]. In this
subsection, we let K be a field with char(K) �= 2.

A Montgomery curve over K is an elliptic curve E defined by y2 = x3 +
Ax2 + x, where A ∈ K such that A2 �= 4. We call A the Montgomery coefficient
of E. We denote a point of x-coordinate a ∈ K on a Montgomery curve by (a,−).
The j-invariant of E is

256
(A2 − 3)3

A2 − 4
.

This formula means that there are exactly six isomorphic Montgomery curves
over K (counted with multiplicity). The number six comes from the index [Γ0(1) :
Γ0(4)]. In other words, a Montgomery curve represents a class in S0(4). To
explain this fact, we define a specified 4-cyclic subgroup of a Montgomery curve.
By the arithmetic in Montgomery curves (see [18]), we obtain that the point
(0, 0) on a Montgomery curve has order 2, and the x-coordinates of its halves
are 1 and −1. For a Montgomery curve E, we denote the cyclic subgroup of E

generated by (1,−) ∈ E by C
(4)
E . Then we have the following.

Proposition 1. Let E and E′ be two Montgomery curves over K of Mont-
gomery coefficients A and A′, respectively. Then (E,C

(4)
E) ∼ (E′, C(4)

E′) if and
only if A = A′. Furthermore, we have (E, 〈(0, 0)〉) ∼ (E′, 〈(0, 0)〉) if and only if
A2 = A′2.

Proof. From Proposition III.3.1 in [21], every isomorphism between Montgomery
curves is of the form (x, y) �→ (u2x + r, u3y), where r ∈ K and u ∈ K

×
.

Let ι : E → E′ be an isomorphism that preserves (0, 0). Then we have
ι(x, y) = (u2x, u3y), where u ∈ K such that u4 = 1, and A′ = u2A. Therefore,

Radical Isogenies on Montgomery Curves 479

we conclude A′ = ±A, i.e., A2 = A′2. In addition, if ι takes C
(4)
E to C

(4)
E′ , then

ι((1,−)) = (1,−) thus u2 = 1. This means A = A′.
Conversely, we assume A′ = −A. Then there exists an isomorphism ι : E →

E′, (x, y) �→ (−x, iy), where i is a square root of −1 in K. Since ι((0, 0)) = (0, 0),
we have (E, 〈(0, 0)〉) ∼ (E′, 〈(0, 0)〉). ��

It is easy to verify that for an enhanced elliptic curve (E,C) over K for Γ0(4),
there exist a Montgomery curve E′ and an isomorphism E → E′ that takes C

to C
(4)
E′ . Therefore, we can define a bijection A : S0(4) → K\{±2} by sending

[E,C] to the Montgomery coefficient of a Montgomery curve in the class [E,C].
The following corollary summarizes our discussion.

Corollary 2. We have the following commutative diagram

S0(4) −−−−→ S0(2) −−−−→ S0(1)

A

⏐⏐� A2

⏐⏐� j

⏐⏐�
K\{±2} −−−−→ K\{4} −−−−→ K,

where the top arrows are the natural projections, and the bottom arrows are
defined by

A �→ A2 and a �→ 256
(a − 3)3

a − 4
.

2.4 Vélu’s Formulas

Vélu [24] gave explicit formulas for isogenies between elliptic curves represented
as Weierstrass forms. Vélu’s formulas take an elliptic curve E and a finite sub-
group C of E as input and output an elliptic curve E′ and a separable isogeny
ϕ : E → E′ with kernel C. We display some of the variants of Vélu’s formulas
that we need later.

Proposition 3 (Theorem 1 in [10]). Let K be a field with char(K) �= 2, E
a Montgomery curve over K of coefficient A, and P a point on E of order
� = 2d + 1. We write the x-coordinate of [i]P for i = 1, . . . , d as xi. Then the
Montgomery curve y2 = x3 + A′x2 + x with

A′ =

(
6

d∑
i=1

(
1
xi

− xi

)
+ A

) (
d∏

i=1

xi

)2

(1)

is the codomain of a separable isogeny ϕ with kernel 〈P 〉, which is defined by

ϕ : (x, y) �→
(

f(x), yf ′(x)
d∏

i=1

xi

)
, (2)

where

f(x) = x

d∏
i=1

(
xxi − 1
x − xi

)2

, (3)

and f ′(x) is its derivative.

480 H. Onuki and T. Moriya

Note that ϕ in Proposition 3 sends (1,−) on E to (1,−) on the codomain. As
we showed in Sect. 2.3, the coefficient A′ is unique as we take an isogeny with
this property.

For an isogeny whose kernel includes the point (0, 0), we need to choose a
Montgomery coefficient of its codomain. Jao and De Feo [13] gave a formula for
2-isogenies that sends (1,−) to (0, 0).

Proposition 4 ([13]). Let K be a field with char(K) �= 2 and E a Montgomery
curve over K of coefficient A. Then the Montgomery curve y2 = x3 + A′x2 + x
with

A′ =
A + 6
2α

, (4)

where α is a square root of A + 2, is the codomain of a 2-isogeny ϕ that sends
(1,−) to (0, 0), which is defined by

ϕ : (x, y) �→
(

(x − 1)2

2αx
,

1
β3

y

(
1 − 1

x2

))
, (5)

where β is a square root of 2α.

Note that there are two choices of a Montgomery coefficient of the codomain,
which corresponds to the sign of the square root α. The sign of the square root
β is not essential since the change of the sign corresponds to the composition
with the multiplication by −1.

2.5 Radical Isogenies

Let N be a positive integer, K a field with char(K) � N , E an elliptic curve over
K, and P a point in E(K) of order N . Then there exists an isogeny ϕ : E →
E/〈P 〉 with kernel 〈P 〉. We can choose a model of E/〈P 〉 to be defined over K.
Let E′ be such a model. Let P ′ be a point on E′ such that ϕ̂(P ′) = P . Castryck,
Decru, and Vercauteren [6] showed that P ′ is defined over K(N

√
ρ), where ρ is a

representative of the Tate pairing tN (P,−P). The N choices of an N -th root of
ρ correspond to N -isogenies different from ϕ̂. By taking models of E and E/〈P 〉
such that P and P ′ are (0, 0), they gave explicit formulas to compute E/〈P 〉
from E, and called these radical isogenies. A radical isogeny can be seen as a
map on S1(N); (E, (0, 0)) �→ (E/〈(0, 0)〉, (0, 0)). For curve models, they used
Tate normal forms [23] for N ≥ 4. We write some of their formulas that we refer
to later.

N = 3. We use the model E : y2 + a1xy + a3y = x3 and P = (0, 0). Then a
model of E/〈P 〉 such that P ′ = (0, 0) is E′ : y2 + a′

1xy + a′
3y = x3 with

a′
1 = −6α + a1 and a′

3 = 3a1α
2 − a2

1α + 9a3, (6)

where α is a cube root of −a3.

Radical Isogenies on Montgomery Curves 481

N = 4. We use the Tate normal form E : y2+xy−by = x3−bx2 and P = (0, 0).
Then a Tate normal form of E/〈P 〉 such that P ′ = (0, 0) is E′ : y2 + xy − b′y =
x3 − b′x2 with

b′ = −α(4α2 + 1)
(2α + 1)4

, (7)

where α is a fourth root of −b.

N = 5. We use the Tate normal form E : y2 + (1 − b)xy − by = x3 − bx2

and P = (0, 0). Then a Tate normal form of E/〈P 〉 such that P ′ = (0, 0) is
E′ : y2 + (1 − b′)xy − b′y = x3 − b′x2 with

b′ = α
α4 + 3α3 + 4α2 + 2α + 1
α4 − 2α3 + 4α2 − 3α + 1

, (8)

where α is a fifth root of b.

3 Radical-Isogeny Formulas on Montgomery Curves

In this section, we introduce radical-isogeny formulas of degrees 3 and 4 on
Montgomery curves. In addition, we give some consideration for that of degree
≥ 5.

3.1 Degree 3

Let K be a field with char(K) �= 2, 3.
As we showed in Sect. 2.2, a Montgomery coefficient represents a class in

S0(4). A 3-cyclic subgroup of a Montgomery curve is represented by the x-
coordinate of its generator. Therefore, a class in S0(12) can be represented by
a pair of a Montgomery coefficient and the x-coordinate of a point of order 3.
However, the genus of X0(12) is zero, so a class in S0(12) can be parametrized
by one variable. Indeed, we show that the x-coordinate of a point of order 3
determines the Montgomery coefficient of the curve on which the point is.

From the arithmetic in Montgomery curves, we obtain the 3rd division poly-
nomial of the Montgomery curve with coefficient A ∈ K:

x4 +
4
3
Ax3 + 2x2 − 1

3
.

Let t be the x-coordinate of a point of order 3 on the Montgomery curve with
coefficient A. Then we have

A =
−3t4 − 6t2 + 1

4t3
. (9)

From the condition that A �= ±2,∞, we have t �= 0,±1,± 1
3 . For t ∈

K\{0,±1,± 1
3}, we denote the Montgomery curve with coefficient defined by

(9) by Et, and the 3-cyclic subgroup of Et generated by (t,−) by C
(3)
t . The

subgroup C
(4)
Et

+C
(3)
t := {P +Q | P ∈ C

(4)
Et

, Q ∈ C
(3)
t } is cyclic of order 12. Then

we have an analogue of Proposition 1.

482 H. Onuki and T. Moriya

Proposition 5. The map

T : K\
{

0,±1,±1
3

}
→ S0(12), t �→ [Et, C

(4)
Et

+ C
(3)
t]

is a well-defined bijection.

Proof. As we explained above, the map T is well-defined.
First, we show the surjectivity. Let (E,C) be an enhanced elliptic curve for

Γ0(12) over K. We decompose C to C3 + C4, where C3 is cyclic of order 3 and
C4 is cyclic of order 4. From Proposition 1, there exists a Montgomery curve E′

such that (E′, C(4)
E′) ∼ (E,C4). Let ι : E → E′ be an isomorphism taking C4

to C
(4)
E′ , and t the x-coordinate of a generator of ι(C3). Then t �= 0,±1,± 1

3 and
E′ = Et. Therefore we have (E,C) ∼ (Et, C

(4)
Et

+ C
(3)
t).

Next, we show the injectivity. Let t and t′ be elements in K\{
0,±1,± 1

3

}
such

that there exists an isomorphism ι : Et → Et′ taking C
(4)
Et

+ C
(3)
t to C

(4)
Et′ + C

(3)
t′ .

From the proof of Proposition 1, we have Et = Et′ and ι((x, y)) = (x, y) or
(x,−y). Therefore, we conclude t = t′. ��

As in the case of Montgomery curves, we have the following corollary.

Corollary 6. We have the following commutative diagram

S0(12) −−−−→ S0(4)

T −1

⏐⏐�
⏐⏐�A

K\{0,±1,± 1
3} −−−−→ K\{±2},

where the top arrow is the natural projection, the left vertical arrow is the inverse
of the map in Proposition 5, and the bottom arrow is defined by

t �→ −3t4 − 6t2 + 1
4t3

.

Using this parametrization of S0(12), we can derive a radical-isogeny formula
of degree 3.

Theorem 7. Let t ∈ K\{0,±1,± 1
3}, E be a Montgomery curve over K, and ϕ :

Et → E an isogeny taking C
(4)
Et

to C
(4)
E with kernel C

(3)
t . Then the x-coordinate

of a generator of ker ϕ̂ is − 1
3t , and the x-coordinates of other points of order 3

on E are
3tα2 + (3t2 − 1)α + 3t3 − 2t, (10)

where α is a cube root of t(t2 − 1).

Proof. From Proposition 3, the Montgomery coefficient of E is

−27t4 + 18t2 + 1
4t

.

Radical Isogenies on Montgomery Curves 483

The 3rd division polynomial of E is decomposed as
(

x +
1
3t

)
(x3 + (−9t3 + 6t)x2 + 3t2x − t). (11)

It is easy to verify that (− 1
3t ,−) on E generates the kernel of the dual isogeny

ϕ̂.
Let P = (t,−) on Et. An easy calculation shows that the y-coordinate of

P is t2−1
2β , where β is a square root of t. By the theory of radical isogenies (see

Sect. 3 in [6]), a root of the latter factor in (11) has a rational expression in β
and a cube root of the Tate pairing t3(P,−P). The isogeny ϕ is unchanged by
replacing P with −P , i.e., β with −β. Therefore, the root should be in a radical
extension of Q(t) of degree 3. Indeed, the Tate paring can be computed as

t3(P,−P) = t(t2 − 1) mod Q(β)×3.

Let α be a cube root of t(t2 − 1). Then the latter factor in (11) decomposes
into linear factors in Q(t, α) and has a root of the form (10). This proves the
theorem. ��

The computational cost of this formula is worse than that of the original
radical-isogeny formula (6). An advantage of this formula is that one can use the
simple formula (9) to calculate the Montgomery coefficient from the represen-
tation t. In isogeny-based cryptosystems, Montgomery curves are used because
of computational efficiency. Therefore, we need transformation between a Mont-
gomery curve and a curve used in radical isogenies. In the case of (6), the trans-
formation needs calculating radicals. On the other hand, our transformation
formula (9) does not need any radicals. We discuss the detail of this point in
Sect. 5.3.

3.2 Degree 4

Let K be a field with char(K) �= 2.
Since a Montgomery coefficient represents a class in S0(4) = S1(4), it must be

true that there exists a radical-isogeny formula of degree 4 between Montgomery
coefficients. Indeed, we have the following.

Theorem 8. Let E be a Montgomery curve with coefficient A ∈ K, E′ a Mont-
gomery curve, ϕ : E → E′ an isogeny with kernel C

(4)
E , and ψ an isogeny from

E′ with kernel 〈(0, 0)〉. If the kernel of the composition ψ ◦ ϕ is cyclic, then the
Montgomery coefficient A′ of E′ is

(β + 2)4

4β(β2 + 4)
− 2, (12)

where β is a fourth root of 4(A + 2).

484 H. Onuki and T. Moriya

Proof. We decompose ϕ into the composition of two 2-isogenies ϕ2 ◦ϕ1. We can
assume that ϕ1 takes (1,−) to (0, 0). Let A′′ be the Montgomery coefficient of
ϕ1(E). From Proposition 4, we have

A′′ + 2 =
(α + 2)2

2α
, (13)

where α is a square root of A + 2. Again, from Proposition 4, The Montgomery
coefficient of E′ is

((α + 2)/β + 2)2

2(α + 2)/β
− 2, (14)

where β is a square root of 2α, i.e., a fourth root of 4(A + 2). We can obtain
(12) by an easy calculation. ��

By putting a = 4(A + 2) and a′ = 4(A′ + 2), we have a simpler formula

a′ =
(β + 2)4

β(β2 + 4)
, (15)

where β is a fourth root of a. The computational cost of this formula is slightly
less than that of the original radical-isogeny formula (7). In addition, as in degree
3, it is easy to transform our new representation a into the Montgomery coeffi-
cient.

3.3 Degree ≥ 5

We could not generalize our method to the case that N ≥ 5. Since the genus of
X0(4N) is greater than 0 for N ≥ 5, we cannot represent an element in S0(4N)
by one parameter. Furthermore, we have S0(N) �= S1(N) for N ≥ 5, unlike in
the case that N = 3 or 4. As we discuss in the next section, we cannot obtain
radical-isogeny formulas of degree N for a model of S0(N) for N ≥ 5. Therefore,
we have to work on a model of S1(N). A natural parametrization for the case
that N ≥ 5 is a pair of a Montgomery coefficient and the x-coordinate of a
point of order N . However, even for the case that N = 5, the calculation is too
complicated, and we could not derive any formula.

4 Consideration to Formulas on S0(N)

As we stated in Sect. 2.5, radical isogenies of degree N can be seen as a map on
S1(N). For example, for N = 3, consider two curves E : y2 + a1xy + a3y = x3

and E′ : y2 + a′
1xy + a′

3y = x3. In these curves, the point (0, 0) has order 3.
It is easy to verify that (E, (0, 0)) ∼ (E′, (0, 0)) if and only if a3

1/a3 = a′
1
3
/a′

3.
Note that a3, a

′
3 �= 0 since the curves are smooth. By putting T = a3

1/a3 and
T ′ = a′

1
3
/a′

3, one can transform (6) to

T ′ =
(β − 6)3

−β2 + 3β − 9
,

Radical Isogenies on Montgomery Curves 485

Q(ζ5)(β)

Q(ζ5)(b)

Q(ζ5)(β′)

Q(ζ5)(b′)

degree 2 degree 2

cyclic of degree 5

not Galois

Fig. 1. The tower of field extensions

where β is a cube root of −T . (This formula is more costly than (6) because of
the inversion and the cubic calculation.)

As we stated in the previous section, we have S0(N) = S1(N) for N ≤ 4
since there is the isomorphism [−1]. For the case that N ≥ 5, we could obtain
a simpler isogeny formula on a parametrization of S0(N) than that of S1(N).
However, in general, we cannot obtain radical formulas on a parametrization of
S0(N). We explain this in the following.

Consider the case that N = 5. Let K be a field with char(K) �= 5, and
consider two elliptic curves over K defined by

E : y2 + (1 − b)xy − by = x3 − bx,

E′ : y2 + (1 − b′)xy − b′y = x3 − b′x.

These curves are in Tate normal form, and the points (0, 0) on these curves have
order 5. The cyclic subgroup of E generated by (0, 0) is

{OE , (0, 0), (b, b2), (b, 0), (0, b)}.

From this, it is easy to verify that (E, (0, 0)) ∼ (E′, (0, 0)) if and only if b = b′

and that (E, 〈(0, 0)〉) ∼ (E′, 〈(0, 0)〉) if and only if b = b′ or b = − 1
b′ , i.e.,

b2−1
b = b′2−1

b′ . Therefore, b2−1
b is a parametrization of S0(5). Note that b and − 1

b

are the roots of x2 − b2−1
b x − 1.

Let E and E′ be elliptic curves defined by the equations above. We define
β = b2−1

b and β′ = b′2−1
b′ . From the radical-isogeny formula (8), we have Q(b′) =

Q(5
√

b). In this setting, we show that β′ := b′2−1
b′ does not have any rational

expression in a fifth root of any element in Q(β).
As we mentioned above, the field extension Q(b)/Q(β) is of degree 2. Let

ζ5 ∈ C be a primitive fifth root of unity. By adjoining ζ5 to the field extension
Q(b′)/Q(β), we obtain the Galois extension Q(ζ5)(b′)/Q(ζ5)(β) of degree 10. The
Galois group Gal(Q(ζ5)(b′)/Q(ζ5)(β)) is generated by automorphisms σ : b′ �→
− 1

b′ and τ : b′ �→ ζ5b
′. The fixed field of σ is Q(ζ5)(β′), and that of τ is Q(ζ5)(b).

It is easy to verify that τ−1στ �= σ. Therefore, the group 〈σ〉 is not a normal
subgroup of Gal(Q(ζ5)(b′)/Q(ζ5)(β)), i.e., the extension Q(ζ5)(β′)/Q(ζ5)(β) is
not a Galois extension. This means that β′ cannot be expressed as any rational
expression in any element in Q(ζ5)(β). The diagram in Fig. 1 summarizes the
discussion.

486 H. Onuki and T. Moriya

To obtain a radical-isogeny formula for S0(N), we need to find a parametriza-
tion for S0(N) that makes the bottom extension in the diagram in Fig. 1 a Galois
extension. We do not have any result for the existence of such parametrization.
However, it seems to be complicated to find it. We leave this as an open problem.

5 Application to Cryptography

In this section, we consider the application of our formulas in Sect. 3 to CSIDH
and its variants.

CSIDH uses the action of the ideal class group of an order of an imaginary
quadratic field on supersingular elliptic curves. The action is calculated by iso-
genies defined over a finite prime field Fp. Therefore, we consider formulas of
such isogenies.

Let O be Z[
√−p] or Z[1+

√−p
2], and E��p(O) the set of Fp-isomorphism classes

of supersingular elliptic curves over Fp whose Fp-endomorphism ring is isomor-
phic to O. Note that the p-th power Frobenius endomorphism π corresponds
to

√−p or −√−p. We identify the Fp-endomorphism ring of a curve with O
under the former isomorphism. If E��p(O) is nonempty, then the ideal class
group cl(O) acts freely and transitively on E��p(O) (Theorem 7 in [7]). The
group action is defined as follows: Let E ∈ E��p(O), and [a] be an ideal class in
cl(O) represented by an integral ideal a. Then the action of [a] on E is defined
by [a] ∗ E = E/E[a], where E[a] is the a-torsion subgroup of E, which is defined
by {P ∈ E | α(P) = OE for all α ∈ a}, and we take an isogeny with kernel E[a]
defined over Fp. We denote the ideal in O generated by a, b by (a, b) and the
ideal class of (a, b) by [a, b].

We restrict our attention to the case that p ≡ 3 (mod 4) since there is no
supersingular Montgomery curve over Fp if p ≡ 1 (mod 4) [5]. We fix a square
root of −1 in Fp2 and denote it by i. Note that i /∈ Fp in our case.

5.1 Degree-3 Isogenies

Assume that 3 | p + 1 so that a supersingular elliptic curve over Fp has an Fp-
rational point of order 3. Then the map Fp → Fp; a �→ a3 is bijective. Therefore,
there is only one cube root of an element of Fp. For a ∈ Fp, the cube root of
a in Fp is computed by the exponentiation ae, where e is an integer such that
e ≡ 3−1 (mod p − 1).

Let E be a Montgomery curve in E��p(O). The role of 3-isogenies in CSIDH
is to compute the actions of prime ideals (3,

√−p − 1) and (3,
√−p + 1). The

torsion subgroup E[3,
√−p − 1] is generated by a point P of order 3 such that

π(P) = P , and E[3,
√−p + 1] is generated by a point Q of order 3 such that

π(Q) = −Q. Note that the x-coordinates of P and Q are in Fp. We can use
Theorem 7 to compute the actions of these ideals.

Corollary 9. Let E be a Montgomery curve in E��p(O), and t the x-coordinate
of a generator of E[3,

√−p − 1] (resp. E[3,
√−p + 1]). Then [3,

√−p − 1] ∗ E

Radical Isogenies on Montgomery Curves 487

(resp. [3,
√−p + 1] ∗ E) can be defined as a Montgomery curve E′ over Fp such

that the x-coordinate of a generator of E′[3,
√−p − 1] (resp. E′[3,

√−p + 1]) is

3tα2 + (3t2 − 1)α + 3t3 − 2t, (16)

where α is the cube root of t(t2 − 1) in Fp.

Proof. We prove the case for E[3,
√−p−1]. The other case can be proved in the

same way.
Let t′ be an element in Fp defined by the equation (16), and E′ a Montgomery

curve that has an order-3 point with x-coordinate t′. From Theorem 7, E′ is
the codomain of the isogeny ϕ in Proposition 3 with kernel generated by (t,−).
Because t ∈ Fp, the isogeny ϕ is defined over Fp. Therefore, E′ is a representative
of the Fp-isomorphism class [3,

√−p − 1] ∗ E. Because α is only one cube root
of t(t2 − 1) in Fp, the element t′ is only one element such that the point (t′,−)
on E′ has order 3 and generates the kernel of an isogeny different from ϕ̂. This
means that t′ is the x-coordinate of a generator of E′[3,

√−p − 1]. ��

A Formula for Montgomery− Curves. A Montgomery− curve over a field
K with char(K) �= 2 is an elliptic curve defined by y2 = x3 + Ax2 − x, where
A ∈ K such that A2 �= −4.

Castryck and Decru [5] introduced Montgomery− curves for a model of a
variant of CSIDH they proposed, CSURF. CSURF uses Montgomery− curves
since there is a one-to-one correspondence between Montgomery− coefficients of
supersingular elliptic curves and classes in E��p(Z[1+

√−p
2]).

The arithmetic and isogeny formulas on Montgomery− curves are given in
[5]. Like Montgomery curves, the x-coordinate t of a point of order 3 on a
Montgomery− curve determines the Montgomery− coefficient A. Indeed, we have

A =
−3t4 + 6t2 + 1

4t3
. (17)

From the conditions A2 �= −4 and A �= ∞, we have t �= 0,±i,± i
3 . For t ∈ Fp\{0},

we denote the Montgomery− curve with coefficient defined by (17) by E−
t , and

the 3-cyclic subgroup of E−
t generated by (t,−) by C

(3−)
t .

The point (0, 0) on Montgomery− curve has order 2, and the x-coordinates
of halves of (0, 0) are ±i. Therefore, it is natural to use isogenies that send (i,−)
to (i,−) between Montgomery− curves. However, if we use curves in E��p(O),
such isogenies are not defined over Fp in general. A formula of isogenies over Fp

between Montgomery− curves is given by Proposition 2 in [5]. By combining the
formula in [5] and the proof of Theorem 7, we obtain the following formula for
Montgomery− curves.

Theorem 10. Let t ∈ Fp\{0}, E be a Montgomery curve− over Fp, and ϕ :
E−

t → E an isogeny with kernel C
(3−)
t defined over Fp that sends (0, 0) to (0, 0).

488 H. Onuki and T. Moriya

Then the x-coordinate of a generator of ker ϕ̂ is − 1
3t , and the x-coordinates of

other points of order 3 on E are expressed by

3tα2 + (3t2 + 1)α + 3t3 + 2t, (18)

where α is a cube root of t(t2 + 1).

By choosing α in Fp, we can obtain a similar result to Corollary 9.

5.2 Degree-4 Isogenies

We consider the case that p ≡ 7 (mod 8) and O = Z[1+
√−p
2], which is the setting

in CSURF. In this case, the prime 2 splits as the product of
(
2, 1−√−p

2

)
and(

2, 1+
√−p
2

)
in Z[1+

√−p
2]. As in [5], for a ∈ (F×

p)2, we denote the square root of

a that is a square in Fp by
√

a and define 4
√

a :=
√√

a. Note that
√

a can be
computed as a

p+1
4 and 4

√
a as a

p+1
8 .

Our purpose is to apply Theorem 8 to computing the actions of the squares
of the prime ideals above 2. Unlike the case of degree 3, the squaring map in Fp

is not bijective. Therefore, we need to determine a square root (or a fourth root)
that corresponds to the action of an ideal class we want to compute.

As considered in [5], every class in E��p(Z[1+
√−p
2]) contains exactly two

Montgomery curves over Fp. In one of them, the point (0, 0) generates the(
2, 1−√−p

2

)
-torsion subgroup, and in the other curve, the point (0, 0) generates

the
(
2, 1+

√−p
2

)
-torsion subgroup.

In the following, we let E be a Montgomery curve over Fp in E��p(Z[1+
√−p
2]),

and A the Montgomery coefficient of E. First, we show how to determine which
ideal the point (0, 0) generates.

Lemma 11. The point (0, 0) on E generates E[2, 1−√−p
2] if and only if A+2 ∈

(F×
p)2 and E[2, 1+

√−p
2] if and only if −A + 2 ∈ (F×

p)2

Proof. From Lemma 5 in [5], the point (0, 0) generates E[2, 1−√−p
2] if and only if

(0, 0) has half in E(Fp). Furthermore, if (0, 0) has half in E(Fp), then all halves
of (0, 0) are in E(Fp) since E ∈ E��p(Z[1+

√−p
2]) implies E[2] ⊂ E(Fp).

Let P = (1,−) on E. Then P is half of (0, 0), and the y-coordinate of P is a
square root of A+2. Therefore, P has half in E(Fp) if and only if A+2 ∈ (F×

p)2.
Because E[2] ⊂ E(Fp), the all roots of x3 + Ax2 + x are in Fp. This means

that A2 − 4 ∈ (F×
p)2. Therefore, if A + 2 /∈ (F×

p)2, then −A + 2 ∈ (F×
p)2. This

proves the latter of the lemma. ��
We define the modified Montgomery coefficient a of E as a = 4(A + 2) if

A + 2 ∈ (F×
p)2 and a = 4(−A + 2) if −A + 2 ∈ (F×

p)2. Note that a is always

in (F×
p)2. To simplify notation, we let a =

(
2, 1−√−p

2

)
if A + 2 ∈ (F×

p)2 and

Radical Isogenies on Montgomery Curves 489

a =
(
2, 1+

√−p
2

)
if −A + 2 ∈ (F×

p)2. Then we can compute the action of a as
follows.

Lemma 12. Let E′ be a representative of the Fp-isomorphism class [a] ∗ E that
is expressed as the Montgomery curve over Fp such that (0, 0) on E′ generates
E′[a]. Then the modified Montgomery coefficient of E′ is

(
√

a + 4)2√
a

. (19)

Proof. If A+2 ∈ (F×
p)2, then the isogeny ϕ in Proposition 4 is defined over Fp by

taking α =
√

A + 2. Let E′′ be the codomain of ϕ and A′′ the Montgomery coeffi-
cient of E′′. Then we have A′′ +2 = (

√
A+2+2)2

2
√

A+2
∈ (F×

p)2. Therefore, we conclude
that E′ = E′′ as a Montgomery curve because E′ is the unique Montgomery
curve satisfying the property by which it is defined. By multiplying A′′ + 2 by
4, we obtain the formula in the lemma for the case that A + 2 ∈ (F×

p)2.
In the case that −A + 2 ∈ (F×

p)2, we use quadratic twists. Let E(t) be the
quadratic twist of E, i.e., the Montgomery curve with coefficient −A. Then there
exists an isomorphism τ : E → E(t); (x, y) �→ (−x, iy). Let ϕ be the isogeny in
Proposition 4 from E(t) with α =

√−A + 2, and E′′ the codomain of ϕ. Let
E′′(t) be the quadratic twist of E′′ and τ ′ : E′′ → E′′(t) be the isomorphism
defined by (x, y) �→ (−x, iy). Then the composition

E
τ−−−−→ E(t) ϕ−−−−→ E′′ τ ′

−−−−→ E′′(t)

is defined over Fp. An easy calculation shows that the modified Montgomery
coefficient of E′′(t) is equal to (19). This proves the lemma. ��
Remark 1. If A+2 ∈ (F×

p)2, then the isogeny in Lemma 12 sends (1,−) to (0, 0).
On the other hand, if −A + 2 ∈ (F×

p)2, then the isogeny sends (−1,−) to (0, 0)
because we use the composition with the twist maps in this case. This means
that E[a2] is generated by (1,−) if A+2 ∈ (F×

p)2 and (−1,−) if −A+2 ∈ (F×
p)2.

Note that a is different in each case.

By using this lemma twice, we obtain a formula for the action of a2. The
obtained formula includes the square root of (19) in (F×

p)2. Therefore, we need
to determine whether

√
a + 4 is a square in Fp. The following lemma answers it.

Lemma 13.
√

a + 4 is a square in Fp if and only if p ≡ 15 (mod 16).

Proof. From Lemma 3 in [5], the subgroup E(Fp)[4] is isomorphic to Z/2Z ⊕
Z/4Z. This subgroup has order 8, so E(Fp) contains a point of order 8 if and
only if p ≡ 15 (mod 16).

Assume A + 2 ∈ (F×
p)2. Let P = (1,−) on E. As we mentioned in Remark 1,

P generates E[a2]. Therefore, we have
(

1 − √−p

2

)2

P = OE .

490 H. Onuki and T. Moriya

A straightforward calculation shows that

1 − √−p

2
P =

p + 1
4

P.

Because P has order 4, this equation implies that half of P is in E(Fp) if and only
if p ≡ 15 (mod 16). From the arithmetic of Montgomery curves, the x-coordinate
of half of P is a root of

x4 − 4x3 − (4A + 2)x2 − 4x + 1.

This is decomposed as

(x2 + (
√

a − 2)x + 1)(x2 + (−√
a − 2)x + 1). (20)

The discriminant of the left factor is
√

a(
√

a − 4) and that of the right factor is√
a(

√
a + 4). Since (

√
a − 4)(

√
a + 4) = a − 16 ∈ (F×

p)2, the polynomial (20) has
a root in Fp if and only if

√
a + 4 ∈ (F×

p)2. Assume (20) has a root x0 in Fp,
and let Q be (x0,−) on E. Then we have 2Q = P . Because x0 ∈ Fp, the image
π(Q) of the Frobenius is Q or −Q. If π(Q) = −Q, we obtain π(P) = −P by
multiplying both sides by 2. This contradicts the fact that P ∈ E(Fp). Therefore,
we have π(Q) = Q, i.e., Q ∈ E(Fp). This proves the lemma for the case that
A + 2 ∈ (F×

p)2.
For the case that −A + 2 ∈ (F×

p)2, we can prove the lemma by applying the
same discussion to the quadratic twist of E. ��

Now we obtain the following radical-isogeny formula for the action of a2.

Theorem 14. Let E′ be a representative of the Fp-isomorphism class [a2] ∗
E that is expressed as the Montgomery curve over Fp such that (0, 0) on E′

generates E′[a]. Then the modified Montgomery coefficient of E′ is

(ε 4
√

a + 2)4

ε 4
√

a(
√

a + 4)
, (21)

where ε = −1 if p ≡ 7 (mod 16) or ε = 1 if p ≡ 15 (mod 16).

Proof. From Lemma 13, we have
√

(
√

a + 4)2√
a

=
ε(

√
a + 4)
4
√

a
.

By applying Lemma 12 twice, we obtain the formula in the theorem. ��
As a corollary of Theorem 14, we prove a conjecture stated by [6]. In partic-

ular, we prove the following.

Radical Isogenies on Montgomery Curves 491

Corollary 15 (Conjecture 2 in [6]). Let E be an elliptic curve defined by a
Tate normal form y2 + xy − by = x3 − bx2, b ∈ Fp, let P = (0, 0) ∈ E, and let

a =
(
2, 1−√−p

2

)
. Assume that End(E) ∼= Z[1+

√−p
2] and P generates E[a2]. Then

−b is a square in Fp. Moreover, the elliptic curve E′ : y2 + xy − b′y = x3 − b′x2

with

b′ = −α(4α2 + 1)
(2α + 1)4

, (22)

where α = − 4
√−b if p ≡ 7 (mod 16) or α = 4

√−b if p ≡ 15 (mod 16), is
a representative of the Fp-isomorphism class [a2] ∗ E such that (0, 0) on E′

generates E′[a2].

Proof. Note that b �= 0 because E is smooth. We also note that P has order 4.
Let E+ be the Montgomery curve with coefficient 2 + 1

4b and E− the
Montgomery curve with coefficient −(2 + 1

4b). There are two isomorphisms
ι+ : E → E+ defined by

(x, y) �→
(

1
b
(x − b),

1
b
√

b

(
y +

x − b

2

))

and ι− : E → E− defined by

(x, y) �→
(

−1
b
(x − b),− 1

b
√−b

(
y +

x − b

2

))
.

(Here, we extend the symbol √ to Fp. A choice of a square root is not essential
since it corresponds to the composition with [−1].)

Assume that −b is not a square in Fp. Then b is a square in Fp, so the iso-
morphism ι+ is defined over Fp. Therefore we have E+ ∈ E��p(Z[1+

√−p
2]). From

the assumption, the point ι+(P) generates E+[a2]. However, the x-coordinate of
ι+(P) is −1. This contradicts Remark 1. Thus we conclude that −b is a square
in Fp.

Because the isomorphism τ− is defined over Fp and the x-coordinate of ι−(P)
is 1, the Montgomery curve E− is in E��p(Z[1+

√−p
2]), and the modified Mont-

gomery coefficient of E− is − 1
b . Let E′

− be the Montgomery curve obtained by
applying Theorem 14 to E−. Then it is easy to verify that E′ is Fp-isomorphic
to E′

− by an isomorphism defined as ι−, which sends (0, 0) on E′ to (1,−) on
E′

−. This completes the proof. ��

5.3 Computational Efficiency

We discuss the computational efficiency of our formulas in application to CSIDH
and its variants. As in [6], we evaluate the costs of formulas by the number
of exponentiations, multiplications, additions, and inversions on Fp and denote
these by E, M, A, and I, respectively. Note that the exponent of E is almost
the same size as p and that its cost is about 1.5 log2(p)M.

492 H. Onuki and T. Moriya

Table 2. The costs of 3-isogenies and transformations

Formula in [6] Our formula

Isogeny E + 3M + 12A E + 5M + 12A

Transform from Montgomery > E None

Transform to Montgomery > 3E 3M + 9A + I

Degree 3. We compare the cost of our formula (16) with the original radical
isogeny (6). The cost of our formula is E + 5M + 12A, and that of the original
is E + 3M + 12A. Note that we count the multiplication by 2, 3, and 9 as A,
2A, and 4A, respectively. Our cost is 2M higher than the original. However, our
parametrization t has the transformation formula (9) to recover a Montgomery
coefficient, which is easy to compute. On the other hand, the original radical
isogeny needs transformations between a Montgomery curve and a curve used
in radical isogenies of degree 3. The costs of these transformations are relatively
high since these include some exponentiations. From this, our formula could be
more efficient than the original in some parameters of cryptosystems. We explain
this in detail below.

Let E ∈ E��p(O), � be an odd prime dividing p + 1, and l be a prime ideal
above � in O. The method to compute the action of ln on E by [6] is as follows:

1. Find a generator P of E[l] on a Montgomery curve.
2. Transform the Montgomery curve to a curve with the image of P is (0, 0).
3. Compute an �-isogeny n − 1 times by iterating the radical-isogeny formula.
4. Compute an �-isogeny with kernel 〈(0, 0)〉 by Vélu’s formula.
5. Transform the curve to a Montgomery form.

In the implementation1 in [6] of CSURF, Step 2 contains E, and Step 5 contains
3E. On the other hand, by using our formula, we do not need Step 2 and obtain
the objective Montgomery coefficient by (9) instead of Step 5. The cost of (9) is
3M + 9A + I.

Table 2 shows the costs of the 3-isogenies and the transformations. (Table 2
redisplays the left half of Table 1.) Because the cost of I is less than that of E,
our formula reduces the cost of the transformations at least 3E. In addition, if
we use the projective coordinate on Montgomery curves, then the inversion in
(9) vanishes. While the exceeding cost of our formula in Step 3 is 3(n − 1)M.
In Step 4, both methods use Vélu’s formulas. However, our method is slightly
faster because Vélu’s formulas on Montgomery curves are efficient. Therefore,
if the exponent n of the ideal is less than about 1.5 log2(p), then our formula
accelerates the action of an ideal of norm 3.

1 https://github.com/KULeuven-COSIC/Radical-Isogenies.

https://github.com/KULeuven-COSIC/Radical-Isogenies

Radical Isogenies on Montgomery Curves 493

Remark 2. The implementation in [6] uses 9-isogenies instead of 3-isogenies for
CSURF-512, a parameter set of CSURF proposed by [5]. Since the characteristic
p of the base field in CSURF-512 satisfies 9 | p+1, the elliptic curves in E��p(O)
have a point of order 9 over Fp. In this case, using 9-isogenies reduces the cost
of the action of an ideal of norm 3 since the number of E in Step 3 is halved.
Consequently, our formula does not improve the efficiency in this case. However,
our formula could do in the case that 9 � p+1, for example, CSIDH-512 proposed
in [7].

Degree 4. As in Sect. 5.2, we let p ≡ 7 (mod 8) for considering 4-isogenies
corresponding to the ideal actions. We say curves in E��p(Z[1+

√−p
2]) are on the

surface, and curves in E��p(Z[
√−p]) are on the floor.

First, we recall the computing method of CSURF in the previous works.
The original CSURF [5] uses Montgomery− curves since these curves are

always on the surface, and there is a one-to-one correspondence between
Montgomery− coefficients of supersingular elliptic curves and the classes in
E��p(Z[1+

√−p
2]) if p ≡ 7 (mod 8). All the computation in the original CSURF,

thus, is done on the surface.
On the other hand, the CSURF using radical isogenies [6] uses curves both

on the surface and the floor. There are two reasons to use curves on the floor.
First, their transformations from Tate normal forms to Montgomery curves for
degrees greater than four use the properties that these curves have exactly one
point of order 2 over Fp. Second, the arithmetic on Montgomery curves is slightly
faster than that on Montgomery− curves. The computation of ideal class actions
is as follows:

1. Take a Montgomery− curve as an input.
2. Transform the curve to a Tate normal form and compute 4-radical isogenies.
3. Transform the resulting curve to a Montgomery curve on the floor.
4. Compute radical isogenies of degrees less than 17.
5. Compute the action of the remaining ideal as in the original CSIDH [7].
6. Transform the resulting Montgomery curve to Montgomery− curve.

Here, we propose a computing method of CSURF that does not use
Montgomery− curves at all. Table 1 in [5] shows that there are exactly two Fp-
isomorphic Montgomery curves on the surface. On one of these, the point (0, 0)
generates the ideal

(
2, 1−√−p

2

)
(we call a Montgomery curve with this property

by positive type). On the other, the point (0, 0) generates the ideal
(
2, 1+

√−p
2

)
(we call a Montgomery curve with this property by negative type). In short, there
is a one-to-one correspondence between positive-type Montgomery curves and
the classes in E��p(Z[1+

√−p
2]). Lemma 11 allows us to determine which type of

curve is by computing a Legendre symbol. A Montgomery curve with coefficient
A is on the surface if and only if A2−4 ∈ (F×

p)2. Therefore, by adding two Legen-
dre symbol computations to key validation in CSURF, we can use Montgomery
coefficients of positive-type curves as public keys and shared secrets.

494 H. Onuki and T. Moriya

Unfortunately, we need to transform a Montgomery curve from positive type
to negative type for computing the action of

(
2, 1+

√−p
2

)
, which is the inverse of(

2, 1−√−p
2

)
as an ideal class, and the cost of the transformation needs two expo-

nentiations. LetE be a positive-typeMontgomery curvewith coefficientA. Lemma
4 in [5] shows that the negative-type curve that is Fp-isomorphic to E is obtained

by an isomorphism between Montgomery curves sending
(

−A−√
A2−4

2 , 0
)

to (0, 0).
Therefore, the coefficient of the negative-type curve is

−A − 3
√

A2 − 4√
2
√

A2 − 4(A +
√

A2 − 4)
.

Weuse this transformation if the exponent of the ideal
(
2, 1−√−p

2

)
is negative. Fur-

thermore, we have to move to the floor from the surface for using radical isogenies of
degrees greater than four. This can be computed by a 2-isogeny.

Consequently, the computation of ideal class actions using our radical isoge-
nies of degree 4 is as follows:

1. Take a positive-type Montgomery curve as an input.
2. Transform to negative type if the exponent of

(
2, 1−√−p

2

)
is negative.

3. Transform to the modified Montgomery coefficient.
4. Compute 4-radical isogenies by (21).
5. Transform to the Montgomery coefficient.
6. Transform to the floor.
7. Compute radical isogenies of other degrees.
8. Compute the action of the remaining ideal as in the original CSIDH [7].
9. Transform to the surface.

We can compute 9 by A �→ A+6
2
√

A+2
. It is easy to check that the resulting curve is

always positive type. The computational cost is slightly less than transforming
a Montgomery curve on the floor to a Montgomery− curve.

Table 3 compares the costs related to 4-isogenies of our method with the
original radical isogenies. This shows that our method is more efficient even if
we need to transform to a negative-type curve.

We implemented CSURF using our formulas on Magma [3]. Our implemen-
tation is based on that by [6] and available at https://github.com/hiroshi-onuki/
Montgomery-Radical-Isogenies.

https://github.com/hiroshi-onuki/Montgomery-Radical-Isogenies
https://github.com/hiroshi-onuki/Montgomery-Radical-Isogenies

Radical Isogenies on Montgomery Curves 495

Table 3. The costs of 4-isogenies and transformations. The costs of transformations in
our formulas include the cost of transformations between Montgomery coefficients and
modified Montgomery coefficients. In the second line, we need the cost (2E + 2M +

6A + I)∗ only in the case that the exponent of the ideal [2, 1−√−p
2

] is negative.

Formula in [6] Our formula

Isogeny E+ 3M+ 5A+ I E+ 3M+ 4A+ I

Transform to computation forms > 3E 3A+ (2E+ 2M+ 6A+ I)∗

Transform to the floor > 3E E+ 4M+ 6A

6 Conclusion

We proposed the radical-isogeny formulas of degrees 3 and 4 on Montgomery
curves. We analyzed those computational efficiencies in application to CSIDH
and its variants. Because our formulas reduce the cost of transformations between
elliptic curves, these could improve the efficiency of CSIDH and its variants. In
particular, we showed that our formulas of degree 3 could be efficient in some
cases. Our formula of degree 4 is more efficient than the original radical isogenies.
In addition, we proved the conjecture on radical isogenies of degree 4, which was
left open in [6].

Acknowledgements. This study was supported by the Ministry of Internal Affairs
and Communications, Japan (JPJ000254) and JSPS KAKENHI Grant Numbers
JP21K17739, JP21J10711.

References

1. National Institute of Standards and Technology (NIST): NIST post-
quantum cryptography standardization. https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography

2. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997). https://doi.org/10.1006/
jsco.1996.0125, Computational algebra and number theory (London, 1993)

4. Broon, F.L.P., Dang, T., Fouotsa, E., Moody, D.: Isogenies on twisted Hessian
curves. J. Math. Cryptol. 15(1), 345–358 (2021). https://doi.org/10.1515/jmc-
2020-0037

5. Castryck, W., Decru, T.: CSIDH on the surface. In: Ding, J., Tillich, J.P. (eds.)
Post-Quantum Cryptography, pp. 111–129. Springer, Cham (2020)

6. Castryck, W., Decru, T., Vercauteren, F.: Radical isogenies. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 493–519. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3 17

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1515/jmc-2020-0037
https://doi.org/10.1515/jmc-2020-0037
https://doi.org/10.1007/978-3-030-64834-3_17

496 H. Onuki and T. Moriya

7. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

8. Cervantes-Vázquez, D., Chenu, M., Chi-Domı́nguez, J.-J., De Feo, L., Rodŕıguez-
Henŕıquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH.
In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp.
173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7 9

9. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009). https://doi.org/10.1007/
s00145-007-9002-x

10. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 11

11. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

12. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

13. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

14. Diamond, F., Shurman, J.: A First Course in Modular Forms. Graduate Texts
in Mathematics. Springer, New York (2006). https://doi.org/10.1007/978-0-387-
27226-9

15. Fouotsa, T.B., Petit, C.: InSIDH: a simplification of sigamal. Cryptology ePrint
Archive, Report 2021/218 (2021). https://eprint.iacr.org/2021/218

16. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography, pp. 19–
34. Springer, Heidelberg (2011)

17. Kim, S., Yoon, K., Park, Y.-H., Hong, S.: Optimized method for computing odd-
degree isogenies on Edwards curves. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11922, pp. 273–292. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34621-8 10

18. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

19. Moriya, T., Onuki, H., Takagi, T.: SiGamal: a supersingular isogeny-based PKE
and its application to a PRF. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12492, pp. 551–580. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64834-3 19

20. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145

21. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathe-
matics, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-1-4757-
1920-8

22. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215 (2010).
http://aimsciences.org//article/id/e8001706-6615-4b24-b499-8ea9d348dabb

https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-0-387-27226-9
https://doi.org/10.1007/978-0-387-27226-9
https://eprint.iacr.org/2021/218
https://doi.org/10.1007/978-3-030-34621-8_10
https://doi.org/10.1007/978-3-030-34621-8_10
https://doi.org/10.1007/978-3-030-64834-3_19
https://doi.org/10.1007/978-3-030-64834-3_19
https://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-1-4757-1920-8
https://doi.org/10.1007/978-1-4757-1920-8
http://aimsciences.org//article/id/e8001706-6615-4b24-b499-8ea9d348dabb

Radical Isogenies on Montgomery Curves 497

23. Streng, M.: Generators of the group of modular units for Γ 1(N) over the rationals.
arXiv:1503.08127v2 (2019)

24. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendues de l’Académie des
Sciences 273, 238–241 (1971)

http://arxiv.org/abs/1503.08127v2

Towards a Simpler Lattice Gadget Toolkit

Shiduo Zhang1 and Yang Yu2(B)

1 Institute for Advanced Study, Tsinghua University, Beijing, China
2 BNRist, Tsinghua University, Beijing, China

yu-yang@mail.tsinghua.edu.cn

Abstract. As a building block, gadgets and associated algorithms are
widely used in advanced lattice cryptosystems. The gadget algorithms
for power-of-base moduli are very efficient and simple, however the cur-
rent algorithms for arbitrary moduli are still complicated and practically
more costly despite several efforts. Considering the necessity of arbi-
trary moduli, developing simpler and more practical gadget algorithms
for arbitrary moduli is crucial to improving the practical performance of
lattice based applications.

In this work, we propose two new gadget sampling algorithms for
arbitrary moduli. Our first algorithm is for gadget Gaussian sampling. It
is simple and efficient. One distinguishing feature of our Gaussian sam-
pler is that it does not need floating-point arithmetic, which makes it
better compatible with constrained environments. Our second algorithm
is for gadget subgaussian sampling. Compared with the existing algo-
rithm, it is simpler, faster, and requires asymptotically less randomness.
In addition, our subgaussian sampler achieves an almost equal quality
for different practical parameters. Overall these two algorithms provide
simpler options for gadget algorithms and enhance the practicality of the
gadget toolkit.

1 Introduction

Lattice based cryptography is not only a strong contender in the NIST post-
quantum standardization, but also offers powerful versatility leading to the con-
structions of various advanced cryptographic primitives ranging from identity
based encryption (IBE) [1,13], attribute based encryption (ABE) [27], group
signatures [29,34,36] to fully homomorphic encryption (FHE) [15,24,26], func-
tional encryption [2,3,35] and much more [7,28]. Many advanced lattice cryp-
tosystems rely on strong lattice trapdoors that allow to sample lattice points
from Gaussian-like distributions. The notion of lattice trapdoor was introduced
in [25] along with a sampling algorithm. Later a series of works [14,18–20,37]
proposed improved trapdoor constructions and sampling algorithms.

Currently, the state-of-the-art lattice trapdoor framework is developed by
Micciancio and Peikert [37]. Following the idea of [39], the trapdoor sampling in
this framework is decomposed into online and offline two phases, and the online
sampling is accomplished by the sampling over a special lattice Λ⊥(gt) = {z ∈
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 498–520, 2022.
https://doi.org/10.1007/978-3-030-97121-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_18

Towards a Simpler Lattice Gadget Toolkit 499

Z
k : gtz = 0 mod q} defined by the gadget g = (1, b, · · · , bk−1). Thanks to

the good structure of the short basis of Λ⊥(gt), the sampling over Λ⊥(gt) is
convenient and fast, which improves the efficiency of the online sampling. As a
building block of lattice based cryptography, gadgets have been in effect used in
much more applications, e.g. [11,12,26]. In summary, the use of the gadget is
mainly based on four algorithms:

– Digit Decomposition: Given u ∈ Zq, find a short x such that 〈x,g〉 =
u mod q. This is the most widely used case, identifying a number of size O(bk)
with a vector of norm O(b

√
k).

– LWE Decoding: Given sg+e mod q for a sufficiently small e, recover s. This
algorithm is deterministic as the digit decomposition and a representative
usecase is in the decryption of LWE cryptosystems.

– Gaussian Sampling: Given u ∈ Zq, sample x from a discrete Gaussian
on a lattice coset Λ⊥

u (gt) = {z ∈ Z
k : gtz = u mod q}. This algorithm is

randomized unlike the digit decomposition and LWE decoding. It is the main
component of the Micciancio-Peikert trapdoor [37] and used in lattice based
signatures, IBE and many other primitives.

– Subgaussian Sampling: Given u ∈ Zq, sample a subgaussian x in Λ⊥
u (gt).

This algorithm is also randomized and can work with much less randomness
than the Gaussian sampling. It is used in some FHE schemes as an alternative
to the digit decomposition for tighter parameters [4].

Micciancio and Peikert gave very efficient gadget Gaussian sampling and
LWE decoding algorithms in [37] but mainly for the special case where the mod-
ulus q = bk. Genise and Micciancio later proposed an equally efficient (in an
asymptotic sense) gadget Gaussian sampler for arbitrary moduli [21]. Genise,
Micciancio and Polyakov also devised gadget subgaussian sampling and LWE
decoding algorithms applicable to an arbitrary modulus q [23]. With these efforts,
recent years have seen significant progress in bringing advanced lattice cryptosys-
tems in practice [8,9,16,17,30].

Despite the same asymptotic complexity, there still exist some gaps between
the practicalities of the gadget algorithms for the special q = bk and for an
arbitrary modulus q < bk. The specialized algorithms for q = bk are very sim-
ple and only require integer operations. In contrast, the existing algorithms for
q < bk are complicated, and particularly the Gaussian sampler has to resort
to high-precision arithmetic, which limits the use of gadget algorithms on some
constrained devices. To close these gaps is not only of theoretical interest but
also crucial for practical applications: many lattice cryptosystems require the
modulus q to support the NTT/RNS/CRT techniques for better performance,
hence q < bk in these cases.

Our contribution. Towards better practicality of the gadget toolkit, we improve
on two randomized gadget algorithms, i.e. Gaussian sampling and subgaussian
sampling, for arbitrary moduli.

500 S. Zhang and Y. Yu

We present a new gadget Gaussian sampler that avoids the floating-point
arithmetic in existing algorithms. Compared with the previous algorithms, our
sampler achieves the same quality and asymptotic complexity, but is simpler and
highly parallelizable. Verified by experiments (see Figs. 1 and 2), our sampler is
as fast as the original Genise-Micciancio sampler [21] for practical parameters,
but slower than an improved variant of the Genise-Micciancio sampler [16] in
which continuous Gaussian sampling is heavily used.

We also propose a new gadget subgaussian sampler. It does not use any linear
transformation and most computations are identical to those in the specialized
algorithm for q = bk. Consequently, the new sampler is simpler, faster and only
requires O(k log b)-bits of randomness, which improves the previous (considered
essentially optimal) result by O(k). Indeed the subgaussian parameter achieved
by our algorithm may be

√
2 times as large as that by the previous algorithm

in the worst case. But it is convenient to get an almost equal quality in practice
by selecting proper parameters without speed and security loss.

In summary, we provide the gadget toolkit with simpler algorithmic options.
Due to the absence of high-precision arithmetic, the new gadget Gaussian sam-
pler is of some interest when side-channel protections and constrained devices
are taken into account. The new subgaussian sampler can be used to improve
the efficiency and simplicity of the implementation of advanced lattice schemes.

Techniques. We now briefly explain the used techniques. In this work, we focus
on the gadget g = (1, b, · · · , bk−1) and the gadget lattice Λ⊥(gt) = {z ∈ Z

k :
gtz = 0 mod q}.

Our gadget Gaussian sampling algorithm follows Peikert’s approach [39]:
it first generates a perturbation vector of certain covariance and then gener-
ates a Gaussian sample from an easy-to-sample lattice. Concretely, we represent
the basis Bq of Λ⊥(gt) as Bq = TD where T, D were first suggested in [21].
With such a factorization, the sampling over Λ⊥(gt) is decomposed into the
sampling over L(D) that is easy and over integers and the perturbation sam-
pling of covariance Σ = s2I − TTt that introduces floating-point arithmetic.
To avoid floating-point arithmetic, we exploit an integral matrix decomposition
Σ = AJAt with A ∈ Z

k×k′
and J being diagonal, which is inspired by [18]. But

a technical difference is that the middle matrix J is a diagonal but not identity
matrix, which allows to reduce the size of A, that is only k × (k + 2) much
smaller than the size of the Gram root given in [18], while keeping A integral.
With such a compact integral decomposition, the perturbation sampling can be
done by applying a linear transformation of A on D

Zk′ ,
√

J, which is simple, fast
and highly parallelizable.

Our gadget subgaussian algorithm is very different from the one proposed
by Genise, Micciancio and Polyakov [23]. The Genise-Micciancio-Polyakov algo-
rithm relies on the factorization Bq = TD used in the previous gadget Gaussian
sampler [21]: it first performs subgaussian sampling with respect to D and then
multiplies by T to get the final result. The subgaussian sampling with respect to
D requires O(k2 log b)-bits of randomness while the specialized algorithm sam-
pling directly over Bbk needs only O(k log b)-bits. The linear transformation T

Towards a Simpler Lattice Gadget Toolkit 501

also introduces extra computational overhead. Consequently, a performance gap
occurs between the Genise-Micciancio-Polyakov algorithm for q = bk and q < bk.
To close this gap, our idea is to convert the sampling for q < bk into the sam-
pling for a power-of-b modulus. In a nutshell, we propose to first sample the
(k − 1) lower digits by calling the subgaussian algorithm for the modulus bk−1

and then to compute the highest digit. Specifically, we sample within two sets
S0 = {x | 〈x,g〉 = u} and S1 = {x | 〈x,g〉 = u − q} and in each set the highest
digit xk−1 is basically fixed and so is 〈x′,g′〉 mod bk−1 where x′ = (x0, · · · , xk−2)
and g′ = (1, b, · · · , bk−2). Our sampler proceeds in three steps. First, it chooses
either S0 or S1 to which the output belongs. Once the set is fixed, it then calls the
specialized algorithm to output a subgaussian x′ given 〈x′,g′〉 mod bk−1. Finally
it computes xk−1 according to the chosen Si and the exact value of 〈x′,g′〉. To
ensure x is subgaussian, it suffices to show the expectation of the output x is
0. To this end, we figure out the probability of Si should be chosen according
to u. As a consequence, we prove the subgaussian parameter of the output is
at most

√
(b − 1)2 + α2

√
2π with α = �q/bk−1� + 1, which can be close to even

better than the previous result (b + 1)
√

2π for some practical (q, b). Thanks to
the ease of the specialized algorithm, our subgaussian algorithm achieves bet-
ter practical performance (see Fig. 3) and requires O(k log b) random bits which
asymptotically improves the previous result and is essentially identical to the
case q = bk.

Roadmap. We start in Sect. 2 with some preliminary material. Section 3 is
devoted to recalling the state of the art of the gadget Gaussian and subgaus-
sian samplers. We present our new gadget Gaussian and subgaussian sampling
algorithms in Sects. 4 and 5 respectively. Finally, we conclude in Sect. 6.

2 Preliminaries

2.1 Notation

A number is denoted by a lower case letter, e.g. z ∈ Z. A vector is denoted by
a bold lower case letter, e.g. v, and in column form (vt is a row vector). The
inner product of two vectors is 〈x,y〉 = xty. Let Zq = {0, 1, · · · , q − 1} for a
positive integer q. For integers b > 0 and u < bk, the b-ary decomposition of u is
[u]kb = (u0, · · · , uk−1) ∈ Z

k
b such that

∑
i biui = u. We denote matrices with bold

upper case letters, e.g. B. Let Bt be the transpose of B. Unless otherwise stated,
the norm of a vector is the �2 norm. Let ‖B‖col = maxi‖bi‖. We use log and ln
to denote the base 2 logarithm and the natural logarithm respectively. Let ε > 0
be some very small number. We use the notational shortcut ε̂ = ε+O(ε2). Then
1+ε
1−ε = 1 + 2ε̂ and ln(1+ε

1−ε) = 2ε̂.
A random variable x sampled from a distribution D is written as x ← D.

A random variable distributed as D is denoted x ∼ D. The max-log distance
between two distributions D1 and D2 over the same support S is

ΔML(D1,D2) = max
x∈S

| ln(D1(x)) − ln(D2(x))|.

502 S. Zhang and Y. Yu

As shown in [38], ΔML(D1,D2) ≤ ΔML(D1,D3) + ΔML(D2,D3).

2.2 Linear Algebra

For T ∈ R
n×k, let span(T) be the linear span of the columns of T and ker(T) be

the kernel of T. The (foreward) Gram-Schmidt orthogonalization of an ordered
set of linearly independent vectors B = {b1, · · · ,bk} is B̃ = {b̃1, · · · , b̃k} where
each b̃i is the component of bi orthogonal to span(b1, · · · ,bi−1).

We write Σ > 0 (resp., Σ ≥ 0) when a symmetric matrix Σ ∈ R
n×n is

positive definite (resp. semidefinite), i.e. xtΣx > 0 (resp., xtΣx ≥ 0) for all
nonzero x ∈ R

n. We write Σ1 ≥ Σ2 or Σ2 ≤ Σ1 if Σ1 − Σ2 ≥ 0, and similarly
for Σ1 > Σ2. It holds that Σ1 > Σ2 > 0 if and only if Σ−1

2 > Σ−1
1 > 0. If

Σ = AAt, we call A a Gram root of Σ. Let
√

Σ denote any Gram root of Σ
when the context permits it.

2.3 Lattices

A lattice is the set of all integer combinations of linearly independent vectors
b1, · · · ,bn ∈ R

m. We call B = (b1, · · · ,bn) a basis and n the dimension of the
lattice. The lattice is full-rank if n = m. We denote by L(B) the lattice generated
by the basis B. A coset of a lattice Λ is a set of the form {v+a|v ∈ Λ} := Λ+a.
Let Λ∗ = {x ∈ span(Λ)|〈x, Λ〉 ⊆ Z} be the dual lattice of Λ.

2.4 Gaussian

The n-dimensional Gaussian function ρ : R
n → (0, 1] is defined as ρ(x) :=

exp(−π‖x‖2). Let ρB(x) = exp(−πxtΣ−1x) where Σ = BBt. Since ρB(x)
is completely determined by Σ = BBt, we also write ρ√

Σ(x) = ρB(x). Let
ρ√

Σ,c(x) = ρ√
Σ(x − c) for c ∈ span(Σ). When c = 0, we omit the subscript

c. For a countable set of S ⊂ R
n, let ρ√

Σ(S) =
∑

s∈S ρ√
Σ(s). The discrete

Gaussian over a lattice Λ with center c and covariance matrix Σ is defined by
the probability function

DΛ,
√

Σ,c(x) =
ρ√

Σ,c(x)

ρ√
Σ,c(Λ)

∝ ρ√
Σ,c(x).

The discrete Gaussian on Λ + c, for c ∈ span(Λ), is defined by DΛ+c,
√

Σ(x) =
ρ√

Σ(x)/ρ√
Σ(Λ + c) for all x ∈ Λ + c. When Σ = s2I, we call the Gaussian

spherical of width s and write the subscript
√

Σ as s simply.
For a lattice Λ and ε > 0, ηε(Λ) = min{s > 0 | ρ 1

s
(Λ∗) ≤ 1 + ε} is called the

smoothing parameter. The following definition is a generalized version.

Definition 1 ([39], Definition 2.3). Let Σ > 0 and lattice Λ ∈ span(Σ). We
write

√
Σ ≥ ηε(Λ) if ηε(

√
Σ

−1 · Λ) ≤ 1 i.e. η√
Σ−1(Λ∗) ≤ 1 + ε.

Towards a Simpler Lattice Gadget Toolkit 503

Notice that for two lattices of the same rank Λ1 ⊆ Λ2, the denser lat-
tice always has the smaller smoothing parameter, i.e. ηε(Λ2) ≤ ηε(Λ1). Let

ηε(Zn) =
√

ln(2n(1+1/ε))
π . Here we recall several facts to be used later.

Lemma 1 ([25], Lemma 3.1). Let Λ ⊂ R
n be a lattice with a basis B, then

ηε(Λ) ≤ ‖B̃‖col · ηε(Zn).

Theorem 1 (Adapted from Theorem 3.1 [22]). For any ε ∈ [0, 1), matrix
S of full column rank, lattice Λ ⊂ span(S), and matrix T such that ker(T) is a
Λ-subspace and ηε(Λ ∩ ker(T)) ≤ S, then ΔML(T · DΛ,S,DTΛ,TS) ≤ 2ε̂.

Theorem 2 (Adapted from Theorem 3.1 [39]). Let Σ1,Σ2 ∈ R
n×n be

positive definite matrices. Let Σ = Σ1 + Σ2 and let Σ3 ∈ R
n×n be such

that Σ−1
3 = Σ−1

1 + Σ−1
2 . Let Λ1, Λ2 be two full-rank lattices in R

n such that√
Σ1 ≥ ηε(Λ1) and

√
Σ3 ≥ ηε(Λ2) for ε ∈ (0, 1/2). Let c1, c2 ∈ R

n, then the
distribution of x ← DΛ1,

√
Σ1,p−c2+c1

where p ← DΛ2,
√

Σ2,c2
is within max-log

distance 4ε̂ of DΛ1,
√

Σ,c1
.

2.5 Subgaussian Random Variables

A random variable X over R is subgaussian with parameter α > 0 if for all t ∈ R,
its (scaled) moment generating function satisfies

E[exp(2πtX)] ≤ exp(πα2t2).

Scaling a subgaussian X with parameter α by any c ∈ R to c·X yields a subgaus-
sian random variable with parameter |c|α. If X is subgaussian with parameter
α, then Pr[|X| ≥ t] ≤ 2 exp(−πt2/α2). If X is a random variable with E(X) = 0
and |X| ≤ b for some b > 0, then X is subgaussian with parameter b

√
2π [40].

Moreover, if X is subgaussian variable, then E[X] = 0. An important property
of subgaussian called Pythagorean additivity is defined as follow.

Lemma 2. Let X,Y be discrete random variables over R such that X is subgaus-
sian with parameter α and Y conditioned on X taking any value is subgaussian
with parameter β. Then, X + Y is subgaussian with parameter

√
α2 + β2.

A random vector x over R
n is subgaussian with parameter α > 0 if 〈x,u〉 is

subgaussian with parameter α for all unit vectors u.

Lemma 3. Let x be a discrete random vector over Rn such that each coordinate
xi is subgaussian with parameter αi given the previous coordinates take any
values. Then, x is a subgaussian vector with parameter maxi{αi}.

3 Recall the Gadget Sampling

The gadget Gaussian and subgaussian samplings are two primary algorithms
associated to the lattice gadget. For better completeness and comparisons, let
us briefly recall the state of the art of these two algorithms.

Throughout the paper, we focus on the most widely used gadget defined by
g = (1, b, · · · , bk−1) where b ∈ N such that the global modulus q ≤ bk. The
lattice Λ⊥(gt) = {z ∈ Z

k : gtz = 0 mod q} is called the gadget lattice.

504 S. Zhang and Y. Yu

3.1 Gadget Gaussian Sampling

The goal of gadget Gaussian sampling is to generate a sample from a discrete
Gaussian on a lattice coset Λ⊥

u (gt) = {z ∈ Z
k : gtz = u mod q}. The associated

algorithms were developed by Micciancio and Peikert [37] to construct an efficient
and powerful lattice trapdoor framework. As shown in [37], the gadget Gaussian
sampling is convenient thanks to a good basis of Λ⊥(gt) as follows:

Bq =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

b q0
−1 b q1

−1
. . .

...
. . . b qk−2

−1 qk−1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(1)

where q =
∑k−1

i=0 biqi. Particularly, when q = bk, Bq is bi-diagonal and thus its
Gram-Schmidt orthogonalization in reverse order is diagonal, which leads to a
very simple sampler that runs in O(k) and is implemented over integers. But
the sampler for q < bk proposed in [37] requires O(k2) complexity even with
pre-computation.

Later, Genise and Micciancio proposed in [21] an improved gadget Gaussian
sampler for q < bk that achieves the complexity of O(k) as well. Their approach
is build upon the Gaussian convolution technique [39]. In more details, they
noticed a factorization Bq = TD with

T =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

b
−1 b

−1
. . .
. . . b

−1 b

⎞

⎟⎟
⎟⎟⎟⎟
⎠

and D =

⎛

⎜⎜
⎜⎜⎜
⎝

1 d0
1 d1

. . .
...

1 dk−2

dk−1

⎞

⎟⎟
⎟⎟⎟
⎠

(2)

and then decomposed the sampling into two steps: generating p ← DL,r
√

Σ2

and outputting T · DL(D),r,−c with Σ2 = (s/r)2I − TTt, c = T−1(u − p).
Originally, [21] proposed to set L = L(Σ2) to simplify the sampling of p. Later,
[16] suggested to sample p via continuous Gaussian sampling, which turns out
practically efficient given some high-precision arithmetic library.

Hu and Jia also gave a gadget Gaussian sampler for q < bk [32]: instead of
sampling a spherical Gaussian, they proposed to sample a non-spherical one over
Λ⊥(gt). This improves the efficiency of the gadget Gaussian sampling at the cost
of complicating the offline sampling in the Micciancio-Peikert framework, which
defeats some optimization techniques [18,21]. In this paper, we are interested
in spherical gadget Gaussian sampling as in [21,37] that gives a better overall
performance.

Towards a Simpler Lattice Gadget Toolkit 505

3.2 Gadget Subgaussian Sampling

The gadget subgaussian sampling produces a subgaussian vector on a lattice
coset Λ⊥

u (gt). It has advantages over digit decomposition and gadget Gaussian
sampling: the subgaussian has a “pythagorean additivity” property, which gives
rise to tighter parameters than digit decomposition; the subgaussian sampling
is faster and requires less randomness than the Gaussian one.

Genise, Micciancio and Polyakov initiated the study of gadget subgaussian
sampling [23] and proposed two algorithms for q = bk and q < bk respectively.
When q = bk, the algorithm is in effect a specialized version of the Babai’s
nearest plane algorithm [5] on Bq (Eq. (1)). This algorithm achieves subgaussian
parameter at most (b − 1)

√
2π with O(k) operations and log q random bits.

The gadget subgaussian algorithm for arbitrary moduli, i.e. q < bk, proceeds
in a rather different manner. It exploits the same matrix factorization Bq = TD
(Eq. (2)) as in [21]. Concretely, it performs a specialized Babai’s nearest plane
algorithm on D and applies a linear transformation of T to lift the solution to
Λ⊥

u (gt). In the end, this algorithm runs in linear O(k) time, requires O(k log q)
random bits and achieves subgaussian parameter at most (b+1)

√
2π. Overall the

subgaussian algorithm for arbitrary moduli is more complicated and randomness
inefficient than the one for q = bk.

4 Gadget Gaussian Sampling Without Floats

In contrast to the specialized gadget Gaussian sampler for q = bk, the state-of-
the-art sampler for arbitrary moduli is still complicated and heavily uses floating
point arithmetic, despite the asymptotically same complexity (See Sect. 3.1).
Floating point arithmetic has many drawbacks in practice in terms of security,
numerical stability and efficiency. Particularly, once the gadget sampler relies on
floating point operations, it would be inconvenient and inefficient to deploy the
trapdoor cryptosystems [37] in constraint devices1.

Here we present a new gadget Gaussian sampler for arbitrary moduli but
without using floating point arithmetic. Our sampler achieves the complexity of
O(k) as the Genise-Micciancio sampler [21] and is even simpler. Moreover, the
practical running time of our sampler is close to that of the Genise-Micciancio
sampler; a large part of samplings in our algorithm are parallelizable.

4.1 The Algorithm

Let us recall that g = (1, b, · · · , bk−1), the modulus q < bk and as shown in [21]
the gadget lattice Λ⊥(gt) = {z ∈ Z

k : gtz = 0 mod q} has a basis

1 Ideally, gadget sampling can be performed on a lightweight device while other costly
computations are done on a powerful machine and in an offline phase.

506 S. Zhang and Y. Yu

Bq =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

b q0
−1 b q1

−1
. . .

...
. . . b qk−2

−1 qk−1

⎞

⎟⎟⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎜
⎝

b
−1 b

−1
. . .
. . . b

−1 b

⎞

⎟⎟⎟⎟⎟
⎟
⎠

⎛

⎜⎜⎜⎜
⎜
⎝

1 d0
1 d1

. . .
...

1 dk−2

dk−1

⎞

⎟⎟⎟⎟
⎟
⎠

= TD.

To sample DΛ⊥(gt),s,u, our algorithm proceeds in two steps as per [39]. First,
it generates a perturbation vector p of covariance r2Σ2 = s2Ik −r2TTt. Then it
samples v′ from DL(D),r,T−1(u−p) and the final output is v = Tv′. The second
step is easily implemented over integers. To avoid floating point operations in
perturbation sampling, we use a similar technique in [18]. Specifically, we discover
a simple binary matrix

A =

⎛

⎜⎜⎜
⎝

1 1 1
1 1

.
1 1

⎞

⎟⎟⎟
⎠

∈ Z
k×(k+2)

such that A
(

b · Ik+1

1

)
At = (b + 1)2 · Ik − TTt = Σ2 for s = (b + 1)r which

coincides with [21]. According to Theorem 1, applying a linear transformation

of A on some Gaussian of covariance r2
(

b · Ik+1

1

)
gives the perturbation of

covariance r2Σ2. The matrix A has much less columns than the generic Gram
decompositions in [18], which boosts the practical performance greatly. Addi-
tionally, the Gaussian transformed by A is non-spherical unlike the case in [18],
which is crucial for non-square b. We formally describe our sampler in Algo-
rithm 1 and prove its correctness in Lemma 4.

Algorithm 1: Gadget Gaussian sampler GadgetGaussian(b, k, q, l, s, u)

Input: positive integers b, k, q, l such that q < bk, q = [q]kb and l ≥ 4
√

bk,
s = (b + 1)r with r ≥ ηε(Z

k), u ∈ Zq and u = [u]kb .
Output: a sample x from a distribution within max-log distance (2k + 6)ε̂ of

DΛ⊥(gt),s,−u

1: d0 = q0/b
2: for i = 1, · · · , k − 1 do
3: di = (di−1 + qi)/b
4: end for
5: p ← Pert(r, b, k, l) {p ∼ D

Zk/l,r
√

(b+1)2Ik−TTt}
6: c ← T−1(p − u)

7: z ← SampleD(r, c,d) {Dz ∼ DL(D),r,c,D =

(
Ik−1 d
0

)
}

8: return x ← Bqz

Towards a Simpler Lattice Gadget Toolkit 507

Algorithm 2: The subroutine Pert(r, b, k, l)

Input: positive integers b, k, l such that l ≥ 4
√

bk and r ≥ ηε(Z
k).

Output: a sample p from a distribution within max-log distance 2ε̂ of
D

Zk/l,r
√

(b+1)2Ik−TTt

1: A =

⎛
⎜⎜⎜⎝

1 1 1
1 1

. . .
. . .

1 1

⎞
⎟⎟⎟⎠ ∈ Z

k×(k+2)

2: y ← (ȳ, yk+1) ∈ Z
k+2 where ȳ ← D

Zk+1,lr
√

b, yk+1 ← DZ,lr

3: return p ← 1
l

· Ay

Algorithm 3: The subroutine SampleD(r, c,d)

Input: vectors c,d such that D =

(
Ik−1 d
0

)
, r ≥ ηε(Z

k).

Output: a sample z such that the distribution of Dz is within max-log distance
2kε̂ of DL(D),r,c

1: zk−1 ← DZ,r/dk−1,ck−1/dk−1

2: c ← c − zk−1d
3: for i = 0, · · · , k − 2 do
4: zi ← DZ,r,ci

5: end for
6: return z

Lemma 4. Let b, k, q, l ∈ N such that q < bk and l ≥ 4
√

bk. Let ε ∈ (0, 1
2) and

s ≥ (b + 1) · ηε(Zk). For any u ∈ Zq with u = [u]kb , GadgetGaussian(b, k, q, l, s, u)
returns a sample within a max-log distance (2k + 6)ε̂ from DΛ⊥(gt),s,−u.

Remark 1. All involved base samplers are assumed to be perfect for simplicity.
It is routine to adapt Lemma 4 to the setting of imperfect base samplers.

Proof. We first prove the correctness of Pert(r, b, k, l). Let S =
(√

b · Ik+1

1

)
and

Σ2 = (b+1)2Ik −TTt. A routine computation shows (AS)(AS)t = Σ2. Clearly,
y follows DZk+2,rlS and AZ

k+2 = Z
k. Note that Z

k+2 ∩ ker(A) is a lattice of
rank 2 and contains two linearly independent vectors v0 = (1, 0, · · · , 0,−1),v1 =
((−1)0, (−1)1, · · · , (−1)k, 0) of norm ≤ √

k + 1. According to Lemma 1, it holds
that ηε(Zk+2 ∩ ker(A)) ≤ ηε(Z2)

√
k + 1 ≤ rl and then ηε(Zk+2 ∩ ker(A)) ≤ rlS

as S ≥ I. By Theorem 1, we have

ΔML(p,D
Zk/l,r

√
Σ2

) = ΔML(lp,DZk,rlAS) = ΔML(Ay,DZk,rlAS) ≤ 2ε̂

and the correctness of Pert(r, b, k, l) follows.

508 S. Zhang and Y. Yu

Since ‖D̃‖col ≤ 1, Lemma 1 shows s ≥ (b + 1)ηε(D). The algorithm
SampleD(r, c,d) is actually Klein algorithm [25] on D, so ΔML(Dz,DL(D),r,c) ≤
2kε̂ by Theorem 4.1 of [25] and ‖D̃‖col ≤ 1. It remains to show r

√
Σ3 ≥ ηε(Zk/l)

where Σ−1
3 = Σ−1

1 + Σ−1
2 and Σ1 = TTt as per Theorem 2. Indeed [21]

showed in Corollary 1 that r′√Σ3 ≥ ηε(L(Σ2)) for r′ =
√
2b(2b+1)

b+1 ηε(Zk). From
L(Σ2) ⊂ Z

k, it follows that ηε(Zk) ≤ ηε(L(Σ2)) and then

ηε(Zk/l) ≤ ηε(L(Σ2))
l

≤ r′

l

√
Σ3 ≤ r

√
Σ3.

We now complete the proof. ��

4.2 Comparison

The comparison between our gadget Gaussian sampler and the Genise-
Micciancio one [21] is summarized as follows:

Gaussian Quality. Both two samplers are proposed to sample a spherical
Gaussian over the gadget lattice. The quality of the sampler is measured by the
minimal Gaussian width s it achieves. As shown in Lemma 4, the minimal s for
our sampler is (b + 1) · ηε(Zk). While a lower bound of s given in [21] (Corollary
1) is

√
2b(2b+1) ·ηε(Zk), it is improved to (b+1) ·ηε(Zk) in [16] via replacing the

integer perturbation sampling with a continuous version. Therefore, our sampler
achieves the same quality with the Genise-Micciancio one.

Arithmetic. All intermediate numbers in Algorithm 1 are either integer or
fraction with a simple bounded denominator, which supports a complete integer
implementation. Indeed some base samplers (for D

Z,lr
√

b and DZ,r/dk−1,ck−1/dk−1)
deal with irrational width or relatively complicated center. Nevertheless, they
can still be implemented over integers by classic techniques [6,38]. In contrast,
the Genise-Micciancio sampler needs floating point arithmetic in computing a
square Gram root of Σ2, and to achieve higher quality, it also requires continuous
Gaussian samplings.

Memory. As a direct result of integer arithmetic, our sampler requires less RAM
and storage for precomputed values. In addition, the new-introduced matrix A
is of regular structure and thus causes no storage overhead.

Time Complexity. Algorithm 1 consists of (2k + 2) integer samplings and
other arithmetic computations, i.e. computing d,Ay, c, need only O(k) integer
operations thanks to the nice structures of A,T. Therefore our sampler runs in

Towards a Simpler Lattice Gadget Toolkit 509

O(k) assuming constant time for base samplings and scalar arithmetic, which
is the same with the Genise-Micciancio sampler. Additionally, the subroutine
Algorithm 2 is highly parallelizable.

Experimental Result. We implement our new sampler and compare with
the implementations of the Genise-Micciancio sampler and its variant in [16]
available in the PALISADE library2. For a fair comparison, we implement all
base samplers with the open source code of Karney sampler. The experiments
were run in C++ on a laptop with an Intel Core i7-10510U CPU with 4 cores
@ 1.80 GHz, running Ubuntu 20.04.2 LTS.

Figure 1 shows the speed comparison among three algorithms under different
moduli q and the same base b = 2 and width s = 100. Basically, our algorithm
is as fast as the Genise-Micciancio sampler but about twice slower than the
variant in [16]. Figure 2 shows the speed comparison under different bases b
and a fixed modulus q ≈ 9 · 1018. In the corresponding experiment, we work
with s = (b + 1) · ηε(Zk) ≈ 4.578(b + 1) as used in practice [16]. Since the
bound of s in [21] is greatly larger than that in the variant of [16], we omit the
comparison with [21]. The samplers in [21] and [16] need floating-point arithmetic
for Cholesky decomposition, and the one in [16] also uses continuous Gaussian
sampling. In contrast, our algorithm avoids all floating-point operations. The
efficiency advantage of the variant of [16] is due to the fact that the continuous
Gaussian sampling in C++ header file “random” is significantly faster than the
Karney sampling in the PALISADE library. With a faster base sampler, our
algorithm hopefully outperforms the one of [16].

Fig. 1. Measured clock cycles with q ∈ {4093, 12289, 1676083, 8383498, 4295967357, ≈
9 · 1018}, b = 2 and s = 100 averaged over 1000,000 runs.

2 https://palisade-crypto.org/.

https://palisade-crypto.org/

510 S. Zhang and Y. Yu

Fig. 2. Measured clock cycles with b ∈ {21, 22, · · · , 210}, q ≈ 9 · 1018 and s = (b + 1) ·
ηε(Z

k) averaged over 1000,000 runs.

5 Improved Gadget Subgaussian Sampling

In this section, we present a new gadget subgaussian sampler for arbitrary
moduli. Compared with the Genise-Micciancio-Polyakov algorithm [23] (See
Sect. 3.2), our algorithm is simpler, faster and requires asymptotically less ran-
domness. As for the quality, while the subgaussian parameter achieved by our
sampler is

√
2 times as large as that by the Genise-Micciancio-Polyakov sampler

for large b and in the worst case, the actual quality of our sampler is close to
even better than that of the Genise-Micciancio-Polyakov sampler for practical
parameters (q, b).

5.1 The Algorithm

Our algorithm distinguishes two cases of q = bk and q < bk. For q = bk, the
sampling is identical to the existing algorithm (Algorithm 1, [23]) that is easy
and efficient. But for q < bk, our sampler proceeds very differently: it fully
exploits the ease of the procedure for q = bk and does not use special linear
transformation as the existing approach (Algorithm 2, [23]). The idea stems from
a simple observation that for q = bk and u ∈ Zq, the output x satisfies 〈x,g〉 ∈
{u, u − q} (See Lemma 6). The values u and u − q basically determine the most
significant digit xk−1 and thus 〈x′,g′〉 mod bk−1 where x′ = (x0, x1 · · · , xk−2)
and g′ = (1, b, · · · , bk−2). Our sampler for q < bk is designed upon above facts;
it consists of three steps: first, to choose 〈x′,g′〉 mod bk−1 according to proper
probability; then, to sample a subgaussian x′ with the sampler for q = bk−1

given 〈x′,g′〉 mod bk−1; finally, to determine the last coefficient xk−1 as per x′.
The formal description is illustrated in Algorithm 4.

Lemma 5 shows the correctness and performance of Algorithm 4.

Towards a Simpler Lattice Gadget Toolkit 511

Lemma 5. Let b, k, q, u ∈ N such that q ≤ bk and u ∈ Zq. Then
SubGaussian(b, k, q, u) outputs a subgaussian vector over Λ⊥

u (gt). More precisely,

– if q = bk, SubGaussian(b, k, q, u) uses log q random bits, runs in O(k) time
and space and achieves subgaussian parameter at most (b − 1)

√
2π;

– if q < bk, SubGaussian(b, k, q, u) uses log q + (k − 1) log b random bits,
runs in O(k) time and space and achieves subgaussian parameter at most√

(b − 1)2 + α2
√

2π with α = �q/bk−1� + 1.

Remark 2. As a by-product, a digit decomposition for an arbitrary modulus is
obtained by de-randomizing Algorithm 4, that is replacing lines 8 and 17 with

Algorithm 4: Gaussian subgaussian sampler SubGaussian(b, k, q, u)

Input: positive integers b, k, q, u such that q ≤ bk and u ∈ Zq.
Output: subgaussian x ∈ Λ⊥

u (gt) with parameter (b − 1)
√

2π when q = bk;
with parameter

√
(b − 1)2 + α2

√
2π with α = 	q/bk−1
 + 1 when q < bk.

1: if q = bk then
2: x ← 0
3: for i = 0, · · · , k − 1 do
4: y ← u mod b ∈ {0, · · · , b − 1}
5: if y = 0 then
6: xi ← 0
7: else
8: with probability y/b, xi ← y − b, and xi ← y otherwise
9: end if

10: u ← (u − xi)/b
11: end for
12: return x
13: end if
14: u0 ← u mod bk−1, u1 ← (u − q) mod bk−1

15: a0 ← 	 u
bk−1
, a1 ← 	 u−q

bk−1

16: sample r uniformly over [0, 1]
17: if r < q−u

q
then

18: x′ ← SubGaussian(b, k − 1, bk−1, u0)
19: if 〈x′,g′〉 = u0 with g′ = (1, b, · · · , bk−2) then
20: return x = (x′, a0) {〈x′,g′〉 = u0}
21: else
22: return x = (x′, a0 + 1) {〈x′,g′〉 = u0 − bk−1}
23: end if
24: else
25: x′ ← SubGaussian(b, k − 1, bk−1, u1)
26: if 〈x′,g′〉 = u1 then
27: return x = (x′, a1) {〈x′,g′〉 = u1}
28: else
29: return x = (x′, a1 + 1) {〈x′,g′〉 = u1 − bk−1}
30: end if
31: end if

512 S. Zhang and Y. Yu

deterministically choosing the option of higher probability. It can be seen that
the output of this digit decomposition is of infinity norm ≤ b/2.

To prove Lemma 5, we need the following lemma.

Lemma 6. Let b, k, q, u ∈ N such that q = bk and u ∈ Zq. Let x be the output
of SubGaussian(b, k, q = bk, u) and g = (1, b, · · · , bk−1). Then 〈x,g〉 = u with
probability (q − u)/q; 〈x,g〉 = u − q with probability u/q.

Proof. Since |xi| < b, some simple computation yields that 〈x,g〉 ∈ (−bk, bk).
Together with the fact that 〈x,g〉 = u mod q, it follows that 〈x,g〉 ∈ {u, u − q}.
Let p denote the probability of 〈x,g〉 = u, then

E[〈x,g〉] = p · u + (1 − p)(u − q).

At each step, xi is chosen from {y, y − b} with expectation 0. Therefore

p · u + (1 − p)(u − q) = E[〈x,g〉] =
k−1∑

i=0

bi · E[xi] = 0.

This shows p = (q − u)/q and the proof is completed. ��
Proof of Lemma 5. For the case q = bk, Algorithm 4 is the same with Algorithm
1 in [23]. By Theorem 4 of [23], the statement for q = bk is proved. It remains
to prove the statement for q < bk.

To this end, we first prove that the output x satisfies 〈x,g〉 = u mod q.
Lemma 6 shows that 〈x′,g′〉 ∈ {ubit, ubit − bk−1} for bit ∈ {0, 1}. When
〈x′,g′〉 = ubit, it holds that xk−1 = abit and thus

〈x,g〉 = 〈x′,g′〉 + xk−1 · bk−1 = ubit + abit · bk−1 = u − bit · q.

When 〈x′,g′〉 = ubit − bk−1, it holds that xk−1 = abit + 1 and thus

〈x,g〉 = 〈x′,g′〉 + xk−1 · bk−1 = ubit − bk−1 + (abit + 1) · bk−1 = u − bit · q.

Therefore 〈x,g〉 = u mod q always holds.
Next, we show that E[xk−1] = 0 and |xk−1| ≤ α, so that the random variable

xk−1 is subgaussian with parameter α
√

2π. Indeed as shown in Algorithm 4,
xk−1 only has four possible values {a0, a0 + 1, a1, a1 + 1}. Since u ∈ Zq, we have
that a0 = � u

bk−1 � ∈ [
0, � q

bk−1 �] = [0, α − 1] and a1 = � u−q
bk−1 � ∈ [� −q

bk−1 �,−1
]

=
[−α,−1]. Immediately, |xk−1| ≤ α. As for E[xk−1], we note that xk−1 = a0

occurs if and only if r < q−u
q and 〈x′,g′〉 = u0. By Lemma 6, it follows that

Pr[xk−1 = a0] =
(q − u)(bk−1 − u0)

q · bk−1
.

Similarly,

Pr[xk−1 = a0+1] =
(q − u) · u0

q · bk−1
; Pr[xk−1 = a1] =

u · (bk−1 − u1)

q · bk−1
; Pr[xk−1 = a1+1] =

u · u1

q · bk−1
.

Towards a Simpler Lattice Gadget Toolkit 513

Thus we have

E[xk−1] = a0
(q − u)(bk−1 − u0)

q · bk−1
+ (a0 + 1)

(q − u) · u0

q · bk−1
+ a1

u · (bk−1 − u1)

q · bk−1
+ (a1 + 1)

u · u1

q · bk−1

=
(q − u)(a0 · bk−1 + u0)

q · bk−1
+

u · (a1 · bk−1 + u1)

q · bk−1

=
(q − u)u

q · bk−1
+

u · (u− q)

q · bk−1
= 0

Then we verify x is subgaussian with parameter
√

(b − 1)2 + α2
√

2π. That
is to show that 〈x,v〉 is subgaussian with parameter

√
(b − 1)2 + α2

√
2π for all

unit vectors v = (v0, · · · , vk−1). Let v′ = (v0, · · · , vk−2). If |vk−1| = 1, then
〈x,v〉 = xk−1vk−1 is subgaussian with parameter α

√
2π as per above argument.

If vk−1 = 0, then 〈x,v〉 = 〈x′,v′〉 and v′ is a unit vector. As per Algorithm 4
and the statement for q = bk, x′ is subgaussian with parameter (b − 1)

√
2π

and thus 〈x,v〉 is subgaussian with parameter (b − 1)
√

2π if vk−1 = 0. For the
case 0 < |vk−1| < 1, let p0 = 1

1−v2
k−1

, p1 = 1
v2
k−1

, then 1
p0

+ 1
p1

= 1. By Hölder
inequality, we have

E[e2πt〈x,v〉] =E[e2πt〈x′,v′〉+2πtxk−1vk−1]

≤[
E[e2πt〈x′,v′〉]p0

]1/p0
[
E[e2πtxk−1vk−1]p1

]1/p1

≤ exp
(
2π2t2[(b − 1)2(1 − v2

k−1)p0 + α2v2
k−1p1)]

)

= exp
(
2π2t2((b − 1)2 + α2)

)
.

In summary, we prove that x is subgaussian with parameter
√

(b − 1)2 + α2
√

2π.
It is clear that the complexity of Algorithm 4 is O(k). The random bits are

used in two places: line 17 uses log q bits to determine 〈x′,g′〉 mod bk−1 and the
subroutine SubGaussian(b, k − 1, bk−1, ubit) uses (k − 1) log b bits to output x′;
thus log q + (k − 1) log b random bits are used in total. The proof is completed.

��

5.2 Comparison

In this subsection, we compare our new gadget subgaussian algorithm with the
Genise-Micciancio-Polyakov one [23]. The comparison is restricted to the case
q < bk.

Randomness. Less randomness is one of the main advantages of subgaussian
sampling. The Genise-Micciancio-Polyakov algorithm uses k log q = O(k2 log b)
random bits, which was claimed to be “almost optimal” in [23]. In fact, our
algorithm only needs log q + (k − 1) log b = O(k log b) random bits. The reduced
randomness is due to the fully use of the randomness-efficient subroutine for
q = bk−1 in which each coefficient consumes log b bits; in contrast, the i-th coef-
ficient (before linear transformation) consumes i log b bits in Genise-Micciancio-
Polyakov sampler. Notably, Algorithm 4 for q < bk needs an asymptotically same
amount of randomness with the one for q = bk. We therefore believe that it is
essentially optimal in randomness requirement.

514 S. Zhang and Y. Yu

Complexity and Performance. Both the Genise-Micciancio-Polyakov algo-
rithm and ours achieve O(k) complexity in time and space. Nevertheless, our
sampler proceeds in a direct and simple way, which actually saves the computa-
tion and storage with respect to the complicated linear transformation.

We implement Algorithm 4 fully over integers in C++. Since the imple-
mentation of the Genise-Micciancio-Polyakov sampler in the PALISADE library
uses floating-point arithmetic, we also adapt it to a fully integer version for
better comparison. The gadget base b is restricted to a power-of-2 in the exper-
iment, which leads to faster and more convenient operations as verified in [23].
The experiment environment was a laptop with an Intel Core i7-10510U CPU
with 4 cores @ 1.80 GHz, running Ubuntu 20.04.2 LTS. Figure 3 exhibits the
practical performance of subgaussian samplers. It can be seen that our subgaus-
sian sampler is faster than the Genise-Micciancio-Polyakov one whose the inte-
ger implementation outperforms the floating-point implementation in the PAL-
ISADE library. The speed of both algorithms mainly depends on the dimension
k = �60/ log b�. When b = 2 and k = 60, our algorithm is around 3.2 (resp. 2.3)
times as fast as the PALISADE (resp. integer) implementation of the Genise-
Micciancio-Polyakov algorithm. As k decreases, the speed advantage declines.

Fig. 3. Runtime of subgaussian sampling rate for native uniformly random integers
(w.r.t a 60-bit modulus). Experimental values measure over 108 samplings.

Quality. The quality of the subgaussian sampler is measured by the subgaussian
parameter it achieves. That is Qour =

√
(b − 1)2 + α2

√
2π for our sampler where

Towards a Simpler Lattice Gadget Toolkit 515

α = �q/bk−1� + 1 ≤ b and QGMP = (b + 1)
√

2π for the Genise-Micciancio-
Polyakov one. While Qour ≈ √

2 · QGMP in the worst case (α = b) for large b,
our sampler can get close and even better quality in some typical situations:

Fig. 4. Noise growth for GSW-type multiplication in the KP-ABE variant over
Z[x]/(xn + 1) (n = 1024, b = 2, k = 180). The slope of the linear interpolation is
β log(mn) and β describes the rate of noise growth.

– for b = 2, the worst-case Qour =
√

5
√

2π is less than QGMP = 3
√

2π. For a
visualized comparison, we examine the effect of our algorithm (with b = 2) on
the noise growth in GSW-type products [26], which is a typical application of
subgaussian sampling. In the experiment, we generate a random error vector
in Rm

q where Rq = Zq[x]/(xn+1) and m = k+2 and then iteratively multiply
it by a matrix (g−1(ui)) ∈ Rm×m in which g−1(ui) ∈ Rm denotes the output
of either subgaussian or binary decomposition with input ui ∈ Rq. The noise
level (in bits) grows almost linearly in the depth, and the noise growth rate
is (mn)β . As shown in Fig. 4, our algorithm achieves β ≈ 8.287/ log(mn) ≈
0.47 less than 0.50 and 0.89 for the Genise-Micciancio-Polyakov one and the
common binary decomposition, which means our subgaussian algorithm may
lead to more compact parameters in some advanced applications.

– for a large base b, there exist a certain number of NTT moduli q such that
Qour ≤ 1.05 · QGMP . Moreover, some of these moduli can even achieve such
a bounded Qour for all possible b’s. Table 1 shows five such NTT moduli and
corresponding Qour/QGMP with different b.

516 S. Zhang and Y. Yu

Overall, by choosing proper (q, b), it is convenient and flexible to make our
sampler achieve a similar quality with the Genise-Micciancio-Polyakov one in
practical use cases without efficiency and security loss.

Remark 3. The quality of the Genise-Micciancio-Polyakov sampler is determined
by the maximal singular value of the used linear transformation T (Eq. (2)),
and independent of the modulus q. As k grows, the maximal singular value of T
converges to (b + 1) as shown in [33]. Therefore, we fix QGMP = (b + 1)

√
2π as

a tight bound for the quality of the Genise-Micciancio-Polyakov sampler.

Remark 4. Despite the different subgaussian parameters, for both the Genise-
Micciancio-Polyakov sampler and ours, the infinity norm of the output vector is
bounded by b.

Table 1. The values of Qour
QGMP

for some recommended NTT moduli.

b q

222 + 213 + 212 + 1 230 + 213 + 1 240 + 215 + 214 + 211 + 1 252 + 216 + 213 + 211 + 1 260 + 215 − 211 + 1

2 0.745 0.745 0.745 0.745 0.745

22 0.721 0.721 0.721 0.721 0.721

23 0.846 0.808 0.846 0.846 0.808

24 0.930 0.930 0.890 0.890 0.890

25 0.951 0.941 0.941 0.951 0.941

26 1.004 0.969 1.003 1.003 0.969

27 0.984 0.985 1.017 0.986 0.993

28 1.023 1.023 0.992 0.994 0.994

29 0.996 0.996 0.996 1.027 1.004

210 0.998 0.998 0.998 0.998 0.998

211 0.999 1.006 1.001 1.006 0.999

212 1.030 0.999 1.030 0.999 0.999

213 0.999 0.999 0.999 1.000

214 0.999 1.030 1.001 0.999

215 0.999 1.000 0.999 0.999

216 1.030 0.999 0.999 1.001

217 0.999 0.999 0.999

218 0.999 1.030 0.999

219 0.999 1.000 0.999

220 0.999 1.000 0.999

221 1.030 0.999 1.007

222 0.999 1.000

223 0.999 1.000

224 0.999 0.999

225 0.999 0.999

226 0.999 0.999

227 1.030 0.999

228 0.999

229 0.999

230 0.999

231 1.030

Towards a Simpler Lattice Gadget Toolkit 517

6 Conclusion

To conclude, we develop new gadget Gaussian and subgaussian sampling algo-
rithms. Our gadget Gaussian sampler for arbitrary moduli gets rid of the reliance
on high-precision arithmetic while keeping a good efficiency and quality. It can
be a potentially more efficient option for gadget sampling in the context of
constrained environments and side-channel countermeasures. Additionally, our
gadget subgaussian sampler is simpler, faster and needs asymptotically less ran-
domness compared with the previous result. For practical parameters, it also
achieves almost the same quality with the previous sampler. Hence it should be
a refined alternative to the current subgaussian algorithm. Overall our results
provide the current lattice gadget toolkit with some simpler and efficient algo-
rithm candidates, and improve the practicality of the gadget toolkit.

6.1 Future Work

In this work, we focus on the gadget algorithms associated to the typical gadget
g = (1, b, · · · , bk−1). Some lattice applications [10,23,31] use the CRT gadget
to improve the efficiency. The CRT gadget is a generalized gadget based on
the Chinese Remainder Theorem, which is particularly effective for very large
moduli. The algorithms for g = (1, b, · · · , bk−1) can be directly adapted to the
CRT form, thus we omit the related details. Nevertheless, it would be worthy to
implement and evaluate our algorithms in the CRT setting.

The main interest of this work is the fundamental algorithms themselves, and
we do not study deeply from an implementation aspect. With the post-quantum
standardization underway, implementing more powerful lattice cryptosystems
may gain increasingly attention. We leave the optimized implementation and
the application of our results to practical implementations of lattice schemes as
future works. Additionally, our subgaussian sampler and the Genise-Micciancio-
Polyakov one seem susceptible to timing leakage. While this leakage is not an
issue in most current applications, the side-channel protections of gadget algo-
rithms require a future investigation.

While a general definition of gadget was proposed in [23], almost all known
gadget algorithms are designed for the gadget g = (1, b, · · · , bk−1) and its CRT
generalization. To develop more practical gadgets and associated algorithms is
an interesting problem.

Acknowledgements. We thank Léo Ducas for his helpful comments. This work is
supported by the National Natural Science Foundation of China (No. 62102216),
the National Key Research and Development Program of China (Grant No.
2018YFA0704701), the Major Program of Guangdong Basic and Applied Research
(Grant No. 2019B030302008) and Major Scientific and Techological Innovation Project
of Shandong Province, China (Grant No. 2019JZZY010133).

518 S. Zhang and Y. Yu

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional
encryption for threshold functions (or Fuzzy IBE) from lattices. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 17

3. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 2

4. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

5. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986). https://doi.org/10.1007/BF02579403

6. Barthe, G., Beläıd, S., Espitau, T., Fouque, P.A., Rossi, M., Tibouchi, M.: GALAC-
TICS: Gaussian sampling for lattice-based constant- time implementation of cryp-
tographic signatures, revisited. In: ACM CCS 2019, pp. 2147–2164 (2019)

7. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (Lossy) trapdoor
functions and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 15

8. Bert, P., Eberhart, G., Prabel, L., Roux-Langlois, A., Sabt, M.: Implementation of
lattice trapdoors on modules and applications. In: Cheon, J.H., Tillich, J.-P. (eds.)
PQCrypto 2021 2021. LNCS, vol. 12841, pp. 195–214. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81293-5 11

9. Bert, P., Fouque, P.-A., Roux-Langlois, A., Sabt, M.: Practical implementation
of ring-SIS/LWE based signature and IBE. In: Lange, T., Steinwandt, R. (eds.)
PQCrypto 2018. LNCS, vol. 10786, pp. 271–291. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-79063-3 13

10. Bonnoron, G., Ducas, L., Fillinger, M.: Large FHE gates from tensored homo-
morphic accumulator. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2018. LNCS, vol. 10831, pp. 217–251. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89339-6 13

11. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC 2013, pp. 575–584 (2013)

12. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

13. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

14. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and
smaller hash-and-sign signatures. In: ASIACRYPT 2019 (2019, to appear)

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

16. Cousins, D.B., et al.: Implementing conjunction obfuscation under entropic ring
LWE. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 354–371 (2018)

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-30057-8_17
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/BF02579403
https://doi.org/10.1007/978-3-642-29011-4_15
https://doi.org/10.1007/978-3-642-29011-4_15
https://doi.org/10.1007/978-3-030-81293-5_11
https://doi.org/10.1007/978-3-319-79063-3_13
https://doi.org/10.1007/978-3-319-79063-3_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-642-13190-5_27

Towards a Simpler Lattice Gadget Toolkit 519

17. Dai, W., et al.: Implementation and evaluation of a lattice-based key-policy ABE
scheme. IEEE Trans. Inf. Forensics Secur. 13(5), 1169–1184 (2018)

18. Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lattice
Gaussian sampling without floats. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020. LNCS, vol. 12106, pp. 608–637. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45724-2 21

19. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 2

20. Ducas, L., Prest, T.: Fast Fourier orthogonalization. In: ISSAC 2016, pp. 191–198
(2016)

21. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9 7

22. Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete Gaussian
and Subgaussian analysis for lattice cryptography. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 623–651. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 21

23. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit:
subgaussian sampling and more. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11477, pp. 655–684. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3 23

24. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp.
169–178 (2009)

25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206 (2008). https://doi.org/
10.1145/1374376.1374407

26. Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

27. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC 2013, pp. 545–554 (2013)

28. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 25

29. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 23

30. Gür, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Sajjadpour, H., Savaş, E.: Prac-
tical applications of improved gaussian sampling for trapdoor lattices. IEEE Trans.
Comput. 68(4), 570–584 (2018)

31. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-
obfuscation using graph-induced encoding. In: ACM CCS 2017, pp. 783–798 (2017)

32. Hu, Y., Jia, H.: A new gaussian sampling for trapdoor lattices with arbitrary
modulus. Des. Codes Crypt. 87(11), 2553–2570 (2019)

33. Kulkarni, D., Schmidt, D., Tsui, S.K.: Eigenvalues of tridiagonal pseudo-Toeplitz
matrices. Linear Algebra Appl. 297, 63–80 (1999)

https://doi.org/10.1007/978-3-030-45724-2_21
https://doi.org/10.1007/978-3-030-45724-2_21
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-030-45374-9_21
https://doi.org/10.1007/978-3-030-17656-3_23
https://doi.org/10.1007/978-3-030-17656-3_23
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-642-17373-8_23

520 S. Zhang and Y. Yu

34. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 3

35. Lai, Q., Liu, F.-H., Wang, Z.: New lattice two-stage sampling technique and its
applications to functional encryption – stronger security and smaller ciphertexts.
In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696,
pp. 498–527. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-
5 18

36. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 20

37. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

38. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic,
constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402,
pp. 455–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-
0 16

39. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

40. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices.
arXiv preprint arXiv:1011.3027 (2010)

https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-030-77870-5_18
https://doi.org/10.1007/978-3-030-77870-5_18
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-642-14623-7_5
http://arxiv.org/abs/1011.3027

SNARKs and NIZKs

Polynomial IOPs for Linear Algebra
Relations

Alan Szepieniec1(B) and Yuncong Zhang2

1 Nervos Foundation, Panama City, Panama
alan@nervos.org

2 Shanghai Jiao Tong University, Shanghai, China
shjdzhangyuncong@sjtu.edu.cn

Abstract. This paper proposes new Polynomial IOPs for arithmetic cir-
cuits. They rely on the monomial coefficient basis to represent the matri-
ces and vectors arising from the arithmetic constraint satisfaction system,
and build on new protocols for establishing the correct computation of
linear algebra relations such as matrix-vector products and Hadamard
products. Our protocols give rise to concrete proof systems with succinct
verification when compiled down with a cryptographic compiler whose
role is abstracted away in this paper. Depending only on the compiler,
the resulting SNARKs are either transparent or rely on a trusted setup.

Keywords: SNARK · Polynomial IOP · Zero-Knowledge · Succinct
Verification

1 Introduction

Succinct Non-Interactive Arguments of Knowledge (SNARKs) enable a resource-
constrained verifier to cryptographically verify the authentic computations of an
untrusted prover. The technology is particularly well-suited to the cryptocur-
rency setting, where participants are typically anonymous, untrusted, and where
the success of the network depends on the capability of lightweight nodes to ver-
ify the network’s consensus (however that is defined). In this setting, there is a
large monetary incentive for malicious behavior.

Despite the flurry of rapid related and unrelated developments by diverse
parties, two trends are emerging as good practices in this domain.

1. Functional separation in the compilation pipeline. The compilation process
for general purpose zero-knowledge proofs is separated into multiple steps
with clear boundaries. At the input of this pipeline is a computation, repre-
sented either as program source code or as a circuit. A technique called arith-
metization turns this computation into a constraint system involving native
operations over a finite field. The next step transforms this constraint sys-
tem into an abstract proof system between two parties, prover P and verifier
V, that are interactive Turing machines with access to unrealistic or unreal-
izable resources such as PCP oracles. These abstract proof systems in this

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 523–552, 2022.
https://doi.org/10.1007/978-3-030-97121-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_19

524 A. Szepieniec and Y. Zhang

step are called interactive oracle proofs (IOPs) and typically achieve statis-
tical or even perfect security. In the last step, the cryptographic compilation,
the unrealistic resources are replaced by cryptographic approximations that
achieve the same functionality at the expense of introducing computational
hardness assumptions for security.

2. Polynomial IOP formalism. The abstract information-theoretical proof sys-
tem in the step before cryptographic compilation could in principle rely on
a variety of unrealistic resources, and build a sound proof system from their
mathematical properties. However, for the purpose of establishing soundness,
the Schwartz-Zippel lemma is an indispensable tool. The strategy is to reduce
the satisfaction of arithmetic constraints arising from the constraint system
to series of identities of low-degree polynomials. By evaluating these polyno-
mials in random points, their equality is tested probabilistically. If the left
and right hand sides of an equation represent identical polynomials, they are
identical everywhere, but if they are unequal they are different almost every-
where. The Schwartz-Zippel lemma provides an exact concrete quantification
of the security lost due to this probabilistic approximation. A Polynomial
IOP is the abstract proof system tailored to this strategy. In this formalism,
the prover sends low degree polynomials to the verifier, and rather than read-
ing the entire list of coefficients, the verifier queries these polynomials in a
given point through an oracle interface. The cryptographic compiler uses a
polynomial commitment scheme to simulate this unrealistic resource.

These trends are visible in the rise of universal SNARKs with universal and
updatable structured reference strings (SRS’s) such as Sonic [11], PLONK [8],
and Marlin [7]. The common idea here is to use the cryptographic pairing-based
mathematics only to realize polynomial commitment scheme, typically the KZG
scheme [10]. Since the SRS is used only for the KZG scheme, it is independent
of the preceding abstract proof system and the circuit it encodes; this indepen-
dence is precisely what enables updates to the SRS and its adaptation to any cir-
cuit. PLONK and Marlin independently formalize this abstraction and introduce
the terms Polynomial Protocol and Algebraic Holographic Proof (AHP), respec-
tively. This paper adopts the terminology of Bünz et al. [6], who introduce a new
polynomial commitment scheme (and hence a cryptographic compiler) based on
groups of unknown order and in the process explore the landscape of protocols it
can apply to.

These trends are also visible in the rise of IOPs based on Reed-Solomon
codes [1,3,4]. The underlying abstract protocols here are not explicitly Polynomial
IOPs. However, their common feature is the reliance on Reed-Solomon codewords
as the proof oracles. Since Reed-Solomon codewords are obtained by evaluating
polynomials in a domain of points whose cardinality is larger than the polynomi-
als’ degree, these proof oracles uniquely identify the originating low-degree poly-
nomials. As a result, a Reed-Solomon IOP is a Polynomial IOP in disguise.

Despite the spontaneous convergence onto Polynomial IOPs as a useful formal-
ism, there seems to be little agreement about the optimal interface between Poly-
nomial IOPs and the arithmetic constraint systems that they realize. Arithmetic
constraint systems typically express constraints using matrix algebra: in terms of

Polynomial IOPs for Linear Algebra Relations 525

vectors, and matrix multiplication, but also Hadamard products, which is a fancy
word for the element-wise products of pairs of equal-length vectors. The set of oper-
ations that Polynomial IOPs natively offer are somewhat different. As a result,
how the Polynomial IOP represents the objects in the arithmetic constraint sys-
tem and how it simulates the equations that constrain them, are the key questions
in the design process of Polynomial IOPs. The various answers to these questions
are what set the various Polynomial IOPs for arithmetic circuits apart.

– Marlin and Aurora represent the objects of the arithmetic constraint system as
the Reed-Solomon codewords of polynomials. Standard techniques establish
the correct computation of a Hadamard product of such codewords. The
computation of a linear transform applied to such a codeword is reduced to
checking the sum of a related codeword.

– PLONK represents the vector of wire values as the values of a polynomial in a
domain of points. A permutation argument establishes the assignment of wires
to gates and the standard techniques for Reed-Solomon codewords establish the
consistency of inputs and outputs to addition and multiplication gates.

– Sonic represents the vectors of left, right, and output wires of a series of mul-
tiplication gates as the coefficient vectors of three polynomials. The consis-
tency of these multiplication gates, and of a linear transform, is established by
checking several properties of bivariate polynomials. The paper furthermore
explains under which conditions these bivariate polynomials can be simulated
with univariate ones.

Contributions. In this paper we propose a new Polynomial IOP for arithmetic
circuits, called Claymore.1 Succinct verification is achieved with a trusted pre-
processing phase. When compiled with any polynomial commitment scheme, the
result is a concrete zk-SNARK with universal updatable structured reference
string, or transparent setup, depending only on the nature of the polynomial
commitment scheme.

The arithmetic constraint system chosen to represent the arithmetic circuit
is the Hadamard Product Relation (HPR), in which the witness consists of three
vectors representing the left, right, and output wires of a list of multiplication
gates. We note that Sonic realizes a similar constraint satisfaction relation by
reducing both the multiplication and linear constraints into one large equa-
tion. In Claymore, the multiplication gate consistency and linear consistency are
achieved in two separate steps, both of which rely on a collection of subprotocols
for linear algebra relations that we develop along the way. The separate steps
are later merged as an explicit optimization.

Like Sonic but unlike Marlin and PLONK, Claymore opts for the monomial
coefficient basis to represent the vectors of the arithmetic constraint system.
DenseClaymore represents the linear transform as a dense matrix in the monomial
coefficient basis and this choice results in the smallest number of polynomials in
the transcript across all Polynomial IOPs. The price to pay for this brevity is
the O(n2) scaling of the polynomials’ degree, where n is the size of the circuit.
1 A type of Scottish sword.

526 A. Szepieniec and Y. Zhang

A question that naturally arises when using this basis, is whether it is also
equipped to deal with the sparse linear transformations that typically come
from long-winded computations. We answer this question positively by providing
methods for dealing with sparse linear algebra relations, culminating in a sparse
variant of Claymore. This variant concretely outperforms Marlin and Sonic in
terms of the number of polynomials in the transcript. While this number is
smaller still for PLONK, one notes that PLONK does not support arbitrary fan-
in for linear constraints, whereas Marlin and Claymore (both variants) do.

Additionally, we compare the new and existing Polynomial IOPs both
abstractly and concretely. In the abtract comparison we determine how the key
performance-driving parameters of the Polynomial IOP evolve as a function of
the circuit size. In the concrete comparison, we transform the various Polynomial
IOPs with three different cryptographic compilers into concrete zk-SNARKs in
order to compare the size of the resulting proofs. In this comparison, all proofs
establish the integrity of the same benchmark computation.

Motivation and Applications. The motivation for this work is chiefly theoreti-
cal. We study the interface between arithmetic circuits and Polynomial IOPs in
isolation of other constraints and demands. As a result of this focus, our pro-
tocol is arguably simpler than other protocols that achieve nominally the same
thing. Complexity is the friend of mistakes, and our protocol may therefore be
the preferred option for this reason even in circumstances where it is inferior in
terms of performance.

The dense variant of Claymore performs extremely well for shallow arithmetic
circuits, such as the verification circuits of lattice-based and MQ-based signature
schemes, which typically involve operations on large matrices and vectors over
a small finite field. As a result, a DenseClaymore-SNARK is an outstanding can-
didate for achieving post-quantum signature aggregation, or signature schemes
with various fancy properties that zero-knowledge proofs enable.

Using SNARKs in combination with other cryptographic tools points to a
useful property that SNARKs frequently lack—they typically require a finite field
with a particular structure, such as a large multiplicative subgroup of smooth
order. Marlin and PLONK have this property, while Sonic is defined for arbitrary
fields. Using the SNARK in combination with a different cryptosystem that
requires an incompatible field, requires the SNARK to simulate the cryptosys-
tem’s field operations using the arithmetic constraint system of the SNARK. In
contrast, Claymore (like Sonic) induces no such costly simulation overhead as it
works for any large enough finite field.

The protocols proposed here promote simplicity through modularity. How-
ever, we observe that once the basic protocol has been composed, there are
available optimizations that improve its characteristics at the cost of violating
the boundaries between modules. This observation highlights the utility of sepa-
rating design from optimization considerations. Note that it is only the optimized
SparseClaymore protocol that outperforms Marlin in the target metric, number
of polynomials. The unoptimized version is inferior in all respects. Furthermore,
the proof of zero-knowledge relies on a batching-related optimization that applies

Polynomial IOPs for Linear Algebra Relations 527

to both variants of Claymore; without this optimization the proof is tricky and
complex. Lastly, the optimizations stand on their own, and can possibly improve
other Polynomial IOPs beyond Claymore.

2 Preliminaries

2.1 Indexed Relations

Owing to their convenience, we use indexed relations [7]. An indexed relation
is a set R of tuples (i,x,w), whose three components are called the index,
instance, and witness, respectively. The separation between index and instance
captures the intuition that some properties of concrete proofs for R should be
computable from i even before x is known. For instance, i can be the descrip-
tion of an arithmetic circuit, x the values of the output wires, and w an assign-
ment of values to all wires that makes the all gates consistent. The projection
{(i,x) | (i,x,w) ∈ R} of triples in R onto the first two components is the indexed
language corresponding to R and is denoted by L(R).

2.2 Constraint Systems

A constraint system is a representation of a computation in terms of equations
with unknown variables. When there is an assignment to the unknown variables
that satisfies all equations, we say the constraint system is satisfiable, and this
assignment is the witness. The index determines all fixed constants in the equa-
tions, and the instance determines known variables that can vary independently
of the index but are ultimately known by all parties involved.

The following constraint system is adapted from Bootle et al. [5].

Definition 1 (Hadamard Product Relation (HPR)). Let F be a finite
field. A triple (i,x,w) where i = (m,n,M) with m,n ∈ N, and M ∈ F

m×(1+3n),
where x = x ∈ F

m, and where w = (wl,wr,wo) ∈ F
n × F

n × F
n; satisfies the

Hadamard Product Relation iff both

x = M

⎛
⎜⎜⎝

1
wl

wr

wo

⎞
⎟⎟⎠ (1)

and
wl ◦ wr = wo , (2)

where ◦ denotes the Hadamard (i.e., entry-wise) product; and in this case we
write (i,x,w) ∈ RHPR.

528 A. Szepieniec and Y. Zhang

2.3 Interactive Proof Systems

Definition 2 (Interactive Proof System). Let R be an indexed relation
with corresponding relation language L(R). An interactive proof system is a
pair (P,V) of stateful interactive Turing machines such that: the input to P is
(i,x,w), the input to V is (i,x); P and V exchange r = r(|i|) messages in total;
and in the last step of the protocol V outputs a single bit b ∈ {�,⊥}. The system
satisfies two more properties:

– Completeness—V accepts members of L(R): (i,x) ∈ L(R) ⇒ b = �.
– Soundness (with soundness error σ)—V rejects non-members of L(R) except

with probability at most σ taken over the all random coins involved: Pr[(i,x) �∈
L(R) ⇒ b = ⊥] ≥ 1 − σ.

Soundness becomes a moot point when for the given index i every instance x
has a matching witness w such that (i,x,w) ∈ R. In this case a stronger notion
called knowledge soundness [2] is preferred, which informally requires that any
adversary that successfully convinces the verifier can be made to leak a witness
by an extractor machine that has the same interface as the verifier but can
additionally reset the adversary to an earlier point in time without forgetting
the observed transcripts. In our context, all witnesses are encoded into oracles,
and the prover displays knowledge of them simply by providing the oracles to
the verifier. As a result, at our level of abstraction, knowledge soundness follows
automatically from soundness. When the oracles are simulated by a concrete
cryptographic tool, knowledge soundness becomes an important consideration
that is not automatically satisfied. However, this cryptographic instantiation is
beyond the scope of this paper.

A proof system is zero-knowledge [9] if, informally, an authentic transcript
could have been produced by an adversary who is ignorant of the witness. More
formally, the distribution of authentic transcripts must be samplable with public
information only.

Definition 3 (Honest-Verifier Zero-Knowledge). Let R be an indexed rela-
tion and let (P,V) be a proof system for R. Let tr ← 〈P(i,x,w),V(i,x)〉 denote
the assignment to the variable tr of the transcript arising from the interaction
between P with input (i,x,w) and V with input (i,x). The proof system (P,V) is
honest-verifier zero-knowledge if there exists a polynomial-time Turing machine
S such that the distribution D0 of authentic transcripts tr ← 〈P(i,x,w),V(i,x)〉,
is identical to the distribution D1 of simulated transcripts tr ← S(i,x). When
D0 and D1 are distinct, we consider the statistical distance and use the term
Statistical Honest-Verifier Zero-Knowledge.

2.4 Polynomial IOP

Informally, a Polynomial IOP is an abstract proof system, where the prover
sends polynomials and the verifier, instead of reading the polynomials in their
entirety, is allowed to query the polynomial as oracles in select points.

Polynomial IOPs for Linear Algebra Relations 529

Definition 4 (Polynomial IOP). Let R be an indexed relation with corre-
sponding indexed language L(R), F some finite field, and d ∈ N a degree bound.
A Polynomial IOP for R with degree bound d is a pair of interactive machines
(P,V), satisfying the following description.

– (P,V) is an interactive proof for L(R) with r rounds, and with soundness
error σ.

– P sends polynomials fi(X) ∈ F[X] of degree at most d to V.
– V is an oracle machine with access to a list of oracles, which contains one

oracle for each polynomial it has received from the prover.
– When an oracle associated with a polynomial fi(X) is queried on a point

zj ∈ F, the oracle responds with the value fi(zj).
– V sends challenges αk ∈ F to P.
– V is public coin.

Definition 4 stipulates one global degree bound d for all polynomials. In
Appendix A2 we offer this alternative definition that stipulates individual degree
bounds di for each polynomial fi(X). The same appendix presents a transfor-
mation between definitions to establish their equivalence. This transformation
does lose some generality: queries in zj = 0 are not allowed, the global-bound
protocol has one polynomial more, and the soundness error increases by at most
2p+d−1
|F|−1 , where p is the original number of polynomials. However, these restric-

tions are not significant for typical applications of Polynomial IOPs, where the
field F is large. Therefore, without too much loss of generality, we may assume
for the sake of a simpler presentation that the polynomials come with individual
degree bounds.

With a minor extension, Polynomial IOPs can appropriately capture pre-
processing. This extension introduces third machine, the indexer I. As its name
suggests, I reads only i, and it outputs a list of polynomials to which V has oracle
access.

Definition 5 (Polynomial IOP with Preprocessing). Let R be an indexed
relation with corresponding language L(R). A Polynomial IOP with Preprocess-
ing is a tuple of interactive machines (I,P,V) such that (P,V) is a Polynomial
IOP for L(R) and such that

– I takes i for input and outputs a list of polynomials of degree at most d;
– V has oracle access to these polynomials in addition to the polynomials it

receives from P.

Some of the Polynomial IOPs in this paper are designed for modular com-
position. As a result, V does not begin with an empty list of polynomial oracles.
In order to define the relations that these Polynomial IOPs realize, we denote
by [fi(X)] a polynomial fi(X) that was sent to V by I or P at some earlier stage
and to which V has oracle access.

2 This and other appendices are available in the full version of this paper [13].

530 A. Szepieniec and Y. Zhang

3 Dense Linear Algebra Relations

3.1 Inner Product

Bünz et al. [6] are the first to sketch a Polynomial IOP that realizes an inner
product relation between two vectors. It relies on the fact that the inner product
of the coefficient vectors of fa(X) and fb(X) is the middle coefficient of fa(X) ·
Xd ·fb(X−1), assuming that both fa(X) and fb(X) are of degree d. To verify the
middle coefficient is indeed the claimed inner product c, V needs two polynomials:
the left half l(X) and the right half r(X), both of degree d−1. Then the identity
fa(X) · Xd · fb(X−1) = l(X) + Xd · c + Xd+1 · r(X) cannot hold in more than
2d points unless c is the correct inner product.

Our variant of this protocol achieves the same result with the same number
of queries but with one polynomial oracle less. This trade-off induces a doubling
of the polynomial’s degree and an increase-by-one in the number of distinct
evaluation points. To see how this is achieved, observe that the coefficient on
Xd of the polynomial fa(X) · Xd · fb(X−1) − c · Xd is zero. The same is true
for h(X) = h̄(X) · γd − h̄(γX) for any h̄(X) and any γ with a large enough
multiplicative order. If fa(X) · Xd · fb(X−1) =

∑2d
i=0 ciX

i (with cd = c), then
P can obtain h̄(X) by setting its ith coefficient to ci/(γd − γi) when i �= d, or
uniformly at random when i = d. The verifier V tests that the coefficient of Xd is
indeed zero by sampling the left and right hand sides of the polynomial identity

h̄(X) · γd − h̄(γ · X) = fa(X) · Xd · fb(X−1) − c · Xd (3)

in a uniformly random point z
$←− F\{0}. The multiplicative order of γ must be

larger than 2d for this h̄(X) to exist; for simplicity set γ to the smallest element
that generates F\{0},×.

Formally, the relation realized by inner product protocols is

Rip =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣

i = d
x = ([fa(X)], [fb(X)], c)
w = (fa(X), fb(X))
fa(X) =

∑d
i=0 aiX

i

fb(X) =
∑d

i=0 biX
i

c =
∑d

i=0 aibi

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (4)

Theorem 1 (Security of InnerProduct). Protocol InnerProduct of Protocol 1 is
a Polynomial IOP for L(Rip) with completeness and soundness with soundness
error σ = 2d

|F|−1 .

Proof. The protocol revolves around the polynomial identity of Eq. (3). The
verifier tests this identity by sampling left and right hand sides in a random
point z. Since this is an identity whenever c = aTb, completeness follows. For
soundness, observe that when c �= aTb then the coefficient of Xd on the right
hand side of (3) is nonzero whereas the matching coefficient of the left hand side

Polynomial IOPs for Linear Algebra Relations 531

description: decides L(Rip)
inputs: i : d
inputs: x : ([fa (X)], [fb (X)], c)
inputs: w : (fa (X), fb (X))
begin

P computes fc (X) =
∑2d

i=0 ciX
i ← fa (X) · Xd · fb (X

−1)

P computes h̄(X) =
∑2d

i=0 h̄iX
i with h̄i ← ci

γd−γi for all i �= d and h̄d
$←− F

P sends h̄(X) of degree at most 2d to V

V samples z
$←− F\{0} and queries ([fa (X)], [fb (X)], [h̄(X)], [h̄(X)]) in

(z, z−1, z, γ · z)
V receives ya = fa (z), yb = fb (z

−1), yh = h̄(z), and y∗
h = h̄(γ · z)

V tests yh · γd − y∗
h

?
= ya · yb · zd − c · zd

Protocol 1: InnerProduct

is zero. There are at most 2d points z where left and right hand sides are equal,
since both hands are bounded by this degree. By the Schwartz-Zippel lemma,
the probability of a false accept is σ = 2d

|F|−1 . �

3.2 Batched Inner Product

We can batch multiple invocations of protocol InnerProduct into a single proto-
col that requires the prover to send only one polynomial oracle. Formally, the
relation is given by

Rbip =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣

i = (m, d)
x = {([fai

(X)], [fbi
(X)], ci)}m

i=1

w = {(fai
(X), fbi

(X))}m
i=1

∀i ∈ {0, . . . , m − 1} . fai(X) =
∑d

j=0 aijX
i

∀i ∈ {0, . . . , m − 1} . fbi
(X) =

∑d
j=0 bijX

i

∀i ∈ {0, . . . , m − 1} . ci =
∑d

j=0 aijbij

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (5)

Theorem 2 (Security of BatchedInnerProduct). Protocol BatchedInnerProduct
of Protocol 2 is a Polynomial IOP for L(Rbip) with completeness and soundness
with soundness error σ = 2d+m−1

|F|−1 .

Proof. Let
∑2d

j=0 ci,jX
j = fai

(X) · fbi
(X−1) · Xd for all i ∈ {1, . . . , m}. Fur-

thermore, let H̄(X,Y) =
∑m

i=1

∑2d
j=0 hi,jX

jY i−1 with hi,j = ci,j
γd−γj for j �= d,

arbitrary hi,d for i > 0, and h0,d such that h̄(X) = H̄(X,α).
The protocol revolves around the bivariate polynomial identity

H̄(X,Y) · γd − H̄(γ · X,Y) = Xd ·
m∑

i=1

(fai
(X) · fbi

(X−1) − ci) · Y i−1 . (6)

532 A. Szepieniec and Y. Zhang

description: decides L(Rbip)
inputs: i : (m, d)
inputs: x : {([fa i(X)], [fbi(X)], ci)}m

i=1

inputs: w : {(fa i(X), fbi(X))}m
i=1

begin

P computes fci(X) ← fa i(X) · fbi(X
−1) · Xd for i from 1 to m

V samples α
$←− F\{0} and sends α to P

P computes fc (X) ← ∑m
i=1 fci(X) · αi−1

P computes h̄(X) =
∑2d

j=0 h̄jX
j with h̄j ← cj

γd−γj for all j �= d and h̄d
$←− F

P sends h̄(X) of degree at most 2d to V

V samples z
$←− F\{0} and queries ({([fa i(X)], [fbi(X)])}m

i=1, [h̄(X)], [h̄(X)])
in ({z, z−1}m

i=1, z, γ · z)
V receives ya,i = fa i(z), yb,i = fbi(z

−1) for i from 1 to m, and yh = h̄(z),
y∗

h = h̄(γ · z)

V tests yh · γd − y∗
h

?
= zd · ∑m

i=1(ya,i · yb,i − ci) · αi−1

Protocol 2: BatchedInnerProduct

The verifier tests this identity by sampling left and right hand sides in a
random point (z, α). Since this is an identity whenever ci = aT

i bi for all i from 1
to m, completeness follows. For soundness, consider when for some i, ci �= aT

i bi.
Then left and right hand sides of (6) are unequal. There are at most 2d + m − 1
points (z, α) in which left and right hand sides are equal, since both hands are
bounded by this total degree. By the (two-dimensional) Schwartz-Zippel lemma,
the probability of a false accept is σ = 2d+m−1

|F|−1 . �
This inner product protocol and its batched version are convenient for zero-

knowledge. The verifier V makes two queries to the polynomial h̄(X): one in z
and one in γ · z. Since h̄(X) has one uniformly random coefficient, one of the
responses is uniformly random. The other one is such that the tested equality is
true. So the honest verifier learns no new information from h̄(X).

3.3 Modular Reduction

We start with a protocol that will be used as a subprotocol in the sequel. This
protocol establishes that one polynomial, r(X), is the remainder after division of
a second polynomial f(X), by a third, d(X). This third polynomial is assumed
to be known, but the protocol can be naturally amended to allow V only oracle
access to [d(X)]. Formally, the relation is given by

Rreduce =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣

i = (df , dr)
x = ([f(X)], [r(X)], d(X))
w = (f(X), r(X))
∃q(X) ∈ F[X] . f(X) = q(X) · d(X) + r(X)
deg(f) ≤ df

deg(r) ≤ dr

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (7)

Polynomial IOPs for Linear Algebra Relations 533

description: decides L(Rreduce)
inputs: i : (df , dr)
inputs: x : ([f(X)], [r(X)], d(X))
inputs: w : (f(X), r(X))
begin

P computes q such that f(X) = q(X) · d(X) + r(X)
P sends q(X) of degree at most df − deg(d) to V

V samples z
$←− F\{0} and queries [f(X)], [q(X)], and [r(X)] in z

V receives yf = f(z), yq = q(z), and yr = r(z)

V tests yf
?
= yq · d(z) + yr

Protocol 3: ModReduce

Theorem 3 (Security of ModReduce). Protocol ModReduce of Protocol 3 is a
Polynomial IOP for L(Rreduce) with completeness and soundness with soundness
error σ = df/|F|.
Proof. Completeness follows from construction: dividing f(X) by d(X) gives
quotient q(X) and remainder r(X). Therefore, f(X) = q(X) · d(X) + r(X) is
an identity of polynomials and guaranteed to hold everywhere including in the
point z.

For soundness, observe that when r(X) �≡ f(X)mod d(X) then d(X) does
not divide f(X)− r(X). As a result, f(X) �= q(X) ·d(X)+ r(X) is an inequality
of polynomials with degree deg(d) + deg(q) = df . Due to the Schwartz-Zippel
lemma, the left and right hand sides can evaluate to the same value in at most
df choices for z. The probability of V accepting when r(X) �≡ f(X)mod d(X) is
therefore σ = df/|F|.

What is left to argue is that P fails to convince V when the congruence
r(X) ≡ f(X)mod d(X) holds, but r(X) is not equal to the remainder after
division of f(X) by d(X). The representatives of the congruence class of r(X) are
apart by polynomials of degree at least deg(d), there is only one representative
of degree at most dr < deg(d). The index value dr therefore already constrains
r(X) to a unique polynomial. �

3.4 Matrix-Vector Product

The next protocol involves two polynomials that represent vectors in the mono-
mial coefficient basis. It establishes that the one vector is the result of applying
a linear transformation to the other. This linear transformation itself can be
known and computed explicitly by the verifier. However, for succinct verifiers it
is more appealing to encode this matrix into a polynomial oracle. Depending on
the context, either the protocol’s preprocessing phase produces this oracle, or
another external protocol does.

Specifically, let a ∈ F
n and b ∈ F

m and M ∈ F
m×n with the element in row i

and column j (both indices starting at zero) indexed as M[i,j]. These objects are
represented as polynomials with a[i] being ith element of a and simultaneously

534 A. Szepieniec and Y. Zhang

the coefficient of the monomial Xi in fa(X), and similarly for b, b[i], and fb(X).
When encoded into polynomial form, the matrix is encoded in row-first order,
specifically fM (X) =

∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j . The protocol establishes that
b = Ma. Formally, the relation is given by

Rmvp =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣

i = (m,n,M)
x = ([fa(X)], [fb(X)])
w = (fa(X), fb(X))
fa(X) =

∑n−1
i=0 a[i]X

i for some a ∈ F
n

fb(X) =
∑m−1

i=0 b[i]X
i for some b ∈ F

m

b = Ma

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (8)

description: decides L(Rmvp)
inputs: i : (m, n, M)
inputs: x : ([fa (X)], [fb (X)])
inputs: w : (fa (X), fb (X))
// pre-processing
begin

I computes fM (X) ← ∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j

I sends fM (X) of degree at most mn − 1 to P and V

begin

V samples α
$←− F\{0} and sends α to P

P computes r(X) ← fM (X)modXn − α
P sends r(X) of degree at most n − 1 to V
P and V run ModReduce with i(1) = (mn − 1, n − 1),
x(1) = ([fM (X)], [r(X)], Xn − α), and w(1) = (fM (X), r(X))
V queries [fb (X)] in α and receives yαTb = fb (α)
P and V run InnerProduct with i(2) = n − 1, x(2) = ([r(X)], [fa (X)], yαTb),
and w(2) = (r(X), fa (X))

Protocol 4: DenseMVP

Theorem 4 (Security of DenseMVP). Protocol DenseMVP of Protocol 4 is a
Polynomial IOP for L(Rmvp) with completeness and soundness with soundness
error σ = mn+m+2n−4

|F|−1 .

Polynomial IOPs for Linear Algebra Relations 535

Proof. Let αT = (α0, α1, · · ·) and rT = αTM , and consider the equations

b = Ma (9)

αTb = αTMa (10)
m−1∑
i=0

αib[i] = rTa (11)

fb(α) =
n−1∑
i=0

r[i]a[i] (12)

yαTb = coeffs(r(X)) · coeffs(fa(X)) (13)

(i(2),x(2)) = (n − 1, ([r(X)], [fa (X)], yαTb)) ∈ L(Rip) , (14)

where coeffs : F[X] → F
n is the function that returns the vector of coefficients

of its argument. Observe that coeffs(r(X)) = r, by substituting Xn by α in the
expression for fM (X):

m−1∑
i=0

n−1∑
j=0

M[i,j]X
in+j Xn �→α−−−−→ r(X) =

m−1∑
i=0

n−1∑
j=0

M[i,j]α
iXj (15)

=
n−1∑
j=0

(
m−1∑
i=0

M[i,j]α
i

)
Xj (16)

=
n−1∑
j=0

r[j]X
j . (17)

Completeness follows from the implications (9) ⇒ (10) ⇔ (11) ⇔ (12) ⇒ (13)
⇒ (14).

For soundness, there are 3 events that can cause V to accept despite b �= Ma:

1. (9) �⇐ (10). The probability of this event is at most m−1
|F|−1 due to the Schwartz-

Zippel lemma.
2. (12) �⇐ (13) because r(X) is not the remainder of fM (X) after division by

Xn − α. The probability of this event is at most mn−1
|F| , the soundness error

of ModReduce.
3. (13) �⇐ (14), because yαTb is not the inner product of the coefficient vectors of

r(X) and fa(X). The probability of this event is at most 2n−2
|F| , the soundness

error of InnerProduct.

By the union bound, the soundness error of DenseMVP is bounded by σ =
mn+m+2n−4

|F|−1 . �

Note that after unrolling, the verifier the DenseMVP protocol tests two poly-
nomial identities. One arises from expanding ModReduce, and the other arises
from InnerProduct. Both polynomial identities involve the polynomial r(X), and

536 A. Szepieniec and Y. Zhang

as a result it can be eliminated and the identities merged. We present the unrolled
and optimized version in Appendix C.1.

To see that this merger has no effect on soundness, observe that the inequality
lhs1 �= lhs2 implies r(X) �= lhs1 or r(X) �= lhs2. The verifier therefore accepts
this false instance with a probability bounded by the same soundness error as
the unoptimized protocol. This optimization strategy translates more generally
to (some) other Polynomial IOPs: to eliminate a polynomial that is common to
two identities, move it to the right hand side and then equate both left hand
sides.

3.5 Hadamard Product

The next protocol establishes that the Hadamard (or component-wise) product
of two vectors is equal to a third. These vectors are represented as the coefficient
vectors of polynomials fa(X), fb(X), and fc(X) such that c = a◦b and a, b, c ∈
F
d+1. The protocol relies on the fact that c = a◦b implies αT(a◦b) = αTc for all

vectors α. In other words, one can simply sample a random scalar α
$←− F\{0},

and check the inner product of α ◦ a with b against the inner product αTc.
Note that the right hand side of this check amounts to fc(α) and the operands
in the left hand side amount to the coefficient vectors of fa(αX) and fb(X),
respectively. Formally, the relation is given by

Rhadamard =

⎧⎪⎪⎨
⎪⎪⎩

(i,x,w)

∣∣∣∣∣∣∣∣

i = d
x = ([fa(X)], [fb(X)], [fc(X)])
w = (fa(X), fb(X), fc(X))
∀i ∈ {0, . . . , d} . aibi = ci

⎫⎪⎪⎬
⎪⎪⎭

. (18)

description: decides L(Rhadamard)
inputs: i: d
inputs: x: [fa (X)], [fb (X)], [fc (X)]
inputs: w: fa (X), fb (X), fc (X)
begin

V samples α
$←− F\{0} and sends α to P

P evaluates y ← fc (α)
V queries [fc (X)] in α and receives y = fc (α)
P and V run InnerProduct with i(1) = d, x(1) = ([fa (αX)], [fb (X)], y),
w(1) = (fa (αX), fb (X)), where V simulates [fa (αX)] using [fa (X)] and the
scalar α

Protocol 5: Hadamard

Theorem 5 (Security of Hadamard). Protocol Hadamard of Protocol 5 is a
Polynomial IOP for L(Rhadamard) with completeness and soundness with sound-
ness error σ = 3d/(|F| − 1).

Polynomial IOPs for Linear Algebra Relations 537

Proof. Consider the following sequence of equations.

a ◦ b = c (19)

αT · (a ◦ b) = αT · c (20)
d∑

i=0

(αia[i])b[i] =
d∑

i=0

αic[i] (21)

coeffs(fa(αX)) · coeffs(fb(X)) = fc(α) (22)
coeffs(fa(αX)) · coeffs(fb(X)) = y (23)

(i,x) = (d, ([fa(αX)], [fb(X)], y)) ∈ L(RInnerProduct) (24)

Completeness follows from the sequence of implications (19) ⇒ (20) ⇔ (21)
⇔ (22) ⇔ (23) ⇒ (24).

For soundness, consider when the reverse implications fail.

– (19) �⇐ (20). This event happens with probability at most d/(|F| − 1) due to
the Schwartz-Zippel lemma.

– (23) �⇐ (24). This event happens with probability at most 2d/(|F| − 1), the
soundness error of InnerProduct.

Therefore, the probability that V accepts even though a ◦ b �= c is bounded by
σ = 3d/(|F| − 1). �

4 Sparse Linear Algebra Relations

The purpose of this section is to present an analogue of the DenseMVP Polyno-
mial IOP but that works when the matrix M is represented sparsely, i.e., as a
list of nonzero coefficients and their coordinates. The full, formal presentation of
this protocol is rather lengthy, and so we defer it to Appendix B. Here we present
an intuitive, high-level overview with just enough detail so that the reader could
reconstruct the deferred formal presentation.

4.1 High-Level Overview

Let M ∈ F
m×n be a matrix with only K nonzero elements. It can be represented

by a triple of functions (col, row, val) via M =
∑K−1

k=0 erow(k)eTcol(k) · val(k), where
ei is the ith unit vector, where row, col : N → N indicate the column and row of
the kth element, and where val : N → F indicates its value. We detail a protocol
to establish that y = Mx. We first explain the steps from a high level point of
view.

From MVP to Bivariate Polynomial Evaluation. A key component of
the dense matrix-vector multiplication protocol is the evaluation of (fM (X)
mod Xn − α) at the point z, where fM (X) is the polynomial associated with
the matrix M , i.e., fM (X) =

∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j . This step can equiva-
lently be interpreted as the evaluation of the bivariate polynomial fM (X,Y) =

538 A. Szepieniec and Y. Zhang

∑m−1
i=0

∑n−1
j=0 M[i,j]X

iY j in the point (α, z). In other words, if we can achieve
sparse bivariate polynomial evaluation, then we can achieve sparse matrix-vector
products.

From Bivariate Polynomials to Univariate Monomial vectors. The
reduction goes one step further: it is possible to achieve sparse bivariate poly-
nomial evaluation given a procedure that establishes that the vector of coef-
ficients of a dense polynomial is the same as the vector of monomials of a
sparse univariate polynomial when evaluated in a given point. To see this,
observe that a sparse bivariate polynomial f(X,Y) =

∑K−1
k=0 ckXakY bk can

be evaluated in a point (x, y) using the polynomials fc(X) =
∑K−1

k=0 ckXk,
fx(X) =

∑K−1
k=0 xakXk, and fy(X) =

∑K−1
k=0 ybkXk, simply by performing one

Hadamard and one InnerProduct subprotocol. This reduction does introduce a
problem, namely fx(X) and fy(X) cannot be known before V supplies x and y.
So how does P commit to them, and how does V verify that the received oracles
match with the commitment?

From Univariate Monomial Vector to Bit Matrix . Let’s focus on fx(X),
as fy(X) proceeds analogously. This polynomial can be represented by a
bit matrix B, which takes the value 1 in cells (ak, k) and 0 elsewhere. Let
H denote the largest such ak, i.e., H = maxk ak. Let furthermore x =
(x0, x, x2, . . . , xH−1)T, and z = (z0, z, z2, . . . , zK−1)T. Then B represents the
polynomial fx(X) since fx(z) = xBz.

From bit matrix to Lagrange and Vandermonde matrices. The idea is
to decompose the matrix B ∈ F

H×K as the product of two matrices, L ∈ F
H×H

and R ∈ F
H×K . Let H ⊂ F be a set of H distinct elements of F and ϕ : N → H

any mapping from {0, . . . , H − 1} to H. L is the Lagrange matrix, whose hth
row is the coefficient vector of Lh(X), which is the Lagrange polynomial taking
the value 1 in ϕ(h) and 0 in all other points of H. Symbolically:

Lh(X) =
H−1∑
i=0

L[h,i]X
i =

H−1∏

i = 0
i �= h

X − ϕ(i)
ϕ(h) − ϕ(i)

. (25)

R is the Vandermonde matrix, whose rows are the (Hadamard) powers of
(ϕ(ak))K−1

k=0 . Specifically:

R =

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
ϕ(a0) ϕ(a1) · · · ϕ(aK−1)
ϕ(a0)2 ϕ(a1)2 · · · ϕ(aK−1)2

...
... · · · ...

ϕ(a0)H−1 ϕ(a1)H−1 · · · ϕ(aK−1)H−1

⎞
⎟⎟⎟⎟⎟⎠

. (26)

To verify that LR = B, observe that the inner product between L[h,:] and R[:,k]

is equal to Lh(ϕ(ak)). When V provides (x, z) hoping to obtain xTBz, P will

Polynomial IOPs for Linear Algebra Relations 539

respond with [xTL] and [Rz] (in polynomial form), and both proceed to an
InnerProduct protocol. We will refer to these vectors as the Lagrange and Van-
dermonde vectors, respectively. The next question is, how and against what does
V verify them?

Verifying the Lagrange Vector. After sending x and receiving the vector
(encoded as a polynomial oracle) [xTL], V sends γ to P, who responds with the
vector [Lγ], where γ = (1, γ, γ2, . . . , γH−1)T. Let ZH(X) be the unique monic
polynomial of degree H − 1 that vanishes on H. By repeating the equation

Lh(γ) · (γ − ϕ(h)) =
ZH(γ)

H − 1∏
i = 0
i �= h

(ϕ(h) − ϕ(i))
(27)

for every h, V can check Lγ using a Hadamard subprotocol, assuming that P
or I previously committed to oracles for fϕ(X) =

∑H−1
h=0 ϕ(h)Xh and fH(X) =

∑H−1
h=0

(∏
i∈{0...H−1}\{h}(ϕ(h) − ϕ(i))

)−1

· Xh. The next step is to query the
oracles [xL] and [Lγ] in γ and x, respectively and verify that the responses
match.

Verifying the Vandermonde Vector. A similar technique allows V to verify
the Vandermonde vector. After sending z and receiving [Rz] back, V sends δ,
and P responds with [δTR]. Next, V checks that for every k ∈ {0, . . . , K − 1},

(
H−1∑
i=0

(δ · ϕ(ak))i

)
· (δϕ(ak) − 1) = (δϕ(ak))H − 1 (28)

using another Hadamard protocol and the precommitted oracle fa(X) =∑K−1
k=0 ϕ(ak)Xk. Lastly, V queries [Rz] in δ to see if the response matches with

[δR] when queried in z.

Batching Lagrange and Vandermonde Vectors. In order to establish the
correct evaluation of the bivariate polynomial, the prover must establish the
correct production of two univariate monomial vectors. A näıve implementation
invokes the Lagrange vector and the Vandermonde vector procedure twice. How-
ever, it turns out to be possible to merge these two invocations, and save a total
of 4 polynomials. We treat this optimization explicitly in Appendix C.

5 A Polynomial IOP for Arithmetic Circuits

5.1 The Protocol

The next protocol, Protocol 6 puts many of the previously developed tools
together into a Polynomial IOP (with preprocessing) for arithmetic circuits as

540 A. Szepieniec and Y. Zhang

captured by the HPR. To differentiate our protocol from other similar ones, we
name it Claymore.

description: realizes Rhpr

inputs: i: (m, n, M) with M ∈ F
m×(3n+1)

inputs: x: x ∈ F
n

inputs: w: (wl,wr,wo) ∈ F
n × F

n × F
n

// preprocessing
begin

I runs MVP.I on i(1) = (m, 3n + 1, M)

// online
begin

P computes fwl ← ∑n−1
j=0 wl[j]X

j , fwr ← ∑n−1
j=0 wr[j]X

j , and

fwo ← ∑n−1
j=0 wo[j]X

j

P sends fwl(X), fwr(X), and fwo(X), all of degrees at most n − 1, to V
P computes f1w(X) ← 1 + Xfwl(X) + Xn+1fwr(X) + X2n+1fwo(X)
P computes fx(X), whose coefficient vectors correspond to
x = M (1|wl

T|wr
T|wo

T)T

P and V run MVP with i(1) = (m, 3n + 1, M) , x(1) = ([f1w(X)], [fx(X)]),
w(1) = (f1w(X), fx(X)) where V simulates [f1w(X)] using
f1w(X) = 1 + Xfwl(X) + Xn+1fwr(X) + X2n+1fwo(X), [fwl(X)], [fwr(X)],
and [fwo(X)]; and where V computes [fx(X)] locally using x = x
P and V run Hadamard with i(2) = n − 1,
x(2) = ([fwl(X)], [fwr(X)], [fwo(X)]), w(2) = (fwl(X), fwr(X), fwo(X))

Protocol 6: Claymore

Theorem 6 (Security of Claymore). Protocol Claymore of Protocol 6 is a Poly-
nomial IOP for RHPR with completeness and soundness error σ ≤ σHadamard +
σMVP.

Proof. Completeness follows from construction. Since the arguments are com-
puted honestly, the subprotocols succeed and guarantee equalities (1) and (2),
respectively.

Soundness. If the HPR instance is a false instance, then x �=
M(1|wl

T|wr
T|wo

T)T or wl ◦ wr �= wo. As a result either the Hadamard pro-
tocol succeeds despite being run on a false instance, or the MVP protocol suc-
ceeds despite being run on a false instance. The probabilities of these events are
respectively at most σHadamard and at most σMVP. �

5.2 The Role of Preprocessing

The preprocessing phase can be omitted. In this case, V must compute fM (X)
locally. This task requires O(mn) work, or only O(K) if the matrix M has only

Polynomial IOPs for Linear Algebra Relations 541

K nonzero elements and is represented as such. When this phase is omitted,
Claymore should be compared to the Polynomial IOP underlying Aurora [4].

When used with preprocessing, Claymore achieves fast verification. Specif-
ically, the matrix M which determines the circuit being proved, is processed
by the indexer. For long and drawn-out computations, this matrix is typically
sparse and the SparseMVP is suitable. However, for short or shallow computa-
tions, DenseMVP is the better option. Depending on the choice of MVP protocol,
the matching soundness error should be considered.

5.3 Optimizations

Reuse α Across Hadamard Protocols. DenseClaymore has only one invoca-
tion of the Hadamard subprotocol, but the (partially unrolled) SparseClaymore
has many more. It is worth reusing the same α for all these invocations as this
reduces the number of unique evaluation points.

First, observe that all invocations to Hadamard can be shuffled around until
they can all be run simultaneously – none of the inputs to any of the Hadamard
protocols depend on the outputs of any other. Second, we can concatenate all
the Hadamard relations and prove one batched relation

a0‖a1‖ · · · ‖ak−1 ◦ b0‖b1‖ · · · ‖bk−1 = c0‖c1‖ · · · ‖ck−1 (29)

instead of k individual relations separately. This batching comes with no sound-
ness degradation.

The batched equation can be verified with k separate InnerProduct protocols
that prove the same inner product relations as would be proved without batching
– except that α is now the same everywhere. So neither P nor any other observer
can determine whether V is verifying Eq. 29 or k separate equations.

Batch the Inner Product Protocols. The unrolled SparseClaymore pro-
tocol consists of 10 invocations of InnerProduct protocol, and the unrolled
DenseClaymore protocol consists of 2. We can replace these InnerProduct pro-
tocols with the Batched InnerProduct protocol presented in Protocol 2. To see
that this replacement does not affect the soundness, note that the InnerProduct
subprotocols do not involve any verifier randomness and we can safely post-
pone them to the end of the Claymore protocol. Next, we replace them with a
BatchedInnerProduct, unifying the degrees by the maximal degree of these poly-
nomials. The negligible soundness degradation of this modification is captured
concretely by Lemma 2 of Appendix A.

Batch the Sparse Vector Protocols. We also present an alternative version
of SparseBiEval by batching the two instances of VandermondeVector and the two
LagrangeVector protocols. This optimization eliminates four polynomial oracles
at the cost of doubling the polynomial degrees. We present the protocol details
and security proofs in Appendix C.2.

542 A. Szepieniec and Y. Zhang

Concatenate Left and Right Wire Vectors. Instead of sending three wit-
ness polynomials (fwl(X), fwr(X), fwo(X)), the prover can get away with send-
ing only two: (fwi(X), fwo(X)) where fwi(X) = fwl(X) + Xn · fwr(X). This
concatenation is already implicit in the matrix-vector product subprotocol. The
input to the Hadamard subprotocol should be x = ([fwi(X)], [Xn ·fwi(X)], [Xn ·
fwo(X)]). The subprotocol then establishes that

⎛
⎝
wl

wr

0n

⎞
⎠ ◦

⎛
⎝
0n

wl

wr

⎞
⎠ =

⎛
⎝
0n

wo

0n

⎞
⎠ , (30)

which is clearly equivalent to the original Hadamard relation. With this tech-
nique, the polynomials are of degree 3n − 1, and so the soundness error is
(9n − 3)/(|F| − 1) instead of (3n − 3)/(|F| − 1).

This optimization also preserves zero knowledge. To see this, observe that
any distinguisher D that uses fwi(X) can be simulated with a distinguisher D′

that uses fwl(X) and fwr(X). As a result, the optimized protocol lacks zero
knowledge only if the protocol before applying the optimization also lacks it.

6 Zero-Knowledge

The strategy for achieving zero-knowledge consists of appending 3q coefficients
to the initial wire vectors wl, wr, and wo such that each new vector has q
uniformly random coefficients and such that their Hadamard relation remains.
The randomizers will make the witness polynomials q-wise independent, meaning
that no distinguisher restricted to at most q queries will obtain any information
about the witness.

It is tricky to define zero-knowledge the context of Polynomial IOPs. The
distinguisher D can always query the received oracles in enough points to inter-
polate and then extract the witness. The notion is only meaningful when the
number of queries bounded by some parameter. We furthermore restrict the dis-
tinguisher’s queries to be distributed identically to that of an honest verifier; this
restriction therefore corresponds to honest-verifier zero knowledge. As a result,
we are not concerned with finding a complete description of the polynomials that
make up the transcript. Instead, we are only concerned with the verifier’s view
of the transcript. This view corresponds to the list of queries and responses to
the various oracles.

Polynomial IOPs for Linear Algebra Relations 543

description: realizes RHPR

inputs: i: (m, n, M) with M ∈ F
m×n

inputs: x: x ∈ F
n

inputs: w: (wl,wr,wo) ∈ F
n × F

n × F
n

inputs: additional parameters: q
offline preprocessing:

I runs Claymore.I on i(1) = (m, n + 3q, M ′ =(
M[:,0:(n+1)] 0m×3q M[:,(n+1):(2n+1)] 0m×3q M[:,(2n+1):(3n+1)] 0m×3q

)
)

online phase:
// compute witness polynomial with randomizers

P samples r
(l)

[0:q], r
(r)

[q:2q], r
(o)

[2q:3q]

$←− F
q and sets r

(l)

[q:2q] = r
(r)

[0:q] = 0q×1,

r
(o)

[0:2q] = 02q×1, r
(l)

[2q:3q] = 1q×1, and r
(r)

[2q:3q] = r
(o)

[4:6] // r(l) ◦ r(r) = r(o)

P and V run Claymore with i(1) = (m, n + 3q, M ′), x(1) = x,
w(1) = ((wl

T|r(l)T), (wr
T|r(r)T), (wo

T|r(o)T))

Protocol 7: ZKClaymore

Theorem 7. When q ≥ 2, the Polynomial IOP ZKClaymore of protocol 7 has
statistical honest-verifier zero-knowledge if all the InnerProduct subprotocols are
replaced by a single invocation of BatchedInnerProduct. Concretely, the statistical
distance between the verifier’s view of authentic transcript versus the verifier’s
view of simulated transcript is bounded by 3

|F|−1 , which is negligible in the field
size.

Proof. We show how S produces the verifier view for (i,x) without knowledge
of w. In the process, we establish that this view is indistinguishable from that
of an authentic protocol execution.

The protocol ZKClaymore consists of an invocation to Hadamard protocol
and an invocation to either the dense or sparse variant of MVP. Note that both
protocols DenseMVP and SparseMVP consists of:

1. a query to fx(X) at uniformly random α
$←− F\{0};

2. a protocol invocation (ModReduce in DenseMVP, or SparseBiEval in
SparseMVP) with inputs that are independent of wl,wr,wo;

3. an invocation of InnerProduct on input f1w(X) and another polynomial (r(X)
in DenseMVP or fαTM (X) in SparseMVP), denoted by ft(X) hereafter, that
is also independent of wl,wr,wo.

Since S knows M and x, S can compute all polynomials that do not depend on
witnesses honestly, i.e., as the honest P would. We therefore restrict attention
to polynomials that depend on the witness.

What remains is to demonstrate how to sample the verifier view for
InnerProduct on input f1w(X) and ft(X), and for Hadamard on input fwl(X),
fwr(X) and fwo(X). These two subprotocols contribute two polynomial pairs
each to the BatchedInnerProduct protocol. It suffices to sample the verifier view

544 A. Szepieniec and Y. Zhang

for the BatchedInnerProduct protocol just for these two polynomial pairs, because
the remaining pairs are independent of the witness.

This verifier view consists of several elements, namely:

1. Uniformly random z, α∗ (the symbol α∗ is used for batching the various inner
product relations into one)

2. yh = h̄(z), y∗
h = h̄(γ · z)

3. The verifier view contributed by the InnerProduct protocol in MVP:
(a) yl1 = fwl(z)
(b) yr1 = fwr(z)
(c) yo1 = fwo(z)
(d) yt = ft(z−1) (S samples this one honestly)

4. The verifier view contributed by the top-level Hadamard protocol:
(a) Uniformly random β
(b) yo2 = fwo(β)
(c) yl2 = fwl(βz)
(d) yr2 = fwr(z−1)

In the verifier view of an honest run, the above values satisfy:

yh · γ3n+3q − y∗
h = (y1w · yt − fx(α)) · z3n+3q

+ α∗ · (
(yl2 · yr2 − yo2) · zn+q−1

)

+ α∗2 · (· · ·) , (31)

where the ellipses omit terms that are independent of the witness and thus
already known to S, and where y1w = 1 + z−1yl1 + z−n−q−1yr1 + z−2n−2q−1yo1 .

S samples uniformly random α∗, z, β
$←− F\{0} and computes yt honestly.

Consider the matrices

Zl =
(

1 z z2 · · · zn+3q−1

1 βz (βz)2 · · · (βz)n+3q−1

)
(32)

Zr =
(

1 z z2 · · · zn+3q−1

1 z−1 z−2 · · · z−n−3q+1

)
(33)

Zo =
(

1 z z2 · · · zn+3q−1

1 β β2 · · · βn+3q−1

)
(34)

which satisfy (yl1 , yl2)
T = Zl (wT

l |r(l)T)T, (yr1 , yr2)
T = Zr (wT

r |r(r)T)T, and
(yo1 , yo2)

T = Zo (wT
o |r(o)T)T. Capture the relation between polynomials’ values

and randomizers into a single equation:

⎛
⎜⎜⎜⎜⎜⎜⎝

yl1

yl2

yr1

yr2

yo1

yo2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

zn zn+1 0 0 0 0
(βz)n (βz)n+1 0 0 0 0

0 0 zn+q zn+q+1 zn+2q zn+2q+1

0 0 z−n−q z−n−q−1 z−n−2q z−n−2q−1

0 0 0 0 zn+2q zn+2q+1

0 0 0 0 βn+2q βn+2q+1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r(l)[0]

r(l)[1]

r(r)[q]

r(r)[q+1]

r(o)[2q]

r(o)[2q+1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ c ,

(35)

Polynomial IOPs for Linear Algebra Relations 545

where c ∈ F
6 is a constant vector independent of the randomizers.

Let Z�
l , Z�

r , Z�
o be the 2 × 2 submatrices of Zl, Zr, Zo whose columns are

multiplied by r(l)[0:2], r
(r)
[q:q+2] and r(o)[2q:2q+2], respectively; or equivalently, the 2 × 2

submatrices on the diagonal of Eq. 35. If these 2×2 submatrices are all invertible,
then (yl1 , yl2 , yr1 , yr2 , yo1 , yo2) are uniform because the randomizers r(l)[0:q], r

(r)
[q:2q],

r(o)[2q:3q] are. So S samples (yl1 , yl2 , yr1 , yr2 , yo1 , yo2) uniformly at random from F
6.

The 2 × 2 submatrices of Z�
l , Z�

r , Z�
o are not all invertible if z = 1, if β = 1,

or if β = z. The probability of this event is 3/(|F| − 1).
Since we can solve for one of yh, y∗

h given the other, we only need to show that
yh is uniformly random over F. This is where the convenient arbitrary coefficient
h̄d of h̄(X) comes into play. This coefficient is chosen uniformly at random, and

so S samples yh
$←− F. Lastly, S solves Eq. (31) for y∗

h.
To complete the argument, except with a negligible failure probability cor-

responding to the 2 × 2 submatrices Z�
l , Z�

r , Z�
o being singular, S samples a

verifier view from a distribution that is identical to the distribution of verifier
views of an authentic protocol execution. The distinguishing advantage of any
distinguisher D is bounded by the S’s failure probability, which is 3/(|F| − 1).
This number also bounds the statistical distance in distributions of the view of
the verifier of authentic transcripts versus simulated transcripts. �

7 Comparison

7.1 Abstract Comparison

We compare both variants of Claymore to some other Polynomial IOPs from
the literature, namely Sonic, PLONK, Marlin, and Aurora. Of these Polynomial
IOPs, the first three give rise to SNARKs after cryptographic compilation. In
contrast, Aurora gives rise to a proof system generating short proofs but whose
verifier complexity is linear in the size of the witness. Importantly, Claymore is
comparable to both types of proof system: with preprocessing, it gives rise to a
SNARK; when preprocessing is omitted, the proofs remain short at the expense
of linear verifier complexity.

Table 1 contains an overview of the comparison. It considers the following
key performance indicators for Polynomial IOPs.

– The number of polynomials sent by I during the offline preprocessing phase.
This number determines the size of the universal or structured reference
strings. While this number contributes to the complexity of I, this complexity
is generally speaking not a make or break factor.

– The number of polynomials sent by P during the online proving phase. This
number contributes to the size of the proof and to the complexity of both P
and V.

– The number of evaluations. This number contributes to the size of the proof,
as well as indirectly to the complexity of P and V.

546 A. Szepieniec and Y. Zhang

– The number of distinct points for evaluation. Some cryptographic compilers
(e.g., [6]) enable the merger of two polynomial evaluations provided that they
are being evaluated in the same point. This number limits the number of times
this optimization can be applied.

– The maximum degree of all polynomials. This number contributes to indexer
and prover complexity in two ways. First, before cryptographic compila-
tion, I and P operate on polynomials of this degree and their complexity
is affected accordingly. The exception is if the polynomials are sparse, or
otherwise exhibit a structure that enables fast computation. Second, some
cryptographic compilers induce overheads that are superlinear in this degree.

Table 1. Comparison between Claymore and other Polynomial IOPs from the literature,
with respect to key performance indicators.

polynomials # evaluations # distinct points max. degree

offline/online

Sonic [11] 12M/3M + 7 11M + 3 9M + 2 O(n)

PLONK [8] 8/6 7 2 12(n + a)

Marlin [7] 9/12 18 3 6k + 6

Aurora [4] –/7 8 2 max(m, n)

DenseClaymore 1/4 10 6 m(3n + 1) − 1

SparseClaymore 8/10 30 10 3K − 1

For Sonic, n refers to the number of multiplication gates and the degree of
the largest polynomial is 7n. However, due to their technique for simulating
bivariate polynomials, the addition gates have fan-in bounded by a parameter
M , corresponding to having at most M nonzero elements in every row of the
linear transform matrix. The same bound applies to the number of nonzero
elements in every column. As a result of converting the original circuit into one
with this property, a number of multiplication gates may have to be added, thus
explaining the Landau notation.

For PLONK, n refers to the number of multiplication gates and a refers to
the number of addition gates, all of which have fan-in 2. We note that there is
a variant of PLONK with larger proofs and smaller prover time, which is not
shown in the table.

Aurora does not have a preprocessing phase and as a result the verifier’s com-
plexity is linear in the number of nonzero elements in the matrices A,B,C from
the R1CS tuple. Marlin uses the same mechanics but uses preprocessing to shrink
the verifier’s workload for the matrix multiplication; this technique requires 9
polynomials in the uniform or structured reference string (3 per matrix) and a
few more in the online protocol. The parameter k denotes the largest number of
nonzero elements of {A,B,C}.

Polynomial IOPs for Linear Algebra Relations 547

For Claymore the linear transform is either represented densely as an m × n
matrix, or sparsely as a list of K nonzero coefficients in this matrix.

Marlin, PLONK, and Aurora work in the Reed-Solomon codeword basis and
crucially rely on the structure of the field or of its multiplicative group. In con-
trast, Sonic and Claymore work for any field.

7.2 Concrete Comparison

To make the comparison more concrete, we compile the various Polynomial IOPs
into concrete SNARKs with various compilers. In the following we use P to
denote the number of polynomials, Q for the number of queries, U for the number
of unique points, |F| for the size of a field element, and |G| for the size of a group
element.

For the benchmark computation we choose the following: to prove the mem-
bership of an element in a set by verifying the Merkle tree authentication path
in zero knowledge. The set holds 1024 elements and its Merkle root is known,
as is the member element. The witness consists of the element’s position in
the tree, and the authentication path. The Merkle tree is constructed using the
zero-knowledge-proof-friendly Rescue-Prime hash function [12] with m = 3 state
elements, rate equal to r = 2, over a prime field with p > 2256 elements, with
N = 18 rounds, targeting a security level of λ = 128 bits against collisions.

After arithmetization, this computation can be cast into one of three con-
straint systems for arithmetic circuits.

– The computation can be represented as a PLONK-relation, in which case there
are a = 13021 additions, m = 17101 multiplications, and 31234 distinct wires
in total.

– The computation can be represented as a Hadamard Product Relation (HPR)
with n = 4631 multiplications and m = 7571 linear relations with arbitrary
fan-in. After coercing the constraint system to one whose matrix has at most
M = 3 nonzero elements on every row and on every column, there are n =
23850 multiplications and m = 26790 linear relations.

– The computation can be represented as a Rank-1 Constraint Satisfaction
System (R1CS) with 12202 rank-1 constraints and no more than k = 38694
nonzero elements in {A,B,C}.

The various cryptographic compilers differ in how they simulate evaluation
queries. A polynomial oracle [f(X)] is represented by a cryptographic commit-
ment. When V queries it in z and obtains the response y, one option is to simply
run the polynomial commitment’s evaluation protocol to prove that f(z) = y.
Another option is for V to use the commitment to f(X) to derive the commit-
ment to f(X)−y

X−z , and for P to prove that this polynomial has an appropriately
bounded degree. The point is that degree bound checks might be simpler to
combine than evaluation queries, depending on the nature of the polynomial
commitment.

548 A. Szepieniec and Y. Zhang

– KZG polynomial commitments. A commitment to a polynomial f(X) is a sin-
gle group element. When V queries its value in z, P responds with its value
y = f(z) along with another group element, a commitment to f(X)−y

X−z . Note
that the zerofier X−z must divide f(X)−f(z). One pairing evaluation allows
V to verify the correct relation between the received commitments. Evalua-
tion queries in the same point z but to different polynomials can be batched
using random weights supplied by V. However, the scheme does not support
batching evaluations in distinct points, at least in terms of communication
cost. To establish the proper degree bounds, P must supply a commitment to
a degree bound check polynomial F (X) =

∑
i ω2i ·fi(X)+ω2i+1 ·Xd−δ(i) ·fi(X)

where the sum ranges over all prior polynomials fi(X), where δ(i) is its degree
bound, and where ω is a random challenge supplied by V. One more batch-
evaluation is necessary to establish that the commitment to F (X) is well
formed. So the total size of a Polynomial IOP compiled with this KZG-based
compiler is

(P + 1) × |G| + (U + 1) × (|F| + |G|) . (36)

Using the BLS-384 pairing group, we can represent group elements with |G| =
385 bits and scalar field elements with |F| = 256 bits.

– DARK polynomial commitments. Evaluation queries to the same polynomial
in distinct points can be batched, and evaluation queries to distinct poly-
nomials in the same point can be batched. Evaluation queries to distinct
polynomials in distinct points cannot be batched.3 We choose to batch all
queries into one evaluation proof for each polynomial, as opposed to batching
all polynomials for each distinct point. Every evaluation protocol consists of
at most �log2 d� rounds where d is the global degree bound. In every round
except the last, P sends two group elements and at most U field elements,
where U is the number of unique evaluation points. In the last round, P sends
an integer of �log2 d� × λ + |F| bits. So the total size of a Polynomial IOP
proof compiled with this DARK strategy is

P × �log2 d� × (2|G| + U |F|) + �log2 d� × λ + |F| . (37)

Concretely we use 2000 bit class group elements, so |G| = 2000. The field
elements are integers modulo p, a 2λ = 256 bit prime, so |F| = �log2 p� = 256.

– FRI polynomial commitments. A FRI commitment is a Merkle root of a
Reed-Solomon codeword, obtained by evaluating the polynomial in a domain
that is ρ times larger than its degree, where ρ is known as the expansion

3 There is a natural method for this type of batching that relies on dividing out
the zerofier. In response to queries z1 to [f(X)] and z2 to [g(X)], P supplies y1 =

f(z1), y2 = g(z2) and commitments to the polynomials f(X)−y1
X−z1

and g(X)−y2
X−z2

. At
this point, V can verify that the new commitments are correctly related to the old,
and he can use all commitments to derive a new commitment to “zero” polynomial.
Precisely speaking, this commitment is to an integer polynomial whose coefficients
are multiples of p. Then one evaluation protocol suffices to establish that y1 = f(z1)
and y2 = g(z2). This batching method has not been formally analyzed and such an
analysis is out of the scope of this paper.

Polynomial IOPs for Linear Algebra Relations 549

factor. The FRI protocol establishes the bounded degree by opening Merkle
leafs. As a result, the technique for dividing out the zerofier applies even
without supplying a new commitment. The Reed-Solomon codeword of the
polynomial f(X)−y

X−z can be computed given the Reed-Solomon codeword of
the polynomial f(X). So every query generates one field element. The FRI
protocol is run on the degree bound check polynomial F (X) =

∑
i ω2i·fi(X)+

ω2i+1 ·Xd−δ(i) ·fi(X) where the sum ranges over all polynomials after dividing
out the zerofiers. In this expression, δ(i) is its updated degree bound, i.e., after
dividing out the zerofiers, and ω is a random challenge supplied by V. The
evaluations of this degree bound check polynomial on the codeword domain
can be computed from evaluations of the constituent polynomials. The FRI
protocol consists of �log2 d� rounds where d is the global degree bound. In
every round, P supplies a new Merkle root along with s field elements and as
many authentication paths of length at most �log2 ρ ·d�. The protocol bounds
the polynomial’s degree with soundness error conjecturally approximately ρ−s

when F is large enough. So the total size of a Polynomial IOP compiled with
FRI is less than

P × 2 · λ + Q × |F| + �log2 d� × s × (�log2 ρ · d� × 2 · λ + |F|) . (38)

Concretely, we set ρ = 16, s = 32, and use |F| = 256. Note that the hash
function with which the FRI Merkle trees are built, must have at least 2 ·λ =
256 bit outputs.

Table 2 summarizes the results. It shows the size of the SNARK in bytes
obtained from the given Polynomial IOP and compiled with the given compiler.
The computation whose integrity is proved, is the Merkle tree membership rela-
tion described above. The source code for reproducing these numbers is available
at https://github.com/aszepieniec/claymore-benchmark.

Table 2. Comparison of concrete SNARK size.

KZG DARK FRI

Sonic 3 222 388 720 384 640

P = 16, Q = 36, U = 20, M = 3, d = 166950

PLONK 578 61 232 424 352

P = 6, Q = 7, U = 2, d = 361464

Marlin 947 121 888 383 936

P = 12, Q = 18, U = 3, d = 232170

DenseClaymore 802 72 416 825 792

P = 4, Q = 10, U = 6, d = 105327751

SparseClaymore 1 411 139 704 384 256

P = 10, Q = 30, U = 10, d = 158951

https://github.com/aszepieniec/claymore-benchmark

550 A. Szepieniec and Y. Zhang

8 Conclusion

The protocols proposed in this paper challenge the notion that the Reed-Solomon
codeword basis is the appropriate basis for representing objects from the arith-
metic constraint system in a Polynomial IOP. Instead, the monomial coefficient
basis provides a natural and intuitive representation for these objects. In this
basis, the native operations on polynomials are identifiable with the matrix oper-
ations in the arithmetic constraint system. Moreover, this basis does not impose
any restrictions on the structure of the field. The resulting Polynomial IOP for
arithmetic constraint systems outperforms similar constructions based on the
Reed-Solomon codeword basis, at least as far as the number of polynomials in
the transcript is concerned.

The modular approach followed in this paper admits a piece by piece presen-
tation and analysis that benefits simplicity and accessibility. Nevertheless, some
optimizations violate the boundaries implicit in this modular structure. These
optimizations are of independent interest as they may also apply elsewhere;
perhaps they have straightforward analogues in the Reed-Solomon codeword
domain. Some of the more important optimizations are summarized as follows.

– In some cases it is possible to eliminate polynomials. In particular, when a
polynomial is queried exactly twice and is involved in exactly two polynomial
identities. By moving this polynomial to the left hand side, and equating the
right hand sides, the polynomial identities are merged and the polynomial in
question is eliminated, all without impacting soundness.

– After unrolling a Polynomial IOP, InnerProduct subprotocols appear in great
numbers and many places. They can all be batched. In addition to saving
polynomials, this batching facilitates a simpler and more direct proof of zero-
knowledge that would not be possible otherwise.

– Batching may apply in more places still. For instance, the sparse MVP pro-
cedure benefits from two invocations of a subprotocol that establishes that
a given vector is a Lagrange vector, and two more that another vector is a
Vandermonde vector. The Lagrange and Vandermonde vector protocols can
be merged in order to save polynomials. In fact, this merger extends to mul-
tivariate polynomials in more than two variables.

– Concatenating the vectors of left and right wires saves one polynomial, but
only if the Hadamard subprotocol can be made to work with the concatenated
vector. In particular, this adaptation requires shifting the protocol’s second
and third arguments. Performing this shift in either basis is possible, but
this shift highlights an interesting difference. In the Reed-Solomon codeword
basis, the query to the polynomial oracle is multiplied by a constant factor; in
the monomial coefficient basis, however, it is the response that is multiplied
by a factor that depends on the query.

One of the questions that led to the present line of research was to find
the Polynomial IOP with the smallest possible number of polynomials in the
transcript. In this respect, we report a mitigated success: DenseClaymore has
only four polynomials, down 33% from runner-up PLONK; and when restricting

Polynomial IOPs for Linear Algebra Relations 551

to polynomials whose degrees grow linearly with the size of the circuit, then
SparseClaymore achieves two polynomials less than Marlin, the only competitor
that also admits arbitrary fan-in for linear gates.

However, the concrete comparison shows that we were optimizing the wrong
metric. Contrary to our expectation, the number of polynomials in the transcript
is not the dominant factor of proof size. Indeed, this comparison highlights the
importance of balancing a Polynomial IOP’s number of polynomials against its
other parameters.

Acknowledgements. Both authors are supported by the Nervos Foundation. This
work was supported in part by the National Key Research and Development Project
2020YFA0712300.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM (2017). https://
doi.org/10.1145/3133956.3134104

2. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 28

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26954-8 23

4. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2 4

5. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

6. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

7. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

8. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. IACR
Cryptology ePrint Archive 2019, 953 (2019). https://eprint.iacr.org/2019/953

9. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: Sedgewick, R. (ed.) ACM STOC, pp. 291–
304. ACM (1985). https://doi.org/10.1145/22145.22178

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/22145.22178

552 A. Szepieniec and Y. Zhang

10. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

11. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2111–2128.
ACM (2019). https://eprint.iacr.org/2019/099.pdf

12. Szepieniec, A., Ashur, T., Dhooghe, S.: Rescue-prime: a standard specification
(sok). IACR Cryptology ePrint Archive 2020, 1143 (2020). https://eprint.iacr.
org/2020/1143

13. Szepieniec, A., Zhang, Y.: Polynomial IOPs for Linear Algebra Relations. IACR
Cryptol. ePrint Arch., 1022 (2020). https://eprint.iacr.org/2020/1022

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2019/099.pdf
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2020/1022

A Unified Framework for Non-universal
SNARKs

Helger Lipmaa(B)

Simula UiB, Bergen, Norway

Abstract. We propose a general framework for non-universal SNARKs.
It contains (1) knowledge-sound and non-black-box any-simulation-
extractable (ASE), (2) zero-knowledge and subversion-zero knowledge
SNARKs for the well-known QAP, SAP, QSP, and QSP constraint lan-
guages that all by design have relatively simple security proofs. The
knowledge-sound zero-knowledge SNARK is similar to Groth’s SNARK
from EUROCRYPT 2016, except having fewer trapdoors, while the ASE
subversion-zero knowledge SNARK relies on few additional conditions.
We prove security in a weaker, more realistic version of the algebraic
group model. We characterize SAP, SSP, and QSP in terms of QAP; this
allows one to use a SNARK for QAP directly for other languages. Our
results allow us to construct a family of SNARKs for different languages
and with different security properties following the same proof template.
Some of the new SNARKs are more efficient than prior ones. In other
cases, the new SNARKs cover gaps in the landscape, e.g., there was no
previous ASE or Sub-ZK SNARK for SSP or QSP.

Keywords: NIZK · QAP · QSP · SNARK · SAP · SSP ·
simulation-extractability · subversion zero-knowledge

1 Introduction

There are many different SNARKs [21–23,30,31,36] that differ in the target
language and the security objectives. Common target languages correspond to
specific quadratic constraint satisfaction systems, and the choice of language
depends on the application. The languages QAP [21] and SAP [23,25] are use-
ful when arguing about arithmetic circuits, while QSP [21,31] and SSP [13]
are handy when arguing about Boolean circuits.1 While QAP, providing effi-
cient reductions to arithmetic circuits, is the most useful language in general
applications like cryptocurrencies [8], other languages have their applications.
In particular, SSP is widely used in applications where Boolean circuits come
naturally like in, say, shuffle arguments, [16].
1 Within this paper, we always (though implicitly, without mentioning it) refer to the

“strong” versions of these languages as defined in [21]. First, such versions are most
useful and needed in applications. Second, modern SNARKs like [23] and the ones
discussed in the current paper are for “strong’ variants.’ We omit further discussions.

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 553–583, 2022.
https://doi.org/10.1007/978-3-030-97121-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_20

554 H. Lipmaa

The choice of security objectives depends on the application. Knowledge-
soundness is often sufficient, but simulation-extractability (SE) is needed to get
UC-security [12]. On the other hand, not having SE can be beneficial in appli-
cations that need malleability. Finally, security properties evolve. Both Sub-ZK
(subversion zero-knowledge [1,3,7,17]; the argument stays zero-knowledge even
if the CRS is not trusted) and non-black-box SE [25] for SNARKs were defined
in 2017, after most of the mentioned zk-SNARKs were proposed. [1,3,17] showed
that the most efficient known SNARK by Groth [23] is Sub-ZK.

This has resulted in an era of SNARK proliferation: there exist knowledge-
sound SNARKs for the mentioned four languages, some of which are Sub-ZK
or SE. Groth and Maller [25] proposed a non-black-box strong any-simulation-
extractable (SASE) SNARK that is only slightly less efficient than Groth’s
SNARK [23]. Recall that knowledge-soundness means that a successful prover
must know the witness, and SE means that the knowledge-soundness holds even
if the prover had access to the simulation oracle, [37]. Dodis et al. [15] defined
different variants of SE, see Sect. 2 for more information. Intuitively, in an ASE
SNARK, one is allowed to maul an argument to a different argument for the
same statement, while this is not allowed in a SASE SNARK. (Non-)black-box
SE means that a (non-)black-box extractor extracts the witness. Black-box ASE
is sufficient to obtain UC security.

However, the Groth-Maller SNARK is for the SAP language [23,25]. Since
SAP has an efficient reduction from arithmetic circuits with squaring gates
instead of general multiplication gates, the SNARK from [25] works with approx-
imately two times larger circuits than SNARKs for the QAP language. While
non-black-box SASE is insufficient to obtain UC security, it is a stronger secu-
rity notion than knowledge-soundness. In particular, a much simpler transfor-
mation suffices to obtain UC security when one starts with non-black-box SE
SNARKs [5]. Due to the use of SAP, this transformation is twice as costly as the
ones starting from SE SNARKs for QAP. Other known simulation-extractable
Sub-ZK SNARKs include [10], which works in the random oracle model, and [4],
based on updatable signature schemes.

Recently, [6] showed that Groth’s SNARK [23] satisfies the weaker non-black-
box any-simulation-property ASE. As argued in [6,29], (black-box or non-black-
box) ASE is sufficient in many applications. The only known SE SNARKs are
for QAP and SAP, and no previous efficient SE or Sub-ZK SNARKs are known
for SSP or QSP.

Finally, [1,3] proved the knowledge-soundness of Groth’s SNARK in the
generic group model (GGM) with hashing. The “with hashing” part means that
one allows the adversaries to use (say) elliptic curve hashing to create ran-
dom group elements without knowing their discrete logarithms. More modern
knowledge-soundness (and ASE) proofs of SNARKs are given in the algebraic
group model (AGM, [19]). Unfortunately, the AGM proof of Groth’s SNARK
in [19] does not allow the adversaries to hash. Proving the knowledge-soundness
of Groth’s SNARK in the AGM “with hashing” seems to be still an open problem.

We aim to consolidate SNARK research by investigating how the choice of
security properties and target language influences an argument system’s design.

A Unified Framework for Non-universal SNARKs 555

This is important as only a few researchers have in-depth knowledge of secure
SNARK design. It is easy for even well-established research groups to err in
such an endeavor; see, for example, [11,18,20,35] for related cryptanalysis. The
resulting complexity can be seen when following through the soundness proofs
in say [23,25]. Each existing SNARK has a tailored construction with a tailored
security proof in its specific security models, and even verifying all the security
proofs for all mentioned SNARKs is probably well beyond the most talented
cryptographer’s capability.

This brings us to the main goal of this paper:

Construct a SNARK framework for a multitude of languages (e.g., QAP,
SAP, QSP, and SSP) and satisfying a multitude of security objectives
(knowledge-soundness vs. ASE, ZK vs. Sub-ZK) that allows for (1) a
(relatively) simple security proof that can be easily modified to cover all
the languages and security objectives, and (2) results in ASE and Sub-
ZK SNARKs that are almost as efficient as the most efficient known
knowledge-sound non-Sub-ZK SNARKs. Additionally, (3) prove their secu-
rity in a realistic version of AGM “with hashing”.

Our Contributions. We propose a family of 2·2·4 = 16 SNARKs that contains
both knowledge-sound and ASE, and both ZK and Sub-ZK SNARKs, for all
four mentioned languages (QAP, SAP, QSP, SSP). While the derivation of the
first two SNARKs (namely, knowledge-sound no-Sub-ZK and its ASE version)
is complicated, we obtain the other fourteen SNARKs with minor additional
work. Thus, we obtain a framework for efficient random-oracle-less pairing-based
SNARKs for both arithmetic and Boolean circuits. Previous knowledge-sound
SNARKs for all four languages were each published in a separate paper, with
corresponding ASE and Sub-ZK versions being proposed later, if at all.

The new knowledge-sound zk-SNARK Sqap for QAP is similar to Groth’s
SNARK [23], except it has only two trapdoors instead of five. We replace 3
trapdoors with a well-chosen power of one trapdoor. After an even more careful
choice of the powers, we also achieve CRS-verifiability [1,3] and thus Sub-ZK;
otherwise, the Sub-ZK version is precisely the same and thus also as efficient.
Unlike Groth, who proposed his SNARK without explaining how he arrived at
the construction, we thoroughly motivate each step of it. This enables researchers
aiming for a different goal to deviate from the construction at the appropriate
point.Importantly, we provide a simpler knowledge-soundness proof.

To prove ASE, we observe that due to the structure of the new SNARKs,
an ASE adversary can successfully use at most one simulation query answer in
the forgery attempt. We show that if the adversary used one query answer, this
was necessarily a SASE and not an ASE attack. The ASE of Sqap follows. It is
non-trivial that one-time ASE suffices. Moreover, unexpectedly, all powers of the
trapdoor that result in Sqap being knowledge-sound result in it also being ASE.

We prove knowledge-soundness and ASE in a more realistic version of the
AGM. The knowledge-soundness proof in [23] was given in the generic group
model, while [19] provided an AGM proof. However, [19] considers adversaries

556 H. Lipmaa

Table 1. Efficiency comparison of QAP/SAP/SSP/QSP-based random-oracle-less
SNARKs Ψ . m (or m̃) and n (or ñ) denote the number of wires and gates (or con-
straints) in the solutions. “�” (“≈”) means that the corresponding SNARK (its slight
modification) is Sub-ZK, with a citation to the Sub-ZK construction if needed. “mι”
(“aι”) denotes scalar multiplication (addition) in group Gι, “p” denotes pairing, and
gι denotes the representation length of a Gι element in bits. In the case of |crs| and
P’s computation, we omit constant or m0-dependent addends like +(m0 + 3)g1. We
omit field operations and membership tests since they are dominated by significantly
costlier group operations. Ssap, Sssp, and Sssp are described in the full version, [33].

Ψ security |crs| P computation |π| V computation Sub-ZK

QAP-based (arithmetic circuit, with n gates), m̃ = m

[23] KS/ASE [6] (m + 2n)g1 + ng2 (m + 3n)m1 + nm2 2g1 + 1g2 3p + m0m1 � [1,3,17]
Sqap Sect. 3 ASE (m + 2n)g1 + ng2 (m + 3n)m1 + nm2 2g1 + 1g2 3p + m0m1 �

SAP-based (arithmetic circuit, with ñ squaring gates): u = v, ñ ≈ 2n, m̃ ≈ 2m

[25] SASE (m̃ + 2ñ)g1 + ñg2 (m̃ + 2ñ)m1 + ñm2 2g1 + 1g2 5p + m0m1 ≈ [26]
Ssap ASE (m̃ + 2ñ)g1 + ñg2 (m̃ + 2ñ)m1 + ñm2 2g1 + 1g2 3p + m0m1 �

SSP-based (Boolean circuit with n gates): u = v = w, ñ = m + n

[13] KS (m + ñ)g1 + ñg2 2ma1 + ñm1 + ma2 3g1 + 1g2 6p + m0a1 –
Sssp ASE (m + 2ñ)g1 + ñg2 2ma1 + ñm1 + ma2 2g1 + 1g2 3p + m0a1 �

QSP-based (Boolean circuit with n gates): w = 0, ñ ≈ 14n [31]
[31] KS – – – – –
Sqsp ASE (m̃ + 2ñ)g1 + ñg2 4m̃a1 + ñm1 + m̃a2 2g1 + 1g2 3p + m0a1 �

that are purely algebraic and in particular do not have a capability to create
random group elements without knowing their discrete logarithms. In our proofs,
the adversary has such a capacity. We consider this proof (and the corresponding
realistic version of the AGM) to be another major contribution of this paper.

Based on an observation about algebraic relations between the languages,
we modify Sqap to cover SAP, QSP, and SSP. Hence, almost automatically, we
obtain a family of knowledge-sound (or ASE), and zero-knowledge (or Sub-ZK)
SNARKs for four different languages.

Table 1 compares the efficiency of random-oracle-less SNARKs. It is fair to
compare SNARKs for the same language; a comparison of SNARKs for different
languages (for example, QAP vs. SAP) has to account for the complexity of the
reduction from circuits to these languages. Note that [31] described a reduction
from Boolean circuits to QSP and a linear PCP [9] for QSP but did not describe
a SNARK. In all constructions, most of the prover’s scalar multiplications in
Table 1 are multi scalar-multiplications. As seen from the table, the new ASE
SNARK for SAP is more efficient than the (SASE) SNARK for SAP by Groth
and Maller. No previous SE or Sub-ZK SNARKs were known for SSP or QSP,
and Groth’s SNARK for QAP was only proven to be ASE in [6].

A Unified Framework for Non-universal SNARKs 557

1.1 Technical Overview

In Sect. 3, we propose a knowledge-sound zk-SNARK Sqap for QAP. The argu-
ment consists of evaluations2 [A(x, y)]1, [B(x, y)]2, [Cs(x, y)]1 of three bivari-
ate polynomials A(X,Y), B(X,Y), Cs(X,Y) at a random point (x, y). Here,
[A(x, y)]1, [B(x, y)]2 commit to the vector of left and right inputs to all gates,
while [Cs(x, y)]1 combines a commitment to the vector of all output wires with
the rest of the argument. The verifier checks that a bivariate polynomial V, that
depends in a known way on A,B,Cs, evaluates to 0 at the same point.

As in [23], we aim to make [Cs(x, y)]1 to be computable only by the honest
prover. The prover has access to the CRS that contains the evaluation of well-
chosen polynomials at (x, y) in both G1 and G2. We optimize to get an efficient
SNARK while not sacrificing (much) in the knowledge-soundness proof’s sim-
plicity. Sqap is very similar to Groth’s SNARK [23]; however, it uses only two
trapdoors instead of five. This distinction is important: in [23], only two out of
five trapdoors are used in simulation; thus, the other three trapdoors seem not
to be needed. In general, it is important to minimize the number of components
to the bare minimum so that the importance of each component is well under-
stood. In Sqap, we use well-chosen powers of one trapdoor y as substitutes for
four out of the five trapdoors of Groth’s SNARK. (A similar technique to use
one trapdoor to align “interesting” monomials together was used, e.g., in [24].)

Knowledge-Soundness Proof And A More Realistic Variant of The AGM. The
knowledge-soundness proof is in the algebraic group model (AGM [19]). In the
AGM, one considers algebraic adversaries that always know a linear relation-
ship between their output and input group elements. As an important difference
with the AGM of [19], we additionally allow the cheating prover to sample ran-
dom elements of G1 and G2. Such an extension of the generic group model
is well-known, [1,3,7], but not established in the case of the AGM. It is also
well understood why this extension is needed since otherwise, one can prove
the security of false knowledge assumptions. Really, without this extension, one
can prove that if an adversary on input [1]1 outputs [y]1, it must know y. This
assumption does not hold since it is easy to generate random group elements by
using hash-then-increment or elliptic curve hashing.

Fuchsbauer et al. [19] give an adversary A access to a programmable ran-
dom oracle [34] O. A can create a random group element by querying O that
returns a uniformly random group element. In the security proof, one allows
the reduction to program O by creating random group elements together with
their discrete logarithms. Unfortunately, since the reduction knows the discrete
logarithms, also in this model, one can prove the security of the above false
knowledge assumption. We overcome this issue by using a different oracle simu-
lation strategy by defining two adversaries (one for each trapdoor x and y) and by
using two different oracle programming strategies. This results in the first known
2 We use the by now standard additive bracket notation for group elements, by fixing

first a bilinear group p = (G1,G2,GT , ê), and then denoting say [a]ι = aPι ∈ Gι for
a fixed generator Pι ∈ Gι. See Sect. 2 for more information.

558 H. Lipmaa

knowledge-soundness and ASE proof of (a version) of Groth’s SNARK [23] in
a variant of the AGM with hashing where false knowledge assumptions like the
above cannot be proven. This result is of independent importance.

Choosing Powers of y. The way we choose the powers of y is interesting by itself.
In the security proof, A,B,Cs are chosen maliciously and depend on additional
indeterminates. Let Y be an indeterminate corresponding to y and X∗ be the
vector of all indeterminates, except Y , in the knowledge-soundness or ASE proof.
X∗ includes X (the indeterminate corresponding to x), indeterminates created
when the adversary samples random group elements, and (in the case of ASE)
indeterminates created by simulator queries. Since the adversary is algebraic,
the polynomials A(X), B(X), and Cs(X) belong to the span of the polynomials
in the CRS, the random oracle answers, and (in the case of the ASE) the sim-
ulator answers. We use the AGM extractor to extract their maliciously chosen
coefficients in this span, allowing us to recover the coefficients of the (Laurent)
polynomial V. The verification guarantees that V(x∗, y) = 0, where the trapdoor
x∗ instantiates the indeterminate X∗.

The knowledge-soundness proof considers two cases, when V(X∗, Y) = 0
and V(X∗, Y) �= 0 as a polynomial. Consider the first case. Then, V(X∗, Y) =∑

VY i(X∗)Y i for known polynomials VY i(X∗), where i is a linear combination
of the coefficients of a public but initially undetermined integer tuple Δ =
(α, β, γ, δ, η). We prove that an algebraic prover is honest iff VY i(X∗) = 0 for
six critical values i. (In Groth’s security proof, the number of critical values is
significantly larger.) We choose Δ so that the corresponding six critical values i
are distinct from each other and all other non-critical values j; in this case, we
say that Δ is soundness-friendly. Moreover, we choose Δ so that the SNARK is
relatively efficient. For example, we require that for all critical i, |i| is as small
as possible, and check if there is a way to make some non-critical values j to
coincide (this can shorten the CRS).

Finding a suitable Δ, satisfying all the restrictions, is a moderately com-
plex optimization problem. In particular, the number of non-zero coefficients
of VY i(X∗) (even in the knowledge-soundness proof and without allowing the
adversary to create new indeterminates) is at least 30, depending on the SNARK.
Because of the complexity of the problem, we used an exhaustive computer
search to find Δ. Due to the use of exhaustive search, exponents in the result-
ing SNARKs (see Eq. (11) for a recommended value of Δ and Eq. (12) for the
description of the CRS when using this value of Δ) may look somewhat obscure.
However, the soundness-friendliness of the results of the exhaustive search are
easy to verify manually (intuitively, this corresponds to checking that when Δ is
instantiated as in Eq. (11), then the critical six entries in Eq. (10) are different
from each other and all other entries). It is easy to find suboptimal choices of
the exponents; however, such choices will usually not be sufficient for Sub-ZK.
We feel that using exhaustive search adds to the strength of this paper.

Other Results. In Sect. 4, we prove that Sqap is ASE. We use the same proof
strategy as in the case of knowledge-soundness. By analyzing the coefficients of

A Unified Framework for Non-universal SNARKs 559

V, we get that the ASE adversary can use the result of at most one simulation
query in the forgery attempt. If she used none, ASE follows from the knowledge-
soundness. If she used one, then, due to an easily satisfiable additional require-
ment on the QAP instance, she was performing a SASE attack that is not an
attack in the sense of ASE. For this proof to work, one needs Δ to satisfy addi-
tional restrictions on Δ; however, we will show that any soundness-friendly Δ
satisfies these requirements. Thus, any version of Sqap that is knowledge-sound
is ASE, modulo a small, easily satisfiable, technical restriction.

As we mentioned before, Sqap is very similar to Groth’s SNARK. Groth
proved knowledge-soundness in the case of symmetric pairings, and this implies
knowledge-soundness in the case of asymmetric pairing. Asymmetric pairings
are much more efficient than symmetric pairings and thus strongly preferred
in practice. We obtain a simpler direct knowledge-soundness proof by explicitly
assuming that the pairing is asymmetric. One corollary of our knowledge-sound
proof is the up to our knowledge novel observation that Groth’s SNARK has a
simple knowledge-soundness proof given that one uses asymmetric pairings. Hav-
ing simpler (or alternative) security proofs is important by itself due to the easier
verifiability; simpler proofs can also result in the construction of other protocols.
We also use a more realistic variant of the AGM to prove knowledge-soundness.
(The use of this variant of the AGM makes the security proof somewhat more
complex again.) Moreover, we emphasize that the number of critical values i is
much larger when one follows Groth’s original proof.

Our goal was not to duplicate Groth’s SNARK but to construct an efficient
SNARK with a simple knowledge-soundness proof. Our exposition of the deriva-
tion of Sqap can also be seen as an intuitive pedagogical re-derivation of (a slight
variant of) the most efficient existing pairing-based SNARK.

Fig. 1. Algebraic relations between
languages.

We make Sqap subversion-zero knowl-
edge (Sub-ZK). According to the template
of [1,3], we construct a public CRS verifi-
cation algorithm that checks that the CRS
corresponds to some trapdoor, and then
use a knowledge assumption to recover
the trapdoor and simulate the argument.
For the CRS-verifiability, we restrict the
choice of Δ even more. This suffices: all
new SNARKs are Sub-ZK when choosing
Δ carefully. We then use the standard BDH-KE [1,3] knowledge assumption to
recover the trapdoor and simulate the argument.

In the full version [33], we consider the languages SAP [23,25], SSP [13], and
QSP [21,31]. We explain their algebraic relation to QAP, and use it to lift Sqap

to the setting of the corresponding languages. In the case of SSP and QSP, the
algebraic relation is not obvious; we explain it in detail in the full version [33].
See Fig. 1 for a brief summary. This summary becomes clear later (e.g., QAP
states that Uz ◦ V z = Wz for an input-witness vector z, while SAP states
that Uz ◦ Uz = Wz since U = V ; here, U , V , and W are relation-dependent

560 H. Lipmaa

matrices that characterize the languages as constraint satisfaction problems),
but we decided to have it here for an early reference.3

Our SNARK for SAP (and SSP) has a slightly different ASE proof compared
to the SNARK for QAP. Previous research handled all four languages separately,
and our (simple) relations seem to be novel in the case of SSP and QSP. We
propose the first known either Sub-ZK or ASE SNARKs for SSP and QSP, and
more generally, for Boolean circuits. Importantly, the new Sub-ZK ASE SNARK
for SSP is more efficient than the knowledge-sound non-Sub-ZK SNARK of [13].

This work supersedes [32]. While the idea of using only two trapdoors is
already present in [32], there are too many changes to enlist.

1.2 Further Work

Applications. We concentrate on the construction of the SNARKs themselves
and leave possible applications for future work. The most evident efficiency ben-
efit is in the case of the SSP, where the verifier computes only 3 pairings instead
of 6 in [13]. This may result in more efficient shuffle arguments [16] that rely on
SNARKs for SSP. The ASE and Sub-ZK properties of the new SNARKs, on the
other hand, have the potential to guarantee the same properties in similar appli-
cations. For example, given the new ASE SNARK for SSP, it may be possible
(but we leave it to future work) to construct an ASE shuffle argument.

Universal SNARKs. There is an even more significant SNARK proliferation
when one also considers universal SNARKs. Within this paper, we only study
SNARKs with circuit-dependent CRSs. Universal SNARKs deserve their own
several papers, especially since much less is known in that scenario. (E.g., efficient
SE universal SNARKs have only been proposed in a recent eprint [28].) However,
some of the results of the current paper (like the relation between QAP, SAP,
SSP, and QSP) are also interesting in the context of universal SNARKs. We are
not aware, e.g., of any efficient universal SNARKs for SSP.

2 Preliminaries

For a matrix A, Ai denotes its ith row and A(j) denotes its jth column. Let
vect(A) be the vectorization of matrix A ∈ Z

n×m
p , vect(A) = (A11, A12, . . . ,

A1m, A21, . . . , Anm). Z(≤d)
p [X] denotes the set of univariate polynomials of degree

≤ d over Zp. PPT denotes probabilistic polynomial-time; λ ∈ N is the security
parameter. Let negl(λ) be an arbitrary negligible function, and poly(λ) be an
arbitrary polynomial function. We write i ≈λ j if |i − j| ≤ negl(λ). For an algo-
rithm A, im(A) is the image of A, that is, the set of valid outputs of A. RNDλ(A)
denotes the random tape of A (for given λ), and r ←$RNDλ(A) denotes the uni-
formly random choice of r from RNDλ(A). By y ← A(x; r) we denote the fact
that A, given an input x and a randomizer r, outputs y.
3 Our definitions of SSP and QSP are very slight variations of the standard SSP and

QSP. They are functionally equivalent but, to our mind, slightly more elegant. See
the full version [33] for more discussion.

A Unified Framework for Non-universal SNARKs 561

Assume n is a power of two. Let ω be the nth primitive root of unity modulo
p. (ω exists, given that n | (p−1).) Then, Z(X) :=

∏n
i=1(X −ωi−1) is the unique

degree n monic polynomial such that Z(ωi−1) = 0 for all i ∈ [1, n]. For i ∈ [1, n],
let 	i(X) be the ith Lagrange polynomial, the unique degree n − 1 polynomial
such that 	i(ωi−1) = 1 and 	i(ωj−1) = 0 for i �= j. Given χ ∈ Zp, 	i(χ) for
i ∈ [1, n] can be computed efficiently. Clearly, Lk(X) :=

∑n
i=1 ki	i(X) is the

interpolating polynomial of k at points ωi−1, with Lk(ωi−1) = ki.

Bilinear Groups. Let n ∈ N>0 be an upper bound of the size of a circuit in
the SNARKs. A bilinear group generator Pgen(1λ, n) returns (p,G1,G2,GT , ê),
where G1, G2, and GT are three additive cyclic groups of prime order p, and
ê : G1 × G2 → GT is a non-degenerate efficiently computable bilinear pairing.
Assume n | (p−1). As in say [7], we assume that Pgen is deterministic and cannot
be subverted. (In practice, one can use a standardized curve.) We require the
bilinear pairing to be Type-3; that is, there is no efficient isomorphism between
G1 and G2. We use the standard bracket notation, writing [c]ι to denote cPι

where Pι is a fixed generator of Gι. Note that Pι is not given in p. We denote
ê([a]1, [b]2) by [a]1 • [b]2. We use freely the bracket notation together with matrix
notation, for example, AB = C iff [A]1 • [B]2 = [C]T .

Assumptions. Let T1, T2 be sets of small integers. Pgen is (T1, T2)-PDL (Power
Discrete Logarithm) secure if for any non-uniform PPT adversary A,

Pr[p ← Pgen(1λ, n), x ←$Z∗
p : A(p; [xi : i ∈ T1]1, [xi : i ∈ T2]2) = x] ≈λ 0 .

If T1 = [0, n], then we talk about the (n, T2)-PDL assumption. The case T2 =
[0, n] is dual.

The BDH-KE assumption [1,3] holds for Pgen, if for every PPT adversary
A, there exists a PPT extractor ExtA, such that

Pr

[
p ← Pgen(1λ); r ← RNDλ(A); ([y]1, [z]2) ← A(p; r);
y∗ ← ExtA(p; r) : y = z ∧ y∗ �= y

]

= negl(λ) .

BDH-KE is one of the weakest known knowledge assumptions in the asymmetric
pairing-based setting.

Algebraic Group Model (AGM). AGM is a new idealized model [19] used
to prove the security of a cryptographic assumption, protocol, or a primitive.
In addition, [19] proposed to combine the random oracle (RO) model with the
AGM, allowing the adversary to create random group elements. Essentially, in
the AGM with random oracles, one assumes that each PPT algorithm A is
algebraic in the following sense. Assume A’s input includes [xι]ι and no other
elements from the group Gι. Moreover, A has an access to random oracles Oι,
ι ∈ {1, 2}, such that Oι samples and outputs a random element [qιk]ι from Gι.
The oracle access models the ability of A to create random group elements with-
out knowing their discrete logarithms qιk. However, a reduction can program [34]

562 H. Lipmaa

the random oracle so that it knows qιk. Intuitively, one assumes that if A out-
puts group elements [yι]ι, then A knows matrices Nι and ([q1, q2]1), such that
yι = Nι(xιqι) while the reduction also knows qι.

Formally, a PPT algorithm A is (Pgen-)algebraic if there exists an effi-
cient extractor ExtA, such that for any PPT-sampleable distribution family
D = (Dp)p∈Pgen(1λ), AdvagmPgen,D,A,ExtA(λ) :=

Pr

⎡

⎢
⎣

p ←$Pgen(1λ);x = ([x1]1, [x2]2) ←$Dp; r ←$RNDλ(A);

([y1]1, [y2]2) ←$A(O1,O2)(x; r); (N1,N2) ← ExtA(x; r) :
(y1 �= N1(

x1
q1) ∨ y2 �= N2(

x2
q2))

⎤

⎥
⎦ = negl(λ) .

Oι, ι ∈ {1, 2} is an oracle that samples and returns a random element from Gι.
[qι]ι is the list of all elements output by Oι. We denote the version of the AGM
where the reduction can program Oι, by first sampling a random element qιk

from Zp and then returning qιk, as ROfkl-AGM. The ROfkl-AGM states that,
given such programmable random oracles, AdvagmPgen,D,A,ExtA(λ) = negl(λ) for any
PPT-sampleable D and PPT algebraic A.

SNARKs. Let RG be a relation generator, such that RG(1λ) returns a
polynomial-time decidable binary relation R = {(x,w)} together with auxil-
iary information p. Here, x is a statement, and w is a witness. We assume that
λ is explicitly deductible from the description of R. Intuitively, (p,R) is the com-
mon auxiliary input to the honest parties, the adversary, and the corresponding
extractor. We assume that p ← Pgen(1λ, n) for a well-defined n. (Recall that the
choice of p and thus of the groups Gι depends on n and that p is not subvertible.)
Let LR = {x : ∃w such that (x,w) ∈ R} be an NP-language.

A non-interactive zero-knowledge (NIZK) argument system Ψ for RG con-
sists of five PPT algorithms: First, a probabilistic CRS generator G that, given
(p,R) ∈ im(RG(1λ)), outputs (crs, td) where crs is a CRS and td is a simulation
trapdoor. Otherwise, it outputs a special symbol ⊥. For the sake of efficiency
and readability, we divide crs into crsP (the part needed by the prover) and crsV
(the part needed by the verifier). Within this paper, crs explicitly encodes R. We
also implicitly assume that crs encodes p. Second, a probabilistic CRS verifier CV
that, given crs, returns either 0 (the CRS is malformed) or 1 (the CRS is well-
formed). CV is only required to exist in the case of Sub-ZK argument systems.
Third, a probabilistic prover P that, given (crsP,x,w) for (x,w) ∈ R, outputs
an argument π. Otherwise, it outputs ⊥. Fourth, a probabilistic verifier V that,
given (crsV,x, π), returns either 0 (reject) or 1 (accept). Fifth, a probabilistic
simulator Sim that, given (crs, td,x), outputs an argument π.

A NIZK argument system must be complete (an honest verifier accepts an
honest verifier), knowledge-sound (if a prover makes an honest verifier accept,
then one can extract from the prover a witness w), and zero-knowledge (there
exists a simulator that, knowing the CRS trapdoor but not the witness, can
produce accepting statements with the verifier’s view being indistinguishable
from the view when interacting with an honest prover). A Sub-ZK argument

A Unified Framework for Non-universal SNARKs 563

system [1,3] must additionally satisfy Sub-ZK (zero-knowledge holds even if the
CRS is maliciously generated); for this, one requires CRS-verifiability (CV only
accepts a CRS if there exists a trapdoor td corresponding to it).

We will now give the formal definitions. Let Ψ be a non-interactive argument.
Ψ is perfectly complete for RG, if for all λ, (p,R) ∈ im(RG(1λ)), and (x,w) ∈ R,

Pr [(crs, td) ← G(p,R) : V(crsV,x,P(crsP,x,w)) = 1] = 1 .

Ψ is computationally (adaptively) knowledge-sound for RG, if for every PPT A,
there exists a PPT extractor ExtA, such that for all λ,

Pr

[
(p,R) ← RG(1λ); (crs, td) ← G(p,R); r ←$RNDλ(A);

(x, π) ← A(crs; r);w ← ExtA(crs; r) : (x,w) �∈ R ∧ V(crsV,x, π) = 1

]
≈λ 0 .

A knowledge-sound argument system is called an argument of knowledge.
Ψ is statistically composable zero-knowledge for RG, if for all λ, (p,R) ∈

im(RG(1λ)), and computationally unbounded A, εzk
0 ≈λ εzk

1 , where

εzk
b := Pr

[
(crs, td) ← KGen(p,R), (x,w) ← A(crs, td);π0 ← P(crsP,x,w);
π1 ← Sim(crs, td,x) : (x,w) ∈ R ∧ A(πb) = 1

]

.

Ψ is perfectly composable Sub-ZK for RG if one requires that εzk
0 = εzk

1 .
Ψ is statistically composable Sub-ZK for RG, if for any PPT subverter S

there exists a PPT ExtS , such that for all λ, all (p,R) ∈ im(RG(1λ)), and all
computationally unbounded A, εzk

0 ≈λ εzk
1 , where

εzk
b := Pr

⎡

⎢
⎣

r ←$RNDλ(S); (crs, zS) ← S(p,R; r); td ← ExtS(p,R; r);
(x,w) ← A(crs, zS);π0 ← P(crsP,x,w);π1 ← Sim(crs, td,x);
(x,w) ∈ R ∧ CV(crs) = 1 ∧ A(πb) = 1

⎤

⎥
⎦ .

Ψ is perfectly composable Sub-ZK for RG if one requires that εzk
0 = εzk

1 .
A SNARK (succinct non-interactive argument of knowledge) is a NIZK argu-

ment system where the argument is sublinear in the input size.

Simulation-Extractability (SE). An SE argument system [14,37] stays
knowledge-sound even if the soundness adversary has access to the simulation
oracle. SE is motivated by applications like non-malleability and UC security.

Dodis et al. [15] differentiated between several favors of SE. In the case of any-
simulation-extractability (ASE), the simulator can be queried with any (poten-
tially false) statements while in the case of true-simulation-extractability (TSE),
the simulator can only be queried with true statements. The adversary wins if
she can come up with a new argument for a statement she has not queried a
simulation for. In the case of strong any-simulation-extractability (SASE), the
adversary wins even if she can come up with a new argument for a statement
she has queried a simulation for. ASE suffices for UC security.

564 H. Lipmaa

Fig. 2. Any-simulation (ASE) and strong any-simulation (SASE) experiments. The
boxed part is only present in the boxed (i.e., SASE) experiment.

Groth and Maller [25] define SE SNARKs, where one requires that for each
PPT knowledge-soundness adversary A with oracle access to the simulator, there
exists a non-black-box extractor ExtA that can extract the witness. [25]’s defi-
nition of SE corresponds to non-black-box SASE, [15]. We assume implicitly SE
means non-black-box SE. [25] proved that the argument of any (non-black-box)
SASE SNARK consists of at least three group elements and that there should
be at least two verification equations. They proposed a SASE SNARK for the
SAP (Square Arithmetic Program) language that meets the lower bounds.

The following definition of the SASE property corresponds to the definition
of SE SNARKs in [25, Definition 2.10]. All definitions are inspired by the corre-
sponding black-box definitions from [15].

Let Ψ be a SNARK for the relation R. Let x ∈ {ase, sase}. Define
AdvxΨ,A,ExtA(λ) := Pr[Expx

Ψ,A,ExtA(λ)], where the experiment Expx
Ψ,A,ExtA(λ) is

depicted in Fig. 2. Then, (i) Ψ is non-black-box any-simulation-extractable (ASE)
if for any PPT A there exists a PPT extractor ExtA, such that AdvaseΨ,A,ExtA(λ) ≈λ

0. (ii) Ψ is non-black-box strong any-simulation-extractable (SASE) if for any
PPT A there exists a PPT extractor ExtA, such that AdvsaseΨ,A,ExtA(λ) ≈λ 0.

3 Knowledge-Sound SNARK for QAP

Next, we will describe the new knowledge-sound SNARK Sqap. Its construc-
tion emphasizes two objectives: (i) simple soundness proof in the AGM and
(ii) efficiency. Sqap is similar to Groth’s SNARK from EUROCRYPT 2016 [23]
(shown to be Sub-ZK in [17]), with two major differences: (1) the use of only
two trapdoors instead of five, and (2) an alternative, much more straightfor-
ward, knowledge-soundness proof in the case of asymmetric pairings. On the
other hand, Groth provided a more complex knowledge-soundness proof that is
valid for both asymmetric and symmetric pairings.

QAP. Quadratic Arithmetic Program (QAP) was introduced in [21] as a lan-
guage where for an input x and witness w, (x,w) ∈ R can be verified by using a

A Unified Framework for Non-universal SNARKs 565

parallel quadratic check. QAP has an efficient reduction from the (either Boolean
or Arithmetic) Circuit-SAT. Thus, an efficient zk-SNARK for QAP results in
an efficient zk-SNARK for Circuit-SAT.

We consider arithmetic circuits that consist only of fan-in-2 multiplication
gates, but either input of each multiplication gate can be any weighted sum
of wire values, [21]. Let m0 < m be a non-negative integer. For an arithmetic
circuit, let n be the number of multiplication gates, m be the number of wires,
and m0 be the number of public inputs.

Let F = Zp. For the sake of efficiency, we require the existence of the nth
primitive root of unity modulo p, denoted by ω. Let U , V , and W be instance-
dependent matrices and let z be a witness. A QAP is characterized by the
constraint Uz ◦ V z = Wz. For j ∈ [1,m], define uj(X) := LU(j)(X), vj(X) :=
LV (j)(X), and wj(X) := LW (j)(X) to be interpolating polynomials of the jth
column of the corresponding matrix. Thus, uj , vj , wj ∈ Z

(≤n−1)
p [X]. Let u(X) =∑

zjuj(X), v(X) =
∑

zjvj(X), and w(X) =
∑

zjwj(X). Then Uz ◦ V z = Wz
iff Z(X) | u(X)v(X) − w(X) iff u(X)v(X) ≡ w(X) (mod Z(X)) iff there exists
a polynomial h(X) such that u(X)v(X) − w(X) = h(X)Z(X).

An QAP instance Iqap is equal to (Zp,m0, {uj , vj , wj}m
j=1). This instance

defines the following relation:

RIqap =

{
(x,w) : x = (z1, . . . , zm0)

� ∧ w = (zm0+1, . . . , zm)�∧
u(X)v(X) ≡ w(X) (mod Z(X))

}

(1)

where u(X) =
∑m

j=1 zjuj(X), v(X) =
∑m

j=1 zjvj(X), and w(X) =
∑m

j=1 zjwj(X) as above. That is, (x,w) ∈ R = RIqap if there exists a (degree
≤ n − 2) polynomial h(X), such that the following key equation holds:

χ(X) := u(X)v(X) − w(X) − h(X)Z(X) = 0 , (2)

On top of checking Eq. (2), the verifier also needs to check that u(X), v(X),
and w(X) are correctly computed: that is, that (i) the first m0 coefficients zj

in u(X) are equal to the public inputs, and (ii) u(X), v(X), and w(X) are all
computed by using the same coefficients zj for j ≤ m.

SNARK Derivation. Let u(X), v(X), w(X), and χ(X) be as in Sect. 2. Recall
from Eq. (2) that the key equation of QAP states that the prover is honest iff
χ(X) = 0, that is, h(X) := (u(X)v(X) − w(X))/Z(X) is a polynomial. We will
use bivariate polynomials like A(X,Y). The indeterminate X is related to the
definition of QAP. The indeterminate Y groups together correct X-polynomials
in the security proof; such a grouping approach was also used in say [24]. The
argument in the new template consists of three elements, π = ([a, cs]1, [b]2),
where a = A(x, y), b = B(x, y), and cs = Cs(x, y) for well-defined polynomials
A(X,Y), B(X,Y), and Cs(X,Y). Intuitively, [a]1 is a succinct commitment to
u(X), [b]2 is a succinct commitment to v(X), and [cs]1 is the “actual” argument
that at the same time commits to w(X).

566 H. Lipmaa

As in all most efficient random-oracle-less zk-SNARKs [21,23,31,36], we aim
to make [cs]1 to be computable only by the honest prover. The prover has access
to the CRS that contains the evaluation of well-chosen polynomials at (x, y)
in both G1 and G2. The knowledge-soundness proof is in the AGM. There, we
show that if the verification polynomial V(X,Y) = 0, and A(X,Y), B(X,Y),
and Cs(X,Y) are in the span of the polynomials in the CRS, then it must hold
that χ(X) = 0 and thus the prover is honest.

More precisely, let Δ := (α, β, γ, δ, η) be a tuple of small integers chosen later.
We will give a complete derivation of the new SNARK. We will also derive the
conditions Δ has to satisfy for the SNARK to be knowledge-sound; in Sects. 5
and 4, we add more conditions to achieve both CRS-verifiability (and thus Sub-
ZK) and ASE. We find it instructional to go first through the process with
unfixed Δ. In Eq. (11), we propose a setting of Δ that is sufficient to obtain all
knowledge-soundness, ASE, and CRS-verifiability.

For randomizers ra and rb needed to make the commitment hiding, define

A(X,Y) := raY α + u(X)Y β , B(X,Y) := rbY
α + v(X)Y β (3)

to be “commitments” to u(X) and v(X). We use different powers of Y to separate
the randomness from the committed values. Define also

C(X,Y) := (A(X,Y) + Y γ)(B(X,Y) + Y δ) − Y γ+δ

=u(X)Y β+δ + v(X)Y β+γ + u(X)v(X)Y 2β + R(X,Y)Y α

=P (X,Y) + (u(X)v(X) − w(X))Y 2β + R(X,Y)Y α

(4)

where P (X,Y) := u(X)Y β+δ + v(X)Y β+γ + w(X)Y 2β and R(X,Y) :=
rb(A(X,Y) + Y γ) + ra(v(X)Y β + Y δ).

The inclusion of Y γ and Y δ in the definition of C(X,Y) serves three goals.
First, it introduces the addend P (X,Y) =

∑m
j=1 zjPj(X,Y), where

Pj(X,Y) := uj(X)Y β+δ + vj(X)Y β+γ + wj(X)Y 2β ; (5)

this makes it easier to verify that P uses the same coefficients zj when computing
[a]1, [b]2, and [cs]1. Second, it makes it possible to verify that P uses the correct
public input. Third, the coefficient of Y 2β , u(X)v(X)− w(X), divides by Z(X)
iff the prover is honest. That is, it is h(X)Z(X) for some polynomial h(X) iff
the prover is honest and thus x ∈ LIqap .

On top of χ(X) = 0, it must be possible to check that the public input
(zj)m0

j=1 is correct. To this end, we define polynomials Cs(X,Y) and Cp(X,Y),
s.t. C(X,Y) = Cp(X,Y)Y η + Cs(X,Y)Y α. Here, [cp]1 = [Cp(x, y)]1 is recom-
puted by the verifier and thus Cp(X,Y) must not depend on zj for j > m0 (i.e.,
on the secret information). To minimize the verifier’s computation, Cp(X,Y)
has only m0 addends. Cs depends both on public and secret inputs, and only an
honest prover should be able to compute [cs]1 = [Cs(x, y)]1. Thus, we define

A Unified Framework for Non-universal SNARKs 567

Cp(X, Y) :=
∑m0

j=1 zjPj(X, Y)Y −η

Cs(X, Y) :=
∑m

j=m0+1 zjPj(X, Y)Y −α + (u(X)v(X) − w(X))Y 2β−α + R(X, Y) .
(6)

Fig. 3. The new SNARK Sqap. Moreover, Sqsp is exactly like Sqap, except wj(X) = 0.

Here, we use the factors Y η and Y α to separate the public input and the witness
in the security proof. For efficiency reasons, we use Y α, instead of a new power
of Y : now Cs(X,Y) has an addend rbA(X,Y) that reuses the value A(X,Y).

As mentioned before, the SNARK argument is π = ([a, cs]1, [b]2). The verifier
recomputes [cp]1 ← [Cp(x, y)]1 and [C(x, y)]T ← [cp]1 • [yη]2 + [cs]1 • [yα]2.
Then, the verifier checks that C(x, y) is computed correctly by checking that
C(x, y) = (A(x, y) + yγ)(B(x, y) + yδ) − yγ+δ.

We are now ready to describe the SNARK Sqap, see Fig. 3. The CRS consists
of elements needed by the honest prover, the honest verifier, and the simulator.
We will explain the simulator in the proof of Theorem 1. The CRS has two
trapdoors (x and y), but the simulator uses only one of them (y). ([1,3] formalized
the difference by defining two different types of trapdoors, CRS trapdoors tdcrs
and simulation trapdoors tdsim. In Sqap, tdcrs = (x, y) and tdsim = y.)

568 H. Lipmaa

Security Intuition. We prove knowledge-soundness in the AGM with random
oracles. Recall that an algebraic adversary can use the oracle Oι, ι ∈ {1, 2}, to
create new random group elements [q1i]ι. Let Qι be the vector of corresponding
indeterminates in Gι. Let X = (X,Q1,Q2, Y) (resp., x = (x, q1, q2, y)) be the
tuple of all indeterminates (resp., corresponding random integers).

Write the CRS in Fig. 3 as crs = (crs1, crs2), where crsι = [(f(x, y))f∈Γι
]ι for a

public set Γι of polynomials. For example, Γ2 = {Y α, Y δ, Y η}∪{XjY β}n−1
j=0 . (As

an optimization, the CRS of Sqap also includes [yγ+δ]T , but it can be recomputed
from the available elements in G1 and G2.) Since we work in the AGM, the
malicious prover is algebraic and thus we can extract matrices N1 and N2,
such that (a

cs
) = N1(

crs1
q1) and b = N2(

crs2
q2). This means, that we can write

a = A†(x), b = B†(x), and cs = C†
s(x), where A†(X), B†(X), and C†

s(X) are
maliciously computed polynomials with known coefficients. We can recover all
coefficients of A†(X), B†(X), and C†

s(X) from N1 and N2, as follows:

A†(X) :=
∑m0

j=1 a∗
jPj(X,Y)Y −η +

∑m
j=m0+1 a∗

jPj(X,Y)Y −α + raY α

+ ua(X)Y β + ha(X)Z(X)Y 2β−α + aγY γ + aδY
δ +

∑
k qakQ1k ,

C†
s(X) :=

∑m0
j=1 c∗

jPj(X,Y)Y −η +
∑m

j=m0+1 c∗
jPj(X,Y)Y −α + rcY

α

+ uc(X)Y β + hc(X)Z(X)Y 2β−α + cγY γ + cδY
δ +

∑
k qckQ1k ,

B†(X) := rbY
α + vb(X)Y β + bδY

δ + bηY η +
∑

k bqkQ2k ,
(8)

where, say a∗
j ∈ Zp, ua(X) ∈ Z

(≤n−1)
p [X], and ha(X) ∈ Z

(≤n−2)
p [X].

The verification equation Eq. (7) guarantees V(x) = 0, where

V(X) := (A†(X)+Y γ)(B†(X)+Y δ)−Y γ+δ −Cp(X,Y)Y η −C†
s(X)Y α . (9)

Note that Cp is honestly computed. Since we know all coefficients of polynomials
like A†(X), we also know all coefficients of V(X).

On the Use of AGM. In the knowledge-soundness proof, we assume that the
knowledge-soundness adversary A is algebraic and then break the PDL assump-
tion. More precisely, with use the AGM with random oracles. However, we
note that ROfkl-AGM is not realistic since it allows to prove the security of
false knowledge assumptions.4 Really, consider the assumption that any PPT
adversary A, that on input [1]1 generates [x]1, must know x. This assump-
tion is false in the settings where A has access to an efficient method (e.g.,
hash-and-increment or elliptic curve hashing) of creating random group ele-
ments without knowing their discrete logarithms. However, in the ROfkl-AGM,
one can extract an integer vector N and group element vector [q]1, such that
[x]1 = N� [

1
q

]
1
= N1[1]1+

∑
i≥1 N1+i[qi]1. Moreover, the reduction can program

the random oracle by first creating the discrete logarithms qk of each coordinate

4 This is probably one reason why [19] uses AGM with random oracles in the case
where the analyzed protocol itself uses random oracles. [19] proves the knowledge-
soundness of Groth’s SNARK in the AGM without random oracles.

A Unified Framework for Non-universal SNARKs 569

of [q]1. Then, [x]1 = (N1+
∑

i≥1 N1+i)[1]1 and thus the reduction can output its
discrete logarithm x ← N1 +

∑
i≥1 N1+i. One has exactly the same issue when

using AGM without random oracles (in this case, q has length 0).
The problem is that the reduction knows q and can thus compute x. The

knowledge of q should be impossible if A has created [qk]1 by using elliptic curve
hashing. We modify the AGM with random oracles so that one can still prove the
security of (thought to be) secure knowledge assumptions but not of assumptions
of the above type. The first idea is to restrict the way the reduction is allowed to
program the random oracle: given that the input of the reduction (who aims to
break the PDL assumption) is xA = (p; [xi : i ∈ T1]1, [xi : i ∈ T2]2), we require
that the reduction programs the random oracle Oι by creating random integers
s, t ←$Zp and then outputting s[x]ι + t. Such “linear programming” was already
used in [19] but in a different context. For example, it was used to implicitly
create other CRS trapdoors from xA and in one case (the security proof of the
RO-model BLS signature) also to program the random oracle. However, our
usage of this strategy is in a novel context and for a novel goal.

We modify the strategy of AGM with random oracles of [19] even further.
When using the described “linear programming” strategy to construct a PDL
adversary B that obtains input, depending on one trapdoor (say, x), and then
uses this to create a multivariate crs for the knowledge-soundness adversary A.
For the reduction to be successful, B creates other trapdoors (notably, includ-
ing qιk) implicitly as linear functions of x. E.g., B sets [y]1 ← sy[x]1 + ty[1]1,
for random sy and ty, and similarly [yi]1 ← [(syx + ty)i]1; this assumes that
[1, x, . . . , xi]1 are given in the CRS. In the security proof, this means that one
can write V as a univariate (Laurent) polynomial Vx(X) = V(X) and then use
a polynomial factorization algorithm to compute x in the case V(X) �= 0 but
V(x) = 0.

This strategy has some undesirable properties. First, for every monomial
[xiyj]ι in the CRS, we need to give [xi+j]ι as an input to the PDL adversary.
Since max i,max j < max(i + j) and (n + 1, n′)-PDL is stronger than (n, n′)-
PDL in the AGM, one uses a stronger PDL assumption. Second, this strategy is
challenging to implement when, as in our case, the CRS depends on the negative
powers of some trapdoors. Really, given [1/xi]1 for various i-s, it is presumably
hard to compute [1/(sx + t)j]1 for j > 1 and random s and t; due to this
reason, the “linear programming” strategy cannot be used to prove the knowledge-
soundness of Sqap (or Groth’s SNARK since it also involves negative powers of
trapdoors).5 Finally, the degree of Vx is related to the total degree of V.

5 In the case of the original Groth’s SNARK, this holds true since there are two
different trapdoors that are given in negative power in the CRS. One can solve
this issue by modifying Groth’s SNARK: for example, one can multiply all its CRS
elements with a positive power of such trapdoors (but then one has to be carefully
check that Sub-ZK still holds); [19] solved this issue by having an additional game
inside the knowledge-soundness proof that modified the CRS correspondingly.

570 H. Lipmaa

We use a different strategy. We define two different adversaries, one aiming
to compute x (given a PDL input that depends on x) and another aiming to
compute y (given a PDL input that depends on y). Both adversaries generate
the second trapdoor randomly. The reduction programs the oracles differently,
by using the “linear programming” strategy in one case and the ROfkl strategy in
another case. (This is detailed in Fig. 4.) As a direct benefit, inside the reduction,
we deal with polynomials of smaller degrees. Moreover, instead of giving [xi+j]ι
to the adversary, we give [xi]ι as an input to one adversary and [yj]ι to another
adversary. Hence, we can potentially rely on a weaker PDL assumption. Finally,
since the second adversary (By in Fig. 4) uses the ROfkl strategy, it is easy to
handle CRS elements of type [y−1]1 since one chooses y randomly. On the other
hand, since the first adversary uses the “linear programming” strategy, one cannot
prove the security of the false knowledge assumption described above.

On the Choice of Exponents. Another complicated part of the knowledge-
soundness proof is the analysis of what happens if V(X) �= 0 as a Laurent poly-
nomial, but the verification succeeds, that is, V(x) = 0. Let X∗ = (X,Q1,Q2)
and x∗ = (x, q1, q2). Writing V(X) =

∑
i VY i(X∗)Y i for known Laurent poly-

nomials VY i(X∗), we get VY i(X∗) = 0 for each i. There are 29 non-trivial
coefficients VY i(X∗), for i ∈
{
2α, 2β , α + β, 3β − α, α + γ, β + γ ,−α + 2β + γ, 2δ , α + δ, β + δ ,

− α + 2β + δ, γ + δ ,−α + β + γ + δ,−α + β + 2δ, α + 2β − η, 3β − η,

α + β + γ − η, 2β + γ − η, α + β + δ − η, 2β + δ − η, β + γ + δ − η, β + 2δ − η,

α + η, β + η,−α + 2β + η, γ + η ,−α + β + γ + η, δ + η,−α + β + δ + η
}

.
(10)

It is possible but very tedious to show that from VY i(X∗) = 0 for each twenty
nine i-s, we get that χ(X) = 0 and thus, the prover is honest. To simplify the
knowledge-soundness proof, we constructed Sqap so that there exists a small set
Crit of six elements, such that χ(X) = 0 follows from VY i(X∗) = 0 for Y i ∈ Crit.

For this idea to work, we need to restrict the choice of Δ: namely, Δ has to
be such that the exponents in Crit are different from each other and all other
exponents of Y in V(X). More precisely, define Coeff := {Y i : VY i(X∗) �= 0},

Crit := {Y 2β , Y β+γ , Y β+δ, Y γ+δ, Y γ+η, Y 2δ} ,

and let Crit := Coeff\Crit be the “symbolic” complement of Crit; that is, Y j ∈ Crit
if j is symbolically not the same as one of the exponents in Crit, so |Coeff| = 29
and |Crit| = 29 − 6 = 23. We highlighted the 6 critical coefficients in Eq. (10),
not highlighted coefficients correspond to coefficients in Crit.

We say that Δ is soundness-friendly if Crit consists of mutually different
powers of Y (|Crit| = 6) and Crit ∩ Crit = ∅. We will give a concrete soundness-
friendly suggestion for Δ in Eq. (11). We depict the critical coefficients VY i(X∗),
Y i ∈ Crit, in Table 2. (The last rows in Table 2 are only relevant for the ASE
proof in Sect. 4.) In the knowledge-soundness proof of Theorem 1, we show that
if VY i(X∗) = 0 for Y i ∈ Crit, then χ(X) = 0 and thus the prover is honest.

A Unified Framework for Non-universal SNARKs 571

Table 2. Sqap: the critical coefficients in the knowledge-soundness proof (up, left),
addends to the same coefficients in the ASE proof (up, right), and coefficients that
only occur in the ASE proof (bottom). Here, z̃j = zj − bηa∗

j for j ≤ m0, z̃j = c∗
j − rba

∗
j

for j > m0, u(X) =
∑m

j=1 z̃juj(X), v(X) =
∑m

j=1 z̃jvj(X), w(X) =
∑m

j=1 z̃jwj(X),
and h(X) = hc(X) − rbha(X).

Y i · · · VY i···(X
∗) (KS and ASE) V̂Y i1 ···(X

∗) (ASE only)

Y γ+δ (aγ + 1)(bδ + 1) − 1

Y γ+η (aγ + 1)bη

Y 2δ (bδ + 1)aδ

Y β+δ (bδ + 1)ua(X) + aδvb(X) − u(X)
∑

k (sc2k − rbsa2k)
∑

j σkjuj(X)

Y β+γ (aγ + 1)vb(X) − v(X)
∑

k (sc2k − rbsa2k)
∑

j σkjvj(X)

Y 2β ua(X)vb(X) − w(X) − h(X)Z(X)
∑

k (sc2k − rbsa2k)
∑

j σkjwj(X)

Used only in the ASE proof
Y −α+2δDk (bδ + 1)sa2k

Y γEk rbsa2k + (aγ + 1)sbk − sc2k

DkEk rbsa2k + sa1ksbk − sc2k

Y δDk rbsa2k + (bδ + 1)sa1k − sc2k

Used only in the case (ii) in the ASE proof, if sa1k = aγ + 1 and sc2k = (aγ + 1)sbk

Dk1Ek2 , k1 �= k2 sa1k1sbk2

Y βEk ua(X)sbk

3.1 Security Theorem

Theorem 1. Let Iqap = (Zp,m0, {uj , vj , wj}m
j=1) be a QAP instance. Let Sqap

be the SNARK in Fig. 3. Let T x
ι be the minimal set of exponents i such that the

CRS of Sqap in Fig. 3 can be computed by an algebraic adversary given [xi : i ∈
T x
1]1, [xi : i ∈ T x

2]2 and y. We define T y
ι dually.

(1) Assume Δ is soundness-friendly. Then, Sqap is knowledge-sound in the AGM
under the (T x

1 , T x
2)-PDL and the (T y

1 , T y
2)-PDL assumptions.

(2) Sqap is perfectly zero-knowledge.

Here, T x
1 = [0, 2n − 2], T x

2 = [0, n − 1], T y
1 = {β − α + δ, β − α + γ, 2β −

α, α, β, 2β − α, γ, δ, β − η + δ, β − η + γ, 2β − η}, and T y
2 = {α, β, δ, η}. This can

be contrasted to [19] that provided an AGM knowledge-soundness proof under
the stronger ([1, 2n − 1], [1, 2n − 1])-PDL assumption.

We emphasize that the following knowledge-soundness proof depends mini-
mally on the concrete SNARK: the only intrinsically Sqap-dependent part is the
analysis of the abort probability. The rest of the proof can essentially be copied
to the knowledge-soundness (and ASE) proofs of all following SNARKs.

572 H. Lipmaa

Fig. 4. The adversaries Bz(p,R,xy), z ∈ {x, y}, and how they emulate Oι to A in the
proof of Theorem 1. The parts where the two adversaries differ are boxed. Full-boxed
entries are only in By and its emulation, and dash-boxed entries are only in Bx and
its emulation. E.g., By samples a random x and By samples a random y.

Proof. (1: knowledge-soundness) Let A be an algebraic knowledge-soundness
adversary. Assume that A(O1,O2)(crs; rA) outputs (x, π), such that V accepts
with a non-negligible probability εA. Let crs = (crs1, crs2), with crsι =
[{f(x)}f∈Γι

]ι, as before. Since A is algebraic and the distribution Dp of crs
is PPT-sampleable, there exists an extractor ExtA, such that with probability
εA − εExt, where εExt = AdvagmPgen,D,A,ExtA(λ) = negl(λ), ExtA(crs; rA) succeeds.

We construct two different PDL adversaries, Bx and By, see Fig. 4. Intuitively,
the main difference between them is that they use the knowledge-soundness
adversary A, whose input depends on either x or y, to break PDL with respect
to x or y, correspondingly.

Let z ∈ {x, y} and Z ∈ {X,Y }, correspondingly. Bz obtains an input
xz = ([zk : k ∈ T z

1]1, [zk : k ∈ T z
2]2). Intuitively, Bz reduces the actions of

A to a univariate case by sampling the second trapdoor (y or x) uniformly at
random. The verification equation states that V(x∗, y) = 0, where V(X∗, Y) is a
known Laurent polynomial due to the use of the AGM. The adversary aborts if
V(X∗, Y) = 0 as a Laurent polynomial. The most complicated part of the proof
is to show that if A is successful, then V(X∗, Y) �= 0 and thus the abort on this
step is never executed. (For this, we need to analyze the six critical coefficients
of V, and we will do it at the end of the proof.)

Otherwise, we choose a polynomial f(Z), such that f(Z) �= 0 but f(z) = 0.
Note that By samples the oracle answers qιk uniformly at random, while Bx sets
implicitly qιk ← sιkx + tιk. (Differently from [19], we only use this technique in

A Unified Framework for Non-universal SNARKs 573

the case of Bx.) Thus, Qι = sιX + tι. If V(X∗, Y) �= 0 but V(x∗, Y) = 0, then
V ′(X,Y) := V(X, s1X + t1, s2X + t2, Y) satisfies V ′(x, Y) = 0. We set f(X) to
be equal to some non-zero coefficient V ′

i(X) �= 0 of V ′(X,Y) =
∑

V ′
i(X)Y i.

Bz finds all the roots of f(Z) and then checks which of the roots is equal to
z by using information given in her input. For this, we define event bad = 1 if
V(x∗, Y) = 0 as a Laurent polynomial, where x is either the value imminent in
the input of Bx or sampled by By. By aborts if bad = 1 and otherwise finds y.
Bx aborts if bad = 0 and otherwise finds x. Clearly,

Pr[A succeeds] ≤Pr[ExtA failed] + Pr[ExtA succeeds|bad] + Pr[ExtA succeeds|bad]
≤Pr[ExtA failed] + Pr[Bx succeeds|bad] + Pr[By succeeds|bad] .

Analysis of the abort probability in step (*). Both Bx and By abort if V(X∗, Y) =
0 as a Laurent polynomial. Assume now that V(X) = 0, thus VY i(X∗) = 0 for
Y i ∈ Crit. We must show that (a) the critical coefficients are as in Table 2 and
(b) from “VY i(X∗) = 0 for Y i ∈ Crit” it follows that χ(X) = 0.

One can derive a by inspection (we verified it by using computer algebra),
assuming that Crit satisfies the theorem conditions. For example, the coefficient
of Y γ+δ in V(X) is (aγ +1)(bδ +1)−1 since the coefficient of Y γ+δ in (A†(X)+
Y γ)(B†(X)+Y δ) is (aγ +1)(bδ +1). Other coefficients can be checked similarly.

Now, b follows. Really, since VY γ+δ(X∗) = bδ + aγ(bδ + 1) = 0, we get
aγ = −bδ/(bδ+1). Thus, aγ , bδ �= −1 and (aγ+1)(bδ+1) = 1. Since VY γ+η (X∗) =
(aγ + 1)bη = 0 and aγ �= −1, we get bη = 0. Thus, z̃j = zj − bηa∗

j = zj for
j ≤ m0. Since VY 2δ(X∗) = (bδ + 1)aδ = 0 and bδ �= −1, we get aδ = 0. From
the remaining coefficients, we get (bδ +1)ua(X) = u(X), (aγ +1)vb(X) = v(X),
and u(X)v(X) − w(X) = Z(X)h(X). Thus, (x,w) ∈ RIqap .

(2: zero-knowledge) To see that V accepts, note that (a + yγ)(b + yδ) −
csy

α − cpy
η − yγ+δ = de + dyδ + eyγ − (de + dyδ + eyγ − cpy

η) − cpy
η = 0.

Sim’s output comes from the correct distribution since a and b are individually
uniform in Zp, and c is chosen so that V accepts. ��

Efficiency. Compared to [23], see Table 1, Sqap has fewer trapdoors but other-
wise the same complexity. For example, crsP has (m−m0)+1+n+(n−1)+1 =
m + 2n − m0 + 1 elements from G1 and n + 2 elements from G2. More-
over, crsV has m0 + 1 elements from G1, 3 elements from G2, and one ele-
ment from GT . Since crsP and crsV have one common element in G1 then
|crs| = (m + 2n + 2)g1 + (n + 4)g2 + gT . (Recall that gι denotes the repre-
sentation length of an element of Gι.) Clearly, [a]1 can be computed from [yα]1
and [xiyβ]1 by using n + 1 scalar multiplications. It takes ≈ m + 2n additional
scalar multiplications to compute [c]1.

A Soundness-Friendly Choice of Δ. Recall that we need to find values for
Δ = (α, . . .), such that Crit ∩ Crit = ∅ and |Crit| = 6. We require that both sets
Γ1 and Γ2 contain a non-zero monomial corresponding to Y 0 = 1 (then we can
publish [1]1 and [1]2) and that the values i, for which i ∈ T y

1 ∪T y
2 , have as small

absolute values as possible. The latter makes the PDL assumption somewhat

574 H. Lipmaa

Table 3. Soundness-friendly values of Δ with each parameter having absolute value
≤ 7. “�” in the last column means that this choice of Δ results in a Sub-ZK SNARK

α β γ δ η Sub-ZK

−1 0 −7 3 −2

0 −1 6 −4 1

0 −1 7 −4 1

0 −1 7 −5 1

0 −2 −3 7 2 �

α β γ δ η Sub-ZK

0 −2 6 7 2 �
0 −3 5 7 1

0 1 −6 4 −1

0 1 −7 4 −1

0 1 −7 5 −1

α β γ δ η Sub-ZK

0 2 −6 −7 −2 �
0 2 3 −7 −2 �
0 3 −5 −7 −1 �
1 0 7 −3 2

more reasonable and additionally enables us to construct a CRS verification
algorithm and thus prove Sub-ZK [1,3] in Sect. 5. We are also interested in
minimizing the CRS length.

Since there are many coefficients to take into account, we have a moderately
hard optimization problem. We used a computer search to find all possible values
for α, β, . . . under the restriction that each has an absolute value at most 7.
See Table 3 for the full list of found tuples Δ. Note that for each Δ = (α, β, . . .),
this table contains also −Δ = (−α,−β, . . .).

We recommend to use the following setting:

α = 0, β = −2, γ = −3, δ = 7, η = 2. (11)

As we will see in Sects. 5 and 4, this is one of the settings that allow obtain-
ing both ASE and Sub-ZK security. Assuming the setting of Eq. (11), Crit =
{Y −4, Y −5, Y 5, Y 4, Y −1, Y 14} and

crsP =

(
[{uj(x)y5 + vj(x)y−5 + wj(x)y−4}m

j=m0+1, y
0, {xjy−2}n−1

j=0]1,

[{xiZ(x)y−4}n−2
j=0 , y−3, y7]1, [y0, {xjy−2}n−1

j=0]2

)

,

crsV =
(
[{uj(x)y3 + vj(x)y−7 + wj(x)y−6}m0

j=1, y
−3]1, [y0, y7, y2]2, [y4]T

)
.

(12)
In addition, our computer search tries to minimize the CRS length, but none of
the choices of Δ in Table 3 results in a shorter CRS.
On 2-Phase Updatability. Each of Y α, Y β , . . . can be changed to an indepen-
dent indeterminant, Yα, Yβ , . . ., without invalidating the knowledge-soundness
(or ASE) proof. This offers us the flexibility of choosing the number of trapdoors.
In particular, Kohlweiss et al. proved recently [27] that Groth’s SNARK [23] is
two-phase updatable. Similarly, Sqap is two-phase updatable, when one defines
three trapdoors, x, y, z, and uses well-chosen powers of z instead of yα and yη

throughout the construction of Sqap. Then, one can update x and y in the first
and z in the second phase. We will omit further discussion.

4 Any-Simulation Extractability of Sqap

Next, we prove that Sqap is ASE. The ASE proof is similar to the knowledge-
soundness proof Theorem 1. The main difference is the handling of the case

A Unified Framework for Non-universal SNARKs 575

when V(X) = 0 as a Laurent polynomial. We use some monomials of V(X) to
simplify the formulas and then arrive at a crossroad: in one case, the adversary
did not use simulation query results, and thus we are back to the knowledge-
soundness proof. In the second case, the adversary used some of the query results;
then, we use specific coefficients of V(X) to argue that she used the result of
precisely one query. After that, we show that the adversary used the same input
to the simulator in this query as in the forgery attempt. (This result relies on an
additional assumption that each uj(X), for j ≤ m0, is linearly independent of
all other ui(X), i ≤ m. This assumption can be easily satisfied by adding to the
QAP m0 dummy constraints uj · 1 = uj , similarly to [21].) Hence, this is not an
ASE but a SASE attack, and thus not valid in our context. Thus, Sqap is ASE.

In the ASE proof, the algebraic adversary A also sees the outputs of the
simulator. Thus, A has more inputs than in the knowledge-soundness proof. Let
σk = (σkj)m0

j=1 be the maliciously chosen simulator input that the adversary
used, instead of (zj)m0

j=1, during the kth query. Let X = (X,Q1,Q2,D,E, Y)
and X∗ = (X,Q1,Q2), where Dk (resp., Ek) is the indeterminate corresponding
to the trapdoor d = dk (resp., e = ek) generated by the simulator during the
kth query. Observing Fig. 3, Sim answers with ([dk, y−α((dkek + yδdk + yγek)−∑m0

j=1 σkjPj(x, y))]1, [ek]2). Thus, in the ASE proof, A†(X), B†(X), and C†
s(X)

have the following additional addends:

A†(X) = . . . +
∑

k sa1kDk +
∑

k sa2kY −α((DkEk + Y δDk + Y γEk) − ∑m0
j=1 σkjPj(X, Y)) ,

C†
s (X) = . . . +

∑
k sc1kDk +

∑
k sc2kY −α((DkEk + Y δDk + Y γEk) − ∑m0

j=1 σkjPj(X, Y)) ,

B†(X) = . . . +
∑

k sbkEk .

Here, the coefficients like sa1k are chosen by the adversary. Let V(X) =∑
i1,i2,i3,i4,k1,k2,k3

V
Y i1D

i2
k1

E
i3
k2

E
i4
k3

(X∗)Y i1Di2
k1

Ei3
k2

Ei4
k3

. The addition of new
addends to polynomials like A†(X) means that the existing critical coeffi-
cients of VY i1 ··· of V(X) change by extra addends; we have denoted these
extras by V̂Y i··· in Table 2. Moreover, there are a number of new critical
coefficients, depicted in the bottom of Table 2. For example, VY β+δ(X∗) =
(bδ+1)ua(X)+aδvb(X)−u(X)+

∑
k(sc2k −rbsa2k)

∑
j σkjuj(X) and, for any k,

VY γEk
(X∗) = rbsa2k + (aγ + 1)sbk − sc2k. Since here, the index Y i1Di2

k1
Ei3

k2
Ei4

k3

of VY i1 ··· depends on a non-constant number of indeterminates, here both
Coeffse := {Y i1Di2

k1
Ei3

k2
Ei4

k3
: V

Y i1D
i2
k1

E
i3
k2

E
i4
k3

(X∗) �= 0} and

Critse ={Y 2β , Y β+γ , Y β+δ, Y γ+δ, Y γ+η, Y 2δ} ∪ {Y −α+2δDk}k ∪ {Y γEk}k∪
{Dk1Ek2}k1,k2 ∪ {Y δDk}k ∪ {Y βEk}k

also contain a non-constant number of coefficients. For example, Critse contains
Dk1Ek2 for any k1, k2 ≤ qs, where qs is the number of simulation queries. How-
ever, there are only 12 “families” of critical coefficients, and the members of the
same family (say D1E2 and D7E2) can be analyzed similarly.

For Critse to consist of different monomials and for Critse ∩ Critse, the new
critical monomials Y i1Di2

k Ei3
k (see Table 2, the last 6 monomials) must be dif-

ferent from all other monomials. We say that Δ is ASE-friendly if these condi-
tions are satisfied. While the number of additional monomials in Crit and Coeff

576 H. Lipmaa

is huge, ascertaining that the new critical monomials are unique is relatively
easy, even if tedious, since one needs to guarantee that for each fixed (i2, i3),
if Y i1Di2

k Ei3
k ∈ Critse and Y i′

1Di2
k Ei3

k ∈ Coeffse then i1 �= i′1. By inspection, one
can establish that it means the following.

1. (a) When i2 = 1 and i3 = 0, we need −α + 2δ �= δ (i.e., δ �= α, which
follows from the fact that Y β+δ ∈ Crit and Y α+β ∈ Crit) and −α + 2δ, δ �∈
{α, β,−α + β + δ, η,−α + δ + η}.
This guarantees, say, that Y −α+2δDk (which is a critical monomial) is not
equal to Y −α+δ+ηDk.

2. (b) When i2 = 0 and i3 = 1, we need γ �= β and γ, β �∈ {α,−α + 2β,−α +
β + γ, δ,−α + β + δ,−α + γ + δ, 2β − η, β + γ − η, β + δ − η,−α + γ + η}.

3. (c) When i2 = 1 and i3 = 1, we need 0 �∈ {−α + β,−α + δ,−α + η}.

By simple but tedious case analysis, one can prove the following lemma.

Lemma 1. If Δ is soundness-friendly, then it is also ASE-friendly.

Proof. (a) Here, −α+2δ �= δ (i.e., δ �= α) follows from the fact that Y β+δ ∈ Crit
and Y α+β ∈ Crit. Moreover, −α + 2δ �= α and δ �= α follow since α �= δ,
−α + 2δ �= β follows since Y 2δ ∈ Crit and Y α+β ∈ Crit, δ �= β follows since
Y 2β , Y 2δ ∈ Crit, −α + 2δ �= −α + β + δ follows since β �= δ, δ �= −α + β + δ
follows since α �= δ, −α + 2δ �= η follows from Y 2δ ∈ Crit and Y α+η ∈ Crit,
δ �= η follows from Y γ+δ, Y γ+η ∈ Crit, −α+2δ �= −α+ δ+ η follows from δ �= η,
δ �= −α + δ + η follows form Y γ+η ∈ Crit and Y α+γ ∈ Crit.

(b) Next, γ �= β follows from Y 2β , Y β+γ ∈ Crit, γ �= α follows from Y β+γ ∈
Crit and Y α+β ∈ Crit, β �= α follows from Y 2β ∈ Crit and Y α+β ∈ Crit, γ �=
−α + 2β follows from Y 2β ∈ Crit and Y α+γ ∈ Crit, β �= −α + 2β follows from
α �= β, γ �= −α+ β + γ follows from α �= β, β �= −α+ β + γ follows from α �= γ,
γ �= δ follows from Y β+γ , Y β+δ ∈ Crit, β �= δ is already proven, γ �= −α + β + δ
follows from Y β+γ ∈ Crit and Y −α+2β+δ ∈ Crit, β �= −α + β + δ follows from
α �= δ, γ �= −α+γ+δ follows from α �= δ, β �= −α+γ+δ follows from Y γ+δ ∈ Crit
and Y α+β ∈ Crit, γ �= 2β − η follows from Y 2β , Y γ+η ∈ Crit, β �= 2β − η (i.e.,
β �= η) follows from Y β+γ , Y γ+η ∈ Crit, γ �= β + γ − η follows from β �= η,
β �= β + γ − η (i.e., γ �= η) follows from Y β+δ ∈ Crit and Y β+γ+δ−η ∈ Crit,
γ �= β + δ − η follows from Y β+δ, Y γ+η ∈ Crit, β �= β + δ − η follows from δ �= η,
γ �= −α + γ + η follows from Y γ+η ∈ Crit and Y α+γ ∈ Crit, β �= −α + γ + η
follows from Y γ+η ∈ Crit and Y α+β ∈ Crit.

(c) Finally, α �= β and α �= δ is already known, and α �= η follows from
Y γ+η ∈ Crit and Y α+γ ∈ Crit. ��

Theorem 2. Let T x
ι and T y

ι be as in Theorem 1. Let Iqap = (Zp,m0,
{uj , vj , wj}m

j=1) be a QAP instance. Let Sqap be the SNARK in Fig. 3. Assume
Δ is soundness-friendly. Assume uj(X), j ≤ m0, are linearly independent from
each other and from other polynomials ui for i > m0. Sqap is non-black-box ASE
in the AGM under the (T x

1 , T x
2)-PDL and (T y

1 , T y
2)-PDL assumptions.

A Unified Framework for Non-universal SNARKs 577

Fig. 5. B(p,R,xB) in the proof of Theorem 2, and the emulation of OSim. Full-boxed
and dashed-boxed are defined as in Fig. 4.

Proof. The ASE proof is similar to the knowledge-soundness proof. There are two
main differences. First, B also has to emulate Sim to A. Second, the analysis of
the abort probability is different due to the larger number of critical monomials.

Hence, we refer to the proof of Theorem 1, except that the full description of
Bz in Fig. 5 contains also the emulation of simulation queries. (Obviously, there
is more going on behind the scene: for example, V is defined differently, and X∗

includes D,E, but we already explained that part.)
The only thing left to do now is the different (more complicated) analysis of

the abort probability.

Analysis of the abort probability in step (*). Assume that V(X) = 0, thus also
VY i1 ···(X

∗) = 0 for all critical monomials (see Theorem 2). From the coefficient
of Y γ+δ of V, we get bδ = −aγ/(aγ + 1) and thus aγ , bδ �= −1. From the coeffi-
cients of Y γ+η and Y 2δ, and since aγ , bδ �= −1, we get bη = 0 and aδ = 0. Up to
now, the proof looks similar to that of Theorem 1. The rest of the coefficients
have to be handled differently.

From the coefficients of Y β+δ and Y β+γ , we get

ua(X) =(aγ + 1)(u(X) +
∑

j (
∑m0

k=1 σkj(rbsa2k − sc2k))uj(X)) ,

vb(X) =(v(X) +
∑

j (
∑m0

k=1 σkj(rbsa2k − sc2k)) vj(X))/(aγ + 1) .

From the coefficient of Y −α+2δDk, we get sa2k = 0. From the coefficients of
Y γEk and DkEk, we get sc2k = (aγ + 1)sbk = sa1ksbk. Thus, for all k, either (i)
sbk = sc2k = 0 or (ii) sa1k = aγ + 1 �= 0 and sc2k = (aγ + 1)sbk �= 0.

If the case (i) holds for all k, then the first three polynomials V̂Y i in Table 2
are 0 and we are back to the knowledge-soundness case. One can then follow the
remaining proof of Theorem 1, and obtain knowledge-soundness and ASE. Note
that then, from the coefficient of Y δDk, it follows that also sa1k = 0 for all k.
Thus, the adversary did not benefit from the simulation queries.

578 H. Lipmaa

Consider the case when at least for one k, (ii) holds. From the coefficient
of Y δDk of this k, we get 0 = rbsa2k + (bδ + 1)sa1k − sc2k = 1 − (aγ + 1)sbk

and thus sbk = 1/(aγ + 1). From the coefficient of Dk1Ek2 for any k1 �= k2,
we get sa1k1sbk2 = 0. Thus, if some sa1k2 �= 0, then (since we are in the case
(ii)) also sbk2 �= 0, and thus sa1k1 = sbk1 = sc2k1 = 0 for all k1 �= k2. Hence,
rbsa2k1 − sc2k1 = 0, and thus making the k1th simulation query, k1 �= k2, does
not help the adversary. Thus, we can assume that A makes only one query, say
the k2th one, with the simulator input σ = (σj).

From the coefficient of Y βEk2 , we get sbk2ua(X) = 0. Since sbk2 �= 0 and
aγ �= −1,

∑
j≤m0

(σj(rbsa2k2 − sc2k2) + zj)uj(X) +
∑

j>m0
z̃juj(X) = 0. Since

sa2k2 = 0 and sc2k2 = 1,
∑

j≤m0
(zj − σj)uj(X) +

∑
j>m0

z̃juj(X) = 0. Since
uj(X) are linearly independent for j ≤ m0, it means zj = σj for all j ≤ m0.
Thus, A made the only simulation query on the same input that she used to
cheat on, and thus this corresponds to a SASE but not an ASE attack. Hence,
A did not succeed in an ASE attack and thus χ(X) = 0. ��

On Lower-Bound of [25]. Groth and Maller proved that in any SASE SNARK,
the verifier has to perform two verification equations. Our result does not con-
tradict it since we achieve ASE, a weaker property. (Similarly, the ASE SNARK
of [6] has only one verification equation.)

5 Subversion-Zero Knowledge

In a subversion zero-knowledge (Sub-ZK) SNARK [1,3,7,17], the goal is to
obtain zero-knowledge even if the CRS creator cannot be trusted. As noted
in [2], one has to use non-falsifiable assumptions to achieve Sub-ZK. Next, we
show that Sqap is Sub-ZK (under the BDH-KE assumption), assuming Δ satis-
fies some additional requirements. The same argument applies in the case of all
other new SNARKs. In particular, five different choices of Δ in Table 3 result in
a Sub-ZK SNARK; this includes the setting of Eq. (11).

According to the blueprint of [1,3,17], one can follow the next steps to make
a SNARK subversion-resistant:

1. Construct a public CRS verification algorithm CV that checks that the CRS
is correct (that is, it corresponds to some trapdoor td).

2. To facilitate public verification, this can mean adding new elements to the
CRS. Let us denote the set of new elements by crsCV. If crsCV is non-empty,
then one must reprove knowledge-soundness and/or simulation-extractability,
taking crsCV into account.

3. Under a reasonable knowledge assumption, extract td from the CRS.
4. Show how to simulate the argument by using the extracted trapdoor.

This blueprint is formalized in [3], and we refer the reader to it for a further dis-
cussion, including proof that trapdoor-extractability and ZK suffice to get Sub-
ZK. Moreover, for trapdoor-extractability, it suffices to have CRS-verifiability
and a strong enough extractability assumption.

A Unified Framework for Non-universal SNARKs 579

Let us show that under the setting in Eq. (11) with CRS as in Eq. (12), the
correctness (that is, that it corresponds to some choice of trapdoors) of the CRS
of Sqap can be verified by using a public CV algorithm. Modelling after [1,3], CV
needs to check that (1) all trapdoors belong to correct domain (for example, it
checks y ∈ Z

∗
p by checking that [y]1 �= [0]1), and that (2) all CRS elements [f(x)]ι,

where f is a public rational function, are correctly computed from trapdoors x.
The last verification can be done step by step, starting from simpler (for example,
lower-degree) functions and then using the already verified values as helpers to
verify more complex functions.

We present the CRS verification algorithm CV for Sqap in Fig. 6. Note that
here we assume uj(X) =

∑
ujiX

i, vj(X) =
∑

vjiX
i, and wj(X) =

∑
wjiX

i. It
is easy (though tedious) to check that CV suffices to check that the CRS of Sqap

has been correctly generated but for the following two exceptions:

Fig. 6. The CRS verification algorithm CV in Sqap. dashed elements are guaranteed
to be in the CRS if α = 0. dotted equalities and the integer exponents in comments
depend on the concrete of Δ (namely, Eq. (11))

1. The dashed elements are not guaranteed to be in the CRS unless Δ is well-
chosen. A simple way of solving this problem is to set α ← 0. This is not too
restrictive, since 12 out of 14 Δ-s in Table 3 have α = 0.

580 H. Lipmaa

2. One must verify that, for some ι such that [yκ]ι is in the CRS, yκ is correctly
computed, where κ ∈ {β, γ, δ, η}. (Recall that α = 0.)
This involves adding a small number of pairing equations of type [yi]1•[yj]2 =
[yk]2•[y�]2, such that each equation introduces exactly one new degree (either
i, j, k or) and reuses three degrees that are already “verified”. For example,
in the first equation i, j, k ∈ {0, 1}. In this case, one can use pairings to
establish the correctness of y� for 	 ∈ {−1, 0, 1, 2}. This means we need to
put additional restrictions on Δ.

Lemma 2. From the 14 settings of Δ in Table 2, the five ones marked with �
are CRS-verifiable.

Proof. Intuitively, we just need to describe how we (manually) found which of the
choices of Δ from Table 3 satisfy both above restrictions. As already mentioned,
the first restriction is straightforward to satisfy. Now, assuming that α = 0,
consider two cases of 	 from the first pairing equation in the second restriction:

1. 	 = −1. In the second pairing equation, then (say) i, j, k ∈ {−1, 0, 1}. In this
case, one can establish the correctness of y� for 	 ∈ [−3, 3].
To solve this, we look at the possible Δ-s in Table 3, such that α = 0 and
one of β, γ, δ, η is equal to either −1 or 2. This only weeds out one additional
possibility (namely, Δ = (0,−3, 5, 7, 1)).
In the case one of β, γ, δ, η is equal to −1, we will look at the cases when one of
the three other values κ ∈ {β, γ, δ, η} belongs to [−3, 3]. This leaves still sev-
eral possibilities, Δ ∈ {(0,−1, 6,−4, 1), (0,−1, 7,−4, 1), (0,−1, 7,−5, 1), . . .}.
However, in only one case, Δ = (0, 3,−5,−7,−1), it is possible to verify
all 5 values yκ for κ ∈ {α, β, γ, δ, η}: namely, by checking that (say) [yη]1 •
[y]2 = [1]1 • [1]1, [yη]1 • [yβ]2 = [y]1 • [y]1, [yγ]2 • [yβ]1 = [yη]1 • [yη]1, and
[yδ]2 • [y]1 = [yγ]1 • [yη]1.

2. 	 = 2. Then, in the second equation, one can establish the correctness of y�

for 	 ∈ [−2, 3]. W.l.o.g., we assume that 	 �= −1 (otherwise we are back to the
previous case). Thus, after two verification equations, we have the following
cases left: Δ ∈ {(0,−2,−3, 7, 2), (−2, 6, 7, 2), (2,−6,−7, 2), (2, 3,−7, −2)}.
A simple inspection establishes that in all the three cases, where both −2 and
2 are present, one has an efficient CRS-verification algorithm. For example,
one can take Δ = (−2,−3, 7, 2), that is, the setting in Eq. (11). Then, one
has to verify that [1]1 • [yη]2 = [y]1 • [y]2, [yβ]1 • [yη]2 = [1]1 • [1]2, [yγ]1 • [y]2 =
[yβ]1 • [1]2, and [yγ]1 • [yβ]2 = [yη]1 • [yη]2. (Those are the dotted equations
in Fig. 6.) ��

For the sake of concreteness, we recommend to choose Δ as in Eq. (11).
However, one can use any of the five checkmarked choices in Table 3.

One can significantly speed up CV in Fig. 6 by using batching techniques, as
explained in [1,3]. CV for other new SNARKs are essentially the same, modulo
some simplifications due to say wi(X) = 0 in the case of the QSP.

A Unified Framework for Non-universal SNARKs 581

Trapdoor-Extractability and Sub-ZK. Trapdoor-extractability [3] means
that if CV accepts the CRS, then one can extract the simulation trapdoor. In
all new SNARKs, the simulation trapdoor is equal to td = y since Sim does not
use x. Clearly, in all new SNARKs, if CV accepts crs, one can use the BDH-KE
assumption to extract y. Thus, BDH-KE guarantees trapdoor-extractability, and
the CRS-verifiability and the trapdoor-extractability together guarantee that one
can extract td. Hence, by the general result of [3], all new SNARKs are Sub-ZK,
assuming that their CRS is verifiable and that the BDH-KE holds.

Corollary 1. Under the five �-ed settings of Δ in Table 2, Sqap is statistically
composable Sub-ZK under the BDH-KE assumption.

Acknowledgment. We thank Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov
for helpful comments. The author was partially supported by the Estonian Research
Council grant (PRG49).

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zając, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6_1

2. Abdolmaleki, B., Lipmaa, H., Siim, J., Zając, M.: On QA-NIZK in the BPK model.
In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I.
LNCS, vol. 12110, pp. 590–620. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45374-9_20

3. Abdolmaleki, B., Lipmaa, H., Siim, J., Zając, M.: On subversion-resistant
SNARKs. J. Cryptol. 34(3), 1–42 (2021). https://doi.org/10.1007/s00145-021-
09379-y

4. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: obtaining simulation
extractable subversion and updatable SNARKs generically. In: ACM CCS 2020,
pp. 1987–2005 (2020)

5. Baghery, K.: On the efficiency of privacy-preserving smart contract systems. In:
Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol.
11627, pp. 118–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23696-0_7

6. Baghery, K., Kohlweiss, M., Siim, J., Volkhov, M.: Another look at extraction
and randomization of Groth’s zk-SNARK. In: Borisov, N., Diaz, C. (eds.) FC 2021.
LNCS, vol. 12674, pp. 457–475. Springer, Heidelberg (2021). https://doi.org/10.
1007/978-3-662-64322-8_22

7. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6_26

8. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

9. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2_18

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-030-45374-9_20
https://doi.org/10.1007/978-3-030-45374-9_20
https://doi.org/10.1007/s00145-021-09379-y
https://doi.org/10.1007/s00145-021-09379-y
https://doi.org/10.1007/978-3-030-23696-0_7
https://doi.org/10.1007/978-3-030-23696-0_7
https://doi.org/10.1007/978-3-662-64322-8_22
https://doi.org/10.1007/978-3-662-64322-8_22
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18

582 H. Lipmaa

10. Bowe, S., Gabizon, A.: Making Groth’s zk-SNARK simulation extractable in the
random oracle model. Cryptology ePrint Archive, Report 2018/187 (2018). https://
eprint.iacr.org/2018/187

11. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contin-
gent payments revisited: attacks and payments for services. In: ACM CCS 2017,
pp. 229–243 (2017)

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145 (2001)

13. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8_28

14. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33

15. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8_35

16. Fauzi, P., Lipmaa, H., Siim, J., Zając, M.: An efficient pairing-based shuffle argu-
ment. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol.
10625, pp. 97–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9_4

17. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5_11

18. Fuchsbauer, G.: WI is not enough: zero-knowledge contingent (service) payments
revisited. In: ACM CCS 2019, pp. 49–62 (2019)

19. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

20. Gabizon, A.: On the security of the BCTV Pinocchio zk-SNARK variant. Cryp-
tology ePrint Archive, Report 2019/119 (2019). https://eprint.iacr.org/2019/119

21. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

22. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_19

23. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

24. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

25. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63715-0_20

https://eprint.iacr.org/2018/187
https://eprint.iacr.org/2018/187
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/119
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20

A Unified Framework for Non-universal SNARKs 583

26. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. Cryptology ePrint Archive, Report 2017/540
(2017). https://eprint.iacr.org/2017/540

27. Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. In: ASI-
ACRYPT 2021 (3). LNCS, vol. 13092, pp. 98–127. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92078-4_4

28. Kohlweiss, M., Zajac, M.: On simulation-extractability of universal zkSNARKs.
Technical Report 2021/511, IACR (2021). https://ia.cr/2021/511

29. Kosba, A.E., et al.: C∅C∅: a framework for building composable zero-knowledge
proofs. Technical Report 2015/1093. International Association for Cryptologic
Research (2015). https://ia.cr/2015/1093

30. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

31. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42033-7_3

32. Lipmaa, H.: Simulation-extractable ZK-SNARKs revisited. Technical Report
2019/612. IACR (2019). https://ia.cr/2019/612

33. Lipmaa, H.: A unified framework for non-universal SNARKs. Technical report.
IACR (2021). https://ia.cr/2021

34. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9_8

35. Parno, B.: A note on the unsoundness of vnTinyRAM’s SNARK. Cryptology ePrint
Archive, Report 2015/437 (2015). https://eprint.iacr.org/2015/437

36. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252
(2013)

37. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553 (1999)

https://eprint.iacr.org/2017/540
https://doi.org/10.1007/978-3-030-92078-4_4
https://doi.org/10.1007/978-3-030-92078-4_4
https://ia.cr/2021/511
https://ia.cr/2015/1093
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-42033-7_3
https://ia.cr/2019/612
https://ia.cr/2021
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://eprint.iacr.org/2015/437

ECLIPSE: Enhanced Compiling Method
for Pedersen-Committed zkSNARK

Engines

Diego F. Aranha1(B), Emil Madsen Bennedsen2, Matteo Campanelli1,
Chaya Ganesh3, Claudio Orlandi1, and Akira Takahashi1

1 Aarhus University, Aarhus, Denmark
{dfaranha,matteo,orlandi,takahashi}@cs.au.dk

2 Concordium, Aarhus, Denmark
emil@bennedsen.eu

3 Indian Institute of Science, Bangalore, India
chaya@iisc.ac.in

Abstract. We advance the state-of-the art for zero-knowledge commit-
and-prove SNARKs (CP-SNARKs). CP-SNARKs are an important class
of SNARKs which, using commitments as “glue”, allow to efficiently com-
bine proof systems—e.g., general-purpose SNARKs (an efficient way to
prove statements about circuits) and Σ-protocols (an efficient way to
prove statements about group operations). Thus, CP-SNARKs allow to
efficiently provide zero-knowledge proofs for composite statements such
as h = H(gx) for some hash-function H.

Our main contribution is providing the first construction of CP-
SNARKs where the proof size is succinct in the number of commitments.

We achieve our result by providing a general technique to compile
Algebraic Holographic Proofs (AHP) (an underlying abstraction used in
many modern SNARKs) with special “decomposition” properties into
an efficient CP-SNARK. We then show that some of the most efficient
AHP constructions—Marlin, PLONK, and Sonic—satisfy our compila-
tion requirements.

Our resulting SNARKs achieve universal and updatable reference
strings, which are highly desirable features as they greatly reduce the
trust needed in the SNARK setup phase.

1 Introduction

Zero-knowledge (ZK) proofs and argument systems (ZK) [35] are one of the
most fascinating concepts in modern cryptography, as they allow proving that
a statement is valid without revealing any additional information as to why
said statement is true. Even further, Succinct Non-interactive ARguments of
Knowledge (zk-SNARKs), allow to do so in such a way that the size of the
proof and the work the verifier needs to perform in order to check the proof is

Full version available at [3].

c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 584–614, 2022.
https://doi.org/10.1007/978-3-030-97121-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_21

ECLIPSE: Enhanced Compiling Method 585

sublinear in the size of the statement. Today, zk-SNARKs are a fundamental
building block in complex cryptographic systems such as e.g., Zcash [9], where
succinct zero-knowledge proofs are used to provide integrity while maintaining
privacy. In such applications, it is crucial that the verification time is minimal
(as every user in the system has to perform the verification) and that the proofs
are short and non-interactive (as they need to be posted on the Blockchain).

In this work we focus on commit-and-prove SNARKs (CP-SNARKs) (intro-
duced in [21]).

This is an important family of SNARKs in which the witness is committed
using Pedersen commitments (the de-facto lingua franca of commitments). The
presence of these commitments allow to “glue” together different proof systems.
An important application of CP-SNARKs is proving composite statements using
the most efficient tool for each part of the statement. Such modularity of the
CP proof system enhances interoperability with other protocols specialized for
efficiently proving certain algebraic relations: consider a composite computation
that naturally presents different components, like an arithmetic circuit for a
hash function, and algebraic representation for group exponentiation. A general-
purpose zero-knowledge proof system for such a computation requires a single
homogeneous representation, thus incurring a high cost in performance. Ideally,
one would like to take advantage of the nuances of a computation and choose
the best proof system for each component of the computation, e.g., SNARKs
for an arithmetic circuit and Σ-protocol for an algebraic relation. One of the
simplest examples of such a statement is proving knowledge of the secret key
corresponding to a Bitcoin address e.g., proving knowledge of some x such that
y = H(gx) (without revealing gx).

There are many other practical scenarios where the CP extension is use-
ful, including, but not limited to, anonymous credentials [2,24,29], verifiable
encryption [44], proof stitching [26,47,52,53], and e-voting [44]. Given these var-
ious potential applications, a working group focused on CP-ZK has recently been
launched as part of the ZKProof Standards [12].

Unfortunately, existing CP-SNARKs are not truly “succinct” since their
proof size scales linearly with the number of commitments containing subvectors
of the witness. In this work, we fill this gap in the literature and provide the first
truly succinct CP-SNARK.

1.1 Applications

To further motivate the need for succinct CP-SNARKs, we now provide some
example applications. In all these applications, the commitments to (subset of)
the witness are part of the public statement and, in practice, often exist prior to
the time we prove properties on them. Motivated by this, we do not count the
commitments as part of the proof size in this work.

We denote by � the number of individual commitments containing the partial
witness vector.

1. Anonymous and Delegated Credentials. In the application of making digital
certificates anonymous, one would like to prove knowledge of a message m

586 D. F. Aranha et al.

and a signature σ, where σ is a valid signature on message m with respect to
some public verification key. The main challenge is that the statement being
considered is a composite statement containing both Boolean (hash func-
tion) and algebraic (group operations) components, since either the message
is hashed before being signed or one needs to prove properties on the signed
message. Efficient NIZK for composite statements that use a zk-SNARK for
the circuit part and Σ-protocols for the algebraic would yield a proof system
that is more efficient for the prover.
Consider now the setting of “delegated credentials”. Each citizen or member
of an organization can have associated a bundle of properties (credentials),
e.g., credit and employment history or digital certificates issued by govern-
ments. We assume these properties are fingerprinted through a (compressing)
commitment and that each of these users delegates the storage of these prop-
erties to a service. Every time the user needs to prove a statement on these
credentials with respect to the public commitment, it can issue an order to
the service. Instead of providing a single proof per user, a service can wait to
accumulate � orders and provide a single proof for all of them. If the result-
ing proof is succinct in �, then this batching technique results in important
savings. Note here that in this application it would not be feasible to commit
to the credentials of all users in a single (vector) commitment, because the �
commitments to the credentials already exist and each single user should be
able to verify that on their own.1

2. Blockchains. CP-SNARKs are useful in many Blockchain applications like
confidential transactions [49] where range proofs are required on committed
values, and in systems balancing privacy and accountability [28] where cre-
dentials are proven on committed values.
An example Blockchain application where � > 1 and succinct CP-SNARKs
are desirable is proof of solvency. In privacy-preserving proof of solvency [2],
the number of commitments � is typically large. This is because in proof
of liabilities, each customer has to check that their own balance has been
included in the total liabilities published by the exchange. This is done by
having the exchange send the decommitment information to each customer
privately. Thus, in this application too, using a single (vector) commitment
is not a feasible solution. Since each customer’s balance is private, there must
be as many commitments as the number of customers instead of one vector
commitment to all balances.

3. Machine Learning. Another example of an application that benefits from
succinct CP-SNARKs is verifying integrity of Machine Learning (ML) models.
A hospital owns sensitive patient data, and one wishes to construct a model
by running a training algorithm on this sensitive data. The hospital does not
wish to and/or legally cannot release the data; making it a challenge to check
the integrity of the model. Such settings have been considered, for example,

1 The service can afford to wait for � orders depending on the application, and the
expected throughput and time-to-service of the application. As an example, the ID-
Layer in Concordium [28] orders may be even serviced each epoch.

ECLIPSE: Enhanced Compiling Method 587

in [54]. One way to do this is to have the hospital use a zkSNARK to prove
that the model is the output obtained by training it on the sensitive data and
that public commitments indeed open to the same sensitive data.
In practice, ML algorithms are run on data held by different entities (hospitals
in the example above). Each of the � entities publishes a commitment to
their sensitive data. Now a single trusted party can perform training on the
combined data, but has to prove integrity with respect to commitment of
each individual entity. Succinct CP-SNARKs provide efficiency benefits also
in this case.

1.2 Our Contributions

In this work we present the first CP-SNARKs whose proof size is succinct in
the number of commitments to the partial witness vectors. To do so, we com-
bine state-of-the-art SNARKs with state-of-the-art Σ-protocols, inheriting sev-
eral important properties of the underlying tools which we use.

An important property of our resulting proof system is that it has univer-
sal, updatable and linear-size reference string : Since we are interested in practi-
cally efficient and succinct proof systems, our starting points are preprocessing
SNARKs, in which some form of trusted setup (in the form of a structured refer-
ence string or SRS) is required. If the trusted setup is compromised, it becomes
possible to break the soundness property of the proof system. However, using
SNARKs with universal and updatable setup (as introduced in [38]) the trust
in the setup phase can be reduced to a minimum, as this allows participants
to dynamically update the SRS was proposed. Even though this does not com-
pletely remove the problem of trusted setup, the security now depends on at
least one honest party deleting the contributed randomness. Moreover, the SRS
is universal in the sense that it allows to prove statements about all circuits of
some bounded size (as opposed to earlier systems in which a different SRS was
needed for each circuit, thus increasing the need for trusted setups). Further-
more, the size of the setup will be linear in the size (or upper bound of) the
circuit to be proven.

From a technical point of view, our contributions can be summarized as
follows:

– Compiler from AHP to CP-SNARK. In Sec. 3 we present a compiler that
takes an AHP (Algebraic Holographic Proof, the information-theoretic proto-
col underlying many existing zkSNARKs) and compiles it into a CP-SNARK.
Our compiler is similar in spirit to compilers of [18,20,25] that convert
information-theoretic protocols to succinct arguments, but it naturally allows
efficient CP extensions because of our “decompose–and–link” paradigm out-
lined in Sect. 1.3. The main technical challenge in building this compiler
is that existing SNARK constructions employ different ways to encode the
witness into a polynomial, even though the underlying information-theoretic
objects can be described in the language of AHP. This makes it hard to iden-
tify how to generically & succinctly link committed values to only a small

588 D. F. Aranha et al.

fraction of the large witness vector used in SNARK. Yet, we are able to
abstract out a set of basic properties that AHPs and commitment schemes
should satisfy, in order to apply the same paradigm. Thanks to our abstract
approach, one does not need to examine the entire machinery of the AHP
protocol; instead, it is sufficient to look at a few witness-carrying polynomi-
als present in the AHP, check if they satisfy the properties required by our
compiler theorem, and then focus on designing a sub-protocol performing a
minimum set of tasks for “linking”. We believe that our techniques are general
enough to extend to future AHPs and commitment schemes.

– Concrete instantiations. We then apply our compiler to the AHPs of Mar-
lin, PLONK and Sonic to obtain concrete CP-SNARKs.2 This immediately
allows us to prove that the inputs (and/or outputs) used in the zk-SNARK
for an arithmetic circuit/Rank 1 constraint system statement are the same
as the values inside an algebraic (Pedersen) commitment. This helps to hide
intermediate outputs of a composite statement by committing to it, thus
allowing switching between the algebraic (Σ-protocols) and arithmetic (zk-
SNARK) worlds. In order to make the argument for the composite statement
succinct, we use recent advances in compressed Σ-protocol theory. We cast
the statement about consistency with Pedersen commitments as statements
about knowledge of pre-image of group homomorphisms. This allows us to
apply the compression techniques of [4,15] that achieve logarithmic commu-
nication for the canonical Σ-protocol and the amortization technique that
proves many statements efficiently. Thus, our linking protocol that needs to
prove � statements, where each statement is about equality of vectors of size
d, achieves communication complexity O(log(�d)), so the overall proof (the
size of the SNARK together with the size of the linking proof) is still succinct.

1.3 Technical Overview

Most recent constructions of updatable SRS zkSNARKs [18,25,32] follow a
modular approach where an information-theoretic protocol is constructed in an
abstract model like Probabilistically Checkable Proof (PCP), linear PCP, Inter-
active Oracle Proof (IOP) etc., and then the information-theoretic protocol is
compiled via a cryptographic compiler to obtain an argument system. While sev-
eral abstractions for this information-theoretic parts exist, it is folklore among
researchers in this community that these formalizations are to some extent equiv-
alent. In this paper, we rely on the formalization of (public-coin) Algebraic Holo-
graphic Proofs (AHP) of [25] and we cast the other SNARKs (PLONK [32] and
Sonic [48]) in the same language.

2 The reason why we apply our compiler to all three proof systems is that Marlin,
PLONK and Sonic are a sort of rock-paper-scissor for AHPs (the first can outperform
the second, which can outperform the third, which can in turn outperform the first).
This is because they use different models of computations, and therefore it may be
possible to prove some statements more efficiently with one system rather than the
others.

ECLIPSE: Enhanced Compiling Method 589

Plain AHP-to-SNARK Framework. In an AHP the prover P takes a state-
ment x and a witness vector w = (w1, . . . , wn) as inputs and sends some oracle
polynomials to the verifier V in each round, who responds with a random chal-
lenge. In the query phase, V can query an oracle polynomial p with an evaluation
point z to obtain v = p(z). V can iterate this process for several different polyno-
mials and evaluation points. Finally, V outputs a decision bit indicating “accept”
or “reject”, based on the result of the evaluation queries.

An AHP can be turned into an argument system by replacing the oracles and
the query phase with a polynomial commitment scheme (PCS). As proposed by
[42], PCS can be succinctly instantiated by using the discrete log-based encoding
of polynomial: PC.Comck(p(X)) := gp0+p1χ+...pn−1χn−1

with a commitment key
ck = (g, gχ, . . . , gχn−1

). Then upon receiving an evaluation point z, the prover
responds with an evaluation proof to convince the verifier that evaluation v =
p(z) is done correctly.

Witness-Carrying Polynomials and CP Extension. Typically, one or few
oracles sent by an AHP prover are witness-carrying polynomials (WCP) [20],
meaning that they encode the entire witness vector w. For ease of exposition,
we assume the AHP has a single WCP w(X) here, but our abstract compiler
works for AHP with multiple WCP as well. The encoding/decoding method dif-
fers depending on the protocol. For example, Sonic employs a simple coefficient
encoding, therefore, decoding works by mapping the coefficients to a witness vec-
tor, i.e., w(X) :=

∑
i wiX

i; PLONK and Marlin use interpolation, and decoding
works by evaluating WCP on some prescribed set, i.e., w(X) :=

∑
i wi · Li(X),

where (Li(X))i∈[n] are the Lagrange polynomials associated with some set H of
size n.

In our CP scenario, we additionally consider a commitment scheme AC for
Auxiliary Commitments. They are “auxiliary” in the sense that they are used
as auxiliary inputs to parts of the witness, and in some applications, these com-
mitments already exist. For example, if a subvector of witness (wi)i∈Icom with
Icom ⊂ [n] is committed in advance via vector Pedersen commitment, an argu-
ment system additionally takes ĉ = AC.Comack((wi)i∈Icom ; r) := Hr

∏
i∈Icom

Gwi
i

as part of the statement, where ack := ((Gi)i∈Icom ,H). The goal of CP extension
is to guarantee consistency between what is committed to via PC and AC. To
this end, it should suffice to provide a sub-protocol for relation

R :=
{
((c, ĉ), (w, r)) : c =

∏n
i=1 gwi

i ∧ ĉ = Hr
∏

i∈Icom
Gwi

i

}
.

where gi = gχi−1
or gi = gLi(χ), depending on how the AHP under consideration

encodes the witness into WCP.
A näıve approach would be to describe an arithmetic circuit for R and invoke

another instance of SNARK. However, if the committing function of AC involves
certain algebraic operations, e.g., group exponentiation or elliptic curve scalar
multiplications as required in the Pedersen commitment, it would be very costly

590 D. F. Aranha et al.

for the prover to express them in a circuit3. This is where a Σ-protocol comes
into play.
Decomposing WCP and Linking with Σ-Protocol. A simple Σ-protocol
can be used for proving equality of Pedersen-committed messages. However,
because näıve instantiation of such a protocol for R inevitably proves knowl-
edge of the entire vector w, it would incur O(n) proof size and verification time,
losing succinctness. Although it is possible to apply the compressed Σ-protocol
theory [4,15] to achieve O(log(n)) proof size, if logarithmic proof size is accept-
able, one could instead use Bulletproofs, which supports CP extensions with the
Pedersen commitment by construction and already achieves O(log(n)) proof size.

In fact, proving R turns out to be quite wasteful, since at the end of the day
we only care about a small fraction of w that are committed beforehand. We
circumvent the issue by additively decomposing the WCP w(X) into two parts
wcom(X) and wmid(X), such that w(X) = wcom(X)+wmid(X), wcom(X) encodes
the committed part of the witness (wi)i∈Icom , and wmid(X) contains the rest.
In Sect. 3.2 we formally define this intuition. Accordingly, assuming additively
homomorphic PCS (satisfied by KZG), one can also decompose a polynomial
commitment c into ccom and cmid such that c = ccom + cmid = PC.Comck(wmid) +
PC.Comck(wcom). Now we only need to link ccom and ĉ; it suffices to cast ccom to
the Σ-protocol for relation

R′ :=
{
((ccom, ĉ), (w, r) : c =

∏
i∈Icom

gwi
i ∧ ĉ = Hr

∏
i∈Icom

Gwi
i

}

which only incurs O(log(|Icom|)) proof size and verification time.

Proving “Non-overlapping” Decomposition. The above idea needs addi-
tional care in order to preserve knowledge soundness since it is not guaranteed
that a cheating prover honestly decomposes WCP. For example, what if a prover
crafted w̃mid(X) such that it decodes to w̃mid,i for some i ∈ Icom? In that case,
the knowledge extractor for SNARK outputs w̃i = w̃com,i + w̃mid,i as one of
the witness vector elements, whereas the Σ-protocol only proves that ĉ contains
w̃com,i. This breaks consistency between the value in ĉ and the actual witness
used in SNARK. To fix this issue, we require a prover to show the decomposed
WCPs are “non-overlapping”, meaning that wmid(X) only maps to (wi)i/∈Icom .4

In Sect. 5, 6, we present different ways to instantiate this additional check: for
Sonic it amounts to perform a degree bound check for wmid(X), while for PLONK
and Marlin it suffices to verify wmid(X) vanishes on certain evaluation points.

Compressing and Aggregating Many Equality Proofs. So far we have
only considered a single auxiliary commitment ĉ. But clearly, as described earlier,
3 While there are approaches that mitigate this problem [1,22,43], they are curve-

dependent—hindering generality and interoperability—and still relatively expensive
(at 4–6 constraints per curve operation).

4 While it is also necessary to prove wcom(X) only maps to (wi)i∈Icom , this is trivially
achieved by knowledge soundness of the Σ-protocol.

ECLIPSE: Enhanced Compiling Method 591

we are interested in the case where the number � of commitments is large and
we want our proof to be succinct in �. Näıvely, the above ideas can easily be
generalized by invoking � instances of the equality proof for R′ with statement
(ccom, ĉk) for k ∈ [�]. This in turn would incur in a multiplicative factor of
O(�) overhead in the proof size. In Sect. 4 we show how to amortize � different
protocol instances to achieve O(log(�d)) proof size by adapting the amortization
technique from [5], where d is a dimension of the vector committed to in each
ĉk.

Table 1. Efficiency comparison among CP-SNARK constructions with universal and
updatable SRS. Proving time expresses group operations. The first line refers to our
compiler applied to AHPs with suitable decomposition properties (See Sect. 3). In
the above we denote by n the number of constraints in an R1CS system, by � the
number of input commitments and by d the size of each committed vectors. (The same
asymptotics apply also to other constraints systems with slight variations though. For
example, they apply to the AHPs in PLONK if n above refers to the total number of
gates).

|π| Prove (time) Verify (time)

This work O (log(� · d)) O (n + � · d) O (� · d)

Lunar [20] O (�) O (n + � · d) O (�)

LegoUAC [21] O
(
� log2(n)

)
O(n) + � · Õ (d) O

(
� log2(n)

)

1.4 Related Work

Σ-protocols are proof systems that are efficient for proving algebraic state-
ments about discrete logarithms, roots, or polynomial relationships among val-
ues [19,27,39,51]. They yield short proof sizes, require a constant number of
public-key operations, and do not impose trusted setup requirements. Moreover,
they can be made non-interactive using the efficient Fiat-Shamir transforma-
tion [30]. A recursive argument for an inner product relation of committed val-
ues was presented in [15] and was subsequently improved in Bulletproofs [17].
These can be used to prove statements on algebraically committed inputs, and
the proof can be made non-interactive using Fiat-Shamir. Even though proof
sizes scale logarithmically, unfortunately, the verification time scales linearly
with the size of the circuit. Recent work on compressed Σ-protocol theory [4]
is a strengthening of Σ-protocols that compress the communication complexity
from linear to logarithmic. The underlying pivot of the compressed protocol is a
standard Σ-protocol for opening linear forms on Pedersen vector commitments,
i.e., a Σ-protocol for proving that a committed vector x satisfies L(x) = y for a
public scalar y and public linear form L.

The seminal paper of [33] proposed a pairing-based zk-SNARK for general
NP statements based on the NP complete language of Quadratic Span Pro-
grams (QSP) for Boolean circuits and Quadratic Arithmetic Programs (QAP)

592 D. F. Aranha et al.

for arithmetic circuits. This built on previous works of [36,40,45] and led to
several follow ups [10,11,13,37,46,50] which have proofs that are very short and
have fast verification time.

The first zk-SNARK with an updatable SRS was introduced by [38]. How-
ever, here the size of this universal updatable SRS is quadratic in the number
of multiplication gates of the circuit representing the statement. In [48], the
authors construct Sonic, the first zkSNARK that is universal and updatable
with a linear-sized SRS. A different solution to SNARKs with universal and
updatable SRS is to use a secure multi-party computation protocol (MPC) to
conduct the setup [16], and as long as at least one party is honest, the setup
remains secure.

Although several works on general-purpose CP-ZK exist in the literature,
such as Geppetto [26], Cinderella [29], and [47], there are few examples of effi-
cient zero-knowledge proof systems for composite statements like those we con-
sider in this paper. The first paper in this important line of work [24] presents a
zero-knowledge proof that can be used to prove that F (x) = 1 given a Pedersen
commitment to x, where F is represented as a Boolean circuit. They provide an
efficient way of combining the garbled-circuit based proof of [41] for circuit-based
statements with Σ-protocols for algebraic parts. However, this is inherently inter-
active which is inherited from the interactivity of [41] where the verifier uses
private coins. In [8], the authors show how to extend the MPC-in-the-head tech-
niques of ZKBoo [34] and ZKB++ [23] to allow algebraic statements on Peder-
sen commitments. While allowing for non-interactive proofs via the Fiat-Shamir
transform, this approach results in larger proof sizes. In [2], protocols combining
zk-SNARKs with Σ-protocols are presented. This overcomes the disadvantage of
interactivity, and also gives a system suitable for applications that require short
proofs. Not only does their approach lead to more efficient anonymous creden-
tials than Cinderella, but it also found new applications to the blockchain, such
as proof-of-solvency. Our approach achieves better asymptotic efficiency as well
as further generality compared to [2], which relies on näıve Σ-protocols and a
specific QAP-based SNARK construction with non-updatable SRS.

The works most closely related to ours are LegoSNARK and Lunar. LegoS-
NARK [21] is a framework for CP-SNARKs that gives general composition tools
to build new CP-SNARKs from proof gadgets in a modular way. The construc-
tion LegoUAC in [21] is a CP-SNARK with a universal and updatable SRS.
Lunar [20] obtains CP-SNARKs with a universal and updatable SRS and presents
proof systems for “linking” committed inputs to the polynomial commitments
used in AHP-based arguments. Table 1 shows the efficiency comparison between
our work, Lunar and LegoUAC. Note that Lunar constructions and ECLIPSE
outperform each other in different settings. See also §1.2 of [20] for a technical
comparison of Lunar and ECLIPSE.

2 Preliminaries

Notation. For positive integers a and b such that a < b we use the integer
interval notation [a, b] to denote {a, a + 1, . . . , b}; we use [b] as shorthand for

ECLIPSE: Enhanced Compiling Method 593

[1, b]. A finite field is denoted by F. We denote by κ a security parameter. When
we explicitly specify the random tape ρ for a randomized algorithm A, then we
write a ← A(srs; ρ) to indicate that A outputs a given input srs and random
tape ρ. For a pair of randomized algorithms A and EA, we often use the handy
notation (a;x) ← (A||EA)(srs) which denotes that A outputs a on input srs,
and EA outputs x given the same input srs, and A’s random tape. We denote
by Pr

[
A : B

]
the conditional probability of an event A under the condition

B. Throughout, G denotes an Abelian group of prime order q. For vectors of
generators g = (g1, . . . , gd) ∈ G

d and exponents x = (x1, . . . , xd) ∈ Z
d
q we often

write gx :=
∏d

i=1 gxi
i .

Definition 1 (Indexed relation [25]). An indexed relation R is a set of triples
(i, x,w) where i is the index, x is the instance, and w is the witness; the corre-
sponding indexed language L(R) is the set of pairs (i, x) for which there exists
a witness w such that (i, x,w) ∈ R. Given a size bound N ∈ N, we denote by RN

the restriction of R to triples (i, x,w) ∈ R with |i| ≤ N.

A zero-knowledge proof (or argument)5 for L allows a prover P to convince
a verifier V that x ∈ L for a common input x without revealing w. A proof of
knowledge captures not only the truth of a statement x ∈ L, but also that the
prover is in “possession” of a witness w.

Definition 2 (Preprocessing Argument with Universal SRS [25]). A
Preprocessing Argument with Universal SRS is a tuple ARG = (S, I,P,V) of
four algorithms. S is a probabilistic polynomial-time setup algorithm that given
a bound N ∈ N samples a structured reference string srs supporting indices of
size up to N. The indexer algorithm I is deterministic and, given oracle access
to srs produces a proving index key and a verifier index key, used respectively by
P and V. The latter two are probabilistic polynomial-time interactive algorithms.
Completeness. For all size bounds N ∈ N and efficient A,

Pr

⎡

⎣ (i, x,w) �∈ RN ∨
〈P (ipk, x,w) ,V (ivk, x)〉 = 1 :

srs ← S(1κ,N)
(i, x,w) ← A(srs)
(ipk, ivk) ← Isrs(i)

⎤

⎦ = 1

Succinctness. We call the argument succinct if the communication complexity
between prover and verifier is bounded by poly(κ) · polylog(|x| + |w|).

In [3] we recall the standard definitions of knowledge soundness and zero
knowledge. We have the following two optional requirements on the arguments
defined above. We say that an argument is public-coin if all the messages from
the verifier are uniformly random strings of a bounded length. We say it is
updatable if there exists an update algorithm that can be run by anyone at any
time and to update the SRS. This algorithm guarantees security as long as at
least one of the (sequential) updates have been carried out honestly.
5 We use proof and argument as synonymous in this paper, as we are only interested

in computational soundness.

594 D. F. Aranha et al.

2.1 Algebraic Holographic Proofs

Below we recall the definition of AHP from Marlin.

Definition 3 (AHP [25]). An Algebraic Holographic Proof (AHP) over a field
family F for an indexed relation R is specified by a tuple AHP = (k, s, d, I,P,V)
where k, s, d : {0, 1}∗ → N are polynomial-time computable functions and I,P,V
are three algorithms known as the indexer, prover, and verifier. The parameter k
specifies the number of interaction rounds, s specifies the number of polynomials
in each round, and d specifies degree bounds on these polynomials. The protocol
proceeds as follows:

– Offline phase The indexer I receives as input a field F ∈ F and index i for
R, and outputs s(0) polynomials p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most
d(|i|, 0, 1), . . . , d(|i|, 0, s(0)) respectively. Note that the offline phase does not
depend on any particular instance or witness, and merely considers the task
of encoding the given index i.

– Online phase Given an instance x and witness w such that (i, x,w) ∈ R, the
prover P receives (F, i, x,w) and the verifier V receives (F, x) and oracle access
to the polynomials output by I(F, i). The prover P and the verifier V interact
over k = k(|i|) rounds. For i ∈ [k], in the i-th round of interaction, the verifier
V sends a message ρi ∈ F

∗ to the prover P; then the prover P replies with s(i)
oracle polynomials pi,1, . . . , pi,s(i) ∈ F[X]. After k interactions, the verifier
outputs additional randomness ρk+1 ∈ F

∗ which serves as auxiliary input to
V in subsequent phases. We note that ρ1, . . . , ρk, ρk+1 ∈ F

∗ are public and
uniformly random strings.

– Query phase Let p = (pi,j)i∈[k],j∈[s(i)] be a vector consisting of all polyno-
mials sent by the prover P. The verifier may query any of the polynomials
it has received any number of times. Concretely, V executes a subroutine QV

that receives (F, x; ρ1, . . . , ρk+1) and outputs a query set Q consisting of tuples
((i, j), z) to be interpreted as “query pi,j at z ∈ F”. We denote a vector con-
sisting of query answers p(Q).

– Decision phase The verifier outputs “accept” or “reject” based on the
answers to the queries (and the verifier’s randomness). Concretely, V exe-
cutes a subroutine DV that receives (F, x,p(Q); ρ1, . . . , ρk+1) as input, and
outputs the decision bit.
The function d determines which provers to consider for the completeness
and soundness properties of the proof system. In more detail, we say that a
(possibly malicious) prover P̃ is admissible for AHP if, on every interaction
with the verifier V, it holds that for every round i ∈ [k] and oracle index
j ∈ [s(i)] we have deg(pi,j) ≤ d(|i|, i, j). The honest prover P is required to be
admissible under this definition.

We require an AHP to satisfy completeness, (knowledge) soundness and zero-
knowledge as defined below.

ECLIPSE: Enhanced Compiling Method 595

Completeness. An AHP is complete if for all F ∈ F and any (i, x,w) ∈ R, the
checks returned by VI(F,i)(F, x) after interacting with (honest) P(F, i, x,w) are
always satisfied.
Soundness. An AHP is ε-sound if for every field F ∈ F , relation-instance tuple
(i, x) �∈ LR and prover P∗ we have Pr[〈P∗,VI(F,i)(F, x)〉 = 1] ≤ ε.
Knowledge Soundness. An AHP is ε-knowledge-sound if there exists a
polynomial-time knowledge extractor E such that for any prover P∗, field F ∈ F ,
relation i, instance x and auxiliary input z:

Pr
[
(i, x,w)∈ R : w ← EP∗

(F, i, x, z)
]
≥ Pr[〈P∗(F, i, x, z),VI(F,i)(F, x)〉=1] − ε

where E has oracle access to P∗, i.e., it can query the next message function of
P∗ (and rewind it) and obtain all the messages and polynomials returned by it.
Zero-Knowledge. The property of (b,C)−Zero-Knowledge for AHPs models
the existence of a simulator that can interact with a malicious verifier and can
effectively simulate under two conditions: there is a bound b on the number of
evaluation queries asked by the verifier; these queries need to satisfy an admis-
sible test modelled a a circuit C. We say an AHP is zero-knowledge for some
bound b = poly(λ) and some efficient checker circuit C. We refer the reader to
Sect. 4 in [25] for formal details.

Public Coins and Non-adaptive Queries. In the remainder of this work,
we only consider AHPs that are public coin and non-adaptive: the messages of
the verifier are random elements and its checks are independent of the prover’s
messages.

Generalization to Multivariate Polynomials. Even though the above
formalization is tailored to univariate polynomial oracles, it is straight-
forward to generalize it to support multivariate, Laurent polynomials
pi,j ∈ F[X1,X

−1
1 , . . . , Xm,X−1

m]. In that case, a query set Q consists of
((i, j), (z1, . . . , zm)) and is to be interpreted as “query pi,j at (z1, . . . , zm) ∈ F

m”.
Likewise, the polynomial commitment scheme definition can also be adapted to
support multivariate polynomials as inputs. Our Theorem 1 in the next section
holds under this generalization because the proof does not rely on whether poly-
nomials are univariate or not. This is analogous to the compiler theorem of [25].
However, the generalization is only required for Sonic and PLONK, and Marlin
only deals with univariate polynomials. Therefore, we focus on the univariate
version in the main body for ease of exposition.

2.2 Polynomial Commitment

Polynomial commitment schemes were introduced by Kate–Zaverucha–
Goldberg [42]. Below we recall the definition of standard polynomial commitment
scheme. The definition is taken verbatim from Sect. 6.1 of [25].

596 D. F. Aranha et al.

Definition 4 (Polynomial Commitment Scheme). A polynomial com-
mitment scheme (PCS) over a field family F is a tuple PC =
(Setup,Trim,Com,Open,Check) such that

– Setup(1κ,D) → pp. On input a security parameter κ, and a maximum degree
bound D ∈ N, Setup samples public parameters pp. The parameters contain
the description of a finite field F ∈ F .

– Trimpp(1κ,d) → (ck, rk). Given oracle access to public parameters pp, and
on input a security parameter κ, and degree bounds d, Trim deterministically
computes a key pair (ck, rk) that is specialized to d.

– Comck(p,d;ω) → c. On input ck, univariate polynomials p = (pi)n
i=1 over

the field F with deg(pi) ≤ di ≤ D, Com outputs commitments c = (ci)n
i=1

to the polynomials p. The randomness ω is used if the commitments c are
hiding.

– Openck(p,d, Q, ξ;ω) → π. On input ck, univariate polynomials p, degree
bounds d, a query set Q consisting of (i, z) ∈ [n] × F, and opening chal-
lenge ξ, Open outputs an evaluation proof π. The randomness must equal the
one previously used in Com.

– Checkrk(c,d, Q,v, π, ξ) ∈ {0, 1}. On input rk, commitments c, degree bounds
d, query set Q, alleged evaluations v = (v(i,z))(i,z)∈Q, evaluation proof π, and
opening challenge ξ, Check outputs 1 iff π attests that, for every (i, z) ∈ Q,
the polynomial pi evaluates to v(i,z) at z.

We recall a set of basic properties that the KZG scheme [42] and its variants
described in Marlin and Sonic already satisfy.
Completeness. For every maximum degree bound D ∈ N and efficient adver-
sary A,

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

deg(p) ≤ d ≤ D
=⇒ Checkrk(c,d, Q,v, π, ξ) :

pp ← Setup(1κ,D)
(p,d, Q, ξ,ω) ← A(pp)
(ck, rk) ← Trimpp(1κ,d)
c ← Com(ck,p,d;ω)

v ← p(Q)
π ← Open(ck,p,d, Q, ξ;ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1

Homomorphism. A PC is additively homomorphic if for every D ∈ N, every
d such that di ≤ D, every query set Q, every opening challenge ξ, every
p1,p2,ω1,ω2 that are consistent with the degree bound d,

Pr

⎡

⎢
⎢
⎣c1 + c2 = Comck(p1 + p2,d;ω1 + ω2) :

pp ← Setup(1κ,D);
(ck, rk) = Trimpp(1κ,d)
c1 = Comck(p1,d;ω1)
c2 = Comck(p2,d;ω2)

⎤

⎥
⎥
⎦ = 1

In [3] we recall formal security requirements for PCS: extractability, binding,
and hiding. On a high-level, the extractability property assures that the prover
actually knows the polynomial p committed to c whenever the verifier accepts
an evaluation proof π.

ECLIPSE: Enhanced Compiling Method 597

2.2.1 The KZG Scheme
Below we recall the polynomial commitment scheme due to Kate–Zaverucha–
Goldberg [42], denoted by PCKZG. The scheme is proven extractable under
the strong Diffie–Hellman (SDH) assumption in the algebraic group model
(AGM) [31], polynomial binding under the discrete-log assumption, and per-
fectly hiding [25,42]. For simplicity we omit challenge ξ used for batch opening
as well as the Trim function, and set ck = rk = pp. See Appendix B of [25] for
details of such optimization techniques.

– Setup(1κ,D) → (g, gχ, . . . , gχD

, g, gγχ, . . . , gγχD

, hχ) where it determines a
bilinear group public parameters (q,G1,G2,GT , e, g, h), with g ∈ G1 and
χ, γ ∈ F are randomly chosen. We denote exponentiation in Gi by [·]i.

– Comck(p,D;ω) → [p(χ) + γω(χ)]1, where ω ∈ F≤D[X] is a random masking
polynomial.

– Openck(p,D, z;ω) computes W (X) = p(X)−p(z)
X−z , W̄ (X) = ω(X)−ω(z)

X−z , Π :=
[W (χ) + γW̄ (χ)]1, v̄ := W̄ (z) and outputs π := (Π, v̄).

– Checkrk(c,D, z, v, π) checks e(Π, [χ]2/[z]2)
?= e(C/([v]1 · [γv̄]1), h).

3 AHP-to-CP-SNARK Compiler

In this section, we present our general compiler that turns AHPs to commit-
and-prove zkSNARKs.

3.1 Additional Preliminaries for Compiler

Auxiliary Commitment Scheme AC. We will assume a commitment scheme
AC for Auxiliary Commitments. They are “auxiliary” in the sense that they are
used as auxiliary inputs to parts of the witness. We assume AC to satisfy the
standard properties of (computational) binding and (computational or other-
wise) hiding. As we explicitly support a vector x ∈ F

d as committed message,
the definition is specialized for a vector commitment scheme. Specifically we
assume AC = (Gen,Com) such that AC.Gen(1λ, d) → ack is a randomized algo-
rithm returning a commitment key ack for messages of dimension d ∈ N, where
d ∈ poly(λ), and AC.Comack(x; r) is a committing algorithm returning a commit-
ment ĉ on input x ∈ F

d for some randomness r. In our concrete instantiations,
we use the Pedersen vector commitment scheme as AC.

Commit-and-Prove Relation. Our goal is to construct a general compiler
that turns AHP for R into ARG for the relation over commitments Rcom.
Throughout we assume an indexed relation where the witness can be represented
as a vector in F

n.

598 D. F. Aranha et al.

Definition 5 (Commit-and-prove relation). Let R be an indexed relation,
AC a commitment scheme as defined above and ack an auxiliary commitment key
in the range of AC.Gen. We define the corresponding commit-and-prove relation

Rcom =

⎧
⎪⎪⎨

⎪⎪⎩

((i, n, �, d, Icom, (Ik)k∈[�], ack),
(x, (ĉk)k∈[�]), ((wi)i∈[n], (rk)k∈[�]))

:

(i, x, (wi)i∈[n]) ∈ R ∧
Icom ⊂ [n] ∧ |Icom| = �d ∧

Icom =
⋃

k∈[�] Ik ∧ |Ik| = d ∧
ĉk = AC.Comack((wi)i∈Ik ; rk)

⎫
⎪⎪⎬

⎪⎪⎭

3.2 Additional Properties for AHP

We present basic properties that the underlying AHPs of PLONK, Marlin and
Sonic already satisfy. First we describe our variant of Definition 3.3 from [20]:
straight-line extractability for AHP. We note that our definition is in the AHP
model, while that in [20] is for Polynomially Holographic Proofs. The reason why
we explicitly define witness-carrying polynomials (WCPs) is that our compiler
needs to identify a minimum set of polynomials containing enough information
about the whole witness, with which auxiliary commitments are shown to be
consistent. Note that we also restrict WitExt to be deterministic so that it can
be essentially seen as a witness decoding algorithm that works for both honest
and malicious provers once and for all.

Definition 6 (AHP with S-straight-line extractor). Fix AHP for indexed
relation R and index set S ⊆

{
(i, j) : i ∈ [k], j ∈ [s(i)]

}
. An AHP is ε-knowledge

sound with S-straight-line extractor if there exists an efficient deterministic
extractor WitExt such that for any admissible P∗, every field F ∈ F , every index
i and instance x,

Pr[(i, x,WitExt({pi,j(X)}(i,j)∈S)) ∈ R] ≥ Pr[〈P∗(i),VI(F,i)〉(F, x) = 1] − ε

where {pi,j(X)}(i,j)∈S is a subset of the polynomials output by P∗ in an exe-
cution of 〈P∗,VI(F,i)〉(F, x). Let W be a smallest set such that there exists an effi-
cient extractor satisfying the condition above. Then we say that {pi,j(X)}(i,j)∈W

are witness-carrying polynomials (WCPs) of AHP. If all WCPs are sent during
the same round kw ≤ k, we call kw a witness-committing round.

Definition 7 (Disjoint witness-carrying polynomials). We say that WCPs
are disjoint if there exists some disjoint index sets Ii,j such that [n] =⋃

(i,j)∈W Ii,j and the corresponding WitExt independently invokes WitExti,j on
pi,j to obtain (wι)ι∈Ii,j .

Remark 1. Let nw = |W |. For Marlin and Sonic we have nw = 1 and kw = 1;
for PLONK we have nw = 3 and kw = 1 and disjoint WCPs. In our compiler
formalization, we always assume that W is such that kw is minimum, and that
AHP has a witness-committing round.

ECLIPSE: Enhanced Compiling Method 599

The following two definitions are needed to guarantee completeness of our
compiler.

Definition 8 (Unique extraction). Consider an AHP for relation R with S-
straight-line extractor WitExt. We say that WitExt performs unique extraction,
if for any honest prover P and every (i, x,w) ∈ R, WitExt({pi,j(X)}(i,j)∈S) = w,
where {pi,j(X)}(i,j)∈S is a subset of the polynomials output by P in an execution
of 〈P(i,w),VI(F,i)〉(F, x).

Definition 9 (Decomposable witness-carrying polynomials). Consider
an AHP for relation R with W -straight-line extractor WitExt. Let (pi,j(X))(i,j)∈W

be WCPs of AHP. We say that polynomials (pi,j(X))(i,j)∈W are decom-
posable if there exists an efficient function Decomp((pi,j(X))(i,j)∈W , I) →
(p(1)i,j (X), p(2)i,j (X))(i,j)∈W such that it satisfies the following properties for any I ⊂
[n].

– Additive decomposition: pi,j(X) = p
(1)
i,j (X) + p

(2)
i,j (X) for (i, j) ∈ W .

– Degree preserving: deg(p(1)i,j (X)) and deg(p(2)i,j (X)) are at most deg(pi,j(X))
for (i, j) ∈ W .

– Non-overlapping: Let w = WitExt((pi,j(X))(i,j)∈W), w(1) = WitExt

((p(1)i,j (X))(i,j)∈W), and w(2) = WitExt((p(2)i,j (X))(i,j)∈W). Then

(wi)i∈I = (w(1)
i)i∈I (wi)i/∈I = (w(2)

i)i/∈I (w(1)
i)i/∈I = (0) (w(2)

i)i∈I = (0)

Remark 2. If the above decomposition function is invoked on WCPs, one can
observe that witness extraction/decoding is also additively homomorphic on such
honest inputs, i.e.,

WitExt((pi,j(X))(i,j)∈W) = WitExt((p(1)i,j (X))(i,j)∈W + (p(2)i,j (X))(i,j)∈W)

=WitExt((p(1)i,j (X))(i,j)∈W) + WitExt((p(2)i,j (X))(i,j)∈W).

3.3 Our Compiler

In order to prove the relation Rcom above, our compiler will use a commit-
and-prove NIZKAoK subprotocol for following relation. Although the abstract
relation Rlnk looks cumbersome for the sake of generality, the actual instantia-
tion of CPlnk will be rather simple: it can be achieved by “linking” committed
witness sub-vectors and proving “non-overlapping” decomposition as outlined in
1.3. See Figs. 3 and 4 for concrete examples.

Definition 10 (Commitment-linking relation). Fix an AHP for relation
R with W -straight-line extractor WitExt and with witness carrying polynomials
(pi,j(X))(i,j)∈W , a polynomial commitment scheme PC, and an auxiliary com-
mitment scheme AC. We define the linking relation

600 D. F. Aranha et al.

Rlnk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((n, �, d, Icom, (Ik)k∈[�], ck, ack),

((ĉk)k∈[�],v, Q,

(ccomi,j (X), cmid
i,j (X))(i,j)∈W),

((pcomi,j (X), pmid
i,j (X))(i,j)∈W ,

(ωcom
i,j (X), ωmid

i,j (X))(i,j)∈W ,

(rk)k∈[�]))

:

Icom ⊂ [n] ∧ |Icom| = �d ∧
Icom =

⋃
k∈[�] Ik ∧ |Ik| = d ∧

ccomi,j = PC.Comck(p
com
i,j (X), d(|i|, i, j);ωcom

i,j) ∧
cmid
i,j = PC.Comck(p

mid
i,j (X), d(|i|, i, j);ωmid

i,j) ∧
ĉk = AC.Comack((wi)i∈Ik ; rk) where

w = WitExt((pcomi,j (X) + pmid
i,j (X))(i,j)∈W) ∧

v((i,j),z) = pcomi,j (z) + pcomi,j (z)

for all ((i, j), z) ∈ Q such that (i, j) ∈ W

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Remark 3. On a high-level the relation guarantees “the prover knows polyno-
mials committed via PC, such that their sum correctly decodes to the partial
witnesses committed via AC”. Although the correctness of polynomial evalua-
tion (i.e., the condition “v((i,j),z) = pcomi,j (z) + pcomi,j (z)”) is also part of Rlnk, we
remark that this is redundant since it is to be proven by the opening algorithm of
PC outside CPlnk anyway. Looking ahead, security proof of our compiler indeed
holds even without showing such a condition within CPlnk. We rather include
this for the ease of proving knowledge soundness of CPlnk; in concrete instan-
tiations, an extractor of CPlnk typically needs to extract what is committed to
cmid
i,j by internally invoking an extractor of PC, which however is only guaranteed

to succeed if the evaluation proof is valid. Hence, by letting CPlnk take care of
evaluation proof by default we can easily make such an argument go through. In
later sections our CPlnk for Sonic takes advantage of this generalization, while
the ones for PLONK and Marlin don’t since they create a special evaluation proof
independent of the AHP query phase.

Intuition About the Compiler. The compiler in Fig. 1 is close to those in
Marlin [25], Lunar [20] and DARK [18]. One important difference is the use of
polynomial decomposition where the prover will commit separately to each of the
“parts” of the WCPs. This separate commitment will allow efficiently proving
the commitment-linking relation.

Theorem 1. Let F be a field family and R be an indexed relation. Consider the
following components:

– AHP = (k, s, d, I,P,V) is a knowledge sound AHP for R with W -straight-
line unique extractor WitExt, and with a decomposition function Decomp for
witness-carrying polynomials (pi,j(X))(i,j)∈W ;

– PC = (Setup,Com,Open,Check) is an additively homomorphic polynomial
commitment over F with binding and extractability;

– CPlnk = (Ilnk,Plnk,Vlnk) is (preprocessing) non-interactive argument of
knowledge for Rlnk (Definition 10).

Then the construction of ARG = (S, I,P,V) in Fig. 1 is a preprocessing argu-
ment system for the relation Rcom. If PC is hiding, CPlnk is zero-knowledge,
and AHP is zero-knowledge as defined in Definition 3, then ARG is also zero-
knowledge.

ECLIPSE: Enhanced Compiling Method 601

Moreover, if we additionally assume that the witness-carrying polynomials
are disjoint and Icom ⊂ Ii∗,j∗ for some (i∗, j∗) ∈ W , then the above claim holds
even if CPlnk shows a variant of Rlnk such that all “(i, j) ∈ W” are replaced by
(i∗, j∗) and WitExt is replaced by WitExti∗,j∗ .

Remark 4. While in the description of our compiler we generically commit all
polynomials with the same type of polynomial commitments, our instantiations
use some ad-hoc tweaks. In particular, we commit to the witness carrying poly-
nomials using a special version of KZG (see for example the input format of
commitments in Fig. 3) different than the one we use for the rest of the ora-
cle polynomials. Note that this is a standard optimization trick already used in
previous works, e.g., [25],[32],[48], and we are still able to satisfy the security
requirements of the general compiler this way.

Proof Sketch. Full proofs are deferred to [3]. Completeness follows from inspec-
tion. In particular, we benefit from a combination of homomorphism of PC and
additive, non-overlapping decomposition of WCP. For zero-knowledge, we con-
struct a simulator S by using the simulators SimPC from the polynomial com-
mitment (hiding property), the zero-knowledge simulator Simlnk of CPlnk and
the zero-knowledge simulator SimAHP of AHP. For knowledge soundness, we con-
struct the extractor EARG that works as follows: (1) Extract the polynomials from
the polynomial commitments sent at each round through the extractor EPC for
the polynomial commitments; (2) From these, for each (i, j) ∈ W reconstruct
the WCP as p̃i,j(X); (3) On the other hand, extract auxiliary commitment
randomness (r̃k)k∈[�] as well as decomposed WCP (pcomi,j (X), pmid

i,j (X))(i,j)∈W

such that pi,j(X) = pcomi,j (X) + pmid
i,j (X), by invoking the extractor Elnk for

CPlnk; (4) Extract witness (w̃i)i∈[n] from the W -straight-line extractor as
WitExt(p̃i,j(X))(i,j)∈W ; (5) Return ((w̃i)i∈[n], (r̃k)k∈[�]).

4 Compressed Σ-Protocol for Equality

We describe how to construct an efficient protocol proving equality of committed
vectors, following the framework due to Attema and Cramer [4] and Attema,
Cramer and Fehr [5]. This allows us to instantiate CPlnk with proof size of only
O(log(�d)) when � Pedersen commitments are received as inputs.

4.1 AmComEq: Amortization of � Commitment Equality Proofs

In our application, we would like to show equality of vectors within a single
commitment containing vector of size �d (corresponding to a polynomial com-
mitment) and � chunks of vector of size d in multiple Pedersen commitments.
Concretely, our goal is to give an efficient protocol for relation.

602 D. F. Aranha et al.

Fig. 1. Compiler from AHP to Interactive AoK for Rcom. The differences with the
Marlin compiler are marked in red. (Color figure online)

RAmComEq =

⎧
⎪⎨

⎪⎩

((g,h,G,H, d, d′, d′′, �),
(C, Ĉ1, . . . , Ĉ�),

(w, α, β1, . . . , β�))
:

C = gwhα , Ĉi = GwiHβ i ,

g ∈ G
�d,G ∈ G

d,h ∈ G
d′

,H ∈ G
d′′

,

wi ∈ Z
d
q , α ∈ Z

d′
q , βi ∈ Z

d′′
q ,w = [w1, . . . ,w�]

⎫
⎪⎬

⎪⎭

(1)

where we assume d′ and d′′ are small constants (for concrete instantiations in
later sections, we only need d′ ≤ 4 and d′′ = 1). Our starting point is a näıve
ComEq Σ-protocol proving equality of vectors committed in two Pedersen com-

ECLIPSE: Enhanced Compiling Method 603

Fig. 2. Four-move protocol for amortized equality of many vector Pedersen commit-
ments.

mitments, with proof size of O(d). To avoid invoking ComEq individually for
many commitments we first amortize the statements. The main idea of amorti-
zation is to introduce additional challenge x ∈ Zq and use it to take a random
linear combination in the exponent. A similar idea has appeared in many con-
texts, e.g., amortization of many range proofs in Bulletproofs [17] and batch
verification of EdDSA signatures. Note that the protocol below can be seen
as a verifier-optimized version of the technique described by Attema–Cramer–
Fehr [5, §3.4]. For completeness, in [3] we include a version derived by invoking
their amortization of multiple group homomorphisms in a black-box way. The
advantage of our AmComEq (Fig. 2) over AmComEq′ is that it allows to save �
group exponentiations on verifier’s side (i.e., computation of H̃), by letting the
prover precompute amortization of commitment randomness βi. However, the
proof sizes are identical.

Note also that the protocol is 4-round where the first message is a challenge,
which does not really fit into the format of standard Fiat–Shamir transform [30].
However, one can easily make it applicable by either introducing additional round
where the prover first sends a dummy randomness, or let them send A before
receiving challenge x. Security proof is deferred to [3].

Theorem 2. AmComEq is a four-move protocol for the relation RAmComEq. It
is perfectly complete, computationally (�, 2)-special sound if finding non-trivial
discrete-log relation for the generators [g,h] is hard, and special HVZK. More-
over, the communication costs are:

– P → V: 2 elements of G and �d + d′ + d′′ elements of Zq.
– V → P: 2 elements of Zq.

4.2 CompAmComEq: Recursive Compression

The major drawback of AmComEq is that its proof size is still linear in the vector
dimension �d, due to the response vector z ∈ Z

�d
q . Notice however that once the

rest of transcript x,A, Â, e,ω,Ω is fixed, it should be sufficient to prove knowl-
edge of z such that gz = Y := ACeh−ω and G̃z = Ŷ := Â

∏�
i=1(Ĉ

xi−1

i)eH−Ω,

604 D. F. Aranha et al.

instead of sending z. This is where the compressed Σ-protocol theory [4–7] comes
into play. That is, the last move of AmComEq can invoke another protocol
CompDLEq of proof size O(log(�d)), for the relation

RDLEq =
{
((g, G̃, �d), (Y, Ŷ), z) : Y = gz, Ŷ = G̃z

}
. (2)

The protocol CompDLEq for RDLEq is described in [3]. From [4, Theorem 2]
we immediately get the following result.

Corollary 1. Let CompAmComEq be a protocol identical to AmComEq, except
that its last move is replaced by CompDLEq. CompAmComEq is a (2μ + 4)-
move protocol for the relation RAmComEq, where μ = �log2(�d)� − 1. It is per-
fectly complete and computationally (�, 2, k1, . . . , kμ)-special sound if finding non-
trivial discrete-log relation for the generators [g,h] is hard, where ki = 3 for all
i ∈ [1, μ]. Moreover, the communication costs are:

– P → V: 4 �log2(�d)� − 2 elements of G and 2 + d′ + d′′ elements of Zq.
– V → P: �log2(�d)� + 1 elements of Zq.

5 Instantiation with PLONK

In this section we apply our ECLIPSE compiler to PLONK. We first go over the
essential part of the PLONK protocol, using the language of AHP. More detailed
preliminaries are provided in [3].

5.1 PLONK AHP

We consider an arithmetic circuit with fan-in two over F, consisting of n gates.
The PLONK AHP essentially proves knowledge of left, right and output wire
values for every gate i ∈ [n] in the circuit, such that they are also consis-
tent with the constraints determined by the circuit topology. The per-gate
constraints are specified by selector vectors qL,qR,qO,qM ,qC ∈ F

n. We call
C = (n,m,L,R,O,qL,qR,qO,qM ,qC) constraint systems.

AHPPLONK relies on a multiplicative subgroup H =
{
ζ, ζ2, . . . , ζn

}
⊂ F

∗

generated by an nth primitive root of unity ζ ∈ F
∗. It follows that an associated

vanishing polynomial vH(X) = Xn − 1 splits completely in F[X], i.e., Xn − 1 =∏n
i=1(X − ζi). Then we have the corresponding Lagrange basis Li(X) ∈ F<n[X]

for i ∈ [n] such that Li(ζi) = 1 and Li(ζj) = 0 for j �= i.
During the first round of AHPPLONK, the prover sends the following WCPs

encoding both statement and witness ((wi)i∈[l], (wi)i∈[l+1,3n]):

fL(X) =
∑

i∈[n]

wiLi(X) fR(X) =
∑

i∈[n]

wn+iLi(X) fO(X) =
∑

i∈[n]

w2n+iLi(X)

(3)

To achieve zero-knowledge these polynomials are masked by polynomials
(ρL,1X + ρL,2)vH(X), (ρR,1X + ρR,2)vH(X) and (ρO,1X + ρO,2)vH(X) where
each coefficient is randomly sampled by the AHP prover.

ECLIPSE: Enhanced Compiling Method 605

5.2 CP-PLONK

Our goal is to turn AHPPLONK into CP-PLONK with our compiler. We first
describe a commit-and-prove variant of relation R′

PLONK. The auxiliary commit-
ment scheme AC is instantiated with vector Pedersen commitment and its key
ack consists of randomly chosen generators of G with unknown relative discrete
logarithms: G = (G1, . . . , Gd) and H.

We assume without loss of generality that every committed witness (wi)i∈Icom

is left input to gate i. Then we use the following disjoint witness index sets:
Ipub = [l], Icom = [l+1, l+�d], Imid = [l+�d+1, n], assuming that wl+1, . . . ,wl+�d

are �d witness values committed in advance. Moreover, every d values are batched
into a single commitment, that is, every vector compound of d wires wi, for
i ∈ Ik = [l+1+d(k−1), l+dk], is committed to in the kth auxiliary commitment
Ĉk = G(wi)i∈Ik Hrk for k ∈ [�]. Then we have Icom =

⋃
k∈[�] Ik.

Definition 11 (CP-PLONK indexed relation). The indexed relation
RCP-PLONK is the set of all triples

((F, n,m, l,qL,qR,qO,qM ,qC , σ, TC , Icom, (Ik)k∈[�], ack),

((wi)i∈[l], (Ĉk)k∈[�]), ((wi)i∈[l+1,3n], (rk)k∈[�]))

such that

∀i ∈ [n] : wi = wσ(i)

∀i ∈ [l] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM)iwiwn+i

+ (qC)i − wi = 0

∀i ∈ [l + 1, n] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM)iwiwn+i + (qC)i = 0

∀k ∈ [�] : Ĉk = G(wi)i∈Ik Hrk

5.2.1 Applying Our Compiler
We show that AHPPLONK as well as the polynomial commitment scheme meets
the requirements of Theorem 1.

– Decomp takes nw = 3 masked WCPs (fL, fR, fO) and Icom ⊂ [n], parses fL

as
∑

i∈[n] wiLi(X) + (ρ1X + ρ2)vH(X), and decompose them as follows.

fL,com(X) :=
∑

i∈Icom

wiLi(X) + (λcom,1X + λcom,2)vH(X)

fR,com(X) := 0 fO,com(X) := 0

fL,mid(X) :=
∑

i∈[n]\Icom

wiLi(X) + (λmid,1X + λmid,2)vH(X)

fR,mid(X) := fR(X) fO,mid(X) := fO(X)

where λcom,i’s are randomly chosen and λmid,i := ρi − λcom,i. Clearly, the
decomposition is additive, degree-preserving, and non-overlapping.

606 D. F. Aranha et al.

– WitExt takes WCPs (fL, fR, fO) and uniquely extracts witness vectors for
every i ∈ [n]

wi = fL(ζi) wn+i = fR(ζi) w2n+i = fO(ζi)

As it’s independently extracting witness values within disjoint index sets IL =
[n], IR = [n + 1, 2n], and IO = [2n + 1, 3n], respectively, we have that fL, fR

and fO are disjoint (see Definition 7).
– As PLONK retains zero-knowledge by masking WCPs, but without hiding

commitment6, we use de-randomized version of PCKZG.Comck (see Sect. 2.2.1)
that takes polynomial f ∈ F≤D[X] and outputs [f(χ)]1. Hence the polynomial
commitment key is ck = pp = (g, gχ, . . . , gχD

). Clearly, this is an additively
homomorphic commitment scheme. Its binding and extractability were for-
mally shown in Appendix B-D of [25]. As mentioned in [32] and from how
WitExt works, the knowledge soundness of PLONK holds only by enforcing
degree bound to the maximum degree D for committed polynomials so the
plain KZG construction should suffice for compiling AHPPLONK.

We now define a suitable commitment-linking protocol CPlnk in Fig. 3. Since
WCPs are disjoint it is enough to provide linking w.r.t. a polynomial fL. The
main idea is to (1) prove consistency between fL,com and auxiliary commitments
Ĉk with the AmComEq protocol from previous section, and (2) force the prover
to show fmid vanishes at all points in Hcom =

{
ζi

}
i∈Icom

. The latter is in partic-
ular crucial for WitExt to successfully output a witness vector consistent with
auxiliary commitments, even after taking the sum of fL,com and fL,mid. This step
only incurs constant overhead in the evaluation proof thanks to the batch eval-
uation technique proposed in [14]. On the other hand, the consistency between
fcom and � vector Pedersen commitments Ĉk = G(wi)i∈Ik Hrk for k ∈ [�] are
handled by CompAmComEq protocol (see Sect. 4).

Lemma 1. Assuming extractability of PCKZG and argument of knowledge of
CompAmComEq, the protocol CPlnk (Fig. 3) is an argument of knowledge.
Assuming zero knowledge of Fiat–Shamir-transformed CompAmComEq, the pro-
tocol CPlnk is zero-knowledge in the SRS model.

Proof is deferred to [3].

6 More formally, if the underlying AHP is (b + 1,C)-zero knowledge, where b is the
maximum number of queries made by the verifier to polynomials, one can retain ZK
of the resulting SNARK by compiling AHP via PCS with somewhat hiding security,
a weaker notion of hiding [20]. Because the deterministic KZG is already somewhat
hiding and every WCP in AHPPLONK is queried once, it suffices to add vH multiplied
by a masking polynomial of degree 1 to tolerate 2 openings (i.e., one evaluation and
one commitment).

ECLIPSE: Enhanced Compiling Method 607

Fig. 3. Commitment-linking protocol for PLONK

6 Instantiation with Marlin

In this section we apply our compiler to Marlin. As in the previous section, we
first identify WCPs and how it encodes the witness vector in AHP. More detailed
preliminaries are provided in [3].

6.1 Marlin AHP

Notations. For a finite field F and a subset S ⊆ F, we denote by vS(X) the
vanishing polynomial of S that is the unique non-zero monic polynomial of degree
at most |S| that is zero everywhere on S. We denote by F

S the set of vectors
indexed by elements in a finite set S. For a function f : S → F, we denote by
f̂ , the univariate polynomial over F with degree less than |S| that agrees with
f , that is, f̂(a) = f(a) for all a ∈ S. In particular, the polynomial f̂ can be
expressed as a linear combination

f̂(X) =
∑

a∈S

f(a) · La,S(X)

where {La,S(X)}a∈S
are the Lagrange basis polynomials of degree less than |S|

such that La,S(a) = 1 and La,S(a′) = 1 for a′ ∈ S \ {a}.

Constraint Systems. Unlike PLONK, Marlin’s AHP is for R1CS (Rank-1 con-
straint satisfiability) indexed relation defined by the set of tuples (i, x,w) =

608 D. F. Aranha et al.

(
(F,H,K, A,B,C), x, w

)
, where F is a finite field, H and K are subsets of F,

such that n = |H| and m = |K|, A,B,C are H × H matrices over F with
|K| ≥ max {‖A‖ , ‖B‖ , ‖C‖}, and z := (x,w) is a vector in F

H such that
Az ◦ Bz = Cz.

Following [25], we assume efficiently computable bijections φH : H → [n]
and φK : K → [m], and denote the first l elements in H and the remain-
ing elements, via sets H[≤ l] :=

{
a ∈ H : 1 ≤ φH(a) ≤ l

}
and H[> l] :={

a ∈ H : l < φH(a) ≤ n
}

respectively. We then denote the first part of the vector
z as the public component x ∈ F

H[≤l] and the second part as witness component
w ∈ F

H[>l].

WCP. In AHPMarlin, the prover P receives as input the instance x ∈ F
H[≤l], a

witness w ∈ F
H[>l]. The verifier V receives as input x, and obtains oracle access

to the nine polynomials output at the end of the preprocessing phase.
Let x̂(X) ∈ F<l[X] and ŵ(X) ∈ F≤n−l[X] be polynomials that agree with

the instance x on H[≤ l], and with the shifted witness on H[> l] respectively.
Concretely, these polynomials are defined as follows:

x̂(X) :=
∑

a∈H[≤l]

x(a) · La,H[≤l](X)

ŵ(X) :=
∑

a∈H[>l]

(
w(a) − x̂(a)

vH[≤l](a)

)

· La,H[>l](X) + ρ · vH[>l](X)

where the second term of ŵ is added to retain zero-knowledge when the number
of evaluation queries to ŵ is 1 (which is the case in Marlin AHP) and ρ is sampled
uniformly at random from F. Let z := (x,w) denote the full assignment. Then
the polynomial ẑ(X) := ŵ(X) · vH[≤l](X) + x̂(X) agrees with z on H.

6.2 CP-Marlin

We now turn AHPMarlin into CP-Marlin by applying our compiler. We begin by
giving a commit-and-prove relation for R1CS.
Relation for CP-Marlin. We define an extended relation to accommodate con-
sistency of partial witness wire values and commitment. For convenience we
define the following subsets: Hpub := H[≤ l],Hcom := H[> l,≤ l+d�],Hmid := H[>
l + d�], assuming that w(a) for a ∈ Hcom are d� values committed to in advance.
Moreover, every d values are batched into a single commitment, that is, every
vector compound of d wires w(a), for a ∈ Hcom,k = H[> l + d(k − 1),≤ l + dk],
is committed to in the kth auxiliary commitment Ĉk = G(w(a))a∈Hcom,k Hrk for
k ∈ [�]. Then we have Hcom =

⋃
k∈[�] Hcom,k.

Definition 12 (CP-Marlin indexed relation). The indexed relation RCP-Marlin

is the set of all triples

(i, x,w) =
(
(F,H,K, n,m, l, �, d, A,B,C), (x, (Ĉk)k∈[�]), (w, (rk)k∈[�])

)

ECLIPSE: Enhanced Compiling Method 609

where F is a finite field, H and K are subsets of F, such that n = |H| and
m = |K|, A,B,C are H × H matrices over F with |K| ≥ max {‖A‖ , ‖B‖ , ‖C‖},
and z := (x,w) is a vector in F

H such that

Az ◦ Bz = Cz and ∀k ∈ [�], Ĉk = AC.Commitack((w(a))a∈Hcom,k
; rk)

Applying Our Compiler. We now show that AHPMarlin and the polynomial
commitment scheme PCKZG [42] meet the requirements of Theorem 1.

– Unique witness extraction: WitExt takes ŵ(X), evaluates ŵ(X) on every a ∈
H[> l], multiplies the results by vH[≤l](a), and add x̂(a) to constructs a vector
of values w ∈ F

H[>l]. It is easy to see that WitExt satisfies unique extraction
(Definition 8).

– Decomposable WCP: Decomp takes ŵ(X) and Hcom, and outputs ŵcom and
ŵmid of degree at most n − l as follows:

ŵcom(X) :=
∑

a∈Hcom

(
w(a) − x̂(a)

vH[≤l](a)

)

· La,H[>l](X) + λcom · vH[>l](X)

ŵmid(X) :=
∑

a∈Hmid

(
w(a) − x̂(a)

vH[≤l](a)

)

· La,H[>l](X) + λmid · vH[>l](X)

where λcom was sampled from F uniformly at random and λmid := ρ −
λcom. Clearly, the decomposition is additive, degree-preserving and non-
overlapping.

– Marlin compiles AHPMarlin using the plain KZG polynomial commitment except
that degrees of hiding polynomials are minimized. That is, to commit to
the WCP PCKZG.Comck takes ŵ(X) and ω(X) := ω0 + ω1X as input and
outputs [ŵ(χ) + γω(χ)]1, where ω0, ω1 ∈ F are randomly sampled masking
coefficients. As mentioned in §9.2 of [25] and as it’s clear from how WitExt
works, the knowledge soundness of Marlin holds only by enforcing degree
bound to the maximum degree D for committed polynomials. In order to
construct our commitment-linking protocol for Marlin, we modify how hiding
is achieved. Specifically, we now mask the two decomposed WCPs indepen-
dently as follows: commitment to ŵcom(X) is masked by a random polynomial
ωcom(X) := ωcom,0 + ωcom,1X and ŵmid(X) is masked by a random polyno-
mial ωmid(X) that vanishes on Hcom; ωmid(X) := (ωmid,0 + ωmid,1X)vHcom(X).
Note that, for ŵmid, we do not apply Marlin’s optimization of minimising the
degree.
Following PLONK and Lunar, one may alternatively compile AHPMarlin with
the deterministic KZG by increasing the degree of masking factor to 1 (i.e.,
ρ1X + ρ2) to hide one evaluation and the commitment. In this way, decom-
position of WCPs as well as CPlnk can be done as in CP-PLONK and the
number of SRS elements does not grow due to the CP extension.

610 D. F. Aranha et al.

In Fig. 4 we present a suitable commitment-linking protocol CPlnk. The key
idea is to have the prover commit to an encoding of the assignment in subsets
Hcom and Hmid into separate polynomials, and then show that ŵmid(X) vanishes
at Hcom, together with the consistency of ŵcom(X) with vector Pedersen com-
mitments Ĉk = G(w(a))a∈Hcom,k Hrk for k ∈ [�] via CompAmComEq protocol (see
Sect. 4). We assume that Hcom =

⋃
k∈[�] Hcom,k, Hcom,k’s are disjoint with each

other and of same cardinality d = |Hcom,k|.

Fig. 4. Commitment-linking protocol for Marlin

Lemma 2. Assuming extractability of PCKZG and argument of knowledge of
CompAmComEq, the protocol CPlnk (Fig. 4) is an argument of knowledge.
Assuming zero knowledge of Fiat–Shamir-transformed CompAmComEq, the pro-
tocol CPlnk is zero-knowledge in the SRS model.

Proof is deferred to [3].

Acknowledgments. The authors are grateful for Sean Bowe, Ben Fisch, Ariel Gabi-
zon, and Mary Maller for clarifying the details of their works. We thank the anonymous
reviewers of PKC 2022 for helpful comments. This work has been supported by: the
Concordium Blockchain Research Center, Aarhus University, Denmark; the Carlsberg

ECLIPSE: Enhanced Compiling Method 611

Foundation under the Semper Ardens Research Project CF18-112 (BCM); the Euro-
pean Research Council (ERC) under the European Unions’s Horizon 2020 research and
innovation programme under grant agreement No 803096 (SPEC).

References

1. What is Jubjub? https://z.cash/technology/jubjub
2. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for

composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
III. LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 22

3. Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C.,
Takahashi, A.: ECLIPSE: enhanced compiling method for Pedersen-committed
zkSNARK engines. Cryptology ePrint Archive, Report 2021/934

4. Attema, T., Cramer, R.: Compressed ς-protocol theory and practical applica-
tion to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 513–543. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 18

5. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n partial knowl-
edge. Cryptology ePrint Archive, Report 2020/753

6. Attema, T., Cramer, R., Kohl, L.: A compressed σ-protocol theory for lattices.
Cryptology ePrint Archive, Report 2021/307

7. Attema, T., Cramer, R., Rambaud, M.: Compressed σ-protocols for bilinear group
arithmetic circuits and applications. Cryptology ePrint Archive, Report 2020/1447

8. Backes, M., Hanzlik, L., Herzberg, A., Kate, A., Pryvalov, I.: Efficient non-
interactive zero-knowledge proofs in cross-domains without trusted setup. In: Lin,
D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 286–313. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 10

9. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press (2014)

10. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

11. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: USENIX Security 2014, pp. 781–
796. USENIX Association (2014)

12. Benarroch, D., et al.: Proposal: commit-and-prove zero-knowledge proof systems
and extensions. In: 4th ZKProof Workshop (2021)

13. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

14. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Efficient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive, Report
2020/081

https://z.cash/technology/jubjub
https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-17253-4_10
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18

612 D. F. Aranha et al.

15. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

16. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050

17. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press (2014)

18. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp.
677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

19. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

20. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodŕıguez, H.: Lunar: a tool-
box for more efficient universal and updatable zkSNARKs and commit-and-prove
extensions. Cryptology ePrint Archive, Report 2020/1069

21. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composi-
tion of succinct zero-knowledge proofs. In: ACM CCS 2019, pp. 2075–2092. ACM
Press (2019)

22. Campanelli, M., Hall-Andersen, M.: Veksel: simple, efficient, anonymous pay-
ments with large anonymity sets from well-studied assumptions. Cryptology ePrint
Archive, Report 2020/1069

23. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: ACM CCS 2017, pp. 1825–1842. ACM Press (2017)

24. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp.
499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-
3 18

25. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45721-1 26

26. Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015 IEEE Sym-
posium on Security and Privacy, pp. 253–270. IEEE Computer Society Press (2015)

27. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

28. Damg̊ard, I., Ganesh, C., Khoshakhlagh, H., Orlandi, C., Siniscalchi, L.: Balanc-
ing privacy and accountability in blockchain identity management. In: Paterson,
K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 552–576. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-75539-3 23

29. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Parno, B.: Cinderella: turning
shabby X.509 certificates into elegant anonymous credentials with the magic of
verifiable computation. In: 2016 IEEE Symposium on Security and Privacy, pp.
235–254. IEEE Computer Society Press (2016)

https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-030-75539-3_23

ECLIPSE: Enhanced Compiling Method 613

30. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

31. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

32. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-
tology ePrint Archive, Report 2019/953

33. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

34. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: USENIX Security 2016, pp. 1069–1083. USENIX Association (2016)

35. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press
(1985)

36. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

37. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

38. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

39. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-45961-8 11

40. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short
PCPs. In: Twenty-Second Annual IEEE Conference on Computational Complexity
(CCC’07), pp. 278–291. IEEE (2007)

41. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: ACM CCS 2013, pp. 955–966.
ACM Press (2013)

42. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

43. Kosba, A., et al.: How to use SNARKs in universally composable protocols. Cryp-
tology ePrint Archive, Report 2015/1093

44. Lee, J., Choi, J., Kim, J., Oh, H.: SAVER: SNARK-friendly, additively-
homomorphic, and verifiable encryption and decryption with rerandomization.
Cryptology ePrint Archive, Report 2019/1270

45. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-28914-9_10

614 D. F. Aranha et al.

46. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42033-7 3

47. Lipmaa, H.: Prover-efficient commit-and-prove zero-knowledge SNARKs. In:
Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol.
9646, pp. 185–206. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31517-1 10

48. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In: ACM CCS 2019, pp. 2111–2128. ACM Press (2019)

49. Maxwell, G.: Confidential transactions. https://people.xiph.org/greg/
confidentialvalues.txt

50. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252.
IEEE Computer Society Press (2013)

51. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

52. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol.
12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1 25

53. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, pp. 926–943. IEEE Computer Society Press (2018)

54. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero
knowledge proof system. In: USENIX Security 2018, pp. 675–692. USENIX Asso-
ciation (20108)

https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-319-31517-1_10
https://doi.org/10.1007/978-3-319-31517-1_10
https://people.xiph.org/greg/confidential values.txt
https://people.xiph.org/greg/confidential values.txt
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25

Rational Modular Encoding in the DCR
Setting: Non-interactive Range Proofs

and Paillier-Based Naor-Yung
in the Standard Model

Julien Devevey1(B), Benôıt Libert1,2, and Thomas Peters3

1 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL),
Lyon, France

julien.devevey@ens-lyon.fr
2 CNRS, Laboratoire LIP, Lyon, France

3 FNRS and UCLouvain, ICTEAM, Louvain-la-Neuve, Belgium

Abstract. Range proofs allow a sender to convince a verifier that com-
mitted integers belong to an interval without revealing anything else. So
far, all known non-interactive range proofs in the standard model rely
on groups endowed with a bilinear map. Moreover, they either require
the group order to be larger than the range of any proven statement or
they suffer from a wasteful rate. Recently (Eurocrypt’21), Couteau et
al. introduced a new approach to efficiently prove range membership by
encoding integers as a modular ratio between small integers. We show
that their technique can be transposed in the standard model under
the Composite Residuosity (DCR) assumption. Interestingly, with this
modification, the size of ranges is not a priori restricted by the common
reference string. It also gives a constant ratio between the size of ranges
and proofs. Moreover, we show that their technique of encoding messages
as bounded rationals provides a secure standard model instantiation of
the Naor-Yung CCA2 encryption paradigm under the DCR assumption.

Keywords: Range proofs · NIZK · standard model · Naor-Yung

1 Introduction

Zero-knowledge proofs [36] make it possible for a prover to convince a verifier
about the truth of a statement while revealing nothing else. Since their intro-
duction, they have been used in countless cryptographic protocols to protect
users’ privacy or to hedge against malicious adversaries. In many situations, it
is desirable to have non-interactive zero-knowledge (NIZK) proofs comprised of
a single message from the prover to the verifier. In the non-interactive setting,
NIZK proofs necessarily rely on a common reference string generated by some
trusted party. While the Fiat-Shamir paradigm [32] allows for non-interactive
proofs without a trusted setup in the random oracle model, it is known to only
provide heuristic arguments in terms of security.
c© International Association for Cryptologic Research 2022
G. Hanaoka et al. (Eds.): PKC 2022, LNCS 13177, pp. 615–646, 2022.
https://doi.org/10.1007/978-3-030-97121-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97121-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-97121-2_22

616 J. Devevey et al.

In the standard model, NIZK proofs are known to exist for all NP lan-
guages under well-studied assumptions [6,7,40,56]. For specific languages, how-
ever, much more efficient constructions are often possible, by dispensing with
the need for an expensive Karp reduction.

Efficient NIZK constructions exist in the context of range proofs [11], where a
prover convinces a verifier that a committed value belongs to a specific interval.
Range proofs served as a building block of a number of cryptographic protocols,
including anonymous credentials or e-cash [15], auction protocols [51], e-voting
[38], and many more. Recently, they also served as crucial components of cryp-
tocurrencies [12,53], where transaction amounts are private and only appear in
committed [53] or encrypted [12] form. Range proofs then come into play to
ensure that the committed/encrypted value lives in the correct range instead of
being, e.g., slightly larger than the order of the message space.

A widely used approach [10,38,49] proceeds by committing to integers
[28,35], rather than finite field elements. By withholding the order |M| of the
message space, it forces the prover argue over the integers in order to demon-
strate that a committed integer fits in a range [0, B], where B ∈ Z may be larger
than |M|.

Recently, Couteau et al. [24] suggested an elegant technique that surpris-
ingly emulates the properties of integer commitments in the discrete logarithm
setting over public-order groups. The core idea of their construction is to view
each Pedersen commitment [55] C = gm ·hr as committing to the rounded ratio-
nal �x/c� ∈ Z, where x and c are small-magnitude integers x, c ∈ Z such that
m = x · c−1 mod q, where q is the group order. This approach yields instantia-
tions in class groups and under lattice assumptions. In the discrete-log setting,
it outperforms the BulletProof technique [13] for a wide range of parameters.
It also enables either computational or statistical soundness (whereas integers
commitments only offer computational soundness).

In this paper, we consider their approach in the Composite Residuosity set-
ting [54], where we highlight several advantages when proving range membership
of Paillier-encrypted values.

1.1 Our Contribution

Range Proofs. We provide the first unbounded non-interactive range proof
with constant rate in the standard model. The rate is defined in the standard
way, as the ratio between the length of the witness and the total length of
commitments and proofs. By “unbounded”, we mean that a fixed-size com-
mon reference string makes it possible to commit to arbitrarily large integers.1

In the standard model, it is also the first non-interactive candidate that does
not rely on pairing-friendly groups. Instead, we can prove security under the
standard Composite Residuosity (DCR) and Learning-with-Errors (LWE) [57]

1 It is tempting to believe that Groth-Sahai proofs achieve unboundedness. In the full
version of this paper, we explain why it is not the case.

Rational Modular Encoding in the DCR Setting 617

assumptions. While our construction provides statistical soundness (and com-
putational zero-knowledge), it can be turned into a dual-mode NIZK system
– where soundness/zero-knowledge can be either statistical or computational
depending on the configuration of the CRS – at the cost of sacrificing unbound-
edness.

In either case, we obtain space-efficient proofs consisting of a constant number
of Damg̊ard-Jurik [29] ciphertexts. Asymptotically, the communication cost is
dominated by O(λ3−O(1) + log B) bits, where B is the range size, which is on
par with constructions based on integer commitments [25,38,49] in the random
oracle model. In comparison, standard-model solutions based on Groth-Sahai
proofs [41] cost O(λ · log B) per proof.

Our unbounded range proof makes it possible to prove that a Paillier cipher-
text decrypts to a modular ratio M = x · c−1 mod N ζ , for some ζ ∈ N and
bounded integers x, c ∈ Z such that �x/c� ∈ Z belongs to a range [0, B]. As
a second contribution, we show that this encoding technique can be used to
instantiate the Naor-Yung CCA2-secure encryption paradigm [52].

DCR-based Instantiation of Naor-Yung in the Standard Model.

We give a Σ-protocol proving plaintext equalities between Paillier ciphertexts
encrypted under distinct moduli, which restores the soundness of a Σ-protocol
used by Fouque and Pointcheval [33]. Recently, Devevey et al. [30, Appendix
E] showed that the Σ-protocol of [33, Section 4.2] does not provide soundness
as a cheating prover can exploit the distinct moduli to prove false statements.
This invalidates the proof2 that the DCR-based threshold cryptosystem of [33]
provides IND-CCA2 security in the random oracle model. Devevey et al. [30] sug-
gested to fix the problem by additionally proving that the plaintext is smaller
than both Paillier moduli. While efficient range proofs (e.g., [13,25,38]) can solve
this problem in the random oracle model, we do not know how to instantiate
them in the standard model via the Fiat-Shamir paradigm. To achieve standard-
model security by exploiting correlation-intractable hash functions as in [19,56],
we show that no range proof is actually necessary if the decryption algorithm is
modified and “undoes” the rational modular encoding of Couteau et al. [24].

We show that the modified decryption algorithm can be combined with the
correlation-intractable hash functions of [19,56] so as to instantiate the scheme
in the standard model. As a result, we obtain a new construction of a non-
interactive threshold CCA2-secure cryptosystem without pairings. Devevey et
al. [30] recently proposed such a construction under the DCR and LWE assump-
tions. Our scheme provides several advantages over their construction. It notably
inherits a property of the Damg̊ard-Jurik system [29], which makes it possible
to encrypt very long messages3 for a fixed size public key comprised of an RSA

2 We are not aware of any effective attack. Only the proof of IND-CCA2 security in
the ROM is affected.

3 A common approach to encrypt long messages is to use hybrid encryption. However,
it makes it harder to prove properties about encrypted data in zero-knowledge.
It also destroys the additive homomorphic homomorphic properties that we retain
when we discard ciphertext components that ensure chosen-ciphertext security. The
latter property is useful in the context of voting protocols [5].

618 J. Devevey et al.

modulus N . Variable-length plaintexts can even be encrypted by flexibly choos-
ing an integer ζ > 1, depending on the message length, and working over Z∗

Nζ+1 .
In the threshold setting, the key generation phase requires to set a bound on
the maximal value of ζ. However, this constraint disappears in the centralized
(i.e., non-threshold) case, where we can CCA2-encrypt variable-length messages
using a fixed-size public key without using hybrid encryption. To our knowledge,
this useful property of the Damg̊ard-Jurik cryptosystem was never preserved in
the chosen-ciphertext setting (at least in the standard model).

We believe that, even in the random oracle model, properly instantiating
Naor-Yung under the DCR assumption is important. For example, it provides a
convenient way to encrypt arbitrarily long messages with a fixed-size public key
while preserving the possibility of efficiently proving properties (e.g., range mem-
bership) about encrypted data, which would be difficult using hybrid encryption.
It also provides a “voting-friendly” encryption scheme – in the terminology of
[5] – in the sense that the keys/ciphertexts of the threshold CCA2-secure sys-
tem can be publicly mapped to the keys/ciphertexts of an embedded additively
homomorphic encryption scheme.

1.2 Technical Overview

Our range proofs depart from all known standard-model candidates [14,58],
which are based on Groth-Sahai proofs [41] and proceed by breaking the commit-
ted integers into bits. To our knowledge, this approach either restricts committed
integers to be smaller than the group order, or they are inherently stuck with a
somewhat wasteful rate O(1/λ) caused by bit-by-bit comparisons (as discussed
in the full version of this paper). In the discrete-log setting, the construction of
Couteau et al. [24] also requires the group order to be sufficiently larger than
the maximal magnitude of committed integers.

To avoid this a priori bound on the range of committed values, we leverage
a property of the Damg̊ard-Jurik cryptosystem in that the CRS only consists of
an RSA modulus N = pq. The prover commits to an integer in a range [0, B]
by having the prover first choose a sufficiently large ζ ≥ 1 such that B < Nζ

exactly as in the Damg̊ard-Jurik encryption scheme. Following the approach of
Kiayias et al. [44], we can obtain a constant rate as the ratio between the size of
the proof and that of witnesses becomes constant (actually, less than 20) for a
large ζ ∈ poly(λ). Unlike our main construction, our dual-mode variant requires
a CRS that fixes an integer ζ ≥ 1 once-and-for-all.

In order to prove security in the standard model, we build on recent progress
on instantiations of the Fiat-Shamir paradigm. Canetti et al. [16] and Peik-
ert and Shiehian [56] showed that Fiat-Shamir can provide soundness in the
standard model under the Learning-With-Errors (LWE) assumption [57], which
yields correlation intractable (CI) hash functions [17] for efficiently searchable
relations.

Rational Modular Encoding in the DCR Setting 619

Correlation intractability for a relation R requires the infeasibility of finding x
such that (x,Hk(x)) ∈ R given a random hashing key k. It guarantees soundness
by preventing a cheating prover’s first message a from being hashed into a chal-
lenge Chall = Hk(a) admitting a valid response z. Canetti et al. [19] showed that
CI hash functions for efficiently searchable relations suffice when Fiat-Shamir is
applied to trapdoor Σ-protocols. These are Σ-protocols that assume a CRS and
where an efficiently computable function BadChallenge can identify (on input of
a trapdoor τΣ , the false statement x and the prover’s first message a) the only
challenge Chall such that an accepting transcript (a,Chall, z) exists for some z.
Libert et al. [47] (based on earlier observations from [21,50]) showed that the
group structure of Paillier allows BadChallenge to identify bad challenges within
an exponentially large challenge space, thus eliminating the need for parallel
repetitions to ensure soundness.

Here, we also achieve soundness without parallel repetitions by exploiting
the group structure of Z∗

Nζ+1 . However, our BadChallenge functions additionally
solve integer linear programming instances with a constant number of variables.
They also apply the technique of Fouque, Stern and Wackers [34], which decodes
Paillier-decrypted values into rational numbers. In our variant of Couteau et
al.’s range proof [24], the prover first sends DCR-based commitments to integers
{xi}3i=0 such that 1+4x0(B−x0) =

∑3
i=1 x2

i over Z (recall that, for any positive
integer y, there exist {xi ∈ Z}3i=1 such that 1 + 4y =

∑3
i=1 x2

i , as observed in
[38]). Our BadChallenge function first computes {x̃i}3i=0 by decrypting Paillier
ciphertexts. Following Fouque et al. [34], it then runs Gauss’ algorithm to com-
pute pairs (xi, ci) ∈ [−B∗, B∗] × [0, C] such that x̃i = xi · c−1

i mod N ζ for each
i. If no such decomposition exists for a given index i ∈ [0, 3], the corresponding
x̃i determines the only bad challenge that can admit a valid response element
zi. We show that this bad challenge is computable by solving an integer linear
programming instance A · t ≤ b with 3 variables and 8 constraints. By the defi-
nition of the language, we know that the solution t is unique if the statement is
false. Moreover, Lenstra’s algorithm [45] allows computing it in polynomial time
as the number of variables is fixed.

If all decrypted elements {x̃i}3i=0 can be represented as pairs of integers
(xi, ci) ∈ [−B∗, B∗] × [0, C] such that x̃i = xi · c−1

i mod N ζ , our BadChallenge
function determines if such representations exist for a common denominator c =
ci for each i. If not all x̃i have such a representation with xi ∈ [−B∗, B∗], then we
know that no response elements {zi}3i=0 will simultaneously satisfy all verification
equations for the same challenge. In this case, the language definition implies
that at most one challenge can satisfy all these verification equations and we can
identify this bad challenge by solving an integer linear program with 9 variables.
In the last case, the prover’s first message commitments decrypt to elements
{x̃i ∈ ZNζ }3i=0 that all admit a representation (x′

i, c) ∈ [−B∗, B∗] × [0, C] such
that x̃i = x′

i · c−1 mod N ζ . In this case, if the statement is false, the unique bad
challenge is determined by the last verification equation and it is computable by
solving a simple modular equation.

620 J. Devevey et al.

Our Paillier-based instantiation of Naor-Yung uses exactly the same Σ-
protocol as in [33, Section 4.2]. We prove that its soundness is restored if we
introduce a post-processing step in the (distributed) decryption mechanism.
Each decryption server computes its partial decryption exactly as in the thresh-
old variant of Damg̊ard-Jurik [29] (as in [33], this is done without interaction
among servers). When partial decryptions are combined together, we first com-
pute a Paillier/Damg̊ard-Jurik plaintext M ∈ ZNζ . Using Gauss’ algorithm
as suggested by Fouque et al. [34], we then decode M as a modular ratio
M = x ·c−1 mod N ζ for small-magnitude x, c ∈ Z before outputting the rounded
rational �x/c� ∈ Z as a plaintext. We show that this modified decryption algo-
rithm can be safely combined with the Σ-protocol in [33] as it ensures that
both Paillier ciphertexts lead to the same plaintext �x/c� ∈ Z. In the case
ζ = 1, given two Paillier ciphertexts ct1 = (1 + N1)Msg · rN1

1 mod N2
1 and

ct2 = (1 + N2)Msg · rN2
2 mod N2

2 , the protocol of [33] guarantees the existence
of c̄ ∈ [0, C] and m̄ ∈ [−R,R] such that ctc̄1 = (1 + N1)m · wN1

1 mod N2
1 and

ctc̄2 = (1 + N2)m · wN2
2 mod N2

2 , for some w1 ∈ Z
∗
N1

, w2 ∈ Z
∗
N2

. While there is
no guarantee that m · c̄−1 mod N1 equals m · c̄−1 mod N2, we know from [34]
that they both decode to the same pair (m, c̄) ∈ [−R,R] × [0, C] as long as
2RC < N when we run Gauss’ algorithm. This ensures plaintext equality when
the decryption algorithm outputs �m/c̄�.

In order to obtain a trapdoor Σ-protocol, our BadChallenge function appeals
again to Lenstra’s algorithm and solves an integer linear programming instance
with a constant number of variables/constraints. When it comes to proving
CCA2-security in the standard model, we need to turn the Σ-protocol into a
one-time simulation-sound4 NIZK proof system [59]. For this purpose, we could
use a construction put forth by Devevey et al. [30] but it would unfortunately
ruin the length-flexible property of the scheme. If we were to combine it with our
trapdoor Σ-protocol showing plaintext equalities, the public key would inher-
ently bound the size of the message space. To avoid this problem, we build a
new DCR-based construction that compiles any trapdoor Σ-protocol into a one-
time simulation-sound NIZK argument. Unlike the solution of [30, Section 3],
simulation-soundness is achieved by augmenting the CRS with a number of bits
that does not depend on the underlying trapdoor Σ-protocol.

1.3 Related Work

Range proofs were introduced by Brickell et al. [11] and receive continuous atten-
tion [10,14,20,22,25,37,39,49] since then. So far, known solutions have been
following two main approaches.

The first approach proceeds by breaking integers into bits or small digits [3,
11,13,14,29,37,39], which allows communicating a logarithmic (in the range size)
number of group elements [13,14,37,39]. This technique is usually implemented
using homomorphic commitment schemes over groups of public prime order,

4 In short, one-time simulation-soundness means that seeing a simulated proof for a
false statement of its choice does not help the adversary prove a new false statement.

Rational Modular Encoding in the DCR Setting 621

while the optimized versions of [14,37,39] require pairings. Within this line of
work, Bulletproof [13] obtains the best communication complexity via a clever
recursive proof technique and can be realized over standard (i.e., non-pairing-
friendly) discrete-logarithm-hard groups. Unfortunately, it is not known to be
instantiable in the standard model without interaction.

The second approach [10,25,38,49] relies on integer commitments over groups
of hidden order. This approach is often preferred for very large ranges (which
arise in applications like anonymous credentials [15], where range elements may
be comprised of thousands of bits) where it tends to be more efficient. Also, it
does not require the maximal range length to be known ahead of time, when the
commitment key is set up. Using homomorphic integer commitments, any range
[α, β] can be proven by exploiting the homomorphic properties of the commit-
ment scheme and demonstrating that X − α ∈ [0, β − α]. Indeed, working over
the integers allows showing that X−α and β−X are both positive by expressing
them as a sum of squares. The idea to rely on square decompositions over the
integers dates back to [11]. The square decomposition method was improved by
Lipmaa [49] by relying on the Lagrange decomposition of any positive integer
as a sum of four squares. Groth [38] observed any positive integer of the form
4Y + 1, for some Y ∈ Z, can be more efficiently expressed as a sum of three
squares. Further efficiency and security improvements were given in [25]. In this
second approach, the underlying integer commitment scheme builds on [28,35]
and is usually instantiated using RSA groups. Couteau et al. [25] showed that
its security relates to a slight variant of the RSA assumption rather than the
less standard Strong RSA assumption.

Very recently, Couteau et al. [24] managed to reconcile the advantages of
both approaches. Their core technique converts any (homomorphic) commitment
scheme over groups of (public) prime order into a bounded integer commitment
scheme. While the conversion does not completely preserve the homomorphic
property, it allows committing to bounded-range integers by interpreting them
as rounded rationals. It also allows reviving the square decomposition method
so as to prove integer relations holding over public ranges. As a result, their
range proof consists of a public-coin 3-move interactive protocol that only com-
municates a constant number of elements. It can be instantiated using standard
Pedersen commitments [55] in prime-order groups as long as the group order
is large enough to represent the bounded integers. Their technique also applies
under lattice assumptions and in class groups. In the latter instantiation, it also
inherits the unbounded property of solutions based on hidden-order groups.

We note that a generic transformation due to Ciampi et al. [23, Section 4.2]
can be used to turn a slight modification (where the first-message group elements
are not hashed) of Couteau et al.’s discrete-log-based range proof [24] into a
trapdoor Σ-protocol, and thus obtain a non-interactive variant in the standard
model. However, since the transformation of [23] only applies to Σ-protocols with
small challenge space, it has to be repeated O(λ) times in parallel to achieve
negligible soundness error. In contrast, we achieve soundness without parallel
repetitions as in [47]. Moreover, applying [23] to build a non-interactive variant

622 J. Devevey et al.

of [24] would still require to fix the maximal cardinality of ranges ahead of time.
As it turns out, none of the existing range proofs (even in the bounded case
where the CRS depends on log(β − α)) in the standard model features proofs
comprised of a constant number of element of the base ring/group.

The first non-interactive CCA-secure threshold cryptosystems date back to
the work of Shoup and Gennaro [60] who gave DDH-based realizations in the
random oracle model. Fouque and Pointcheval [33] gave a generic construction
and a DDH-based instantiation using the Naor-Yung paradigm. Until the recent
years, all non-interactive solutions in the standard model were pairing-based
[8,48]. Boneh et al. gave a generic technique [9] to transform any IND-CCA
secure encryption scheme into a non-interactive threshold system using fully
homomorphic encryption. Using correlation-intractable hash functions, Devevey
et al. [30] recently obtained constructions under the DCR and LWE assumptions
in the adaptive corruption setting. Back in 1999, Canetti and Goldwasser [18]
showed that chosen-ciphertext security was achievable in the standard model by
allowing decryption servers to interact with one another. Their approach was
subsequently extended to handle adaptive adversaries [1,43].

2 Background

Let S be a finite set. Then, a ←↩ U(S) means that a is sampled according to the
uniform distribution over S. |a| is the bit-length of a.

2.1 Hardness Assumptions

We first recall Paillier’s Composite Residuosity assumption and its variant con-
sidered by Damg̊ard and Jurik.

Definition 2.1 [29,54]. Let integers N = pq and s > 1 for primes p, q. The
s-Decision Composite Residuosity (s-DCR) assumption states that the dis-
tributions {x = wNs

mod Ns+1 | w ←↩ U(Z�
N)} and {x | x ←↩ U(Z�

Ns+1)} are
computationally indistinguishable.

Lemma 2.2 (Adapted from [29]). Let s = poly(λ). Then s-DCR is equivalent
to 1−DCR, with a security loss ≤ s. (The proof is straightforward.)

2.2 Correlation Intractable Hash Functions

We consider unique-output efficiently searchable relations [16].

Definition 2.3. A relation R ⊆ X × Y is searchable in time T if there exists
a function f : X → Y which is computable in time T and such that, if there
exists y such that (x, y) ∈ R, then f(x) = y.

Let λ ∈ N a security parameter. A hash family with input length n(λ) and
output length m(λ) is a collection H = {hλ : {0, 1}s(λ)×{0, 1}n(λ) → {0, 1}m(λ)}
of keyed functions induced by efficient algorithms (Gen,Hash), where Gen(1λ)
outputs a key k ∈ {0, 1}s(λ) and Hash(k, x) computes hλ(k, x) ∈ {0, 1}m(λ).

Rational Modular Encoding in the DCR Setting 623

Definition 2.4. For a relation ensemble {Rλ ⊆ {0, 1}n(λ) ×{0, 1}m(λ)}, a hash
function family H = {hλ : {0, 1}s(λ)×{0, 1}n(λ) → {0, 1}m(λ)} is R-correlation
intractable if, for any probabilistic polynomial time (PPT) adversary A, we
have Pr

[
k ← Gen(1λ)), x ← A(k) : (x, hλ(k, x)) ∈ R

]
= negl(λ).

Peikert and Shiehian [56] described a correlation-intractable hash family for
any searchable relation (in the sense of Definition 2.3) defined by functions f of
bounded depth.

2.3 Trapdoor Σ-Protocols

Canetti et al. [19] considered a definition of Σ-protocols that slightly differs from
the usual formulation [26].

Definition 2.5 (Adapted from [2,19]). Let a language L = (Lzk,Lsound)
associated with two NP relations Rzk,Rsound. A 3-move interactive proof system
Π = (Genpar,GenL,P,V) in the common reference string model is a Gap Σ-
protocol for L if it satisfies the following conditions:

– 3-Move Form: P and V both take as input crs = (par, crsL), with par ←
Genpar(1λ) and crsL ← GenL(par,L), and a statement x and proceed as fol-
lows: (i) P takes in w ∈ Rzk(x), computes (a, st) ← P(crs, x, w) and sends a
to the verifier; (ii) V sends back a random challenge Chall from the challenge
space C; (iii) P finally sends a response z = P(crs, x, w,a,Chall, st) to V; (iv)
On input of (a,Chall, z), V outputs 1 or 0.

– Completeness: If (x,w) ∈ Rzk and P honestly computes (a, z) for a chal-
lenge Chall, V(crs, x, (a,Chall, z)) outputs 1 with probability 1 − negl(λ).

– Special zero-knowledge: There is a PPT simulator ZKSim that inputs crs,
x ∈ Lzk and a challenge Chall ∈ C. It outputs (a, z) ← ZKSim(crs, x,Chall)
such that (a,Chall, z) is computationally indistinguishable from a real tran-
script with challenge Chall (for w ∈ Rzk(x)).

– Special soundness: For any CRS crs = (par, crsL) obtained as par ←
Genpar(1λ), crsL ← GenL(par,L), any x
∈ Lsound, and any first message a
sent by P, there is at most one challenge Chall = f(crs, x,a) for which an
accepting transcript (crs, x,a,Chall, z) exists for some third message z. The
function f is called the “bad challenge function” of Π. That is, if x
∈ Lsound

and the challenge differs from the bad challenge, the verifier never accepts.

Definition 2.5 is taken from [19] and relaxes the standard special soundness prop-
erty in that extractability is not required. Instead, it considers a bad challenge
function f , which may not be efficiently computable. Canetti et al. [19] define
trapdoor Σ-protocols as Σ-protocols where the bad challenge function is effi-
ciently computable using a trapdoor. Here, we use a definition where the CRS
and the trapdoor may depend on the language.

The common reference string crs = (par, crsL) consists of a fixed part par and
a language-dependent part crsL which is generated as a function of par and a
language parameter L = (Lzk,Lsound).

624 J. Devevey et al.

Definition 2.6 (Adapted from [19]). A Σ-protocol Π = (Genpar,GenL,P,V)
with bad challenge function f for a trapdoor language L = (Lzk,Lsound) is a
trapdoor Σ-protocol if it satisfies the properties of Definition 2.5 and there
exist PPT algorithms (TrapGen,BadChallenge) with the following properties.

• Genpar inputs λ ∈ N and outputs public parameters par ← Genpar(1λ).
• GenL is a randomized algorithm that, on input of public parameters par, out-

puts the language-dependent part crsL ← GenL(par,L) of crs = (par, crsL).
• TrapGen(par,L, τL) takes as input public parameters par and a membership-

testing trapdoor τL for the language Lsound. It outputs a common reference
string crsL and a trapdoor τΣ ∈ {0, 1}�τ , for some 	τ (λ).

• BadChallenge(τΣ , crs, x,a) takes in a trapdoor τΣ, a CRS crs = (par, crsL), an
instance x, and a first prover message a. It outputs a challenge Chall.

In addition, the following properties are required.

• CRS indistinguishability: For any par ← Genpar(1λ), and any trapdoor τL
for the language L, an honestly generated crsL is computationally indistin-
guishable from a CRS produced by TrapGen(par,L, τL). Namely, for any aux
and any PPT distinguisher A, we have

Advindist-Σ
A (λ) := |Pr[crsL ← GenL(par,L) : A(par, crsL) = 1]
−Pr[(crsL, τΣ) ← TrapGen(par,L, τL) : A(par, crsL) = 1]| ≤ negl(λ).

• Correctness: There exists a language-specific trapdoor τL such that, for any
instance x
∈ Lsound and all pairs (crsL, τΣ) ← TrapGen(par,L, τL), we have
BadChallenge(τΣ , crs, x,a) = f(crs, x,a) .

Note that the TrapGen algorithm does not take a specific statement x as input,
but only a trapdoor τL allowing to recognize elements of Lsound.

2.4 Trapdoor Σ-Protocol Showing Composite Residuosity

We recall a standard Σ-protocol that allows proving that an element of Z∗
Nζ+1

is a N ζ-th residue. In [47], it was shown that the latter protocol is a trapdoor
Σ-protocol showing that an element of Z∗

N2 is a composite residue.
Namely, let LDCR := {x ∈ Z

∗
Nζ+1 | ∃w ∈ Z

�
N : x = wNζ

mod N ζ+1}, the
language of N ζ-th residues, for some integer ζ > 1, where N = pq is an RSA
modulus. We assume that the challenge space is {0, . . . , 2λ − 1} and that p, q >
2l(λ), for some polynomial l : N → N such that l(λ) > λ for any sufficiently large
λ ∈ N. The condition p, q > 2λ will ensure that the difference between any two
challenges be co-prime with N .

In order to obtain a BadChallenge function that identifies bad challenges for
elements x
∈ LDCR, [47] uses an observation from Lipmaa [50], which shows that
the factorization of N allows computing bad challenges even if gcd(x,N) > 1.

Genpar(1λ): Given the security parameter λ, define par = {λ}.

Rational Modular Encoding in the DCR Setting 625

GenL(par,LDCR): Given public parameters par and the description of a language
LDCR, consisting of an RSA modulus N = pq with primes p and q such that
p, q > 2l(λ), for some polynomial l : N → N such that l(λ) > λ, define the
language-dependent crsL = {N}. The global CRS is crs = ({λ}, crsL).

TrapGen(par,LDCR, τL): Given par, the description of a language LDCR that spec-
ifies an RSA modulus N and a membership-testing trapdoor τL = (p, q)
consisting of the factorization of N = pq, output the language-dependent
crsL = {N} which defines crs = ({λ}, crsL) and the trapdoor τΣ = (p, q).

P
(
crs, x, w

) ↔ V(crs, x): Given a crs, a statement x = wNζ

mod N ζ+1, P (who
has the witness w ∈ Z

�
N) and V interact as follows:

1. P chooses a random r ←↩ U(Z∗
N) and sends a = rNζ

mod N ζ+1 to V .
2. V sends a random challenge Chall ←↩ U({0, . . . , 2λ − 1}) to P .
3. P computes the response z = r · wChall mod N and sends it to V .
4. V checks if a · xChall ≡ zNζ

(mod N ζ+1) and returns 0 otherwise.
BadChallenge

(
par, τΣ , crs, x, a

)
: Given τΣ = (p, q), (Damg̊ard-Jurik) decrypt x

and a to obtain αx = DτΣ
(x) ∈ ZNζ , αa = DτΣ

(a) ∈ ZNζ .
1. If αa = 0, return Chall = 0.
2. If αa
= 0, let dx = gcd(αx, Nζ), which lives in the set {piqj | 0 ≤ i <

ζ, 0 ≤ j < ζ} ∪ {piqζ | 0 ≤ i < ζ} ∪ {pζqj | 0 ≤ j < ζ}. Then,
a. If 1 < dx < Nζ , return ⊥ if dx does not divide N ζ − αa.
b. Otherwise, the congruence αa +Chall ·αx ≡ 0 (mod Nζ

dx
) has a unique

solution Chall′ = −α−1
x · αa ∈ ZNζ/dx

since gcd(αx, Nζ/dx) = 1. If
Chall′ ∈ ZNζ/dx

\{0, . . . , 2λ −1}, return ⊥. Else, return Chall = Chall′.

In [47], it is shown that the above construction is a trapdoor Σ-protocol with
large challenge space. By applying [56], this implies compact NIZK arguments
(i.e., without using parallel repetitions to achieve negligible soundness error) for
the language LDCR assuming that the LWE assumption holds.

Lemma 2.7 [47]. The above protocol is a trapdoor Σ-protocol for LDCR.

2.5 Encoding and Decoding Bounded Rationals in ZN

In [34], Fouque et al. suggested a technique that allows computing over rational
numbers when they are encrypted using Paillier. The idea is to encode a rational
r/s, for co-prime integers (r, s) ∈ [−R,R]×[0, S], as the modular ratio r·s−1 mod
N . They showed that, as long as, 2RS < N , it is possible to recover (r, s) from
t = r · s−1 mod N using Gauss’ lattice reduction algorithm in dimension 2.

Let an RSA modulus and bounds R,S. Let r, s ∈ Z such that −R ≤ r ≤ R,
0 < s ≤ S, gcd(r, s) = 1 and gcd(s,N) = 1. Let the rational t = r/s ∈ Q

Define the encoding E(t) := t′ = r · s−1 mod N. To decode it and recover
t ∈ Q from t′, consider the lattice

Λ := {(x, y) ∈ Z
2 : x = y · t′ mod N} = {(x, y) ∈ Z

2 : s · x = y · r mod N}.

626 J. Devevey et al.

A particular basis of Λ is formed by the vectors (N, 0) and (t′, 1). Since s is
invertible over ZN , the vector (r, s) ∈ Z

2 also lives in Λ. To recover co-prime
integers (r, s) ∈ Z

2 such that t′ = r · s−1 mod N , one can run Gauss’ algorithm
on input of the initial basis �u = (N, 0), �v = (t′, 1) to compute a minimal vector
of Λ. A result of Vallée [61] ensures that the number of iterations is at most
3 + log1+√

2 max(‖�u‖, ‖�v‖) in the worst case.
Fouque et al. proved that the decoding procedure is correct and pointed out

that it carries over when computations take place modulo Nζ for ζ > 1.

Lemma 2.8 ([34, Theorem 1]). If t′ = r · s−1 mod N , −R ≤ r ≤ R, and 0 <
s ≤ S, then Gauss’ algorithm uniquely recovers r and s if 2RS < N .

2.6 Paillier Decryption of (Rounded) Rationals

We first describe a variant of Paillier’s cryptosysem used by Fouque, Stern and
Wackers [34] to perform homomorphic operations over rational numbers. While
the encryption algorithm is identical to that of Paillier/Damg̊ard-Jurik [29,54],
the message space is restricted to a specific interval and the decryption algorithm
runs Gauss’ lattice reduction algorithm in dimension 2. In fact, we modify the
decryption algorithm of [34] to make sure that it outputs an integer instead of
a rational. In addition, we follow a suggestion of Damg̊ard and Jurik [29] and
assume that the message space is not a priori bounded by the public key. Instead,
it can be flexibly adjusted by the encryption algorithm.

In the following, we let 	M ∈ poly(λ) denote the message length, which can be
dynamically determined at encryption time. We also denote by abs : Z → N the
absolute value function defined as abs(x) = x · (x ≥ 0) + (−x) · (x < 0). Letting
C = 2λ − 1, the encryptor will fix R > 2λ · (M + 1), where M = 2�M − 1 is
the largest possible message, and choose ζ in such a way that 2RC < Nζ . After
having obtained M̃sg ∈ ZNζ from the decryption algorithm of Damg̊ard-Jurik,
the receiver will be able to apply Lemma 2.8 so as to decode M̃sg as the ratio
m · c−1 mod N ζ between bounded rationals −R ≤ m ≤ R and 1 ≤ c ≤ C.

Keygen(1λ): Given a security parameter, choose an RSA modulus N = pq such
that p, q > 2l(λ), for some polynomial l : N → N with l(λ) ≥ λ, and an
integer ζ ≥ 1. The public key is pk = N and the secret key is sk = (p, q).

Encrypt
(
pk,Msg

)
: To encrypt Msg ∈ {0, 1}�M , interpret it as a positive integer

in [0,M], where M = 2�M − 1. Set ζ > 1 as a small integer such that
N ζ ≥ 22λ+1M . Then, choose r ←↩ U(Z∗

N) and compute

(ct, 	M) =
(
(1 + N)Msg · rNζ

mod N ζ+1, 	M

)
.

Decrypt(sk, (ct, 	M)): Given (ct, 	M) ∈ Z
∗
Nζ+1 × N and sk = (p, q). Compute

M̃sg ∈ ZNζ by running the Damg̊ard-Jurik decryption algorithm, denoted
Dsk(ct). Then, using Gauss’ algorithm, find the unique (m, c) ∈ Z

2 such that
−R ≤ m ≤ R, 1 ≤ c ≤ C and M̃sg = m · c−1 mod N ζ . If no such pair exists,
return ⊥. Otherwise, return Msg = abs(�m/c�), where m/c ∈ Q.

Rational Modular Encoding in the DCR Setting 627

In the decryption algorithm, the absolute value is used to enforce positiveness.
The scheme is identical to [34], except that it outputs a positive integer rather
than a rational. This decoding method will be applied in our instantiation of
Naor-Yung. In our non-interactive range proof of Sect. 3, we will also use the
scheme as a perfectly binding extractable commitment with an extraction algo-
rithm Decrypt′ where Msg′ = �m/c�, without absolute values.

3 Constant-Rate Unbounded Non-interactive Range
Proofs in the Standard Model

This section presents a range proof where a fixed-size common reference string
containing an RSA modulus N = pq allows committing to arbitrarily large
integers. We note that, after having committed to an integer, the committer
is bound to a specific modulus Nζ+1 and all subsequent proofs related to this
commitment are restricted to ranges smaller than a certain bound. Still, the
CRS and the underlying algebraic structure do not have to be scaled with the
size of the committed integers.

Let positive integers B, C = 2λ − 1, B∗ = 2λBC and ζ ≥ 1 satisfying the
conditions 22λ+3B2C2 < Nζ . Let LB,B∗,C

range = (LB
zk,LB,B∗,C

sound) be

LB
zk :=

{
ct ∈ Z

∗
Nζ+1 | ∃x ∈ [0, B], w ∈ Z

�
N : ct = (1 + N)x · wNζ

mod N ζ+1
}

LB,B∗,C
sound :=

{
ct ∈ Z

∗
Nζ+1 | ∃x ∈ [0, B∗], c ∈ [1, C], w ∈ Z

�
N :

ct = (1 + N)x·c−1 mod Nζ · wNζ

mod N ζ+1 ∧ �x/c� ∈ [0, B]
}

.

To prove membership, we will have the prover generate auxiliary commit-
ments {Ci}3i=1 and rely on L̄B,B∗,C

range = (L̄B
zk, L̄B,B∗,C

sound) such that

L̄B
zk :=

{
(ct, {Ci}3i=1) ∈ (Z∗

Nζ+1)4 | ∃x0, x1, x2, x3 ∈ [0, B],

∃ s0, s1, s2, s3 ∈ Z
∗
N : 1 + 4(B − x0)x0 = x2

1 + x2
2 + x2

3

∧ (1 + N)B · ct−1 = (1 + N)x0 · sNζ

0 mod N ζ+1

∧ Ci = (1 + N)xi · sNζ

i mod N ζ+1 ∀i ∈ [3]
}

,

L̄B,B∗,C
sound :=

{
(ct, {Ci}3i=1) ∈ (Z∗

Nζ+1)4 | ∃x0, x1, x2, x3 ∈ [−B∗, B∗],

∃ s0, s1, s2, s3, τ ∈ Z
∗
N , c ∈ [1, C] :

∧ (
(1 + N)B · ct−1

)c = (1 + N)x0 · sNζ

0 mod N ζ+1

∧ Cc
i = (1 + N)xi · sNζ

i mod N ζ+1 ∀i ∈ [3]

∧ (1 + N)c =
3∏

i=1

Cxi
i · ct−4x0 · τNζ

mod N ζ+1
}

, (1)

628 J. Devevey et al.

In Lemma 3.2, we show that (ct, {Ci}3i=1) ∈ L̄B,B∗,C
sound implies ct ∈ LB,B∗,C

sound , which
in turn implies Decrypt′(sk, (ct, |B∗|)) ∈ [0, B], where sk = (p, q) and N = pq.

Genpar(1λ) : Given the security parameter λ, define par = {λ}.
GenL(par,LB,B∗,C

range) : Given public parameters par as well as a description of a
language pair LB,B∗,C

range , consisting of an RSA modulus N = pq with primes
p, q > 2l(λ), for some polynomial l : N → N such that l(λ) > λ, define the
language-dependent CRS crsL = {N}. The global CRS is crs = ({λ}, crsL).

TrapGen(par,LB,B∗,C
range , τL) : This algorithm is identical to GenL(par,LB,B∗,C

range),
except that it also outputs the trapdoor τΣ = (p, q).

P
(
crs, �x, �w

) ↔ V(crs, �x) : On input of a CRS crs, a statement ct ∈ LB
zk, the prover

P (who has �w = (x,w) ∈ [0, B] × Z
�
N) and V interact as follows:

1. P computes x1, x2, x3 ∈ [0, B + 1] such that 1 + 4x(B − x) =
∑3

i=1 x2
i

over Z. Then, P sets C0 = (1 + N)B · ct−1 mod N ζ+1, x0 = B − x and
s0 = w−1 mod N . It randomly picks s1, s2, s3 ←↩ U(Z∗

Nζ) and computes

Ci = (1 + N)xi · sNζ

i ∀i ∈ [3].

Next, to show that (ct, {Ci}3i=1) ∈ L̄B
zk, it chooses σ ←↩ U(Z∗

N), ri ←↩
U([0, B∗]) and αi ←↩ U(Z∗

Nζ) for each i ∈ [0, 3], to compute

Ri = (1 + N)ri · αNζ

i mod N ζ+1 ∀i ∈ [0, 3]

R = σNζ · C4·r0 ·
3∏

i=1

C−ri
i mod N ζ+1.

and send (R, {Ri}3i=0, {Ci}3i=1) to V .
2. V sends a random challenge Chall ←↩ U({0, . . . , 2λ − 1}) to P .
3. P computes the response

τ = σ · (
s4·x0
0 ·

3∏

i=1

sxi
i

)Chall mod N

zi = ri + Chall · xi, ti = αi · sChalli mod N ∀i ∈ [0, 3]

and fails if there exists i ∈ [0, 3] such that zi
∈ [0, B∗]. Otherwise, it sends
(τ, {(zi, ti)}3i=0) to V .

4. V sets C0 = (1 + N)B · ct−1 mod N ζ+1. It accepts iff zi ∈ [0, B∗] for each
i ∈ [0, 3] and the following equations hold:

Ri ≡ (1 + N)zi · tN
ζ

i · C−Chall
i (mod N ζ+1) ∀i ∈ [0, 3],

R ≡
3∏

i=1

C−zi
i · ct4·z0 · τNζ · (1 + N)Chall (mod N ζ+1). (2)

Rational Modular Encoding in the DCR Setting 629

BadChallenge
(
par, τΣ , crs,x,a

)
: Given the statement x = ct ∈ ZNζ , the mes-

sage a = (R, {Ri}3i=0, {Ci}3i=1) and the trapdoor τΣ = (p, q), return ⊥ if
Decrypt′τΣ

(ct) ∈ [0, B]. Otherwise, do the following.

1. Let C0 = (1 + N)B · ct−1 mod N ζ+1. For each index i ∈ [0, 3], compute
x̃i = DτΣ

(Ci) ∈ ZNζ using the Damg̊ard-Jurik decryption algorithm.
Also, compute r = DτΣ

(R) ∈ ZNζ and ri = DτΣ
(Ri) ∈ ZNζ for each

i ∈ [0, 3]. Then, for each i ∈ [0, 3], run Gauss’ algorithm to compute
xi ∈ [−B∗, B∗] and ci ∈ [0, C] such that x̃i = xi · c−1

i mod N ζ .
2. If there exists i ∈ [0, 3] such that no pair (xi, ci) ∈ [−B∗, B∗] × [0, C]

satisfies x̃i = xi · c−1
i mod N ζ , let j ∈ [0, 3] the smallest such index.

Compute (zj ,Challj , kj) ∈ Z
3 such that

rj = zj − x̃j · Challj + kj · N ζ

0 ≤ zj ≤ B∗

0 ≤ Challj ≤ 2λ − 1
0 ≤ kj ≤ 2λ (3)

This can be achieved by replacing the first equality by inequalities

zj − x̃j · Challj + kj · N ζ ≤ rj , −zj + x̃j · Challj − kj · N ζ ≤ −rj

and solving an integer linear programming instance with 8 constraints
and 3 variables (zj ,Challj , kj) ∈ Z

3 using Lenstra’s algorithm [45]. If a
solution is found (in which case, it is unique), return Chall = Challj .

3. For each i ∈ [0, 3], let (xi, ci) ∈ [−B∗, B∗] × [0, C] such that {x̃i}3i=0

satisfy x̃i = xi · c−1
i mod N ζ . Then, let c � lcm(c0, c1, c2, c3). Check if

c ∈ [0, C] and there exist integers x′
0, x

′
1, x

′
2, x

′
3 ∈ [−B∗, B∗] such that

x̃i = x′
i · c−1 mod N ζ for each i ∈ [0, 3]. If no such {x′

i}3i=0 and c exist,
find the (unique) integer vector (z0, z1, z2, z3,Chall, k0, k1, k2, k3) ∈ Z

9

such that 0 ≤ Chall ≤ 2λ − 1 and

∀j ∈ [0, 3] :

⎧
⎨

⎩

rj = zj − x̃j · Chall + kj · N ζ

0 ≤ zj ≤ B∗

0 ≤ kj ≤ 2λ

This is done by replacing equalities by pairs of inequalities and solving an
integer linear programming instance with 9 variables and 26 constraints.
If this vector exists, return the corresponding Chall ∈ [0, 2λ − 1].

4. Let c ∈ [0, C] and {x′
i ∈ [−B∗, B∗]}3i=0 such that x̃i = x′

i · c−1 mod N ζ .
Let dx = gcd(4x̃x̃0 − ∑3

i=1 x̃2
i + 1, Nζ), where x̃ = B − x̃0 mod N ζ , and

compute

Chall0 � (r +
3∑

i=1

x̃i · ri − 4x̃ · r0) · (4x̃ · x̃0 −
3∑

i=1

x̃2
i + 1)−1 mod

N ζ

dx
.

630 J. Devevey et al.

If Chall0 ∈ {0, . . . , 2λ−1}, return Chall = Chall0. Otherwise, return Chall =⊥.

The BadChallenge function computes the bad challenge (which is unique when
the statement is false) using Lenstra’s algorithm [45] that runs in polynomial
time since the number of variables is fixed. For an instance with t constraints,
each of binary encoding length O(s), the algorithm requires O(st+s2) arithmetic
operations on s-bit numbers.

Completeness. As long as zi ∈ [0, B∗] for all i ∈ [0, 3] when P computes its
response at step 3, i.e., P does not abort, we have

3∏

i=1

C−zi
i · ct4·z0 · τNζ · (1 + N)Chall

=
3∏

i=1

C−ri
i · ct4·r0 · (3∏

i=1

(1 + N)xisNζ

i

)−xiChall · (
(1 + N)xwNζ)4x0Chall

·σNζ · (
w−4·x0 ·

3∏

i=1

sxi
i

)Nζ ·Chall · (1 + N)Chall mod N ζ+1

=
3∏

i=1

C−ri
i · ct4·r0 · (1 + N)−Chall·∑3

i=1 x2
i · (1 + N)4·x0·Chall·x

·σNζ · (1 + N)Chall mod N ζ+1

=
3∏

i=1

C−ri
i · ct4·r0 · σNζ

mod N ζ+1 = R

(1 + N)zi · tN
ζ

i ≡ (1 + N)ri+Chall·xi · αNζ

i · sChall·N
ζ

i ≡ Ri · CChall
i (mod N ζ+1),

Finally, P only aborts with probability at most 4 · 2−λ.

Special Zero-Knowledge. We first describe a simulator ZKSimrange
B before

showing that a simulated transcript produced by ZKSimrange
B (crs, �x,Chall) is com-

putationally indistinguishable from a real transcript generated from a statement-
witness pair (�x, �w) ∈ Rrange

B when the challenge is Chall.
Given crs = ({λ}, crsL), an element �x = ct ∈ Z

∗
Nζ+1 of the language LB,B∗,C

and a challenge Chall ∈ [0, C], ZKSimrange
B (crs, �x,Chall) proceeds as follows: First,

it sets C0 = (1 + N)B · ct−1 mod N ζ+1 and randomly picks s1, s2, s3 ←↩ U(Z∗
Nζ)

in order to compute an encryption Ci = sNζ

i mod N ζ+1 of 0 for each i ∈ [3].
Then, the simulator uniformly picks elements of the response z as zi ←↩ [0, B∗],
ti ←↩ Z

∗
N , for all i ∈ [0, 3], and τ ←↩ Z

∗
N . Finally, it computes the remaining

components (R, {Ri}3i=0) of the first prover message a in such a way that satisfy
the verification equations (2).

We now prove the computational indistinguishability between the transcripts
generated by ZKSimrange

B and real transcripts, which are faithfully computed
from �w ∈ Rrange

B (�x). We first observe that a simulated transcript (a,Chall, z)

Rational Modular Encoding in the DCR Setting 631

is computationally indistinguishable from an hybrid transcript where, instead
of encrypting 0 in the computation of {Ci}3i=1, we encrypt {xi}3i=1 such that
1 + 4x(B − x) =

∑3
i=1 x2

i and x0 = B − x over Z, as in the real protocol.
In this hybrid transcript, however, we still compute (R, {Ri}3i=0) and z as in
the simulation. A simple reduction shows that the probability to distinguish
between simulated transcripts and hybrid transcripts is at most 3 times the
advantage of an adversary against the semantic security of Damg̊ard-Jurik (and
thus the ζ-DCR assumption). Finally, we show that the distributions of hybrid
and real transcripts for (�x, �w) ∈ Rrange

B and the challenge Chall are statistically
close (assuming that we use a deterministic algorithm to compute the Lagrange
decomposition of 1 + 4x(B − x) ≥ 0) into the sum of 3 squares). This follows
from standard arguments. By relying on the generalized Paillier isomorphism we
can and split the analysis. Over the “randomness” modulo N , the distributions
are the same because each (ti, αi) are in one-to-one relation for i ∈ [0, 3], as
well as (τ, σ). Since the xi’s are constant, the distributions “over the plaintext”
modulo N ζ are statistically close because the statistical distance between the
zi-variables is negligible.

More precisely, the ciphertexts {Ci}3i=0 have exactly the same distribution in
the hybrid and the real transcripts. Now, let ψ : ZNζ ×Z

�
N �→ Z

�
Nζ+1 denote the

generalized Paillier isomorphism. Let also (ri, αi) := ψ−1(Ri), for all i ∈ [0, 4],
and (r, α) := ψ−1(R) of an hybrid transcript. We thus have, for all i ∈ [0, 3],

ri ≡ zi − Chall · xi (mod N ζ) αi ≡ ti · s−Chall
i (mod N),

where x0 = B − x mod N ζ and s0 = w−1 mod N , as well as

r ≡ 4z0(B − x0) − ∑
i∈[3]zixi + Chall (mod N ζ),

and α ≡ w4z0 · ∏
i∈[3] s

−zi
i · τ (mod N). For α and {αi}i∈[0,3], The congruences

in the multiplicative group Z
∗
N show that, given w and {(zi, si)}i∈[0,3], there

is a one-to-one relation between α and τ , and between αi and ti, for all i ∈
[0, 3]. Then, their distributions are the same as those of the real distributions.
(Note that α in the real distribution is also random due to σ.) We are thus left
with analyzing the distributions over the additive group ZNζ . For all i ∈ [0, 3],
the congruences on the ri ensure that, unless zi ∈ [0, CB] (which occurs with
negligible probability 2−λ), we have 0 ≤ ri = zi − Chall · xi ≤ B∗. That means
that, over the integers, we have to show that the statistical distance between
U([0, B∗]) (which is the distribution of the hybrid zi) and Chall · xi + U([0, B∗])
(which is the distribution of the real z) is negligible. Since xi · Chall ≤ BC ≤
2−λB∗, it is actually bounded by 2−λ. Finally, since 1+4x(B−x) =

∑3
i=1 x2

i and
x0 = B −x in both transcripts, we can rewrite the hybrid r as r = 4r0(B −x0)−∑

i∈[3] rixi mod N ζ , which, given the xi, is a deterministic function evaluated
on independent statistically-closed distributions.

Lemma 3.1 [24]. Let integers n, d ∈ Z, B ≥ 2 and x = �n
d �. If there exist

x1, x2, x3 ∈ Q such that 1 + 4 · n
d ·

(
B − n

d

)
=

∑3
i=1 x2

i , then we have x ∈ [0, B].

632 J. Devevey et al.

Lemma 3.2. The above construction is a trapdoor Σ-protocol for L̄B,B∗,C

assuming that 22λ+3B2C2 < Nζ , for any λ ≥ 1.

Proof. We first prove that (ct, {Ci}3i=1) ∈ L̄B,B∗,C ensures that ct ∈ LB,B∗,C .
Indeed, letting γ = c−1 mod N ζ and k ∈ Z such that γ · c + k · N ζ = 1, the

first four equations of (1) imply

Ci = (1 + N)xi·γ · (sγ
i · Ck

i)Nζ

mod N ζ+1, ∀i ∈ [0, 3]

= (1 + N)xi·(c−1 mod Nζ) · s̃Nζ

i mod N ζ+1

for some s̃i ∈ Z
∗
N , and thus ct = (1 + N)B−x0·(c−1 mod Nζ) · s̃−Nζ

0 mod N ζ+1.
Hence, the ciphertexts (ct, {Ci}3i=1) decrypt to x̃ = B − x0 · c−1 mod N ζ and
{x̃i = xi · c−1 mod N ζ}3i=1. Then, decrypting the last equation of (1) implies

c =
3∑

i=1

(xi

c

)
· xi − 4x0 ·

(
B − x0

c

)
mod N ζ .

If we multiply both members of the latter equation by c, we obtain

c2 + 4(Bc − x0)x0 =
3∑

i=1

x2
i mod N ζ . (4)

The latter equality holds over Z if we represent it over [−Nζ/2, Nζ/2]. Indeed,
the absolute value the left-hand-side member is bounded by C2 + 4(BC +
B∗)B∗ = C2 + 4(BC)2(1 + 2λ)2λ ≤ 2λ+3B2C2 < N ζ/2 and the right-hand-
side member is bounded by 3B∗2 = 3 · 22λB2C2 < Nζ/2. If we divide both
members by c2 over the rationals, we obtain

1 + 4
(
B − x0

c

)
· x0

c
=

3∑

i=1

(xi

c

)2

over Q.

By Lemma 3.1, this in turn implies �x0/c� ∈ [0, B] and thus B −�x0/c� ∈ [0, B].

We now prove that BadChallenge output the correct result when the prover
sends commitments {Ci}3i=1 such that (ct, {Ci}3i=1)
∈ L̄B,B∗,C . For a given first
message a = (R, {Ri}3i=0, {Ci}3i=1) sent by the prover, BadChallenge obtains
r, {ri}3i=0 ∈ ZNζ and {xi}3i=0 ∈ ZNζ at step 1. It only stops at step 2 if there
exists i ∈ [0, 3] such that Ci decrypts to a value x̃i ∈ ZNζ which has no represen-
tation x̃i = xi · c−1

i mod N ζ with (xi, ci) ∈ [−B∗, B∗] × [0, C]. In this case, only
one pair (Challi, zi) ∈ [0, C] × [0, B∗] can satisfy the first verification equation of
(2). Indeed, if we had distinct such pairs (Challi, zi), (Challi, z

′
i) ∈ [0, C] × [0, B∗]

with Chall′i
= Challi, we would have C
Challi−Chall′i
i = (1 + N)zi−z′

i · (ti/t′i)
Nζ

mod
N ζ+1 and thus x̃i = (zi − z′

i) · (Challi − Chall′i)
−1 mod N ζ . Hence, the unique

valid pair (Challi, zi) ∈ [0, C] × [0, B∗] that can satisfy the first equation (2) can
be found by applying Gauss’ algorithm. Note that BadChallenge might output

Rational Modular Encoding in the DCR Setting 633

Chall
=⊥ when no bad challenge exists at all.5 However, BadChallenge only needs
to find the bad challenge when it exists. When there is no bad challenge, the
Fiat-Shamir hash function can output arbitrary values without hurting sound-
ness.

If step 3 is reached, each plaintext in {x̃i ∈ Z
∗
Nζ }3i=0 is decoded as a pair

(xi, ci) ∈ [−B∗, B∗] × [0, C] such that x̃i = xi · c−1
i mod N ζ . We then define

c � lcm(c0, c1, c2, c3) and distinguish two cases:

(a) c
∈ [0, C] or c ∈ [0, C] but there exist no integers x′
0, x

′
1, x

′
2, x

′
3 ∈ [−B∗, B∗]

such that x̃i = x′
i · c−1 mod N ζ for each i ∈ [0, 3].

(b) c ∈ [0, C] and there exist integers x′
0, x

′
1, x

′
2, x

′
3 ∈ [−B∗, B∗] such that we

have x̃i = x′
i · c−1 mod N ζ for each i ∈ [0, 3].

In case (a), we observe from the first four verification equations (2) that a valid
response (τ, {(zi, ti)}3i=0) can exist for at most one Chall ∈ [0, 2λ − 1]. This
unique challenge value can be determined by solving an integer linear program
and finding (z0, z1, z2, z3,Chall, k0, k1, k2, k3) ∈ Z

9 satisfying (4).
We are left with case (b). In order to satisfy the verification equations (2),

the challenge-response pair (Chall, (τ, {(zi, ti)}3i=0)) must satisfy

zi = ri + x̃i · Chall mod N ζ r = −
3∑

i=1

x̃i · zi + 4x̃z0 + Chall mod N ζ .

Letting x̃ = B − x̃0 mod N , the above implies

Chall · (4x̃ · x̃0 −
3∑

i=1

x̃2
i + 1) = r +

3∑

i=1

x̃i · ri − 4x̃ · r0 mod N ζ , (5)

Observe that we cannot have 4x̃ · x̃0 −∑3
i=1 x̃2

i +1 = 0 mod N ζ as this would
imply 4x̃ · x′

0 − ∑3
i=1 x̃i · x′

i + c = 0 mod N ζ , which would mean that

(1 + N)c ·
3∏

i=1

C
−x′

i
i · ct4x′

0 mod N ζ+1

is an N ζ-th residue in Z
∗
Nζ+1 . Since we are in case (b), this would contradict the

hypothesis (ct, {Ci}3i=1)
∈ L̄B,B∗,C .
From the inequality 4x̃ · x̃0 − ∑3

i=1 x̃2
i + 1
= 0 mod N ζ , we are guaranteed

that dx = gcd(4x̃x̃0 − ∑3
i=1 x̃2

i + 1, Nζ) < Nζ and (5) then yields

Chall · (4x̃ · x̃0 −
3∑

i=1

x̃2
i + 1) = r +

3∑

i=1

x̃i · ri − 4x̃ · r0 mod
N ζ

dx
. (6)

5 This can happen when more than one {x̃i}3
i=0 has no valid representation (xi, ci) ∈

[−B∗, B∗] × [0, C], in which case they can possibly determine incompatible bad
challenges.

634 J. Devevey et al.

Since gcd(4x̃·x̃0−
∑3

i=1 x̃2
i +1, Nζ/dx) = 1, Eq. (6) has a unique solution Chall0 ∈

ZNζ/dx
. Since N ζ/dx > min(p, q) > 2λ, we have Chall = Chall mod N ζ/dx for

any Chall ∈ {0, 1, . . . , 2λ − 1}, meaning that BadChallenge returns the correct
result by outputting Chall0 whenever Chall0 ∈ {0, . . . , 2λ − 1}. ��

Compiling the Σ-Protocol into Multi-theorem NIZK. The trapdoor Σ-
protocol immediately implies a single-theorem NIZK construction via the Fiat-
Shamir transform when we apply the CI hash function of [56]. In order to obtain
NIZK proofs in the multi-theorem setting, we could apply the compiler of [46,
Appendix B]. One issue is that the latter proceeds by encrypting the Σ-protocol’s
first prover message using an equivocable lossy encryption system [4]. Unfortu-
nately, while Paillier can serve as an equivocable lossy encryption scheme (as
observed in [42]), we would lose the unbounded property of the range proof if we
were to use it. The reason is that the CRS should contain a lossy/injective Pail-
lier public key component that should be longer than messages to be encrypted.

Fortunately, multi-theorem NIZK proofs can be achieved (with computa-
tional zero-knowledge and statistical soundness) by adapting the Feige-Lapidot-
Shamir compiler using correlation intractable hash functions. The OR trick of
[31] builds multi-theorem NIZK proofs by showing OR statements of the form
“either the statement is true OR some component of the CRS is in the image
of a pseudorandom generator.” Here, we can instantiate their approach using a
DCR-based PRG. Recall that the DCR assumption immediately implies a length-
doubling PRG that maps a seed s ∈ Z

∗
N to y = sN mod N2. Here, we can apply

the trapdoor Σ-protocol of [47] (which is recalled in Sect. 2.4) together with the
OR Σ-protocols of [26] to prove that “either the range statement is true OR
the CRS component y ∈ Z

∗
N2 is an N -th residue.” In the real construction, the

CRS contains a uniformly random y ∼ U(Z∗
N2) so as to obtain statistical sound-

ness. In the simulation, y is sampled as a composite residue and its N -th root
allows simulating proofs. Using this approach, since the zero-knowledge property
is only computational, we can obtain adaptive soundness by hashing the state-
ment together with the prover’s first message when the Fiat-Shamir transform
is applied (as observed in [23, Theorem 4]).

In Sect. 4.2, we will apply a similar instantiation of the FLS paradigm to
obtain one-time simulation-soundness in our DCR-based variant of Naor-Yung.
Dual-Mode Range Proofs/Arguments. If we give up unboundedness, we
can obtain statistically zero-knowledge or even dual-mode range arguments as
follows. The CRS initially chooses ζ > 1 and a modulus N such that commit-
ted integers always live in a range [0, B] for which 23λ+1B < Nζ . The CRS is
augmented with an element g ∈ Z

∗
Nζ+1 that is chosen as an N ζ-th residue in the

zero-knowledge setting (and uniformly over Z
∗
Nζ+1 in the soundness setting).

Then, each occurrence of 1+N is replaced by g in the Σ-protocol. The DCR
assumption immediately implies the indistinguishability of CRS distributions for
the soundness and zero-knowledge settings. Moreover, our simulator ZKSimrange

B

produces statistically indistinguishable transcripts as it computes {Ci}3i=1 as
dual-mode (or lossy) encryption of 0 instead of random elements moduloNζ+1.

Rational Modular Encoding in the DCR Setting 635

Achieving Constant Rate. Let x ∈ [0, B] and Nζ′−1 ≤ B ≤ N ζ′
, for some

integer ζ ′, and where only N is fixed by the CRS. We now assess the ratio between
the input size and the proof size assuming that n := |N |. We see the witness
x as a |B|-bit string since the zero-knowledge property requires a commitment
whose message space contains [0, B]. For simplicity we assume that ζ = 2ζ ′ + 1
since our proof system requires 22λ+3B2C2 < Nζ .

Since the commitment ct to x is a ciphertext over Z
∗
Nζ+1 , we have

|ct|
|B| ≤ (ζ + 1)n

m
≤ (2ζ ′ + 2)n

(ζ ′ − 1)n
= 2 +

4
(ζ ′ − 1)

↓ 2.

The range proof π for x consists of {Ci}3i=1, {Ri}3i=0, R, each of size (ζ + 1)n,
and of τ, {(zi, ti)}3i=0, where |τ | = n and |(zi, ti)| = (m + 3λ + 1) + n ≤ (ζ + 1)n,
for each i = 0 to 3. The total proof size amounts to 12(ζ + 1)n + n and

|π|
|ct| ≤ 12(ζ + 1)n + n

(ζ + 1)n
= 12 +

1
2ζ ′ + 2

↓ 12,

leading to a total rate of |π|/|B| ≤ (24(ζ ′ +1)+1)/(ζ ′ −1) ≤ 73 for ζ ′ > 1, which
goes down to 24 when ζ grows. If the OR trick is used in the multi-theorem case,
it is easy to see that the asymptotic rate remains unchanged as the OR-branch
involving the N -th residue only adds a component of size at most 4n.

4 Instantiating Naor-Yung Under the DCR Assumption

In this section, we show that decoding Paillier plaintexts as rounded rationals
provides a secure instantiation of Naor-Yung under the DCR assumption. We
first give a trapdoor Σ-protocol showing plaintext equalities before upgrading it
into a one-time simulation-sound NIZK argument.

4.1 A Trapdoor Σ-Protocol Showing Plaintext Equalities Between
Paillier Ciphertexts for Distinct Moduli

We now give a trapdoor Σ-protocol showing that two ciphertexts decrypt to
the same plaintext in the encryption scheme of Sect. 2.6. Let N1 = p1q1 and
N2 = p2q2 be RSA moduli. Let C = 2λ − 1 and let also the languages

Leq-dcr
zk :=

{
(ct1, ct2, 	M) ∈ Z

∗
Nζ

1
× Z

∗
Nζ

2
× N | ∃m ∈ [0,M],

w1 ∈ Z
�
N1

, w2 ∈ Z
�
N2

: ct1 = (1 + N1)m · w
Nζ

1
1 mod N ζ+1

1

∧ ct2 = (1 + N2)m · w
Nζ

2
2 mod N ζ+1

2

}
,

Leq-dcr
sound :=

{
(ct1, ct2, 	M) ∈ Z

∗
Nζ+1

1
× Z

∗
Nζ+1

2
× N | ∃m ∈ [−R,R], c̄ ∈ [0, C],

w1 ∈ Z
�
N1

, w2 ∈ Z
�
N2

: ctc̄1 = (1 + N1)m · w
Nζ

1
1 mod N ζ+1

1

∧ ctc̄2 = (1 + N2)m · w
Nζ

2
2 mod N ζ+1

2

}
,

636 J. Devevey et al.

where M = 2�M − 1 and ζ ≥ 1 is the smallest integer such that

2RC < 2λ+1R < min(N ζ
1 , Nζ

2)

with R > 2λ(C + 1)(M + 1). Note that Leq-dcr
zk ⊂ Leq-dcr

sound since M < R.
We note that, for any pair of ciphertexts ((ct1, 	M), (ct2, 	M)) such that

(ct1, ct2, 	M) ∈ Leq-dcr
sound , the decryption algorithms of Sect. 2.6 for N1 and N2

output the same Msg = abs(�m/c̄�). Indeed, there exist u1, v2, u2, v2 ∈ Z with
|u1| < Nζ

1 and |u2| < Nζ
2 such that u1 · c̄ + v1 · N ζ

1 = 1 and u2 · c̄ + v2 · N ζ
2 = 1,

which implies

ct1 = (1 + N1)u1·m · (wu1
1 · ctv1

1)Nζ
1 mod N ζ+1

1 ,

ct2 = (1 + N2)u2·m · (wu2
2 · ctv2

2)Nζ
2 mod N ζ+1

2 .

Since u1 = c̄−1 mod N ζ
1 and u2 = c̄−1 mod N ζ

2 , the decryption algorithm neces-
sarily outputs Msg = �m/c̄� in both cases.

We assume that the challenge space is {0, . . . , C}, where C = 2λ−1, and that
p, q > 2l(λ), for some polynomial l : N → N such that l(λ) > λ for any sufficiently
large λ ∈ N. We now give a trapdoor Σ-protocol proving membership of Leq-dcr

sound .

Genpar(1λ) : Given the security parameter λ, define par = {λ}.
GenL(par,Leq-dcr) : Given public parameters par and a language description

Leq-dcr, consisting of RSA moduli N1 = p1q1 and N2 = p2, q2 with primes
p1, q1, p2, q2 > 2l(λ), for some polynomial l : N → N such that l(λ) > λ,
define the language-dependent CRS crsL = {N1, N2}.

The global CRS is crs = ({λ}, crsL).
TrapGen(par,Leq-dcr, τL): This algorithm is identical to GenL(par,Leq-dcr),

except that it also outputs the trapdoor τΣ = (p1, q1, p2, q2).
P

(
crs, �x, �w

) ↔ V(crs, �x) : On input of a common reference string crs, a state-
ment �x = (ct1, ct2, 	M) ∈ Z

∗
Nζ+1

1
× Z

∗
Nζ+1

2
× N, the prover P (who has

�w = (m,w1, w2) ∈ [0,M]×Z
�
N1

×Z
�
N2

) and the verifier V interact as follows:

1. P chooses a ←↩ U([0, R]), r1 ←↩ U(Z∗
N1

), r2 ←↩ U(Z∗
N2

) and sends

A1 = (1 + N1)a · r
Nζ

1
1 mod N ζ+1

1 , A2 = (1 + N2)a · r
Nζ

2
2 mod N ζ+1

2 .

2. V sends back a random challenge Chall ←↩ U({0, . . . , 2λ − 1}).
3. P aborts if a + Chall · m
∈ [0, R]. Otherwise, it sends V the response

z = a + Chall · m, z1 = r1 · wChall
1 mod N ζ

1 , z2 = r2 · wChall
2 mod N ζ

2

4. V checks if z ∈ [0, R] and accepts iff the following conditions hold:

A1 · ctChall1 ≡ z
Nζ

1
1 · (1 + N1)z (mod N ζ+1

1),

A2 · ctChall2 ≡ z
Nζ

2
2 · (1 + N2)z (mod N ζ+1

2)

Rational Modular Encoding in the DCR Setting 637

BadChallenge
(
par, τΣ , crs,x,a

)
: Given x = (ct1, ct2, 	M) ∈ (

Z
∗
Nζ+1

1

)2 × N, the

message a = (A1, A2) ∈ (
Z

∗
Nζ+1

1

)2 and the trapdoor τΣ = (p1, q1, p2, q2),

1. Using sk1 = (p1, q1), decrypt ct1 and A1 using Paillier’s decryption algo-
rithm to obtain m1 ∈ ZNζ

1
and a1 ∈ ZNζ

1
. Likewise, use sk2 = (p2, q2) to

compute m2 ∈ ZNζ
2

and a2 ∈ ZNζ
2

by decrypting ct2 and A2.
2. Find an integer vector (z,Chall, k1, k2) ∈ Z

4 satisfying

a1 = z − m1 · Chall + k1 · N ζ
1

a2 = z − m2 · Chall + k2 · N ζ
2 ,

0 ≤ Chall ≤ 2λ − 1
0 ≤ k1 ≤ 2λ

0 ≤ k2 ≤ 2λ (7)

This can be achieved by replacing the equalities by inequality pairs

∀b ∈ {1, 2} :
{

z − mb · Chall + kb · N ζ
b ≤ ab,

−z + mb · Chall − kb · N ζ
b ≤ −ab

and running Lenstra’s algorithm [45] to solve an integer linear program-
ming instance with 10 constraints and 4 variables.

If a suitable (z,Chall, k1, k2) ∈ Z
4 is found (in which case, Chall is uniquely

determined), output the corresponding Chall. Otherwise, return ⊥.

Again, Lenstra’s algorithm [45] allows computing the unique bad challenge (when
it exists) in polynomial time since the number of variables is fixed.

Lemma 4.1. The construction is a trapdoor Σ-protocol for (Leq-dcr
zk ,Leq-dcr

sound).

Proof. We first show the completeness and special zero-knowledge properties.

Completeness. Given �w ∈ Req-dcr
zk (�x), P computes (a, z) for a challenge Chall

such that V(crs, �x, (a,Chall, z)) = 1 as long as P does not abort at step 3 of the
interactive protocol. Therefore, an honest run of the protocol always leads to a
valid transcript except if a + Chall · m
∈ [0, R] which occurs with probability at
most 2−λ since Chall · m ≤ CM < 2λ+�M and R > 22λ+�M .

Special Zero-Knowledge. The simulator ZKSim proceeds in a standard way.
It that inputs crs = ({λ}, crsL), a statement �x = (ct1, ct2, 	M) ∈ Leq-dcr

zk and a
challenge Chall ∈ {0, . . . , 2λ − 1}. First, the simulator ZKSim(crs, �x,Chall) picks
z ←↩ U([0, R]) as well as z1 ←↩ U(Z∗

N1
) and z2 ←↩ U(Z∗

N2
). Then, it computes

A1 = z
Nζ

1
1 · (1 + N1)z · ct−Chall

1 mod N ζ+1
1 , as well as

A2 = z
Nζ

2
2 · (1 + N2)z · ct−Chall

2 mod N ζ+1
2 ,

638 J. Devevey et al.

and outputs (a, z), where a = (A1, A2) and z = (z, z1, z2). We turn to showing
that (a,Chall, z) is statistically indistinguishable from a real transcript computed
using the witness �w = (m,w1, w2) ∈ [0,M] × Z

�
N1

× Z
�
N2

(i.e., �w ∈ Req-dcr
zk (�x))

and with challenge Chall. For each i ∈ {1, 2}, let ψi : ZNζ
i

× Z
�
Ni

�→ Z
�
Nζ+1

i

denote the generalized Paillier isomorphism. By applying {ψ−1
i }2i=1 to com-

pute (a1, r1) := ψ−1
1 (A1) and (a2, r2) := ψ−1

2 (A2) for a simulated transcript
((A1, A2),Chall, (z, z1, z2)), we find

a1 ≡ z − Chall · m (mod N ζ
1) r1 ≡ z1 · w−Chall

1 (mod N1),

a2 ≡ z − Chall · m (mod N ζ
2) r2 ≡ z2 · w−Chall

2 (mod N2).

The congruences on the left ensure that, unless z ∈ [0, CM] (which occurs with
negligible probability 2−λ), we have 0 ≤ a1 = z−Chall·m = a2 ≤ R. Given Chall,
the distributions of {(zi, ri)}2i=1 over the multiplicative rings are exactly the same
between the real and the simulated transcripts. Finally, we show that, over the
integers, the statistical distance between U([0, R]) (which is the distribution of
the simulated z) and Chall · m + U([0, R]) (in the real z) is negligible. Since
m · Chall ≤ MC < 2λ+�M < 2−λR, it is actually bounded by 2−λ.

Special Soundness. Let us assume two transcripts ((A1, A2),Chall, (z, z1, z2))
and

(
(A1, A2),Chall′, (z′, z′

1, z
′
2)

)
that both satisfy the verification equations with

z, z′ ∈ [0, R] and Chall
= Chall′ for a given first message (A1, A2) sent by the
prover. We assume w.l.o.g. that 0 ≤ Chall′ < Chall ≤ 2λ − 1. This implies that
c̄ = Chall − Chall′ ∈ [0, 2λ − 1] and z̄ = z − z′ ∈ [−R,R] satisfy the congruences

ctc̄1 ≡ (z1/z′
1)

Nζ
1 (1 + N1)z̄ (mod N ζ+1

1) and

ctc̄2 ≡ (z2/z′
2)

Nζ
2 (1 + N2)z̄ (mod N ζ+1

2),

which implies (ct1, ct2) ∈ Leq-dcr
sound . This shows that, for any first message (A1, A2)

sent by the prover, only one bad challenge can exist if (ct1, ct2)
∈ Leq-dcr
sound .

CRS Indistinguishability. The distribution of the CRS output by TrapGen
is exactly the same as the distribution of the CRS output by GenL.

BadChallenge Correctness. Let a false statement �x
∈ Leq-dcr
sound . Special

soundness ensures the existence of at most one bad challenge for any given a.
Lenstra’s algorithm can efficiently determine if the bad challenge exists since it
can solve the integer feasibility problem in polynomial time when the num-
ber of variables is fixed. Moreover, whenever an admissible integer solution
(z,Chall, k1, k2) ∈ Z

4 exists (in which case it is unique), it is efficiently com-
putable from the decrypted values (m1,m1, a1, a2). ��

4.2 New Construction of One-Time Simulation-Sound NIZK
Arguments from Trapdoor Σ-Protocols

In this section, we aim at one-time simulation soundness without imposing a
bound on the plaintext space in the centralized version our scheme of Sect. 4.3.

Rational Modular Encoding in the DCR Setting 639

To this end, we cannot use the constructions of [30,47] because they follow an
idea from [27] and encrypt the prover’s first message using a DCR-based lossy
encryption scheme [4]. Unfortunately, the latter’s public key should be larger
than the first prover message in the underlying trapdoor Σ-protocol.

We describe a new one-time simulation-sound argument which departs from
[30,46,47] in that it does not proceed by encrypting the first prover message of
the trapdoor Σ-protocol. Instead, it uses an OR proof [26] inspired by the FLS
technique [31]. In order to achieve one-time simulation-soundness, we introduce
a twist and program the CRS (u, v) ∈ (Z∗

N2)2 in such a way that uVK · v is a
composite residue for exactly one VK.

– A trapdoor Σ-protocol Π(1) = (Gen(1)par ,Gen
(1)
L ,P(1),V(1)) for an NP language

L. This protocol should satisfy the properties of Definition 2.6. We assume
that Π(1) has challenge space C = {0, 1}λ, where λ is the security parameter.
In addition, the function BadChallenge(1) should be computable within time
T1 ∈ poly(λ) for any input (τ, crs(1), x, a1).

– A strongly unforgeable one-time signature scheme OTS = (G,S,V) with
verification keys in {0, 1}L, where L ∈ poly(λ).

– An RSA modulus N = pq, for large primes p, q > 2L.
– A trapdoor Σ-protocol Π(0) = (Gen(0)par ,Gen

(0)
L ,P(0),V(0)) for the language

LDCR := {x ∈ Z
∗
N2 | ∃w ∈ Z

�
N : x = wN mod N2} . We assume that the

function BadChallenge(0) is computable within time T0 ∈ poly(λ) for any
input (τ, crs(0), x, a0). This protocol can be instantiated as in Sect. 2.4

– A correlation intractable hash family H = (Gen,Hash) for the class RCI of
relations that are efficiently searchable within time T .

Genpar(1λ): Run par ← Gen(1)par(1
λ) and output par.

GenL(par,L): Given public parameters par and a language L, the CRS is gener-
ated as follows.
1. Generate a CRS crs

(1)
L ← Gen

(1)
L (par,L) for the trapdoor Σ-protocol Π(1).

2. Choose the description of a one-time signature scheme OTS = (G,S,V)
with verification keys in {0, 1}L, where L ∈ poly(λ).

3. Choose an RSA modulus N = pq, for primes p, q > 2L, where L ∈ poly(λ)
is the verification key length of OTS. Then, choose u0, v0 ←↩ Z

∗
N and

compute u = uN
0 mod N2, v = vN

0 mod N2.
4. Generate a CRS crs(0) ← Gen

(0)
L (par,LDCR) for Π(0), where LDCR is asso-

ciated with N = pq.
5. Generate a key k ← Gen(1λ) for a correlation intractable hash function

with output length λ.

Output the language-dependent CRS crsL :=
(
N,u, v, crs(0), crs

(1)
L , k

)
and

the simulation trapdoor τzk := (u0, v0). The global common reference string
consists of crs = (par, crsL,OTS).

P(crs, x, w, lbl) : To prove a statement x ∈ L for a label lbl ∈ {0, 1}∗ using the
witness w, generate a one-time signature key pair (VK,SK) ← G(1λ). Then,

640 J. Devevey et al.

1. Compute (a1, st) ← P(1)(crs(1)L , x, w). Then, generate a simulated proof
(a0,Chall0, z0) ∈ Z

∗
N2 × {0, 1}λ × Z

∗
N that (uVK · v) ∈ LDCR. Namely,

choose random elements z0 ←↩ U(Z∗
N), Chall0 ←↩ U({0, 1}λ) and compute

a0 = zN
0 · (uVK · v)−Chall0 mod N2.

2. Compute Chall = Hash
(
k, (x, a,VK)

) ∈ {0, 1}λ, where a = (a0, a1), and
set Chall1 = Chall ⊕ Chall0.

3. Compute z1 = P(1)(crs(1)L , x, w, a1,Chall1, st) by executing the prover of
Π(1). Define z = (z0, z1,Chall0,Chall1).

4. Generate sig ← S(SK, (x, a, z, lbl)) and output �π =
(
VK, (a, z), sig

)
.

V(crs, x, �π, lbl) : Given a statement x, a label lbl as well as a purported proof
�π =

(
VK, (a, z), sig

)
, return 0 if V(VK, (x, a, z, lbl), sig) = 0. Otherwise,

1. Write z = (z0, z1,Chall0,Chall1) and return 0 if any of these does not
parse properly or if Hash

(
k, (x, a,VK)

)
= Chall0 ⊕ Chall1.
2. If V(1)(crs(1)L , x, a1,Chall1, z1)) = 1 and a0 · (uVK · v)Chall0 = zN

0 mod N2,
return 1. Otherwise, return 0.

Theorem 4.2. The above construction is a one-time simulation-sound NIZK
argument if: (i) OTS is a strongly unforgeable one-time signature; (ii) The DCR
assumption holds; (iii) The hash function is correlation-intractable for efficiently
searchable relations. (The proof is given in the full version of this paper.)

4.3 A DCR-Based CCA2-Secure Threshold Cryptosystem
from the Naor-Yung Paradigm

The syntax and the security definitions of threshold PKE schemes are recalled
in the full version of this paper. Using the tools of Sect. 4.1 and Sect. 4.2, we
obtain the following variant of the threshold encryption scheme in [33].

We assume that the key generation step chooses a value ζ ′ that determines
a maximal length of encrypted messages (note that this is only necessary in the
threshold setting and not in the centralized version of the scheme). However, the
encryptor can still choose ζ ≤ ζ ′ in a flexible way at encryption time.

For simplicity, we first describe the non-robust version of the scheme, where
decryption servers do not provide a proof that partial decryptions are correctly
generated. However, robustness can be achieved in a modular way as in [30].

Keygen(1λ, 1B , 1t, 1n) : On input of a security parameter λ, a maximal bitlength
B ∈ poly(λ) of encrypted messages, a number of servers n ∈ poly(λ), and a
threshold t ∈ poly(λ), conduct the following steps.
1. Generate two safe prime products N1 = p1q1 and N2 = p2q2 such that

pi, qi > 2l(λ), for some polynomial l : N → N, and primes pi = 2p′
i + 1,

qi = 2q′
i + 1 for which p′

i, q
′
i are also prime for each i ∈ {1, 2}.

2. Choose an integer ζ ′ > 0 such that 2B+2λ+1 < min(N ζ′
1 , Nζ′

2).
3. Choose an integer d such that d = 1 mod Nζ′

1 and d = 0 mod λ(N1).

Rational Modular Encoding in the DCR Setting 641

4. Choose a random polynomial f [X] =
∑t−1

i=0 aiX
i ∈ Z

Nζ′
1 p′

1q′
1
[X] such that

a0 = d mod N ζ′
1 p′

1q
′
1.

5. Generate the CRS crsL :=
(
N,u, v, crs(0), crs

(1)
L , k

)
of a simulation-sound

NIZK argument for the language (Leq-dcr
zk ,Leq-dcr

sound) of Sect. 4.1, which is
induced by the moduli N1 and N2.

The public key is pk = (N1, N2, crsL) and the secret key shares {ski}n
i=1 are

defined as ski = f(i) mod N ζ′
1 p′

1q
′
1 for each i ∈ [n].

Encrypt
(
pk,Msg

)
: To encrypt Msg ∈ {0, 1}�M , return ⊥ if 	M > B. Otherwise,

interpret Msg as a positive integer in [0,M], where M = 2�M − 1. Set ζ > 1
as the smallest integer such that min(N ζ

1 , Nζ
2) ≥ 22λ+1M . Then, choose

(r1, r2) ←↩ U(Z∗
N1

× Z
∗
N2

) and compute

ct1 = (1 + N1)Msg · r
Nζ

1
1 mod N ζ+1

1 , ct2 = (1 + N2)Msg · r
Nζ

2
2 mod N ζ+1

2 .

Then, using the empty label lbl = ε, generate a simulation-sound NIZK argu-
ment �π ← P

(
crs, (ct1, ct2, 	M), (Msg, r1, r2), lbl

)
that (ct1, ct2, 	M) ∈ Leq-dcr

zk .
Finally, output ct = (ct1, ct2, 	M , �π).

PartDec
(
ski, ct

)
: Given a ciphertext ct = (ct1, ct2, 	M , �π) and ski ∈ Z

Nζ′
1 p′

1q′
1
,

the i-th server proceeds as follows.
1. If V(crs, (ct1, ct2, 	M), �π, lbl) = 0, return ⊥.
2. Compute μi = ct2Δ·ski

1 mod N ζ+1
1 , where Δ = n!, and return (i, μi).

Combine
(
pk,S, {μi}i∈S , ct

)
: Let R = 2λ · (M + 1) and C = 2λ − 1. If S contains

less than t shares in Z
∗
Nζ+1

1
, return ⊥. Otherwise, do the following.

1. Define scaled Lagrange coefficients λS
0,i = Δ · ∏

i′∈S\{i}
−i

i−i′ ∈ Z for each

i ∈ S and compute μ0 =
∏

i∈S μ
2·λS

0,i

i mod N ζ+1
1 , which should be of the

form μ0 = ct
4Δ2f(0)
1 = ct4Δ2d

1 mod N ζ+1
1 .

2. Compute μ̃ = L(μ0, N
ζ
1)·4−1 ·(Δ)−2 mod N ζ

1 , where L(·, Nζ
1) extracts the

discrete logarithm w.r.t. base (1+N1) of the elements modulo N ζ+1
1 that

are congruent to 1 modulo N1 as in [29]. Then, using Gauss’ algorithm,
find the unique (m, c) ∈ Z

2 such that −R ≤ m ≤ R, 0 ≤ c ≤ C and
μ̃ = m · c−1 mod N ζ . If no such pair exists, return ⊥. Otherwise, return
Msg = abs(�m/c�), where the division is computed over Q.

Theorem 4.3. The scheme provides IND-CCA security under static corrup-
tions if: (i) The DCR assumption holds; (ii) ΠOTSS is a one-time simulation-
sound argument. (The proof is given in the full version of this paper.)

Comparisons. Devevey et al. [30, Section 4] gave a non-interactive threshold
CCA2-secure scheme based on DCR and LWE in the standard model. While
they can prove security under adaptive corruptions, our scheme provides several

642 J. Devevey et al.

advantages over [30] although we only prove static security.6 In the robust version
of the scheme, if we do not consider commitments to the secret key shares as
being part of the public key (which is reasonable as the encryptor does not need
them), the public key size grows with |N | instead of |N ζ |. Also, the scheme of
[30] requires larger secret key shares, which grow super-linearly with the number
of servers. Finally, our scheme allows the sender to adjust the block length by
choosing ζ according to the message length.

The full version of this paper provides more comparisons.

Acknowledgements. Part of this research was funded by the French ANR ALAM-
BIC project (ANR-16-CE39-0006). This work is also partially supported by Indo French
Center for the Promotion of Advanced Research (IFCPAR, project number: 6002-
1). Thomas Peters is a research associate of the Belgian Fund for Scientific Research
(F.R.S.-FNRS).

References

1. Abe, M., Fehr, S.: Adaptively secure Feldman VSS and applications to universally-
composable threshold cryptography. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 317–334. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-28628-8 20

2. Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communica-
tion, computation and interaction via threshold FHE. Cryptology ePrint Archive:
Report 2011/613 (2012)

3. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: ACM-CCS (1997)
4. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-

tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 1

5. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting Helios
for provable ballot privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS,
vol. 6879, pp. 335–354. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23822-2 19

6. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge.
SIAM J. Comput. 20, 1084–1118 (1991)

7. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC (1988)

8. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key thresh-
old encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006.
LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006). https://doi.org/10.
1007/11605805 15

9. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 19

6 Adaptive security is non-trivial to achieve when t, n ∈ poly(λ). In many applications
like e-voting, one can expect the number of servers to be small (e.g., logarithmic in
λ), in which case adaptive security can be achieved via complexity leveraging.

https://doi.org/10.1007/978-3-540-28628-8_20
https://doi.org/10.1007/978-3-540-28628-8_20
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1007/11605805_15
https://doi.org/10.1007/11605805_15
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19

Rational Modular Encoding in the DCR Setting 643

10. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-45539-6 31

11. Brickell, E.F., Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Gradual and verifiable
release of a secret (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987.
LNCS, vol. 293, pp. 156–166. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-48184-2 11

12. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a smart
contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp.
423–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 23

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: IEEE S&P (2018)

14. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 15

15. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

16. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC (2019)
17. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisted.

J. ACM 51(4), 557–594 (2004)
18. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure

against adaptive chosen ciphertext attack (extended abstract). In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X 7

19. Canetti, R., Lombardi, A., Wichs, D.: Fiat-Shamir: from practice to theory, part II
(NIZK and correlation intractability from circular-secure FHE). Cryptology ePrint
Archive: Report 2018/1248

20. Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant
communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 14

21. Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without random
oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 650–670. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 29

22. Chan, A., Frankel, Y., Tsiounis, Y.: Easy come — easy go divisible cash. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054154

23. Ciampi, M., Parisella, R., Venturi, D.: On adaptive security of delayed-input sigma
protocols and Fiat-Shamir NIZKs. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020.
LNCS, vol. 12238, pp. 670–690. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57990-6 33

24. Couteau, G., Klooß, M., Lin, H., Reichle, M.: Efficient range proofs with transpar-
ent setup from bounded integer commitments. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 247–277. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77883-5 9

25. Couteau, G., Peters, T., Pointcheval, D.: Removing the strong RSA assumption
from arguments over the integers. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 321–350. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56614-6 11

https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/3-540-48184-2_11
https://doi.org/10.1007/3-540-48184-2_11
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-48910-X_7
https://doi.org/10.1007/978-3-642-32946-3_14
https://doi.org/10.1007/978-3-662-46447-2_29
https://doi.org/10.1007/BFb0054154
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-030-77883-5_9
https://doi.org/10.1007/978-3-319-56614-6_11
https://doi.org/10.1007/978-3-319-56614-6_11

644 J. Devevey et al.

26. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

27. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

28. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36178-2 8

29. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

30. Devevey, J., Libert, B., Nguyen, K., Peters, T., Yung, M.: Non-interactive CCA2-
secure threshold cryptosystems: achieving adaptive security in the standard model
without pairings. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 659–690.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3 24

31. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS (1990)

32. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

33. Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-
ciphertext attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
351–368. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 21

34. Fouque, P.-A., Stern, J., Wackers, G.-J.: CryptoComputing with rationals. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36504-4 10

35. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

36. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18, 186–208 (1989)

37. González, A., Ráfols, C.: New techniques for non-interactive shuffle and range
arguments. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS,
vol. 9696, pp. 427–444. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39555-5 23

38. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis,
J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482.
Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 32

39. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic com-
mitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
431–448. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 23

40. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59, 1–35 (2012)

41. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-030-75245-3_24
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-45682-1_21
https://doi.org/10.1007/3-540-36504-4_10
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/978-3-319-39555-5_23
https://doi.org/10.1007/978-3-319-39555-5_23
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-540-78967-3_24

Rational Modular Encoding in the DCR Setting 645

42. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 4

43. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: introduc-
ing concurrency, removing erasures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 16

44. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Near optimal rate
homomorphic encryption for branching programs. Priv. Enhancing Technol. (2015)

45. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

46. Libert, B., Nguyen, K., Passelègue, A., Titiu, R.: Simulation-sound arguments for
LWE and applications to KDM-CCA2 security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12491, pp. 128–158. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64837-4 5

47. Libert, B., Nguyen, K., Peters, T., Yung, M.: One-shot Fiat-Shamir-based NIZK
arguments of composite residuosity in the standard model. Cryptology ePrint
Archive: Report 2020/1334 (2020)

48. Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with
adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28914-9 5

49. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 26

50. Lipmaa, H.: Optimally sound sigma protocols under DCRA. In: Kiayias, A. (ed.)
FC 2017. LNCS, vol. 10322, pp. 182–203. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70972-7 10

51. Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36504-4 7

52. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC (1990)

53. Noether, S.: Ring signature confidential transactions for monero. Cryptology ePrint
Archive Report 2015/1098 (2015)

54. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

55. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

56. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

57. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC (2005)

https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/3-540-45539-6_16
https://doi.org/10.1007/3-540-45539-6_16
https://doi.org/10.1007/978-3-030-64837-4_5
https://doi.org/10.1007/978-3-030-64837-4_5
https://doi.org/10.1007/978-3-642-28914-9_5
https://doi.org/10.1007/978-3-642-28914-9_5
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/978-3-319-70972-7_10
https://doi.org/10.1007/978-3-319-70972-7_10
https://doi.org/10.1007/3-540-36504-4_7
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4

646 J. Devevey et al.

58. Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced obliv-
ious transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp.
231–247. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-
1 15

59. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS (1999)

60. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113

61. Vallée, B.: Gauss’ algorithm, revisited. J. Algorithms 12(4), 556–572 (1991)

https://doi.org/10.1007/978-3-642-03298-1_15
https://doi.org/10.1007/978-3-642-03298-1_15
https://doi.org/10.1007/BFb0054113

Author Index

Abram, Damiano I-221
Aranha, Diego F. I-584, II-379
Aronesty, Erik II-256

Bartusek, James I-165
Batsleer, Senne I-3
Bellini, Emanuele I-112
Bennedsen, Emil Madsen I-584
Beskorovajnov, Wasilij II-316
Branco, Pedro I-379
Brendel, Jacqueline II-3
Bunn, Paul I-283

Campanelli, Matteo I-584
Cash, David II-256
Chatterjee, Rohit II-407
Chung, Kai-Min II-407
Connolly, Aisling I-409

D’Anvers, Jan-Pieter I-3
Dartois, Pierrick I-52
De Feo, Luca I-52
Devevey, Julien I-615
Dodis, Yevgeniy II-256
Döttling, Nico I-379

Ebrahimi, Ehsan I-34
Esgin, Muhammed F. I-317
Esser, Andre I-112

Faust, Sebastian II-99
Fiedler, Rune II-3
Fouotsa, Tako Boris I-142

Gallancy, Daniel H. II-256
Ganesh, Chaya I-584
Garg, Sanjam I-165
Goyal, Vipul I-252
Gröll, Roland II-316
Günther, Felix II-3

Hall-Andersen, Mathias II-379
Haque, Abida II-437

Hazay, Carmit II-99
Higley, Christopher II-256

Ishibashi, Ren II-35

Janson, Christian II-3

Karmakar, Angshuman II-163
Karpman, Pierre I-82
Karthikeyan, Harish II-256
Kastner, Julia II-468
Kitagawa, Fuyuki II-286
Kluczniak, Kamil II-69
Kothapalli, Abhiram I-252
Krenn, Stephan II-437
Kretzler, David II-99
Kushilevitz, Eyal I-283
Kutas, Péter I-142

Lafourcade, Pascal I-409
Lai, Qiqi II-225
Lefevre, Charlotte I-82
Liang, Xiao II-407
Libert, Benoît I-615
Lipmaa, Helger I-553
Liu, Feng-Hao II-225
Liu, Yi I-349
Loss, Julian II-468
Lyubashevsky, Vadim II-498

Maitra, Sarasij I-439
Malavolta, Giulio II-407
Marc, Tilen II-163
Masserova, Elisaweta I-252
Mateus, Paulo I-379
Mera, Jose Maria Bermudo II-163
Merz, Simon-Philipp I-142
Moriya, Tomoki I-473
Müller-Quade, Jörn II-316

Nguyen, Ngoc Khanh II-130, II-498
Nishimaki, Ryo II-194, II-286
Nitulescu, Anca II-379

648 Author Index

Onuki, Hiroshi I-473
Orlandi, Claudio I-194, I-584
Ostrovsky, Rafail I-283
Ottenhues, Astrid II-316

Pagnin, Elena II-379
Pan, Jiaxin II-347
Parno, Bryan I-252
Perez Kempner, Octavio I-409
Peters, Thomas I-615
Plancon, Maxime II-498

Ravi, Divya I-194

Schlosser, Benjamin II-99
Scholl, Peter I-194, I-221
Schwerdt, Rebecca II-316
Slamanig, Daniel II-437
Soleimanian, Azam II-163
Song, Yifan I-252
Srinivasan, Akshayaram I-165
Stebila, Douglas II-3
Steinfeld, Ron I-317

Striecks, Christoph II-437
Szepieniec, Alan I-523

Takahashi, Akira I-584
Theodorakis, Eftychios II-130
Ti, Yan Bo I-142
Tysor, Oren II-256

Wagner, Benedikt II-347
Wang, Qi I-349
Wang, Zhedong II-225
Warinschi, Bogdan II-130
Wu, David J. I-439

Xu, Jiayu II-468

Yakoubov, Sophia II-379
Yiu, Siu-Ming I-349
Yoneyama, Kazuki II-35
Yu, Yang I-498

Zhang, Shiduo I-498
Zhang, Yinuo I-165
Zhang, Yuncong I-523
Zhao, Raymond K. I-317

	 Preface
	 Organization
	 Contents – Part I
	 Contents – Part II
	Cryptanalysis
	Multitarget Decryption Failure Attacks and Their Application to Saber and Kyber
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Cryptographic Definitions
	2.3 Lattice-Based Encryption
	2.4 Chosen-Ciphertext Security
	2.5 Decryption Failures

	3 Failure Boosting Attacks
	3.1 Directional Failure Boosting
	3.2 Estimation of Efficiency

	4 Multitarget Attacks
	4.1 Naive Multitarget
	4.2 Levelled Multitarget

	5 Better Failure Boosting Estimation
	5.1 Weak Keys
	5.2 Calculating SE
	5.3 Inclusion of S and G

	6 Dealing with Uneven Distributions
	6.1 Uneven Distributions
	6.2 Meet-in-the-middle Speedup
	6.3 Removing the Bias
	6.4 Discussion

	7 Attack Constraints
	8 Results
	8.1 Impact on Saber and Kyber
	8.2 Increasing the Attack Cost
	8.3 Possible Future Advances

	References

	Post-quantum Security of Plain OAEP Transform
	1 Introduction
	2 Preliminaries
	2.1 Quantum Computing
	2.2 Definitions
	2.3 Compressed Standard Oracle

	3 Security of OAEP
	References

	On the Security of OSIDH
	1 Introduction
	1.1 Overview

	2 Oriented Supersingular Elliptic Curves
	2.1 Oriented Elliptic Curves and Isogenies
	2.2 Class Group Action
	2.3 Oriented Supersingular Isogeny Graphs
	2.4 Effective Computation of the Ideal Class Group Action

	3 Oriented Supersingular Isogeny Diffie–Hellman
	3.1 The OSIDH Setup
	3.2 A Straw Man Key Exchange Scheme
	3.3 Inverting the Class Group Action on Descending Chains
	3.4 The OSIDH Key Exchange

	4 Our Attack on OSIDH
	4.1 Onuki's Idea
	4.2 Finding Endomorphisms via Relations
	4.3 Extending the Attack by Exhaustive Search
	4.4 Implementation of Our Attack

	5 Countermeasures
	5.1 Increase t, and Everything Else
	5.2 Increase #Cl(On), Keep the Same Key Space
	5.3 OSIDH and Cryptographic Group Actions

	6 Conclusion
	A Time Complexity of the Chain Attack of Sect.3.3
	B Complexity Analysis of Onuki's Attack Presented in Sect.4.1
	References

	Time-Memory Tradeoffs for Large-Weight Syndrome Decoding in Ternary Codes
	1 Introduction
	2 Preliminaries
	2.1 Notation and Definitions
	2.2 The Large-Weight Ternary Syndrome Decoding Problem

	3 A Framework for Solving the Ternary Syndrome Decoding Problem
	3.1 The PGE+SS Framework
	3.2 Required Number of Solution for the Subset-Sum Problem
	3.3 Parameterization of the Subset-Sum Problem

	4 Fundamental Algorithms for the Generalised Birthday Problem
	4.1 Subset Sum as a Generalised Birthday Problem
	4.2 Application of the k-Tree Algorithm to Syndrome Decoding
	4.3 Solving Generalised Birthday Problems with Dissection
	4.4 Application of the Dissection Framework to Syndrome Decoding
	4.5 Comparison of the k-Tree and Dissection Frameworks

	5 Dissection in Tree for Syndrome Decoding
	5.1 The Main Algorithm of Dissection in Tree
	5.2 Improvements for Syndrome Decoding
	5.3 Experimental Results

	6 Application to Wave
	References

	Syndrome Decoding Estimator
	1 Introduction
	2 Preliminaries
	3 ISD Algorithms from a Nearest Neighbor Perspective
	4 An ISD Framework Based on Nearest Neighbor Search
	4.1 Concrete Practical Instantiations of the Framework
	4.2 Joint Weight Distributions

	5 Estimator
	5.1 Quantum Security

	References

	On the Isogeny Problem with Torsion Point Information
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curves and Isogenies
	2.2 SIDH and B-SIDH
	2.3 KLPT and LLL Lattice Reduction
	2.4 GPST

	3 Computing Isogenies Using Torsion Information
	3.1 Evaluating Non-smooth Degree Isogenies
	3.2 Main Algorithm
	3.3 Example

	4 Relevance to Isogeny-Based Cryptography
	5 Conclusion
	References

	MPC and Secret Sharing
	Reusable Two-Round MPC from LPN
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Multi-party Silent NISC
	2.2 Reusable Two-Round MPC from LPN

	3 Preliminaries
	3.1 Learning Parity with Noise
	3.2 PCG

	4 Multiparty NISC with Silent Preprocessing
	4.1 Multiparty Silent NISC: Definition
	4.2 A Strawman from GS18 Compiler
	4.3 A PCG Protocol for GS18 Correlation
	4.4 Multiparty Silent NISC: The Construction
	4.5 Extensions

	5 Reusable Two-Round MPC from LPN
	5.1 Multiparty Silent NISC with Reusable Large CRS Bounded FMS-MPC
	5.2 Bounded FMS-MPC FMS-MPC
	5.3 FMS-MPC Reusable Two-Round MPC

	References

	On the Bottleneck Complexity of MPC with Correlated Randomness
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Security Model
	2.3 Definitions
	2.4 Primitives

	3 BC-Efficient MPC for Abelian Programs
	3.1 Protocol for AND
	3.2 Protocol for XOR
	3.3 Protocol for Abelian Programs

	4 BC-Efficient Protocol for Selection Functions
	References

	Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN
	1 Introduction
	1.1 Our Contributions

	2 Notation and Preliminaries
	2.1 Module-LPN
	2.2 Pseudorandom Correlation Generators
	2.3 Distributed Point Functions

	3 Generalisation of the 3-Party DPF to Prime Fields
	4 Multiparty PCG for Triple Generation
	4.1 Construction

	5 Distributed Setup for the 3-Party DPF
	5.1 Resources
	5.2 The Protocol

	6 Offline Phase
	6.1 Concrete Efficiency

	References

	Storing and Retrieving Secrets on a Blockchain
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 DPSS Security Definition
	2.2 DPSS Definition Discussion

	3 Technical Overview – FaB-DPSS
	3.1 FaB-DPSS: Semi-honest Case
	3.2 Moving to a Fully-Malicious Setting
	3.3 FaB-DPSS Setup Phase
	3.4 FaB-DPSS Reconstruction Phase
	3.5 Security of Our Construction

	4 DPSS Applications – eWEB Primitive
	5 Our eWEB Protocol Design
	5.1 Assumptions
	5.2 Our eWEB Construction
	5.3 Security Proof Intuition

	6 Application Examples
	6.1 Voting Protocol

	7 Implementation
	8 Experimental Evaluation
	8.1 DPSS Comparison
	8.2 eWEB Performance
	8.3 Applications

	9 Conclusion
	References

	CNF-FSS and Its Applications
	1 Introduction
	1.1 Improved Multiparty DPF with t > 1 from CNF-DPF
	1.2 1-out-of-3 CNF-DPF
	1.3 Related Work
	1.4 Organization

	2 Model and Definitions
	3 t-out-of-p DPF from CNF-DPF
	3.1 Example: 2-out-of-5 DPF
	3.2 Extending to General t-out-of-p DPF

	4 1-out-of-3 CNF-DPF
	4.1 Overview of Construction
	4.2 Variants of DPF
	4.3 Detailed Construction of 1-out-of-3 CNF-DPF

	A Proof of Theorem 9
	References

	Cryptographic Protocols
	Efficient Verifiable Partially-Decryptable Commitments from Lattices and Applications
	1 Introduction
	1.1 Our Contributions
	1.2 Our Results and Techniques

	2 Preliminaries
	2.1 Security Assumptions
	2.2 Zero-Knowledge Proofs
	2.3 Commitment Schemes

	3 VPDC: Verifiable Partially-Decryptable Commitments
	4 Generalized Decryption Feasibility for Relaxed Proofs
	5 HMC-Based VPDC from Lattices
	5.1 Instantiation of (Ordinary) HMC
	5.2 Instantiation of NIZK
	5.3 VPDC Trapdoor for HMC
	5.4 Gadget-Based Regev-Style Decryption for HMC
	5.5 Generalized Decryption
	5.6 Succinctness of Our HMC-Based VPDC

	6 Extending MatRiCTto Auditable Setting
	References

	Making Private Function Evaluation Safer, Faster, and Simpler
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Circuit Representation and Extended Permutation
	2.2 Building Blocks

	3 PFE Protocol for Active Security
	3.1 Full Description of the Protocol
	3.2 Realization of Functionality FzkEncEP

	4 PFE Protocol for PVC Security
	4.1 Full Description of the Protocol

	5 Analysis
	5.1 Performance of zkEncEP
	5.2 Performance of Our PFE Protocols

	References

	Two-Round Oblivious Linear Evaluation from Learning with Errors
	1 Introduction
	1.1 Our Results
	1.2 Related Work and Comparison
	1.3 Open Problems

	2 Technical Outline
	2.1 The PVW Protocol
	2.2 An Oblivious Linear Evaluation Protocol Based on PVW
	2.3 Applications to PVW OT
	2.4 Extending to Malicious Adversaries

	3 Preliminaries
	3.1 Universal Composability
	3.2 Lattices and Hardness Assumptions

	4 Finding Short Vectors in a Lattice with a Trapdoor
	5 Oblivious Linear Evaluation Secure Against a Corrupted Receiver
	5.1 Protocol
	5.2 Analysis
	5.3 Batch OLE

	6 OLE from LWE Secure Against Malicious Adversaries
	6.1 Protocol
	6.2 Analysis
	6.3 Instantiating the Functionalities

	References

	Improved Constructions of Anonymous Credentials from Structure-Preserving Signatures on Equivalence Classes
	1 Introduction
	1.1 Limitations of State-of-the-art ABCs
	1.2 Summary of Contributions
	1.3 Roadmap

	2 Background and Related Work
	2.1 Structure-Preserving Signatures on Equivalence Classes
	2.2 Accumulators and Set-Commitments
	2.3 Attribute-Based Credentials
	2.4 Signer-Hiding

	3 Preliminaries
	3.1 Non-interactive Zero-Knowledge Arguments and Malleable Proof Systems

	4 A Set-Commitment Scheme Supporting Disjoint Sets
	4.1 Construction

	5 Our SPS-EQ Construction
	5.1 Our Malleable NIZK Argument
	5.2 Signature Construction

	6 Extending the ABC Model from ch15AnonCredJournal
	6.1 Security Properties

	7 Our ABC Construction
	7.1 Revocation Strategies
	7.2 Signer-Hiding

	8 Comparison of State-of-the-art ABC
	9 Conclusions and Future Work
	References

	Traceable PRFs: Full Collusion Resistance and Active Security
	1 Introduction
	1.1 Construction Overview
	1.2 Additional Related Work

	2 Preliminaries
	2.1 Fingerprinting Codes
	2.2 Traceable PRFs

	3 Traceable PRF Constructions
	3.1 Tracing Security with Active Adversaries
	3.2 Collusion Resistant Traceable PRFs

	4 An Application: Traitor Tracing with Active Security
	4.1 Traceable PRFs to Traitor Tracing

	References

	Tools
	Radical Isogenies on Montgomery Curves
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curves and Isogenies
	2.2 Congruence Subgroups and Enhanced Elliptic Curves
	2.3 Montgomery Curves
	2.4 Vélu's Formulas
	2.5 Radical Isogenies

	3 Radical-Isogeny Formulas on Montgomery Curves
	3.1 Degree 3
	3.2 Degree 4
	3.3 Degree 5

	4 Consideration to Formulas on S0(N)
	5 Application to Cryptography
	5.1 Degree-3 Isogenies
	5.2 Degree-4 Isogenies
	5.3 Computational Efficiency

	6 Conclusion
	References

	Towards a Simpler Lattice Gadget Toolkit
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Linear Algebra
	2.3 Lattices
	2.4 Gaussian
	2.5 Subgaussian Random Variables

	3 Recall the Gadget Sampling
	3.1 Gadget Gaussian Sampling
	3.2 Gadget Subgaussian Sampling

	4 Gadget Gaussian Sampling Without Floats
	4.1 The Algorithm
	4.2 Comparison

	5 Improved Gadget Subgaussian Sampling
	5.1 The Algorithm
	5.2 Comparison

	6 Conclusion
	6.1 Future Work

	References

	SNARKs and NIZKs
	Polynomial IOPs for Linear Algebra Relations
	1 Introduction
	2 Preliminaries
	2.1 Indexed Relations
	2.2 Constraint Systems
	2.3 Interactive Proof Systems
	2.4 Polynomial IOP

	3 Dense Linear Algebra Relations
	3.1 Inner Product
	3.2 Batched Inner Product
	3.3 Modular Reduction
	3.4 Matrix-Vector Product
	3.5 Hadamard Product

	4 Sparse Linear Algebra Relations
	4.1 High-Level Overview

	5 A Polynomial IOP for Arithmetic Circuits
	5.1 The Protocol
	5.2 The Role of Preprocessing
	5.3 Optimizations

	6 Zero-Knowledge
	7 Comparison
	7.1 Abstract Comparison
	7.2 Concrete Comparison

	8 Conclusion
	References

	A Unified Framework for Non-universal SNARKs
	1 Introduction
	1.1 Technical Overview
	1.2 Further Work

	2 Preliminaries
	3 Knowledge-Sound SNARK for QAP
	3.1 Security Theorem

	4 Any-Simulation Extractability of Sqap
	5 Subversion-Zero Knowledge
	References

	ECLIPSE: Enhanced Compiling Method for Pedersen-Committed zkSNARK Engines
	1 Introduction
	1.1 Applications
	1.2 Our Contributions
	1.3 Technical Overview
	1.4 Related Work

	2 Preliminaries
	2.1 Algebraic Holographic Proofs
	2.2 Polynomial Commitment

	3 AHP-to-CP-SNARK Compiler
	3.1 Additional Preliminaries for Compiler
	3.2 Additional Properties for AHP
	3.3 Our Compiler

	4 Compressed -Protocol for Equality
	4.1 AmComEq: Amortization of Commitment Equality Proofs
	4.2 CompAmComEq: Recursive Compression

	5 Instantiation with PLONK
	5.1 PLONK AHP
	5.2 CP-PLONK

	6 Instantiation with Marlin
	6.1 Marlin AHP
	6.2 CP-Marlin

	References

	Rational Modular Encoding in the DCR Setting: Non-interactive Range Proofs and Paillier-Based Naor-Yung in the Standard Model
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Related Work

	2 Background
	2.1 Hardness Assumptions
	2.2 Correlation Intractable Hash Functions
	2.3 Trapdoor -Protocols
	2.4 Trapdoor -Protocol Showing Composite Residuosity
	2.5 Encoding and Decoding Bounded Rationals in ZN
	2.6 Paillier Decryption of (Rounded) Rationals

	3 Constant-Rate Unbounded Non-interactive Range Proofs in the Standard Model
	4 Instantiating Naor-Yung Under the DCR Assumption
	4.1 A Trapdoor -Protocol Showing Plaintext Equalities Between Paillier Ciphertexts for Distinct Moduli
	4.2 New Construction of One-Time Simulation-Sound NIZK Arguments from Trapdoor -Protocols
	4.3 A DCR-Based CCA2-Secure Threshold Cryptosystem from the Naor-Yung Paradigm

	References

	Author Index

