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Abstract In this paper, we aim to accomplish malware classification using word
embeddings. Specifically, we trained machine learning models using word embed-
dings generated by BERT. We extract the “words" directly from the malware
samples to achieve multi-class classification. In fact, the attention mechanism of
a pre-trained BERT model can be used in malware classification by capturing infor-
mation about the relation between each opcode and every other opcode belonging to
a specific malware family. As means of comparison, we repeat the same experiments
with Word2Vec. Differently than BERT, Word2Vec generates word embeddings
where words with similar context are considered closer, being able to classify
malware samples based on similarity. As classification algorithms, we used and
compared Support Vector Machines (SVM), Logistic Regression, Random Forests,
and Multi-Layer Perceptron (MLP). We found that the classification accuracy
obtained by the word embeddings generated by BERT is effective in detecting
malware samples, and superior in accuracy when compared to the ones created by
Word2Vec.

1 Introduction

Malware is a computer program created with the intention to cause harm and
damage to personal data, or gain unauthorized access to a user’s system. Many are
the techniques used by malware to conceal their malicious intent. One way is to
masquerade itself as a legitimate program. This behavior has been observed, among
others, in trojans and ransomware programs [2].

Identification and classification of malware is very critical to information secu-
rity. According to the Sophos 2021 threat report [23], malware programs contributed
to 34% of all the breaches in a survey consisting of 3500 IT professionals who
worked on remote infrastructure and cloud-based infrastructure. Each malicious
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piece of code shares common characteristics within a certain family and tends
to differ from malware samples belonging to a different family. It is necessary
to identify these unique characteristics which would help classify malware codes
belonging to numerous families [4]. Word embeddings can be used to quantify
these unique characteristics of a malware sample, and they can be generated by
state-of-the-art machine learning models, such as BERT [26] and Word2Vec [3].
The embeddings capture useful information that serves as training features for the
classification models. In this paper, the focus is on the effectiveness of the word
embeddings generated in the context of malware classification.

The remainder of the paper is organized in the following Sections. It starts with
a survey of relevant work in Sect. 2. Then, the building blocks of the research are
introduced in Sect. 3, that is, the background of the word embedding models and
the applied classification models. Next, the dataset used, the applied methodology,
and the accomplished experiments and the results are analyzed in Sect. 4. Finally,
Sect. 5 contains the conclusions and suggestions for future work.

2 Related Work

Malware writers are constantly analyzing computer systems and their software in
search of security faults that can be exploited by specific malware programs. To
obfuscate their malicious intent, such programs implement sophisticated techniques
to mask them as benign software and, thus, becoming invisible to malware
recognition software [18]. This is the reason malware detection has become a
challenging task. A lot of malware recognition techniques rely on signature-based
detection. The antivirus program that relies on signature-based detection generally
computes the hash of the files and compares it with the hash of known malware
signatures [28]. However, modifying the code by inserting dead code within the
malicious code is one easy way to avoid detection. Furthermore, this malware
recognition technique is also inefficient, because all the files of a given user are
scanned and compared with known available malicious signatures, which is a
time consuming process. According to [25], a number of metamorphic malware
families, such as, MetaPHOR, Zmist, Zperm, Regswap, and Evol morph after
each new infection. Detecting these malware samples is challenging and it can
defeat signature-based detection. Metamorphic malware morphs the code by using
a combination of substitution, insertion, deletion, and transposition. However, the
metamorphic malware can be identified by machine learning techniques because
they are able to notice the subtle differences between malware and benign samples
despite the use of morphing [30]. The effectiveness of the different machine learning
techniques depends on the input features extracted from the dataset. Some possible
features that can be used are signatures [28], API calls [27], and opcodes [5].

Natural Language Processing (NLP) techniques extract rich information, known
as word embeddings, from sentences of a language, and are able to identify the
meaning of a sentence, generate sentences with similar meaning, or fill the blanks
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within a sentence. The NLP models extract information of the relation of a word
with every other word of a sentence. The model groups together words with similar
meaning and maps them to a higher dimensional space where similar words in
meaning are grouped together. This information helps NLP models accomplish
several classification and prediction tasks. The NLP models can be used in the field
of malware recognition to generate embeddings for malware samples. The malware
samples that belong to the same family have features that are closely related. This
information can be used by classifiers to group together malware samples that
belong to the same family. BERT is one type of NLP model that can be used
to generate word embeddings to capture information of every component of the
input with respect to every other component. More details about the architecture of
transformers and the attention mechanism of BERT can be found in [26], while an
analysis of the attention heads of the BERT model can be found in [8]. The attention
heads of BERT capture various patterns and linguistic notions.

Another example is Word2Vec, that was used in previous research to generate
word embeddings for malware samples, with performance comparable to traditional
machine learning techniques, such as, Hidden Markov Models and Principal
Component Analysis [7]. The opcode sequences within malware samples are treated
as a language in [1], and context is captured using Word2Vec. The classification
is carried out using k-nearest neighbors (k-NN). The results derived by utilizing
word embeddings generated by Word2Vec to achieve malware classification proves
that NLP based models can extract rich features that assist with classification
accuracy. This success induces to test newer NLP based models. Thus, differently
than the previous work and in addition to it, we introduce the use of BERT in
malware detection. BERT implements a transformer-based model that consists of
encoders and decoders along with an attention mechanism [26]. The BERT model
will be explained in further detail in Sect. 3. The experiments performed in this
paper primarily focus on generating embeddings using BERT and comparing the
classification accuracy with Word2Vec using a variety of classifiers.

3 Background

This section provides more details on the key components of this paper, that is, the
NLPmodels and the implemented classifiers. The NLPmodels introduced are BERT
andWord2Vec, while the classifiers are SVM, Random Forests, Logistic Regression,
and MLP. The dataset, the results, and the experiments implemented using these
building blocks are described in Sect. 4.
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3.1 NLP Models

Natural Language Processing (NLP) is the subfield of Artificial Intelligence (AI)
that enables machines to understand the language spoken by humans. The models
that help achieve this result are known as NLP models. Training an NLP model
from scratch is a tedious task and it requires a massive dataset and computational
resources. For this reason, a pre-trained NLP model is often used to achieve the
tasks related to NLP. Transfer learning is an example of technique used to transfer
the knowledge gained by the model during the training phase to achieve other tasks
on a different dataset to which it has never been exposed before. The tasks subject
to NLP application are, for instance, sentiment analysis, next sentence prediction,
word embedding generation, and more [21].

3.1.1 Word Embeddings

Word Embeddings are used in natural language processing as a representation of the
words of a sentence in vector values such that words of similar meaning are grouped
together in the vector space. This information can be used by classifiers to identify
key features and efficiently accomplish classification. Features need to be extracted
from the malware samples, which can be done by generating word embeddings
from the malware samples. These word embeddings capture information and group
together features that are unique to a specific malware family. They are generated
using NLP based models such as Word2Vec and BERT. These word embeddings
generated for every opcode in a malware sample can be represented as unit vectors
and plotted in a circular heat map, as shown in Fig. 1 for, respectively, the malware
families CeeInject, FakeRean, OnlineGames, Renos, and Winwebsec.

The circular heat map representation of the opcodes seem to differ for every
malware family, even though the opcodes with higher frequencies across all the
malware families are the opcodes push, mov, and add.

3.1.2 Word2Vec

Word2Vec is used to convert the input sequence of words to vectors, and map them
to a higher dimensional space. The tutorial in [16] explains how Word2Vec uses
neural networks to group together words with a similar meaning. For example, we
can consider the following set of words:

w0 = “queen”, w1 = “man”, w2 = “woman”, w3 = “king”

In Fig. 2, we see how these words are mapped to a higher dimensional space
by Word2Vec. Cosine similarity can then be used to identify words that are
synonymous in nature. We can color the values using numbers, such that red
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Fig. 1 Circular heatmaps for (a) CeeInject (b) FakeRean (c) OnlineGames (d) Renos (e)
Winwebsec

Fig. 2 Using Word2Vec to generate embeddings

represents a value close to 2, blue represents a value close to −2, and white
represents a value close to 0.
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Fig. 3 Word embeddings represented as a color map

Based on Fig. 3, it can be observed that:

• The words “woman” and “girl” are considered similar to each other in several
positions.

• The words “boy” and “girl” are similar in certain positions, but these positions are
different from “woman” or “man”. The algorithm could be capturing something
similar between the words “boy” and “girl” such as “youth”.

• The embeddings can be added and subtracted in order to form relations between
words. For instance, in the case where the word embedding for the word “queen”
is subtracted with the word embedding for the word “woman”, and the word
embedding for “man” is added, then the resultant word embedding is very close
to the word embedding for the word “king”. This can be represented as follows:
“queen” − “woman” + “man” = “king”

Associating negative weights with frequently used words is another technique to
improve the rate of training. In generating the output vectors, the positive weights
associated with the model are all updated, while only a sample set of the negative
weights are also updated. This reduces the impact of frequently used words while
training the Word2Vec model. The Word2Vec model is used to generate word
embedding for malware samples by using a window of size 6 and output size of
2 dimensions. We use the output generated by the Word2Vec model to generate unit
vectors and plot a circular heat map which will be discussed in further detail in
Sect. 3.1.1.

3.1.3 BERT

BERT is a transformer-based NLP model that is used to accomplish language-
based tasks, such as, masked word prediction, sentiment classification, and more.
The architecture consists of a stack of trained Transformer Encoders. BERT is able
to generate the word embedding for a particular word by also taking into account
the context in which it was used, known as contextualized word embeddings. The
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encoder uses attention to map the input to a set of vectors which store information
of a given word with respect to every other word in the sentence. For instance, if we
have the following input sentence: “The boy drank water because he was thirsty”,
the word “he” is associated with the word “boy”, and the BERT model can identify
this relation using attention. Attention helps BERT understand other relevant words
in the sentence compared to the one that is currently being processed.

As shown in Fig. 4, the BERT model can accept at most 512 words as input. In
general, a sentence in natural language does not exceed 512 words but the opcodes in
a malware sample can exceed such value. In our experiments, the first 400 opcodes
from each malware sample were sufficient to obtain good results. The BERT model
used as a part of the experiments is DistilBERT, which is a smaller version of
BERT that was open sourced by the HuggingFace team [9]. DistilBERT performs
similarly to BERT but it is lightweight and, hence, more efficient. The DistilBERT
model used is pre-trained on the English language. However, the model is neither
trained nor fine-tuned to achieve malware classification. The classification token
(CLS) from BERT, used to represent sentence-level classification output, captures
the information about the entire sentence. In case of a malware sample, the CLS
token captures the entire information of the sample. This information can be used
in malware classification because the CLS token from the generated embedding
collects information that helps with classification. For instance, if there are 2000
malware samples that BERT was trained on, and if 66 is the length of the tokens
in the longest malware opcode sequence, as seen in Fig. 5, only the first column
representing the CLS token is extracted from the 768 hidden units of BERT. A label
is assigned to each of the 2000 sentences depending on the class of the malware
sample.

Fig. 4 Trained BERT components
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Fig. 5 Slicing BERT word embedding

3.2 Classifiers

Classification is the process of predicting the class or label of the input dataset. The
input dataset is mapped to the desired output class depending on the features of the
input data. The machine learning models, which enable the user to map the input
data to its corresponding class, are known as classifiers. This Section will briefly
introduce the classifiers used in our experiments.

3.2.1 Logistic Regression

Logistic regression is used to describe the input data and to find a correlation
between them. The result of logistic regression is dichotomous in nature. A logistic
regression model used to fit more than two classes is referred to as multinomial
logistic regression. The model achieves classification using multinomial probability
distribution. The assumption of logistic regression is a sigmoid function that can be
defined as follows:

f (x) = 1

1 + e−(x)
(1)

The disadvantages of logistic regression are similar to linear regression. It is,
in fact, prone to outliers, and assumption of linearity amongst dependent and
independent variables. However, logistic regression model provides probabilities,
and it is not just a classification model. It enables the user to identify the percentage
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with which a certain instance was assigned to a class. A detailed explanation and
various strategies guidelines for logistic regression can be found in [19].

3.2.2 SVM

The main objective of SVM is to accomplish classification within the dataset by
maximizing the distance between the separating hyperplane and the dataset.

As shown in Fig. 6, the hyperplane with the maximum distance from the dataset
is chosen. The support vectors are the data points closest to the hyperplane. These
are used by SVM to maximize the separation between the data points and the
hyperplane. SVMs can be used to identify the subtle changes in malware samples
belonging to a certain family as discussed in [29]. SVM identifies that the dataset
may not be linearly separable by itself. Hence, the dataset is mapped to a higher
dimensional space where a separating hyperplane can classify the dataset. This
approach is often referenced to as kernel trick. For example, in Fig. 7 we see that
the data on the left side is not linearly separable. However, the data can be easily
separated by a hyperplane if the data is mapped as seen on the right side. One of
the ways to achieve this is by using a polynomial kernel. There are many kernels
that can be applied, and identifying the right one can be a challenging task, but
it can significantly improve the classification accuracy without causing a major
computation overhead. The classification process of SVMs and the mathematical
proof can be found in [24].

support vectors

Fig. 6 SVM for binary classification
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Fig. 7 Mapping input data to a higher dimension

3.2.3 Random Forests

Random Forests accomplish the classification of the dataset using an ensemble of
decision trees. Every tree classifies the data independently from the others and votes
for a specific class based on its prediction. The class with the highest number of
votes is, then, selected as the classification output of the Random Forest. Basically,
a large number of decision trees achieve the classification together as a committee,
and the overall accuracy of such a committee outperforms the accuracy of an
individual tree. In fact, an individual decision tree tends to overfit the input dataset,
while a group of trees tends to protect each other from their individual errors. A
problem that arises with Random Forests is that the decision trees may be too
correlated with each other. Hence, bagging, which stands for bootstrap aggregation,
is used to overcome this issue. The decision trees are formed using random samples
of the training data which may or may not overlap. In this way, bagging prevents
the Random Forest from overfitting the data by reducing the correlation among the
decision trees. Further details on Random Forests can be found at [6].

3.2.4 MLP

A neuron, known as McCulloch-Pitts Artificial neuron [17], is the building block for
a Multi Layered Perceptron (MLP). Multiple neurons are placed in different layers
and the inputs of the neurons in the hidden or intermediate layers are outputs of
the neurons in the previous layer. A neuron with three inputs and a single output
is depicted in Fig. 8, where the inputs are X0, X1, and X2, while the weights
associated with these inputs are w0, w1, and w2. The neuron generates an output
Y ∈ [0, 1] where 1 implies that the neuron was activated, while 0 implies that
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w2

X0
w0

X1
w1

Y

Fig. 8 Neuron of a neural network

the neuron remained inactive. The weights together with the input determine if the
neuron should output or not. If the value

∑
wiXi is greater than the threshold T ,

then the neuron is activated. Equation 2 represents the function that a neuron of
an MLP utilizes. An independent bias b is also introduced and updated during the
training of the MLP.

f (x, y) =
∑

i=0

(n − 1)wiXi + b (2)

In case of binary classification, if the Eq. 2 generates a positive value, then we
classify the input as class 1, or, if the function generates a negative value, the input
is classified as class 2. The decision boundary of the binary classifier is represented
by the Eq. 3. The decision boundary separates the inputs into the two classes in the
output dimension space.

f (x, y) = w0x + w1y + b (3)

An MLP consists of multiple layers of these perceptron’s, as shown in Fig. 9
which consists of two hidden layers. Each edge of the MLP has a weight associated
with it, and the definitive values of the weights are finalized after the training phase.
More details on the MLP architecture can be found at [20].

4 Experiments and Results

In this section, we describe dataset used for the experiments, the parameters used
for the machine learning models, and their classification results accomplished on
the word embeddings generated by BERT and Word2Vec.
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Input layer

1st hidden layer
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Output layer

Output

Fig. 9 Multi layer perceptron

Table 1 Malware dataset
information

Malware family Malware type Nr. of samples

CeeInject VirTool 899

FakeRean Rogue 899

OnlineGames Password stealer 900

Winwebsec Rogue 897

Renos Trojan downloader 900

4.1 Dataset

All our experiments were based on the malware families described in Table 1, along
with the number of malware samples for each family [15].

A brief description of each malware family is given here.

1. CeeInject is malware that is generally used in combination with other malware
families as it is used to conceal the other malware samples. The malware that
CeeInject is used along with is installed in a user’s machine without requesting
any permissions [11].

2. FakeRean alerts the user for issues or viruses that do not exist on the system and
asks for money in order to assist the user [14].

3. OnlineGames is used to track the login information of online games and keeps
track of information of online gamers without consent [12].
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Fig. 10 Illustration of the organization of the project

4. Winwebsec is a trojan that pretends to be a legitimate antivirus software,
informing the user that the system is corrupt and needs to be fixed. It tries to
scare the user with the intention of extorting money [13].

5. Renos is a malware that shows to the user fake security warnings once it is
downloaded and requests for payments to resolve the issues [10].

4.2 Methodology

In Fig. 10, we see an illustration of our approach. The input dataset of malware
samples is processed and transformed into inputs for BERT and Word2Vec that
generate the word embeddings. Then, these are directly used to train the machine
learning models to achieve multi-class classification on the malware samples.
The word embeddings generated are, thus, classified to their respective malware
families with the help of the classifiers described in Sect. 3, that is, Support
Vector Machines (SVMs), Random Forests, Multi Layer Perceptron (MLP), and
Logistic Regression. In this way, the overall accuracy depends on the classification
of the word embeddings which capture the essential characteristics of the malware
samples.

4.3 Classifier Parameters

The parameters that were selected for the classification are shown in Table 2. We
found these values to be the optimal ones by experimenting using GridSearchCV
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Table 2 Parameters used by the classifiers

Classifier Model parameter Word2Vec BERT

Logistic regression C 42.1 42.1

Solver Lbfgs newton-cg

Multiclass Auto Multinomial

SVM C 1000 1000

Kernel rbf rbf

Gamma 1 1

Random forests max depth 20 20

n estimators 100 100

MLP Hidden layer size (150,150,100) (100,100,100)

Activation function ReLU ReLU

Solver adam adam

Nr. of iterations 3000 10,000

Learning rate Constant invscaling

from the scikit-learn library [22]. The parameters obtained are almost identical for
the features generated by both BERT and Word2Vec.

4.4 Logistic Regression Results

Optimal results were obtained by the logistic regression model using the regu-
larization parameter value C = 42.1. The different values for C were obtained
using numpy’s linspace function by dividing the range 0.0001 to 100 into 20 parts.
The test accuracy of this model was 81.2% using the word embeddings generated
by Word2Vec, and 83.54% using the word embeddings generated by BERT. The
confusion matrices of the obtained results for BERT and Word2Vec are shown in
Fig. 11.

The overall accuracy is unsatisfactory when compared with the other classifiers.
One of the possible reasons is that the model is overfitting the decision boundary to
the training dataset. This causes the model to perform poorly when exposed to new
data.

4.5 SVM Results

Experiments were achieved on the SVM model and the ideal set of parameters
that produced the maximum accuracy were selected. We tested different types of
kernels, that is, radial basis function (rbf) kernel, linear, and polynomial, along with
the regularization parameter C in the range 10 to 1000, and gamma value in the
range 0.001 to 0.1. SVM maps the input features to a higher dimensional space in
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Fig. 11 Confusion matrix of logistic regression for (a) BERT features (b) Word2Vec features

Fig. 12 Confusion matrix of SVM for (a) BERT features (b) Word2Vec features

order to form a decision boundary that separates the features into different classes.
For this reason, SVM is able to successfully leverage the features in the word
embeddings and group together malware samples with similar features obtaining
a high classification accuracy of around 91.01% using the embedding generated by
BERT. The embeddings generated by Word2Vec, instead, obtained a classification
accuracy of 86.8%. The confusion matrices are shown in Fig. 12.

4.6 Random Forest Results

Random Forest is a neighborhood-based algorithm that classifies input features
by grouping the ones that are closer to each other, and making decisions at
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Fig. 13 Confusion matrix of random forest for (a) BERT features (b) Word2Vec features

different stages which segregate the inputs into different classes. The results of the
experiments conducted show that the Random Forest classifier performs better when
the number of trees and the depth is increased. The optimal parameters lead to a
classification accuracy of 91.81% with embeddings generated by BERT, while the
embeddings generated by Word2Vec gave a classification accuracy of 89.6%. The
confusion matrices are shown in Fig. 13.

4.7 MLP Results

The multilayered perceptron performs quite closely as SVM by mapping the input
features to a higher dimensional space, and accomplishing classification by forming
a decision boundary to group together features that are closer to each other. A
constant learning rate with a 30,30,30) hidden layer width and ReLU activation
function provided the best results. The classifier converged and gave optimal
outcome at around 10,000 iterations. The final accuracy obtained using the word
embeddings generated by BERT was 86.83%, which is not surprisingly close to the
accuracy obtained by SVM. The word embeddings generated byWord2Vec obtained
a similar result with a final accuracy of around 86.6%. The confusion matrices are
shown in Fig. 14.

4.8 Further Analysis

Random Forest is a neighborhood-based classification model. By our experiments,
we noticed that the model performs poorly when the depth of the binary tree of
the decision is shallow. It tended to overfit to the training data, as the training
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Fig. 14 Confusion matrix of MLP for (a) BERT features (b) Word2Vec features
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Fig. 15 Depth vs accuracy for RF using BERT and Word2Vec

accuracy was high, while the model performed insufficiently when tested on the
test data. Figure 15 shows that the embeddings generated from both BERT and
Word2Vec demonstrate improvement in the classification accuracy when the depth
of the Random Forest was increased. The accuracy plateaus at depth 10 and
gradually increases beyond this point. After further analysis, it was observed that
such behavior was similar when both the depth and number of trees of the Random
Forest were increased. It was also observed that a larger number of trees in the
Random Forest classification model compensate for shallow depths. As seen in
Fig. 16, the accuracy of the Random Forest model was high even when the depth of
the decision trees was around 2.5. Beyond a depth of 2.5 there was a gradual increase
in classification accuracy as the number of trees of the Random Forest classifier
was increased. As described in Sect. 3.2.3, a larger number of decision trees can



178 J. Alvares and F. Di Troia

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

2.5
5.0 7.5

10.0
depth

12.5
15.0

17.5
0.3

0.4

0.5
0.6

nu
m

be
r o

f t
re

es0.7
0.8

0.9

ac
cu

ra
cy

0.300

0.475

0.650

0.825

1.000

Fig. 16 Accuracy for depth vs number of tress in random forest

generalize to the training data. A class is chosen for the input data only when a
majority of the decision trees generate the same classification, which protects the
classification result from errors caused by the individual decision trees. This is in
line with the results obtained as a part of the conducted experiments.

4.9 Summary

Word embeddings were generated by BERT and Word2Vec and they were classified
using classifiers such as Logistic Regression, SVM, MLP, and Random Forests.
Classification of malware samples by using word embedding generated with BERT
performs better overall in comparison to Word2Vec, as shown in the Fig. 17 that
summarizes the results. SVM, MLP, and Random Forests perform better overall in
comparison to Logistic Regression, which is an expected outcome. MLP and SVM
perform similarly as they try to find the decision boundary that best fits the data
without overfitting it. Random Forests use an ensemble of decision trees to carry out
the classification of the dataset and obtain a high classification accuracy. The results
of this experiment prove that word embeddings generated by BERT can be used
to accomplish multi-class malware classification of the dataset. When compared to
Word2Vec, we see that is obtains better results. This is likely due to the attention
mechanism that characterizes the BERT algorithm. In fact, by implementing the
attention mechanism, BERT is able to maintain long-term dependencies as easily
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as short-term dependencies. The number of opcodes selected per malware sample
was 400, since BERT required a maximum of 512 words per sentence. Furthermore,
while some of the malware samples had over 105 unique opcodes, the classification
accuracy was not impacted, even when there was a smaller number of opcodes for
some samples. This proves that word embeddings generated by BERT can capture
rich features with even a limited subset of the opcodes for each input file.

5 Conclusions and Future Work

Based on the experiments conducted in this paper, it was observed that when
the malware samples were mapped to word embeddings by capturing, grouping,
and enriching the key components of the input features, it led to an improvement
in classification accuracy while achieving malware classification. The promising
results show that BERT was able to capture information that helps the classifier
improving the classification accuracy. The results were superior to the ones obtained
using Word2Vec on the same set of input parameters and the same set of classifiers.
It proves that a transformer-based model such as BERT has applications beyond
NLP. For future work, more research can be conducted in this area by using different
versions of BERT. DistilBERT was used in these paper but further research can
be accomplished using the other available versions of BERT. Morover, the BERT
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model was pre-trained on natural language input, but it may be able to generate
richer features if it is trained on malware samples directly. Finally, research can
be implemented using more malware families with more complex sets of data
and observing how BERT captures the key information across multiple malware
families.

References

1. Yara Awad, Mohamed Nassar, and Haidar Safa. Modeling malware as a language. In 2018
IEEE International Conference on Communications (ICC), pages 1–6, 2018.

2. P. Baldi and Y. Chavin. Smooth on-line learning algorithms for hidden markov models. Neural
Computation, 6:307–318, 1994.

3. S. Banerjee. Word2vec— a baby step in deep learning but a giant leap towards natural language
processing. https://laptrinhx.com/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-
towards-natural-language-processing-3998188269/, 2018.

4. S. Basole, F. Di Troia, and M. Stamp. Multifamily malware models. Journal of Computer
Virology and Hacking Techniques, 16:79–92, 2020.

5. D. Bilar. Opcodes as predictor for malware. Int. J. Electron. Secur. Digit. Forensic, 1(2):156–
168, January 2007.

6. L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
7. Aniket Chandak, Wendy Lee, and Mark Stamp. A comparison of word2vec, hmm2vec, and

pca2vec for malware classification. https://arxiv.org/abs/2103.05763, 2021.
8. K. Clark, U. Khandelwal, O. Levy, and C. Manning. What does BERT look at? an analysis

of BERT’s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 276–286, Florence, Italy, August 2019.
Association for Computational Linguistics.

9. HuggingFace. Distilbert. https://huggingface.co/transformers/model_doc/distilbert.html.
10. Microsoft Security Intelligence. Renos. https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=
16054, 2006.

11. Microsoft Security Intelligence. Ceeinject. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject, 2007.

12. Microsoft Security Intelligence. Onlinegames. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames, 2008.

13. Microsoft Security Intelligence. Winwebsec. https://www.microsoft.com/security/portal/
threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec, 2010.

14. Microsoft Security Intelligence. Fakerean. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Win32/FakeRean, 2011.

15. Samuel Kim. Pe header analysis for malware detection. Master’s thesis, San Jose State
University, Department of Computer Science, 2018.

16. C. McCormick. Word2vec tutorial - the skip-gram model. http://mccormickml.com/2016/04/
19/word2vec-tutorial-the-skip-gram-model, 2016.

17. W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

18. C. Mihai and J. Somesh. Testing malware detectors. In Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA ’04, page 34–44, NewYork,
NY, USA, 2004. Association for Computing Machinery.

19. Fred C. Pampel. Logistic Regression: A Primer. SAGE Publications, Inc., 2000.
20. H. Ramchoun, M. A. J. Idrissi, Y. Ghanou, andM. Ettaouil. Multilayer perceptron: Architecture

optimization and training. Int. J. Interact. Multim. Artif. Intell., 4(1):26–30, 2016.

https://laptrinhx.com/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-3998188269/
https://laptrinhx.com/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-3998188269/
https://arxiv.org/abs/2103.05763
https://huggingface.co/transformers/model_doc/distilbert.html
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model


BERT for Malware Classification 181

21. N. Ranjan, K. Mundada, K. Phaltane, and S. Ahmad. A survey on techniques in nlp.
International Journal of Computer Applications, 134(8):6–9, 2016.

22. sklearn. Gridsearchcv. https://scikitlearn.org/stable/modules/generated/sklearn.model_
selection.GridSearchCV.html.

23. SophosLabs. Sophos 2021 threat report. https://www.sophos.com/en-us/medialibrary/pdfs/
technical-papers/sophos-2021-threat-report.pdf, 2021.

24. Mark Stamp. Introduction to Machine Learning with Applications in Information Security.
Chapman and Hall/CRC, 2020.

25. Symantec. Internet security threat report: Malware. https://interactive.symantec.com/istr24-
web, 2019.

26. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. https://arxiv.org/abs/1706.
03762, 2017.

27. S. Vemparala, F. Di Troia, C. Visaggio, T. Austin, and M. Stamp. Malware detection using
dynamic birthmarks. In Proceedings of the 2016 ACM on International Workshop on Security
And Privacy Analytics, IWSPA ’16, page 41–46, New York, NY, USA, 2016. Association for
Computing Machinery.

28. P. Vinod, R. Jaipur, R. Laxmi, and M. Gaur. Survey on malware detection methods. In
Proceedings of the 3rd Hackers Workshop on Computer and Internet Security, pages 74–79,
2009.

29. M. Wadkar, F. Di Troia, and M. Stamp. Detecting malware evolution using support vector
machines. Expert Systems with Applications, 143:113022, 2020.

30. W. Wong and M. Stamp. Hunting for metamorphic engines. Journal of Computer Virology and
Hacking Techniques, 2:211–229, 2017.

https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophos-2021-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophos-2021-threat-report.pdf
https://interactive.symantec.com/istr24-web
https://interactive.symantec.com/istr24-web
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

	BERT for Malware Classification
	1 Introduction
	2 Related Work
	3 Background
	3.1 NLP Models
	3.1.1 Word Embeddings
	3.1.2 Word2Vec
	3.1.3 BERT

	3.2 Classifiers
	3.2.1 Logistic Regression
	3.2.2 SVM
	3.2.3 Random Forests
	3.2.4 MLP


	4 Experiments and Results
	4.1 Dataset
	4.2 Methodology
	4.3 Classifier Parameters
	4.4 Logistic Regression Results
	4.5 SVM Results
	4.6 Random Forest Results
	4.7 MLP Results
	4.8 Further Analysis
	4.9 Summary

	5 Conclusions and Future Work
	References


