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Abstract Botnet attacks pose a serious threat to the Internet infrastructure and its
users. Botnets are operated through a command and control (C&C) channel which
uniquely distinguishes it from other typical malware threats. The C&C server sends
commands to the botnets to execute malicious activities using common Internet
protocols, such as Hypertext transfer (HTTP), and Internet Relay Chat (IRC). Since
these protocols are common, detecting botnet activities has been a challenge. This
paper proposes an approach to identify the IP addresses of C&C servers and infected
hosts in a network, without prior knowledge of the addresses or the type of the
botnet. The approach is based on the observation that there are unique patterns in the
communication between C&C server and bots which could be used to distinguish
botnets from the background traffic. Regular botnet activities such as orchestrated
attacks, heartbeat signals, or periodic distribution of commands are the main causes
that produce such patterns. Deep learning techniques are applied on the extracted
patterns to classify potential botnet traffics. The results show this pattern-based
botnet detection technique is able to achieve high classification accuracy with low
false positive rate.

1 Introduction

A botnet is a collection of machines that have been intentionally infected with
malware to carry out various scams and cyber-attacks on the Internet without
the authorization of the machines’ owners. Once infected, these machines are
remotely controlled by a botmaster through communication channels using standard
networking protocols. At the core of the botnet are Command-and-Control (C&C)
servers that act as headquarters for botnet communication [22]. Cybercriminals
use C&C servers to distribute new commands to bots as well as receive execution
results. Some of the malicious activities carried out by the bots include identity

J. A. Lee · F. Di Troia (�)
San Jose State University, San Jose, CA, USA
e-mail: fabio.ditroia@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Stamp et al. (eds.), Artificial Intelligence for Cybersecurity, Advances in
Information Security 54, https://doi.org/10.1007/978-3-030-97087-1_4

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97087-1_4&domain=pdf
https://orcid.org/0000-0003-2355-7146
mailto:fabio.ditroia@sjsu.edu
https://doi.org/10.1007/978-3-030-97087-1_4


86 J. A. Lee and F. Di Troia

theft, security breaches, distribution of SPAM emails, fraudulent financial scams,
and perpetrated DDoS (distributed denial of service) attacks [22]. Potentially,
any computer machine connected to the Internet has the possibility to become a
compromised bot, thus, the impact of a botnet is estimated to cause severe damage.
Many studies have been conducted to effectively detect botnet activities and protect
machines from botnets. Despite these efforts, botnet attacks continue to pose a
serious threat to the Internet infrastructure due to its constantly evolving nature [29].
Some of the previously explored botnet detection techniques include honeypot,
passive anomaly analysis, and network traffic based classification [7, 17]. Among
these three categories, network traffic based botnet classification is of particular
interest for our work. By analyzing botnet behavior, some distinctive traits of
botnet traffic may be recognized to help identify botnet activities. For instance,
botnets are required to connect with the C&C servers to provide status updates
and receive new commands. This unique characteristic suggests that botnets need
to periodically communicate with C&C servers to be able to function properly.
Using this information, the signs of periodic traffic may serve as a strong indicator
for botnet activity. Furthermore, even more features can be specified by reviewing
botnet behavior and network traffic for the purpose of botnet detection. The goal
of this paper is to propose a deep learning model that detects botnet activities in
a network by analyzing its packet captures. This paper tries to find answers to the
following problems:

1. Given a dataset that consists of botnet, normal, and background traffic, is it
possible to train a deep learning model that accurately classifies botnet traffic?

2. In real-life scenarios, botnets generate a significantly lower proportion of net-
work traffic than non-botnet traffic. How should the dataset imbalance issue be
addressed?

3. What are the key features of network traffic that is required to train the deep
learning model?

The structure of the remaining Sections of this paper is as follows: Sect. 2 covers
background information on the topics covered in this paper. Section 3 analyzes the
relevant work on the same domain. Section 4 explains the key details about the
CTU-13 dataset used in this project. Section 5 describes the methodology followed
in this paper, the specific implementation details for feature extraction, and the deep
learning model construction and evaluation. Section 6 summarizes the key findings
and reports the overall project result.

2 Background

This section discusses the background domain which this paper is based on. It
mainly focuses on botnets, autocorrelation analysis, and deep neural networks.
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Fig. 1 Overview of the general botnet architecture

2.1 Introduction to Botnets

The term ‘botnet’ is a compound word from ‘robot’ and ‘network’. It refers to
a network of compromised machines that works for a cybercriminal to perform
malicious activities over the Internet. Initially, the size of botnets was roughly a
few hundreds. However, with the advance of Internet technologies and computing
power, the number of bots that comprise a botnet have significantly increased to
a few hundreds of thousands [10]. Using this massive network of bots, hackers
conduct illegal activities such as personal data theft, server attacks, and distribution
of malware to infect more machines [18]. Botnets are controlled by a masterbot
through Command and Control (C&C) servers [8]. This control server plays a
critical role in distributing commands to the botnets and keeping a list of which
botnets are active and inactive. Figure 1 illustrates the architecture of a general
botnet system. Botmaster develops a malware program and infects machines
through the Internet. The set of infected machines are then operated by a C&C
server which is directly controlled by the botmaster.

There are four types of known C&C architectures as shown in Fig. 2. With the
direct architecture, botmasters directly infect and control the botnet. However, with
the possibility to trace the botmaster from the bots and the limited scaling, it lost
popularity within the cybercriminal society. Centralized architecture is identical to
the architecture shown in Fig. 2 and was discussed in [16]. Contrary to the direct
architecture, the centralized architecture’s bots do not lead traces directly to the
botmaster. P2P or decentralized architecture evades the single point failure issue by
enabling communication between all nodes in the network. A hybrid architecture is
an expansion of the P2P network that enables large scaling of the number of bots
that a botmaster can operate.
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Fig. 2 The four types of known C&C architectures

Fig. 3 Autocorrelation plot
of a periodic signal of lag 7 1
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2.2 Autocorrelation Analysis

Given a dataset that consists of observations of a phenomenon at different points
in time, autocorrelation analysis seeks for patterns over the time series. The term
autocorrelation refers to the degree of similarity between a given time and a time-
shifted version of itself. For instance, if it rained heavily every Monday, then the
autocorrelation analysis would find the periodicity of the rain as seven days.

Using the rainy day example, an autocorrelation plot can be constructed. In
Fig. 3, the x-axis is lag and the y-axis is the value of the autocorrelation function.
The plot shows a peak every seven lags: 7, 14, 21, 28, and more. This means that the
original input shows a repeating pattern of seven days. Similar to this example, the
high peaks in the autocorrelation plot are important when using the autocorrelation
tool. An autocorrelation value is considered significant if the value exceeds the
threshold, otherwise known as the confidence interval (CI). The formula to calculate
the CI is shown here

CIACk
= [ACk − 1.96 × ACSE,k√

N
,ACk + 1.96 × ACSE,k√

N
]
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where ACi is the autocorrelation estimate at lag i and N is the number of time steps
in the sample. More details can be found in [11].

2.3 Deep Neural Networks

Deep learning is a subset of machine learning where the structure is constructed
theoretically similar to living brains. It is commonly referred to as an artificial neural
network (ANN). Two common examples are convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). The main difference between the two types
of networks is that CNN uses the connectivity patterns between the internal neurons
while RNN uses time-series information that is strongly correlated to the order
and the neighboring input data. Due to this difference, we use CNN rather than
RNN for the deep neural network section of the implementation. There are three
types of layers that make up the CNN: convolutional layer, pooling layer, and
fully-connected (FC) layer. The convolutional layer is the first layer in the network
that is used to extract various features from the input data. This phase consists of
mathematical computations of convolution between the input data and aK∗K filter.
This filter slides through the input array and produces a feature map which provides
information about different qualities of the dataset. The pooling layer is generally
used to decrease the size of the feature map to increase computational efficiency.
In particular, the process of max pooling is the operation of selecting the largest
element in the feature map. Lastly, the fully connected layer consists of weights and
biases of the neurons and this information is used to connect the neurons between
the FC layers. The components of such network are described in Fig. 4.

Fig. 4 Components of a convolutional neural network
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3 Related Work

In the research field of malware detection, static and dynamic malware analysis have
gained popularity over the recent years [21]. While static malware analysis focuses
on using signature-based approaches such as file fingerprinting and virus scanning,
dynamic malware analysis focuses on analyzing the behavior-based features of
the malware samples [17]. Since the focus of static analysis is on the structure
of the executable itself, the analysis can be performed without running the actual
executable file. Although this is a cost-efficient approach, static analysis becomes
vulnerable to malware threats that only reveal themselves during run-time. Dynamic
analysis, on the other hand, detects malware by monitoring program activities
rather than the program structure itself. Using a behavior-based approach, activities
like network communication, API calls, system calls and system resource usages
are analyzed. With dynamic analysis, the intention is to understand the working
mechanism of a program and use this information to flag any suspicious program
behavior. Due to this characteristic, dynamic analysis is resilient and flexible to
more sophisticated and obfuscated types of malware. An example of a study that
relies on dynamic analysis is [2], where the authors detect sniffing programs within
a network. Sniffing is a type of network attack where an attacker tries to seek for
vulnerabilities in a network by gathering as much information as possible about
the targeted network. Sniffing is conducted by software programs called Sniffers
that passively analyzes the incoming and outgoing traffic in a network. Due to this
passive behavior, detecting Sniffers has been a challenge. The paper also suggests
a measurement-based approach to pinpoint hosts running Sniffers by flooding the
network with packets and comparing the round-trip response time among hosts.
The findings of this study show that monitoring the behavior of programs can serve
as an accurate indicator for finding malicious hosts. As cyber criminals and their
malicious programs become more innovative and creative, the mission to detect
malware paved the way for a hybrid model that employs static and dynamic analysis
in conjunction. In [3], a particular use case of hybrid model is explained where
dynamic analysis is used during the training phase and static analysis is used in the
scoring phase. Another form of a hybrid model is to use static analysis to inspect
network packet data while using machine learning to monitor network traffic to
pick up malicious network communications. In [9], the authors utilized a hybrid
a malware analysis model to extend the work in [2]. A sniffing detection method
that uses network traffic probed with machine learning techniques is proposed.
According to the authors, this paper was the first to apply machine learning for
the purpose of Sniffer detection. The detection method in the paper used ICMP and
HTTP for traffic probing. In addition, features like CPU load and variable period
lengths were used for performance evaluation. This extended paper achieved a
comparable outcome with the best results obtained in [2]. The work in [12] proposes
a botnet detection approach using mining of network flow characteristics. Given a
network flow dataset, four features were extracted: the ratio of incoming packets,
the ratio of outgoing packets, original packet length, and the ratio of bot-response
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packets. These features were used by the naïve bayesian classifier to achieve 99%
accuracy and 96.9% F-measure performances. However, the authors concluded that
the four features were insufficient to accurately represent botnet communication
patterns and additional features needed to be identified to further improve the
accuracy of the model. In [19], the authors utilized 29 different features of various
network protocols and its payload data to detect botnet activity in a network. Using a
large number of features, the main focus of this paper was to establish a connection
between a host’s periodic communication patterns and botnet activity. The author
pointed out that since botnets inevitably produce periodic network traffic while
communicating with the C&C servers, this characteristic will be a strong indicator
of botnet infestation. The datasets used in [19] are network captures that consist of
only malware and botnets traffic. Autocorrelation analysis on the features extracted
from the dataset was processed and the authors concluded the paper by presenting
autocorrelation plots that show signs of periodic behavior of botnet traffic. The work
in [19] opens the possibility to utilize the trait of periodic behavior in botnet traffic
to detect infected hosts. However, the dataset used in [19] is limited to only botnet
traffic where normal and background traffic are absent. The question of whether
the same approach will work for real-world network traffic dataset is yet to be
answered. Our paper extends the work of [19] by incorporating periodicity as one
of the features used to train the deep learning model for botnet traffic classification.
In contrast with the previous research, our work uses a network flow dataset that
includes a mixture of botnet, normal, and background traffic to prove its efficacy in
real-world botnet attack.

4 Dataset

The CTU-13 dataset was collected in 2011 by researchers at CTU University in
Czech Republic for the purpose of generating a large capture of botnet traffic mixed
with both normal and background traffic captures [6]. The thirteen captures that
comprise CTU-13, also referred to as scenarios, are collected using seven different
real botnet samples. While the dataset is now aging, it is not less representative of
modern botnet attacks. For example, the Virut botnet was identified recently after
being considered eradicated for many years [4]. A complete description of the seven
botnet samples is provided in Table 1. The distinguishing feature of the CTU-13
dataset is that each packet has been manually examined and labeled as either botnet,
normal, or background traffic. From examining the percentage of botnet traffic in all
thirteen scenarios, botnet traffic makes up only a small percentage of overall traffic.
This imbalance, however, accurately simulates real-world botnet infection and will
be used as input without artificial manipulation for the purpose of this research.

For each scenario, the three types of network traffic were captured in a Packet
Capture (pcap) file. From processing each pcap file, information such as NetFlows
and WebLogs were also obtained. While pcap files carry detailed information,
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Table 1 Types of CTU-13 botnet samples and its description

Botnet Type Scenario Nr. Description

Neris 1, 2, 9 Neris uses HTTP-based communication with the C&C
servers. The infected botnets’ main activities include
click-fraud and distribution of SPAM emails

Rbot 3, 4, 10, 11 Rbot uses IRC-based communication with the C&C servers.
Common with most IRC type malwares, the botnet is
controlled by the botmaster through a pre-configured IRC
server

Virut 5, 13 Virut uses HTTP-based communication with its C&C
servers. Main activities of the infected hosts perform
distribution of SPAM emails and unauthorized file
downloads

Menti 6 Menti uses IRC-based communication with its C&C servers
to scan SMTP servers

Sogou 7 Sogou uses unencrypted HTTP-based communication to
connect with the C&C servers. Its malicious activities
include downloading binary files and compressing them
without authorization

Murlo 8 Murlo uses IRC-based communication with the C&C servers
to carry out orders such as downloading executable files and
scanning vulnerable local network ports

NSIS.ay 12 NSIS.ay uses P2P-based communication with the C&C

analyzing NetFlow files is the primary interest of our paper as it contains core
information about traffic as well as its class labels.

4.1 CTU-13 Dataset Features

In a bi-directional NetFlow dataset, fifteen categories, listed in Table 2, are used to
describe a network traffic. The dataset is initially sorted by StartTime in ascending
order and, by using software programs that support csv parsing like Excel, each
category can be filtered to selectively show rows of particular interest. For instance,
to search for traffic generated by botnet activities, filtering the Label category for
“Botnet” keyword would bring up all relevant rows.

The CTU-13 dataset has been distributed by Stratosphere Lab through their
website and is open to the public for research or educational purposes [13].

5 Proposed Methodology

The goal of this project is to detect botnet activity in a given network by examining
the incoming and outgoing network traffic data. As illustrated in Fig. 5, the proposed
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Table 2 Explanation of features that comprise the CTU-13 network flow dataset

StartTime represents the absolute timestamp in which the row has

StartTime been recorded and is formatted as hh:mm:ss.

Dur Dur is duration of the corresponding event in seconds for each row

Proto There are 15 protocol is categorized in the Proto feature: ‘tcp’, ‘udp’,
‘rdp’, ‘rtp’, ‘pim’, ‘icmp’, ‘ipx/spx’, ‘arp’, ‘igmp’, ‘rarp’, ‘unas’, ‘udt’,
‘esp’, ‘ipv6’, ‘ipv6-icmp’

SrcAddr Source IP address in ipv4 format

Sport Port number at the Source

Dir Direction of the network flow, represented as ‘->’, ‘<-’, ‘<->’, ‘<?>’,
‘who’, ‘<?’, ‘?>’

DstAddr Destination IP address in ipv4 format

Dport Port number at the destination

State This feature describes the transaction state according to the protocol and
has 230 unique values

sTos Source Type of Service (0,1,2,...,192, NaN)

dTos Destination Type of Service (0,1,2,...,192, NaN)

TotPkts Total number of packets transmitted

TotBytes Total number of bytes transmitted

SrcBtytes Number of bytes transmitted from source to destination

Label Three unique labels to describe the transaction (normal, background,
botnet)

Network
Flow

Construct
Network
Graph

Filter
Network

Flow

Data Preprocessing Deep Learning

Statistical
Analysis
of Edges

Append
ACF Data

Define
Model

Compile
and Fit
Model

Evaluate
Model

Make
Predictions

Fig. 5 Overview of the proposed botnet detection mechanism

implementation consists of two essential phases. The first is the data processing
phase where the network flow records are rearranged and filtered so that only
essential information is left behind for the second deep learning phase. During the
first phase, a network graph which consists of nodes and edges is created to show the
interconnections between hosts. The final output of the first phase is an array that
stores the communication statistics of each edge in the graph, autocorrelation, as
well as the label. The last phase is the deep learning stage where a deep learning
model is defined, compiled, and fitted to be able to predict botnet activity in a
network.
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5.1 Data Preprocessing Phase

Infected botnets need to regularly connect with C&C servers to provide status
updates and receive new orders. Due to this unique characteristic, the communi-
cation log between the botnets and the servers inevitably exhibits periodic patterns
that can be used to signal signs of botnet activity. For instance, if there is a host
in a local network connecting to an outer network host every n seconds, then this
may be evidence that the local network host is an infected botnet that is sending out
heartbeat signals to the C&C server. To detect signs of periodicity more efficiently,
the original network flow dataset will be filtered to remove excess data.

5.1.1 Filtering Network Flow

Table 3 shows an example of an unaltered CTU-13 network flow record. Initially,
there are 15 features that help describe each network transaction between a source
and a destination. The explanation for each feature is described in Table 2. Among
the 15 features, only 10 are of primary importance, namely, StartTime, Dur, Proto,
SrcAddr, DstAddr, State, TotPkts, TotBytes, SrcBytes, and Label. According to
previous research on botnets [24], the most frequent protocols used between a
botnet and its C&C server are TCP, UDP, HTTP, and ICMP. The communication
states that are important for these protocols are CON, URP, and FSPA_FPSA. The
state CON indicates Connected in UDP, URP as Urgent Pointer in UDP and FSPA
encompassing all flags (FIN, SYN, PUSH, ACK) in TCP. From the original CTU-
13 dataset, the rows without Proto as UDP, TCP, HTTP, or ICMP will be filtered
out, and, of the remaining rows, only those with connection state CON, URP, or
FSPA_FPSA will be kept. This process of removing irrelevant transactions will
significantly increase overall compute accuracy and efficiency as well as reduce
computational costs.

In this paper, all 13 network flows from the CTU-13 dataset have been used as
input, and they all followed the filtering process described in this Section. Table 4
shows an example of the filtered output of the loaded CTU-13 dataset.

5.1.2 Constructing Network Graph

The network graph, also known as network diagram, is useful for understanding the
network’s physical and logical connection status. It enables viewers to have a visual
representation of the network to gain an overall picture of network topology and
data flow. By reassembling the result of the previous section’s rows of network log
into a network graph, the networking nodes and executed transactions will be easily
viewable for analysis. A proper network graph would follow a similar topology
shown in Fig. 6, where nodes would represent host machines and edges would
preserve records of all transactions between two nodes.
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Fig. 6 Basic network graph architecture that consist of nodes and edges

Algorithm 1 describes the pseudo-code for constructing a network graph from a
network flow dataset. In essence, the algorithm iterates through an array of network
flow records and creates an non-repetitive node in the network graph by looking
at the source and destination of the record. Once the nodes exist, the transaction
information described in the row is also recorded in the edge between the two nodes
on the network graph. The algorithm terminates when all rows of the array have
been processed and returns the completed network graph.

Figure 7 is a visualized network graph that clearly shows the connection between
each communicating node. Even though this graph was constructed with only a
small subset of the filtered CTU-13 dataset to reduce visualization complexity, it
still resembles the network graph that would result when the filtered CTU-13 dataset
were fully used. The features that are stored in the edges would consist of protocol,
duration, total bytes, total packets, state, timestamp, and label.

5.1.3 Statistical Analysis of Edges

The procedures prior to this section has been to remove irrelevant information
from the original dataset and rearrange existing information into a graph structure
to efficiently analyze data. In this section, a new array is created to store the
statistics computed from information recorded in the edges. To remove unsubstantial
transactions, only the edges that have more than four rows will be used. Each row
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Algorithm 1: Pseudo-code for constructing network graph
Input: Network flow data stored in an array (Array)
Output: Network Graph (G) consisting of nodes and edges

1 for each row in Array do
2 Node1 = row.SourceIP
3 Node2 = row.DestinationIP
4 if Node1 not in Graph G then
5 add Node1 to G

6 if Node2 not in Graph G then
7 add Node2 to G

8 if edge does not exist between Node1 and Node2 then
9 create a new edge between Node1 and Node2

10 append row’s flow attributes to the edge between Node1 and Node2

11 return G

Fig. 7 Example of a network graph plotted from the filtered CTU-13 dataset

of the new array corresponds to a comprehensive summary of transactions between
two nodes. Every row consists of twenty six columns: Duration (6), Total Bytes (6),
Total Packets (6), Timestamp (6), ACF (1), and Label (1). In particular, the columns
that belong to duration, total bytes, total packets, and timestamp are each filled with
six statistics, namely, mean, median, standard deviation, minimum, maximum, and
range. These numbers are calculated from the information stored at an edge.
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Fig. 8 ACF plot for periodic and aperiodic signals

5.1.4 Autocorrelation Analysis

A key goal of this project is to leverage the periodic communication behavior of the
C&C network to detect botnet activities. To achieve this goal, the autocorrelation
function (ACF) is used to calculate the periodicity of transactions. To explain with
an example, Fig. 8 shows the autocorrelation plot for both periodic and aperiodic
signals. In the periodic signal, the autocorrelation value peaked above the upper
bound of the confidence interval 15 times. The autocorrelation plot for the aperiodic
signal did not see any peaks that passed the confidence interval. In this scenario,
the input used for classification would be 15 for periodic signals and 0 for aperiodic
signals. A relatively high value of count indicates a strong periodic signal, which
would also imply occurrence of cyclic botnet activities.

The final output of the data preprocessing phase should be a single arrayN which
consists of 25 features (X) and a label (y) for each row. To train a deep learning
model for classification, this array N will be horizontally split (column-wise) into
two arrays: features N [0 : 25] and labels (N [25 :]).

5.2 Deep Learning Phase

In machine learning, an input dataset should initially be divided into two categories,
that is, training and testing. This separation procedure is important to prevent the
model from overfitting while accurately evaluating the model performance [28].
However, before randomly sampling the data into two datasets, a critical character-
istic of the original CTU-13 dataset needs to be considered. In fact, the CTU-13
dataset has a highly imbalanced botnet to non-botnet network traffic ratio. As
imbalance classification may lead to a biased and misleading deep learning model,
using random sampling to divide the dataset is not considered to be an appropriate
technique [14].
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Fig. 9 Overview of deep neural network architecture

5.2.1 Stratified K-Fold Cross Validation

Among various sampling methods, the Stratified K-fold technique [14] performs
well with imbalanced datasets. When the sampler divides the dataset into training
and testing sets, the percentage of labels that constitutes the original dataset is
maintained. For instance, if the botnet to non-botnet label in the original dataset
is 1 : 20, both training and testing sets would also keep the same ratio after being
split. This ensures botnet traffic to be properly represented while the model is being
trained and tested with minimum sampling error or bias.

Both testing and training sets compete to have the maximum number of samples
to achieve best learning results. The best validation result would come from having
more samples in the test set. However, this inherently triggers a trade-off of having
less items in the training set. A solution to this dilemma is to use cross validation
technique [15]. In K-fold cross validation, a dataset is partitioned into K sets of
equal size and K separate learning experiments are executed. For each learning
experiment, a non-repeating partition is selected as a test set while the remaining
K − 1 partitions are used as train sets. Once all K learning experiments are
complete, the performances and test results are averaged. For this project, K(3)-
fold cross validation, supported by the scikit learn API, was used for a more accurate
assessment of the learning model.

5.2.2 Define, Compile, and Fit the Neural Network

The main components of the neural network are the convolution layer, max pooling
layer, LSTM layer, and fully-connected layers. In the first convolution layer,
a convolution kernel takes a training dataset and extracts hidden features and
establishes a relationship between the input dataset and generated features. After the
one dimensional convolution layer, max pooling is applied to reduce dimensions in
the data to reduce computation overhead. LSTM layer takes the output from the max
pooling layer and enables sequential connection among the dataset before feeding
it to the dense layers. Finally, the output layer performs classification prediction
to label botnet traffic. An overview of the proposed deep network is illustrated in
Fig. 9.
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5.2.3 Model Evaluation

To evaluate the proposed model, metrics like overall accuracy, precision, recall,
and F-measure will be considered in conjunction with four additional performance
metrics: true positive (TP), true negative (TN), false positive (FP), and false negative
(FN).

In this paper, the botnet traffic will be considered as a positive label and non-
botnet traffic will have a negative label. The overall accuracy refers to the number
of correctly predicted labels over the total number of samples. Precision is the
proportion of true positives over the sum of all positive labels. Recall is the
proportion of true positives in the number of all the correctly labeled samples. F1
measure is the weighted mean of precision and recall, with its values ranging from
zero to one.

6 Results

The proposed approach was implemented using deep learning models in the
Keras Python library with TensorFlow deep learning engine. The implementation
involved a combination of 1D convolutional network, max pooling, LSTM, and
fully-connected layers. A more detailed configuration of these models is provided
in Table 6. The order and combination of these layers was selected through
multiple rounds of testing various configurations to optimize the performance of
the classification result.

With the layers setting in Table 6, the deep neural network repeatedly trained
and validated CTU13 input data separated by the type of malware. A total of
seven different types of malware, each unique with its own communication pattern,
were tested. The performance metrics of each malware type is shown in Table 5.
According to the result, the proposed model performed best to accurately classify
botnet traffic with the Rbot and Murlo malware type, both achieving over 0.9985
accuracy for the test dataset. While the performance results of different malware
types have low variance, the reason for Rbot and Murlo having high detection

Table 5 Classification result of the deep neural network implementation

Malware type CTU13 scenario # Accuracy—train Accuracy—test Precision Recall F1-score

Neris 1, 2, 9 1 0.9976 0.985 0.986 0.9855

Rbot 3, 4, 10, 11 1 0.9985 0.999 0.988 0.9935

Virut 5, 13 1 0.9974 0.982 0.981 0.9815

Menti 6 0.99 0.9747 0.986 0.985 0.9855

Sogou 7 0.98 0.9981 0.982 0.987 0.9845

Murlo 8 0.98 0.9987 0.998 0.981 0.9894

NSIS.ay 12 0.99 0.9905 0.997 0.985 0.9910



102 J. A. Lee and F. Di Troia

Table 6 Classification result
of the deep neural network
implementation

Layer (type) Output Shape Param #

conv1d_1 (Conv1D) (None, 19,64) 256

max_pooling1d_1 (MaxPooling1) (None, 9,64) 0

lstm_1 (LSTM) (None, 32) 12,416

dense_4 (Dense) (None, 64) 2112

dense_5 (Dense) (None, 64) 4160

dense_6 (Dense) (None, 64) 4160

dense_7 (Dense) (None, 1) 65

Table 7 Comparison of performance metrics with respect to other studies

Performance

Research paper Method Features Dataset metrics

Torres et al. [25] Recurrent
neural network

Size, duration,
periodicity

CTU-13 Accuracy: 0.970

False positive rate:
0.0372

Wang et al. [27] Social
communication
detection

Network
flow-based

CTU-13 Recall: 0.026

Precision: 0.80

Fl-score: 0.088

Chen et al. [20] Decision tree Network
flow-based

CTU-13 Accuracy: 0.936

False positive rate:
0.3

Nagarajan [19] Periodicity in
network flow

Periodicity in
pcap data

CTU-13 Fl-score: 0.09

Vishwakarma [26] Data balancing
and machine
learning
techniques

Network
flow-based

CTU-13 Accuracy: 0.98

This paper 2021 Pattern-based
network flow
feature
extraction

Statistical
network
flow-based

CTU-13 Accuracy: 0.9936

Precision: 0.9898

Recall:0.9847

Fl-score: 0.9872

accuracy may be due to availability of a larger input data. The trend in Table 5 shows
that the malware type with a larger number of network flows achieved relatively
higher performance results. This implies that, with the increase of the number of
network flows, the model will perform even better.

The performance results of this paper are compared to those of relevant research
papers in Table 7. Using a pattern-based approach and analyzing the features
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statistically, this paper recorded 0.9936 accuracy, 0.9898 precision, 0.9847 recall,
and 0.9872 F1-score. Compared to the results taken from [19, 20, 25, 27], and
[26], the proposed approach achieved overall high performance. This comparison
result shows that a pattern-based approach enables high detection accuracy while
maintaining low false positive rate.

7 Conclusions

In this paper, a novel botnet detection approach is proposed using a pattern-based
classification technique. The approach begins by filtering the input network flow to
focus on traffic that uses TCP, UDP, and ICMP protocols. Information presented in
the filtered network flow is rearranged to enable an intuitive understanding of the
network traffic. By leveraging the network graph, features like duration, total bytes
exchanged, total packets, timestamp and autocorrelation count were extracted. This
approach can be used for all types of botnet architectures and does not require any
prior knowledge about the botnet type or C&C server IP address. The proposed
approach has been tested with network flow datasets that consist of botnet, normal,
and background traffic, to show that detecting botnet traffic in real-life scenarios
is possible. A deep neural network was designed to process the statistical features
that have been extracted from the network graph. Using the CNN architecture, a
classifier for botnet traffic has been created and the statistical features were fed to
the model for training and testing. The performance results were compared to the
metrics found in relevant research papers to confirm that the proposed approach
outperformed those of previous works. The presented method is applicable to
various types of botnet families to identify malicious actors in a real-life network
environment with high accuracy. For future work, a realistic networked environment
can be recreated to simulate real-life implementation. In this case, we expect a
considerable increase in background noise, however, we believe that the technique
proposed in this paper can still obtain promising results. Other machine learning
techniques can be tested relying on our selected features. For instance, Hidden
Markov models (HMM) [23], profile hidden Markov models [5], and support vector
machines [1] can obtain interesting results in this particular scenario.
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