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Abstract Generative adversarial networks (GAN) are a class of powerful machine
learning techniques, where both a generative and discriminative model are trained
simultaneously. GANs have been used, for example, to successfully generate “deep
fake” images. A recent trend in malware research consists of treating executables
as images and employing image-based analysis techniques. In this research, we
generate fake malware images using auxiliary classifier GANs (AC-GAN), and
we consider the effectiveness of various techniques for classifying the resulting
images. Our results indicate that the resulting multiclass classification problem
is challenging, yet we can obtain strong results when restricting the problem to
distinguishing between real and fake samples. While the AC-GAN generated images
often appear to be very similar to real malware images, we conclude that from a deep
learning perspective, the AC-GAN generated samples do not rise to the level of deep
fake malware images.

1 Introduction

Malware is malicious software that is intentionally designed to do harm. The
potential dangers of malware include access to private data, which in turn can
lead to confidential or financial data theft, identity theft, ransomware, and other
problems. Those affected by malware attacks can range from large corporations
and government organizations to a typical individual computer user. According to
McAfee Labs, “419 malware threats were encountered per minute in the second
quarter of 2020, an increase of almost 12% over the previous quarter” [34]. Malware
plays a major role in computer crime and information warfare, and hence malware
research plays a prominent—if not dominant—role in the field of cybersecurity.
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A recent trend in malware research consists of treating executables as images,
which opens the door to the use of image-based analysis techniques. For example, a
malware detector that uses image features known as “gist descriptors” is considered
in [54]. Other image-based approaches that have been used with success in the
malware domain include convolution neural networks (CNN) and extreme learning
machines (ELM); see [24] and [55], respectively.

A generative adversarial network (GAN) is a powerful machine learning con-
cept where both a generative and discriminative networks are trained simultane-
ously [54]. GANs have previously been studied in the context of malware images.
For example, in [31] a transfer learning-based GAN method is used to classify pre-
viously unknown malware—so-called zero-day malware. In this approach, GANs
are used to generate fake malware images that serve to augment the training data,
thereby reducing the required number of training samples.

In this research, we focus on generating realistic fake malware images using
GANSs, and we consider classification of the resulting fake and real images.
Specifically, we use auxiliary classifier GAN (AC-GAN), which enables us to
work with multiclass data. We first convert malware executables from a large
and diverse malware datasets into images. We train AC-GAN models on these
images, which enables us to generate fake malware images corresponding to each
family. To determine the quality of these fake samples, we train various models,
including CNNs and ELMs, to distinguish between the real and fake samples.
The performance of these models provide an indication of the quality of our fake
malware images—the worse the models perform, the better, in some sense, are our
fake malware images. We also consider the quality of the discriminative models
trained using AC-GANSs. In all cases, we experiment with various combinations of
real and fake malware images.

The remainder of this paper is organized as follows. Section 2 covers relevant
related work. In Sect. 3, we outline the methodologies used in this project. Section 4
provides details on the datasets and our specific implementation. Our experimental
results appear in Sect. 5, while in Sect. 6, we conclude the paper and provide a brief
discussion of possible avenues for future work.

2 Related Work

In this section, we selectively survey some of the previous work related to malware
classification using machine learning techniques. The limitations and advantages of
various approaches are considered.

Most malware detectors are based on some form of pattern matching. An inherent
weakness of such techniques is that a malware writer can evade detection by altering
the underlying pattern. Even statistical and machine learning-based malware detec-
tors can be susceptible to a wide variety of code obfuscation techniques [54]. Hence,
the challenge is to find an efficient approach that provides strong results along with
robustness, even under such attack scenarios.
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In [27] deep learning techniques are considered for malware classification. The
results from two different experiments show that deep learning techniques achieves
better accuracy than standard malware detectors. However, these models are costly,
particularly in terms of training.

A semi-supervised malware detection approach is proposed [43]. Here, the
authors use a technique that they refer to as “learning with local and global
consistency” to reduce dependency on labeled data. In [11], another popular
deep learning model, Word2Vec, is used for malware representation. Paired with
a gradient search algorithm, this method achieves an accuracy of about 94%.
However, for both this model, the training time is high.

In [31], the authors show that the generative aspect of GANs can be used to
improve malware classification. The article [21] proposes a GAN-based model,
denoted as MalGAN, that generates fake malware, which the authors claim are unde-
tectable by state-of-the-art techniques. In [25], MalGAN is extended to “improved
MalGAN,” which additionally learns benign features. These approaches were
trained on a variety of features, including opcodes. Experiments in [26] show that
a deep convolution GAN can enable training with limited data, while in [31], deep
learning GAN models are used to produce images that appear to be malware samples
visualized as images [22].

In [37], a conditional GAN is used to produce results comparable to previous
research, while additionally providing more control over the image generation. One
problem in this case, is that the discriminator model cannot be used to classify the
sample labels, as the labels are passed as a parameter to the model.

In [21, 25], malware detection models are trained on a variety of features,
including opcodes. Specifically, in [21], detectors based on neural networks are
generated by considering malware features such as opcodes. It should be noted that
the extraction and processing of opcodes is a relatively costly process.

A recent trend in malware research consists of treating executables as images,
which opens the door to the use of image-based analysis techniques. In [35], the
authors develop a procedure to convert executable binary files into grayscale images.
In [13], the authors determine the parts of an executable (.text, .data, etc.)
based on image structure. As mentioned above, a malware detector that relies on
image features known as gist descriptors is described in [54], where experiments
show that using malware images results in a relatively robust detection technique.

Deep learning techniques including recurrent neural networks (RNN) and con-
volutional neural networks (CNN) are applied to malware images in [46]. Good
accuracies are observed for these approaches, which further supports the use of
images for malware analysis. Other image-based malware research involves CNNs
and extreme learning machines (ELM); see [24] and [55], respectively.

The literature to date clearly shows that deep learning models applied to malware
images can yield strong results. In this vein, we build on previous GAN-based
malware research.
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3 Methodology

The goal of this research is to create realistic-looking fake malware images, and
then analyze these images using various learning techniques. We achieve this using
GANsS, in particular, AC-GANSs. The real malware images are fed through AC-GAN
which, as part of its training, learns to generate fake malware images (generator) as
well as to discriminate between real and fake (discriminator). Once, we generate
these fake malware images, we analyze their quality by various means.

3.1 Data

We use two distinct datasets in this research. First, the Mallmg dataset contains
more than 9000 malware images belonging to 25 distinct families [35]. The Mallmg
dataset has been widely studied in image-based malware research. We have also
constructed a new malware image dataset that we refer to as MalExe. The MalExe
dataset is derived from more than 24,000 executables belonging to 18 families—we
obtained the executables from [15].

The malware families in the Mallmg and MalExe datasets are listed in Tables 1
and 2, respectively. Since the MalExe files are executable binaries, we convert them

Table 1 Details of MalExe dataset

Family Type Description

Alureon Trojan Provides access to confidential data [5]

BHO Trojan Performs malicious activities [8]

CeeInject VirTool Obfuscated code performs any actions [12]

Cycbot Backdoor Provides control of a system to a server [14]
DelfInject VirTool Provides access to sensitive information [16]
FakeRean Rogue Raises false vulnerabilities [19]

Hotbar Adware Displays ads on browsers [20]

Lolyda.BF Password Stealer Monitors and sends user’s network activity [28]
Obfuscator VirTool Obfuscated code, hard to detect [36]

OnLineGames |Password Stealer Acquires login information of online games [38]
Rbot Backdoor Provides control of a system [40]

Renos Trojan Downloader | Raises false warnings [42]

Startpage Trojan Change browser homepage/other malicious actions [45]
Vobfus Worm Download malware and spreads it through USB [50]
Vundo Trojan Downloader | Downloads malware using pop-up ads [51]
Winwebsec Rogue Raises false vulnerabilities [53]

Zbot Password Stealer Steals personal information through spam emails [57]
Zeroaccess Trojan Horse Downloads malware on host machines [58]
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Table 2 Details of Mallmg dataset

Family
Adialer.C
Agent .FYI
Allaple.A
Allaple.L
Alureon.gen!Jd
Autorun.K
C2LOP.gen!g
C2LOP.P
Dialplatform.B
Dontovo.A
Fakerean
Instantaccess
Lolyda.AAl
Lolyda.AA2
Lolyda.AA3
Lolyda.AT
Malex.gen!Jd
Obfuscator.AD
Rbot !gen
Skintrim.N
Swizzor.gen!E
Swizzor.gen!I
VB.AT
Wintrim.BX
Yuner.A

Type

Dialer

Backdoor

Worm

Worm

Trojan
Worm:AutolIT
Trojan

Trojan

Dialer

Trojan downloader
Rogue

Dialer

PWS

PWS

PWS

PWS

Trojan

Trojan Downloader
Backdoor

Trojan

Trojan downloader
Trojan downloader
Worm

Trojan downloader
Worm

Description

Perform malicious activities [1].

Exploits DNS server service [2].

Performs DoS attacks [3].

Worm that spreads itself [4].

Modifies DNS settings [6].

Worm that spreads itself [7].

Changes browser settings [9].

Modifies bookmarks, popup adds [10].
Automatically dials high premium numbers [17].
Download and execute arbitrary files [18].
Pretends to scan, but steals data [19].

Drops trojan to system [23].

Steals sensitive information [29].

Steals sensitive information [29].

Steals sensitive information [29].

Steals sensitive information [30].

Allows hacker to perform desired actions [33].
Allows hacker to perform desired actions [36].
Allows hacker to perform desired actions [41].
Allows hacker to perform desired actions [44].
Downloads and installs unwanted software [47].
Downloads and installs unwanted software [48].
Spreads automatically across machines [49].
Download and install other software [52].
Spreads automatically across machines [56].

to images using a similar approach as in [24, 35]. We discuss this conversion process
in more detail below.

Figure 1 shows samples of images from the Adialer. C family of the Mallmg
dataset and images of the Obfuscator family from the MalExe dataset. For
these samples we observe a strong similarity of images within the same family,
and obvious differences in images between different families. This is typical, and
indicates that image-based analysis should be useful in the malware field.

3.2 AC-GAN

A generative adversarial network (GAN) is a type of neural network that—among
many other uses—can generate so-called “deep fake” images [37]. A GAN includes
a generator model and a discriminative model that compete with each other in a
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(a)

(b)

Fig. 1 Images from the Mallmg and MalExe datasets. (a) Examples of Adialer.C from
Mallmg. (b) Examples of Obfuscator from MalExe

min-max game. Intuitively, this competition will should make both models stronger
than if each was trained separately, using only the available training data. The
GAN generator generates fake training samples, with the goal of defeating the
GAN discriminative model, while the discriminative model tries to distinguish real
training samples from fake.

However, a standard GAN is not designed to work with multiclass data. Since
we have multiclass data, we use auxiliary-classifier GAN (AC-GAN), which is
an enhanced type of GAN that includes a class label in the generative model.
Additionally, the discriminator predicts both the class label and the validity (i.e.,
real or fake) of a given sample. A schematic representation of AC-GAN is given in
Fig. 2.

For the research in this paper, the key aspect of AC-GAN is that it enables us to
have control of the class of any image that we generate. We will also make use of
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AC-GAN discriminative models, as they will serve as a baseline for comparison to
other deep learning techniques—specifically, CNNs and ELMs.

3.3 Evaluation Plan

Once, we have trained and tested our AC-GAN model, we need to evaluate the
quality of the fake images. To do this, we compare the AC-GAN classifier to CNN
and ELM models trained on real and fake samples. The remainder of this section is
devoted to a brief introduction to CNNs and ELMs.

3.31 CNN

A convolutional neural network (CNN) is loosely based on the way that a human
perceives an image. We first recognize edges, the general shape, texture, and so on,
eventually building up to the point where we can identify a complex object.

A CNN is a feed-forward neural network that includes convolution layers in
which convolutions (i.e., filters) are applied to produce higher level feature maps.
CNNs typically also include pooling layers that primarily serve to reduce the
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Fig. 3 A generic CNN

dimensionality of the problem via downsampling. CNNs also typically have a final
fully-connected layer, where all inputs from previous layers are mapped to all
possible outputs. A generic CNN architecture is given in Fig. 3.

For our experiments, we will use the specific CNN architecture and hyperparam-
eters specified in [24]. The CNN experiments performed in our research involve
malware images, and the specific architecture that we adopt was optimized for
precisely this problem.

3.32 ELM

A so-called extreme learning machine (ELM) is a feedforward deep learning
architecture that does not require any back-propagation. The weights and biases
in the hidden layers of an ELM are assigned at random, and only the output
weights are determined via training. Due to this simple structure, an ELM can
be trained using a straightforward equation solving technique—specifically, the
Moore-Penrose generalized inverse. Thus, ELMs are extremely efficient to train.
A schematic representation of a generic ELM can be seen in Fig. 4.

For our experiments, we will use ELM models with parameters as specified
in [24]. As with the CNN experiments mentioned above, the experiments performed
in our research involve malware images, and the specific ELM architecture that we
use was optimized for this specific problem.

To evaluate the quality of our AC-GAN generated images, we first divide the real
and fake images into training and testing sets. Then we train a CNN (respectively,
ELM) on the training dataset. Once, the CNN (respectively, ELM) has been trained,
we predict class labels and determine the accuracy of the predictions. The worse the
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Fig. 4 Schematic representation of ELM

classification accuracy of the CNN (respectively, ELM), the better are our AC-GAN
generated fake images. We also want to compare the accuracy of the CNN and ELM
models to the AC-GAN discriminator. Note that we consider each real family and
each fake family as a separate class, in effect doubling the number of classes from
the original dataset.

3.4 Accuracy

Throughout this paper, we use accuracy as the metric to quantify the success of
the various experiments considered. Accuracy is simply the ratio of the number of
correct classifications versus the total number of classifications.
For a binary classification problem, the confusion matrix is of the form in Fig. 5,
where
TP = true positives
FP = false positives

TN = true negatives

FN = false negatives
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In this case, the accuracy is computed as

TP +TN

accuracy = —————
P+ N

where P is the number of positive samples, that is,
P =TP+FN

and N is the number of negative samples, that is,
N =TN+FP.

This calculation of accuracy easily generalizes to the multiclass case.

4 Implementation

In this section, we present details on the implementation of the techniques discussed
in Sect. 3. All of our learning techniques have been implemented in Python using
PyTorch and Keras, with the experiments run on Google Colab Pro under a local
Windows OS. The precise specifications are given in Table 3.

In the remainder of this section we provide details on the pre-processing applied
to the datasets used in our experiments, we outline our AC-GAN training process,
and we discuss the training and testing of our CNN and ELM evaluation models.
Then in Sect. 5 we present out experimental results.
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Table 3 Environment specifications

Specification Description
Local machine Windows OS
Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz
16.0 GB RAM
NVIDIA GeForce RTX 2060 14 GB GPU
Google Colab Pro 24 hours available runtime
25 GB memory
T4 and P100 GPUs
Software PyTorch
Keras
Numpy

Scipy
PIL

4.1 Dataset Analysis and Conversion

As mentioned above, In this research, we experiment with two distinct
datasets, which we discuss in the next section. In both cases, we use the
ImageDataGenerator and Dataloader modules from Keras (in PyTorch)
to extract images and labels from the data. Additionally we use the transforms
functions to compose our pre-processing requirement.

4.1.1 Datasets

The first dataset we consider is the well-known Mallmg dataset, which was
originally described in [32]. This dataset has become a standard for comparison in
image-based malware research. The Mallmg dataset contains 9339 grayscale images
belonging to 25 classes, where all samples are in the form of images, not executable
files.

We refer to our second malware image dataset as MalExe, and it is of our own
creation. This dataset contains 24,558 malware images belonging to 18 classes.
These samples are in the form of exe files.

Since the MalExe samples are executable binary files, we must converting them
to images. We perform this transform as follows. iWe also construct images by
specify a desired size of each (square) images as n x n. We then read the first n2 bytes
from a malware binary, and these bytes are viewed as n x n images of type png. For
example, if we specify 64 x 64 images, each image is based on the first 4096 bytes of
the corresponding exe file. In this conversion process, we only convert samples that
contain a sufficient number of bytes. In Table 4, we see the image counts obtained
for the MalExe dataset for various image sizes considered. Note that for 512 x 512



38 R. Nagaraju and M. Stamp

Table 4 MalExe dataset Specified image size | Count | Families
counts

Standard 24,652 |18

32 x 32 24,557 |18

64 x 64 24,371 |18

128 x 128 23,369 |18

512 x 512 9963 | 17

(2) (b) (©) (C) (e)

Fig. 6 Image conversions of an Alureon sample. (a) Real. (b) 512 x 512. (¢) 128 x 128. (d)
64 x 64. (e) 32 x 32

image, we only have 9963 samples from 17 classes—the family Zeroaccess has
no samples with at least 5122 = 2!8 bytes.

Figure 6 illustrate images of various sizes for one specific sample from the
Alureon family. We see that that these different image construction techniques
can provide distinct views of the same data.

In Fig. 7 we give bar graphs showing the distribution of samples for the Mallmg
and MalExe datasets. We note that the Mallmg dataset is highly imbalanced, with
the majority of the images belong to Allaple.A, Allaple.L, and Yuner.A.
To deal with this imbalance, we shuffle the data during training and use balanced
accuracy while testing.

Next, we want to scale the pixel values to the range [—1, 1] in order to match
the output of the generator model. This is achieve by simply calculating the mean
pixel value of an entire image and then subtracting this mean from each pixel and
normalizing, which gives us a floating point value in the closed interval from —1
to 41 in place of each pixel value.

4.2 AC-GAN Implementation

In this section, we provide additional detail on our implement of AC-GAN. Recall
that our model is generated using Python, PyTorch, and Keras modules. Also, recall
that an AC-GAN includes both a generator and a discriminator.
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4.2.1 AC-GAN Generator

Our AC-GAN generator produces a single channel grayscale image by plotting

random points on a latent space—the latent space simply consists of noise drawn

1. Additionally, the model

0and 0 =

includes the class label as a parameter. The generator is composed as a sequential

from a Gaussian distribution with w
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Layer Functions Parameters
Embedding Embedding () classLabels x 100
Sequential ()
Linear () in-features: 100; out-features: 131,
Sequential ()
1st convolutional BatchNormal2d () in: 128; momentum: 0.1
Upsample () Scale factor: 2.0
Conv2d () in: 128; out: 128; kernel: (3,3);
stride: (1,1); padding: (1,1)
2nd convolutional BatchNormal2d () in: 128; momentum: 0.1
LeakyReLU () negativeslope: 0.2
Upsample () Scale factor: 2.0
Conv2d () in: 128; out: 64; kernel: (3,3);
stride: (1,1); padding: (1,1)
3rd convolutional BatchNormal2d () in: 64; momentum: 0.1
LeakyReLU () negativeslope: 0.2
Conv2d () in: 64; outchannels: 1; kernel: (3,3);
stride: (1,1); padding: (1,1)
Output Tanh () Scale factor: 2.0

model. To this sequential model, we add a series of deconvolutional layers. The

specific parameters used for the AC-GAN generator are given in Table 5.

4.2.2 AC-GAN Discriminator

The discriminator model discriminates between the original and fake images, while
predicting the class label. The generator and discriminator both deal with cross-
entropy loss—the generator attempts to minimize binary cross-entropy loss, while
the discriminator tries to maximize this loss. The discriminator parameters used in
our experiments are given in Table 6.

Once we have initialized the generator and discriminator models, the models are
then trained. This training process is typical of any AC-GAN, and hence we omit
the details here. After training, we plot loss graphs to verify training stability.

4.3 Evaluation Models

To evaluate our AC-GAN generator results, we train CNN and ELM models on
the real and fake images. The better (in some sense) our AC-GAN generated fake
images, the worse the CNN and ELM models should perform.
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Table 6 AC-GAN discriminator construction parameters

Layer Functions Parameters
Input Sequential ()
1st deconvolutional Conv2d () in: 1; out: 16; kernel: (3,3);
stride: (2,2); padding: (1,1)
2nd deconvolutional LeakyReLU () negativeslope: 0.2
Dropout2d () rate: 0.25
Conv2d () in: 16; out: 32; kernel: (3,3);
stride: (2,2); padding: (1,1)
3rd deconvolutional LeakyReLU () negativeslope: 0.2
Dropout2d () rate: 0.25
BatchNormal2d () in: 32; momentum: 0.1
Conv2d () in: 32; out: 64; kernel: (3,3);
stride: (2,2); padding: (1,1)
4th deconvolutional LeakyReLU () negativeslope: 0.2
Dropout2d () rate: 0.25
BatchNormal2d () in: 64; momentum: 0.1
Conv2d () in: 64; out: 128; kernel: (3,3);
stride: (2,2); padding: (1,1)
LeakyReLU () negativeslope: 0.2
Dropout2d () rate: 0.25
BatchNormal2d () in: 128; momentum: 0.1
Adversarial Sequential ()
Linear () in-features: 8192; out-features: 1
Sigmoid ()
Auxiliary Sequential ()
Linear () in-features: 8192; out-features: 18
Sigmoid()

4.3.1 CNN Implementation

CNN models include a fully-connected layer, a convolution layer (or layers), and
a pooling layer (or layers). The parameters used in our specific implementation are
given in Table 7. The parameters that awe use in our CNN models are as specified
in [55]. Note that due to the imbalance in the Mallmg dataset, we use balanced
accuracy.

4.3.2 ELM Implementation

Any ELM includes an initial input layer, a final output layer, and in between these
two layers, there is a hidden layer. The hidden layer weights are assigned at random,
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Table 7 CNN construction parameters
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Layer Functions Parameters
1st convolutional Sequential ()
Conv2d () Filters: 30; in = image-size; out = 840;
Kernel: (3,3); activation: relu
1st pooling MaxPooling2D () Size: (2,2)
2nd convolutional Conv2d () filters = 15; in = 840; out = 4065;
Kernel: (3,3); activation: relu
2nd pooling MaxPooling2D () Size: (2,2)
Dropout () Rate: 0.25
Flatten()
Dense () Units: 128; out: 376,448; activation: relu
Dropout () Rate: 0.5
Other Dense () Units: 50; out: 6450; activation: relu
Dense () Units: num-of-classes; activation: softmax
— Loss Categorical cross entropy
— Optimizer Adam

with only the output layer weights determined via training. For an ELM, the only
parameter is the number of hidden units, and we use the value specified in [24],
namely 5000.

S Experimental Results

Here, we first consider the use of AC-GAN to generate fake malware images of
various sizes. As part of these experiments, we also consider the discriminative
ability of AC-GAN discriminator model.

As a followup on our AC-GAN experiments, we conduct CNN and ELM
experiments in Sect. 5.2. The purpose of these experiments is to determine how
well these deep learning techniques can distinguish between real malware images
and the AC-GAN generated fake images.

5.1 AC-GAN Experiments

We consider AC-GAN experiments to generate fake malware images of sizes 32 x
32, 64 x 64, and 128 x 128. In each case, we experiment with both the Mallmg and
MalExe datasets.
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5.1.1 AC-GAN with 32 x 32 Images

Our objective here is generate and classify malware images of size 32 x 32. For
the Mallmg dataset, which is in the form of images, we resize all of the images
to 32 x 32. We train our AC-GAN model for 1000 epochs with the number of batches
set to 100. Since there are 9400 Mallmg samples in total, we have 94 samples per
batch, and hence about 94,000 iterations. Training this model requires about 24
hours on Google Colab Pro.

In contrast, for the MalExe dataset we read the first 1024 bytes from each binary,
and treat these bytes as a 32 x 32 image. We train an AC-GAN model on this
dataset for 500 epochs with the number of batches set to 50. Since there are 42,266
samples in the MalExe dataset, we have about 492 samples per batch and requires
about 246,000 iterations. Training this model also takes about 24 hours on Google
Colab Pro.

Figure 8a shows the training loss plots for our AC-GAN generator and dis-
criminator models when training on the Mallmg dataset. Figure 8b shows the
corresponding loss plots for the MalExe dataset.

From Fig. 8a, we see that both the generator and discriminator stabilizes at
around epoch 100 for the Mallmg experiment. The generator spikes up occasionally,
but has generally stable loss values, while the discriminator loss is more consistent
throughout. In contrast, from Fig. 8b we see that the MalExe model remains
relatively unstable throughout its 500 iterations.

Our AC-GAN discriminator achieves an accuracy of about 95% in the Mallmg
experiment. In contrast, on the MalExe dataset, the AC-GAN discriminator only
attains an accuracy of about 89%.

Figure 9 shows a comparison of real and AC-GAN generated fake 32 x 32
images for the families C2LOP.P and Allaple.L from the Mallmg dataset.
Figure 10 shows a comparison between real and fake images for the Alureon and
Zeroaccess families from the MalExe data. Visually the real and fake images
share some characteristics, with the MalExe fake images being better than the
Mallmg case. However, the resolution appears to be too low in all cases. Hence,
we perform further AC-GAN experiments based on higher resolution images.

5.1.2 AC-GAN with 64 x 64 Images

Our AC-GAN experiments for 64 x 64 images are analogous to those for 32 x
32 images, as discussed in Sect. 5.1.1. Again, the training time for each dataset is
about 24 hours. Figure 11a and b gives the training loss plots for the Mallmg and
MalExe experiments, respectively.

From Fig. 11a, we see that the training loss stabilizes at around epoch 250 for
the Mallmg case, while the MalExe experiment stabilizes at around epoch 100. In
contrast to the 32 x 32 case, the MalExe model becomes reasonably stable after
about 125 epochs.
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GAN Loss evolution
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Fig. 8 Loss plots for 32 x 32 images. (a) Mallmg. (b) MalExe

() (b) (© (d)

Fig. 9 Real and fake examples from Mallmg (32 x 32). (a) C2LOP. P. (b) C2LOP.P_fake. (¢)
Allaple.L.(d)Allaple.L_fake
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Fig. 10 Real and fake examples from MalExe (32 x 32). (a) Alureon. (b) Alureon_fake.
(¢) Zeroaccess. (d) Zeroaccess_ fake
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(a) (b) (© (d

Fig. 12 Real and fake examples from Mallmg (64 x 64). (a) Lolyda.AA3. (b)
Lolyda.AA3 fake.(c) Agent.FYI.(d) Agent.FYI fake

JORIRE

(a) (b) (© (d)

Fig. 13 Real and fake examples from MalExe (64 x64). (a) Zbot. (b) Zbot _fake. (¢) Vobfus.
(d) vobfus_fake

The classification accuracy for the Mallmg dataset is about 94%, while the AC-
GAN achieves a classification accuracy of about 88% on the MalExe dataset. These
results are essentially the same as in the 32 x 32 case.

Again, we compare real and AC-GAN generated fake images. Figure 12
shows the comparison between real and fake images of class Lolyda.AA3 and
Agent .FYI from the Mallmg dataset. We observe that the fake samples in this
case are, visually, extremely good.

In Fig. 13, we give a comparison between real and fake images of class Zbot
and Vobfus for the MalExe dataset. In this case, the MalExe fake samples are
surprisingly poor.

5.1.3 AC-GAN with 128 x 128 Images

We consider AC-GAN experiments based on 128 x 128 images. These experiments
are again analogous to those for the 32 x 32 and 64 x 64 cases discussed above.
Figure 14a and b shows the training loss plots for AC-GAN trained on the Mallmg
and MalExe datasets, respectively. While the Mallmg experiments stabilize, the
MalExe experiment would likely have benefited from additional iterations.

In this case, we attain a maximum classification accuracy from the AC-GAN of
about 92% for Mallmg and about 85% for MalExe. Figure 15 shows comparisons
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Fig. 14 Loss plots for 128 x 128 images. (a) Mallmg. (b) MalExe
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Fig. 15 Real and fake examples from Mallmg (128 x 128). (a) Yuner . A. (b) Yuner .A fake.
(c) VB.AT. (d) VB.AT fake
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(a) (b) (© (d)

Fig. 16 Real and fake examples from MalExe (128 x 128). (a) Alureon. (b) Alureon_fake.
(¢) Zeroaccess. (d) Zeroaccess_ fake

Table 8 AC-GAN
discriminator accuracy
(rounded to nearest percent)

Image size | Dataset | Accuracy
32 x32 Mallmg | 95%
MalExe | 89%
64 x 64 Mallmg | 94%
MalExe | 88%
128 x 128 | Mallmg | 92%
MalExe | 85%

of real and fake Yuner.A and VB.AT from Mallmg. As in the 64 x 64 case, we
see that the fake images appear to be very good approximations for this dataset.

Figure 16 shows a comparison of real and fake Alureon and Zeroaccess
images from the MalExe data. In contrast to the 32 x 32 and 64 x 64 cases, here
the fake MalExe images are very good approximations to the real images.

5.1.4 Summary of AC-GAN Results

Table 8 gives the discriminative accuracies for each of the AC-GAN experiments in
Sects. 5.1.1-5.1.3. We see that the results are fairly consistent, irrespective of the
size of the images.

With respect to the visual inspection of the fake images in Figs. 9 and 10 (for
the 32 x 32 case), Figs. 12 and 13 (for the 64 x 64 case), and Figs. 15 and 16 (for
the 128 x 128 case), we observed a clear improving trend for larger image sizes.
However, there is a price to be paid for this increased fidelity, as the training time
increases significantly with image size.

5.2 CNN and ELM Experiments

As a first step towards evaluating the quality of the AC-GAN generated images, we
experiment with CNN and ELM. Specifically, we test the ability of these two deep
learning techniques to distinguish between real malware images and our AC-GAN
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generated fake images by treating the real data and fake images as distinct classes
in multiclass experiments. For example, if we consider 10 classes from the Mallmg
dataset, then for our CNN and ELM experiments, we will have 20 classes consisting
of the 10 original families plus another 10 classes consisting of fake samples from
each of the original 10 families. In the following sections, we separately consider
experiments for 32 x 32, 64 x 64, and 128 x 128 image sizes.

5.2.1 CNN and ELM for 32 x 32 Images

Here, we consider 32 x 32 real and fake images and perform experiments for the
Mallmg and MalExe datasets. For MalExe, we consider all 18 classes and therefore,
including classes for the fake images, we have a total of 36 classes. Our dataset
consists of 100 samples for each class, and hence we have 3600 images. We train our
CNN for 3000 epochs and we generate an ELM with 5000 hidden units. The CNN
test accuracy is only about 51%, in spite of a training accuracy of 100%, which
is a sign of overfitting. The ELM performs slightly worse, achieving an accuracy
of 48%.

Figures 19 and 20 give the confusion matrices for our CNN and ELM exper-
iments on the MalExe dataset. In both cases, we observe that most of the fakes
are largely misclassified, but this is not the case for all families. For example, in
the CNN experiments, the fake Vundo samples are classified correctly with 100%
accuracy, whereas the real Vundo samples are only classified correctly 33% of the
time.

For Mallmg, we consider all 25 real classes, which gives 50 classes and a total
of 5000 images. Again, our CNN is trained for 3000 epochs and we construct
an ELM with 5000 hidden units. For the Mallmg dataset, our CNN again has a
very high training accuracy, but achieves a test accuracy of only about 56%, while
our ELM achieves an accuracy of about 37%. The confusion matrices for these
experiments are in Figs. 21 and 22. Again, we see that the fakes are misclassified at
a much higher rate than the real samples.

5.2.2 CNN and ELM for 64 x 64 Images

In this section, we consider similar experiments as in the previous section, but based
on 64 x 64 images. In this case, we consider 10 of the Mallmg families and the
corresponding fake samples, for a total of 20 classes for each dataset. We again
consider 100 images from each class, and we use 70% of the samples for training
and reserve the remaining 30% for testing.

We train a CNN for 3000 epochs with a batch size of 500 while for the ELM
we use 50,000 hidden units. For the CNN, we attain 100% training accuracy, but
only about 82% test accuracy, which is again a sign of overfitting. For the ELM,
we attain an accuracy of 64%. Figures 23 and 24 show the confusion matrices
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for these experiments. From the confusion matrices, we can see that some images
are misclassified as fakes, while some families are consistently classified as other
families. For both the CNN and ELM, we see that most images are misclassified,
with the exception of specific families. The 64 x 64 results—in the form of confusion
matrices—for the MalExe dataset are in Figs. 25 and 26.

5.2.3 CNN and ELM for 128 x 128 Images

In this Mallmg experiment, we consider all families in the dataset. In this case, we
train the CNN for 5000 epochs and generate an ELM with 20,000 hidden units.
Again, we treat real and fake images as a separate set of classes. We consider all 18
classes in our MalExe experiments.

On the MalExe dataset, we achieve 43% test accuracy with the CNN, and 52%
accuracy with out ELM. Figures 27 and 28 show the confusion matrices for our
CNN and ELM experiments on the MalExe data. Similar to other experiments on
MalExe, we see mostly miscalculation for the CNN. For the ELM, we note that
Rbot fake, and Ceeinject fake are particularly poor results. The results of
these 128 x 128 experiments again indicate that AC-GAN produces strong fake
images.

For the 128 x 128 Mallmg experiments, we consider all classes, we train the CNN
for 3000 epochs, and we generate an ELM with 20,000 hidden units. The results
for these Mallmg experiments are given in Figs. 29 and 30. The CNN achieves
only 43% test accuracy, while ELM performs better, but still only attains an accuracy
of 52%.

5.2.4 Discussion of CNN and ELM Experiments

In Fig. 17 we compare the test accuracies of our CNN and ELM experiments to
our AC-GAN classifier. Here, we observe that the AC-GAN models are able to
produce much higher classification rates in all cases. This shows that while the AC-
GAN generator is able to produce images that are difficult for other deep learning
techniques to distinguish, the AC-GAN discriminator is not so easily defeated by
these fake images. These results suggest that AC-GAN is not only a source for
generating fake malware images, but it is also a powerful model for discriminating
between families—both real and fake (Fig. 18).

Finally, we consider the narrower problem of distinguishing real samples from
fake samples. In Figs. 31, 32, and 33, we have “condensed” the confusion matrices
of Figs. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30 to better highlight the ability
of our CNN and ELM models to distinguish real from fake. Each of these condensed
confusion matrices includes the eight (exhaustive) cases listed in Table 9.

If we are only concerned with the ability of our models to distinguish between
real and fake samples, then any real sample that is classified as real—either the
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Fig. 18 Distinguishing between real and fake

correct real family or a different real family—is considered a correct classification.
Similarly, any fake sample that is classified as any class of fake is considered a
correct classification. The results in Fig. 18 are easily obtained from the condensed
confusion matrices in Figs. 31, 32, and 33. From this perspective, we see that our
CNN models always outperform the corresponding ELM model, and in most cases,
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Fig. 19 CNN confusion matrix (MalExe 32 x 32)

the CNN models perform remarkably well. These results indicate that in spite of
the relatively low accuracies obtained in the multiclass case, most of the errors
are within the real and fake categories, and not between real and fake samples. In
particular, for the CNN models, real and fake samples from a specific family are
rarely confused with each other. This provides strong evidence that the real and fake
categories are substantially different from each other. Perhaps surprisingly, these
results strongly suggest that AC-GAN generated fake malware images do not satisfy
the requirements of “deep fakes,” at least not from the perspective of evaluation by
deep learning techniques.
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Table 9 Condensed confusion matrix cases
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Actual class

Classification

Description

real

real-same

Real sample classified correctly

fake-same

Real sample classified as fake of the same family

real-other

Real sample classified as a different real family

fake-other

Real sample classified as a different fake family

fake

real-same

Fake sample classified as real of the same family

fake-same

Fake sample classified correctly

real-other

Fake sample classified as a different real family

fake-other

Fake sample classified as a different fake family
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Fig. 31 Condensed confusion matrices (32 x 32). (a) CNN MalExe. (b) ELM MalExe. (¢) CNN
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6 Conclusion and Future Work

In this research we considered AC-GAN in the context of malware research. We
experimented with a standard malware image dataset (Mallmg) and a larger and
more balanced malware image dataset of our own construction (MalExe). We
evaluated the images generated by our AC-GAN using CNN and ELM models.

We were not able to reliably classify our AC-GAN generated fake malware
images from genuine malware images using either CNNs or ELMs, but the AC-
GAN discriminator provided good accuracy. However, we also found that CNN’s
can distinguish between real and AC-GAN generated fake samples with surprisingly
high accuracy.

For future work, more experiments aimed at classifying real and fake malware
images would be useful. Additional state-of-the-art deep learning models, such as
ResNet152 and VGG-19, could be considered [39]. In addition, the quest for true
“deep fake” malware images that cannot be reliably distinguished from real malware
images appears to be a challenging problem.

In addition, it would be interesting to explore adversarial attacks on image-based
malware detectors. For example, tt would be interesting to quantify the effectiveness
of such attacks. That is, assuming that an attacker is able to corrupt the training
data, what is the minimum percentage of the data that must be modified to achieve
a desired level of degradation in the resulting model?
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