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Abstract Machine learning is becoming increasingly popular among antivirus
developers as a key factor in defence against malware. While machine learning is
achieving state-of-the-art results in many areas, it also has drawbacks exploited by
many with white-box attacks. Although the white-box scenario is possible in mal-
ware detection, the detailed structure of antivirus is often unknown. Consequently,
we focused on a pure black-box setup where no information apart from the predicted
label is known to the attacker, not even the feature space or predicted score.
We implemented our exploratory integrity attack using a reinforcement learning
approach on a dataset of portable executable binaries. We tested multiple agent
configurations while targeting LightGBM and MalConv classifiers. We achieved an
evasion rate of 68.64% and 13.32% against LightGBM and MalConv classifiers,
respectively. Besides traditional modelling of malware adversarial samples, we
present a setup for creating benign files that can increase the targeted classifier’s
false positive rate. This problem was considerably more challenging for our
reinforcement learning agents, with an evasion rate of 3.45% and 36.62% against
LightGBM and MalConv classifier, respectively. To understand how these attacks
transfer from classifiers based purely on machine learning to real-world anti-
malware software, we tested the same modified files against seven well-known
antiviruses. We achieved an evasion rate of up to 47.09% in malware and 14.29% in
benign adversarial attacks.

1 Introduction

Malware detection is one of the most important problems in information security
since the detection of malware in advance allows us to block it. Malware detection
is a binary classification problem of distinguishing between malware and benign
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files [3]. One of the main problems of malware detection systems is insufficient
accuracy while keeping the false positive rate at an acceptable level. There is a
need to build a machine learning framework suited for real-life practical use that
generically detects as many malware samples as possible, with a very low false
positives rate. The significant problem to be solved is how to detect malware that
has never been seen before.

To defend against malware, users typically rely on antivirus (AV) products
to detect a threat before it can damage their systems. Antivirus vendors rely
mainly on a database of sequences of bytes (signatures) that uniquely identify the
suspect files and are unlikely to be found in benign programs [36]. The major
weakness of signature detection is that malware writers can easily modify their
code, thereby changing their program’s signature and evading virus scanners. The
signature detection technique is unable to detect obfuscated and zero-day malware.
Encryption, polymorphism, metamorphism, and other code obfuscation techniques
are widely used by malware authors to evade signature detection techniques. For
this reason, malware researchers are investigating novel detection strategies.

Nowadays, antivirus vendors face several problems concerning malware detec-
tion. The concept of employing machine learning to malware detection provides
promising solutions [31]. Moreover, since malware developers create more and
more sophisticated techniques, it is necessary to use the latest techniques from
machine learning to keep the error rate and false positive rate as low as possible. This
game may someday converge to the point when artificial intelligence of attackers
will fight against the artificial intelligence of malware researchers.

Machine learning models are vulnerable to adversarial attacks that can fool the
models [9]. For instance, an adversary can craft malware that has a similar feature
vector to some benign file’s feature vector. As a result, the training set may have
different statistical distribution than the distribution of the testing set. Therefore, it
is necessary to create defence techniques in order for machine learning algorithms
can resist such adversarial attacks.

The goal of this paper is to implement a black-box exploratory integrity attack
using reinforcement learning. We implement executability preserving modifications
and train reinforcement learning agents to alter Windows portable executable
binaries with an aim to avoid detection by a targeted machine learning classifier.
These evasion techniques are later tested on real-world antivirus software. In
comparison with other works, we do not only focus on malware adversarial samples,
but we also deal with an inverted scenario of benign adversarial examples.

This paper is organized in the following form. Section 2 gives the necessary
background to our work with a brief description of adversarial machine learning,
reinforcement learning, portable executable file format, etc. In Sect. 3, we present
our implementation and dataset description. Next, Sect. 4 contains all information
about experiments and achieved results. We summarize related work in Sect. 5. The
conclusion to this paper and ideas for future work can be found in Sect. 6.
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2 Background

In this section, we provide the minimal necessary background to understand our
paper. We firstly introduce adversarial and reinforcement machine learning. Then
we briefly describe portable executable file format and finish with the definition of
used evaluation metrics.

2.1 Adversarial Machine Learning

Machine learning outperforms human capabilities in many ways, yet we are
reserved in trusting its decisions in areas such as self-less car driving or disease
diagnostics. One of the reasons is the insufficient interpretability of the decisions
and the resulting possible weakness or bias of the system [15]. Adversarial machine
learning is a research area specializing in strengthening machine learning (ML)
systems to be resistant against attacks both from the inside (data poisoning) and
outside (evasion attacks).

In common terminology, an action to bypass or mislead a ML system is an
adversarial attack. An attacker is called an adversary but both are acceptable and
used interchangeably. In this section, we summarize the taxonomy of adversarial
attacks and describe some prevalent adversarial attack strategies, focusing mainly
on malware detection domain.

2.1.1 Taxonomy

In this part, we will closely follow the taxonomy laid down by Huang et al. in
[18] as it is one of the most complete overviews of this topic we have found. They
identify three main ways how to break down adversarial attacks based on these three
properties: influence, security violation, specificity.

Influence The first property is the way we can look at how adversary influences
targeted ML model. There are two main categories. The first is exploratory
attacks that do not alter the model itself but try to circumvent the model to achieve
attacker’s goal—usually, misclassification of a group of malicious files.

The second group is called causative attacks where the attacker impacts the
model itself, in particular the training phase. It can be in form of wrongly labelled
malware samples in training dataset.

Security violation The second property is characterized by the objective of
adversary. There are three groups. Integrity attacks cause an increase in false-
negative rate. In the domain of malware detection, a false negative is malware
sample classified as benign.
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The second group is availability attacks where the adversary does not focus on
a single class to be misclassified but targets the model’s accuracy as a whole
resulting in the model becoming completely unusable.

When an adversary tries to steal information from the model itself, e.g., what
training data the model was learned on, it is called a privacy attack.

Specificity The last property describes how large the attacker’s target set is.
In targeted attacks, there is a small set of samples that are supposed to be
misclassified, i.e., an author of malicious software wants his particular program
to be installed on the victim’s device.

Whereas in indiscriminate attacks adversary does not specify which but rather
how many samples should be mislabelled. This attack can be used as a one of the
proves that given AV is not secure.

Individual categories can be combined together, e.g., a causative targeted attack
can be when an adversary inserts malware binaries labelled as benign into a
classifiers training dataset to prevent the classifier from correctly predicting for a
particular malicious file.

Attacks can also be classified based on the available knowledge of the targeted
model to attackers. If the attacker does not have any information about the model
and is left with only the model’s output, it is called a black-box attack. An opposite
attack is called a white-box where all information about the model is known. In
between these two is a grey-box attack where partial knowledge is accessible, e.g.,
feature space of targeted classifier.

2.2 Reinforcement Learning

The key idea of reinforcement learning (RL) is a simple one. An agent (a learning
system) wants to achieve some goal. To achieve its objective, the agent must adapt
its behaviour. To learn which actions are good and bad, the agent needs a stimulus
in the form of signals from an environment where the agent works. This section is
based on [29] from which we adopted the following notions.

Reinforcement learning is a triplet of an agent policy, a reward function and a
value function. In some cases a model of environment is used as well.

The agent policy represents the agent’s behaviour at a given time and environ-
ment state. It is a function which maps pairs of states and action to the probability
of taking individual action at given state. The policy can be in the form of a simple
automaton, lookup table, but also a sophisticated algorithm.

The reward function is an immediate response from the environment to the
agent’s action. The return value is a number that grades the action taken by the agent
based on the goal. Formally, this number defines the agent’s purpose, and under no
circumstances can the agent change this function, i.e., change the goal it is facing.

The value function is a look to the future on what is an expected cumulative
reward from the current environment state. This function can be understood as a
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heuristic function, and it is a critical part of any RL model. While reward function
can be usually calculated easily, the value function must be recalculated over and
over based on past observations. It is clear that agent looks for states with the highest
value since these will maximize future rewards.

The model of environment simulates the environment and allows the agent to
predict future states and rewards. This part is optional, and not all RL systems
contain it.

Formally reinforcement learning is defined as repeated interactions between
agent and environment. In our space of modifications of binary files these interaction
take place at discrete time steps t = 0, 1,2, ... At time step 7 the environment is
at state S; € S where S is the set of all observable states. The agent receives state
S; and, based on its policy &, chooses action A; € A(S;) where A(S;) is a set of
all possible actions at state S;. When the environment receives response from agent
in the form of action A, it computes and sends back a reward R;+; € R C R and

changes its state: S; i) S;+1. In this notation, R, represents the reward for the
state S;41.

As stated above, the agent looks for states that maximize future rewards. To
formalize future rewards, we denote G; = R;+1 + Ri42 + --- + Ry a sum of
all rewards after time step 7, where T denotes the final time step. If T # oo
we can call the St a terminal state and the entire process of states, actions and
rewards from time step t = 0 to t = T an episode. After the end of each episode
the environment is reset to initial state and new independent episode begins. This
repeats until terminal condition is met. Many problems will not have any terminal
state. These problems are called continuous, and they are not covered in this work.

In real situations, the agent does not know the exact value of G, at time step 7.
The value of G; is approximated by the value function. In the computation, it is
common to use discounted future rewards,

T—t—1
G~ Ryt +yR2+ v R+ 4y 'R = ) =y Ry
i=0

where 0 < y < 1 is called discount rate. This helps regulate importance of looking
far into the future. Further we outline an action-value function for policy w, g, (s, a),
that defines value of action @ when in state s if following policy 7. The value is in
form of expected future reward G;, formally,

qr(s,a) = Ez[G/|S; =5, Ay = a]

where E [-] is expected value of random variable for policy .
The rest of this section describes two algorithms which we later used in Sect. 3.
Note that there are numerous other algorithms for reinforcement learning.
Q-learning is an algorithm introduced by Watkins [34] to learn the action-value
function. It works by iteratively updating the learned action-value function, Q, in
the following manner,
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Q"M (S, A) = O(Sr, Ap) +a[Riy1 + Vm3X{Q(Sz+1,a)} = 0(S, Al

where « is learning rate, a € A(S;+1). Therefore, max,{Q(S;+1,a)} is an
estimation of the best future value. Learned values of function Q are stored in
so-called Q-table. In our work we used extension of this algorithm called deep
Q-learning or deep Q network (DQN) where the Q-table is replaced with neural
network [24].

Second algorithm we describe is proximal policy optimization (PPO) [27]. It is
based on policy gradient methods. Informally, these methods use gradient ascent
algorithm to approximate policy weight vector 6 € R". The policy of taking action
a is then conditioned not only by the current state S; but also weight vector 6. PPO
improves the approximation by vanilla policy gradient method with multiple epochs
of the gradient ascent before updating the policy vector.

2.3 Portable Executable File Format

Portable executable (PE) format is a file format commonly found on Windows
operating system. Executable files (EXE), object codes and dynamically link
libraries used on 32-bit and 64-bit systems adhere to this format. The structure of the
PE file is as follows. The program starts with MS-DOS header and stub which are
nowadays almost unused. Following is the signature and file header which contains
information such as a target machine or size of section table. Next is optional
header that contains, among other things, the necessary data directories. Finishing
the program is a section table with corresponding section data. Precise specification
is available in [19].

3 Implementation

Based on the taxonomy introduced in Sect. 2.1.1 our main approach belongs to the
category of exploratory integrity attack. In other words, we are trying to mislead
the classifier (antivirus) to predict malicious files as benign incorrectly. We also
experimented with an idea to make an exploratory integrity attack where we interject
classes. Therefore our goal would be to mislead the classifier to incorrectly predict
benign files as malicious.

We utilized the existing gym-malware [2] framework. This framework pro-
vides a setup for deploying a custom RL agent to generate adversarial samples
against a malware classifier. Both the agent and the classifier can be easily changed
with even remote classifier supported. The environment is in OpenAI Gym [5]
format and binary manipulations are implemented in LIEF [30] library. However,
we have found that their implementation is not ideal. In particular, modifications of
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PE files using LIEF do not preserve functionality for most of their implemented
modifications according to our testing procedure and make unnecessary changes to
original files. We also disagree with their approach to using the target classifier’s
feature space as an observation space for the RL agent as it can give an unfair
advantage to the RL agent as opposed to a pure black-box setup where no
information apart from the result label is known. For the reasons mentioned above,
we have modified the existing implementation [2] and our implementation contain
the following differences: minimizing unneeded changes to PE files, deploying
different RL agents, implementing pure black-box setup.

3.1 Overview

We propose a complete setup consisting of custom gym class in OpenAI Gym
format, manipulator of PE files preserving their executability and reinforcement
learning agent which learns to maximize evasion rate against targeted classifier
while minimizing the number of PE file modifications. Evasion rate is a key
metric that is used in adversarial machine learning on malware detection domain.
It represents the proportion of files that were misclassified by the target classifier,

misclassified
total

evasion rate =

3.2 Dataset

We use two separate datasets of PE executables. The first, malware dataset consists
of 5000 malware files from the VirusShare [32] repository. The second, benign
dataset was gathered from fresh Windows 10 installation and Windows university
computers and contains 1592 files. Both datasets contain only executables. Dynam-
ically linked libraries and object files were not included in the datasets.

3.3 PE File Modifications

We implemented most of the modifications in pefile [6] library by extending
existing implementation of PE file modifications by MAB-Malware [28] and
PEsidious [7]. MAB-Malware implementation is described in Related Work
under paper [28] and PEsidious is an adversarial malware generator built on
the top of gym-malware framework. We opted to rather create more than fewer
modifications and let the RL agents choose which are the most valuable. Be aware
that we focus on black-box attacks where we do not have any information about
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what features the targeted model might use so we cannot design modifications
tailored against specific malware detector.

All modifications were tested on a fresh Windows 10 virtual box environment.
We selected randomly 50 benign binaries from our dataset as a test set and
considered modification successful if the given program executed and showed itself
in the tasklist command. This protocol has its limitation which we discuss in
Sect. 6. We accepted the modification if at least 45 out of 50 binaries pass the test.
We ensured that a set of 50 benign binaries passed the test in the first place. In total
we have 9 working modifications:

Rename Section: Chooses a section at random and renames it to one
of common benign section name.

Add Section: Adds new section with benign content (if enough
space for a new entry in Section table).

Remove Certificate: Removes certificate table.

Remove Debug: Removes debug data.

Break Checksum: Zeros out CheckSum in Optional header.

Append Overlay: Adds benign content at the end of file.

Increase TimeDateStamp:  Increases TimeDateStamp by 500 days.!

Decrease TimeDateStamp: Decreases TimeDateStamp by 500 days.

Append Imports: Selects library from a list of common imported
libraries. Adds a new section with library name and
its typical functions.

We had experimented with other modifications as well, e.g., shuffling section
headers. However, we did not achieve an acceptable execution ratio. Comparison of
number of executing files after modifications can be seen in Table 1. We compared
gym-malware, PEsidious and our modifications extending MAB-Malware
and using pefile library. We can see that our set of PE file modifications (pefile
column) achieves higher execution rates than other implementations on most of the
tested modifications. All nine operations from the pefile column were later used as
the RL agent action space.

3.4 Target Classifier

We studied two primary scenarios. In the first one, the target classifier is the
LightGBM model, and in the second one, it is MalConv, both trained by authors of
EMBER dataset [1]. LightGBM model is a gradient boosted method and is trained
on PE files transformed to feature space of 2,381 float numbers. On the other hand,
the MalConv classifier is deep convolutional neural network and represents binary
files with their first 200,000 raw bytes.

1500 days were chosen to represent a substantial period of time and not a multiple of one year.



Adversarial Malware and Reinforcement Learning 11

Table 1 Numbers of files executed successfully after modification from total of 50 binaries. The
symbol x denotes that given operation was not implemented

Action Gym-malware PEsidious pefile
Break checksum 4 X 47
Create new entry point 14 X X
Append new import 42 48 48
Overlay append 50 47 46
Remove debug 5 X 50
Remove certificate 22 X 49
Add new section 4 48 46
Append to section X X
Rename section 5 4 49
upx pack 46 X

upx unpack 49 X

Increase TimeDateStamp X X 49
Decrease TimeDataStamp X X 49

3.5 Agent and Its Environment

We implemented multiple environment setups, all adhering to the OpenAI Gym
structure. Key methods which must be implemented are reset and step methods.
The reset method resets the environment to the initial state to get ready for
the next episode. The return value of reset method is an observation. The
Observation is a representation of the environment state which is presented to the
agent. We implemented different observations based on targeted classifier. We either
used raw bytes from the beginning of the binary or extracted features from PE files
such as bytes histogram, imports and sections info or printable string. The step
method performs the given agent’s action on the environment. It is responsible for
changing the environment state, tracking episode length and calculating reward for
the agent’s action. We limited the length of the episode to 10 calls of step method.
It returns quadruplet of observation, reward, done (flag if an episode has ended),
info (debugging information). The reward is either O if the action does not cause
misclassification or (maximum episode length - number of taken actions) x 10 +
100. By taking the number of taken actions into account, we tried to force the agent
to prioritize minimal modifications to the binaries.

4 Evaluation

In this section, we describe all the experiments we performed and present our results.
In total, we have two main experiments with multiple evaluation phases and initial
setups.
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Fig. 1 Overview of our experiment workflow

All experiments follow this protocol. We start with a dataset of PE binaries and
split it to train set and test set in 80:20 ratio. We create a training gym environment
and use Ray Tune [23] to find optimal hyperparameters. Ray Tune is a Python
library providing easy to use hyperparameter tuning interface. We explore the space
of several hyperparameters. We perform a grid search on: agent type (DQN vs PPO),
learning rate (/r) and discount rate (gamma y ) with other parameters left to default
values as set by the authors of Ray Tune.

After identifying suitable hyperparameters values, we train the best performing
(the one with the highest mean reward in a single training iteration, in the subsequent
tables marked as episode reward) agents again up to 15,000 episodes. In the end,
we test the agents on the test set. In the test results, we highlighted the highest
evasion rate values in bold. In both the training and testing procedure, we discard any
files that are already misclassified before adversarial modification. After evaluation
on our test set against target classifier, we test the same modifications made by
the best performing agent on real-world AVs from cybersecurity companies Avast,
Cylance, Symantec (NortonLifeLock), ESET, Kaspersky, McAfee and Microsoft
using VirusTotal [33] website. In our presentation of results, we anonymize the
names of AVs to minimize the potential misuse of this work. Overview of our
experiment workflow is pictured in Fig. 1.

4.1 Adversarial Malware Examples

In the first experiment, we focused on generating adversarial malware samples,
i.e., we modified malware binaries to evade detection by the target classifier. This
procedure is called an exploratory integrity attack. For this task, we defined multiple
environment setups. In the first one, we use the LightGBM classifier as a target
model, and we use the first 1024 (4096, 8192) bytes of PE binary as observation
space for the agent. We labelled this setup M-1.

Table 2 presents a comparison of agents with different hyperparameters values
with regard to their mean reward and episode length. It is clear that DQN agents
significantly outperform PPO agents in all environment and hyperparameters setups.
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Table 2 Training results of the search for hyperparameters for the M-1 setup. Each table represents
different observation space (1024B, 4096B, 8192B). Tables are sorted by episode reward in
descending order

Episode | Episode Episode | Episode

Agent | Gamma | Ir reward | length Agent | Gamma | Ir reward |length
DON | 0.5 0.001 |125.8 |5.0 DQN |0.75 0.01 110.99 |5.85
DQN |0.75 0.001 |119.47 |5.4 DQN | 0.5 0.0001 | 110.49 |5.92
DQN |0.999 0.001 |118.17 |54 DQN | 0.5 0.01 110.04 |5.93
DQN |0.999 0.01 115.46 | 5.74 DQN [ 0.999 |0.001 |109.96 | 6.02
DON |0.75 0.01 110.97 | 5.84 DQN | 0.75 0.0001 | 108.25 |5.9

DON | 0.5 0.0001 | 110.4 |5.65 DQN |0.999 |0.0001 | 107.62 |6.09
DQN | 0.5 0.01 109.51 |5.88 DQN | 0.5 0.001 |106.08 |6.15
DQN |0.75 0.0001 | 107.44 | 5.86 DQN |0.75 0.001 |105.45 |6.17
DQN |0.999 0.0001 | 105.91 |5.96 DQN | 0.999 |0.01 10091 |6.34
PPO 0.5 0.001 92.09 | 6.82 PPO | 0.75 0.001 90.97 6.9

PPO |0.999 |0.001 86.86 | 7.1 PPO 0.5 0.001 | 90.07 |6.89
PPO |0.75 0.001 86.47 |7.1 PPO |0.75 0.01 86.97 |7.08
PPO | 0.5 0.0001 | 83.83 |7.09 PPO |0.75 0.0001 | 86.37 |7.04
PPO | 0.5 0.01 83.04 |7.26 PPO | 0.5 0.0001 | 86.16 |7.09
PPO |0.75 0.0001 | 82.22 |7.19 PPO | 0.999 |0.0001 | 84.34 '7.22
PPO |0.999 |0.01 81.62 |7.35 PPO | 0.999 |0.001 82.1 |7.34
PPO |0.999 |0.0001  80.3 | 7.38 PPO |0.999 |0.01 66.63 | 8.09
PPO |0.75 0.01 7495 | 7.64 PPO | 0.5 0.01 65.72 | 7.93

(a) 1024B (b) 4096B

Episode | Episode
Agent | Gamma | Ir reward | length
DQN | 0.5 0.0001 | 110.64 |5.91
DQN |0.999 0.0001 | 110.48 |5.95
DQN |0.75 0.0001 | 109.88 |5.97
DQN |0.75 0.01 109.23 | 6.02
DQN | 0.5 0.01 107.96 | 6.14
DQN |0.75 0.001 |105.94 |6.15
DQN | 0.5 0.001 |105.94 |6.24
DQN |0.999 0.01 105.91 |6.14
DQN | 0.999 0.001 |104.41 |6.24
PPO 0.5 0.0001 | 91.32 |6.86
PPO | 0.5 0.001 89.74 16.92
PPO |0.999 0.0001 | 88.32 |7.06
PPO |0.75 0.001 87.14 |7.06
PPO |0.75 0.0001 | 86.83 |7.11
PPO |0.75 0.01 86.45 |7.21
PPO 10.999 |0.001 80.48 | 7.47
PPO | 0.5 0.01 61.25 |8.32
PPO |0.999 0.01 60.79 |8.32
(c) 8192B
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Fig. 2 Training runs of the three most promising agents from the M-1 setup

Table 3 Test results of the
three most promising agents
from the M-1 setup

Agent | Gamma | Ir Evasion rate [%]
DQN |05 0.001 | 68.64
DQN |0.75 0.001 |65.21
DQN | 0.999 0.001 |60.22

Based on the results from Table 2 the environment with an observation space of 1024
bytes performed the best.

We took the first three best configurations (based on the mean episode reward)
from Table 2 and tested them up to 15,000 episodes. The training runs are shown in
Fig. 2 below.

From Fig. 2 it is not particularly clear what configuration will perform the best
on the test set. However DQN agents with gamma 0.5 and 0.75 scored a bit higher
than the 3rd configuration.

After the training had ended we showed agents the testing set and performed
evaluation. The highest evasion ratio of 68.64% was achieved by DQN agent with
y = 0.5 and Ir = 0.001. Full results are shown in Table 3.

In the second setup, we essentially switched the targeted classifiers feature space
and agent’s observation space. Here we used the LightGBM classifier’s feature
space as PE file representation for the agent and as targeted classifier we chose
MalConv model. This setting is marked as M-2. In this experiment, we validated that
DOQN is better for our problem and we use it for all future experiments. Complete
results are shown in Table 4.

We trained the three top agents up to 15,000 episodes, the training progress is
shown in Fig. 3. The highest peak in terms of mean episode reward was recorded by
configuration with y = 0.75 and /r = 0.01. Compared to Fig. 2 the mean episode
reward varied dramatically between training iterations and was significantly lower.

After we trained the agents, we evaluated their performance on the test set. The
results are shown in Table 5. The results are significantly worse than in our M-



Adversarial Malware and Reinforcement Learning 15

Table 4 Training results of

Agent | Gamma | Ir Episode reward | Episode length
the search for
hyperparameters for M-2 DQN |0.999 0.01 37.43 9.39
setup. Table is sorted by DON |05 0.01 35.62 9.46
episode reward in descending  DQN | 0.75 0.01 35.59 9.46
order DQN |0.75 0.001 | 35.27 9.56
DQN |0.75 0.0001 | 33.84 9.63
DQN |0.5 0.0001 |33.29 9.58
DQON |0.999 0.0001 | 32.07 9.48
DQON |0.999 0.001 | 31.95 9.59
DQN 0.5 0.001 | 31.77 9.66
PPO 0.5 0.0001 | 21.19 10.1
PPO 0.5 0.001 | 20.14 10.18
PPO | 0.999 0.0001 | 19.64 10.17
PPO |0.75 0.0001 | 19.63 10.16
PPO |0.75 0.001 |17.6 10.29
PPO | 0.999 0.001 |16.84 10.32
PPO |0.75 0.01 15.57 10.35
PPO 0.5 0.01 14.1 10.39
PPO | 0.999 0.01 11.2 10.53
—— gamma = 0.999, Ir = 0.01
35 ~—— gamma = 0.5, Ir = 0.01
—— gamma = 0.75, Ir = 0.01
30

25

average reward

0 2000 4000 6000 8000 10000 12000 14000
episodes

Fig. 3 Training runs of the three most promising agents from the M-2 setup

Tablte 5 T.es.t resultstoffthe 3 Agent | Gamma | Ir Evasion rate [%]
most promising agents from
the M-2 setup DON |0.999 0.01 | 12.56

DON |0.5 0.01 | 11.94

DQN |0.75 0.01 | 13.32

1 setting and that might indicate that the MalConv classifier is more resilient to
adversarial attacks than LightGBM.

In the third setting, we simulated the approach of gym-malware framework
authors using EMBER feature space for agent’s observation and EMBER classifier
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Table 6 Training results of

Agent | Gamma | Ir Episode reward | Episode length
the search for
hyperparameters for the M-3 DQN |0.75 0.0001 | 115.41 5.66
setup. Table is sorted by DQN 0.75 0.001 114.38 5.53
episode reward in descending  DQN | 0.75 0.01 113.13 5.67
order DQN 0.5 0.01 112.62 5.61
DQN | 0.999 0.01 110.96 5.85
DQN | 0.999 0.001 | 108.65 5.91
DQON |0.999 0.0001 | 108.36 5.95
DON |0.5 0.001 | 105.6 6.17
DQN 0.5 0.0001 | 103.01 6.17

110
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w

—— gamma = 0.75, Ir = 0.0001
40 gamma = 0.75, Ir = 0.001
—— gamma = 0.75, Ir = 0.01

average reward

0 2000 4000 6000 8000 10000 12000 14000
episodes

Fig. 4 Training runs of the three most promising agents from the M-3 setup

Table 7 Test results of the
three most promising agents
from the M-3 setup

Agent | Gamma | Ir Evasion rate [%]
DQN |0.75 0.0001 |58.50
DQN |0.75 0.001 |60.37
DQN |0.75 0.01 57.25

as a targeted model. We marked this approach M-3. Interestingly, we did not achieve
a higher average reward during training than with our first setup. The results of the
search for optimal hyperparameters can be found in Table 6.

We again took the three best performing agents from the ranking and trained
them up to 15,000 training episodes. The training process is pictured in Fig. 4. We
did not find big differences between configurations during training runs, although
the agent with y = 0.75 and Ir = 0.001 recorded the biggest drops in average
reward during training.

We evaluate these three agents on the test set and the result are in Table 7 below.
At the beginning of Sect. 3 we argued that having an agent with observation space
equal to the feature space of the target classifier might give the agent an unfair
advantage. However, in our evaluation, we actually did score a lower evasion rate
than with our M-1 setup.
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Table 8 Overall results of all AV-1 | Av2 [Av3 [AV4 | AVES | AV | AVLT
three setups from the first M-l 276 | 1.8 | 554 | 147 | 487 | 147 | 806
experiment against seven ' : : : : : : :

real-world AVs [%] M-2 612 |31.69 2652 13.03 16.94  47.09 17.67

M-3 |3.74 |14.68  3.01 @ 1.13 | 461 31.79 | 2.03

At the end of the evaluation, we wanted to verify real-world performance.
Therefore, we took the best agents from all three setups, modified all samples
from the test set, excluding the misclassified samples, and then showed them to
commercially available AVs. We used DQN agents with y = 0.5 and Ir = 0.001
from M-1 setup, y = 0.75 and Ir = 0.01 from M-2 setup together with y = 0.75
and /r = 0.001 from M-3 setting. The results we achieved are shown in Table 8.

From the Table 8 we can see that the overall best setting is the DQN agent (y =
0.75,1r = 0.01) from M-2 setup. This is an unforeseen result since when testing
against the original target classifier (MalConv), this configuration achieved in most
cases lower evasion rate (Table 5) than against real-world AVs.

4.2 Adversarial Benign Examples

In the second experiment, we implemented an exploratory integrity attack with
interjected classes, i.e., we modified benign files to mislead the target classifier into
falsely predicting malware. This is an unusual setup since most researches focus on
the opposite scenario. Even though it is less popular, we think that a scheme where
one company develops both the AV and other software could potentially modify
their software to increase the false positive of rival AV developers.

In this experiment, we defined two environments with LightGBM and MalConv
classifier as a targeted model. This time we used only the 1024 bytes feature space
for the first setup and did not experiment with other than DQN agents. We labelled
the first and second settings as B-1 and B-2, respectively.

Table 9 shows results of DQN agents from B-1 setting. The difference between
the results from the first experiment and these is striking, with the latter performing
significantly worse. On the other hand, results from B-2 setup (Table 10) where we
attack the MalConv model are looking better than from the first experiment.

As in experiment one, we took the first three configurations from both setups and
trained them up to 15,000 episodes. The first setup with LightGBM model as target
classifier is shown in Fig. 5. All agents struggled to increase the false positive rate
of the classifier with a mean reward not exceeding 20.0.

The second setup performed a lot better in modifying benign files against the
MalConv classifier with two agents configurations that exceeded the mean reward
of 70.0. The training runs are shown in Fig. 6.

The test results from Table 11 verified the statement mentioned above about the
B-1 setup. The evasion rate of 3.45% is the lowest recorded evasion rate across the
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Table 9 Training results of the search for hyperparameters for the B-1

episode reward in descending order

M. Kozék et al.

setup. Table is sorted by

Agent Gamma Ir episode_reward_mean episode_len_mean
DQN 0.5 0.01 13.76 10.34

DQN 0.999 0.01 13.7 10.35

DQN 0.75 0.01 12.28 10.4

DQN 0.999 0.001 12.0 10.43

DQN 0.5 0.001 10.0 10.54

DQN 0.999 0.0001 8.9 10.56

DQN 0.5 0.0001 7.5 10.61

DQN 0.75 0.001 7.4 10.62

DQN 0.75 0.0001 7.2 10.64

Table 10 Training results of the search for hyperparameters for the B-2 setup. Table is sorted by
episode reward in descending order

Agent Gamma Ir episode_reward_mean episode_len_mean
DON 0.75 0.01 73.28 7.55

DON 0.75 0.0001 68.36 7.79

DON 0.5 0.01 67.84 7.74

DQN 0.999 0.0001 67.73 7.84

DON 0.5 0.0001 65.0 8.07

DQN 0.75 0.001 64.85 7.77

DOQN 0.5 0.001 64.27 7.87

DON 0.999 0.01 62.66 8.0

DON 0.999 0.001 59.28 8.24

—— gamma = 0.5, Ir = 0.01
17.5 —— g9amma = 0.999, Ir = 0.01
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Fig. 5 Training runs of the three most promising agents from the B-1 setup

14000

experiments. This reveals that creating benign files classified as malware against the
LightGBM classifier is more complicated than the reversed scenario. However, this
is not the case with the MalConv classifier. The results from Table 12 show that
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Fig. 6 Training runs of the three most promising agents from the B-2 setup

Table 11 Test results of the

i Agent Gamma Ir Evasion rate [%]
three most promising agents DON 05 0.0 219
from the B-1 setup Q : : :
DQN 0.999 0.01 2.19
DQN 0.75 0.01 345
;{lable 12 tTest rfzs.ults of ﬂtle Agent Gamma Ir Evasion rate [%]
ree most promising agents
from the B-2 setup DQN 0.75 0.01 36.62
DQN 0.75 0.0001 26.76
DQN 0.5 0.01 29.58
tTable t13 ?Vefatllll results zf AV-L |AV-2 |AV3 |AV-4 |AV-5 | AV-6 | AV7
wo setups from the secon
experiment against seven B-1 | 625 |033 |00 034 (0.0 00 |0.0
real-world AVs [%] B-2 1429 |00 (00 (00 |0.0 |00 |0.0

we achieved higher evasion rates with benign files than with malware in the first
experiment. These results might also be partially caused by the differing sizes of
benign and malware datasets in our experiments.

In the end, we tested one agent from both setups, which achieved the highest
evasion rate against seven AVs programs. The results can be found in Table 13.
We can see that for most AVs, our RL agent struggled to mislead antivirus into
classifying benign files as malware. Together with our test results, the results against
real-world AVs hint that performing exploratory integrity attacks with interjected
classes in the domain of malware detection is much harder than traditional scenario.
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5 Related Work

In this section, we summarize up-to-date publications which focus on the adversarial
machine learning in conjunction with malware detection topic. We divide related
work into three sections based on the author’s strategies: gradient-based attacks,
reinforcement learning based attacks and other methods.

5.1 Gradient-Based Attacks

The gradient-based attack was proposed in [21] to attack the MalConv [25] classifier
which utilizes raw bytes of binaries. Their attack modified in average less than 1%
of padding bytes at the end of the file and achieved a 60% evasion rate.

Grosse et al. in [16] performed a white-box attack on their neural network
classifier. In their attack, they computed necessary perturbation using a gradient
of their network and then changed the corresponding features. They successfully
mislead their deep neural network in more than 63% of cases.

Another research that is based on gradient-based attacks is presented in [22]. The
authors generated small chunks of bytes called payloads which they injected either
into unused parts of sections or at the end of the file to ensure the functionality after
injection. Their white-box attack targeted against MalConv and achieved an almost
perfect evasion rate of 99%.

More attacks on MalConv were carried out in [10] by Luca Demetrio et al.
They used a technique called integrated gradients to explain what parts of binaries
contribute to prediction. They uncovered that MalConv learns weak features from
the DOS header, and perturbing only a few bytes is enough to obscure detection in
52 of 60 malware samples.

Yang et al. in [35] treated binaries as greyscale images. Firstly the authors
marked key parts of binaries by “00”, then they processed them by a convolutional
neural network (CNN). On CNN, a fast gradient sign method was applied to find
perturbations within marked sections. The perturbations were then converted to
“closest” dead-code instructions (wait, nop, ...) or API calls. Their approach
recorded a decrease of over 60% in the accuracy of deep learning detectors and an
evasion rate of over 30% on VirusTotal.

5.2 Reinforcement Learning-Based Attacks

The authors of [13] proposed a deep reinforcement model called RLAttackNet to
attack their deep neural classifier. They achieved an evasion rate of 19.13% and
used adversary samples to retrain their malware classifier to increase its area under
the receiver operating characteristic curve from 0.989 to 0.996.
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Anderson et al. presented a reinforcement learning framework called
gym-malware [2]. They targeted gradient boosted decision tree (GBDT) trained
on 100,000 executables. They experimented with both score-based and black-box
attacks, with the latter being more successful. After closer inspection of their
implementation, we have found that the authors did not perform a complete black-
box attack because they used identical feature space both for their RL agent and
targeted classifier.

Another reinforcement learning approach is presented in [28]. The authors
present stateless RL model, which means that the order of actions applied by RL
agent does not matter. They also try to remove unnecessary actions and thus interpret
the targeted model. Their work shows promising results with an evasion rate of
74%—-97% on ML detectors (LigthGBM Ember [1] and MalConv) and 32%-48%
on commercial AVs. They also study the transferability of attacks between targeted
models and found out that among ML detectors, it’s over 80%. However, between
ML and commercial AVs, only up to 7%.

The author of [26] used Android permissions as feature space. This is a key
point because modifying permissions doesn’t cause any malfunction of a given
application. Using a reinforcement learning agent, they achieved an average evasion
rate of 44.28% in a white-box scenario against 8 ML classifiers and 53.20% in a
grey-box strategy. They managed to reduce this evasion ratio by 15.22%-29.44%
by retraining with adversarial samples.

5.3 Other Methods

In [8], the authors used the feature space of their classifier to tailor the attack to evade
detection. The feature space was in the form of application programming interface
(API) calls of input sample. Greedy search was used to find a set of API calls
to add or remove. Later they retrained the classifier with adversarial samples and
introduced security regularization to improve their detection ratio further. However,
the authors did not propose an algorithm to convert an adversarial set of API calls
back to the real-world executable.

Demetrio et al. [11] performed a black-box attack at MalConv and GBDT by
injecting small chunks of benign codes into malware binaries either at the end of
the file or inside newly created sections. The authors tackled this as an optimization
problem to maximize the evasion rate while minimizing the size of injected code.
They achieved an evasion ratio of more than 90% on the MalConv classifier and
60%—-80% on GBDT. Their attack also bypassed at average 12 out of 70 AVs on
VirusTotal [33].

Hu and Tan in [17] proposed a generative adversarial network (MalGAN) to
create evasive samples. The authors achieved an almost perfect evasion ratio on
random forest, logistic regression and other ML classifiers. They also showed that
their model MalGAN could be quickly retrained to bypass new detectors. Needless
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to say, they worked only with API calls as a representation of executable binary and
did not mention how to translate the results back to binaries.

Several authors focused on data poisoning, e.g., Chen et al. poisoned Android
training dataset in [9] which led to misclassification of around 70% samples.

In [12], authors trained generative sequence-to-sequence recurrent neural net-
work language model on benign binaries to generate benign bytes, which are later
appended at the end of malware executable to bypass detection. This black-box
approach led to an evasion rate of more than 72% on three different ML classifiers.

Unique concept so-called grey-box attack is showed in [4] where the attacker has
knowledge about feature space of targeted classifier but does not have access to its
predictions. They trained their model utilizing the same feature space as the targeted
model to substitute it. Using Monte Carlo search, they found a set of operations
(limited to size 5) to evade their substitute model in 56% of cases. The authors
found out that simple changes such as certificate signature change were enough in
71% of successful mispredictions. Same operations were tried against the targeted
classifier but achieved an evasion ratio of less than 9%.

Another paper was published by Fleshman et al. [14] where they presented
multiple adversary attacks. First, the authors tried up to 10 random changes. Second,
using a binary search algorithm to find critical regions for malware classifications
and alter their contents, and last injecting malicious code at the end of otherwise
benign binaries. The results varied depending on the modifications performed. The
random changes and byte occlusion proved ineffective against ML-based models n-
gram and MalConv, whereas the accuracy of four tested AVs suffered. The injection
of malicious code successfully bypassed most classifiers, with the lowest evasion
rate of 77% recorded by the 4th AV.

6 Conclusion

We successfully implemented a reinforcement learning approach to adversarial
machine learning on the space of PE binaries. We tested numerous agent and
environment configurations which we evaluated in two separate experiments. Firstly
we focused on generating malware adversarial samples that would evade detection,
i.e., exploratory integrity attack. In the first experiment, we achieved an evasion
rate of 68.64% by the DQN agent (y = 0.5,/r = 0.001) with observation states
consisting of 1024 raw bytes from the beginning of PE binary and LightGBM model
as target classifier. We compared this result with environment setup mimicking
gym-malware setup with which we recorded an evasion rate of 60.37%, thus
exceeding this setting. Further, we reached an evasion rate of only 13.32% with
setup consisting of the DQN agent (y = 0.75, [r = 0.01), 2381 features extracted
from the binary as the agent’s observation space and MalConv classifier as a
targeted model. However, when testing the same models against real-world AVs,
we accomplished the best result with the last mentioned setup, scoring as high as
47.09% evasion rate against AV-6 and consistently outperforming the other setups.
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In the second experiment, we applied the opposite scheme where we created
benign adversarial samples, thus increasing the false positive rate of the target
model. We recorded an evasion rate of 36.62% with DQN agent (y = 0.75,/r =
0.01) with observation space made by 2381 features extracted from the PE binary
and MalConv as target model. The lower result was achieved when targeting the
LightGBM classifier, only 3.45%. These relatively low results were confirmed when
testing against real-world AVs. The highest evasion rate of 14.29% was accom-
plished by the agent targeting the MalConv classifier. This result was registered
against AV-1 with other AVs unaffected by the modifications. The agent targeting
the LightGBM model managed to mislead additionally AV-2 and AV-4 but in less
than 0.5% of cases. These results indicate that creating false positive samples is
far more demanding than the typical approach of creating false negative adversarial
samples. This is almost certainly caused by the design of antivirus programs which
typically focus on maintaining good accuracy while minimizing false positive rate
[20].

6.1 Future Work

In the future, we would like to explore reinforcement learning in more depth, trying
different agent implementations or broadening hyperparameter search space. We
aim to implement a better protocol for testing the executability of binaries since
we have found that our testing method is sensitive, e.g., to installed library version
on our virtual machine or folder path of the exe. More work should be devoted to
designing modifications of PE files and studying which are responsible for evasion.
To improve our results against real-world AVs, we would like to target specific
antivirus in the training process directly. An exciting area of adversarial machine
learning that we did not cover is retraining the classifier with adversarial samples to
increase its resistance against such attacks. Further in the future, we wish to publish
the source code for this work as open-source.
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