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Preface

We are on the cusp of a revolution in artificial intelligence (AI). Today, AI plays a
significant role in daily life, and the impact of AI is sure to increase dramatically
over the coming years. Perhaps surprisingly, the net effect of this AI revolution on
cybersecurity is, at present, unclear, as both the “good guys” and the “bad guys”
can employ such technology. If cybersecurity is to reap major benefits from AI, the
technology itself must be better understood—black boxes are inherently the enemy
of security.

Models used in AI are notoriously opaque, which creates numerous potential
problems. From a cybersecurity perspective, one of the greatest of these problems
is the threat of adversarial attacks. It follows that “explainable AI,” for example, is
of fundamental importance in information security.

This book includes chapters that attempt to illuminate various aspects of the AI
black boxes that have come to dominate cybersecurity. The topics of explainable AI
and adversarial attacks—as well as the closely related issue of model robustness—
are considered. Most of the chapters explore these and similar topics in the context
of specific security threats. The security domains considered include such diverse
areas as malware, biometrics, and side-channel attacks, among others. We have
strived to make the material accessible to the widest possible audience of researchers
and practitioners.

We are confident that this book will prove valuable to practitioners working in the
field and to researchers in both academia and industry. The chapters include insights
that should help to illuminate some of the darkest corners of popular AI models that
are used in cybersecurity.

San Jose, CA, USA Mark Stamp
Benevento, Italy Corrado Aaron Visaggio
Campobasso, Italy Francesco Mercaldo
San Jose, CA, USA Fabio Di Troia
December 2021
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Generation of Adversarial Malware
and Benign Examples Using
Reinforcement Learning

Matouš Kozák, Martin Jureček, and Róbert Lórencz

Abstract Machine learning is becoming increasingly popular among antivirus
developers as a key factor in defence against malware. While machine learning is
achieving state-of-the-art results in many areas, it also has drawbacks exploited by
many with white-box attacks. Although the white-box scenario is possible in mal-
ware detection, the detailed structure of antivirus is often unknown. Consequently,
we focused on a pure black-box setup where no information apart from the predicted
label is known to the attacker, not even the feature space or predicted score.
We implemented our exploratory integrity attack using a reinforcement learning
approach on a dataset of portable executable binaries. We tested multiple agent
configurations while targeting LightGBM and MalConv classifiers. We achieved an
evasion rate of 68.64% and 13.32% against LightGBM and MalConv classifiers,
respectively. Besides traditional modelling of malware adversarial samples, we
present a setup for creating benign files that can increase the targeted classifier’s
false positive rate. This problem was considerably more challenging for our
reinforcement learning agents, with an evasion rate of 3.45% and 36.62% against
LightGBM and MalConv classifier, respectively. To understand how these attacks
transfer from classifiers based purely on machine learning to real-world anti-
malware software, we tested the same modified files against seven well-known
antiviruses. We achieved an evasion rate of up to 47.09% in malware and 14.29% in
benign adversarial attacks.

1 Introduction

Malware detection is one of the most important problems in information security
since the detection of malware in advance allows us to block it. Malware detection
is a binary classification problem of distinguishing between malware and benign
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files [3]. One of the main problems of malware detection systems is insufficient
accuracy while keeping the false positive rate at an acceptable level. There is a
need to build a machine learning framework suited for real-life practical use that
generically detects as many malware samples as possible, with a very low false
positives rate. The significant problem to be solved is how to detect malware that
has never been seen before.

To defend against malware, users typically rely on antivirus (AV) products
to detect a threat before it can damage their systems. Antivirus vendors rely
mainly on a database of sequences of bytes (signatures) that uniquely identify the
suspect files and are unlikely to be found in benign programs [36]. The major
weakness of signature detection is that malware writers can easily modify their
code, thereby changing their program’s signature and evading virus scanners. The
signature detection technique is unable to detect obfuscated and zero-day malware.
Encryption, polymorphism, metamorphism, and other code obfuscation techniques
are widely used by malware authors to evade signature detection techniques. For
this reason, malware researchers are investigating novel detection strategies.

Nowadays, antivirus vendors face several problems concerning malware detec-
tion. The concept of employing machine learning to malware detection provides
promising solutions [31]. Moreover, since malware developers create more and
more sophisticated techniques, it is necessary to use the latest techniques from
machine learning to keep the error rate and false positive rate as low as possible. This
game may someday converge to the point when artificial intelligence of attackers
will fight against the artificial intelligence of malware researchers.

Machine learning models are vulnerable to adversarial attacks that can fool the
models [9]. For instance, an adversary can craft malware that has a similar feature
vector to some benign file’s feature vector. As a result, the training set may have
different statistical distribution than the distribution of the testing set. Therefore, it
is necessary to create defence techniques in order for machine learning algorithms
can resist such adversarial attacks.

The goal of this paper is to implement a black-box exploratory integrity attack
using reinforcement learning. We implement executability preserving modifications
and train reinforcement learning agents to alter Windows portable executable
binaries with an aim to avoid detection by a targeted machine learning classifier.
These evasion techniques are later tested on real-world antivirus software. In
comparison with other works, we do not only focus on malware adversarial samples,
but we also deal with an inverted scenario of benign adversarial examples.

This paper is organized in the following form. Section 2 gives the necessary
background to our work with a brief description of adversarial machine learning,
reinforcement learning, portable executable file format, etc. In Sect. 3, we present
our implementation and dataset description. Next, Sect. 4 contains all information
about experiments and achieved results. We summarize related work in Sect. 5. The
conclusion to this paper and ideas for future work can be found in Sect. 6.
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2 Background

In this section, we provide the minimal necessary background to understand our
paper. We firstly introduce adversarial and reinforcement machine learning. Then
we briefly describe portable executable file format and finish with the definition of
used evaluation metrics.

2.1 Adversarial Machine Learning

Machine learning outperforms human capabilities in many ways, yet we are
reserved in trusting its decisions in areas such as self-less car driving or disease
diagnostics. One of the reasons is the insufficient interpretability of the decisions
and the resulting possible weakness or bias of the system [15]. Adversarial machine
learning is a research area specializing in strengthening machine learning (ML)
systems to be resistant against attacks both from the inside (data poisoning) and
outside (evasion attacks).

In common terminology, an action to bypass or mislead a ML system is an
adversarial attack. An attacker is called an adversary but both are acceptable and
used interchangeably. In this section, we summarize the taxonomy of adversarial
attacks and describe some prevalent adversarial attack strategies, focusing mainly
on malware detection domain.

2.1.1 Taxonomy

In this part, we will closely follow the taxonomy laid down by Huang et al. in
[18] as it is one of the most complete overviews of this topic we have found. They
identify three main ways how to break down adversarial attacks based on these three
properties: influence, security violation, specificity.

Influence The first property is the way we can look at how adversary influences
targeted ML model. There are two main categories. The first is exploratory
attacks that do not alter the model itself but try to circumvent the model to achieve
attacker’s goal—usually, misclassification of a group of malicious files.
The second group is called causative attacks where the attacker impacts the
model itself, in particular the training phase. It can be in form of wrongly labelled
malware samples in training dataset.

Security violation The second property is characterized by the objective of
adversary. There are three groups. Integrity attacks cause an increase in false-
negative rate. In the domain of malware detection, a false negative is malware
sample classified as benign.
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The second group is availability attacks where the adversary does not focus on
a single class to be misclassified but targets the model’s accuracy as a whole
resulting in the model becoming completely unusable.
When an adversary tries to steal information from the model itself, e.g., what
training data the model was learned on, it is called a privacy attack.

Specificity The last property describes how large the attacker’s target set is.
In targeted attacks, there is a small set of samples that are supposed to be
misclassified, i.e., an author of malicious software wants his particular program
to be installed on the victim’s device.
Whereas in indiscriminate attacks adversary does not specify which but rather
how many samples should be mislabelled. This attack can be used as a one of the
proves that given AV is not secure.

Individual categories can be combined together, e.g., a causative targeted attack
can be when an adversary inserts malware binaries labelled as benign into a
classifiers training dataset to prevent the classifier from correctly predicting for a
particular malicious file.

Attacks can also be classified based on the available knowledge of the targeted
model to attackers. If the attacker does not have any information about the model
and is left with only the model’s output, it is called a black-box attack. An opposite
attack is called a white-box where all information about the model is known. In
between these two is a grey-box attack where partial knowledge is accessible, e.g.,
feature space of targeted classifier.

2.2 Reinforcement Learning

The key idea of reinforcement learning (RL) is a simple one. An agent (a learning
system) wants to achieve some goal. To achieve its objective, the agent must adapt
its behaviour. To learn which actions are good and bad, the agent needs a stimulus
in the form of signals from an environment where the agent works. This section is
based on [29] from which we adopted the following notions.

Reinforcement learning is a triplet of an agent policy, a reward function and a
value function. In some cases a model of environment is used as well.

The agent policy represents the agent’s behaviour at a given time and environ-
ment state. It is a function which maps pairs of states and action to the probability
of taking individual action at given state. The policy can be in the form of a simple
automaton, lookup table, but also a sophisticated algorithm.

The reward function is an immediate response from the environment to the
agent’s action. The return value is a number that grades the action taken by the agent
based on the goal. Formally, this number defines the agent’s purpose, and under no
circumstances can the agent change this function, i.e., change the goal it is facing.

The value function is a look to the future on what is an expected cumulative
reward from the current environment state. This function can be understood as a
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heuristic function, and it is a critical part of any RL model. While reward function
can be usually calculated easily, the value function must be recalculated over and
over based on past observations. It is clear that agent looks for states with the highest
value since these will maximize future rewards.

The model of environment simulates the environment and allows the agent to
predict future states and rewards. This part is optional, and not all RL systems
contain it.

Formally reinforcement learning is defined as repeated interactions between
agent and environment. In our space of modifications of binary files these interaction
take place at discrete time steps t = 0, 1, 2, . . . At time step t the environment is
at state St ∈ S where S is the set of all observable states. The agent receives state
St and, based on its policy π , chooses action At ∈ A(St ) where A(St ) is a set of
all possible actions at state St . When the environment receives response from agent
in the form of action At it computes and sends back a reward Rt+1 ∈ R ⊂ R and

changes its state: St
At−→ St+1. In this notation, Rt+1 represents the reward for the

state St+1.
As stated above, the agent looks for states that maximize future rewards. To

formalize future rewards, we denote Gt = Rt+1 + Rt+2 + · · · + RT a sum of
all rewards after time step t , where T denotes the final time step. If T �= ∞
we can call the ST a terminal state and the entire process of states, actions and
rewards from time step t = 0 to t = T an episode. After the end of each episode
the environment is reset to initial state and new independent episode begins. This
repeats until terminal condition is met. Many problems will not have any terminal
state. These problems are called continuous, and they are not covered in this work.

In real situations, the agent does not know the exact value of Gt at time step t .
The value of Gt is approximated by the value function. In the computation, it is
common to use discounted future rewards,

Gt ≈ Rt+1 + γRt+2 + γ 2Rt+3 + · · · + γ T −t−1RT =
T −t−1∑

i=0

= γ iRt+i+1

where 0 ≤ γ ≤ 1 is called discount rate. This helps regulate importance of looking
far into the future. Further we outline an action-value function for policy π , qπ(s, a),
that defines value of action a when in state s if following policy π . The value is in
form of expected future reward Gt , formally,

qπ(s, a) = Eπ [Gt |St = s, At = a]

where Eπ [·] is expected value of random variable for policy π .
The rest of this section describes two algorithms which we later used in Sect. 3.

Note that there are numerous other algorithms for reinforcement learning.
Q-learning is an algorithm introduced by Watkins [34] to learn the action-value

function. It works by iteratively updating the learned action-value function, Q, in
the following manner,
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Qnew(St , At ) = Q(St , At ) + α[Rt+1 + γ max
a

{Q(St+1, a)} − Q(St , At )]

where α is learning rate, a ∈ A(St+1). Therefore, maxa{Q(St+1, a)} is an
estimation of the best future value. Learned values of function Q are stored in
so-called Q-table. In our work we used extension of this algorithm called deep
Q-learning or deep Q network (DQN) where the Q-table is replaced with neural
network [24].

Second algorithm we describe is proximal policy optimization (PPO) [27]. It is
based on policy gradient methods. Informally, these methods use gradient ascent
algorithm to approximate policy weight vector θ ∈ R

n. The policy of taking action
a is then conditioned not only by the current state St but also weight vector θ . PPO
improves the approximation by vanilla policy gradient method with multiple epochs
of the gradient ascent before updating the policy vector.

2.3 Portable Executable File Format

Portable executable (PE) format is a file format commonly found on Windows
operating system. Executable files (EXE), object codes and dynamically link
libraries used on 32-bit and 64-bit systems adhere to this format. The structure of the
PE file is as follows. The program starts with MS-DOS header and stub which are
nowadays almost unused. Following is the signature and file header which contains
information such as a target machine or size of section table. Next is optional
header that contains, among other things, the necessary data directories. Finishing
the program is a section table with corresponding section data. Precise specification
is available in [19].

3 Implementation

Based on the taxonomy introduced in Sect. 2.1.1 our main approach belongs to the
category of exploratory integrity attack. In other words, we are trying to mislead
the classifier (antivirus) to predict malicious files as benign incorrectly. We also
experimented with an idea to make an exploratory integrity attack where we interject
classes. Therefore our goal would be to mislead the classifier to incorrectly predict
benign files as malicious.

We utilized the existing gym-malware [2] framework. This framework pro-
vides a setup for deploying a custom RL agent to generate adversarial samples
against a malware classifier. Both the agent and the classifier can be easily changed
with even remote classifier supported. The environment is in OpenAI Gym [5]
format and binary manipulations are implemented in LIEF [30] library. However,
we have found that their implementation is not ideal. In particular, modifications of
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PE files using LIEF do not preserve functionality for most of their implemented
modifications according to our testing procedure and make unnecessary changes to
original files. We also disagree with their approach to using the target classifier’s
feature space as an observation space for the RL agent as it can give an unfair
advantage to the RL agent as opposed to a pure black-box setup where no
information apart from the result label is known. For the reasons mentioned above,
we have modified the existing implementation [2] and our implementation contain
the following differences: minimizing unneeded changes to PE files, deploying
different RL agents, implementing pure black-box setup.

3.1 Overview

We propose a complete setup consisting of custom gym class in OpenAI Gym
format, manipulator of PE files preserving their executability and reinforcement
learning agent which learns to maximize evasion rate against targeted classifier
while minimizing the number of PE file modifications. Evasion rate is a key
metric that is used in adversarial machine learning on malware detection domain.
It represents the proportion of files that were misclassified by the target classifier,

evasion rate = misclassif ied

total

3.2 Dataset

We use two separate datasets of PE executables. The first, malware dataset consists
of 5000 malware files from the VirusShare [32] repository. The second, benign
dataset was gathered from fresh Windows 10 installation and Windows university
computers and contains 1592 files. Both datasets contain only executables. Dynam-
ically linked libraries and object files were not included in the datasets.

3.3 PE File Modifications

We implemented most of the modifications in pefile [6] library by extending
existing implementation of PE file modifications by MAB-Malware [28] and
PEsidious [7]. MAB-Malware implementation is described in Related Work
under paper [28] and PEsidious is an adversarial malware generator built on
the top of gym-malware framework. We opted to rather create more than fewer
modifications and let the RL agents choose which are the most valuable. Be aware
that we focus on black-box attacks where we do not have any information about
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what features the targeted model might use so we cannot design modifications
tailored against specific malware detector.

All modifications were tested on a fresh Windows 10 virtual box environment.
We selected randomly 50 benign binaries from our dataset as a test set and
considered modification successful if the given program executed and showed itself
in the tasklist command. This protocol has its limitation which we discuss in
Sect. 6. We accepted the modification if at least 45 out of 50 binaries pass the test.
We ensured that a set of 50 benign binaries passed the test in the first place. In total
we have 9 working modifications:

Rename Section: Chooses a section at random and renames it to one
of common benign section name.

Add Section: Adds new section with benign content (if enough
space for a new entry in Section table).

Remove Certificate: Removes certificate table.
Remove Debug: Removes debug data.
Break Checksum: Zeros out CheckSum in Optional header.
Append Overlay: Adds benign content at the end of file.
Increase TimeDateStamp: Increases TimeDateStamp by 500 days.1

Decrease TimeDateStamp: Decreases TimeDateStamp by 500 days.
Append Imports: Selects library from a list of common imported

libraries. Adds a new section with library name and
its typical functions.

We had experimented with other modifications as well, e.g., shuffling section
headers. However, we did not achieve an acceptable execution ratio. Comparison of
number of executing files after modifications can be seen in Table 1. We compared
gym-malware, PEsidious and our modifications extending MAB-Malware
and using pefile library. We can see that our set of PE file modifications (pefile
column) achieves higher execution rates than other implementations on most of the
tested modifications. All nine operations from the pefile column were later used as
the RL agent action space.

3.4 Target Classifier

We studied two primary scenarios. In the first one, the target classifier is the
LightGBM model, and in the second one, it is MalConv, both trained by authors of
EMBER dataset [1]. LightGBM model is a gradient boosted method and is trained
on PE files transformed to feature space of 2,381 float numbers. On the other hand,
the MalConv classifier is deep convolutional neural network and represents binary
files with their first 200,000 raw bytes.

1 500 days were chosen to represent a substantial period of time and not a multiple of one year.
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Table 1 Numbers of files executed successfully after modification from total of 50 binaries. The
symbol × denotes that given operation was not implemented

Action Gym-malware PEsidious pefile

Break checksum 4 × 47

Create new entry point 14 × ×
Append new import 42 48 48

Overlay append 50 47 46

Remove debug 5 × 50

Remove certificate 22 × 49

Add new section 4 48 46

Append to section 8 × ×
Rename section 5 4 49

upx pack 46 × ×
upx unpack 49 × ×
Increase TimeDateStamp × × 49

Decrease TimeDataStamp × × 49

3.5 Agent and Its Environment

We implemented multiple environment setups, all adhering to the OpenAI Gym
structure. Key methods which must be implemented are reset and step methods.
The reset method resets the environment to the initial state to get ready for
the next episode. The return value of reset method is an observation. The
Observation is a representation of the environment state which is presented to the
agent. We implemented different observations based on targeted classifier. We either
used raw bytes from the beginning of the binary or extracted features from PE files
such as bytes histogram, imports and sections info or printable string. The step
method performs the given agent’s action on the environment. It is responsible for
changing the environment state, tracking episode length and calculating reward for
the agent’s action. We limited the length of the episode to 10 calls of step method.
It returns quadruplet of observation, reward, done (flag if an episode has ended),
info (debugging information). The reward is either 0 if the action does not cause
misclassification or (maximum episode length - number of taken actions) × 10 +
100. By taking the number of taken actions into account, we tried to force the agent
to prioritize minimal modifications to the binaries.

4 Evaluation

In this section, we describe all the experiments we performed and present our results.
In total, we have two main experiments with multiple evaluation phases and initial
setups.
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Fig. 1 Overview of our experiment workflow

All experiments follow this protocol. We start with a dataset of PE binaries and
split it to train set and test set in 80:20 ratio. We create a training gym environment
and use Ray Tune [23] to find optimal hyperparameters. Ray Tune is a Python
library providing easy to use hyperparameter tuning interface. We explore the space
of several hyperparameters. We perform a grid search on: agent type (DQN vs PPO),
learning rate (lr) and discount rate (gamma γ ) with other parameters left to default
values as set by the authors of Ray Tune.

After identifying suitable hyperparameters values, we train the best performing
(the one with the highest mean reward in a single training iteration, in the subsequent
tables marked as episode reward) agents again up to 15,000 episodes. In the end,
we test the agents on the test set. In the test results, we highlighted the highest
evasion rate values in bold. In both the training and testing procedure, we discard any
files that are already misclassified before adversarial modification. After evaluation
on our test set against target classifier, we test the same modifications made by
the best performing agent on real-world AVs from cybersecurity companies Avast,
Cylance, Symantec (NortonLifeLock), ESET, Kaspersky, McAfee and Microsoft
using VirusTotal [33] website. In our presentation of results, we anonymize the
names of AVs to minimize the potential misuse of this work. Overview of our
experiment workflow is pictured in Fig. 1.

4.1 Adversarial Malware Examples

In the first experiment, we focused on generating adversarial malware samples,
i.e., we modified malware binaries to evade detection by the target classifier. This
procedure is called an exploratory integrity attack. For this task, we defined multiple
environment setups. In the first one, we use the LightGBM classifier as a target
model, and we use the first 1024 (4096, 8192) bytes of PE binary as observation
space for the agent. We labelled this setup M-1.

Table 2 presents a comparison of agents with different hyperparameters values
with regard to their mean reward and episode length. It is clear that DQN agents
significantly outperform PPO agents in all environment and hyperparameters setups.
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Table 2 Training results of the search for hyperparameters for the M-1 setup. Each table represents
different observation space (1024B, 4096B, 8192B). Tables are sorted by episode reward in
descending order

Episode Episode

Agent Gamma lr reward length

DQN 0.5 0.001 125.8 5.0

DQN 0.75 0.001 119.47 5.4

DQN 0.999 0.001 118.17 5.4

DQN 0.999 0.01 115.46 5.74

DQN 0.75 0.01 110.97 5.84

DQN 0.5 0.0001 110.4 5.65

DQN 0.5 0.01 109.51 5.88

DQN 0.75 0.0001 107.44 5.86

DQN 0.999 0.0001 105.91 5.96

PPO 0.5 0.001 92.09 6.82

PPO 0.999 0.001 86.86 7.1

PPO 0.75 0.001 86.47 7.1

PPO 0.5 0.0001 83.83 7.09

PPO 0.5 0.01 83.04 7.26

PPO 0.75 0.0001 82.22 7.19

PPO 0.999 0.01 81.62 7.35

PPO 0.999 0.0001 80.3 7.38

PPO 0.75 0.01 74.95 7.64

(a) 1024B

Episode Episode

Agent Gamma lr reward length

DQN 0.75 0.01 110.99 5.85

DQN 0.5 0.0001 110.49 5.92

DQN 0.5 0.01 110.04 5.93

DQN 0.999 0.001 109.96 6.02

DQN 0.75 0.0001 108.25 5.9

DQN 0.999 0.0001 107.62 6.09

DQN 0.5 0.001 106.08 6.15

DQN 0.75 0.001 105.45 6.17

DQN 0.999 0.01 100.91 6.34

PPO 0.75 0.001 90.97 6.9

PPO 0.5 0.001 90.07 6.89

PPO 0.75 0.01 86.97 7.08

PPO 0.75 0.0001 86.37 7.04

PPO 0.5 0.0001 86.16 7.09

PPO 0.999 0.0001 84.34 7.22

PPO 0.999 0.001 82.1 7.34

PPO 0.999 0.01 66.63 8.09

PPO 0.5 0.01 65.72 7.93

(b) 4096B

Episode Episode

Agent Gamma lr reward length

DQN 0.5 0.0001 110.64 5.91

DQN 0.999 0.0001 110.48 5.95

DQN 0.75 0.0001 109.88 5.97

DQN 0.75 0.01 109.23 6.02

DQN 0.5 0.01 107.96 6.14

DQN 0.75 0.001 105.94 6.15

DQN 0.5 0.001 105.94 6.24

DQN 0.999 0.01 105.91 6.14

DQN 0.999 0.001 104.41 6.24

PPO 0.5 0.0001 91.32 6.86

PPO 0.5 0.001 89.74 6.92

PPO 0.999 0.0001 88.32 7.06

PPO 0.75 0.001 87.14 7.06

PPO 0.75 0.0001 86.83 7.11

PPO 0.75 0.01 86.45 7.21

PPO 0.999 0.001 80.48 7.47

PPO 0.5 0.01 61.25 8.32

PPO 0.999 0.01 60.79 8.32

(c) 8192B
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Fig. 2 Training runs of the three most promising agents from the M-1 setup

Table 3 Test results of the
three most promising agents
from the M-1 setup

Agent Gamma lr Evasion rate [%]

DQN 0.5 0.001 68.64
DQN 0.75 0.001 65.21

DQN 0.999 0.001 60.22

Based on the results from Table 2 the environment with an observation space of 1024
bytes performed the best.

We took the first three best configurations (based on the mean episode reward)
from Table 2 and tested them up to 15,000 episodes. The training runs are shown in
Fig. 2 below.

From Fig. 2 it is not particularly clear what configuration will perform the best
on the test set. However DQN agents with gamma 0.5 and 0.75 scored a bit higher
than the 3rd configuration.

After the training had ended we showed agents the testing set and performed
evaluation. The highest evasion ratio of 68.64% was achieved by DQN agent with
γ = 0.5 and lr = 0.001. Full results are shown in Table 3.

In the second setup, we essentially switched the targeted classifiers feature space
and agent’s observation space. Here we used the LightGBM classifier’s feature
space as PE file representation for the agent and as targeted classifier we chose
MalConv model. This setting is marked as M-2. In this experiment, we validated that
DQN is better for our problem and we use it for all future experiments. Complete
results are shown in Table 4.

We trained the three top agents up to 15,000 episodes, the training progress is
shown in Fig. 3. The highest peak in terms of mean episode reward was recorded by
configuration with γ = 0.75 and lr = 0.01. Compared to Fig. 2 the mean episode
reward varied dramatically between training iterations and was significantly lower.

After we trained the agents, we evaluated their performance on the test set. The
results are shown in Table 5. The results are significantly worse than in our M-
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Table 4 Training results of
the search for
hyperparameters for M-2
setup. Table is sorted by
episode reward in descending
order

Agent Gamma lr Episode reward Episode length

DQN 0.999 0.01 37.43 9.39

DQN 0.5 0.01 35.62 9.46

DQN 0.75 0.01 35.59 9.46

DQN 0.75 0.001 35.27 9.56

DQN 0.75 0.0001 33.84 9.63

DQN 0.5 0.0001 33.29 9.58

DQN 0.999 0.0001 32.07 9.48

DQN 0.999 0.001 31.95 9.59

DQN 0.5 0.001 31.77 9.66

PPO 0.5 0.0001 21.19 10.1

PPO 0.5 0.001 20.14 10.18

PPO 0.999 0.0001 19.64 10.17

PPO 0.75 0.0001 19.63 10.16

PPO 0.75 0.001 17.6 10.29

PPO 0.999 0.001 16.84 10.32

PPO 0.75 0.01 15.57 10.35

PPO 0.5 0.01 14.1 10.39

PPO 0.999 0.01 11.2 10.53

Fig. 3 Training runs of the three most promising agents from the M-2 setup

Table 5 Test results of the 3
most promising agents from
the M-2 setup

Agent Gamma lr Evasion rate [%]

DQN 0.999 0.01 12.56

DQN 0.5 0.01 11.94

DQN 0.75 0.01 13.32

1 setting and that might indicate that the MalConv classifier is more resilient to
adversarial attacks than LightGBM.

In the third setting, we simulated the approach of gym-malware framework
authors using EMBER feature space for agent’s observation and EMBER classifier
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Table 6 Training results of
the search for
hyperparameters for the M-3
setup. Table is sorted by
episode reward in descending
order

Agent Gamma lr Episode reward Episode length

DQN 0.75 0.0001 115.41 5.66

DQN 0.75 0.001 114.38 5.53

DQN 0.75 0.01 113.13 5.67

DQN 0.5 0.01 112.62 5.61

DQN 0.999 0.01 110.96 5.85

DQN 0.999 0.001 108.65 5.91

DQN 0.999 0.0001 108.36 5.95

DQN 0.5 0.001 105.6 6.17

DQN 0.5 0.0001 103.01 6.17

Fig. 4 Training runs of the three most promising agents from the M-3 setup

Table 7 Test results of the
three most promising agents
from the M-3 setup

Agent Gamma lr Evasion rate [%]

DQN 0.75 0.0001 58.50

DQN 0.75 0.001 60.37
DQN 0.75 0.01 57.25

as a targeted model. We marked this approach M-3. Interestingly, we did not achieve
a higher average reward during training than with our first setup. The results of the
search for optimal hyperparameters can be found in Table 6.

We again took the three best performing agents from the ranking and trained
them up to 15,000 training episodes. The training process is pictured in Fig. 4. We
did not find big differences between configurations during training runs, although
the agent with γ = 0.75 and lr = 0.001 recorded the biggest drops in average
reward during training.

We evaluate these three agents on the test set and the result are in Table 7 below.
At the beginning of Sect. 3 we argued that having an agent with observation space
equal to the feature space of the target classifier might give the agent an unfair
advantage. However, in our evaluation, we actually did score a lower evasion rate
than with our M-1 setup.
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Table 8 Overall results of all
three setups from the first
experiment against seven
real-world AVs [%]

AV-1 AV-2 AV-3 AV-4 AV-5 AV-6 AV-7

M-1 2.76 1.8 5.54 1.47 4.87 1.47 8.06

M-2 6.12 31.69 26.52 13.03 16.94 47.09 17.67
M-3 3.74 14.68 3.01 1.13 4.61 31.79 2.03

At the end of the evaluation, we wanted to verify real-world performance.
Therefore, we took the best agents from all three setups, modified all samples
from the test set, excluding the misclassified samples, and then showed them to
commercially available AVs. We used DQN agents with γ = 0.5 and lr = 0.001
from M-1 setup, γ = 0.75 and lr = 0.01 from M-2 setup together with γ = 0.75
and lr = 0.001 from M-3 setting. The results we achieved are shown in Table 8.

From the Table 8 we can see that the overall best setting is the DQN agent (γ =
0.75, lr = 0.01) from M-2 setup. This is an unforeseen result since when testing
against the original target classifier (MalConv), this configuration achieved in most
cases lower evasion rate (Table 5) than against real-world AVs.

4.2 Adversarial Benign Examples

In the second experiment, we implemented an exploratory integrity attack with
interjected classes, i.e., we modified benign files to mislead the target classifier into
falsely predicting malware. This is an unusual setup since most researches focus on
the opposite scenario. Even though it is less popular, we think that a scheme where
one company develops both the AV and other software could potentially modify
their software to increase the false positive of rival AV developers.

In this experiment, we defined two environments with LightGBM and MalConv
classifier as a targeted model. This time we used only the 1024 bytes feature space
for the first setup and did not experiment with other than DQN agents. We labelled
the first and second settings as B-1 and B-2, respectively.

Table 9 shows results of DQN agents from B-1 setting. The difference between
the results from the first experiment and these is striking, with the latter performing
significantly worse. On the other hand, results from B-2 setup (Table 10) where we
attack the MalConv model are looking better than from the first experiment.

As in experiment one, we took the first three configurations from both setups and
trained them up to 15,000 episodes. The first setup with LightGBM model as target
classifier is shown in Fig. 5. All agents struggled to increase the false positive rate
of the classifier with a mean reward not exceeding 20.0.

The second setup performed a lot better in modifying benign files against the
MalConv classifier with two agents configurations that exceeded the mean reward
of 70.0. The training runs are shown in Fig. 6.

The test results from Table 11 verified the statement mentioned above about the
B-1 setup. The evasion rate of 3.45% is the lowest recorded evasion rate across the
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Table 9 Training results of the search for hyperparameters for the B-1 setup. Table is sorted by
episode reward in descending order

Agent Gamma lr episode_reward_mean episode_len_mean

DQN 0.5 0.01 13.76 10.34

DQN 0.999 0.01 13.7 10.35

DQN 0.75 0.01 12.28 10.4

DQN 0.999 0.001 12.0 10.43

DQN 0.5 0.001 10.0 10.54

DQN 0.999 0.0001 8.9 10.56

DQN 0.5 0.0001 7.5 10.61

DQN 0.75 0.001 7.4 10.62

DQN 0.75 0.0001 7.2 10.64

Table 10 Training results of the search for hyperparameters for the B-2 setup. Table is sorted by
episode reward in descending order

Agent Gamma lr episode_reward_mean episode_len_mean

DQN 0.75 0.01 73.28 7.55

DQN 0.75 0.0001 68.36 7.79

DQN 0.5 0.01 67.84 7.74

DQN 0.999 0.0001 67.73 7.84

DQN 0.5 0.0001 65.0 8.07

DQN 0.75 0.001 64.85 7.77

DQN 0.5 0.001 64.27 7.87

DQN 0.999 0.01 62.66 8.0

DQN 0.999 0.001 59.28 8.24

Fig. 5 Training runs of the three most promising agents from the B-1 setup

experiments. This reveals that creating benign files classified as malware against the
LightGBM classifier is more complicated than the reversed scenario. However, this
is not the case with the MalConv classifier. The results from Table 12 show that
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Fig. 6 Training runs of the three most promising agents from the B-2 setup

Table 11 Test results of the
three most promising agents
from the B-1 setup

Agent Gamma lr Evasion rate [%]

DQN 0.5 0.01 2.19

DQN 0.999 0.01 2.19

DQN 0.75 0.01 3.45

Table 12 Test results of the
three most promising agents
from the B-2 setup

Agent Gamma lr Evasion rate [%]

DQN 0.75 0.01 36.62
DQN 0.75 0.0001 26.76

DQN 0.5 0.01 29.58

Table 13 Overall results of
two setups from the second
experiment against seven
real-world AVs [%]

AV-1 AV-2 AV-3 AV-4 AV-5 AV-6 AV-7

B-1 6.25 0.33 0.0 0.34 0.0 0.0 0.0

B-2 14.29 0.0 0.0 0.0 0.0 0.0 0.0

we achieved higher evasion rates with benign files than with malware in the first
experiment. These results might also be partially caused by the differing sizes of
benign and malware datasets in our experiments.

In the end, we tested one agent from both setups, which achieved the highest
evasion rate against seven AVs programs. The results can be found in Table 13.
We can see that for most AVs, our RL agent struggled to mislead antivirus into
classifying benign files as malware. Together with our test results, the results against
real-world AVs hint that performing exploratory integrity attacks with interjected
classes in the domain of malware detection is much harder than traditional scenario.
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5 Related Work

In this section, we summarize up-to-date publications which focus on the adversarial
machine learning in conjunction with malware detection topic. We divide related
work into three sections based on the author’s strategies: gradient-based attacks,
reinforcement learning based attacks and other methods.

5.1 Gradient-Based Attacks

The gradient-based attack was proposed in [21] to attack the MalConv [25] classifier
which utilizes raw bytes of binaries. Their attack modified in average less than 1%
of padding bytes at the end of the file and achieved a 60% evasion rate.

Grosse et al. in [16] performed a white-box attack on their neural network
classifier. In their attack, they computed necessary perturbation using a gradient
of their network and then changed the corresponding features. They successfully
mislead their deep neural network in more than 63% of cases.

Another research that is based on gradient-based attacks is presented in [22]. The
authors generated small chunks of bytes called payloads which they injected either
into unused parts of sections or at the end of the file to ensure the functionality after
injection. Their white-box attack targeted against MalConv and achieved an almost
perfect evasion rate of 99%.

More attacks on MalConv were carried out in [10] by Luca Demetrio et al.
They used a technique called integrated gradients to explain what parts of binaries
contribute to prediction. They uncovered that MalConv learns weak features from
the DOS header, and perturbing only a few bytes is enough to obscure detection in
52 of 60 malware samples.

Yang et al. in [35] treated binaries as greyscale images. Firstly the authors
marked key parts of binaries by “00”, then they processed them by a convolutional
neural network (CNN). On CNN, a fast gradient sign method was applied to find
perturbations within marked sections. The perturbations were then converted to
“closest” dead-code instructions (wait, nop, . . . ) or API calls. Their approach
recorded a decrease of over 60% in the accuracy of deep learning detectors and an
evasion rate of over 30% on VirusTotal.

5.2 Reinforcement Learning-Based Attacks

The authors of [13] proposed a deep reinforcement model called RLAttackNet to
attack their deep neural classifier. They achieved an evasion rate of 19.13% and
used adversary samples to retrain their malware classifier to increase its area under
the receiver operating characteristic curve from 0.989 to 0.996.
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Anderson et al. presented a reinforcement learning framework called
gym-malware [2]. They targeted gradient boosted decision tree (GBDT) trained
on 100,000 executables. They experimented with both score-based and black-box
attacks, with the latter being more successful. After closer inspection of their
implementation, we have found that the authors did not perform a complete black-
box attack because they used identical feature space both for their RL agent and
targeted classifier.

Another reinforcement learning approach is presented in [28]. The authors
present stateless RL model, which means that the order of actions applied by RL
agent does not matter. They also try to remove unnecessary actions and thus interpret
the targeted model. Their work shows promising results with an evasion rate of
74%–97% on ML detectors (LigthGBM Ember [1] and MalConv) and 32%–48%
on commercial AVs. They also study the transferability of attacks between targeted
models and found out that among ML detectors, it’s over 80%. However, between
ML and commercial AVs, only up to 7%.

The author of [26] used Android permissions as feature space. This is a key
point because modifying permissions doesn’t cause any malfunction of a given
application. Using a reinforcement learning agent, they achieved an average evasion
rate of 44.28% in a white-box scenario against 8 ML classifiers and 53.20% in a
grey-box strategy. They managed to reduce this evasion ratio by 15.22%–29.44%
by retraining with adversarial samples.

5.3 Other Methods

In [8], the authors used the feature space of their classifier to tailor the attack to evade
detection. The feature space was in the form of application programming interface
(API) calls of input sample. Greedy search was used to find a set of API calls
to add or remove. Later they retrained the classifier with adversarial samples and
introduced security regularization to improve their detection ratio further. However,
the authors did not propose an algorithm to convert an adversarial set of API calls
back to the real-world executable.

Demetrio et al. [11] performed a black-box attack at MalConv and GBDT by
injecting small chunks of benign codes into malware binaries either at the end of
the file or inside newly created sections. The authors tackled this as an optimization
problem to maximize the evasion rate while minimizing the size of injected code.
They achieved an evasion ratio of more than 90% on the MalConv classifier and
60%–80% on GBDT. Their attack also bypassed at average 12 out of 70 AVs on
VirusTotal [33].

Hu and Tan in [17] proposed a generative adversarial network (MalGAN) to
create evasive samples. The authors achieved an almost perfect evasion ratio on
random forest, logistic regression and other ML classifiers. They also showed that
their model MalGAN could be quickly retrained to bypass new detectors. Needless
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to say, they worked only with API calls as a representation of executable binary and
did not mention how to translate the results back to binaries.

Several authors focused on data poisoning, e.g., Chen et al. poisoned Android
training dataset in [9] which led to misclassification of around 70% samples.

In [12], authors trained generative sequence-to-sequence recurrent neural net-
work language model on benign binaries to generate benign bytes, which are later
appended at the end of malware executable to bypass detection. This black-box
approach led to an evasion rate of more than 72% on three different ML classifiers.

Unique concept so-called grey-box attack is showed in [4] where the attacker has
knowledge about feature space of targeted classifier but does not have access to its
predictions. They trained their model utilizing the same feature space as the targeted
model to substitute it. Using Monte Carlo search, they found a set of operations
(limited to size 5) to evade their substitute model in 56% of cases. The authors
found out that simple changes such as certificate signature change were enough in
71% of successful mispredictions. Same operations were tried against the targeted
classifier but achieved an evasion ratio of less than 9%.

Another paper was published by Fleshman et al. [14] where they presented
multiple adversary attacks. First, the authors tried up to 10 random changes. Second,
using a binary search algorithm to find critical regions for malware classifications
and alter their contents, and last injecting malicious code at the end of otherwise
benign binaries. The results varied depending on the modifications performed. The
random changes and byte occlusion proved ineffective against ML-based models n-
gram and MalConv, whereas the accuracy of four tested AVs suffered. The injection
of malicious code successfully bypassed most classifiers, with the lowest evasion
rate of 77% recorded by the 4th AV.

6 Conclusion

We successfully implemented a reinforcement learning approach to adversarial
machine learning on the space of PE binaries. We tested numerous agent and
environment configurations which we evaluated in two separate experiments. Firstly
we focused on generating malware adversarial samples that would evade detection,
i.e., exploratory integrity attack. In the first experiment, we achieved an evasion
rate of 68.64% by the DQN agent (γ = 0.5, lr = 0.001) with observation states
consisting of 1024 raw bytes from the beginning of PE binary and LightGBM model
as target classifier. We compared this result with environment setup mimicking
gym-malware setup with which we recorded an evasion rate of 60.37%, thus
exceeding this setting. Further, we reached an evasion rate of only 13.32% with
setup consisting of the DQN agent (γ = 0.75, lr = 0.01), 2381 features extracted
from the binary as the agent’s observation space and MalConv classifier as a
targeted model. However, when testing the same models against real-world AVs,
we accomplished the best result with the last mentioned setup, scoring as high as
47.09% evasion rate against AV-6 and consistently outperforming the other setups.
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In the second experiment, we applied the opposite scheme where we created
benign adversarial samples, thus increasing the false positive rate of the target
model. We recorded an evasion rate of 36.62% with DQN agent (γ = 0.75, lr =
0.01) with observation space made by 2381 features extracted from the PE binary
and MalConv as target model. The lower result was achieved when targeting the
LightGBM classifier, only 3.45%. These relatively low results were confirmed when
testing against real-world AVs. The highest evasion rate of 14.29% was accom-
plished by the agent targeting the MalConv classifier. This result was registered
against AV-1 with other AVs unaffected by the modifications. The agent targeting
the LightGBM model managed to mislead additionally AV-2 and AV-4 but in less
than 0.5% of cases. These results indicate that creating false positive samples is
far more demanding than the typical approach of creating false negative adversarial
samples. This is almost certainly caused by the design of antivirus programs which
typically focus on maintaining good accuracy while minimizing false positive rate
[20].

6.1 Future Work

In the future, we would like to explore reinforcement learning in more depth, trying
different agent implementations or broadening hyperparameter search space. We
aim to implement a better protocol for testing the executability of binaries since
we have found that our testing method is sensitive, e.g., to installed library version
on our virtual machine or folder path of the exe. More work should be devoted to
designing modifications of PE files and studying which are responsible for evasion.
To improve our results against real-world AVs, we would like to target specific
antivirus in the training process directly. An exciting area of adversarial machine
learning that we did not cover is retraining the classifier with adversarial samples to
increase its resistance against such attacks. Further in the future, we wish to publish
the source code for this work as open-source.
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Auxiliary-Classifier GAN for Malware
Analysis

Rakesh Nagaraju and Mark Stamp

Abstract Generative adversarial networks (GAN) are a class of powerful machine
learning techniques, where both a generative and discriminative model are trained
simultaneously. GANs have been used, for example, to successfully generate “deep
fake” images. A recent trend in malware research consists of treating executables
as images and employing image-based analysis techniques. In this research, we
generate fake malware images using auxiliary classifier GANs (AC-GAN), and
we consider the effectiveness of various techniques for classifying the resulting
images. Our results indicate that the resulting multiclass classification problem
is challenging, yet we can obtain strong results when restricting the problem to
distinguishing between real and fake samples. While the AC-GAN generated images
often appear to be very similar to real malware images, we conclude that from a deep
learning perspective, the AC-GAN generated samples do not rise to the level of deep
fake malware images.

1 Introduction

Malware is malicious software that is intentionally designed to do harm. The
potential dangers of malware include access to private data, which in turn can
lead to confidential or financial data theft, identity theft, ransomware, and other
problems. Those affected by malware attacks can range from large corporations
and government organizations to a typical individual computer user. According to
McAfee Labs, “419 malware threats were encountered per minute in the second
quarter of 2020, an increase of almost 12% over the previous quarter” [34]. Malware
plays a major role in computer crime and information warfare, and hence malware
research plays a prominent—if not dominant—role in the field of cybersecurity.
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A recent trend in malware research consists of treating executables as images,
which opens the door to the use of image-based analysis techniques. For example, a
malware detector that uses image features known as “gist descriptors” is considered
in [54]. Other image-based approaches that have been used with success in the
malware domain include convolution neural networks (CNN) and extreme learning
machines (ELM); see [24] and [55], respectively.

A generative adversarial network (GAN) is a powerful machine learning con-
cept where both a generative and discriminative networks are trained simultane-
ously [54]. GANs have previously been studied in the context of malware images.
For example, in [31] a transfer learning-based GAN method is used to classify pre-
viously unknown malware—so-called zero-day malware. In this approach, GANs
are used to generate fake malware images that serve to augment the training data,
thereby reducing the required number of training samples.

In this research, we focus on generating realistic fake malware images using
GANs, and we consider classification of the resulting fake and real images.
Specifically, we use auxiliary classifier GAN (AC-GAN), which enables us to
work with multiclass data. We first convert malware executables from a large
and diverse malware datasets into images. We train AC-GAN models on these
images, which enables us to generate fake malware images corresponding to each
family. To determine the quality of these fake samples, we train various models,
including CNNs and ELMs, to distinguish between the real and fake samples.
The performance of these models provide an indication of the quality of our fake
malware images—the worse the models perform, the better, in some sense, are our
fake malware images. We also consider the quality of the discriminative models
trained using AC-GANs. In all cases, we experiment with various combinations of
real and fake malware images.

The remainder of this paper is organized as follows. Section 2 covers relevant
related work. In Sect. 3, we outline the methodologies used in this project. Section 4
provides details on the datasets and our specific implementation. Our experimental
results appear in Sect. 5, while in Sect. 6, we conclude the paper and provide a brief
discussion of possible avenues for future work.

2 Related Work

In this section, we selectively survey some of the previous work related to malware
classification using machine learning techniques. The limitations and advantages of
various approaches are considered.

Most malware detectors are based on some form of pattern matching. An inherent
weakness of such techniques is that a malware writer can evade detection by altering
the underlying pattern. Even statistical and machine learning-based malware detec-
tors can be susceptible to a wide variety of code obfuscation techniques [54]. Hence,
the challenge is to find an efficient approach that provides strong results along with
robustness, even under such attack scenarios.
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In [27] deep learning techniques are considered for malware classification. The
results from two different experiments show that deep learning techniques achieves
better accuracy than standard malware detectors. However, these models are costly,
particularly in terms of training.

A semi-supervised malware detection approach is proposed [43]. Here, the
authors use a technique that they refer to as “learning with local and global
consistency” to reduce dependency on labeled data. In [11], another popular
deep learning model, Word2Vec, is used for malware representation. Paired with
a gradient search algorithm, this method achieves an accuracy of about 94%.
However, for both this model, the training time is high.

In [31], the authors show that the generative aspect of GANs can be used to
improve malware classification. The article [21] proposes a GAN-based model,
denoted as MalGAN, that generates fake malware, which the authors claim are unde-
tectable by state-of-the-art techniques. In [25], MalGAN is extended to “improved
MalGAN,” which additionally learns benign features. These approaches were
trained on a variety of features, including opcodes. Experiments in [26] show that
a deep convolution GAN can enable training with limited data, while in [31], deep
learning GAN models are used to produce images that appear to be malware samples
visualized as images [22].

In [37], a conditional GAN is used to produce results comparable to previous
research, while additionally providing more control over the image generation. One
problem in this case, is that the discriminator model cannot be used to classify the
sample labels, as the labels are passed as a parameter to the model.

In [21, 25], malware detection models are trained on a variety of features,
including opcodes. Specifically, in [21], detectors based on neural networks are
generated by considering malware features such as opcodes. It should be noted that
the extraction and processing of opcodes is a relatively costly process.

A recent trend in malware research consists of treating executables as images,
which opens the door to the use of image-based analysis techniques. In [35], the
authors develop a procedure to convert executable binary files into grayscale images.
In [13], the authors determine the parts of an executable (.text, .data, etc.)
based on image structure. As mentioned above, a malware detector that relies on
image features known as gist descriptors is described in [54], where experiments
show that using malware images results in a relatively robust detection technique.

Deep learning techniques including recurrent neural networks (RNN) and con-
volutional neural networks (CNN) are applied to malware images in [46]. Good
accuracies are observed for these approaches, which further supports the use of
images for malware analysis. Other image-based malware research involves CNNs
and extreme learning machines (ELM); see [24] and [55], respectively.

The literature to date clearly shows that deep learning models applied to malware
images can yield strong results. In this vein, we build on previous GAN-based
malware research.
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3 Methodology

The goal of this research is to create realistic-looking fake malware images, and
then analyze these images using various learning techniques. We achieve this using
GANs, in particular, AC-GANs. The real malware images are fed through AC-GAN
which, as part of its training, learns to generate fake malware images (generator) as
well as to discriminate between real and fake (discriminator). Once, we generate
these fake malware images, we analyze their quality by various means.

3.1 Data

We use two distinct datasets in this research. First, the MalImg dataset contains
more than 9000 malware images belonging to 25 distinct families [35]. The MalImg
dataset has been widely studied in image-based malware research. We have also
constructed a new malware image dataset that we refer to as MalExe. The MalExe
dataset is derived from more than 24,000 executables belonging to 18 families—we
obtained the executables from [15].

The malware families in the MalImg and MalExe datasets are listed in Tables 1
and 2, respectively. Since the MalExe files are executable binaries, we convert them

Table 1 Details of MalExe dataset

Family Type Description

Alureon Trojan Provides access to confidential data [5]

BHO Trojan Performs malicious activities [8]

CeeInject VirTool Obfuscated code performs any actions [12]

Cycbot Backdoor Provides control of a system to a server [14]

DelfInject VirTool Provides access to sensitive information [16]

FakeRean Rogue Raises false vulnerabilities [19]

Hotbar Adware Displays ads on browsers [20]

Lolyda.BF Password Stealer Monitors and sends user’s network activity [28]

Obfuscator VirTool Obfuscated code, hard to detect [36]

OnLineGames Password Stealer Acquires login information of online games [38]

Rbot Backdoor Provides control of a system [40]

Renos Trojan Downloader Raises false warnings [42]

Startpage Trojan Change browser homepage/other malicious actions [45]

Vobfus Worm Download malware and spreads it through USB [50]

Vundo Trojan Downloader Downloads malware using pop-up ads [51]

Winwebsec Rogue Raises false vulnerabilities [53]

Zbot Password Stealer Steals personal information through spam emails [57]

Zeroaccess Trojan Horse Downloads malware on host machines [58]
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Table 2 Details of MalImg dataset

Family Type Description

Adialer.C Dialer Perform malicious activities [1].

Agent.FYI Backdoor Exploits DNS server service [2].

Allaple.A Worm Performs DoS attacks [3].

Allaple.L Worm Worm that spreads itself [4].

Alureon.gen!J Trojan Modifies DNS settings [6].

Autorun.K Worm:AutoIT Worm that spreads itself [7].

C2LOP.gen!g Trojan Changes browser settings [9].

C2LOP.P Trojan Modifies bookmarks, popup adds [10].

Dialplatform.B Dialer Automatically dials high premium numbers [17].

Dontovo.A Trojan downloader Download and execute arbitrary files [18].

Fakerean Rogue Pretends to scan, but steals data [19].

Instantaccess Dialer Drops trojan to system [23].

Lolyda.AA1 PWS Steals sensitive information [29].

Lolyda.AA2 PWS Steals sensitive information [29].

Lolyda.AA3 PWS Steals sensitive information [29].

Lolyda.AT PWS Steals sensitive information [30].

Malex.gen!J Trojan Allows hacker to perform desired actions [33].

Obfuscator.AD Trojan Downloader Allows hacker to perform desired actions [36].

Rbot!gen Backdoor Allows hacker to perform desired actions [41].

Skintrim.N Trojan Allows hacker to perform desired actions [44].

Swizzor.gen!E Trojan downloader Downloads and installs unwanted software [47].

Swizzor.gen!I Trojan downloader Downloads and installs unwanted software [48].

VB.AT Worm Spreads automatically across machines [49].

Wintrim.BX Trojan downloader Download and install other software [52].

Yuner.A Worm Spreads automatically across machines [56].

to images using a similar approach as in [24, 35]. We discuss this conversion process
in more detail below.

Figure 1 shows samples of images from the Adialer.C family of the MalImg
dataset and images of the Obfuscator family from the MalExe dataset. For
these samples we observe a strong similarity of images within the same family,
and obvious differences in images between different families. This is typical, and
indicates that image-based analysis should be useful in the malware field.

3.2 AC-GAN

A generative adversarial network (GAN) is a type of neural network that—among
many other uses—can generate so-called “deep fake” images [37]. A GAN includes
a generator model and a discriminative model that compete with each other in a
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Fig. 1 Images from the MalImg and MalExe datasets. (a) Examples of Adialer.C from
MalImg. (b) Examples of Obfuscator from MalExe

min-max game. Intuitively, this competition will should make both models stronger
than if each was trained separately, using only the available training data. The
GAN generator generates fake training samples, with the goal of defeating the
GAN discriminative model, while the discriminative model tries to distinguish real
training samples from fake.

However, a standard GAN is not designed to work with multiclass data. Since
we have multiclass data, we use auxiliary-classifier GAN (AC-GAN), which is
an enhanced type of GAN that includes a class label in the generative model.
Additionally, the discriminator predicts both the class label and the validity (i.e.,
real or fake) of a given sample. A schematic representation of AC-GAN is given in
Fig. 2.

For the research in this paper, the key aspect of AC-GAN is that it enables us to
have control of the class of any image that we generate. We will also make use of
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Fig. 2 Schematic
representation of AC-GAN

AC-GAN discriminative models, as they will serve as a baseline for comparison to
other deep learning techniques—specifically, CNNs and ELMs.

3.3 Evaluation Plan

Once, we have trained and tested our AC-GAN model, we need to evaluate the
quality of the fake images. To do this, we compare the AC-GAN classifier to CNN
and ELM models trained on real and fake samples. The remainder of this section is
devoted to a brief introduction to CNNs and ELMs.

3.3.1 CNN

A convolutional neural network (CNN) is loosely based on the way that a human
perceives an image. We first recognize edges, the general shape, texture, and so on,
eventually building up to the point where we can identify a complex object.

A CNN is a feed-forward neural network that includes convolution layers in
which convolutions (i.e., filters) are applied to produce higher level feature maps.
CNNs typically also include pooling layers that primarily serve to reduce the
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Fig. 3 A generic CNN

dimensionality of the problem via downsampling. CNNs also typically have a final
fully-connected layer, where all inputs from previous layers are mapped to all
possible outputs. A generic CNN architecture is given in Fig. 3.

For our experiments, we will use the specific CNN architecture and hyperparam-
eters specified in [24]. The CNN experiments performed in our research involve
malware images, and the specific architecture that we adopt was optimized for
precisely this problem.

3.3.2 ELM

A so-called extreme learning machine (ELM) is a feedforward deep learning
architecture that does not require any back-propagation. The weights and biases
in the hidden layers of an ELM are assigned at random, and only the output
weights are determined via training. Due to this simple structure, an ELM can
be trained using a straightforward equation solving technique—specifically, the
Moore-Penrose generalized inverse. Thus, ELMs are extremely efficient to train.
A schematic representation of a generic ELM can be seen in Fig. 4.

For our experiments, we will use ELM models with parameters as specified
in [24]. As with the CNN experiments mentioned above, the experiments performed
in our research involve malware images, and the specific ELM architecture that we
use was optimized for this specific problem.

To evaluate the quality of our AC-GAN generated images, we first divide the real
and fake images into training and testing sets. Then we train a CNN (respectively,
ELM) on the training dataset. Once, the CNN (respectively, ELM) has been trained,
we predict class labels and determine the accuracy of the predictions. The worse the
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Fig. 4 Schematic representation of ELM

classification accuracy of the CNN (respectively, ELM), the better are our AC-GAN
generated fake images. We also want to compare the accuracy of the CNN and ELM
models to the AC-GAN discriminator. Note that we consider each real family and
each fake family as a separate class, in effect doubling the number of classes from
the original dataset.

3.4 Accuracy

Throughout this paper, we use accuracy as the metric to quantify the success of
the various experiments considered. Accuracy is simply the ratio of the number of
correct classifications versus the total number of classifications.

For a binary classification problem, the confusion matrix is of the form in Fig. 5,
where

TP = true positives

FP = false positives

TN = true negatives

FN = false negatives
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Fig. 5 Confusion matrix
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In this case, the accuracy is computed as

accuracy = TP + TN

P + N

where P is the number of positive samples, that is,

P = TP + FN

and N is the number of negative samples, that is,

N = TN + FP .

This calculation of accuracy easily generalizes to the multiclass case.

4 Implementation

In this section, we present details on the implementation of the techniques discussed
in Sect. 3. All of our learning techniques have been implemented in Python using
PyTorch and Keras, with the experiments run on Google Colab Pro under a local
Windows OS. The precise specifications are given in Table 3.

In the remainder of this section we provide details on the pre-processing applied
to the datasets used in our experiments, we outline our AC-GAN training process,
and we discuss the training and testing of our CNN and ELM evaluation models.
Then in Sect. 5 we present out experimental results.
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Table 3 Environment specifications

Specification Description

Local machine Windows OS

Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz

16.0 GB RAM

NVIDIA GeForce RTX 2060 14 GB GPU

Google Colab Pro 24 hours available runtime

25 GB memory

T4 and P100 GPUs

Software PyTorch

Keras

Numpy

Scipy

PIL

4.1 Dataset Analysis and Conversion

As mentioned above, In this research, we experiment with two distinct
datasets, which we discuss in the next section. In both cases, we use the
ImageDataGenerator and Dataloader modules from Keras (in PyTorch)
to extract images and labels from the data. Additionally we use the transforms
functions to compose our pre-processing requirement.

4.1.1 Datasets

The first dataset we consider is the well-known MalImg dataset, which was
originally described in [32]. This dataset has become a standard for comparison in
image-based malware research. The MalImg dataset contains 9339 grayscale images
belonging to 25 classes, where all samples are in the form of images, not executable
files.

We refer to our second malware image dataset as MalExe, and it is of our own
creation. This dataset contains 24,558 malware images belonging to 18 classes.
These samples are in the form of exe files.

Since the MalExe samples are executable binary files, we must converting them
to images. We perform this transform as follows. iWe also construct images by
specify a desired size of each (square) images as n×n. We then read the first n2 bytes
from a malware binary, and these bytes are viewed as n×n images of type png. For
example, if we specify 64×64 images, each image is based on the first 4096 bytes of
the corresponding exe file. In this conversion process, we only convert samples that
contain a sufficient number of bytes. In Table 4, we see the image counts obtained
for the MalExe dataset for various image sizes considered. Note that for 512 × 512
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Table 4 MalExe dataset
counts

Specified image size Count Families

Standard 24,652 18

32 × 32 24,557 18

64 × 64 24,371 18

128 × 128 23,369 18

512 × 512 9963 17

(a) (b) (c) (d) (e)

Fig. 6 Image conversions of an Alureon sample. (a) Real. (b) 512 × 512. (c) 128 × 128. (d)
64 × 64. (e) 32 × 32

image, we only have 9963 samples from 17 classes—the family Zeroaccess has
no samples with at least 5122 = 218 bytes.

Figure 6 illustrate images of various sizes for one specific sample from the
Alureon family. We see that that these different image construction techniques
can provide distinct views of the same data.

In Fig. 7 we give bar graphs showing the distribution of samples for the MalImg
and MalExe datasets. We note that the MalImg dataset is highly imbalanced, with
the majority of the images belong to Allaple.A, Allaple.L, and Yuner.A.
To deal with this imbalance, we shuffle the data during training and use balanced
accuracy while testing.

Next, we want to scale the pixel values to the range [−1, 1] in order to match
the output of the generator model. This is achieve by simply calculating the mean
pixel value of an entire image and then subtracting this mean from each pixel and
normalizing, which gives us a floating point value in the closed interval from −1
to +1 in place of each pixel value.

4.2 AC-GAN Implementation

In this section, we provide additional detail on our implement of AC-GAN. Recall
that our model is generated using Python, PyTorch, and Keras modules. Also, recall
that an AC-GAN includes both a generator and a discriminator.
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Fig. 7 Distribution of samples among families. (a) MalImg. (b) MalExe

4.2.1 AC-GAN Generator

Our AC-GAN generator produces a single channel grayscale image by plotting
random points on a latent space—the latent space simply consists of noise drawn
from a Gaussian distribution with μ = 0 and σ = 1. Additionally, the model
includes the class label as a parameter. The generator is composed as a sequential
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Table 5 AC-GAN generator construction parameters

Layer Functions Parameters

Embedding Embedding() classLabels × 100

Sequential()

Linear() in-features: 100; out-features: 131,

Sequential()

1st convolutional BatchNormal2d() in: 128; momentum: 0.1

Upsample() Scale factor: 2.0

Conv2d() in: 128; out: 128; kernel: (3,3);

stride: (1,1); padding: (1,1)

2nd convolutional BatchNormal2d() in: 128; momentum: 0.1

LeakyReLU() negativeslope: 0.2

Upsample() Scale factor: 2.0

Conv2d() in: 128; out: 64; kernel: (3,3);

stride: (1,1); padding: (1,1)

3rd convolutional BatchNormal2d() in: 64; momentum: 0.1

LeakyReLU() negativeslope: 0.2

Conv2d() in: 64; outchannels: 1; kernel: (3,3);

stride: (1,1); padding: (1,1)

Output Tanh() Scale factor: 2.0

model. To this sequential model, we add a series of deconvolutional layers. The
specific parameters used for the AC-GAN generator are given in Table 5.

4.2.2 AC-GAN Discriminator

The discriminator model discriminates between the original and fake images, while
predicting the class label. The generator and discriminator both deal with cross-
entropy loss—the generator attempts to minimize binary cross-entropy loss, while
the discriminator tries to maximize this loss. The discriminator parameters used in
our experiments are given in Table 6.

Once we have initialized the generator and discriminator models, the models are
then trained. This training process is typical of any AC-GAN, and hence we omit
the details here. After training, we plot loss graphs to verify training stability.

4.3 Evaluation Models

To evaluate our AC-GAN generator results, we train CNN and ELM models on
the real and fake images. The better (in some sense) our AC-GAN generated fake
images, the worse the CNN and ELM models should perform.
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Table 6 AC-GAN discriminator construction parameters

Layer Functions Parameters

Input Sequential()

1st deconvolutional Conv2d() in: 1; out: 16; kernel: (3,3);

stride: (2,2); padding: (1,1)

2nd deconvolutional LeakyReLU() negativeslope: 0.2

Dropout2d() rate: 0.25

Conv2d() in: 16; out: 32; kernel: (3,3);

stride: (2,2); padding: (1,1)

3rd deconvolutional LeakyReLU() negativeslope: 0.2

Dropout2d() rate: 0.25

BatchNormal2d() in: 32; momentum: 0.1

Conv2d() in: 32; out: 64; kernel: (3,3);

stride: (2,2); padding: (1,1)

4th deconvolutional LeakyReLU() negativeslope: 0.2

Dropout2d() rate: 0.25

BatchNormal2d() in: 64; momentum: 0.1

Conv2d() in: 64; out: 128; kernel: (3,3);

stride: (2,2); padding: (1,1)

LeakyReLU() negativeslope: 0.2

Dropout2d() rate: 0.25

BatchNormal2d() in: 128; momentum: 0.1

Adversarial Sequential()

Linear() in-features: 8192; out-features: 1

Sigmoid()

Auxiliary Sequential()

Linear() in-features: 8192; out-features: 18

Sigmoid()

4.3.1 CNN Implementation

CNN models include a fully-connected layer, a convolution layer (or layers), and
a pooling layer (or layers). The parameters used in our specific implementation are
given in Table 7. The parameters that awe use in our CNN models are as specified
in [55]. Note that due to the imbalance in the MalImg dataset, we use balanced
accuracy.

4.3.2 ELM Implementation

Any ELM includes an initial input layer, a final output layer, and in between these
two layers, there is a hidden layer. The hidden layer weights are assigned at random,
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Table 7 CNN construction parameters

Layer Functions Parameters

1st convolutional Sequential()

Conv2d() Filters: 30; in = image-size; out = 840;

Kernel: (3,3); activation: relu

1st pooling MaxPooling2D() Size: (2,2)

2nd convolutional Conv2d() filters = 15; in = 840; out = 4065;

Kernel: (3,3); activation: relu

2nd pooling MaxPooling2D() Size: (2,2)

Dropout() Rate: 0.25

Flatten()

Dense() Units: 128; out: 376,448; activation: relu

Dropout() Rate: 0.5

Other Dense() Units: 50; out: 6450; activation: relu

Dense() Units: num-of-classes; activation: softmax

— Loss Categorical cross entropy

— Optimizer Adam

with only the output layer weights determined via training. For an ELM, the only
parameter is the number of hidden units, and we use the value specified in [24],
namely 5000.

5 Experimental Results

Here, we first consider the use of AC-GAN to generate fake malware images of
various sizes. As part of these experiments, we also consider the discriminative
ability of AC-GAN discriminator model.

As a followup on our AC-GAN experiments, we conduct CNN and ELM
experiments in Sect. 5.2. The purpose of these experiments is to determine how
well these deep learning techniques can distinguish between real malware images
and the AC-GAN generated fake images.

5.1 AC-GAN Experiments

We consider AC-GAN experiments to generate fake malware images of sizes 32 ×
32, 64 × 64, and 128 × 128. In each case, we experiment with both the MalImg and
MalExe datasets.
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5.1.1 AC-GAN with 32 × 32 Images

Our objective here is generate and classify malware images of size 32 × 32. For
the MalImg dataset, which is in the form of images, we resize all of the images
to 32×32. We train our AC-GAN model for 1000 epochs with the number of batches
set to 100. Since there are 9400 MalImg samples in total, we have 94 samples per
batch, and hence about 94,000 iterations. Training this model requires about 24
hours on Google Colab Pro.

In contrast, for the MalExe dataset we read the first 1024 bytes from each binary,
and treat these bytes as a 32 × 32 image. We train an AC-GAN model on this
dataset for 500 epochs with the number of batches set to 50. Since there are 42,266
samples in the MalExe dataset, we have about 492 samples per batch and requires
about 246,000 iterations. Training this model also takes about 24 hours on Google
Colab Pro.

Figure 8a shows the training loss plots for our AC-GAN generator and dis-
criminator models when training on the MalImg dataset. Figure 8b shows the
corresponding loss plots for the MalExe dataset.

From Fig. 8a, we see that both the generator and discriminator stabilizes at
around epoch 100 for the MalImg experiment. The generator spikes up occasionally,
but has generally stable loss values, while the discriminator loss is more consistent
throughout. In contrast, from Fig. 8b we see that the MalExe model remains
relatively unstable throughout its 500 iterations.

Our AC-GAN discriminator achieves an accuracy of about 95% in the MalImg
experiment. In contrast, on the MalExe dataset, the AC-GAN discriminator only
attains an accuracy of about 89%.

Figure 9 shows a comparison of real and AC-GAN generated fake 32 × 32
images for the families C2LOP.P and Allaple.L from the MalImg dataset.
Figure 10 shows a comparison between real and fake images for the Alureon and
Zeroaccess families from the MalExe data. Visually the real and fake images
share some characteristics, with the MalExe fake images being better than the
MalImg case. However, the resolution appears to be too low in all cases. Hence,
we perform further AC-GAN experiments based on higher resolution images.

5.1.2 AC-GAN with 64 × 64 Images

Our AC-GAN experiments for 64 × 64 images are analogous to those for 32 ×
32 images, as discussed in Sect. 5.1.1. Again, the training time for each dataset is
about 24 hours. Figure 11a and b gives the training loss plots for the MalImg and
MalExe experiments, respectively.

From Fig. 11a, we see that the training loss stabilizes at around epoch 250 for
the MalImg case, while the MalExe experiment stabilizes at around epoch 100. In
contrast to the 32 × 32 case, the MalExe model becomes reasonably stable after
about 125 epochs.
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Fig. 8 Loss plots for 32 × 32 images. (a) MalImg. (b) MalExe

(a) (b) (c) (d)

Fig. 9 Real and fake examples from MalImg (32 × 32). (a) C2LOP.P. (b) C2LOP.P_fake. (c)
Allaple.L. (d) Allaple.L_fake



Auxiliary-Classifier GAN for Malware Analysis 45

(a) (b) (c) (d)

Fig. 10 Real and fake examples from MalExe (32 × 32). (a) Alureon. (b) Alureon_fake.
(c) Zeroaccess. (d) Zeroaccess_fake

Fig. 11 Loss plots for 64 × 64 images. (a) MalImg. (b) MalExe
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(a) (b) (c) (d)

Fig. 12 Real and fake examples from MalImg (64 × 64). (a) Lolyda.AA3. (b)
Lolyda.AA3_fake. (c) Agent.FYI. (d) Agent.FYI_fake

(a) (b) (c) (d)

Fig. 13 Real and fake examples from MalExe (64×64). (a) Zbot. (b) Zbot_fake. (c) Vobfus.
(d) Vobfus_fake

The classification accuracy for the MalImg dataset is about 94%, while the AC-
GAN achieves a classification accuracy of about 88% on the MalExe dataset. These
results are essentially the same as in the 32 × 32 case.

Again, we compare real and AC-GAN generated fake images. Figure 12
shows the comparison between real and fake images of class Lolyda.AA3 and
Agent.FYI from the MalImg dataset. We observe that the fake samples in this
case are, visually, extremely good.

In Fig. 13, we give a comparison between real and fake images of class Zbot
and Vobfus for the MalExe dataset. In this case, the MalExe fake samples are
surprisingly poor.

5.1.3 AC-GAN with 128 × 128 Images

We consider AC-GAN experiments based on 128 × 128 images. These experiments
are again analogous to those for the 32 × 32 and 64 × 64 cases discussed above.
Figure 14a and b shows the training loss plots for AC-GAN trained on the MalImg
and MalExe datasets, respectively. While the MalImg experiments stabilize, the
MalExe experiment would likely have benefited from additional iterations.

In this case, we attain a maximum classification accuracy from the AC-GAN of
about 92% for MalImg and about 85% for MalExe. Figure 15 shows comparisons
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Fig. 14 Loss plots for 128 × 128 images. (a) MalImg. (b) MalExe

(a) (b) (c) (d)

Fig. 15 Real and fake examples from MalImg (128 × 128). (a) Yuner.A. (b) Yuner.A_fake.
(c) VB.AT. (d) VB.AT_fake
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(a) (b) (c) (d)

Fig. 16 Real and fake examples from MalExe (128 × 128). (a) Alureon. (b) Alureon_fake.
(c) Zeroaccess. (d) Zeroaccess_fake

Table 8 AC-GAN
discriminator accuracy
(rounded to nearest percent)

Image size Dataset Accuracy

32 × 32 MalImg 95%

MalExe 89%

64 × 64 MalImg 94%

MalExe 88%

128 × 128 MalImg 92%

MalExe 85%

of real and fake Yuner.A and VB.AT from MalImg. As in the 64 × 64 case, we
see that the fake images appear to be very good approximations for this dataset.

Figure 16 shows a comparison of real and fake Alureon and Zeroaccess
images from the MalExe data. In contrast to the 32 × 32 and 64 × 64 cases, here
the fake MalExe images are very good approximations to the real images.

5.1.4 Summary of AC-GAN Results

Table 8 gives the discriminative accuracies for each of the AC-GAN experiments in
Sects. 5.1.1–5.1.3. We see that the results are fairly consistent, irrespective of the
size of the images.

With respect to the visual inspection of the fake images in Figs. 9 and 10 (for
the 32 × 32 case), Figs. 12 and 13 (for the 64 × 64 case), and Figs. 15 and 16 (for
the 128 × 128 case), we observed a clear improving trend for larger image sizes.
However, there is a price to be paid for this increased fidelity, as the training time
increases significantly with image size.

5.2 CNN and ELM Experiments

As a first step towards evaluating the quality of the AC-GAN generated images, we
experiment with CNN and ELM. Specifically, we test the ability of these two deep
learning techniques to distinguish between real malware images and our AC-GAN
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generated fake images by treating the real data and fake images as distinct classes
in multiclass experiments. For example, if we consider 10 classes from the MalImg
dataset, then for our CNN and ELM experiments, we will have 20 classes consisting
of the 10 original families plus another 10 classes consisting of fake samples from
each of the original 10 families. In the following sections, we separately consider
experiments for 32 × 32, 64 × 64, and 128 × 128 image sizes.

5.2.1 CNN and ELM for 32 × 32 Images

Here, we consider 32 × 32 real and fake images and perform experiments for the
MalImg and MalExe datasets. For MalExe, we consider all 18 classes and therefore,
including classes for the fake images, we have a total of 36 classes. Our dataset
consists of 100 samples for each class, and hence we have 3600 images. We train our
CNN for 3000 epochs and we generate an ELM with 5000 hidden units. The CNN
test accuracy is only about 51%, in spite of a training accuracy of 100%, which
is a sign of overfitting. The ELM performs slightly worse, achieving an accuracy
of 48%.

Figures 19 and 20 give the confusion matrices for our CNN and ELM exper-
iments on the MalExe dataset. In both cases, we observe that most of the fakes
are largely misclassified, but this is not the case for all families. For example, in
the CNN experiments, the fake Vundo samples are classified correctly with 100%
accuracy, whereas the real Vundo samples are only classified correctly 33% of the
time.

For MalImg, we consider all 25 real classes, which gives 50 classes and a total
of 5000 images. Again, our CNN is trained for 3000 epochs and we construct
an ELM with 5000 hidden units. For the MalImg dataset, our CNN again has a
very high training accuracy, but achieves a test accuracy of only about 56%, while
our ELM achieves an accuracy of about 37%. The confusion matrices for these
experiments are in Figs. 21 and 22. Again, we see that the fakes are misclassified at
a much higher rate than the real samples.

5.2.2 CNN and ELM for 64 × 64 Images

In this section, we consider similar experiments as in the previous section, but based
on 64 × 64 images. In this case, we consider 10 of the MalImg families and the
corresponding fake samples, for a total of 20 classes for each dataset. We again
consider 100 images from each class, and we use 70% of the samples for training
and reserve the remaining 30% for testing.

We train a CNN for 3000 epochs with a batch size of 500 while for the ELM
we use 50,000 hidden units. For the CNN, we attain 100% training accuracy, but
only about 82% test accuracy, which is again a sign of overfitting. For the ELM,
we attain an accuracy of 64%. Figures 23 and 24 show the confusion matrices
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for these experiments. From the confusion matrices, we can see that some images
are misclassified as fakes, while some families are consistently classified as other
families. For both the CNN and ELM, we see that most images are misclassified,
with the exception of specific families. The 64×64 results—in the form of confusion
matrices—for the MalExe dataset are in Figs. 25 and 26.

5.2.3 CNN and ELM for 128 × 128 Images

In this MalImg experiment, we consider all families in the dataset. In this case, we
train the CNN for 5000 epochs and generate an ELM with 20,000 hidden units.
Again, we treat real and fake images as a separate set of classes. We consider all 18
classes in our MalExe experiments.

On the MalExe dataset, we achieve 43% test accuracy with the CNN, and 52%
accuracy with out ELM. Figures 27 and 28 show the confusion matrices for our
CNN and ELM experiments on the MalExe data. Similar to other experiments on
MalExe, we see mostly miscalculation for the CNN. For the ELM, we note that
Rbot fake, and Ceeinject fake are particularly poor results. The results of
these 128 × 128 experiments again indicate that AC-GAN produces strong fake
images.

For the 128×128 MalImg experiments, we consider all classes, we train the CNN
for 3000 epochs, and we generate an ELM with 20,000 hidden units. The results
for these MalImg experiments are given in Figs. 29 and 30. The CNN achieves
only 43% test accuracy, while ELM performs better, but still only attains an accuracy
of 52%.

5.2.4 Discussion of CNN and ELM Experiments

In Fig. 17 we compare the test accuracies of our CNN and ELM experiments to
our AC-GAN classifier. Here, we observe that the AC-GAN models are able to
produce much higher classification rates in all cases. This shows that while the AC-
GAN generator is able to produce images that are difficult for other deep learning
techniques to distinguish, the AC-GAN discriminator is not so easily defeated by
these fake images. These results suggest that AC-GAN is not only a source for
generating fake malware images, but it is also a powerful model for discriminating
between families—both real and fake (Fig. 18).

Finally, we consider the narrower problem of distinguishing real samples from
fake samples. In Figs. 31, 32, and 33, we have “condensed” the confusion matrices
of Figs. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30 to better highlight the ability
of our CNN and ELM models to distinguish real from fake. Each of these condensed
confusion matrices includes the eight (exhaustive) cases listed in Table 9.

If we are only concerned with the ability of our models to distinguish between
real and fake samples, then any real sample that is classified as real—either the
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Fig. 17 Test accuracy for all experiments
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Fig. 18 Distinguishing between real and fake

correct real family or a different real family—is considered a correct classification.
Similarly, any fake sample that is classified as any class of fake is considered a
correct classification. The results in Fig. 18 are easily obtained from the condensed
confusion matrices in Figs. 31, 32, and 33. From this perspective, we see that our
CNN models always outperform the corresponding ELM model, and in most cases,
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Fig. 19 CNN confusion matrix (MalExe 32 × 32)

the CNN models perform remarkably well. These results indicate that in spite of
the relatively low accuracies obtained in the multiclass case, most of the errors
are within the real and fake categories, and not between real and fake samples. In
particular, for the CNN models, real and fake samples from a specific family are
rarely confused with each other. This provides strong evidence that the real and fake
categories are substantially different from each other. Perhaps surprisingly, these
results strongly suggest that AC-GAN generated fake malware images do not satisfy
the requirements of “deep fakes,” at least not from the perspective of evaluation by
deep learning techniques.
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Fig. 20 ELM confusion matrix (MalExe 32 × 32)
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Fig. 21 CNN confusion matrix (MalImg 32 × 32)
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Fig. 22 ELM confusion matrix (MalImg 32 × 32)
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Fig. 23 CNN confusion matrix (MalImg 64 × 64)
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Fig. 24 ELM confusion matrix (MalImg 64 × 64)
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Fig. 25 CNN confusion matrix (MalExe 64 × 64)
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Fig. 27 CNN confusion matrix (MalExe 128 × 128)
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Fig. 28 ELM confusion matrix (MalExe 128 × 128)
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Fig. 29 CNN confusion matrix (MalImg 128 × 128)
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Fig. 30 ELM confusion matrix (MalImg 128 × 128)

Table 9 Condensed confusion matrix cases

Actual class Classification Description

real real-same Real sample classified correctly

fake-same Real sample classified as fake of the same family

real-other Real sample classified as a different real family

fake-other Real sample classified as a different fake family

fake real-same Fake sample classified as real of the same family

fake-same Fake sample classified correctly

real-other Fake sample classified as a different real family

fake-other Fake sample classified as a different fake family
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Fig. 31 Condensed confusion matrices (32 × 32). (a) CNN MalExe. (b) ELM MalExe. (c) CNN
MalImg. (d) ELM MalImg
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Fig. 32 Condensed confusion matrices (64 × 64). (a) CNN MalExe. (b) ELM MalExe. (c) CNN
MalImg. (d) ELM MalImg
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Fig. 33 Condensed confusion matrices (128×128). (a) CNN MalExe. (b) ELM MalExe. (c) CNN
MalImg. (d) ELM MalImg

6 Conclusion and Future Work

In this research we considered AC-GAN in the context of malware research. We
experimented with a standard malware image dataset (MalImg) and a larger and
more balanced malware image dataset of our own construction (MalExe). We
evaluated the images generated by our AC-GAN using CNN and ELM models.

We were not able to reliably classify our AC-GAN generated fake malware
images from genuine malware images using either CNNs or ELMs, but the AC-
GAN discriminator provided good accuracy. However, we also found that CNNs
can distinguish between real and AC-GAN generated fake samples with surprisingly
high accuracy.

For future work, more experiments aimed at classifying real and fake malware
images would be useful. Additional state-of-the-art deep learning models, such as
ResNet152 and VGG-19, could be considered [39]. In addition, the quest for true
“deep fake” malware images that cannot be reliably distinguished from real malware
images appears to be a challenging problem.

In addition, it would be interesting to explore adversarial attacks on image-based
malware detectors. For example, tt would be interesting to quantify the effectiveness
of such attacks. That is, assuming that an attacker is able to corrupt the training
data, what is the minimum percentage of the data that must be modified to achieve
a desired level of degradation in the resulting model?
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Assessing the Robustness of an
Image-Based Malware Classifier with
Smali Level Perturbations Techniques

Giacomo Iadarola, Fabio Martinelli, Antonella Santone,
and Francesco Mercaldo

Abstract Signature-based approaches adopted by current antimalware have well-
known problems. Although they can provide relatively fast and reliable detection
of previously known threats, they are not able to catch new malware and also
generalize their knowledge to different variants of the same known malware. Deep
learning approaches have been adopted to address this problem, and one of the
most promising attempts is based on the representation of malware as images.
In order to understand whether these approaches can be effectively adopted in a
real-world situation, we trained an image-based malware detector and evaluate its
resilience when morphed samples are considered. The experiments were conducted
on 16384 real-world Android Malware, and the experimental analysis demonstrates
that standard image-based malware classifiers are vulnerable to simple perturbations
attacks.

1 Introduction

Malware analysis and detection are one of the biggest security threats on the internet
today, and one of the biggest and most active topics in cybersecurity. In the past few
years, the malware industry has covered the top spots among the most used cyber-
attack methodologies [23], and the volume of new malware detected has increased
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by 233% compared to five years ago. Most of the commercial antimalware employ
a preventive analysis mechanism called Signature-based Detection, which identifies
a threat by looking for a specific pattern or sequences of bytes (called signatures)
from a database of well-known threats. Many databases are built and continuously
updated with the list of signatures of all known families. Although this approach is
relatively fast and boasts a low number of false positives [2], it cannot recognize
programs that have never been scanned before. This fragility poses a serious threat
for the final users and resources protected by antimalware because the malware
market changes continuously and the malware database cannot be updated at the
same pace. The detection phase takes time, thus, there is always going to be a time
window in which the new malware is not included in the well-known threats yet, and
it is able to spread across the internet without being recognized as malicious. Indeed,
most of the time, the cyber-criminals just need to modify old malware to overcome
antimalware detection, heading to rise a huge number of variants for each malware.

In order to overcome some of the classical approaches limitations, Artificial Intel-
ligence (AI) has been adopted in malware analysis and has provided increasingly
accurate methods for malware detection. In this evolving environment, ensuring the
reliability of AI models is becoming fundamental to increase trust in this technology,
and extend the adoption of AI models to sensitive and relevant tasks (such as
handling our private data, protecting critical infrastructure, driving vehicles, etc.).
Despite their usefulness, some AI models provide output decisions without clear
explanations of the inference phase and are emerging several criticisms related to
the adoption of these techniques as a black box. Moreover, the overall reliability of
these models is sometimes debatable. The dataset used to train them is limited, and
it may not represent correctly the real-world scenario. Fallacies in the training phase
may lead to a domino effect and cause damages when the model is deployed in real
scenarios.

The Explainable AI is the research topic that studies how to design and
implement AI applications that can be understood by human experts, hence,
applications that are more robust and easy to debug. One more approach to design
secure AI applications regards studying attacks to such models in order to detect
security vulnerabilities. In this work, we adopt this approach and design an attack
to a standard image-based malware classifier, in order to assess its robustness
on malware source code perturbations. Exploiting Deep Learning (DL) models,
such as the Convolutional Neural Network (CNN), for image classification in
malware detection is not a new topic, and many relevant papers propose to convert
malware binaries to images [7, 10, 25]. Following these approaches, the malware
represented as an image can be analyzed by state-of-the-art image classifiers, which
has shown to achieve excellent results in standard image classification tasks. The
conversion of executables into images, as a means of identifying specific patterns
capable of characterizing the most common classes of Malware, is an increasingly
widespread and in-depth approach. Nevertheless, DL models suffer from instability
problems [1]: small perturbations to the input can easily mislead the DL model.

In this work, we developed a CNN model to detect malware represented as
images, achieving more than 90% of accuracy in the test. The model architecture
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is similar to others proposed in the literature (see Sect. 2.4). In order to assess
the robustness of the classification, we perform standard perturbations techniques
to modify the input. Despite their simplicity, the perturbations are sufficient
for misleading the CNN model. This chapter is based on a couple of recent
publications [12, 13], and provide insightful information on the background of the
experiments and complete explanations of the methodology to perform the attack.

The chapter proceeds as follows: next section reports background knowledge on
the covered topics, such as the CNN, Static Malware Analysis, the Image-based mal-
ware classifiers (with related works), and a short overview on the Dalvik EXecutable
(DEX); the experiments and perturbations are performed on Android Malware, thus
the DEX is the most technical topic on which our methodology is based on. Then,
the Methodology is introduced in Sect. 3, followed by the Experiments in Sect. 4,
which reports also information on the methodology implementation. Finally, Sect. 5
reports a short discussion on the results, limitations and future works.

2 Background and Related Works

In the following, some relevant Static Malware Analysis and the CNNs are
briefly introduced, but we refer to the literature for further information on these
interesting topics. The last subsection reports some relevant Image-based malware
classification papers related to our work.

2.1 Static Malware Analysis

The Malware, literally Malicious Software, are programs whose goal is to interfere
with the normal functioning of the system, without having the user’s consent and to
damage it for the benefit of the attacker. These are generally grouped into classes,
or families, based on their common (malicious) behaviour. Countless families have
been found, with different aims and methods of attack, and the number is constantly
growing.

We can split the malware analysis techniques into two groups: static and dynamic
analysis. Static analysis techniques base their operation on the sole evaluation of the
program content and, in no case, its execution. For instance, one typical approach
involves the use of the source code by disassembling the binary file, and then the
build of an execution flow, such as a Control Flow Graph [3]. The information
collected can be used individually or in combination with other extracted features to
increase the degree of accuracy in the classification. Although static analysis is faster
than dynamic analysis, it is highly vulnerable to code obfuscation techniques. Over
time, more complex and sophisticated malware has been developed which, through
the use of cryptographic techniques, are able to decrypt its own content at runtime.
In this way, their syntax is always different, but the semantics are unchanged with
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respect to the original program. We refer to the literature for more information on
the subject [5, 27].

2.2 Convolutional Neural Network

The CNN models are one of the Deep Neural Networks models that have demon-
strated high accuracy in the field of image classification and recognition. Its main
feature is given by the use of specific layers, called convolutional, which have the
task of applying the mathematical convolution operator to the input image, intending
to collect the relevant information in a structure called feature.

The first convolutional network was developed by Yann LeCun and is called
LeNet5 [18]. Although more complex and more effective versions have been
developed over time, their basic structure has remained very similar to that modelled
by LeCun. Each of them carries out three fundamental operations: convolution,
subsampling and classification.

2.2.1 Convolution

In the field of image processing, the convolution operation consists of the combi-
nation of each image pixel with the neighbouring ones, on the basis of the weights
stored inside a finite matrix, which is called kernel or filter. The operation takes the
following form:

g(a, b) = w ∗ f (a, b) =
A∑

da=−A

B∑

db=−B

w(da, db)f (a + da, b + db) (1)

where g(a, b) is the pixel with coordinates (a, b) of the processed image, f (a, b)

is the corresponding pixel of the starting image, and w ∈ RA×B is the kernel. For
instance, see Fig. 1.

The application of graphic filter results in “sliding” the kernel on the pixels of the
input image. The convolution operation within a CNN is managed through a specific
layer, called convolutional layer, which contains an activation function with the aim

Fig. 1 Kernel application on a image pixels matrix
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Fig. 2 Example of max
pooling

of making the calculation non-linear; the convolution itself is a linear operation.
Although there are numerous functions available for this purpose, the most used is
the Rectified Linear Unit [21] (ReLU). This function extracts the positive part of its
argument and can be expressed as follows:

relu(t) = t+ = max(0, t) t ∈ R (2)

2.2.2 Subsampling

Sub-sampling, also called pooling, is an operation that reduces the size of a two-
dimensional matrix, while preserving the most relevant information. To do this,
the original matrix is split into sub-matrices of fixed size, and only one element
is extracted from them. This can be chosen by applying different strategies, among
which, the most used variant is called max pooling and extracts the highest value.

The neural layer that performs this operation is called max pooling layer and
always follows the convolution layer. For a better understanding of how the max
pooling operation works, see Fig. 2.

In addition to reducing the size of the feature maps, subsampling offers the
advantage of making the classification invariant to small transformations, transla-
tions and distortions of the starting image. Consequently, a CNN is able to classify
objects regardless of the position they occupy within a graphical context [22].

2.2.3 Classification

The classification is carried out by a series of layers, called dense layers, which
are formed by a variable number of perceptrons, each connected with all those of
the next layer, forming a dense network of connections. The last dense layer is
often associated with a specific activation function, called normalized exponential
or softmax; it expresses the belonging of the input image to one of the starting classes
in probabilistic terms. During the training process, these hidden layers modify the
weights of their neurons, as happens in a canonical DNN, through the application
of the backpropagation algorithm, learning to classify the input image.
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The neural layers illustrated above can be present in a variable number within
the CNN model, while maintaining the order convolution, subsampling, and then
classification.

2.3 Dalvik VM and Dalvik EXecutable

Android is an operating system, widely adopted in mobile environments for
smartphones and IoT devices. It is based on a Linux kernel integrated by various
C/C++ libraries. Its applications are developed in the Java programming language,
but they do not run on the standard Java Virtual Machine (JVM). Android has its
own version of a virtual machine, which is called Dalvik Virtual Machine (DVM).
This virtual machine is optimized for mobile devices resources, that are limited
compared to common laptops and computers.

The DVM bytecode is not produced directly from the compilation of the Java
code, but it comes from a translation process on the JVM bytecode. The executable
file in Dalvik format is called Dalvik EXecutable or DEX, and it is produced starting
from a .class file.

The DEX format is designed to optimize memory usage and, for this reason,
adopts an approach based on sharing data, avoiding its replication. Its main
optimization mechanism is based on the use of a constant pool, no longer private and
usable only by the belonging class, but shared and referenced globally. By doing so,
it is possible to subdivide the strings within the constant pool based on the type and
eliminate any redundancy, keeping only one occurrence for each of them. Literal
constants are known to be responsible for 61% of the weight of a class, while only
the 33% depends on its body [8] methods. Figure 3 shows the compilation process
of the DEX format and the .class format in comparison, while Fig. 4 shows the main
differences between the .class and .dex structure. For further information, we refer
to [9].

Starting from the version of Android 4.4 (KitKat), Dalvik was replaced by a new
VM, called ART (Android Run Time). ART uses a mechanism called Ahead-Of-
Time Compilation (AOTC), which compiles the entire application in ELF format,
increases the initial wait time in favour of faster execution time. ART maintains
backward compatibility with DVM by using the same DEX format for bytecode
encoding.

Fig. 3 Compilation process, comparison between JVM and DVM
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Fig. 4 Structure differences between .dex and .class format

Despite the fact that the DEX contains the executable of an application, it is
only a part of the complete APK file. A complete malware analysis should take
into account all the files included in the APK file; the payload could be stored
in other APK files, or the application may cooperate with external resources to
download malicious code at runtime. Nevertheless, the scope of this work is to
demonstrate how simple perturbations can drop the efficiency of an image-based
malware classifier that focus their analysis on the code (i.e. the DEX). Thus, we
restrict our analysis only to the DEX file.

2.4 Image-Based Malware Classification

The first work that proposed an image-based classifier is the one by Nataraj et al.
in [20]. The conversion process from malware to images is straightforward: the
binary code of the executable content is grouped in 8-bit vectors of unsigned integer
and shaped into a two-dimensional array. Each vector represents an integer value
in the range [0–255], thus, it can be cast to a grayscale pixel. In the Nataraj work,
common extraction features techniques were applied to the malware images. The
approach was tested on a dataset of 9458 malware belonging to 25 different families,
achieving an accuracy of 98%.

Similarly, the paper in [6] convert the DEX files to grayscale images and use
GIST descriptor to generate feature vectors. The classification is performed with
K-Nearest Neighbor, Random Forest and Decision Tree.
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The convolutional part of the Deep Learning model computes the extraction of
relevant features from the input. Therefore, many papers propose the adoption of DL
models, mainly CNN, to automatize the feature extractions and improve the overall
accuracy.

For instance, the work by Zhang et al. [29] utilises a Temporal Convolutional Net-
work model to classify malware represented as images. In detail, it compounds the
image with information coming from the DEX file and the AndroidManifest.xml,
and they achieved 95% accuracy on a dataset of 5826 malware samples.

On the same topic, many other works were proposed in the literature [7, 10, 14,
25, 26] which use information coming from the DEX files and the APK files to
produce images. Then, these images are either used to extract feature vectors or use
directly as a plain image. Finally, CNN models are applied to distinguish between
benign and malicious applications. Despite their differences, all these papers have
in common the use of the DEX file.

The fragility of image-based malware detection techniques is a well-known
problem, because the adopted models, usually, are not robust to input perturbations.
For instance, many works show that these models are vulnerable to attacks based
on Adversarial Examples [16, 17, 24]. An Adversarial sample is generated by
iteratively changing a correctly classified image by a first DL model. Another
DL model chooses the changes to apply, and use the classification from the
discriminator (the DL model under attack) to guide its choices and understand if the
changes were effective. The process succeeds when its classification differs from
that of the original image.

In this work, we perform perturbations that do not change (nor corrupt) the
functionalities (malicious behaviour) of the malware itself. In our context, we can
not randomly change the input image because it is strictly connected to the malware
bytecode: random changes will lead to corrupting the malware functionalities.

3 Methodology

This work aims to verify the robustness of an image-based malware classifier by
modifying its input. Moreover, the perturbations injected to decrease the accuracy
are modifying the malware code itself, and thus they have to preserve the malware
functionalities, otherwise, the malware will not run anymore. In short, if the
process was reversed and code was generated from the image, the code has to be
syntactically and semantically correct.

Some research papers perform this kind of attack by using Adversarial Examples
and applying random filters on the input image. However, they fail to preserve the
executability of the modified program [19], losing practical utility. Therefore, the
fundamental prerogative of this work is to preserve the aforementioned condition:
the methodology will generate fully executable programs and carry the same
semantics as the starting ones.
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Fig. 5 Attack methodology overview

To do so, we construct a simple CNN model (the most-adopted model for this
malware classification task in the literature) to show the feasibility of the attack.
Nevertheless, the same approach could be applied to any image-based malware
classifier, because we apply the perturbations on the input sample, and interact with
the classifier as a black-box.

Formally, given a malware sample M , this is converted into an image and given
as input to an image-based classifier C, which classifies the sample into a malware
family and assigns the relative L label. The attacking module takes M and produces
an executable M ′ by introducing perturbations. Then, the same model C classifies
M ′ with L′ label. If L �= L′, then the attack succeed, otherwise, the attacker keeps
introducing perturbations on the M input. The attacker, in each iteration, tries to
add a small number of perturbations, in order to achieve the smallest amount of
perturbations needed to mislead the sample classification. Figure 5 illustrates the
above steps, highlighting the relationships between the parties involved.

This work is focused on the Android environment. We collect a dataset of APK
files and split the samples into several malware families (e.g. group of malware that
exhibit the same malicious behaviour). The malware belonging to the same malware
family shares part of the code (usually, the payload), thus they have a pattern in
common that can be used to classify them. It is worth noting that a label/class of the
dataset is reserved for “Trusted" samples, that is applications considered “benign"
and that do not exhibit any of the malicious behaviour symptomatic of the other
malware classes.

For each APK sample in the dataset, the DEX is extracted and converted to an
image. For the scope of this work, we restrict the analysis on the DEX file only,
supported by similar approaches in the literature [15, 28]. We aim to demonstrate
how easy is attacking such approaches rather than covering every possible situation
of malware detection.

The conversion process generates images that may look like random noise from
the human perspective, but they contain all the malware executable data, including
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Fig. 6 Comparison between two malware samples converted to images, they both belong to the
same malware family (AirPush)

the payload and the structure shared among the other variants of the same malware
family. Figure 6 shows clearly that two malware samples that belong to the same
family share similar patterns.

To classify the malware into families, we use a Convolutional Neural Network,
widely adopted in the literature for this kind of tasks [14]. The extraction of features
is delegated to two pairs of convolutional and max-pooling layers having depths of
64 and 128 respectively. The classification takes place with two dense layers, which
count 1024 and 512 nodes, interspersed with layers of dropout. Each layer of the
model uses relu as an activation function.

3.1 Untargeted Misclassification

The main goal of the methodology is to generate input samples that mislead
the model and reduce the accuracy performance. There are different types of
incorrectness, and in this work we focus on “untargeted misclassification”. The
original output label and the modified samples output label has to differ, but there
is no restriction on the resulting label, it can be any one of the available except the
original one.

The core of the methodology is the perturbations, which have to modify the input
sample but preserve the executability of the starting file. To do this, we resort to
perturbation techniques of the DEX code, in order to change or add bytes inside the
DEX and, consequently, inside the resulting image.

Due to the inherent difficulties of modifying directly the DEX file and its low-
level operations, we decided to use a disassembler to obtain higher-level code, which
can be modified and subsequently recompiled into an executable.
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To do so, we chose to use the pair of tools smali and baksmali [4]. These are
a compiler and decompiler respectively, which use an assembly-like language to
describe programs in ASCII format and produce executable files in DEX format.

The experimental analysis shows that a complete step of decompilation and
recompilation of DEX file via baksmali and smali, without any modification, causes
already an untargeted misclassification situation. The DEX compiler and smali one
organize the bytecode sections differently, thus, the images converted from the DEX
looks different. However, given a DEX obtained through smali compilation, the
subsequent decompilation/recompilation processes do not involve further changes.
Therefore, we pre-process the dataset by decompiling and recompiling all the
samples. By doing this, the subsequent perturbations of the code through smali is
made entirely valid and the misclassification is not compromised by decompilation
edits.

The CNN model is trained on the dataset and then used to classify samples,
both original malware and perturbed ones. The attack aims to edit the smali code
and insert the minimum perturbation sufficient to cause the trained classifier to
incorrectly predict the malware family of the sample under analysis.

For preliminary results, we implement two perturbations techniques, called
NopsBombing and StringBombing. The first one perturbates the code by
identifying the smali instructions after which it is possible to insert others without
changing the logic, and add an arbitrary number of NOP (No Operation) (i.e;
an instruction that does not involve any operation). The other technique, the
StringBombing, identifies the const-string instructions, and add just
before a new const-string with the same destination and random content.
In this way, the original operation is executed just after the newly added one and
overwrites the content assigned by perturbation. Listing .1 shows the result of the
execution of the StringBombing perturbation, in which the instruction inserted
by the attack is the one setting the string “a87bca5” on line 8, just before the original
statement on line 9, setting the string “Hello world”.

Listing .1 Smali file perturbed with StringBombing, adding line 8 to the original smali file
1 . method p u b l i c s t a t i c main ( [ L java / l a n g / S t r i n g ; ) V
2 . r e g i s t e r s 2
3
4 . l i n e 5
5 s g e t −o b j e c t p0 , L java / l a n g / System ;
6 −>o u t : L java / i o / P r i n t S t r e a m ;
7
8 c o n s t −s t r i n g v0 , " a87bca5 "
9 c o n s t −s t r i n g v0 , " H e l l o wor ld "

10
11 invoke−v i r t u a l {p0 , v0 } , L java / i o / P r i n t S t r e a m ;
12 −> p r i n t l n ( L java / l a n g / S t r i n g ; ) V
13
14 . l i n e 6
15 return−vo id
16 . end method
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4 Implementation and Experiments

This section reports details on the implementation of the methodology and the
experimental results to test the attack.

We collected APK samples from a subset of the AMD dataset [14]. The resulting
dataset consists of 16384 samples of real-world malware, split into 10 classes,
namely Airpush (3487 samples), BankBot, Dowgin (3384 samples), DroidKungFu,
FakeInst (2167 samples), Fusob (1275 samples), Kuguo (1199), Mecor (1820
samples), Youmi (1301). One more class of the dataset was reserved for Trusted
samples (559 samples). We collect the trusted samples from the Android official
store and tested them with VirusTotal. The CNN model was trained on 80% of the
dataset, and tested on the 20% samples left. It achieved 92.82% accuracy in test,
with a loss of 0.84.

We implement the methodology in a tool, called DexWave, which aims to
introduce in the DEX files the minimum amount of edits sufficient to produce
untargeted misclassifications to a trained model and a given input. The tool is written
in Python, it integrates both a tool for producing images starting from executable
files and a second tool to verify the achievement of the attack objective, using a
white-box approach. The tool is open-source and it is available for research purposes
on GitHub [11].

The execution begins with the classification of the original DEX file so that the
respective label is available. Perturbation techniques are managed in a modular way
and can be easily extended by adding new perturbations.

All the perturbations are loaded and applied sequentially, one at a time. Each of
them applies just a few edits, and at the end of each of them, the perturbed smali code
is compiled into a new DEX file, and then converted into an image, and analyzed
by the classifier. If the new classification differs from the original, the execution
ends successfully. Otherwise, the subsequent perturbations are applied until they
are exhausted. By doing so, the number of perturbation techniques applied is the
minimum necessary to cause untargeted misclassification.

For example, we report the DexWave execution on a malware sample belonging
to the Dowgin family. Figure 7 shows the image of the original malware in
comparison with the perturbed one. In this example, the DexWave tool execution
ended successfully with the NopsBombing perturbation, the very first perturbation
technique; it was not necessary to apply further perturbations, since the Nops
adding was enough to mislead the classification. In detail, the malware sample
was decompiled into smali code, the perturbation was applied on the smali code,
recompiled and converted again to an image. After that, the sample file was
classified as AirPush, thus it was classified wrongly even if the semantics of the
malware was preserved.

The tool was tested on 30 samples, taken from the test set of the dataset, and
they were obfuscated with DexWave. For almost half of them (14 out of 30), only
the NopsBombing perturbation was enough to mislead the classification; other
12 samples were still correctly classified after the first perturbation, but they were
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Fig. 7 Comparison between an original malware sample (on the left) and the same malware after
the execution of the DexWave tool (on the right)

Table 1 Number of perturbations applied per each subset of the 30 samples tested

# Test Samples # NopsBombing # StringBombing

14 1 0

12 1 1

3 2 1

1 2 2

wrongly classified after applying also the StringBombing perturbation. Only
4 samples required more than 2 iterations of the tool (i.e. applying again the two
perturbations available), but all of the samples ended up being wrongly classified.
Table 1 shows the number of perturbations applied on the 30 samples. To avoid
an infinite loop, DexWave was set to stop after 8 iterations (i.e. applying both
two perturbations 4 times each). Nonetheless, it never ended on this termination
condition, because it reached 4 iterations at maximum. Despite the simplicity of the
obfuscation techniques taken into account, this result confirms the effectiveness of
methodology: all obfuscated applications were not correctly classified by the deep
learning model, thus, we were able to drop the accuracy to 0%.

Furthermore, we scanned both DEX files (original and perturbed ones) with the
online platform VirusTotal, which allows scanning of files with multiple AVs. This
experiment was useful to test the robustness of commercial AVs to the perturbations
applied to the malware samples. For instance, the two DEX files of the samples in
Fig. 7 produce a significantly different output: the original file was recognized as
malicious content by 20 AVs out of 59, while the one produced by DeWave only 9
AVs out of 59. Thus, the perturbation process has increased the ability of the virus
to evade controls by about 20%. The VirusTotal detection results are available on
the DexWave GitHub repository [11].
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5 Conclusion and Future Work

This work presented the process of building a CNN for malware classification
and evaluated its performance on a dataset of Android executables. The malware
executables, converted to images, were split into malware families. An attack
method, based on two simple perturbations techniques, was then applied to obtain
untargeted misclassification. Also, a tool was implemented with the aim to automate
the aforementioned perturbation process.

The dataset was composed of 16384 malware samples, split into 10 families
(9 malware families and one class for trusted samples). We achieved promising
classification performances in the test, with an accuracy percentage and a loss value
of 92.82% and 0.84 respectively, which may confirm the efficacy of the approaches
image-based for malware classification tasks. Nevertheless, we presented a method
to slightly modify the malware sample in order to be misclassified by the CNN
model and demonstrate the weakness of these image-based malware approaches.
Finally, it was verified that the perturbations caused the model accuracy to drop to
0% and also a decrease in the number of commercial AVs able to detect the modified
file as a threat.

The proposed methodology has two main limitations: it is not able to target
the misclassification, and it could fail when there are no sufficiently effective
perturbations. In future works, the authors aim to implement more sophisticated
obfuscations techniques and to achieve a targeted misclassification, in order to label
all the obfuscated malware into the Trusted family.
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Detecting Botnets Through Deep
Learning and Network Flow Analysis

Ji An Lee and Fabio Di Troia

Abstract Botnet attacks pose a serious threat to the Internet infrastructure and its
users. Botnets are operated through a command and control (C&C) channel which
uniquely distinguishes it from other typical malware threats. The C&C server sends
commands to the botnets to execute malicious activities using common Internet
protocols, such as Hypertext transfer (HTTP), and Internet Relay Chat (IRC). Since
these protocols are common, detecting botnet activities has been a challenge. This
paper proposes an approach to identify the IP addresses of C&C servers and infected
hosts in a network, without prior knowledge of the addresses or the type of the
botnet. The approach is based on the observation that there are unique patterns in the
communication between C&C server and bots which could be used to distinguish
botnets from the background traffic. Regular botnet activities such as orchestrated
attacks, heartbeat signals, or periodic distribution of commands are the main causes
that produce such patterns. Deep learning techniques are applied on the extracted
patterns to classify potential botnet traffics. The results show this pattern-based
botnet detection technique is able to achieve high classification accuracy with low
false positive rate.

1 Introduction

A botnet is a collection of machines that have been intentionally infected with
malware to carry out various scams and cyber-attacks on the Internet without
the authorization of the machines’ owners. Once infected, these machines are
remotely controlled by a botmaster through communication channels using standard
networking protocols. At the core of the botnet are Command-and-Control (C&C)
servers that act as headquarters for botnet communication [22]. Cybercriminals
use C&C servers to distribute new commands to bots as well as receive execution
results. Some of the malicious activities carried out by the bots include identity
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theft, security breaches, distribution of SPAM emails, fraudulent financial scams,
and perpetrated DDoS (distributed denial of service) attacks [22]. Potentially,
any computer machine connected to the Internet has the possibility to become a
compromised bot, thus, the impact of a botnet is estimated to cause severe damage.
Many studies have been conducted to effectively detect botnet activities and protect
machines from botnets. Despite these efforts, botnet attacks continue to pose a
serious threat to the Internet infrastructure due to its constantly evolving nature [29].
Some of the previously explored botnet detection techniques include honeypot,
passive anomaly analysis, and network traffic based classification [7, 17]. Among
these three categories, network traffic based botnet classification is of particular
interest for our work. By analyzing botnet behavior, some distinctive traits of
botnet traffic may be recognized to help identify botnet activities. For instance,
botnets are required to connect with the C&C servers to provide status updates
and receive new commands. This unique characteristic suggests that botnets need
to periodically communicate with C&C servers to be able to function properly.
Using this information, the signs of periodic traffic may serve as a strong indicator
for botnet activity. Furthermore, even more features can be specified by reviewing
botnet behavior and network traffic for the purpose of botnet detection. The goal
of this paper is to propose a deep learning model that detects botnet activities in
a network by analyzing its packet captures. This paper tries to find answers to the
following problems:

1. Given a dataset that consists of botnet, normal, and background traffic, is it
possible to train a deep learning model that accurately classifies botnet traffic?

2. In real-life scenarios, botnets generate a significantly lower proportion of net-
work traffic than non-botnet traffic. How should the dataset imbalance issue be
addressed?

3. What are the key features of network traffic that is required to train the deep
learning model?

The structure of the remaining Sections of this paper is as follows: Sect. 2 covers
background information on the topics covered in this paper. Section 3 analyzes the
relevant work on the same domain. Section 4 explains the key details about the
CTU-13 dataset used in this project. Section 5 describes the methodology followed
in this paper, the specific implementation details for feature extraction, and the deep
learning model construction and evaluation. Section 6 summarizes the key findings
and reports the overall project result.

2 Background

This section discusses the background domain which this paper is based on. It
mainly focuses on botnets, autocorrelation analysis, and deep neural networks.
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Fig. 1 Overview of the general botnet architecture

2.1 Introduction to Botnets

The term ‘botnet’ is a compound word from ‘robot’ and ‘network’. It refers to
a network of compromised machines that works for a cybercriminal to perform
malicious activities over the Internet. Initially, the size of botnets was roughly a
few hundreds. However, with the advance of Internet technologies and computing
power, the number of bots that comprise a botnet have significantly increased to
a few hundreds of thousands [10]. Using this massive network of bots, hackers
conduct illegal activities such as personal data theft, server attacks, and distribution
of malware to infect more machines [18]. Botnets are controlled by a masterbot
through Command and Control (C&C) servers [8]. This control server plays a
critical role in distributing commands to the botnets and keeping a list of which
botnets are active and inactive. Figure 1 illustrates the architecture of a general
botnet system. Botmaster develops a malware program and infects machines
through the Internet. The set of infected machines are then operated by a C&C
server which is directly controlled by the botmaster.

There are four types of known C&C architectures as shown in Fig. 2. With the
direct architecture, botmasters directly infect and control the botnet. However, with
the possibility to trace the botmaster from the bots and the limited scaling, it lost
popularity within the cybercriminal society. Centralized architecture is identical to
the architecture shown in Fig. 2 and was discussed in [16]. Contrary to the direct
architecture, the centralized architecture’s bots do not lead traces directly to the
botmaster. P2P or decentralized architecture evades the single point failure issue by
enabling communication between all nodes in the network. A hybrid architecture is
an expansion of the P2P network that enables large scaling of the number of bots
that a botmaster can operate.
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Fig. 2 The four types of known C&C architectures
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2.2 Autocorrelation Analysis

Given a dataset that consists of observations of a phenomenon at different points
in time, autocorrelation analysis seeks for patterns over the time series. The term
autocorrelation refers to the degree of similarity between a given time and a time-
shifted version of itself. For instance, if it rained heavily every Monday, then the
autocorrelation analysis would find the periodicity of the rain as seven days.

Using the rainy day example, an autocorrelation plot can be constructed. In
Fig. 3, the x-axis is lag and the y-axis is the value of the autocorrelation function.
The plot shows a peak every seven lags: 7, 14, 21, 28, and more. This means that the
original input shows a repeating pattern of seven days. Similar to this example, the
high peaks in the autocorrelation plot are important when using the autocorrelation
tool. An autocorrelation value is considered significant if the value exceeds the
threshold, otherwise known as the confidence interval (CI). The formula to calculate
the CI is shown here

CIACk
= [ACk − 1.96 × ACSE,k√

N
,ACk + 1.96 × ACSE,k√

N
]
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where ACi is the autocorrelation estimate at lag i and N is the number of time steps
in the sample. More details can be found in [11].

2.3 Deep Neural Networks

Deep learning is a subset of machine learning where the structure is constructed
theoretically similar to living brains. It is commonly referred to as an artificial neural
network (ANN). Two common examples are convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). The main difference between the two types
of networks is that CNN uses the connectivity patterns between the internal neurons
while RNN uses time-series information that is strongly correlated to the order
and the neighboring input data. Due to this difference, we use CNN rather than
RNN for the deep neural network section of the implementation. There are three
types of layers that make up the CNN: convolutional layer, pooling layer, and
fully-connected (FC) layer. The convolutional layer is the first layer in the network
that is used to extract various features from the input data. This phase consists of
mathematical computations of convolution between the input data and a K∗K filter.
This filter slides through the input array and produces a feature map which provides
information about different qualities of the dataset. The pooling layer is generally
used to decrease the size of the feature map to increase computational efficiency.
In particular, the process of max pooling is the operation of selecting the largest
element in the feature map. Lastly, the fully connected layer consists of weights and
biases of the neurons and this information is used to connect the neurons between
the FC layers. The components of such network are described in Fig. 4.

Fig. 4 Components of a convolutional neural network
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3 Related Work

In the research field of malware detection, static and dynamic malware analysis have
gained popularity over the recent years [21]. While static malware analysis focuses
on using signature-based approaches such as file fingerprinting and virus scanning,
dynamic malware analysis focuses on analyzing the behavior-based features of
the malware samples [17]. Since the focus of static analysis is on the structure
of the executable itself, the analysis can be performed without running the actual
executable file. Although this is a cost-efficient approach, static analysis becomes
vulnerable to malware threats that only reveal themselves during run-time. Dynamic
analysis, on the other hand, detects malware by monitoring program activities
rather than the program structure itself. Using a behavior-based approach, activities
like network communication, API calls, system calls and system resource usages
are analyzed. With dynamic analysis, the intention is to understand the working
mechanism of a program and use this information to flag any suspicious program
behavior. Due to this characteristic, dynamic analysis is resilient and flexible to
more sophisticated and obfuscated types of malware. An example of a study that
relies on dynamic analysis is [2], where the authors detect sniffing programs within
a network. Sniffing is a type of network attack where an attacker tries to seek for
vulnerabilities in a network by gathering as much information as possible about
the targeted network. Sniffing is conducted by software programs called Sniffers
that passively analyzes the incoming and outgoing traffic in a network. Due to this
passive behavior, detecting Sniffers has been a challenge. The paper also suggests
a measurement-based approach to pinpoint hosts running Sniffers by flooding the
network with packets and comparing the round-trip response time among hosts.
The findings of this study show that monitoring the behavior of programs can serve
as an accurate indicator for finding malicious hosts. As cyber criminals and their
malicious programs become more innovative and creative, the mission to detect
malware paved the way for a hybrid model that employs static and dynamic analysis
in conjunction. In [3], a particular use case of hybrid model is explained where
dynamic analysis is used during the training phase and static analysis is used in the
scoring phase. Another form of a hybrid model is to use static analysis to inspect
network packet data while using machine learning to monitor network traffic to
pick up malicious network communications. In [9], the authors utilized a hybrid
a malware analysis model to extend the work in [2]. A sniffing detection method
that uses network traffic probed with machine learning techniques is proposed.
According to the authors, this paper was the first to apply machine learning for
the purpose of Sniffer detection. The detection method in the paper used ICMP and
HTTP for traffic probing. In addition, features like CPU load and variable period
lengths were used for performance evaluation. This extended paper achieved a
comparable outcome with the best results obtained in [2]. The work in [12] proposes
a botnet detection approach using mining of network flow characteristics. Given a
network flow dataset, four features were extracted: the ratio of incoming packets,
the ratio of outgoing packets, original packet length, and the ratio of bot-response
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packets. These features were used by the naïve bayesian classifier to achieve 99%
accuracy and 96.9% F-measure performances. However, the authors concluded that
the four features were insufficient to accurately represent botnet communication
patterns and additional features needed to be identified to further improve the
accuracy of the model. In [19], the authors utilized 29 different features of various
network protocols and its payload data to detect botnet activity in a network. Using a
large number of features, the main focus of this paper was to establish a connection
between a host’s periodic communication patterns and botnet activity. The author
pointed out that since botnets inevitably produce periodic network traffic while
communicating with the C&C servers, this characteristic will be a strong indicator
of botnet infestation. The datasets used in [19] are network captures that consist of
only malware and botnets traffic. Autocorrelation analysis on the features extracted
from the dataset was processed and the authors concluded the paper by presenting
autocorrelation plots that show signs of periodic behavior of botnet traffic. The work
in [19] opens the possibility to utilize the trait of periodic behavior in botnet traffic
to detect infected hosts. However, the dataset used in [19] is limited to only botnet
traffic where normal and background traffic are absent. The question of whether
the same approach will work for real-world network traffic dataset is yet to be
answered. Our paper extends the work of [19] by incorporating periodicity as one
of the features used to train the deep learning model for botnet traffic classification.
In contrast with the previous research, our work uses a network flow dataset that
includes a mixture of botnet, normal, and background traffic to prove its efficacy in
real-world botnet attack.

4 Dataset

The CTU-13 dataset was collected in 2011 by researchers at CTU University in
Czech Republic for the purpose of generating a large capture of botnet traffic mixed
with both normal and background traffic captures [6]. The thirteen captures that
comprise CTU-13, also referred to as scenarios, are collected using seven different
real botnet samples. While the dataset is now aging, it is not less representative of
modern botnet attacks. For example, the Virut botnet was identified recently after
being considered eradicated for many years [4]. A complete description of the seven
botnet samples is provided in Table 1. The distinguishing feature of the CTU-13
dataset is that each packet has been manually examined and labeled as either botnet,
normal, or background traffic. From examining the percentage of botnet traffic in all
thirteen scenarios, botnet traffic makes up only a small percentage of overall traffic.
This imbalance, however, accurately simulates real-world botnet infection and will
be used as input without artificial manipulation for the purpose of this research.

For each scenario, the three types of network traffic were captured in a Packet
Capture (pcap) file. From processing each pcap file, information such as NetFlows
and WebLogs were also obtained. While pcap files carry detailed information,
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Table 1 Types of CTU-13 botnet samples and its description

Botnet Type Scenario Nr. Description

Neris 1, 2, 9 Neris uses HTTP-based communication with the C&C
servers. The infected botnets’ main activities include
click-fraud and distribution of SPAM emails

Rbot 3, 4, 10, 11 Rbot uses IRC-based communication with the C&C servers.
Common with most IRC type malwares, the botnet is
controlled by the botmaster through a pre-configured IRC
server

Virut 5, 13 Virut uses HTTP-based communication with its C&C
servers. Main activities of the infected hosts perform
distribution of SPAM emails and unauthorized file
downloads

Menti 6 Menti uses IRC-based communication with its C&C servers
to scan SMTP servers

Sogou 7 Sogou uses unencrypted HTTP-based communication to
connect with the C&C servers. Its malicious activities
include downloading binary files and compressing them
without authorization

Murlo 8 Murlo uses IRC-based communication with the C&C servers
to carry out orders such as downloading executable files and
scanning vulnerable local network ports

NSIS.ay 12 NSIS.ay uses P2P-based communication with the C&C

analyzing NetFlow files is the primary interest of our paper as it contains core
information about traffic as well as its class labels.

4.1 CTU-13 Dataset Features

In a bi-directional NetFlow dataset, fifteen categories, listed in Table 2, are used to
describe a network traffic. The dataset is initially sorted by StartTime in ascending
order and, by using software programs that support csv parsing like Excel, each
category can be filtered to selectively show rows of particular interest. For instance,
to search for traffic generated by botnet activities, filtering the Label category for
“Botnet” keyword would bring up all relevant rows.

The CTU-13 dataset has been distributed by Stratosphere Lab through their
website and is open to the public for research or educational purposes [13].

5 Proposed Methodology

The goal of this project is to detect botnet activity in a given network by examining
the incoming and outgoing network traffic data. As illustrated in Fig. 5, the proposed
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Table 2 Explanation of features that comprise the CTU-13 network flow dataset

StartTime represents the absolute timestamp in which the row has

StartTime been recorded and is formatted as hh:mm:ss.

Dur Dur is duration of the corresponding event in seconds for each row

Proto There are 15 protocol is categorized in the Proto feature: ‘tcp’, ‘udp’,
‘rdp’, ‘rtp’, ‘pim’, ‘icmp’, ‘ipx/spx’, ‘arp’, ‘igmp’, ‘rarp’, ‘unas’, ‘udt’,
‘esp’, ‘ipv6’, ‘ipv6-icmp’

SrcAddr Source IP address in ipv4 format

Sport Port number at the Source

Dir Direction of the network flow, represented as ‘->’, ‘<-’, ‘<->’, ‘<?>’,
‘who’, ‘<?’, ‘?>’

DstAddr Destination IP address in ipv4 format

Dport Port number at the destination

State This feature describes the transaction state according to the protocol and
has 230 unique values

sTos Source Type of Service (0,1,2,...,192, NaN)

dTos Destination Type of Service (0,1,2,...,192, NaN)

TotPkts Total number of packets transmitted

TotBytes Total number of bytes transmitted

SrcBtytes Number of bytes transmitted from source to destination

Label Three unique labels to describe the transaction (normal, background,
botnet)

Network
Flow

Construct
Network
Graph

Filter
Network

Flow

Data Preprocessing Deep Learning

Statistical
Analysis
of Edges

Append
ACF Data

Define
Model

Compile
and Fit
Model

Evaluate
Model

Make
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Fig. 5 Overview of the proposed botnet detection mechanism

implementation consists of two essential phases. The first is the data processing
phase where the network flow records are rearranged and filtered so that only
essential information is left behind for the second deep learning phase. During the
first phase, a network graph which consists of nodes and edges is created to show the
interconnections between hosts. The final output of the first phase is an array that
stores the communication statistics of each edge in the graph, autocorrelation, as
well as the label. The last phase is the deep learning stage where a deep learning
model is defined, compiled, and fitted to be able to predict botnet activity in a
network.
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5.1 Data Preprocessing Phase

Infected botnets need to regularly connect with C&C servers to provide status
updates and receive new orders. Due to this unique characteristic, the communi-
cation log between the botnets and the servers inevitably exhibits periodic patterns
that can be used to signal signs of botnet activity. For instance, if there is a host
in a local network connecting to an outer network host every n seconds, then this
may be evidence that the local network host is an infected botnet that is sending out
heartbeat signals to the C&C server. To detect signs of periodicity more efficiently,
the original network flow dataset will be filtered to remove excess data.

5.1.1 Filtering Network Flow

Table 3 shows an example of an unaltered CTU-13 network flow record. Initially,
there are 15 features that help describe each network transaction between a source
and a destination. The explanation for each feature is described in Table 2. Among
the 15 features, only 10 are of primary importance, namely, StartTime, Dur, Proto,
SrcAddr, DstAddr, State, TotPkts, TotBytes, SrcBytes, and Label. According to
previous research on botnets [24], the most frequent protocols used between a
botnet and its C&C server are TCP, UDP, HTTP, and ICMP. The communication
states that are important for these protocols are CON, URP, and FSPA_FPSA. The
state CON indicates Connected in UDP, URP as Urgent Pointer in UDP and FSPA
encompassing all flags (FIN, SYN, PUSH, ACK) in TCP. From the original CTU-
13 dataset, the rows without Proto as UDP, TCP, HTTP, or ICMP will be filtered
out, and, of the remaining rows, only those with connection state CON, URP, or
FSPA_FPSA will be kept. This process of removing irrelevant transactions will
significantly increase overall compute accuracy and efficiency as well as reduce
computational costs.

In this paper, all 13 network flows from the CTU-13 dataset have been used as
input, and they all followed the filtering process described in this Section. Table 4
shows an example of the filtered output of the loaded CTU-13 dataset.

5.1.2 Constructing Network Graph

The network graph, also known as network diagram, is useful for understanding the
network’s physical and logical connection status. It enables viewers to have a visual
representation of the network to gain an overall picture of network topology and
data flow. By reassembling the result of the previous section’s rows of network log
into a network graph, the networking nodes and executed transactions will be easily
viewable for analysis. A proper network graph would follow a similar topology
shown in Fig. 6, where nodes would represent host machines and edges would
preserve records of all transactions between two nodes.
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Fig. 6 Basic network graph architecture that consist of nodes and edges

Algorithm 1 describes the pseudo-code for constructing a network graph from a
network flow dataset. In essence, the algorithm iterates through an array of network
flow records and creates an non-repetitive node in the network graph by looking
at the source and destination of the record. Once the nodes exist, the transaction
information described in the row is also recorded in the edge between the two nodes
on the network graph. The algorithm terminates when all rows of the array have
been processed and returns the completed network graph.

Figure 7 is a visualized network graph that clearly shows the connection between
each communicating node. Even though this graph was constructed with only a
small subset of the filtered CTU-13 dataset to reduce visualization complexity, it
still resembles the network graph that would result when the filtered CTU-13 dataset
were fully used. The features that are stored in the edges would consist of protocol,
duration, total bytes, total packets, state, timestamp, and label.

5.1.3 Statistical Analysis of Edges

The procedures prior to this section has been to remove irrelevant information
from the original dataset and rearrange existing information into a graph structure
to efficiently analyze data. In this section, a new array is created to store the
statistics computed from information recorded in the edges. To remove unsubstantial
transactions, only the edges that have more than four rows will be used. Each row
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Algorithm 1: Pseudo-code for constructing network graph
Input: Network flow data stored in an array (Array)
Output: Network Graph (G) consisting of nodes and edges

1 for each row in Array do
2 Node1 = row.SourceIP
3 Node2 = row.DestinationIP
4 if Node1 not in Graph G then
5 add Node1 to G

6 if Node2 not in Graph G then
7 add Node2 to G

8 if edge does not exist between Node1 and Node2 then
9 create a new edge between Node1 and Node2

10 append row’s flow attributes to the edge between Node1 and Node2

11 return G

Fig. 7 Example of a network graph plotted from the filtered CTU-13 dataset

of the new array corresponds to a comprehensive summary of transactions between
two nodes. Every row consists of twenty six columns: Duration (6), Total Bytes (6),
Total Packets (6), Timestamp (6), ACF (1), and Label (1). In particular, the columns
that belong to duration, total bytes, total packets, and timestamp are each filled with
six statistics, namely, mean, median, standard deviation, minimum, maximum, and
range. These numbers are calculated from the information stored at an edge.
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Fig. 8 ACF plot for periodic and aperiodic signals

5.1.4 Autocorrelation Analysis

A key goal of this project is to leverage the periodic communication behavior of the
C&C network to detect botnet activities. To achieve this goal, the autocorrelation
function (ACF) is used to calculate the periodicity of transactions. To explain with
an example, Fig. 8 shows the autocorrelation plot for both periodic and aperiodic
signals. In the periodic signal, the autocorrelation value peaked above the upper
bound of the confidence interval 15 times. The autocorrelation plot for the aperiodic
signal did not see any peaks that passed the confidence interval. In this scenario,
the input used for classification would be 15 for periodic signals and 0 for aperiodic
signals. A relatively high value of count indicates a strong periodic signal, which
would also imply occurrence of cyclic botnet activities.

The final output of the data preprocessing phase should be a single array N which
consists of 25 features (X) and a label (y) for each row. To train a deep learning
model for classification, this array N will be horizontally split (column-wise) into
two arrays: features N [0 : 25] and labels (N [25 :]).

5.2 Deep Learning Phase

In machine learning, an input dataset should initially be divided into two categories,
that is, training and testing. This separation procedure is important to prevent the
model from overfitting while accurately evaluating the model performance [28].
However, before randomly sampling the data into two datasets, a critical character-
istic of the original CTU-13 dataset needs to be considered. In fact, the CTU-13
dataset has a highly imbalanced botnet to non-botnet network traffic ratio. As
imbalance classification may lead to a biased and misleading deep learning model,
using random sampling to divide the dataset is not considered to be an appropriate
technique [14].
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Fig. 9 Overview of deep neural network architecture

5.2.1 Stratified K-Fold Cross Validation

Among various sampling methods, the Stratified K-fold technique [14] performs
well with imbalanced datasets. When the sampler divides the dataset into training
and testing sets, the percentage of labels that constitutes the original dataset is
maintained. For instance, if the botnet to non-botnet label in the original dataset
is 1 : 20, both training and testing sets would also keep the same ratio after being
split. This ensures botnet traffic to be properly represented while the model is being
trained and tested with minimum sampling error or bias.

Both testing and training sets compete to have the maximum number of samples
to achieve best learning results. The best validation result would come from having
more samples in the test set. However, this inherently triggers a trade-off of having
less items in the training set. A solution to this dilemma is to use cross validation
technique [15]. In K-fold cross validation, a dataset is partitioned into K sets of
equal size and K separate learning experiments are executed. For each learning
experiment, a non-repeating partition is selected as a test set while the remaining
K − 1 partitions are used as train sets. Once all K learning experiments are
complete, the performances and test results are averaged. For this project, K(3)-
fold cross validation, supported by the scikit learn API, was used for a more accurate
assessment of the learning model.

5.2.2 Define, Compile, and Fit the Neural Network

The main components of the neural network are the convolution layer, max pooling
layer, LSTM layer, and fully-connected layers. In the first convolution layer,
a convolution kernel takes a training dataset and extracts hidden features and
establishes a relationship between the input dataset and generated features. After the
one dimensional convolution layer, max pooling is applied to reduce dimensions in
the data to reduce computation overhead. LSTM layer takes the output from the max
pooling layer and enables sequential connection among the dataset before feeding
it to the dense layers. Finally, the output layer performs classification prediction
to label botnet traffic. An overview of the proposed deep network is illustrated in
Fig. 9.
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5.2.3 Model Evaluation

To evaluate the proposed model, metrics like overall accuracy, precision, recall,
and F-measure will be considered in conjunction with four additional performance
metrics: true positive (TP), true negative (TN), false positive (FP), and false negative
(FN).

In this paper, the botnet traffic will be considered as a positive label and non-
botnet traffic will have a negative label. The overall accuracy refers to the number
of correctly predicted labels over the total number of samples. Precision is the
proportion of true positives over the sum of all positive labels. Recall is the
proportion of true positives in the number of all the correctly labeled samples. F1
measure is the weighted mean of precision and recall, with its values ranging from
zero to one.

6 Results

The proposed approach was implemented using deep learning models in the
Keras Python library with TensorFlow deep learning engine. The implementation
involved a combination of 1D convolutional network, max pooling, LSTM, and
fully-connected layers. A more detailed configuration of these models is provided
in Table 6. The order and combination of these layers was selected through
multiple rounds of testing various configurations to optimize the performance of
the classification result.

With the layers setting in Table 6, the deep neural network repeatedly trained
and validated CTU13 input data separated by the type of malware. A total of
seven different types of malware, each unique with its own communication pattern,
were tested. The performance metrics of each malware type is shown in Table 5.
According to the result, the proposed model performed best to accurately classify
botnet traffic with the Rbot and Murlo malware type, both achieving over 0.9985
accuracy for the test dataset. While the performance results of different malware
types have low variance, the reason for Rbot and Murlo having high detection

Table 5 Classification result of the deep neural network implementation

Malware type CTU13 scenario # Accuracy—train Accuracy—test Precision Recall F1-score

Neris 1, 2, 9 1 0.9976 0.985 0.986 0.9855

Rbot 3, 4, 10, 11 1 0.9985 0.999 0.988 0.9935

Virut 5, 13 1 0.9974 0.982 0.981 0.9815

Menti 6 0.99 0.9747 0.986 0.985 0.9855

Sogou 7 0.98 0.9981 0.982 0.987 0.9845

Murlo 8 0.98 0.9987 0.998 0.981 0.9894

NSIS.ay 12 0.99 0.9905 0.997 0.985 0.9910
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Table 6 Classification result
of the deep neural network
implementation

Layer (type) Output Shape Param #

conv1d_1 (Conv1D) (None, 19,64) 256

max_pooling1d_1 (MaxPooling1) (None, 9,64) 0

lstm_1 (LSTM) (None, 32) 12,416

dense_4 (Dense) (None, 64) 2112

dense_5 (Dense) (None, 64) 4160

dense_6 (Dense) (None, 64) 4160

dense_7 (Dense) (None, 1) 65

Table 7 Comparison of performance metrics with respect to other studies

Performance

Research paper Method Features Dataset metrics

Torres et al. [25] Recurrent
neural network

Size, duration,
periodicity

CTU-13 Accuracy: 0.970

False positive rate:
0.0372

Wang et al. [27] Social
communication
detection

Network
flow-based

CTU-13 Recall: 0.026

Precision: 0.80

Fl-score: 0.088

Chen et al. [20] Decision tree Network
flow-based

CTU-13 Accuracy: 0.936

False positive rate:
0.3

Nagarajan [19] Periodicity in
network flow

Periodicity in
pcap data

CTU-13 Fl-score: 0.09

Vishwakarma [26] Data balancing
and machine
learning
techniques

Network
flow-based

CTU-13 Accuracy: 0.98

This paper 2021 Pattern-based
network flow
feature
extraction

Statistical
network
flow-based

CTU-13 Accuracy: 0.9936

Precision: 0.9898

Recall:0.9847

Fl-score: 0.9872

accuracy may be due to availability of a larger input data. The trend in Table 5 shows
that the malware type with a larger number of network flows achieved relatively
higher performance results. This implies that, with the increase of the number of
network flows, the model will perform even better.

The performance results of this paper are compared to those of relevant research
papers in Table 7. Using a pattern-based approach and analyzing the features
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statistically, this paper recorded 0.9936 accuracy, 0.9898 precision, 0.9847 recall,
and 0.9872 F1-score. Compared to the results taken from [19, 20, 25, 27], and
[26], the proposed approach achieved overall high performance. This comparison
result shows that a pattern-based approach enables high detection accuracy while
maintaining low false positive rate.

7 Conclusions

In this paper, a novel botnet detection approach is proposed using a pattern-based
classification technique. The approach begins by filtering the input network flow to
focus on traffic that uses TCP, UDP, and ICMP protocols. Information presented in
the filtered network flow is rearranged to enable an intuitive understanding of the
network traffic. By leveraging the network graph, features like duration, total bytes
exchanged, total packets, timestamp and autocorrelation count were extracted. This
approach can be used for all types of botnet architectures and does not require any
prior knowledge about the botnet type or C&C server IP address. The proposed
approach has been tested with network flow datasets that consist of botnet, normal,
and background traffic, to show that detecting botnet traffic in real-life scenarios
is possible. A deep neural network was designed to process the statistical features
that have been extracted from the network graph. Using the CNN architecture, a
classifier for botnet traffic has been created and the statistical features were fed to
the model for training and testing. The performance results were compared to the
metrics found in relevant research papers to confirm that the proposed approach
outperformed those of previous works. The presented method is applicable to
various types of botnet families to identify malicious actors in a real-life network
environment with high accuracy. For future work, a realistic networked environment
can be recreated to simulate real-life implementation. In this case, we expect a
considerable increase in background noise, however, we believe that the technique
proposed in this paper can still obtain promising results. Other machine learning
techniques can be tested relying on our selected features. For instance, Hidden
Markov models (HMM) [23], profile hidden Markov models [5], and support vector
machines [1] can obtain interesting results in this particular scenario.
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Interpretability of Machine
Learning-Based Results of Malware
Detection Using a Set of Rules

Jan Dolejš and Martin Jureček

Abstract Machine learning plays an indispensable role in modern malware detec-
tion; it provides malware researchers with quick and reliable results. On the other
hand, the results can be hard to understand as to why a model classified a given
file as malicious or benign. This paper focuses on the interpretability of machine
learning models’ results using decision lists generated by two rule-based classifiers,
I-REP and RIPPER. We use the EMBER dataset, which contains features extracted
through static analysis from Portable Executable files, to train various machine
learning models. We extract decision lists from the machine learning models’
results using our implementation of I-REP and RIPPER. By taking into account
accuracies, true positive and false positive rates of the decision lists, we reason
whether the generated decision lists make a good representation of the results. To
comprehend the interpretability of the machine learning models, we define Human
Most Understandable Model and Interpretability Entropy. This allows us to measure
and compare the interpretability among the models. The most interpretable machine
learning model by RIPPER was Gaussian Naïve Bayes. Results show that RIPPER
is relatively successful at interpreting other machine learning models; however, it
needs some improvements to increase true positive rate.

1 Introduction

Machine learning (ML) methods have been quite successful in various applications,
such as face recognition, weather prediction, image reconstruction, and many more.
Security experts use the methods for quick and reliable malware detection [10].
However, many methods, such as deep neural networks, are often considered black
boxes as the reasoning behind their decisions may be unclear [13]. Understanding
these decisions is essential; we may need to know why a person is considered at
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high risk of criminal activity [3] or why a benign file was classified as malicious.
Understanding the decisions may not only be necessary for data scientists to
understand their models better but may be required by some state’s law or regulation.
The General Data Protection Regulation (GDPR), introduced by the European
Parliament in 2016 and has taken effect as law in 2018, makes understanding
decision-making based on personal data necessary [14].

However, what does it mean to understand the results of machine learning
models? Is it the degree to which we understand the data or the inner workings of the
algorithm? As one may expect, the answer to this is not precisely clear. The current
literature offers various approaches that may help decide what part of the machine
learning or the data mining process should be more understandable. One could gain
a better understanding of the machine learning models through interpretability [19],
explainability [13], or transparency [24]. Interpretability can help one to understand
the decision-making of a model. Explainability, which is often interchangeably used
with interpretability, could offer an explanation of why the model made the decision
or why the model should make the decision. Transparency mainly relies on the
process of understandable data processing or algorithmic deployment. Our work
focuses on the interpretability of the results of the machine learning models applied
to malware detection. We may also use the term explainability, in which case we
consider it equal to interpretability.

In [19], Miller uses the following definition of interpretability: “the degree to
which an observer can understand the cause of a decision”. In a more machine
learning-based context, Doshi-Velez and Kim [9] define interpretability as the
“ability to explain or to present in understandable terms to a human”. The authors
of [5] argue that both definitions could be seen as two different approaches: one that
requires a priori interpretable models, and the other that would create explanations
to the existing or the future black-box methods.

In our work, we implement two well-known rule-learning algorithms, I-REP and
RIPPER and the structures necessary for the representation of a decision list. We
discuss possible speed-ups of the RIPPER algorithm, and we incorporate them into
our implementation. Some of the speed-ups were necessary, as we use the EMBER
dataset, which contains hundreds of thousands of samples.

For a given machine learning model, we try to interpret its results using decision
lists generated by the aforementioned rule-learning algorithms. We first discuss
the successfulness of the rule-learning process of both algorithms by exploring the
success rate of the algorithms (e.g., accuracy, true positive rate) and by taking into
account the complexity of the built decision lists. We then discuss the interpretability
of the machine learning results using the Interpretability Entropy (see Definition 14).
and how much do the predictions of machine learning methods match with the
generated decision lists.

Throughout the experiments, we try to understand better the RIPPER algorithm’s
performance by either changing its pruning metrics or its hyperparameters. We
consider whether the order in which the rules were learned is strictly given or
whether we can change the positions of the rules.
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The rest of the paper is organized as follows: Sect. 2 presents works related to
malware analysis. Some of the works make use of rule-learning algorithms (e.g.,
RIPPER) or approaches that try to either explain or interpret the reasoning behind
the decisions of used machine learning methods. Section 3 introduces the theory
necessary for rule-learning algorithms. Section 4 describes the specifics of our
implementation of the rule-learning algorithms RIPPER and I-REP. Section 5 gives
details on the used dataset and its split, transformation, and feature selection. Also,
Sect. 5 introduces a metric that can be used to measure the interpretability by the
decision lists. It contains the evaluation of the experiments, too.

2 Related Works

In this section, we provide an overview of works related to malware research, rule-
learning algorithms, and interpretability.

The authors of [11] combined three different methods for malware detection:
hash-based approach, Support Vector Machine-based approach, and rule-based
approach. Each of the named methods is intended to be used for malware classes
with different distributions. Using static analysis, they extracted n-grams based on
the content of a Portable Executable file—n-grams are all substrings of a fixed
length n [25]. The paper does not discuss the interpretability of the used model;
however, it outlines one of its positive outcomes—reduction of space complexity.
In their experiments, they reduced the storage cost from 1.8MB (signature-based
approach) to 17.9KB (combined approach).

The work [26] compares the RIPPER algorithm (see Sect. 3.2) with other
machine learning algorithms in malware detection. This is done merely on previ-
ously unseen samples. The paper does not clarify the number of iterations used for
RIPPER. They used static features extracted from the Portable Executable files—
used DLLs, DLL function calls, and the number of DLL function calls. The authors
of this publication discuss how malware developers could use the information
gathered by the classifiers to modify their malware. For example, by changing
resource usage.

To explain the reasoning of their model, the authors of [4] created a tool,
which not only classifies Android malicious files but also displays the features
that contributed the most to the decision. The tool goes by the name DREBIN and
uses features extracted through static analysis. These features are then mapped to a
vector space, and Support Vector Machines are used for the classification. Features
contributing to the classification can be derived from the vector space.

Inspired by deep learning and computer vision, the authors of [17] make use of
convolutional neural networks and the Gradient-weighted Class Activation Mapping
(Grad-CAM) [29] technique. This technique [29] uses gradient information that
serves as an input for the final convolutional layer in the CNN. In [17], an APK file
is first converted to a grayscale image representation and then used as an input for
the deep learning models. Heatmaps are generated using Grad-CAM to explain the
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model results. Subsequently, heatmaps are averaged for distinct malware families;
the authors refer to this as Cumulative Heatmaps. They can be used for malware
analysts to gain more knowledge about the malware (by observing the areas of
the code highlighted by the heatmaps), or they can be used to distinguish between
better-performing models.

Similar steps towards interpretability in malware detection were taken in [7].
Portable Executable binaries are transformed to grayscale images, and deep transfer
learning is employed for the classification task. The authors try to interpret the
results of the models as follows. A binary file is first divided into super-pixels,
contiguous regions. Then for each region, the coefficients are obtained. The positive
coefficient values indicate that a region contributes to the classification decision,
and the negative coefficient values indicate that a region does not contribute to the
classification decision. The paper, however, does not further explain how malware
analysts could use such information.

3 Rule-Based Classification

Several malware detection models based on machine learning techniques, such as
neural networks, are considered a black box because it is difficult (for humans) to
determine precisely why a given false positive or false negative occurs. Malware
researchers prefer interpretable detection systems, such as rule-based methods,
since they can be easily understood and better controlled. The goal is to improve
the interpretability of the classification models. In this section, we describe the
theoretical background for a rule-based system, specifically, decision rules. Some of
the definitions provided in this section are later used in the algorithmic description
(see Sect. 3.2), and they provide a high-point view of our implementation (see
Sect. 4). Decision rules can be expressed as a set of if-then rules [20]. For example:
if a file contains a suspicious function call, then mark this file malicious.

Definition 1 (Condition) A condition c is defined as follows,

c ≡ x  h, (1)

where x is a feature,  is a relational operator, and h is the value of the feature x.

Usually, the conditions are logically ANDed together, making it necessary for all
tests to fire [20].

Definition 2 (Rule & Rule Size) A rule r is defined as follows,

r ≡ c1 ∧ · · · ∧ cm, (2)

where m is the number of conditions for the rule r . We say that the rule r has a size
of m.
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However, a conjunction of the conditions is not a necessity, and a single rule may
be expressed by a general logical expression [30].

For a given rule, we are interested in its quality, more specifically in its coverage
(support) and accuracy (confidence). We say that a rule covers a sample if the sample
satisfies the rule’s conditions [23].

Definition 3 (Rule Coverage) Given a set of samples S, the coverage of a rule r is
defined as

coverage(r, S) = {s | s ∈ S, r covers s}. (3)

The following definition allows to express the coverage of a rule numerically.

Definition 4 (Rule Coverage Size) Given a set of samples S, we define the
coverage size of a rule r as

coverage_size(r, S) = |coverage(r, S)|
|S| . (4)

Rules are said to be mutually exclusive if no two rules cover the same sample.

Definition 5 (Mutually Exclusive Rules) Given a set of samples S, we say that a
rule ri and a rule rj are mutually exclusive, if

coverage(ri, S) ∩ coverage(rj , S) = ∅, i �= j, i, j ∈ {1, . . . , n}, (5)

where n is the number of rules for S.

Definition 6 (Exhaustive Rules) Given a set of samples S, we say that rules ri are
exhaustive, if

n⋃

i=1

coverage(ri, S) = S, i ∈ {1, . . . , n}, (6)

where n is the number of rules for S.

However, such rule restrictions are often not required, and we allow the rules
to overlap and not cover the whole set. Different problems arise, some rules may
contradict each other, or some of the samples may not be covered at all. Two
different schemas can be used to solve this: a decision list or a decision set [20].

In a decision list, the rules are ordered as follows:

R = [r1, r2, . . . , rn], (7)

where n is the number of rules for a given list. In other words, the rules are kept in
the order in which they were added. The same order is later used for classification,
too.
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The decision set does not require the rules to be ordered; instead, all rules get to
vote on classifying a given sample. Unfortunately, once the decision set grows very
large, it becomes quite hard to understand. Thus, we will be using a decision list in
this work if not stated otherwise.

Definition 7 (Decision List Coverage) Given a set of samples S, the coverage of
the decision list R is defined as

coverage(R, S) = coverage(rn, coverage(rn−1, . . . , coverage(r1, S) . . .)),

(8)
where n is the number of rules in R.

3.1 From Trees to Rules

In this section, we will briefly compare another popular machine learning tool—
a decision tree. Decision trees are built from nodes, where each node, except the
last ones, tests a feature with a given value (see Definition 1). The last node, also
called a leaf, represents a decision, for example, classifying samples as benign or
malicious [30]. Although the idea behind decision trees is quite simple, they may
turn out to be quite complex and hard to interpret [6].

Figure 1 illustrates a simple decision tree. However, its outcome may be a little
misleading as it is a simple disjunction, which can be easily described using rules:
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Fig. 1 Decision tree—describing a simple disjunction
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if a ∧ b then x

else if c ∧ d then x

else if e then x

else y

(9)

Quinlan [23] designed an algorithm called C4.5rules, which converts a decision
tree to a decision list. After its construction, it tries to improve it. Unfortunately, this
part of the algorithm is expensive. Cohen [8] showed that the complexity is near
O(n3), where n is the number of samples.

3.2 Rule-Learning Algorithms

In this section, we briefly discuss one branch of rule-learning algorithms—separate-
and-conquer. Unlike the divide-and-conquer technique, separate-and-conquer algo-
rithms first focus on the part of the training set and then try to describe it. In contrast,
divide-and-conquer strives to maximize the separation between classes [30].

Incremental Reduced Error Pruning (I-REP) [12] is an algorithm designed by
Fürnkranz and Widmer in 1994. It implements two pruning approaches to deal with
noisy data: pre-pruning and post-pruning. Pre-pruning ignores some of the training
samples in the learning process so that the final decision list would not describe the
training set perfectly. Post-pruning corresponds to removing a condition in a given
rule. The following metric drives I-REP’s pruning,

PI-REP(p, P, n,N) = p + (N − n)

P + N
, (10)

where p (n) is the number of positive (negative) samples covered by the current rule
from a total number of P (N) positive (negative) samples in the pruning set. The
algorithm is described in Algorithm 1.

Thanks to its efficiency, I-REP is well-suited for large training sets. However,
in 1995, Cohen showed that I-REP does not learn rules well enough and can
be outperformed by previously known algorithms, such as C4.5rules [8]. Cohen
has addressed specific issues and explained how I-REP could be improved. With
these improvements, Cohen designed a new algorithm called Repeated Incremental
Pruning to Produce Error Reduction (RIPPER).

Cohen’s team made three modifications—they replaced I-REP’s pruning metric,
chose a different approach to stop the rule-learning process, and added decision lists
optimizations. The following metric replaced I-REP’s pruning metric,

PRIPPER(p, P, n,N) = p − n

p + n
. (11)
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Algorithm 1: I-REP
Input: Positive samples – Pos, Negative samples – Neg, SplitRatio

Output: Decision list R

1 R ← {};
2 while Pos �= ∅ do
3 SplitExamples(SplitRatio, Pos, PosGrow, PosP rune);
4 SplitExamples(SplitRatio,Neg,NegGrow,NegP rune);
5 r ← empty rule;
6 while NegGrow �= ∅ do
7 r ← r ∧ FindLiteral(r, P osGrow,NegGrow);
8 PosGrow ← coverage(r, P osGrow);
9 NegGrow ← coverage(r,NegGrow);

10 end
11 r ← PruneRule(r, P osP rune,NegP rune);
12 if Accuracy(r) ≤ Accuracy(f ail) then
13 return R;
14 end
15 else
16 Pos ← Pos\coverage(r, P os);
17 Neg ← Neg\coverage(r, Neg);
18 R ← R ∪ r;
19 end
20 end
21 return R;

The following definitions are necessary to understand when RIPPER’s rule learning
is stopped.

Definition 8 (Rule Description Length) Given the positive real numbers n, k and
p �= 1, we define the rule description length as follows,

S (n, k, p) = 1

2
(k log2

1

p
+ (n − k) log2

1

1 − p
+ log2 k), (12)

As described by Cohen [8], this encoding allows two parties (sender and recipient)
to work over a set of n elements. The recipient can recognize k elements, and p is
known ahead. log2 k is the number of bits required to send the number k. The whole
metric is scaled by 1

2 to limit possible redundancy in the features.

Definition 9 (Decision List Exceptions) For a given set of samples S with a
positive class P and a negative class N , and for a given decision list R, we define
the number of exceptions as follows,

E (R, S) = log2

(
T P + FP

FP

)
+ log2

(
T N + FN

FN

)
, (13)

where T P (T N) is the number of samples correctly classified as P (N), and FP

(FN) is the number of samples incorrectly classified as P (N).
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Definition 10 (Total Description Length) For a given set of samples S and a
decision list R we define its total description length as follows,

T (R, S) =
∑

r∈R
in order

S (n, kr ,
kr

n
) + E (R, S), (14)

where n is the total number of possible conditions for S and kr is rule r’s length.

Let minimum description length (MDL) be the current total description length
(TDL) of a given decision list. Rule-learning stops if adding a new rule should
increase MDL by more than 64 bits. Since Cohen described the RIPPER algorithm
mostly with words, we include its pseudocode in Sect. 4 as it may not precisely
correspond to the original implementation.

4 Implementation of Rule-Based Classifiers

To efficiently generate decision lists using well-known algorithms mentioned in
Sect. 3, we created our implementations of rule-based classifiers (RBCs) in C++.
Although some implementations of the algorithms exist, such as Weka [15] or
wittgenstein [21], they are not quick enough to process large amounts of
data. We did not want to lose the ability of most of the machine learning tools—
quick and easy deployment. Thus, we added Python support to our library
using pybind11 [18]. The code has been made publicly available on Github.1

We further discuss some of the implementation details below.

4.1 Decision List

We implemented basic structures that correspond to the definitions in Sect. 3.
Namely, those are the condition (see Definition 1), the rule (see Definition 2), and
the decision list, often referred to as the ruleset. At this moment, the available
operators for the condition are {<=, >=}. Both operators are intended to be used
for numerical features only.

1 https://github.com/ai-honzik/RuBaC.

https://github.com/ai-honzik/RuBaC
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4.2 I-REP

As the original paper for I-REP [12] does not cover dealing with numerical features,
we used Cohen’s [8] suggestions for the algorithm. During the growth phase, the
algorithm searches for the best split between the numerical features. Rule growth
for both IREP and RIPPER is guided by maximizing FOIL’s gain and stops once
no negative samples are left in the growing set. Neither of the papers mentioned
above tackles the issue of learning the same rule twice. This may happen if the
present feature values are the same for both positive and negative growing sets. Our
implementation stops the growing phase and proceeds to the next step.

Algorithm 2: I-REP*
Input: Positive samples – Pos, Negative samples – Neg, SplitRatio, Largest bit difference

– d, Decision list – R

Output: Decision list R

1 MDL ← +∞;
2 while Pos �= ∅ do
3 SplitExamples(SplitRatio, Pos, PosGrow, PosP rune);
4 SplitExamples(SplitRatio,Neg,NegGrow,NegP rune);
5 r ← GrowRule(PosGrow,NegGrow);
6 r ← PruneRule(r, P osP rune,NegP rune);

7 T DL ← total_description_length(R);
8 if T DL < MDL then
9 MDL ← T DL

10 end
11 else if T DL − MDL > d then
12 break
13 end
14 Pos ← Pos \ coverage(r, P os);
15 Neg ← Neg \ coverage(r,Neg);
16 R ← R ∪ r;
17 end
18 for ri , i ∈ {|R|, . . . , 1} do
19 MDL ← total_description_length(R);
20 T DL ← total_description_length(R \ ri );
21 if T DL < MDL then
22 R ← R \ ri ;
23 end
24 end
25 return R;
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4.3 RIPPER

RIPPER increased the computational complexity with its improvements. The
learning process will stop if MDL increases by more than 64 bits. The calculation
complexity of TDL mainly lies in the calculation of exception bits. Naively, we
could calculate TDL each time; fortunately, we can use memorization to speed up
some parts of the calculations.

Rule description lengths can be cached. We only need to calculate the description
length of one rule each time throughout the iterations in I-REP*. We can do similar
steps for the exception bits. In I-REP*, we only need to remember the remaining
samples (samples that were not covered by any rule). We have to do more steps in
the optimization phase as rules depend on the previous ones. We need to compare
the coverage of the new ruleset with the old ruleset—the new ruleset is the ruleset by
which the previous one was replaced, either replacement ruleset or revision ruleset.
Let rn be a new rule, Rn a new decision list, ro the original rule, Ro the original
decision list, and S remaining samples that were not covered by any previous rule.
We need to check two cases—increase or decrease of falsely, resp., correctly covered
cases.

Algorithm 3: RIPPER
Input: Positive samples – Pos, Negative samples – Neg, SplitRatio, Largest bit difference

– d, Number of iterations – k

Output: Decision list R

1 R ← I -REP ∗ (Pos,Neg, SplitRatio, d, {});
2 for 1 . . . k do
3 RPos ← Pos ; // remaining positive samples
4 RNeg ← Neg ; // remaining negative samples
5 for r ∈ R do
6 SplitExamples(SplitRatio, RPos, PosGrow, PosP rune);
7 SplitExamples(SplitRatio, RNeg,NegGrow,NegP rune);

8 rev ← GrowRule(PosGrow,NegGrow);
9 rev ← PruneRule(rev, PosP rune,NegP rune);

10 Revise ← (R \ r) ∪ rev;

11 rep ← GrowRule(PosGrow,NegGrow, r);
12 rep ← PruneRule(rep, PosP rune,NegP rune);
13 Replace ← (R \ r) ∪ rep;

14 DLs ← {R,Revise, Replace} ; // DLs ...Decision lists
15 R ← argmin(DLs) ; // minimise description length
16 update r ; // based on the decision list R

17 RPos ← RPos \ coverage(r, RPos);
18 RNeg ← RNeg \ coverage(r, RNeg);
19 end
20 R ← I -REP ∗ (RPos, RNeg, SplitRatio, d, R);
21 end
22 return R;
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Sn = coverage(Rn, coverage(ro, S) \ coverage(rn, S)) (15)

So = coverage(Ro, coverage(rn, S) \ coverage(ro, S)) (16)

By calculating the sizes of Sn and So we do not have to recalculate TDL. We only
need to either increase or decrease the number of falsely, resp., correctly covered
cases.

The last part of our speed up lies in using Stirling’s approximation of the n!. For
our case, we can derive the following formula,

log2 (n!) ∼ (n + 1

2
) log2 (n) − n + 1

2
log2 (2π). (17)

Thus, the exception bits with known input arguments can be calculated in O(1). We
include RIPPER’s pseudocode, divided into IREP* (see Algorithm 2) and RIPPER’s
optimization phase (see Algorithm 3).

5 Experiments

This section discusses the used dataset and data split we used throughout the exper-
iments. We briefly summarize the data preprocessing, too. Furthermore, we discuss
the interpretability of ML models by using decision lists. For our experiments, we
define what it means for a model to be absolutely or partially interpretable by a
decision list and when a model should be considered interpretable. Throughout the
experiments, we examine closer the behavior of the RIPPER algorithm.

All of the experiments were run on a single computer platform with two
processors (Intel Xeon Gold 6136 CPU @ 3.00GHz), with 755 GB of RAM running
the Ubuntu 20.04 LTS operating system.

5.1 Dataset Description

For our experiments, we used the publicly available dataset called EMBER (Elastic
Malware Benchmark for Empowering Researchers) [1]. More specifically, we
employed the most up-to-date version from 2018. The authors of the dataset dealt
with three significant challenges—legal (releasing binaries of monetized software),
labeling (potentially requires expert knowledge), and security (releasing malicious
binaries is not safe) aspects. Thus, using the static analysis, features were extracted
and incorporated into the dataset. This tackles two of the challenges mentioned
above; labeling was achieved by using services such as VirusTotal.

The EMBER dataset consists of 1.1M samples, divided into a training set
with 900K samples (300K malicious, 300K benign, 300K unlabeled) and a test
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set with 200k samples (100K malicious, 100k benign). The newer version of
the dataset contains the label avclass [28] for malicious samples. This label
indicates to which malware family a given malicious sample belongs. Throughout
the experiments, we ignored the unlabeled samples.

The dataset is stored using the JSON file format, and for each sample, eight
groups of raw features are present. General file information—includes information
about the virtual size of the file, presence of a debug section, number of symbols, and
more. Header information—here, one can find information extracted from the Com-
mon Object File Format (COFF) header, for example, file characteristics, machine
type, or information from the Optional header. Imported and exported functions—
both raw sections include the names of the imported or exported functions, for
example "SHLWAPI.dll":["PathIsUNCW"]. Section information—contains
information about each of the present sections, e.g., their name, size, entropy, and
more. The following three sections are independent of the PE file format. Byte
and byte-entropy histograms—both sections consist of 256 integer values each,
indicating either the number of occurrences or the entropy for each byte. The string
section includes information about printable strings, such as their average length,
histograms, and more.

5.2 Data Splitting

We merged the train and test sets for our experiments, both predetermined in
the EMBER dataset. Furthermore, we created three disjunctive sets as follows: a
training set (consists of 40% samples), first test set (consists of 40% samples), and
second test set (consists of 20% samples). The training set will be used to train
various machine learning models. The first test set will be used to measure the
success rate of the models. Moreover, it will be used to generate predictions of the
machine learning models, later used to train rule-based classifiers. The second test
set will be used to measure how well RBCs interpret the ML models, that is, how
well are predictions of the models matched with RBCs’ predictions.

During the experiments, we used 5-fold cross-validation. First, we partitioned
the data into individual folds with the corresponding set sizes. That is, each fold
had the corresponding sizes for each of the sets mentioned above—40:40:20.
After partitioning, we applied data transformation techniques (e.g., normalization or
PCA). The following steps were all done individually for all five folds. We trained
each ML model on the training set and evaluated its performance on the first test
set (see Table 1) and then on the second test set (see Table 3). RBCs were trained
on the predictions of each ML model on the first test set. The performance of RBCs
was evaluated on the first test set (see Table 2) and the second test set (see Table 4).
Figure 2 describes the data split visually and it also explains the working process
used in our experiments.
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Table 1 Well-known ML algorithms and their performance on the EMBER dataset using the first
test set

RandomForest PCA

ML algorithm ACC TPR FPR ACC TPR FPR

DNN 95.67 95.86 4.52 96.42 96.18 3.35

GaussianNaïveBayes 74.67 81.00 31.66 72.45 96.09 51.16

I-REP 84.05 94.61 26.49 78.27 96.68 40.12

KNN 95.17 95.32 4.98 95.40 95.16 4.36

RIPPER 88.68 79.06 1.72 89.88 82.68 2.93
RandomForest 95.56 95.42 4.30 95.38 94.46 3.71

SVM 94.92 94.64 4.80 95.86 95.96 4.23

We highlighted the highest accuracy, the highest true positive rate, and the lowest false positive rate
across all the models

5.3 Feature Transformation and Selection

Even though rule-based classifiers can handle both numerical and categorical
features, traditional machine learning algorithms and the implementations available
from scikit-learn [22], which we used to train our models, require the features
to be numerical only. The authors of the EMBER dataset published a code [2] that
transforms some of the available raw features into vectorized ones using the hashing
trick. We used this code to transform the features and ended up with 2381 new ones.

Before proceeding further, it was necessary to standardize the data. Some
machine learning algorithms’ behavior may worsen if the data do not appear to
be from the normal distribution [27]. We used the class MinMaxScaler from
scikit-learn that transforms the features as follows,

xstd = x − min(X)

max(X) − min(X)
, (18)

where x is the original value and X is the collection of every value in a given feature.
Consequently, we employed two dimensionality reduction methods—Principal

Component Analysis (PCA) and Random Forest (RF), both available in
scikit-learn. We picked both techniques as they are simple to use and arguably
easy to understand. Even though one cannot simply see the original features with
PCA, we can use the correlation matrix to determine which features were used
to create the new ones. Unlike PCA, Random Forest keeps original features, thus
maintaining higher interpretability. We chose to keep 200 features for PCA as it
had less than 4% information loss. We decided to keep the same number of features
using RF, too. By choosing this value for RF, we aim to get a different behavior
of the models. Note that this may later put RF at a disadvantage as it may use
redundant features.
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Table 2 Measuring performance of RBCs on ML predictions using the first test set

RBC ACC TPR FPR DL size ø r size

PCA DNN RIPPER0 91.72 84.55 1.18 287.00 10.03

RIPPER2 92.89 86.89 1.18 324.40 10.13

RIPPER2,pr 92.61 86.00 0.85 320.80 10.39

I-REP 79.02 97.02 38.77 54.20 7.73

GNB RIPPER0 98.01 97.67 1.03 128.20 10.29

RIPPER2 98.49 98.30 0.98 151.00 10.34

RIPPER2,pr 98.37 98.07 0.79 149.80 10.77

I-REP 92.24 99.28 27.38 26.60 6.84
KNN RIPPER0 91.64 84.48 1.27 300.60 10.11

RIPPER2 92.39 85.82 1.10 323.20 10.22

RIPPER2,pr 91.83 84.43 0.84 310.60 10.47

I-REP 77.53 97.37 42.10 45.80 7.70

RF RIPPER0 94.29 89.48 1.09 291.80 10.13

RIPPER2 95.23 91.35 1.04 327.00 10.22

RIPPER2,pr 95.22 91.06 0.79 341.60 10.37

I-REP 80.00 97.93 37.27 50.60 7.39

SVM RIPPER0 91.36 84.11 1.38 312.60 10.21

RIPPER2 91.84 84.92 1.23 315.00 10.28

RIPPER2,pr 91.49 83.92 0.92 311.40 10.50

I-REP 78.34 96.39 39.76 47.00 7.79

RF DNN RIPPER0 89.51 80.02 0.94 201.60 13.20

RIPPER2 90.14 81.31 0.96 195.40 13.36

RIPPER2,pr 89.36 79.40 0.61 190.20 13.64

I-REP 84.48 95.44 26.56 63.40 10.34

GNB RIPPER0 96.40 94.50 1.20 201.00 14.96

RIPPER2 96.48 94.69 1.24 155.60 15.01

RIPPER2,pr 95.90 93.32 0.82 155.80 15.80

I-REP 90.76 98.38 19.27 41.60 9.39

KNN RIPPER0 88.42 77.78 0.88 203.00 13.44

RIPPER2 88.69 78.28 0.85 183.40 13.59

RIPPER2,pr 88.14 76.97 0.63 186.20 13.87

I-REP 82.55 95.14 30.11 53.00 9.88

RF RIPPER0 92.12 84.88 0.70 178.00 13.30

RIPPER2 93.32 87.39 0.78 193.80 13.59

RIPPER2,pr 92.92 86.35 0.56 191.60 13.94

I-REP 85.27 96.86 26.24 60.80 10.02

SVM RIPPER0 89.78 80.40 0.97 200.60 13.38

RIPPER2 90.47 81.82 0.99 191.40 13.46

RIPPER2,pr 89.68 79.91 0.68 191.00 13.85

I-REP 83.76 95.53 27.88 62.20 10.38

We highlighted the highest accuracy, the highest true positive rate, and the lowest false positive
rate across all RBCs. Also, we highlighted the smallest decision list size and the smallest mean
rule size
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Fig. 2 Visual description of the working process used in this work. Note that the decision list needs
to be generated before extracting its predictions for both test sets. Results for machine algorithms
for the first test set can be found in Table 1, for the second test set in Table 3. Results for rule-based
classifiers and the ML predictions are listed in Table 2, and for the second test set in Table 4

5.4 Evaluation Metrics

To understand how well machine learning algorithms or RBCs perform, we use
several different metrics described in this section. We first define terms that are used
in the metrics [16].

• True Positive (TP)—Correctly predicted malicious samples as malicious
• True Negative (TN)—Correctly predicted benign samples as benign
• False Positive (FP)—Incorrectly predicted benign samples as malicious
• False Negative (FN)—Incorrectly predicted malicious samples as benign

Using the terms above, we can calculate the false positive rate (FPR), also
referred to as the fall-out rate, the true positive rate (TPR), also known as sensitivity
and accuracy (ACC).

FPR ≡ FP

FP + T N
(19)
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T PR ≡ T P

T P + FN
(20)

ACC ≡ T P + T N

T P + T N + FP + FN
(21)

To better distinguish between individual performances of RBCs, we use addi-
tional metrics. We denote the number of rules in a decision list as DL size and the
mean number of conditions in rules in the decision list as ø r size.

5.5 Interpretability of Machine Learning Models

Doshi-Velez’s and Kim’s [9] definition of interpretability is suitable to our needs the
best. Thus, using their definition, we will first define Human Most Understandable
Model (HuMUM).

Definition 11 (Human Most Understandable Model) We say that a model is
most understandable if it has the ability to explain or to present in understandable
terms to a human.

Although this definition is subjective and not rigorous, it will serve more as a naming
convention. In our work, we consider decision lists generated by RBCs HuMUM,
as they are simple and easily understandable by humans.

We say that a model is absolutely interpretable by Human Most Understandable
Model if all of its predictions can be interpreted by HuMUM. That is, HuMUM
makes the same predictions as the model would.

Definition 12 (Absolutely Interpretable by HuMUM) We say that the model f

is absolutely interpretable by HuMUM g, if the following holds,

f (X, y) = yf ,

g(X, yf ) = yg,

yf = yg,

(22)

where X is the training set and y is the label set. Both f and g create new label sets
yf and yg .

We say that a model is partially interpretable by Human Most Understandable
Model, if some of its predictions can be interpreted by HuMUM. That is, HuMUM
matches some of the decisions made by the model.

Definition 13 (Partially Interpretable by HuMUM) We say that the model f is
partially interpretable by HuMUM g, if the following holds,
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f (X, y) = yf ,

g(X, yf ) = yg,

yf ∼ yg,

(23)

where X is the training set and y is the label set. Both f and g create new label sets
yf and yg . yf ∼ yg indicates, that some of the predictions are equal.

To understand when a model is most intepretable, we define Interpretability
Entropy.

Definition 14 (Interpretability Entropy) Given the predictions yf of a model f

and the predictions yg of HuMUM g, we define Interpretability Entropy as follows,

H (T , F ) = −
(

T

T + F

)
log2

(
T

T + F

)
−

(
F

T + F

)
log2

(
F

T + F

)
, (24)

where T = ∑
δyf yg and δyf yg is Kronecker delta, and F = |yf | − T .

The main goal of HuMUM is to minimize Interpretability Entropy, which can be in
the range of [0, 1]. Notice that this does not require models to be as close to being
absolutely interpretable by HuMUM. If HuMUM would always make a different
prediction, we would still have enough information about the model’s behavior.

5.6 Measuring Performance of RBCs on ML Predictions

Using the EMBER dataset, we applied five machine learning algorithms—Support
Vector Machines with Radial Basis Function kernel (SVM), Random Forest (RF),
Gaussian Naïve Bayes (GNB), k-nearest neighbors (KNN), and Deep Neural
Network (DNN) with two hidden layers. As mentioned in Sect. 5.2, 5-fold cross-
validation was employed to reduce the number of biases. We tried to fine-tune the
hyperparameters of algorithms for which it was possible. The averaged results are
shown in Table 1. At first glance, neither of the dimensionality reduction approaches
seem to have significantly better performance. We included RIPPER and I-REP
in the table as we want to compare their out-of-the-box performance to their
performances when trained on the predictions of the ML algorithms (see below).
RIPPER creates very few false positives; however, it is unable to detect enough
malicious samples.

We used our RBCs implementations and trained them on the predictions of the
ML algorithms on the first test set. That is, for each ML algorithm and all of its five
predictions on the first test set, RBCs were used to describe the outcomes of that
ML algorithm. The results were then averaged and are shown in Table 2.

I-REP’s performance is poor for both accuracy and TPR. Despite this fact, I-REP
produces straightforward decision lists in comparison to RIPPER. RIPPER produces
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immensely few false positives; however, it struggles to find malicious samples.
Notice that RIPPER has generally a lower performance when run on models that
used RF as dimensionality reduction instead of PCA. This does not apply to I-REP,
though.

For the individual cases, the results indicate that the predictions produced by
GNB with PCA were reasonably easy for RIPPER to reconstruct. RIPPER, in this
case, achieved both high TPR and low FPR, and the total number of conditions
is smallest across RIPPER’s decision lists. This could mean that GNB is almost
absolutely interpretable by RIPPER. GNB in combination with RF has very similar
results, although RIPPER needed approximately 1.5 times more conditions than
in the case of PCA. For other models, RIPPER generally required more extensive
decision lists for those models which used PCA for dimensionality reduction.
The RandomForest model was the second most partially interpretable model by
RIPPER in both cases of dimensionality reduction. For the rest of the models,
RIPPER obtained worse results. Models that were interpreted by RIPPER with
RF as dimensionality reduction had generally fewer conditions in total. However,
obtained rules were approximately 1.3 times larger. The model that is most probably
the least interpretable is KNN with RF dimensionality reduction.

Table 2 presents experiments that aim to verify whether RIPPER’s behavior
changes based on its learning parameters. RIPPERpr corresponds to RIPPER
without pruning. RIPPERk corresponds to the number of optimization phases.
RIPPER does not seem to be improving significantly with its optimization phases.
We can see that in some cases, it does increase its FPR in trade for higher TPR.
This is not surprising, as its optimization pruning metric is based on accuracy. This
could be problematic for imbalanced datasets as the accuracy metric does not take
this into account.

The results indicate that I-REP does not generate good rulesets despite their
comprehensibility. This is most probably caused by its pruning metric. RIPPER
achieved better results, although its TPR is relatively low for some of the models.
Results indicate that RIPPER will probably interpret some of the results better
than I-REP. Below we give an example of a rule generated by RIPPER for the
RandomForest model in combination with RF dimensionality reduction:

BHist0[0] <= 0.185925 &&
BHist87[19] <= 0.003879 &&
EntBHist216[92] <= 0.167021 &&
section vsizes hashed1[159] <= 0.000000 &&
section vsizes hashed38[170] <= 0.000000 &&
imported libs hashed206[189] <= 0.400000 &&
EXPORT_TABLE_va[191] <= 0.000001 &&
RESOURCE_TABLE_size[193] <= 0.000000 &&
CERTIFICATE_TABLE_size[195] <= 0.000001.

The structure of the rule is as follows:

featureName|colNumber?|[colIndex] operator value &&?,
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where colNumber is for features that are either hashed or built from histograms.
If the feature is hashed, colNumber corresponds to the column of the hash. If the
feature is built from byte histograms, colNumber corresponds to that byte, e.g.,
BHist87 corresponds to the part of byte histogram for byte 0x57. colIndex is
used to access different columns (in this case indices can be from {0 . . . 199}). && is
used as a conjunction. Parts of the rule marked with ? are optional. Feature names
were created according to the EMBER [2] source code.

Figure 3 shows the process of rule learning for both RIPPER and I-REP. Rules
with high TP coverage are primarily generated at the beginning of the learning
process. IREP’s rules that have high FP coverage are obtained at the beginning of
the learning process. We can see that RIPPER achieved a few spikes in the case of
covered TP samples for DNN, KNN, and SVM. There are smaller spikes for both
RF and GNB, too. As a result, RIPPER can find stronger rules in the later phase
of the learning process. The reason that those rules are not found earlier is related
to its pruning metric—RIPPER needs to cover a certain number of FP samples to
start considering better rules. Note that I-REP’s decision list sizes are significantly
smaller than RIPPER’s. This corresponds to the results in Table 5. Different sizes
are also given by the fact that both I-REP and RIPPER have distinct stop conditions.
I-REP, either used with PCA or RF, has very similar decision list sizes. The same
does not apply to RIPPER, as its stop condition allowed it to generate many more
rules for PCA than for RF.

5.7 Interpreting ML Results Using RBCs

Using the second test set, we measured the performance of the ML algorithms.
Results are shown in Table 3. There is no significant drop in performance for none
of the algorithms when compared to Table 1.

To find out how well generated decision lists interpret the ML models, we
measured also their performance on the second test set. This time, we did not use the
predictions of the ML algorithms. We used the original class labels for the second
test set. In Table 4, we replaced the decision list and rule sizes with two columns, TP
match, and FP match. We first create predictions of the ML algorithms and extract
only TP and FP samples for both columns. We then generate RBC predictions on
these samples and calculate how many of the predictions were the same. As seen
in both Tables 2 and 4, I-REP’s FPR was relatively high. This was not improved
by training it on the ML algorithms’ predictions. In fact, in some cases, it had FPR
higher than when trained on its own. RIPPER’s overall accuracy did not change
significantly when trained on better models. It did, however, get closer to the results
of ML algorithms that it was trained on. The overall results can be misleading, and
that is why we included TP and FP matches, and Interpretability Entropy. Our initial
proposal that GNB would be the most partially interpretable model holds. RIPPER
did match most of its predictions and did achieve the lowest Interpretability Entropy
among all other models. This does not apply to I-REP; even though it matches most
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Fig. 3 Rule Coverage Size Over Time. The graphs show how rules cover different samples
over time using the first test set and one of the five cross-validation folds. The y-axis is log-
scaled and represents covered samples; the x-axis represents a decision list size. Value −1 on
the y-axis corresponds to no covered samples. (a) True positives—DNN. (b) False positives—
DNN. (c) True positives—Gaussian Naïve Bayes. (d) False positives—Gaussian Naïve Bayes. (e)
True positives—KNN. (f) False positives—KNN. (g) True positives—RandomForest. (h) False
positives—RandomForest. (i) True positives—SVM. (j) False positives—SVM
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Table 3 Well-known ML algorithms and their performance on the EMBER dataset using the
second test set

RandomForest PCA

ML algorithm ACC TPR FPR ACC TPR FPR

DNN 95.62 95.82 4.59 96.44 96.20 3.33

GaussianNaïveBayes 74.65 80.97 31.68 72.47 96.11 51.16

I-REP 84.10 94.62 26.41 78.28 96.70 40.13

KNN 95.17 95.31 4.96 95.38 95.12 4.36

RIPPER 88.69 79.08 1.70 89.89 82.71 2.93
RandomForest 95.55 95.40 4.30 95.36 94.45 3.73

SVM 94.92 94.63 4.80 95.86 95.93 4.21

We highlighted the highest accuracy, true positive rate, and the lowest false positive rate across all
the models

of GNB’s predictions, its high FPR makes it less efficient for machine learning
models to be interpreted by it.

The second most interpretable model by RIPPER according to Interpretability
Entropy was RandomForest. RIPPER did get similar rates for FPR. It did not
match all of the predictions that RandomForest made. This is reflected in the
Interpretability Entropy, too. The last three models, namely SVM, DNN, and KNN,
and their results seem to be quite hard to interpret by both RIPPER and I-REP. The
Interpretability Entropy tells us that models interpreted by RIPPER could retain
some information. In the case of I-REP combined with PCA, there is very little one
could gain.

The value of the Interpretability Entropy for the RandomForest model interpreted
by RIPPER with PCA could be considered an acceptable limit of what we could
consider a strong, partially interpretable model. The results in Table 4 show that
RBCs have trouble matching the FP predictions of the original model. However, this
is not necessarily adversity; if the FP match is close to zero, we could still interpret
the results as well as creating explanations of why the model made incorrect
predictions. Close to 50%, FP match, resp. TP match, does not give any information
whatsoever, as it could be viewed more as guessing than interpreting.

5.8 Pruning and Metrics

I-REP and RIPPER both utilize pruning to handle noisy data. Cohen [8] pointed
out that I-REP’s incapability to converge towards better solutions is mainly caused
by its pruning metric, based on accuracy. The metric is one of the essential parts
of I-REP-like algorithms. Naturally, we may ask whether or not we can affect the
behavior of the metrics or whether it is more of a trial and error challenge.

The proposed version of RIPPER by Cohen [8] is capable of handling multiclass
problems. Using RIPPER, we can reduce the multiclass problem to an alternating
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Table 4 Testing how well do RBCs interpret ML algorithms’ predictions using the second test set

TP FP

RBC ACC TPR FPR match match H

PCA DNN RIPPER0 89.35 82.05 3.35 84.76 32.90 0.46

RIPPER2 90.17 83.98 3.63 86.71 36.17 0.43

RIPPER2,pr 89.95 83.17 3.27 85.93 34.25 0.44

I-REP 78.68 96.47 39.11 97.14 84.62 0.75

GNB RIPPER0 73.24 95.45 48.98 99.07 93.85 0.17

RIPPER2 73.01 95.66 49.65 99.28 95.02 0.16
RIPPER2,pr 73.13 95.59 49.34 99.24 94.60 0.16
I-REP 68.37 98.71 61.96 99.87 97.86 0.40

KNN RIPPER0 89.54 82.22 3.15 85.57 25.09 0.47

RIPPER2 90.03 83.28 3.23 86.65 26.80 0.45

RIPPER2,pr 89.59 82.05 2.87 85.49 24.34 0.46

I-REP 77.33 96.94 42.29 97.75 83.79 0.77

RF RIPPER0 90.12 84.60 4.36 89.04 60.09 0.37

RIPPER2 90.79 86.18 4.60 90.67 62.73 0.35

RIPPER2,pr 90.81 86.02 4.40 90.54 61.67 0.35

I-REP 78.82 95.91 38.27 97.72 96.30 0.73

SVM RIPPER0 89.46 82.30 3.38 84.96 23.75 0.48

RIPPER2 89.81 82.95 3.32 85.66 23.95 0.47

RIPPER2,pr 89.55 82.02 2.92 84.75 22.26 0.48

I-REP 78.14 96.32 40.04 96.92 77.62 0.76

RF DNN RIPPER0 88.48 79.19 2.22 82.00 19.67 0.51

RIPPER2 88.97 80.27 2.33 83.11 21.17 0.50

RIPPER2,pr 88.26 78.44 1.91 81.30 18.12 0.52

I-REP 83.64 94.76 27.47 96.06 73.61 0.63

GNB RIPPER0 74.55 78.31 29.20 95.67 88.97 0.26

RIPPER2 74.48 78.34 29.37 95.72 89.41 0.26

RIPPER2,pr 74.48 77.36 28.40 94.67 87.10 0.28

I-REP 73.00 86.75 40.73 98.78 96.63 0.44

KNN RIPPER0 87.74 77.24 1.76 80.25 13.62 0.54

RIPPER2 88.01 77.74 1.71 80.78 13.38 0.54

RIPPER2,pr 87.44 76.35 1.47 79.40 11.88 0.55

I-REP 82.35 95.12 30.41 96.19 69.64 0.67

RF RIPPER0 89.17 81.86 3.53 85.47 53.49 0.43

RIPPER2 90.13 84.11 3.86 87.78 56.91 0.39

RIPPER2,pr 89.85 83.21 3.51 86.88 54.01 0.40

I-REP 83.42 94.88 28.04 96.74 93.07 0.61

SVM RIPPER0 88.29 78.78 2.20 82.50 20.62 0.50

RIPPER2 88.89 80.11 2.33 83.89 21.83 0.48

RIPPER2,pr 88.11 78.20 1.98 81.97 20.01 0.51

I-REP 83.18 94.70 28.35 96.22 75.50 0.65

We highlighted the highest accuracy, the highest true positive rate, and the lowest false positive rate
across all RBCs. Also, we highlighted the highest true positive match, the highest false positive
match, and the lowest Interpretability Entropy
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two-class problem. Thus, we can understand pruning metrics as two-variable
functions. Fortunately, this number is perfect for a better understanding of pruning
metrics by graphing them. Figure 4 shows metrics used by I-REP and RIPPER, and
other metrics we tried to use throughout the experiments. We simplified I-REP’s
pruning metric as it can be viewed as a plane for fixed P and N (see Metric 10). Here
lies the key reason why I-REP tends to make bad decisions when pruning; points
with a different number of malicious and benign samples are often indistinguishable.
RIPPER’s pruning metric has good characteristics; we could only identify that
it does not differentiate between positive samples when no negative samples are
present.

We experimented with the metrics in Fig. 4, and the results are shown in Table 5.
Below we assign each metric (additionally, we added a function with a saddle point)
to its name:

p − n√
p + √

n + 1
︸ ︷︷ ︸

sqrt

,
p − n

p + n + 1
+ p

n + 1︸ ︷︷ ︸
impr

, p2 − n2
︸ ︷︷ ︸

saddle

, (25)

where p is the number of positive samples and n is the number of negative samples
in the pruning set. Each of the names (sqrt, impr, saddle) is used in Table 5 and
indicates what pruning metric was used. For the experiment, we used the first
test set and RIPPER with k set to zero. Results indicate that used metrics did not
achieve significantly better performance. RIPPPERimpr’s behavior is comparable to
RIPPER0, and for some cases, it reaches better FPR. With the decreasing number
of rules, we can see a significant decrease in the performance. With higher TPR
and FPR, RIPPERsqrt achieves similar accuracy rates to RIPPERimpr; for most cases
with more than 20% decrease in decision list sizes. RIPPERsaddle performs worse
than the original pruning metric of I-REP. Surprisingly, it generates more rules than
I-REP (see Table 2).

5.9 Does Order of the Rules Matter?

Figure 3 demonstrates a few spikes throughout the learning process of RIPPER. We
could potentially shift these spikes to have them occur as soon as possible. As a side
effect, we would violate the order in which they were learned. On the other hand,
would this change the overall behavior of the model?

Let R be a decision list with rules r1, . . . , rn. We want to swap rules ri and rj ,
where i < j . Rule rj now covers at least all samples it covered before the swap. It
may also cover new samples then covered by ri and rk , where i < k < j . This means
that the number of TP and FP samples for rule rj can remain the same or increase.
Samples that were covered by ri before the swap and are not covered by rj after the
swap can still be covered by rk . Thus, the number of TP and FP samples covered
by ri after swap can remain the same or decrease. The swap does not add any new
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Fig. 4 Understanding pruning metrics as 3D graphs. Pruning metrics should have the following
properties: If only malicious files are present, pruning metrics should be at their maximum. For
benign files only, they should be at their minimum. Otherwise, they need to compromise, and
should take into account a lower number of benign files. (a) Simplified IREP’s pruning metric. (b)
RIPPER’s pruning metric. (c) RIPPER metric with curvature for malicious samples. (d) RIPPER
metric with more curvature for malicious samples
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Table 5 Measuring performance of RBCs with different metrics on ML predictions using the
first test set

RBC ACC TPR FPR DL size ø r size

PCA DNN RIPPERsaddle 76.69 98.55 44.94 59.00 7.53

RIPPERsqrt 91.34 91.86 9.17 218.60 9.33

RIPPERsqrt 91.67 84.43 1.17 286.40 10.04

GNB RIPPERsaddle 89.57 99.79 38.89 31.40 6.69
RIPPERsqrt 97.09 98.95 8.16 83.40 8.91

RIPPERsqrt 98.09 97.78 1.05 133.80 10.26

KNN RIPPERsaddle 75.41 98.84 47.77 58.60 7.56

RIPPERsqrt 84.68 78.64 9.32 171.40 9.40

RIPPERsqrt 92.01 85.33 1.38 317.00 10.10

RF RIPPERsaddle 77.66 99.35 43.21 68.60 7.35

RIPPERsqrt 92.94 94.51 8.57 224.00 9.41

RIPPERsqrt 94.59 90.17 1.15 310.60 10.15

SVM RIPPERsaddle 75.58 98.21 47.10 49.20 7.30

RIPPERsqrt 90.47 90.97 10.02 214.00 9.40

RIPPERsqrt 91.20 83.76 1.34 299.00 10.17

RF DNN RIPPERsaddle 74.96 98.30 48.52 43.60 8.70

RIPPERsqrt 90.01 90.05 10.02 112.40 11.92

RIPPERsqrt 89.25 79.49 0.92 195.80 13.23

GNB RIPPERsaddle 85.60 99.31 31.79 35.20 8.50

RIPPERsqrt 94.90 97.31 8.23 94.60 12.02

RIPPERsqrt 95.83 93.42 1.09 168.00 14.84

KNN RIPPERsaddle 74.55 97.95 48.97 39.60 8.80

RIPPERsqrt 89.15 86.86 8.56 109.20 12.14

RIPPERsqrt 88.24 77.45 0.92 196.00 13.29

RF RIPPERsaddle 75.23 98.98 48.35 48.00 9.07

RIPPERsqrt 91.89 92.54 8.75 117.60 11.80

RIPPERsqrt 92.16 85.01 0.74 188.40 13.28

SVM RIPPERsaddle 75.05 98.38 47.99 44.00 9.02

RIPPERsqrt 90.08 88.99 8.86 110.40 11.93

RIPPERsqrt 89.88 80.58 0.94 203.20 13.43

We highlighted the highest accuracy, the highest true positive rate, and the lowest false positive
rate across all RBCs. Also, we highlighted the smallest decision list size and the smallest mean
rule size

samples that could be covered and only changes the behavior of each individual
rule. The overall behavior of R remains the same.

To sort the rules, we would always need to find a rule with a spike that is larger
than the previous ones. Unfortunately, we cannot use fast sorting algorithms as we
always need to update the number of TP samples of the following rules. The sorting
itself would require O(n2), where n is the number of rules, and the coverage of
each following rule would require O(nm), where m is the number of samples. This
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means that the sorting would require O(n3m). Therefore, we decided to sort the
rules greedily—only once given by their covered TP samples. The results can be
seen in Fig. 5—we used the first test set and the predictions of ML algorithms.
We can see that this approach smoothened the TP curves for RIPPER. Some rules
generated by I-REP had no TP coverage when reordered. This can be seen in the
case of the GNB model with RF dimensionality reduction. A similar case can be
seen for SVM, again with RF.

Rule ordering could lead to potential speed-ups if used in production, as stronger
rules would trigger earlier. Also, it could be used as an additional tool in RIPPER’s
optimization phase to achieve new properties.

6 Conclusion and Future Work

The interpretability of machine learning methods could be considered one of the
leading research goals in the current era. Many works focus on the essence of
interpretability itself, whereas other works focus on the domain of specific models.
In this paper, we examined the use of rule-learning algorithms to extract decision
lists based on the predictions of machine learning models. We used decision lists as
they are one of the most understandable models in machine learning.

In our experiments, we used two rule-learning algorithms: I-REP and RIPPER.
I-REP had inferior results, and we discussed the reason for this in Sect. 5.8. RIPPER
covered most of the predictions well; however, it could not find appropriate rules that
would not increase the MDL metric mentioned in Sect. 3.2. Using Doshi-Velez’s and
Kim’s definition of interpretability, we defined Human Most Understandable Model.
We defined absolutely and partially interpretable models by HuMUM, together with
Interpretability Entropy (see Sect. 5).

We tried to estimate how well do RBCs interpret the results produced by the
ML models. We merely did this by taking into account the accuracies, true and
false-positive rates of RBCs. This gave us a good idea of what ML models could
be interpreted by RBCs better than others. For example, we have correctly assumed
that GNB would be more interpretable than KNN by taking into account all of the
three metrics. Using this approach is limited since we cannot state how well RBCs
interpret the ML models precisely. Thus, we inspected the amounts of matched
predictions for the ML models. Using these amounts, we saw where RBCs fail
to interpret the ML models. Finally, the Interpretability Entropy allowed us to
numerically compare what ML models are more interpretable than others. We
conclude that in the case of the EMBER dataset, we could consider the Gaussian
Naïve Bayes model almost absolutely interpretable by HuMUM. The random forest
model could be viewed as a possible borderline of what we still could consider
interpretable. To increase the measure of interpretability for other models, such
as deep neural network, we need to improve the performance of the rule-based
classifiers.
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Fig. 5 Changing Order of the Rules. The graphs show how rule ordering affects covered samples
over time using the first test set and one of the five cross-validation folds. The y-axis is log-
scaled and represents covered samples; the x-axis represents a decision list size. Value −1 on
the y-axis corresponds to no covered samples. (a) True positives—DNN. (b) False positives—
DNN. (c) True positives—Gaussian Naïve Bayes. (d) False positives—Gaussian Naïve Bayes. (e)
True positives—KNN. (f) False positives—KNN. (g) True positives—RandomForest. (h) False
positives—RandomForest. (i) True positives—SVM. (j) False positives—SVM
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Throughout the experiments, we tried to inspect the behavior of the RIPPER
algorithm. We discussed the importance of the rule order in a decision list and how
changing it will not affect the behavior of the whole decision list. We confirmed
that the metric plays a significant role in rule learning, and by modifying it, we can
either achieve better performance or more comprehensible decision lists.

Although we created our implementations of rule-based classifiers, they are far
from being finished. We believe there is still space for speed improvements using
memorization. Currently, our implementations run sequentially; we could achieve
significant speed-ups by parallelizing certain parts of the implementations, for
example, looking for the best condition while growing a rule.

Decision lists generated by rule-learning algorithms could be used as an adversar-
ial tool, too. We could create features given by the conditions and examine when the
predictions of an interpreted model differ from the predictions generated by RBCs.
This could deepen the understanding of the interpreted model and allow for other
methods to be used in its weaker performing parts.
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Abstract The purpose of the paper is to explore the problem of detecting malicious
codes in malware and a way, based on consortium blockchain, to detect and control
the propagation in mobile devices. According to Damballa’s Q4 State of Infections
report, the antivirus products overlooked 70% of malware signatures within the
first hour (Q4 2014 State of Infections Report. Q4 2014 state of infections report.
https://www.interwest.com/news/press-releases/1013, accessed August 2021). This
is despite the fact that malware detection is carried out via numerous detection
techniques such as static analysis, behavioural analysis and sand-boxing. Specially,
malware detection in the mobile devices has always been a challenging issue,
especially on the efficient and open-source Android platform. Since each company
acts as an independent entity and there is a proliferation of antivirus products, the
rate of detection and effective identification of the malware is slowed down. In
this chapter, we try to establish a relation between the different detection products
through better communication, faster updating (via the common ledger) and more
efficient and accurate detection of malicious programs. The communication is
improved as all the nodes (anti-malware agencies) refer to the same blockchain
in the consortium network, hence possessing a common record. Combining the
malware signature of all entities into one increases the detection of malware, reduces
false positive rates via majority voting and speeds up the spread of signature
awareness. The resulting system, as proposed in this paper creates an environment
that provides a more precise classification of the application file provided by the
user. Therefore, in conclusion, incorporating the blockchain technology, with the
anti-malware producers as nodes, improves accuracy, merging the security services
provided by the blockchain technology.
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1 Introduction

The volume of malicious programs is growing exponentially with the increasing
pervasiveness of software systems, along with their impact and sophistication [17].
Anti-malware products realize the detection of the malicious codes through different
techniques that follow different paradigms, as well as: signature-based method-
ology, heuristics-based, static and dynamic analysis, and machine-learning based
classification. Unfortunately, the rate of discovery, detection and the distribution of
the necessary information to recognize malicious programs is still low.

In this chapter we propose a solution aimed to improve the collection and
classification of signatures from different sources, using different techniques, the
fusion of the signatures concerning the same malware and a platform for storing
and distributing them based on the blockchain technology. The goal is to build an
environment that allows different providers like antivirus vendors, nids, and threat
intelligence platforms to exchange malware signatures or indicators of compromise.

Blockchain is a decentralized chain of blocks that contain information, in this
case the information about each app, such as its signature and class (malware/be-
nign/unknown). Every member of the blockchain has a copy of the distributed
ledger, which makes it hard to tamper the information about malware signatures.
Three classes of blockchain can be deployed, namely Public, Private and Consor-
tium. A public blockchain allows any member to join the network, Bitcoin and
Ethereum are two popular examples. A private blockchain consists of nodes that are
centralized, quite against the very idea of blockchain technology. On the other hand,
a consortium blockchain is controlled by a pre-selected set of nodes (pre-approved
set of anti-malware agencies). Thus, though blockchain is said to be decentralized,
the network we employ in this paper is the consortium blockchain which is not fully
decentralized as we only require the approved parties to add the malware signatures
onto the block.

The underlying solution consists of two main parts: (i) malware detection
along with the production of indicators of compromise and (ii) the managing of
a blockchain for fusing, storing and distributing malware signatures. The malware
detection is realized through static analysis, by extracting properties from the
app under analysis; it is not limited to the source code alone, but also includes
the manifest files, .smali files and other resources that form the apk (Android
Application Package) [7]. The dataset for the model generation includes 15,000
apk files, which includes 2203 malware apks from the Drebin database [3] and
4039 benign apks of different categories taken from the Android market as the
test set. The proposed system is based on a blockchain network in the form of a
consortium of members responsible for detecting malware in mobile devices, along
with a trusted server that interacts with the client and provides the consortium
with the necessary data. It is necessary to deploy a consortium blockchain since
the members responsible for detecting malware represent independent anti-malware
agencies. The platform should offer these agencies an environment which is immune
from malpractice as the system would undoubtedly build a reputation for said
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agencies depending on how consistently and correctly they classify APK files as
malware or goodware. It is absolutely necessary that the system remains immune
to malpractice and ambiguity. A centralized system is prone to malpractice such
as tainting the results, influencing or unfairly elevating the performance of one or
more anti-malware agencies from the others and corrupting records. A consortium
blockchain, on the other hand, would be capable of tackling these problems and
hence enable these independent agencies to operate effectively while ensuring a
healthy competition between each other. Each member in the consortium may make
use of a particular feature extracted from the app, like permissions, APIs, Intents and
may classify the application at her convenience. The trusted server collects the .apk
file from the client and looks up the blockchain ledger which acts as a perpetual data
bank holding malicious program details. This trusted server is also responsible for
notifying consortium members of the applications it couldn’t classify.

The rest of the chapter is structured as follows. Section 2 discusses the motivation
and the context through the use cases. Sections 3, 5, 6 provide the necessary back-
ground, the architecture of the proposed system and literature, while Sects. 7, 8, 9
and 10 present the dataset, the feature extraction and the training methodology. A
discussion of the results follows in Sect. 11. Lastly, Sect. 12 provides concluding
remarks along with the directions of the future work.

2 Use Case

A number of android applications exist with malicious components and privacy
issues. The traditional method for identifying applications that cause harm, like
intruding on the user’s privacy, would include the detection of malware based on
its features. The unit responsible for analyzing is solely responsible for classifying
the application as either malware or goodware without any input or collaboration
with other analyzing units.

The Mobile Malware Detection System using Consortium Blockchain in this
experiment overcomes such issues. This proposed system includes three separate
and independent nodes. Each of which is specialized to perform classification based
on a separate feature. The user, after having uploaded an application that doesn’t
match the records on the ledger, will be notified about the classification performed
by the consortium. Each node obtains the file and they proceed to analyze the file
individually, performing the extraction of features they are responsible for. After
this step, the individual nodes shall prepare the feature vector and feed it to their
respective classifiers. The classifier is trained to distinguish a file as malware or
goodware from the training data by identifying the unique set of combinations of
features differentiating a malware from a regular application. The node responsible
for identifying malware based on the permissions set used by the applications will
collect the permissions used by the application, such as camera, contacts, location,
microphone, sensors, SMS, and storage (small set of permissions that has the
potential to cause harm if the developer of the malware intends to), and creates a
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Fig. 1 Components of
android application

feature vector. Based on the permissions alone, the classifier tries to understand the
true nature of the application and then gives the prediction accordingly. Similarly,
the other nodes also perform classification operations using the API calls features
and intent features. Using each nodes prediction, the final label for the file is
determined. Hence the system takes various agencies’ input into account and comes
with a result that is determined by more than one component as opposed to a
centralized agency. The system provides the environment to simulate a form of
classification inclusive of diverse analyzers and better performance despite the lack
of any real interaction between them.

3 Android Application Components

This section provides a brief summary of the basic Android application components
and how they are used in malware detection.

Figure 1 depicts the basic building blocks of an Android application, known
as the components of an Android application. These components are loosely
coupled and bound by the manifest file AndroidManifest.xml. The manifest file of
the application describes the components and their interaction with one another,
along with additional information such as the application’s metadata, and required
permissions.

3.1 Activities

An activity, representing the presentation layer, is a single screen UI (User Inter-
face). For example, the login screen of a messaging application is an activity, the
chat visualization on the monitor of the device is another activity. All activities of
an app work cohesively but are also independent from each other. Thus, another app,
if allowed by the current application may start an activity. For example, a camera
app starts an activity to share photos in the messaging app.
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3.2 Services

A service is a general-purpose entry point that is used to keep the application
running in the background. It has no user interface. The application can be made
to run in the background either due to Started service or Bound service. They
perform several operations such as data source updating, broadcasting intents and
even performing tasks of inactive applications.

3.3 Broadcast Receivers

Broadcast receivers listen for intents such as BOOT_COMPLETED,
POWER_CONNECTED, SMS_RECEIVED. They help the application to react
to the received intent that matches certain specified criteria. Basically, it allows
the app to respond to system-wide broadcast announcements. A system can deliver
broadcasts to systems that aren’t currently running.

3.4 Content Providers

Content providers basically handle application data and data management issues.
Such data may be stored in the file system, database or elsewhere. This component,
also known as the data storage, has the responsibility of handling data access beyond
the boundary of the application.

4 Role in Malware Detection

Faruki et al. in [6] consider the components that are launched using Intents such
as Activities and Services and state how each component may be accessed by
other applications. Suarez et al. in [15] carried out experimentation using meta-
information and count of the components to determine whether an application was
malicious. Xu et al. in [20] state that malware tends to register more broadcast
receivers than as seen in benign applications.

Hence, there are many access points that can be maliciously utilized. Since
anatomy analysis of malware needs to take a look at the relationships between
the features in order to reveal the malicious behavior and identify its patterns, we
tried to achieve this by implementing both feature extraction and classification. For
example, one application can make use of activity of another application, services
can run tasks in the background without the user‘s knowledge, broadcast receiver
can act as a general entry-point and handle communication between Android OS
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and application, other apps can query and modify data using content provider, and
so on. Thus, there is a need to assess certain features such as intents and permissions,
to ensure that there are no malicious intentions behind an application.

5 The Blockchain Network

The proposed solution incorporates a form of consortium blockchain architecture.
Three types of blockchains exist: public blockchain, private blockchain, and
consortium blockchain [23]. The public blockchain is the blockchain built without
any restrictions on access. This kind of blockchain does not require a hierarchy,
since every node has the authority to perform every action such as reading, writing,
and auditing. Private blockchains limit access to an individual or an organization.
Such a system, unlike a public blockchain, has an entity responsible for maintaining
the network, assigning authorizations to perform different actions. Hence, the
management of a private blockchain is centralized, having a trusted party the duty of
assigning the rights for performing the tasks, offering the different members of the
organization a secure medium to realize the transactions from within. A consortium
blockchain removes the constraint of a single entity that centrally controls all the
activities, replacing it with a pre-selected group of entities with identical authority
performing the various actions across the ledger [11].

The solution makes use of a permissioned blockchain with a consortium archi-
tecture. Unlike a permissionless blockchain which does not require permission to
join, thereby allowing any individual to be a part of the network, the permissioned
blockchain asks for approval from the central authority for a user to participate.
The network developed consists of two pre-selected entities: a Trusted Server and
the various organizations responsible for classifying files as malware or benign.
The trusted server has the authority for running functions to initialize new blocks
on the blockchain when the client uploads new apk files and notifies the different
organizations in the consortium about the classification of a program. They are also
enabled to read the ledger to determine the classification of the program. Once the
connected organizations are notified of a new block in the ledger by the trusted
server, they would work on figuring out what the classification will be after which
they would proceed to run the functions enabled to update the block with their
findings. The functions enabled in the network are specific to the participants in the
network and can only be implemented by the participant if and only if the participant
has the proper authorization. The trusted server and the members of the consortium
have different permissions and so this would imply that a permissioned network is
necessary.

Though the clients are crucial parts of the system, they are not members of
the blockchain. They do not have any authority to perform any action across the
blockchain ledger. The necessary actions are carried out by the members of the
consortium and the trusted server. In fact, the only interaction the client has with the
proposed system is with this trusted server. They are end-users that provide apk files
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that they suspect may be malicious to this trusted server and the trusted server goes
on to inform the consortium to classify the file provided by the client and to write
the results onto the ledger. Once the required number of members in the consortium
have shared their results on the ledger, the trusted server simply reads this result and
provides the user with a response about the classification of the file, i.e. malware or
benign. The user does not directly interact with the ledger in any way. The necessary
operations are carried out by the trusted server and the members of the consortium.
And so, this rules out the need to implement a public blockchain as well. Since the
two entities have different permissions to operate on the ledger and any new node
can be a part of the system without the necessary approval, the best option was to
construct a permissioned blockchain on the top of consortium architecture.

6 Related Works

The malware detection approach adopted by the proposed system is static analysis.
Several works based on static analysis have been investigated. Papers [7, 9]
discuss about the enhancement or improvement of the methodology. These methods
however only help an individual agency improve their detection rates.

This paper utilizes static-based analysis for malware detection to represent the
possible models. There are three models incorporated into the network which are
based on the respective features as permission, API calls and intents.

Paper [22] provides an evaluation of permission based android malware detec-
tion, which is what we employ for one of the nodes of the blockchain network.
However, this paper only considers a small dataset. Similarly, paper [25] cites
API sequence as the feature of concern, with the similar drawback of considering
only 600 benign and 600 malware samples. Paper [2] also deals with API but also
states how achieved better results as compared to permission based malware detec-
tion techniques. Another paper, [19], considers permissions over inter-component
communications as intents are taken as the main feature in the malware detection
process.

The studies in [16] and [4] consider a combination of features such as permission
and intents, permission and API calls, respectively. They try to bring about a hybrid
method for android malware detection by analyzing the required features. Some
authors [16] state that the system is improved enough to get better detection of zero-
day malware. The other combination of features, as seen in paper [4] shows better
results that are based on permission alone.

Paper [21] briefly discusses the different techniques used in android malware
detection and states their highlight and limitations. Other papers [14, 18] and [24]
discuss about malware detection in Android. But, all the papers stated so far are
to enhance a single anti-malware agency and improve a single node’s detection
rate. On the contrary, we employ blockchain technology to better communicate
the signatures and create an environment for improved malware detection with a
collection of nodes that can employ the preferred malware detection technique.
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Some papers [10, 12] and [8] explore these concerns. In [12], Raje et al. design a
full-proof heuristic solution based on the blockchain technology and deep learning
to classify Portable Executable (PE) files as malicious or benign and they can
achieve nearly 90% accuracy using a two-layer DBN. Meng et al. [10] in their
review discusses the applicability of blockchain technology to solve some issues of
the intrusion detection systems (IDS). Particularly, they point out that the blockchain
technology can be used to improve the performance of an IDS, especially in the
aspects of data sharing and trust computation but not all IDS issues can be solved
with this technology. On the same topic, Gu et al. in [8] propose a framework,
called CB-MMDE, to detect and classify malware on Android-based mobile devices
through blockchain technology. Starting from the use of the Drebin dataset [3], they
can achieve higher detection accuracy in limited time with lower false-positive and
false-negative rates.

7 Methodology

This section describes the working of the system, the different components and how
they interact with one another. The diagrammatic representation of the working is
shown in Fig. 2.

Fig. 2 Working and overall structure of the malware detecting blockchain system
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7.1 APK Files

The client that requires a particular apk, file to be classified as malware or benign,
provides it to the trusted server. The client establishes an encrypted connection with
the server from the browser via an SSL Certificate and uploads the apk file.

7.2 Trusted Server

When the server receives the apk file, decompresses it and proceeds to retrieve the
unique permissions, API calls, and intents. The feature vector is then populated
with the corresponding values of each feature. These vectors are hashed with the
MD5 algorithm and these hashes are used as the signatures to identify malware.
The blockchain ledger is checked to see whether the signatures match with a record
already present in it. If all the three signatures of the apk file match with the
signatures of a particular record in the ledger, the apk file is classified by the “state”
of the record. If just two of the signatures match, the vote under each signature is
considered. If they match, the state is shared.

No match would imply that the signature of the apk file being considered does
not exist on the ledger and so the trusted server becomes unable of classifying the
file. In such a situation the server creates a new record of the file on the ledger. The
server is the only entity in this system with the privileges to add a new record to the
ledger.

7.3 Adding a Record

The server adds a new record to the ledger with information such as MD5 hash of
the content of the apk file (this will serve as the identifier of this record), the URL
from which this file can be downloaded from the server (this URL will be used by
the consortium members of the blockchain) and initializes the state of the file as
“UNDETERMINED”.

The server makes use of a function defined by the blockchain network to add
records onto the ledger and hence the ledger cannot add data to the ledger on its
own and is restricted to the features provided by the network. On adding a new
record to the ledger, an event is emitted across the network. This event will hold the
added record’s identifier along with the URL.
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7.4 Members of the Consortium

The members connect to the network using certificates containing information,
including their private keys, which will be used for their authentication. These
members will be continuously listening for events that may occur on the blockchain
ledger. When the server adds a new record on the ledger, the event emitted is caught
by these listeners. Each event carries the hash of the file content along with the URL
from which the file can be downloaded from the server. The members use this URL
and download the file. They then compute the MD5 hash on the content themselves
and compares the result with the hash they received from the event. If both the
hashes match it can be concluded that the apk record created on the blockchain
matches the one downloaded by the member. If not, it would imply that somewhere
along the way the file has been corrupted. Each member on the consortium uses a
particular feature, among permission, API and intent, for classifying the apk file,
see Table 1. And so, after ensuring that the file received is authentic, they extract the
features they are focusing on from it and create a feature vector. This vector is fed
to their respective models and the classification is obtained. The member node then
proceeds to cast its vote in the ledger based on the result.

7.5 Blockchain Ledger

The data block of each record holds the necessary details about the analyzed
malware. The apkHash, State, URL, as was explained in previous sections, is
initialized by the server when the new record is added. Each consortium node
identifies the features and classifies the file. Based on the classification, they vote
for or against the record of being malware. Their vote, the MD5 hash of the feature
vector they have created along with the list of the particular feature used by the
application is provided to the record on the ledger under their identity. It should
be noted that only the consortium member on the network has the right to update
any given record on the blockchain ledger. Figure 3 shows how a single data block
would look like.

7.6 Final Response

Once the record has accumulated enough votes, the network determines whether the
majority has voted for malware or for benign. The server retrieves this information
and passes it to the client.
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Table 1 The lists of features provided to the blockchain ledger by each member of the consortium

Feature Values

Permissions “android.permission.ACCESS_NETWORK_STATE”

“android.permission.INTERNET”

“android.permission.WRITE_EXTERNAL_STORAGE”

“android.permission.ACCESS_FINE_LOCATION”

.

.

.

“android.permission.ACCESS_WIFI_STATE”

API “setOverridelmpression Recording”

“setOverrideClickHandling”

“isSize Appropriate”

“getHeightInPixels”

.

.

.

“getCustomEventExtrasBundle”

Intents actions “android.intent.action.BOOT COMPLETED”

“com.google.firebase.MESSAGING EVENT”

“com.google.firebase.INSTANCE ID EVENT”

“android.intent.action.MAIN”

.

.

.

“com.android.vending.INSTALL_REFERRER”

7.7 Technology Behind Blockchain Network

The mobile malware detection system using consortium blockchain was built mak-
ing use of Hyperledger composer [5]. Hyperledger composer is an extensive, open
development toolset and framework to make developing blockchain applications
easier. Hyperledger composer supports the existing Hyperledger Fabric Blockchain
infrastructure and runtime, which supports pluggable blockchain consensus proto-
cols to ensure that a transaction is validated according to policy by the designated
business network participants.

Hyperledger Composer can be used to quickly model the current business
network; it is a private blockchain containing existing assets and the transactions
related to them; assets may be tangible or intangible goods, services, or property.
However, Hyperledger Composer also supports deploying a business network across
multiple organizations allowing the establishment of a consortium. The business
network model can be defined in such a manner that transactions can interact with
assets. Business networks also include the participants who interact with them,
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Fig. 3 Content of each block in the ledger

each of which can be associated with a unique identity, across multiple business
networks.

Our system considers new blocks added to the ledger as the asset. Hyperledger
Composer allows the user to define the assets and the various attributes associated
with them. In this case, the asset holds data regarding its state, and the list of features
of the apk file. This asset is the one the participants of the network will be working
with. Participants are defined in a similar fashion as well with various attributes
describing the participants, trusted server and the consortium members.

Hyperledger Composer allows the developers to deploy the functions that can be
run by the participants on the ledger. This is considered as the logic of the network.
This is the module in which the various operations that can be run by the various
participants are defined. This logic module holds functions necessary for writing
into the ledger, updating the blocks on the ledger, reading from the ledger. The logic
module also allows defining events. Events can be paired with functions so when
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the function is invoked the event will be passed. In this paper, when the trusted
server creates a new block on the ledger, an event is passed to the members of the
consortium, notifying them that there is a new block to be considered.

Hyperledger Composer also provides a “permission” module. This module is
what can be used to define what functions in the logic module the different
participants have the authorization to operate. Functions to initialize a new block,
and to read from the ledger are allowed to be invoked only by the trusted server.
Whereas updating the predicted state field in a block along with the list of features
of the apk file is performed only by the members of the consortium. Hyperledger
Composer offers a private, permissioned blockchain. Our system ensures that each
entry in the ledger is mapped to the author and is not left anonymous. This ensures
that the data provided can be held against the author motivating them to provide
credible data and discouraging them from malpractices as it would affect the
reputation of the organization.

This permissioned consortium blockchain offers malware analysts a platform
for spreading awareness when new malware is trending, by keeping a perpetual
memory of all the indicators of compromise collected. The blockchain ensures all
the analyses are notified to the members allowing them to take appropriate actions to
counter the harm immediately. The interaction of various organizations to identify
the class of various cases will prove to be much faster than when organizations
work on their own. The mass malware attacks deployed on the internet can be
classified and handled much faster, cutting down on the intensity of such attacks.
Hyperledger Composer provides all the functionalities to run such a system across
various organizations and build a very effective system.

8 Implementation Details

In this section two use cases are presented that illustrate the client’s interaction
with the ledeger blockchain and describe three algorithms to contemplate the
initialization of a block and the voting operation in the corresponding blockchain
ledger.

8.1 Scenario 1

Figure 4 depicts the scenario where a user feeds the system with an apk to be tested
and the server upon receiving the apk will proceed to check the ledger if a record
for this apk has already been created.

Step 1 represents the user requesting the server for classifying the apk. The user
uploads the apk onto the server. The server accesses the blockchain network in order
to look up the apk on the ledger which is step 2.
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Fig. 4 The signature of the APK file is found on the blockchain ledger

The blockchain network contains three components, namely, Models, Permis-
sions, and Logic Module. The Logic Module defines the various operations that can
be performed across the blockchain ledger such as InitializeRecord (initializes a
new record on the ledger for an apk that has not been classified as either malware
or benign.), MakeVote(executed by each of the members of the consortium to vote
for or against the apk being a malware), CheckVote(function necessary to count the
votes and write the classification of the apk on the ledger).

The Models of the blockchain ledger defines all the entities included in the
system along with their attributes. These entities include the trusted server (with
attributes like the server details, id and role for identification and assigning
privileges), the members of the consortium (having attributes like id, name, role,
description and details), the block on the blockchain ledger with the attributes such
as the hash of the apk, the URL for the members of the consortium to download
the apk from the trusted server, the list of permissions, api and intents in the apk,
the signatures, the votes cast by the members of the consortium, and also the state
field which specifies the label of the apk (undefined or malware or benign). The
permissions module in the blockchain ledger specifies the privileges each member
in the blockchain network posses. The operations in the logic module can only
be invoked by a member of the blockchain network if they are authorized in the
permission module.

Within the blockchain, after the trusted server interacts with the network as
depicted in step 2, the server is identified. Step A determines if the server has
permission to read from the ledger. The permissions of the trusted server are
confirmed in step B and the operation to read from the ledger is invoked in step
C. Step D includes reading the ledger to determine if the apk had already been
classified in the blockchain. Once the block corresponding to the apk has been found
on the ledger, step E occurs where the details within the block are retrieved from the
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Fig. 5 The signature of the APK file is not found on the blockchain ledger

ledger. The trusted server then receives this information from the network in step 3.
The server then proceeds to step 4, informing the user if the apk uploaded is labeled
as malware or goodware on the blockchain ledger.

8.2 Scenario 2

Figure 5 considers a scenario where the signature for the apk sent by the user is not
found by the trusted server when the server reads the ledger.

Step 1 represents the user uploading the apk to check if it is a malware. The
trusted server then proceeds to step 2 to check if the apk had already been classified
and is present in the blockchain ledger. Within the blockchain ledger, step A checks
the permissions of the trusted server and upon confirming the permissions on step
B, the ledger is read in step D by invoking the operation to read from the server into
the logic module. Not having found the block for the apk on the ledger, indicating
that this apk signature had never been classified as malware by the system before,
step E returns empty and an operation to initialize a new block on the ledger is
invoked from the logic module. This operation creates a new block and sets the
state of the apk in the block as undetermined. At the end of the operation, an event
is emitted across the network and is received by the members of the consortium
(individually responsible for determining if the apk is malware or not), as shown
on step 3. This event carries the URL from which these members can download the
apk. Each member upon receiving the event is alerted that a new block has been
added to the blockchain ledger. They download the apk from the trusted server and
begins to extract the features, that is, the member in charge of the permissions will
extract the permissions from the apk, the member responsible for classifying the apk
based on the API will extract the API from the apk and the member responsible for
classifying the apk based on the intents will extract the intents from the apk. These
nodes will determine if the apk is malware based on these extracted features. Step 4
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represents each member of the consortium reporting their contributions (the label of
the apk, the list of features they extracted to determine the category of the apk) to the
blockchain network. Within the blockchain network, the same sequence of steps are
followed. After identifying the node interacting with the network, the permissions
for this node are determined in step A. Step B confirms the permissions and the
operation to update the undetermined block in the blockchain ledger by appending
the information provided by the node is invoked from the logic module on step C.
The updates are made in the corresponding block in the ledger on step D and step E
returns the acknowledging response.

The votes are counted and the apk is determined to either be malware or
goodware after enough nodes have updated the blockchain ledger (“enough nodes”
suggests that if n is the total number of nodes in the consortium, then if n/2 number
of nodes vote the apk a certain label −100 malware or benign, the contributions
of the rest of the nodes needn‘t be provided before informing the user. In this
experiment only 3 nodes were part of the consortium and participation of all these
nodes is considered). On Step 5, the trusted server receives the most voted label for
the apk from the blockchain network. The user is informed if the uploaded apk is
malware or not on step 6 by the trusted server.

8.3 Initializing Block for Unknown apk

In Algorithm 1, the operation is employed to create a new block for an apk that has
never been classified in the blockchain ledger. This operation will be invoked by the
trusted server and requires the parameters, URL and apkHash, to function. The URL
is the path defined in the trusted server that can be used by the different members
of the consortium to download the apk from the trusted server to further analyze
and classify. The apkHash is the MD 5 hash of the apk. The apkHash serves two
purposes. First, it is used as the unique key to identify the block in the blockchain
ledger. Second, when a member of the consortium blockchain downloads the apk
from the server, the member performs an MD 5 hash of the apk on their own. The
hash they compute is compared to the apkHash (hash computed at the server). The
two must be a match, else it would indicate that the apk has been corrupted. This
is very important as it verifies the authenticity of the apk by proving that it has
not been tampered with. The operation begins on line 2 by creating a new resource
making use of the apkHash as the primary key and this new instance of the block in
the blockchain ledger is stored in a variable record. Since this block is new and has
not been classified as either malware or benign, on line 3 the state is initialized as
undetermined. On line 4 the block is appended with the URL of the apk location on
the server. Once these initial attributes of the block is set, on line 5 the new block
is added to the chain of blocks on the blockchain ledger. On line 6, the operation
proceeds to initialize the arguments of an event. In line 8, the URL is added to the
event. Line 9 has the apkHash defined to the event as well. Once the event is defined,
it is emitted to the different members of the consortium blockchain on line 10.
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Algorithm 1 Initializing block for unknown apk
1: procedure INITIALIZERECORD(url, apkHash)
2: record ← newResource(apkHash)

3: record.state ← “UNDET ERMINED′′
4: record.url ← url

5: record.save()

6: event ← newEvent ()

7: event.type ← NewBlock

8: event.apkHash ← apkHash

9: event.url ← url

10: event.emit ()

11: end procedure

8.4 Updating Block with Vote and Features

In Algorithm 2, the operation is employed to update the block, having a state
undetermined, with the vote and data offered to be each of the nodes of the
consortium blockchain. After having extracted the features, these nodes classify the
apk as either malware or goodware.

Algorithm 2 Updating block with vote and features
1: procedure MAKEVOTE(apkHash, vote, f eatures)
2: record ← getResource(apkHash)

3: userContribs ← {}
4: userContribs.vote ← vote

5: userContribs.f eatures ← f eatures

6: record[ballots].append(userContribs)

7: record.update()

8: end procedure

It is the duty of these nodes to append to the corresponding block the list of
features along with the vote for or against the apk being malware. If the apk is
classified as malware, the vote cast will be 1. If the apk is classified benign, the vote
will be set to 0. This operation is invoked by passing this vote, the features and the
apkHash as the parameters. On line 2, the block is retrieved from the blockchain
ledger, by making use of the apkHash, which is the unique key that will identify the
block and the instance of the block will be stored in the record. The record[ballot]
will be a list where an element is one node’s contributions. This includes the features
along with the vote. Line 4 has the vote being stored in userContrib[vote]. Line 5
has the features stored in userContrib[features]. Line 6, userContrib is appended as
an element of the record[ballot] list. This list‘s length would hence increase with the
increase in the number of participating nodes. After the contributions are provided
to the record variable, on line 7 record is updated in the corresponding block in the
blockchain ledger.
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8.5 Setting the State of the apk After Counting All the Votes

In Algorithm 3, Once n (The predefined odd number of members in the consortium
blockchain that will participate in voting whether the apk is malware or not) number
of nodes have updated the block with their votes and feature information, the votes
need to be counted. The apkHash is passed as a parameter to identify the block in
question.

Algorithm 3 Setting the state of the apk after counting all the votes
1: procedure CHECKVOTE(apkHash)
2: n � Total number of members participating in the voting process
3: record ← getResource(apkHash)

4: voteCount ← 0
5: if n == record.ballots.length then
6: while n �= 0 do
7: if record.ballots[n].vote=1 then
8: voteCount ← voteCount + 1
9: n ← n − 1

10: end if
11: end while
12: if voteCount>n/2 then
13: record.state ← “Malware′′
14: else
15: record.state ← “SAFE′′
16: end if
17: end if
18: record.update()

19: end procedure

On line 3, the record variable holds the block instance after retrieving it from
the blockchain ledger making use of the apkHash. On line 4, a variable voteCount
is initialized to 0. On line 5, a check is performed to see if n number of updates
have been made. If so the counting of the votes can begin. Line 6, Looping through
the elements in record[ballot], each vote is read. Within the loop, considering each
element, if the vote is 1, the voteCount variable is incremented. After checking every
vote, the loop ends. On line 10, if voteCount is more than n/2 + 1, then that would
suggest that a majority of the nodes voted the apk as malware. If voteCount is less
than n/2 + 1, then the majority voted the apk as benign. If the malware is voted, the
state of the record is updated to malware on line 11. Else, the state of the record is
updated to safe. Now that the apk is classified, on line 14, the block is updated on
the blockchain ledger.
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9 Feature Extraction and Model Training

The different nodes that participate in classifying the APK file represent the
different malware agencies simulating how these agencies would participate in the
classification process as the different members of the consortium blockchain. For
the current experiment, each of these nodes are equipped with a machine learning
model which requires specific data from the APK, permissions or API features
or intent features. This section explains how the models used by these nodes are
built and how the data used for training each model was extracted from the APK
files. By working together, the system labels the file as malware or goodware,
taking the input of all the different nodes that participated by using the models that
specialize in either permissions, API features or intent features. The apk can be
easily decompressed to obtain the Android Manifest file along with the necessary
smali files using the APKTool. This tool is used for reverse engineering third-party,
closed, binary Android apps. The Manifest file contains the list of permissions as
well as the intents used by the Android application. Furthermore, the apk file don’t
necessarily be decompressed to obtain the list of permissions as it can be facilitated
using the Android Asset Packaging Tool.

This experiment made use of 15,606 apk files for the purposes of training and
testing the various machine learning models. A total of 9364 apk files, out of which
3170 files were malware and the remaining 6194 files were benign, for the training
purpose. With a total of 3 nodes in the consortium, each node extracted the feature
they were assigned. From the list of extracted features, all the unique features were
collected. The number of unique APIs collected is extremely large number and so it
is necessary to filter the result. Thus Fisher’s scoring algorithm, a form of Newton’s
method used in statistics to solve maximum likelihood equations numerically, was
used to score each API feature. The Fisher Score of the ith feature Si can be
calculated as

Si =
∑

nj (μij − μi)
2

∑
j nj ∗ ρ2

ij

(1)

where:

μij = mean of the i-th feature in the j-th class
ρij = variance of the i-th feature in the j-th class
nj = number of instances in the j-th class
μi = mean of the i-th feature
Si = score of the i-th feature

The first 5000 API features with the maximum scores were selected. These were
then used as the attributes for the Feature Vector Table (FVT). Each row would
correspond to a particular file among the 9364 files considered and for each feature
that was present in a particular file, the cell corresponding to said file and feature
attribute would be marked. The FVT is essentially a sparse matrix indicating the



156 G. Martin et al.

unique features present in each file. Each node will produce an FVT based on the
feature they focused on.

Each node made use of five different classifiers-K-Nearest Neighbours, Linear
Discriminant Analysis, Logistic Regression, Classification and Regression Tree and
Random Forest Classifier. All three nodes would create models for each of the five
classifiers making use of the FVTs they have created. When a test set is fed to these
models, each of these models will predict the class of the sample independent of
each other. The class predicted by the majority of the models is declared as the final
prediction.

10 Dataset and Experimentation

The proposed system utilized 15,606 apks: 5373 malicious apks from the Drebin
data-set and 10,233 benign apks from 9apps [1]. A web crawler was employed
to download applications from 9apps. Various python libraries like Beautifulsoup
[13] were used to fetch URLs for downloading the benign apks. The apks from
9apps were scanned with Virus Total and if any of the applications were classified
by 5 or more of the antivirus software as malware, they were not included in the
benign dataset. The Drebin data-set is considered to be the standard data-set of
malicious apks used for malware detection studies as it contains applications from
179 different malware families and was collected through a span of August 2010
still October 2012. Due to the lack of availability of a standard data-set of benign
applications we made use of the Android market ensuring that it encompasses
various categories of applications.

In this experiment, the performance of the machine learning models used by the
different members of the consortium blockchain to classify the different apks are
evaluated through the following metrics: accuracy, precision, recall and F1-score.
True Positive (TP) is the number of samples that are positive and are predicted to
be positive. False Negative (FN) is the number of samples that are positive but are
classified as negative. True Negative (TN) is the number of samples that are correctly
identified as negative. False Positive (FP) is the number of samples that are negative
but are recognized as positive.

Accuracy = T P + T N

T P + T N + FP + FN
(2)

Precision = T P

T P + FP
(3)

Recall = T P

T P + FN
(4)
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Table 2 Evaluation of permission-based classifiers

Permission-based model

Classifiers Accuracy F1 Precision Recall

Logistic regression 96.8 95.5 96.2 94.8

Linear discriminant analysis 94.7 92.7 91.8 93.6

K-nearest neighbor 96.4 95 95.9 94

Classification and regression tree 96.8 95.5 96.6 94.4

Random forest 95.5 93.4 99.0 88.4

Table 3 Evaluation of intent-based classifiers

Intent-based model

Classifiers Accuracy F1 Precision Recall

Logistic regression 88.3 82.2 90.2 75.4

Linear discriminant analysis 86.5 77.8 94.9 65.9

K-nearest neighbor 86.4 77.4 95.1 65.3

Classification and regression tree 88.5 82.3 92.4 74.2

Random forest 86.2 76.5 98.2 62.7

Table 4 Evaluation of API call-based classifiers

API Call-based model

Classifiers Accuracy F1 Precision Recall

Logistic regression 94.1 91.5 94.8 88.4

Linear discriminant analysis 89.2 84.7 86.2 83.2

K-nearest neighbor 88.7 85.9 77.8 95.9

Classification and regression tree 94.0 91.4 94.3 88.6

Random forest 90.7 85.6 96.4 77.0

F1 − Score = 2 ∗ Recall ∗ Precision

Recall + Presision
(5)

Table 2 provides the performance evaluation measures, namely accuracy, F1-score,
precision and recall, of the classifiers present in the permission-based node of the
consortium blockchain. Tables 3 and 4 show the values for the intent-based and API
call-based nodes of the consortium network, respectively.

11 Results

Figure 6 visualizes the comparison between each individual node as an independent
system and our proposed system that encompasses the nodes as components
of the entire system. The measures used for comparison include accuracy, F1-
score, precision and recall (or sensitivity). The proposed system proves to be
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Fig. 6 Working and overall structure of the malware detecting blockchain system

comparatively better than the single nodes, in terms of performance. It should be
noted that the frequency of unique API calls and intents were not included in the
training of the respective nodes. However, the results indicate 99.6% precision
provided by the proposed system; this indicates that our system performs better
than the individual nodes.

12 Conclusion

To address the problem of detecting malicious codes in malware and extracting
the corresponding evidence in mobile devices, the proposed system outperformed
the individual malware detectors as it was determined to provide better precision.
The results indicate that the label used by the majority of the participating nodes
to classify performs better compared to when any single entity is used for the
classification process. And since the proposed system requires the participation
of mostly independent anti-malware agencies, it is important that a tamper-proof
platform is set in place to ensure a healthy competition among the different
participants. This proposed system will not only encourage anti-malware firms
to partake in the classification process, which would provide better results, since
the ledger itself can easily be made available, it would help the general public
better understand the importance and working of cyber security. This proves that
the blockchain network facilitated an environment for individual entities to work
together without raising conflicts. Further, our system increases the awareness
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among the consortium members regarding the various malware signatures present
in the current environment.
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BERT for Malware Classification

Joel Alvares and Fabio Di Troia

Abstract In this paper, we aim to accomplish malware classification using word
embeddings. Specifically, we trained machine learning models using word embed-
dings generated by BERT. We extract the “words" directly from the malware
samples to achieve multi-class classification. In fact, the attention mechanism of
a pre-trained BERT model can be used in malware classification by capturing infor-
mation about the relation between each opcode and every other opcode belonging to
a specific malware family. As means of comparison, we repeat the same experiments
with Word2Vec. Differently than BERT, Word2Vec generates word embeddings
where words with similar context are considered closer, being able to classify
malware samples based on similarity. As classification algorithms, we used and
compared Support Vector Machines (SVM), Logistic Regression, Random Forests,
and Multi-Layer Perceptron (MLP). We found that the classification accuracy
obtained by the word embeddings generated by BERT is effective in detecting
malware samples, and superior in accuracy when compared to the ones created by
Word2Vec.

1 Introduction

Malware is a computer program created with the intention to cause harm and
damage to personal data, or gain unauthorized access to a user’s system. Many are
the techniques used by malware to conceal their malicious intent. One way is to
masquerade itself as a legitimate program. This behavior has been observed, among
others, in trojans and ransomware programs [2].

Identification and classification of malware is very critical to information secu-
rity. According to the Sophos 2021 threat report [23], malware programs contributed
to 34% of all the breaches in a survey consisting of 3500 IT professionals who
worked on remote infrastructure and cloud-based infrastructure. Each malicious
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piece of code shares common characteristics within a certain family and tends
to differ from malware samples belonging to a different family. It is necessary
to identify these unique characteristics which would help classify malware codes
belonging to numerous families [4]. Word embeddings can be used to quantify
these unique characteristics of a malware sample, and they can be generated by
state-of-the-art machine learning models, such as BERT [26] and Word2Vec [3].
The embeddings capture useful information that serves as training features for the
classification models. In this paper, the focus is on the effectiveness of the word
embeddings generated in the context of malware classification.

The remainder of the paper is organized in the following Sections. It starts with
a survey of relevant work in Sect. 2. Then, the building blocks of the research are
introduced in Sect. 3, that is, the background of the word embedding models and
the applied classification models. Next, the dataset used, the applied methodology,
and the accomplished experiments and the results are analyzed in Sect. 4. Finally,
Sect. 5 contains the conclusions and suggestions for future work.

2 Related Work

Malware writers are constantly analyzing computer systems and their software in
search of security faults that can be exploited by specific malware programs. To
obfuscate their malicious intent, such programs implement sophisticated techniques
to mask them as benign software and, thus, becoming invisible to malware
recognition software [18]. This is the reason malware detection has become a
challenging task. A lot of malware recognition techniques rely on signature-based
detection. The antivirus program that relies on signature-based detection generally
computes the hash of the files and compares it with the hash of known malware
signatures [28]. However, modifying the code by inserting dead code within the
malicious code is one easy way to avoid detection. Furthermore, this malware
recognition technique is also inefficient, because all the files of a given user are
scanned and compared with known available malicious signatures, which is a
time consuming process. According to [25], a number of metamorphic malware
families, such as, MetaPHOR, Zmist, Zperm, Regswap, and Evol morph after
each new infection. Detecting these malware samples is challenging and it can
defeat signature-based detection. Metamorphic malware morphs the code by using
a combination of substitution, insertion, deletion, and transposition. However, the
metamorphic malware can be identified by machine learning techniques because
they are able to notice the subtle differences between malware and benign samples
despite the use of morphing [30]. The effectiveness of the different machine learning
techniques depends on the input features extracted from the dataset. Some possible
features that can be used are signatures [28], API calls [27], and opcodes [5].

Natural Language Processing (NLP) techniques extract rich information, known
as word embeddings, from sentences of a language, and are able to identify the
meaning of a sentence, generate sentences with similar meaning, or fill the blanks
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within a sentence. The NLP models extract information of the relation of a word
with every other word of a sentence. The model groups together words with similar
meaning and maps them to a higher dimensional space where similar words in
meaning are grouped together. This information helps NLP models accomplish
several classification and prediction tasks. The NLP models can be used in the field
of malware recognition to generate embeddings for malware samples. The malware
samples that belong to the same family have features that are closely related. This
information can be used by classifiers to group together malware samples that
belong to the same family. BERT is one type of NLP model that can be used
to generate word embeddings to capture information of every component of the
input with respect to every other component. More details about the architecture of
transformers and the attention mechanism of BERT can be found in [26], while an
analysis of the attention heads of the BERT model can be found in [8]. The attention
heads of BERT capture various patterns and linguistic notions.

Another example is Word2Vec, that was used in previous research to generate
word embeddings for malware samples, with performance comparable to traditional
machine learning techniques, such as, Hidden Markov Models and Principal
Component Analysis [7]. The opcode sequences within malware samples are treated
as a language in [1], and context is captured using Word2Vec. The classification
is carried out using k-nearest neighbors (k-NN). The results derived by utilizing
word embeddings generated by Word2Vec to achieve malware classification proves
that NLP based models can extract rich features that assist with classification
accuracy. This success induces to test newer NLP based models. Thus, differently
than the previous work and in addition to it, we introduce the use of BERT in
malware detection. BERT implements a transformer-based model that consists of
encoders and decoders along with an attention mechanism [26]. The BERT model
will be explained in further detail in Sect. 3. The experiments performed in this
paper primarily focus on generating embeddings using BERT and comparing the
classification accuracy with Word2Vec using a variety of classifiers.

3 Background

This section provides more details on the key components of this paper, that is, the
NLP models and the implemented classifiers. The NLP models introduced are BERT
and Word2Vec, while the classifiers are SVM, Random Forests, Logistic Regression,
and MLP. The dataset, the results, and the experiments implemented using these
building blocks are described in Sect. 4.
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3.1 NLP Models

Natural Language Processing (NLP) is the subfield of Artificial Intelligence (AI)
that enables machines to understand the language spoken by humans. The models
that help achieve this result are known as NLP models. Training an NLP model
from scratch is a tedious task and it requires a massive dataset and computational
resources. For this reason, a pre-trained NLP model is often used to achieve the
tasks related to NLP. Transfer learning is an example of technique used to transfer
the knowledge gained by the model during the training phase to achieve other tasks
on a different dataset to which it has never been exposed before. The tasks subject
to NLP application are, for instance, sentiment analysis, next sentence prediction,
word embedding generation, and more [21].

3.1.1 Word Embeddings

Word Embeddings are used in natural language processing as a representation of the
words of a sentence in vector values such that words of similar meaning are grouped
together in the vector space. This information can be used by classifiers to identify
key features and efficiently accomplish classification. Features need to be extracted
from the malware samples, which can be done by generating word embeddings
from the malware samples. These word embeddings capture information and group
together features that are unique to a specific malware family. They are generated
using NLP based models such as Word2Vec and BERT. These word embeddings
generated for every opcode in a malware sample can be represented as unit vectors
and plotted in a circular heat map, as shown in Fig. 1 for, respectively, the malware
families CeeInject, FakeRean, OnlineGames, Renos, and Winwebsec.

The circular heat map representation of the opcodes seem to differ for every
malware family, even though the opcodes with higher frequencies across all the
malware families are the opcodes push, mov, and add.

3.1.2 Word2Vec

Word2Vec is used to convert the input sequence of words to vectors, and map them
to a higher dimensional space. The tutorial in [16] explains how Word2Vec uses
neural networks to group together words with a similar meaning. For example, we
can consider the following set of words:

w0 = “queen”, w1 = “man”, w2 = “woman”, w3 = “king”

In Fig. 2, we see how these words are mapped to a higher dimensional space
by Word2Vec. Cosine similarity can then be used to identify words that are
synonymous in nature. We can color the values using numbers, such that red
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Fig. 1 Circular heatmaps for (a) CeeInject (b) FakeRean (c) OnlineGames (d) Renos (e)
Winwebsec

Fig. 2 Using Word2Vec to generate embeddings

represents a value close to 2, blue represents a value close to −2, and white
represents a value close to 0.
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Fig. 3 Word embeddings represented as a color map

Based on Fig. 3, it can be observed that:

• The words “woman” and “girl” are considered similar to each other in several
positions.

• The words “boy” and “girl” are similar in certain positions, but these positions are
different from “woman” or “man”. The algorithm could be capturing something
similar between the words “boy” and “girl” such as “youth”.

• The embeddings can be added and subtracted in order to form relations between
words. For instance, in the case where the word embedding for the word “queen”
is subtracted with the word embedding for the word “woman”, and the word
embedding for “man” is added, then the resultant word embedding is very close
to the word embedding for the word “king”. This can be represented as follows:
“queen” − “woman” + “man” = “king”

Associating negative weights with frequently used words is another technique to
improve the rate of training. In generating the output vectors, the positive weights
associated with the model are all updated, while only a sample set of the negative
weights are also updated. This reduces the impact of frequently used words while
training the Word2Vec model. The Word2Vec model is used to generate word
embedding for malware samples by using a window of size 6 and output size of
2 dimensions. We use the output generated by the Word2Vec model to generate unit
vectors and plot a circular heat map which will be discussed in further detail in
Sect. 3.1.1.

3.1.3 BERT

BERT is a transformer-based NLP model that is used to accomplish language-
based tasks, such as, masked word prediction, sentiment classification, and more.
The architecture consists of a stack of trained Transformer Encoders. BERT is able
to generate the word embedding for a particular word by also taking into account
the context in which it was used, known as contextualized word embeddings. The
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encoder uses attention to map the input to a set of vectors which store information
of a given word with respect to every other word in the sentence. For instance, if we
have the following input sentence: “The boy drank water because he was thirsty”,
the word “he” is associated with the word “boy”, and the BERT model can identify
this relation using attention. Attention helps BERT understand other relevant words
in the sentence compared to the one that is currently being processed.

As shown in Fig. 4, the BERT model can accept at most 512 words as input. In
general, a sentence in natural language does not exceed 512 words but the opcodes in
a malware sample can exceed such value. In our experiments, the first 400 opcodes
from each malware sample were sufficient to obtain good results. The BERT model
used as a part of the experiments is DistilBERT, which is a smaller version of
BERT that was open sourced by the HuggingFace team [9]. DistilBERT performs
similarly to BERT but it is lightweight and, hence, more efficient. The DistilBERT
model used is pre-trained on the English language. However, the model is neither
trained nor fine-tuned to achieve malware classification. The classification token
(CLS) from BERT, used to represent sentence-level classification output, captures
the information about the entire sentence. In case of a malware sample, the CLS
token captures the entire information of the sample. This information can be used
in malware classification because the CLS token from the generated embedding
collects information that helps with classification. For instance, if there are 2000
malware samples that BERT was trained on, and if 66 is the length of the tokens
in the longest malware opcode sequence, as seen in Fig. 5, only the first column
representing the CLS token is extracted from the 768 hidden units of BERT. A label
is assigned to each of the 2000 sentences depending on the class of the malware
sample.

Fig. 4 Trained BERT components
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Fig. 5 Slicing BERT word embedding

3.2 Classifiers

Classification is the process of predicting the class or label of the input dataset. The
input dataset is mapped to the desired output class depending on the features of the
input data. The machine learning models, which enable the user to map the input
data to its corresponding class, are known as classifiers. This Section will briefly
introduce the classifiers used in our experiments.

3.2.1 Logistic Regression

Logistic regression is used to describe the input data and to find a correlation
between them. The result of logistic regression is dichotomous in nature. A logistic
regression model used to fit more than two classes is referred to as multinomial
logistic regression. The model achieves classification using multinomial probability
distribution. The assumption of logistic regression is a sigmoid function that can be
defined as follows:

f (x) = 1

1 + e−(x)
(1)

The disadvantages of logistic regression are similar to linear regression. It is,
in fact, prone to outliers, and assumption of linearity amongst dependent and
independent variables. However, logistic regression model provides probabilities,
and it is not just a classification model. It enables the user to identify the percentage
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with which a certain instance was assigned to a class. A detailed explanation and
various strategies guidelines for logistic regression can be found in [19].

3.2.2 SVM

The main objective of SVM is to accomplish classification within the dataset by
maximizing the distance between the separating hyperplane and the dataset.

As shown in Fig. 6, the hyperplane with the maximum distance from the dataset
is chosen. The support vectors are the data points closest to the hyperplane. These
are used by SVM to maximize the separation between the data points and the
hyperplane. SVMs can be used to identify the subtle changes in malware samples
belonging to a certain family as discussed in [29]. SVM identifies that the dataset
may not be linearly separable by itself. Hence, the dataset is mapped to a higher
dimensional space where a separating hyperplane can classify the dataset. This
approach is often referenced to as kernel trick. For example, in Fig. 7 we see that
the data on the left side is not linearly separable. However, the data can be easily
separated by a hyperplane if the data is mapped as seen on the right side. One of
the ways to achieve this is by using a polynomial kernel. There are many kernels
that can be applied, and identifying the right one can be a challenging task, but
it can significantly improve the classification accuracy without causing a major
computation overhead. The classification process of SVMs and the mathematical
proof can be found in [24].

support vectors

Fig. 6 SVM for binary classification
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Fig. 7 Mapping input data to a higher dimension

3.2.3 Random Forests

Random Forests accomplish the classification of the dataset using an ensemble of
decision trees. Every tree classifies the data independently from the others and votes
for a specific class based on its prediction. The class with the highest number of
votes is, then, selected as the classification output of the Random Forest. Basically,
a large number of decision trees achieve the classification together as a committee,
and the overall accuracy of such a committee outperforms the accuracy of an
individual tree. In fact, an individual decision tree tends to overfit the input dataset,
while a group of trees tends to protect each other from their individual errors. A
problem that arises with Random Forests is that the decision trees may be too
correlated with each other. Hence, bagging, which stands for bootstrap aggregation,
is used to overcome this issue. The decision trees are formed using random samples
of the training data which may or may not overlap. In this way, bagging prevents
the Random Forest from overfitting the data by reducing the correlation among the
decision trees. Further details on Random Forests can be found at [6].

3.2.4 MLP

A neuron, known as McCulloch-Pitts Artificial neuron [17], is the building block for
a Multi Layered Perceptron (MLP). Multiple neurons are placed in different layers
and the inputs of the neurons in the hidden or intermediate layers are outputs of
the neurons in the previous layer. A neuron with three inputs and a single output
is depicted in Fig. 8, where the inputs are X0, X1, and X2, while the weights
associated with these inputs are w0, w1, and w2. The neuron generates an output
Y ∈ [0, 1] where 1 implies that the neuron was activated, while 0 implies that
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X1
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Y

Fig. 8 Neuron of a neural network

the neuron remained inactive. The weights together with the input determine if the
neuron should output or not. If the value

∑
wiXi is greater than the threshold T ,

then the neuron is activated. Equation 2 represents the function that a neuron of
an MLP utilizes. An independent bias b is also introduced and updated during the
training of the MLP.

f (x, y) =
∑

i=0

(n − 1)wiXi + b (2)

In case of binary classification, if the Eq. 2 generates a positive value, then we
classify the input as class 1, or, if the function generates a negative value, the input
is classified as class 2. The decision boundary of the binary classifier is represented
by the Eq. 3. The decision boundary separates the inputs into the two classes in the
output dimension space.

f (x, y) = w0x + w1y + b (3)

An MLP consists of multiple layers of these perceptron’s, as shown in Fig. 9
which consists of two hidden layers. Each edge of the MLP has a weight associated
with it, and the definitive values of the weights are finalized after the training phase.
More details on the MLP architecture can be found at [20].

4 Experiments and Results

In this section, we describe dataset used for the experiments, the parameters used
for the machine learning models, and their classification results accomplished on
the word embeddings generated by BERT and Word2Vec.
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Output layer

Output

Fig. 9 Multi layer perceptron

Table 1 Malware dataset
information

Malware family Malware type Nr. of samples

CeeInject VirTool 899

FakeRean Rogue 899

OnlineGames Password stealer 900

Winwebsec Rogue 897

Renos Trojan downloader 900

4.1 Dataset

All our experiments were based on the malware families described in Table 1, along
with the number of malware samples for each family [15].

A brief description of each malware family is given here.

1. CeeInject is malware that is generally used in combination with other malware
families as it is used to conceal the other malware samples. The malware that
CeeInject is used along with is installed in a user’s machine without requesting
any permissions [11].

2. FakeRean alerts the user for issues or viruses that do not exist on the system and
asks for money in order to assist the user [14].

3. OnlineGames is used to track the login information of online games and keeps
track of information of online gamers without consent [12].



BERT for Malware Classification 173

Fig. 10 Illustration of the organization of the project

4. Winwebsec is a trojan that pretends to be a legitimate antivirus software,
informing the user that the system is corrupt and needs to be fixed. It tries to
scare the user with the intention of extorting money [13].

5. Renos is a malware that shows to the user fake security warnings once it is
downloaded and requests for payments to resolve the issues [10].

4.2 Methodology

In Fig. 10, we see an illustration of our approach. The input dataset of malware
samples is processed and transformed into inputs for BERT and Word2Vec that
generate the word embeddings. Then, these are directly used to train the machine
learning models to achieve multi-class classification on the malware samples.
The word embeddings generated are, thus, classified to their respective malware
families with the help of the classifiers described in Sect. 3, that is, Support
Vector Machines (SVMs), Random Forests, Multi Layer Perceptron (MLP), and
Logistic Regression. In this way, the overall accuracy depends on the classification
of the word embeddings which capture the essential characteristics of the malware
samples.

4.3 Classifier Parameters

The parameters that were selected for the classification are shown in Table 2. We
found these values to be the optimal ones by experimenting using GridSearchCV
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Table 2 Parameters used by the classifiers

Classifier Model parameter Word2Vec BERT

Logistic regression C 42.1 42.1

Solver Lbfgs newton-cg

Multiclass Auto Multinomial

SVM C 1000 1000

Kernel rbf rbf

Gamma 1 1

Random forests max depth 20 20

n estimators 100 100

MLP Hidden layer size (150,150,100) (100,100,100)

Activation function ReLU ReLU

Solver adam adam

Nr. of iterations 3000 10,000

Learning rate Constant invscaling

from the scikit-learn library [22]. The parameters obtained are almost identical for
the features generated by both BERT and Word2Vec.

4.4 Logistic Regression Results

Optimal results were obtained by the logistic regression model using the regu-
larization parameter value C = 42.1. The different values for C were obtained
using numpy’s linspace function by dividing the range 0.0001 to 100 into 20 parts.
The test accuracy of this model was 81.2% using the word embeddings generated
by Word2Vec, and 83.54% using the word embeddings generated by BERT. The
confusion matrices of the obtained results for BERT and Word2Vec are shown in
Fig. 11.

The overall accuracy is unsatisfactory when compared with the other classifiers.
One of the possible reasons is that the model is overfitting the decision boundary to
the training dataset. This causes the model to perform poorly when exposed to new
data.

4.5 SVM Results

Experiments were achieved on the SVM model and the ideal set of parameters
that produced the maximum accuracy were selected. We tested different types of
kernels, that is, radial basis function (rbf) kernel, linear, and polynomial, along with
the regularization parameter C in the range 10 to 1000, and gamma value in the
range 0.001 to 0.1. SVM maps the input features to a higher dimensional space in
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Fig. 11 Confusion matrix of logistic regression for (a) BERT features (b) Word2Vec features

Fig. 12 Confusion matrix of SVM for (a) BERT features (b) Word2Vec features

order to form a decision boundary that separates the features into different classes.
For this reason, SVM is able to successfully leverage the features in the word
embeddings and group together malware samples with similar features obtaining
a high classification accuracy of around 91.01% using the embedding generated by
BERT. The embeddings generated by Word2Vec, instead, obtained a classification
accuracy of 86.8%. The confusion matrices are shown in Fig. 12.

4.6 Random Forest Results

Random Forest is a neighborhood-based algorithm that classifies input features
by grouping the ones that are closer to each other, and making decisions at
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Fig. 13 Confusion matrix of random forest for (a) BERT features (b) Word2Vec features

different stages which segregate the inputs into different classes. The results of the
experiments conducted show that the Random Forest classifier performs better when
the number of trees and the depth is increased. The optimal parameters lead to a
classification accuracy of 91.81% with embeddings generated by BERT, while the
embeddings generated by Word2Vec gave a classification accuracy of 89.6%. The
confusion matrices are shown in Fig. 13.

4.7 MLP Results

The multilayered perceptron performs quite closely as SVM by mapping the input
features to a higher dimensional space, and accomplishing classification by forming
a decision boundary to group together features that are closer to each other. A
constant learning rate with a 30,30,30) hidden layer width and ReLU activation
function provided the best results. The classifier converged and gave optimal
outcome at around 10,000 iterations. The final accuracy obtained using the word
embeddings generated by BERT was 86.83%, which is not surprisingly close to the
accuracy obtained by SVM. The word embeddings generated by Word2Vec obtained
a similar result with a final accuracy of around 86.6%. The confusion matrices are
shown in Fig. 14.

4.8 Further Analysis

Random Forest is a neighborhood-based classification model. By our experiments,
we noticed that the model performs poorly when the depth of the binary tree of
the decision is shallow. It tended to overfit to the training data, as the training
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Fig. 14 Confusion matrix of MLP for (a) BERT features (b) Word2Vec features
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Fig. 15 Depth vs accuracy for RF using BERT and Word2Vec

accuracy was high, while the model performed insufficiently when tested on the
test data. Figure 15 shows that the embeddings generated from both BERT and
Word2Vec demonstrate improvement in the classification accuracy when the depth
of the Random Forest was increased. The accuracy plateaus at depth 10 and
gradually increases beyond this point. After further analysis, it was observed that
such behavior was similar when both the depth and number of trees of the Random
Forest were increased. It was also observed that a larger number of trees in the
Random Forest classification model compensate for shallow depths. As seen in
Fig. 16, the accuracy of the Random Forest model was high even when the depth of
the decision trees was around 2.5. Beyond a depth of 2.5 there was a gradual increase
in classification accuracy as the number of trees of the Random Forest classifier
was increased. As described in Sect. 3.2.3, a larger number of decision trees can
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generalize to the training data. A class is chosen for the input data only when a
majority of the decision trees generate the same classification, which protects the
classification result from errors caused by the individual decision trees. This is in
line with the results obtained as a part of the conducted experiments.

4.9 Summary

Word embeddings were generated by BERT and Word2Vec and they were classified
using classifiers such as Logistic Regression, SVM, MLP, and Random Forests.
Classification of malware samples by using word embedding generated with BERT
performs better overall in comparison to Word2Vec, as shown in the Fig. 17 that
summarizes the results. SVM, MLP, and Random Forests perform better overall in
comparison to Logistic Regression, which is an expected outcome. MLP and SVM
perform similarly as they try to find the decision boundary that best fits the data
without overfitting it. Random Forests use an ensemble of decision trees to carry out
the classification of the dataset and obtain a high classification accuracy. The results
of this experiment prove that word embeddings generated by BERT can be used
to accomplish multi-class malware classification of the dataset. When compared to
Word2Vec, we see that is obtains better results. This is likely due to the attention
mechanism that characterizes the BERT algorithm. In fact, by implementing the
attention mechanism, BERT is able to maintain long-term dependencies as easily
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as short-term dependencies. The number of opcodes selected per malware sample
was 400, since BERT required a maximum of 512 words per sentence. Furthermore,
while some of the malware samples had over 105 unique opcodes, the classification
accuracy was not impacted, even when there was a smaller number of opcodes for
some samples. This proves that word embeddings generated by BERT can capture
rich features with even a limited subset of the opcodes for each input file.

5 Conclusions and Future Work

Based on the experiments conducted in this paper, it was observed that when
the malware samples were mapped to word embeddings by capturing, grouping,
and enriching the key components of the input features, it led to an improvement
in classification accuracy while achieving malware classification. The promising
results show that BERT was able to capture information that helps the classifier
improving the classification accuracy. The results were superior to the ones obtained
using Word2Vec on the same set of input parameters and the same set of classifiers.
It proves that a transformer-based model such as BERT has applications beyond
NLP. For future work, more research can be conducted in this area by using different
versions of BERT. DistilBERT was used in these paper but further research can
be accomplished using the other available versions of BERT. Morover, the BERT
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model was pre-trained on natural language input, but it may be able to generate
richer features if it is trained on malware samples directly. Finally, research can
be implemented using more malware families with more complex sets of data
and observing how BERT captures the key information across multiple malware
families.
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Machine Learning for Malware
Evolution Detection

Lolitha Sresta Tupadha and Mark Stamp

Abstract Malware evolves over time and antivirus must adapt to such evolution.
Hence, it is critical to detect those points in time where malware has evolved so
that appropriate countermeasures can be undertaken. In this research, we perform
a variety of experiments on a significant number of malware families to determine
when malware evolution is likely to have occurred. All of the evolution detection
techniques that we consider are based on machine learning and can be fully
automated—in particular, no reverse engineering or other labor-intensive manual
analysis is required. Specifically, we consider analysis based on hidden Markov
models (HMM) and the word embedding techniques HMM2Vec and Word2Vec.

1 Introduction

Malware is software that is intended to be malicious in its effect [1]. By one
recent estimate, there are more than one billion malware programs in existence,
with 560,000 new malware samples discovered every day [12]. Clearly, malware is
a major cybersecurity threat, if not the most serious security threat today.

Since the creation of the ARPANET in 1969, there has been an exponential
growth in the number of users of the Internet. The widespread use of computer
systems along with continuous Internet connectivity of the “always on” paradigm
makes modern computer systems prime targets for malware attacks. Malware comes
in many forms, including viruses, worms, backdoors, trojans, adware, ransomware,
and so on. Malware is a continuously evolving threat to information security.

In the field of malware detection, a signature typically consists of a string of
bits that is present in a malware executable. Signature-based detection is the most
popular method of malware detection used by anti-virus (AV) software [1]. But
malware has become increasingly difficult to detect with standard signature-based
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approaches [34]. Virus writers have developed advanced metamorphic generators
and obfuscation techniques that enable their malware to easily evade signature
detection. For example, in [3], the authors prove that carefully constructed meta-
morphic malware can successfully evade signature detection.

Koobface is a recent example of an advanced form of malware. This malware
was designed to target the users of social media, and its infection is spread via spam
that is sent through social networking websites. Once a system is infected, Koobface
gathers a user’s sensitive information such as banking credentials, and it blocks the
user from accessing anti-virus or other security-related websites [11].

Malware writers modify their code to deal with advances in detection, as well
as to add new features to existing malware [2]. Hence, malware can be perceived
as evolving over time. To date, most research into malware evolution has relied
on software reverse engineering [7], which is labor intensive. Our goal is to detect
malware evolution automatically, using machine learning techniques. We want to
find points in time where it is likely that significant evolution has occurred within
a given malware family. It is important to detect such evolution, as these points are
precisely where modifications to existing detection strategies are urgently needed.

We note in passing that malware evolution detection can play an additional
crucial role in malware research, beyond updating existing detection strategies to
deal with new variants. Generally, in malware research, we consider samples from a
specific family, without regard to any evolutionary changes that may have occurred
over time. An adverse side effect of such an approach is that—with respect to any
specific point in time—we are mixing together past, present, and future samples.
Relying on training based on future samples to detect past (or present) samples is
an impossibility in any real-world setting, yet it is seldom accounted for in research.
By including an accurate evolutionary timeline, we can conduct far more realistic
research. Thus, accurate information regarding malware evolution will also serve to
make research results more realistic and trustworthy.

We consider several machine learning techniques to identify potential malware
evolution, and our experiments are conducted using a significant number of malware
families containing a large numbers of samples collected over an extended period
of time. We extract the opcode sequence from each malware sample, and these
sequences are used as features in our experiments. We group the available samples
based on time periods and we train machine learning models on time windows. We
compare the models to determine likely evolutionary points—substantial differences
in models across a time boundary indicate significant change in the code base
of the malware family under consideration. Specifically, we experiment with
hidden Markov models (HMM) and word embedding techniques (Word2Vec and
HMM2Vec). For comparison, we also consider logistic regression.

One limitation of this research is that we do not explicitly determine the
importance of any evolution has actually occurred—we simply provide evidence
of code modification within a specified time interval. To determine the significance
of any evolution, we would need to carefully examine malware samples, most likely
via labor-intensive reverse engineering techniques. A related issue is that a small
modification to a malware family might result in a large change in the functionality
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of the code. Thus, the the importance of an evolutionary change may not be captured
by the magnitude of the metrics that we use to quantify evolutionary change.
Nevertheless, the work presented here can provide a first step in an overall malware
evolution detection scheme. Specifically, our machine learning based approach
allows anti-virus researchers to focus their efforts at specific points in time where
evolution is most likely to have an impact on the performance of a malware family.

The remainder of this paper is organized as follows. In Sect. 2, we discuss a range
of relevant background topics, including malware, related work, our dataset, and
we introduce the learning techniques that we employ in our experiments. Section 3
contains our the experimental results, while Sect. 4 gives our conclusions along with
a discussion of a few potential avenues for future work.

2 Background

In this section, we first give a brief introduction to malware. Then we consider
related work in the area of malware evolution detection.

2.1 Malware

A computer worm is a kind of malware that spreads by itself over a network [1].
Examples of famous worms include Code Red, Blaster, Stuxnet, Santy, and, of
course, the Morris Worm [33].

Viruses are the most common form of malware, and the word “virus” is often
used interchangeably with “malware.” A computer virus is similar to a worm but
it requires outside assistance to transmit its infection from one system to another.
Viruses are often considered to be parasitic, in the sense that they embed themselves
in benign code. More advanced forms of viruses (and malware, in general) often use
encryption, polymorphism, or metamorphism as means to evade detection [1]. These
techniques are primarily aimed at defeating signature-based detection, although they
can also be effective against more advanced detection strategies.

A trojan horse, or simple a trojan, is malicious software that appears to be
innocent but carries a malicious payload. Trojans are particularly popular today,
with the the vast majority of Android malware, for example, being trojans.

A trapdoor or backdoor is malware that allows unauthorized access to an infected
system [33]. Such access allows an attacker to use the system in a denial of service
(DoS) attack, for example.

Traditionally, malware detection has relied on static signatures, which typically
consist of strings of bits found in specific malware samples. While effective, signa-
tures can be defeated by a wide variety of obfuscation and morphing techniques, and
the sheer number of malware samples today can make signature scanning infeasible.
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Recently, machine learning and deep learning techniques have become the tools
of choice for malware detection, classification, and analysis. We would argue that
it is also critical to detect malware evolution, since we need to know when a
malware family has evolved in a significant way so that we can update our detection
techniques to account for such changes. As we see in the next section, this aspect
of malware analysis has, thus far, received only limited attention from the research
community.

2.2 Related Work

While there is a great deal of research involving applications of machine learning
to malware detection, classification, and analysis, there are very few articles that
consider malware evolution. In [10], analysis of malware based on code injection
is considered. This works deals with shell code extracted from malware samples.
The researchers used clustering techniques to analyze shell code to determine
relationships between various samples. This work was successful in determining
the similarities between samples, showing that a significant amount of code sharing
had occurred. A drawback to the approach in this paper is that the authors only
considered analysis of shell code. While shell code often serves as the attack
vector for malware, other attack vectors are possible, and malware evolution is
not restricted to the attack portion of the code. For example, a malware family
might evolve to be more stealthy or obfuscated, without affecting the attack payload.
Another limitation of this research is that it only considers software similarity, and
not malware evolution, per se.

Malware evolution research is considered in [8]. One positive aspect of this
research is that it considers a large dataset that spans two decades. The authors
use techniques based on graph pruning and they claim to show specific properties of
various families are inherited from other families. However, it is not clear whether
these properties are inherited from other families, or were developed independently.
In addition, this work relies on manual investigation. A primary goal of our research
is to eliminate the need for such manual intervention.

The research presented in [29] is focused on detecting malware variants, which
can be considered as a form of evolution detection. The authors apply semi-
supervised learning techniques to malware samples that have been shown to evade
machine learning based detection. In contrast, in our research, we use unsupervised
learning techniques to detect significant evolutionary points in time which, again,
serves to minimize the need for manual intervention.

The authors of [12] extract variety of features from Android malware samples,
and then determine various trends based standard software quality metrics. These
results are then compared to trends present in Android goodware. This work shows
that the trends in the Android malware and goodware are similar, with changes
in malware following a similar path as goodware. These results are not surprising,
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given that Android malware largely consists of trojans that, by necessity, would tend
to have a great deal of overlap with goodware.

The work presented in [5] is focussed on malware taxonomy, which provides
some insights into malware evolution, in the form of genealogical trajectories.
This research is based on features extracted from malware encyclopedia entries,
which have been developed by antivirus software vendors, such as TrendMicro. The
authors use SVMs and language processing techniques to extract features on which
their results are based.

In general, the features used in malware analysis can be considered to be either
static or dynamic. Static features are those that can be collected without executing
the code, whereas dynamic features require code execution or emulation. In general,
static features are easier to collect, while dynamic features are more robust with
respect to common obfuscation techniques [6].

The authors of [32] use multiple static features to perform malware classification
among various families. The static features that are considered are byte n-grams,
entropy, and image representations. In addition, hex-dump based features are also
used, along with features extracted from disassembled files, including opcodes, API
calls, and sectional information from portable executable (PE) files. This works
provides interesting insights on a wide variety of static features.

The research that we present in this paper can be viewed as a continuation of
work that originated in [36], where static PE file features of malware samples are
used as the basis for malware evolution detection. This previous research employed
linear support vector machine (SVM) techniques to train on samples from a specific
family over sliding windows of time. The resulting SVM weights are compared
based on a χ2 measure, and observed differences in model weights are used to
indicate potential evolutionary points in time.

The work in [30], which employs opcode sequences from malware samples to
analyze malware evolution, is related to the research presented in [36]. In [30],
the data is again divided into time windows, and support vector machine (SVM)
techniques are used to observe evolutionary points in the malware samples. In
addition, hidden Markov model (HMM) techniques are used as a secondary test to
confirm suspected evolutionary points in time. Our research in this paper is a further
extension to this previous work. We perform extensive experiments with HMMs and
the word embedding techniques of Word2Vec and HMM2Vec to analyze malware
evolution. We find that we can automatically detect significant evolution in malware
families using these techniques.

2.3 Dataset

The dataset we use in this research consists of Windows portable executable files
belonging to 15 malware families. Two families (Winwebsec and Zbot) are from
the Malicia dataset [28], while the remaining families are from a larger dataset
that was constructed using VirusShare [9]. Each malware family contains a a
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Table 1 Number of samples
used in experiments

Family Samples Years

Adload 791 2009–2011

Bho 1116 2007–2011

Bifrose 577 2009–2011

CeeInject 742 2009–2012

DelfInject 401 2009–2012

Dorkbot 222 2005–2012

Hupigon 449 2009–2011

Ircbot 59 2009–2012

Obfuscator 670 2004–2017

Rbot 127 2001–2012

Vbinject 2331 2009–2018

Vobfus 700 2009–2011

Winwebsec 1511 2008–2012

Zbot 835 2009–2012

Zegost 506 2008–2011

Total 11,037 2001–2018

number of samples from an extended period of time. Samples belonging to a
malware family are assumed to have similar characteristics and to share a code
base. However, samples within the same family differ, as malware writers regularly
modify successful malware to perform slightly different functions, to make it harder
to detect, or for other purposes. The number of samples in each family in our dataset
is given in Table 1. The table also includes the time range over which the samples
were produced.

The malware families in our dataset encompass a wide variety of types, including
virus, trojan, backdoor, worms, and so on. Some of the families uses encryption and
other obfuscation techniques in an effort to evade detection. Next, we briefly discuss
each of the malware families listed in Table 1.

Bifrose is a backdoor trojan [25]. As mentioned above, a trojan poses as innocent
software to trick the user into installing it, while a backdoor serves to give an
attacker unauthorized access to an infected system.

CeeInject performs various malicious operations. CeeInject uses obfuscation
techniques to evade signature detection [16].

DelfInject is a worm that resides on websites and is downloaded to a user’s
machine when visiting an infected site. This malware is executed whenever the
system is restarted [17].

Dorkbot is a worm that is used to steal credentials of users on an infected system.
It performs a denial of service (DoS) attack, and it is spread via messaging
applications [24].

Hotbar is an adware virus that resides on websites and is downloaded onto
a user’s system when visiting a site that hosts the malware. Hotbar is more
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annoying than harmful, as it displays advertisements when the user browses the
Internet [14].

Hupigon is also a backdoor trojan, similar to Bifrose [15].
Obfuscator evades signature detection using sophisticated obfuscation tech-

niques. It can perform a variety of malicious activities [21].
Rbot is a backdoor trojan that allows attackers into the system through an IRC

channel. This is a relatively advanced malware that is typically used to launch
denial of service (DoS) attacks [13].

VbInject uses encryption techniques to evade signature detection. Its primary
purpose is to disguise other malware that can be hidden inside of it. Its payload
can vary from harmless to severe [18].

Vobfus is a trapdoor that lets other malware into the system. It exploits the
vulnerabilities of the Windows operating system autorun feature to spread on
a network. This malware makes changes to the system configuration that cannot
be easily undone [19].

Winwebsec is a trojan that attempts to trick a user into paying money by
portraying itself as anti-virus software. It gives deceptive messages claiming that
the system has been infected [20].

Zbot is a trojan that steals private user information from an infected system. It
can target information such as system data and banking details, and it can be
easily modified to acquire other types of data. This trojan is generally spread via
spam [22].

Zegost is another backdoor trojan that gives an attacker access to a compromised
system [23].

We obtain Windows PE files for each sample in the families discussed above. All
of our analysis is based on opcodes, so we first disassemble the files and extract
the mnemonic opcode sequence from each, discarding labels, directives, and so
on. Since opcodes encapsulate the function of the program we can expect opcode
sequences to be useful in detecting code evolution. The resulting opcode sequence
will serve as input to our machine learning techniques. In addition, we segregate the
samples from each family according to their creation date. Next, we briefly describe
each of the learning techniques considered in this paper.

2.4 Learning Techniques

In this section, we discuss the learning techniques that are used in our experiments.
Specifically, we introduce hidden Markov models, HMM2Vec, Word2Vec, and
logistic regression.
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Fig. 1 Hidden Markov model [35]

2.4.1 Hidden Markov Models

As the name suggests, a hidden Markov model (HMM) includes a Markov process
that is “hidden” in the sense that it cannot be directly observed. We do have access to
a series of observations that are probabilistically related to the underlying (hidden)
Markov process. We can train a model to fit a given observation sequence and, given
a model, we can score an observation sequence to determine how closely it fits the
model. A generic HMM is illustrated in Fig. 1.

The number of hidden states in an HMM is denoted as N , and hence A in Fig. 1 is
an N ×N row stochastic matrix that drives the hidden Markov process. The number
of distinct observation symbols is denoted as M . The B matrix in Fig. 1 is N ×
M , with each row representing a discrete probability distribution on the symbols,
relative to a given (hidden) state. The B matrix serves to (probabilistically) relate
the hidden states to the observations. Note that the B matrix is also row stochastic.
An HMM is specified as λ = (A,B, π), where π is a 1 ×N initial state distribution
matrix.

2.4.2 Word2Vec

Word2Vec is a technique for embedding terms in a high-dimensional space, where
the term embeddings are obtained by training a shallow neural network. After
the training process, words that are more similar in context will tend to be closer
together in the Word2Vec space.

Perhaps surprisingly, meaningful algebraic properties hold for Word2Vec embed-
dings. For example, according to [26], if we let

w0 = “king”, w1 = “man”, w2 = “woman”, w3 = “queen”

and V (wi) is the Word2Vec embedding of word wi , then V (w3) is the vector that is
closest—in terms of cosine similarity—to
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Table 2 Training data

Offset Training pairs

“ one small step . . .” (one,small), (one,step)

“one small step for . . .” (small,one), (small,step), (small,for)

“one small step for man . . .” (step,one), (step,small), (step,for), (step,man)

“. . . small step for man one . . .” (for,small), (for,step), (for,man), (for,one)

“. . . step for man one giant . . .” (man,step), (man,for), (man,one), (man,giant)

“. . . for man one giant leap . . .” (one,for), (one,man), (one,giant), (one,leap)

“. . . man one giant leap for . . .” (giant,man), (giant,one), (giant,leap), (giant,for)

“. . . one giant leap for mankind” (leap,one), (leap,giant), (leap,for), (leap,mankind)

“. . . giant leap for mankind” (for,giant), (for,leap), (for,mankind)

“. . . leap for mankind ” (mankind,leap), (mankind,for)

V (w0) − V (w1) + V (w2)

Suppose that we have a vocabulary of size M . We can encode each word as a
“one-hot” vector of length M . For example, suppose that our vocabulary consists of
the set of M = 8 words

W = (w0, w1, w2, w3, w4, w5, w6, w7)

= (“for”, “giant”, “leap”, “man”, “mankind”, “one”, “small”, “step”)

Then we encode “for” and “man” as

E(w0) = E(“for”) = 10000000 and E(w3) = E(“man”) = 00010000

respectively.
Now, suppose that our training data consists of the phrase

“one small step for man one giant leap for mankind” (1)

To obtain training samples, we specify a window size, and for each offset we use
all pairs of words within the specified window. For example, if we select a window
size of two, then from (1), we obtain the training pairs in Table 2.

Consider the pair “(for,man)” from the fourth row in Table 2. As one-hot vectors,
this training pair corresponds to input 10000000 and output 00010000.

A neural network similar to that in Fig. 2 is used to generate Word2Vec
embeddings. The input is a one-hot vector of length M representing the first element
of a training pair, such as those in Table 2, and the network is trained to output the
second element of the ordered pair. The hidden layer consists of N linear neurons
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Fig. 2 Neural network for generating Word2Vec embeddings

and the output layer uses a softmax function to generate M probabilities, where pi

is the probability of the output vector corresponding to wi for the given input.
Observe that the Word2Vec network in Fig. 2 has NM weights that are to

be determined, as represented by the blue lines from the hidden layer to the
output layer. For each output node ωi , there are N edges (i.e., weights) from the
hidden layer. The N weights that connect to output node ωi form the Word2Vec
embedding V (wi) of the word wi .

A Word2Vec model can be trained using either a continuous bag-of-words
(CBOW) or a skip-gram model. The model discussed in this section uses the CBOW
approach, and that is what we employ in our experiments in this paper. Note that in
our implementation, we use opcodes as the “words.”

Several tricks are used to speed up the training of Word2Vec models. Such details
are beyond the scope of this paper; see [27] for more information.

2.4.3 HMM2Vec

Analogous to Word2Vec, we can use the B matrix of a trained HMM to specify
vector embeddings corresponding to the observations. More precisely, each column
of the B matrix is associated with a specific observation, and hence we obtain vector
embeddings of length N directly from the B matrix—we refer to the resulting
embedding as HMM2Vec. Since HMM2Vec is not a standard vector embedding
technique, in this section, we illustrate the process using a simple English text
example.
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Recall that an HMM is defined by the three matrices A, B, and π , and is
denoted as λ = (A,B, π). The π matrix contains the initial state probabilities, A

contains the hidden state transition probabilities, and B consists of the observation
probability distributions corresponding to the hidden states. Each of these matrices
is row stochastic, that is, each row satisfies the requirements of a discrete probability
distribution. Notation-wise, we let N be the number of hidden states, M is the
number of distinct observation symbols, and T is the length of the observation (i.e.,
training) sequence. Note that M and T are determined by the training data, while N

is a user-defined parameter. For more details in HMMs, see [35] or Rabiner’s fine
tutorial [31].

Suppose that we train an HMM on a sequence of letters extracted from English
text, where we convert all upper-case letters to lower-case, and we discard any
character that is not an alphabetic letter or word-space. Then M = 27, and we
select N = 2 hidden states, and suppose we use T = 50,000 observations for
training. Note that each observation is one of the M = 27 symbols (letters, together
with word-space). For the example discussed below, the sequence of T = 50,000
observations was obtained from the Brown corpus of English [4], but any source of
English text could be used.

For one specific case, an HMM trained with the parameters listed in the previous
paragraph yields the B matrix in Table 3. Observe that this B matrix gives us two
probability distributions over the observation symbols—one for each of the hidden
states. We observe that one hidden state essentially corresponds to vowels, while
the other corresponds to consonants. This simple example nicely illustrates the
machine learning aspect of HMMs, as no a priori assumption was made concerning
consonants and vowels, and the only parameter we selected was the number of
hidden states N . The training process enabled the model to learn a crucial aspect
of English directly from the data.

Suppose that for a given letter �, we define its HMM2Vec representation V (�) to
be the corresponding row of the matrix B

ᵀ
in Table 3. Then, for example,

V (a) = (0.13537 0.00364) V (e) = (0.21176 0.00223)

V (s) = (0.00032 0.11069) V (t) = (0.00158 0.15238)
(2)

Next, we consider the distance between these HMM2Vec representations. Instead
of using Euclidean distance, we measure the cosine similarity.1

The cosine similarity of vectors X and Y is the cosine of the angle between the
two vectors. Let S(X, Y ) denote the cosine similarity between vectors X and Y .
Then for X = (X0, X1, . . . , Xn−1) and Y = (Y0, Y1, . . . , Yn−1),

1 Cosine similarity is not a true metric, since it does not, in general, satisfy the triangle inequality.
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Table 3 Final B
ᵀ

for HMM State State

Letter 0 1 Letter 0 1

a 0.13537 0.00364 n 0.00035 0.11429

b 0.00023 0.02307 o 0.13081 0.00143

c 0.00039 0.05605 p 0.00073 0.03637

d 0.00025 0.06873 q 0.00019 0.00134

e 0.21176 0.00223 r 0.00041 0.10128

f 0.00018 0.03556 s 0.00032 0.11069

g 0.00041 0.02751 t 0.00158 0.15238

h 0.00526 0.06808 u 0.04352 0.00098

i 0.12193 0.00077 v 0.00019 0.01608

j 0.00014 0.00326 w 0.00017 0.02301

k 0.00112 0.00759 x 0.00030 0.00426

l 0.00143 0.07227 y 0.00028 0.02542

m 0.00027 0.03897 z 0.00017 0.00100

Space 0.34226 0.00375 – – –

S(X, Y ) =

n−1∑

i=0

XiYi

√√√√
n−1∑

i=0

X2
i

√√√√
n−1∑

i=0

Y 2
i

In general, we have −1 ≤ S(X, Y ) ≤ 1, but since our HMM2Vec encoding
vectors consist of probabilities—and hence are non-negative values—in this case,
we always have 0 ≤ S(X, Y ) ≤ 1.

When considering cosine similarity, the length of the vectors is irrelevant, as we
are only considering the angle between vectors. Consequently, we might want to
normalize all vectors to be of length one, say, X̃ = X/‖X‖ and Ỹ = Y/‖Y‖, in
which case the cosine similarity simplifies to the dot product

S(X, Y ) = S(X̃, Ỹ ) =
n−1∑

i=0

X̃i Ỹi

Henceforth, we use the notation X̃ to indicate a vector X that has been normalized
to be of length one.

For the vector encodings in (2), we find that for the vowels “a” and “e”, the cosine
similarity is S(V (a), V (e)) = 0.9999. In contrast, the cosine similarity of the vowel
“a” and the consonant “t” is S(V (a), V (t)) = 0.0372. The normalized vectors V (a)
and V (t) are illustrated in Fig. 3. Using the notation in this figure, cosine similarity
is S(V (a), V (t)) = cos(θ)
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Fig. 3 Normalized
vectors Ṽ (a) and Ṽ (t)

˜V (a)

˜V (t)

θ

These results indicate that our HMM2Vec encodings—which are derived from
a trained HMM—provide useful information on the similarity (or not) of pairs of
letters. Note that we could obtain a vector encoding of any dimension by simply
training an HMM with the number of hidden states N equal to the desired vector
length.

In our experiments below, we consider HMM2Vec embeddings. However, in this
research, models are trained on opcodes instead of letters, and hence the embeddings
are relative to individual opcodes.

2.4.4 Logistic Regression

Logistic regression is used widely for classification problems. This relatively simple
technique relies on the sigmoid function, which is also knows as the logistic
function, and hence the name. The sigmoid function is defined as

S(x) = 1

1 + e−x
.

Logistic regression can be viewed as a modification of linear regression. As with
linear regression, logistic regression models the probability that observations take
one of two (binary) values. Linear regression makes unbounded predictions whereas
logistic regression converts the probability into the range 0 to 1 due to the use of the
sigmoid function. The graph of the sigmoid function is given in Fig. 4, from which
we can see that the output must be between 0 and 1.
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Fig. 4 Graph of sigmoid function

3 Experiments and Results

In this section, we discuss our evolution detection experiments and results. We
divide this section into four subsections, one for each technique considered, namely,
logistic regression, HMM, HMM2Vec and Word2Vec.

3.1 Logistic Regression Experiments

As mentioned above, in [30] the authors use linear SVMs to detect potential malware
evolution. Logistic regression is a simpler technique that, like SVM, is widely used
for classification. Hence, we train logistic regression models over time-windows,
analogous to the SVM approach in [30]. Specifically, we divide our data into
overlapping time windows of one year, with a slide length of one month. All of the
samples from the most recent one year time window are taken as the +1 class, while
samples from the current month are considered as the −1 class, and we train our
logistic regression models on the resulting data. Each such model is represented by
its weights, and we calculate the Euclidian distances between these weight vectors to
measure the similarity of the models. We then plot these distances on a timeline—
spikes in the graph indicate that the model has changed and hence evolution may
have occurred. Figures 5 and 6 in the Appendix show the results of our logistic
regression experiments for Winwebsec and Zegost, respectively.

The results in Figs. 5 and 6 are inconclusive. Although our logistic regression
model achieves high accuracy in classifying samples, the weights of the hidden
layer do not appear to provide clear information regarding changes in the malware
samples. Apparently, the noise inherent in these weights overwhelms the relevant
information.



Machine Learning for Malware Evolution Detection 197

3.2 Hidden Markov Model Experiments

All experiments in this section are based on the top thirty most frequent opcodes
per family, with all other opcodes grouped into a single “other” category. Thus, our
HMMs are all based on M = 31 distinct symbols. We use N = 2 hidden states in all
experiments. We conduct two sets of experiments based on hidden Markov models
(HMM). In both of these approaches, we train models, and we then score samples
with the resulting models.

For our first set of experiments, we reserve the data from the first one-month time
period to test our models, and hence we do not train a model on this data. For each
subsequent one-month time window, we train a model, and then score the samples
from the first one-month time period versus each of these models. We refer to this
as HMM approach 1.

Consider two distinct one-month time periods, say time period X and Y . Suppose
that we train an HMM on the data from time period X and another on the data from
time period Y , which we denote as λX and λY , respectively. If the samples from X

and Y are similar, then we expect the HMMs λX and λY to be similar, and hence they
should produce similar scores on the reserved (first month) data. On the other hand,
if the the samples from time periods X and Y differ significantly, then we expect the
models λX and λY to differ, and hence the scores on the reserved first-month test
set should differ significantly. Figures 7, 8, 9 in the Appendix show results for three
families based on this HMM approach 1.

In Figs. 7, 8, 9, we observe spikes in the graphs at various points in time, with
relative stability over extended periods of time. Thus, this approach seems to have
the potential to detect malware evolution.

Next, we consider another application of HMMs to our data. In this case, for
each one-month time window, we use 75% of the available samples for training and
reserve 25% for testing. Next, we train an HMM for each month—as above, we
use N = 2, and we have M = 31 in each case.

Suppose we have data from consecutive months that we label as X and Y . We
train model λX on the training data from time period X and we train a model λY on
the training data from time period Y . We then score each test sample from X with
both λX and model λY , giving us two score vectors. Since an HMM score depends
on the length of the observation sequence, and since the observation sequence
lengths vary between malware samples, each scores is normalized by dividing by
the length of the observation sequence. As a result, each score is in the form of a log
likelihood per opcode (LLPO). Note that If we have, say, m test samples in X, the
score vector obtained from λX and the score vector obtained from λY will both be
of length m.

Once we generate these two vectors, we compute the Euclidean distance between
the vectors, which we denote as dX. We repeat this scoring process using the test
samples from Y to obtain a distance dY , and we define the distance between time
windows X and Y to be the average, that is,



198 L. S. Tupadha and M. Stamp

d = dX + dY

2
.

We plot the graph of these distances—small changes in the distance from one month
to the next suggests minimal change, whereas larger distances indicate potential
evolution points. Figures 10, 11, 12, 13 in the Appendix give results for four
malware families using this HMM-based technique, which we refer to as HMM
approach 2.

The results in Figs. 10, 11, 12, 13 indicate that we see significant evolutionary
change points when considering this second HMM technique. Together with the
results for HMM approach 1, these results provide strong evidence that HMM-based
techniques are a powerful tool for malware evolution detection.

3.3 HMM2Vec Experiments

In this section we present our experimental results using HMM2Vec. Recall that
we discussed the HMM2Vec word embedding technique in Sect. 2.4.3. In these
experiments, we select N = 2 and we have M = 31. Recall that the HMM2Vec
embeddings are determined by the columns of the B matrix from our trained HMM,
and that each embedding vector is of length N .

A technical difficulty arises when considering HMM2Vec embeddings. That is,
the order of the hidden states can vary between models—even when training on the
same data, different random initializations can cause the hidden states to differ in
the resulting trained models. Since we only consider models with N = 2 hidden
states, we account for this possibility in our HMM2Vec experiments by computing
the distance between B matrices twice, once with the order of the rows flipped
in one of the models. More precisely, suppose that we want to compare the two
HMMs λ = (A,B, π) and λ̃ = (Ã,B̃ ,π̃ ), where N = Ñ = 2 and M = M̃ . We
first compute the distance based on the HMM2Vec embeddings determined by the
matrices B and B̃ (we ignore A and Ã , as well as π and π̃ ). Denote the rows of B

as B1 and B2 and, similarly, let B̃1 and B̃2 be the rows of B̃ . Compute

d1 = d(B1‖B2, B̃1‖ B̃2) and d2 = d(B1‖B2, B̃2‖ B̃1)

where “‖” is the concatenation operator, and d(x, y) is the Euclidean distance
between vectors x and y. We define the HMM2Vec distance between λ and λ̃ as

d(λ, λ̃) = min{d1, d2}.

We divide the dataset into overlapping windows of one year, with a slide length
of one month and we train an HMM (with N = 2 and M = 31) on each window.
We compute the distance between adjacent windows using the method described in



Machine Learning for Malware Evolution Detection 199

the previous paragraph, and we graph the resulting distances. The graphs obtained
for three families are given in Figs. 14, 15, 16 in the Appendix.

The results in Figs. 14, 15, 16 indicate that HMM2Vec is successful in identifying
potential evolution in these particular families. We observe significant spikes (i.e.,
evolutionary points) in most families using this technique.

3.4 Word2Vec Experiments

In this set of experiments, we use Word2Vec to generate vector embeddings of
opcodes. We compare the resulting models by concatenating the embedding vectors,
and computing the distance between the resulting vectors. As above, we divide the
dataset into overlapping time windows of one year, with a slide length of one month.
The Word2Vec models are trained as outlined in Sect. 2.4.2.

When training Word2Vec, the window size W refers to the length of the window
used to determine training pairs, while the vector length V is the number of
components in each embedding vector. We experimented with different window
sizes and found that W = 5 works best. We also experimented with different
vector sizes—in Figs. 17, 18, 19 in the Appendix, we give results for the Zbot
family for V = 2, V = 3, and V = 5, respectively. In general, we do not find
any improvement for larger values of V , and hence we use V = 2 in all of our
subsequent Word2Vec experiments.

Results from our Word2Vec experiments for three families are given in Figs. 20,
21, 22 in the Appendix. These results show potential evolutionary points in almost
all the malware families and we conclude that Word2Vec is also a useful technique
for detect potential malware evolution points.

3.5 Discussion

Here, we first discuss the results given by each technique considered in this section.
Then we compare our results to the most closely related previous work.

The two HMM scoring techniques that we first considered provide different
models and scores, yet the results are similar. This provides evidence of correctness
and consistency, and also some evidence of actual evolution.

Our HMM2Vec and Word2Vec experiments were somewhat different, since they
focus on longer time windows of one year, whereas the HMM techniques both are
based on one-month time intervals. In any case, both HMM2Vec and Word2Vec
performed well and consistently with each other. Again, this consistency is evidence
of correctness of the implementations, and of evolution detection.

Combining either HMM2Vec or Word2Vec with either of the HMM scoring
techniques provides a two-step strategy for detecting evolution. That is, we can
use a year-based technique (either HMM2Vec or Word2Vec) to see if there is any
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indication of evolution over such a time window. If so, we can then use one of
the HMM scoring techniques to determine where within that one-year window
the strongest evolutionary points occur. In this way, we could rapidly filter out
time periods that are unlikely to be of interest, and then in the secondary phase,
detect precise times at which interesting evolutionary changes have most likely
occurred. For example, both Word2Vec and HMM2Vec indicate that evolution in the
Winwebsec family took place during the time period November 2010–June 2011.
Then experimenting with the first HMM scoring approach on the Winwebsec family
during the November 2010–June 2011 time period indicates that the precise point
of evolution was June 2011.

Next, we compare our work to that in [30], which considered the same malware
evolution problem and used the same dataset as in our research. In [30], linear SVM
models are trained over on year time windows, with a slide of one month. The
resulting linear SVM model weights are compared using a χ2 distance computation.
Furthermore, Word2Vec feature vectors (derived from opcode sequences) were
used as input features to their SVM models. Once a χ2 similarity graph has been
generated, an HMM-based approach is used on either sides of a spike to confirm
that evolution has occurred.

Comparing our results with those given in [30], our techniques are more efficient,
as we omit the SVM training and our work factor is less than their secondary test. In
spite of these simplifications, we find that our detect strategy is at least as sensitive
as that in [30]. For example, we see clear spikes in some families (e.g., DelfInject,
Dorkbot, and Zbot) for which previous work found, at best, ambiguous results.

Next we briefly summarize our results per family. We refer to previous work
in [30] in some of these cases.

Adload: For this family, both HMM2Vec and Word2Vec did not result in any
significant spikes in the graphs, and hence we do not see indications of evolu-
tionary change. On the other hand, the results given by our HMM techniques
show significant spikes for this family.

Bho: The results generated by Word2Vec for this family indicate that malware
evolution occurred during the September 2009–December 2010 timeframe.
Using our HMM approach, we are able to see that malware evolution happened
during October 2010, which is consistent with the Word2Vec results. This is also
consistent with results given in [30], based on SVM analysis.

Bifrose: The results generated by HMM2Vec did not provide any major spikes in
the graph, but we can see indications of slower change over time. The graph
generated by Word2Vec gives us a better understanding of changes in this
malware family, since we could see that significant evolution occurred during
the November 2009–March 2011 time period. Again, the results given by the
HMM approaches narrow down the evolution point—in this case, to March 2011.
A similar graph is given in [30], indicating evolution during November 2010–
May 2011, which is consistent with our results.

CeeInject: For CeeInject, we obtain clear results from all experiments we
performed. The results given by HMM2Vec and Word2Vec shows significant



Machine Learning for Malware Evolution Detection 201

evolution during the August 2010–July 2011 time window, and we identify the
month of clearest change as November 2010 based on our HMM approaches.
The results for this family given in [30] show similar evolution during Septem-
ber 2010–May 2011.

DelfInject: We obtained significant results for this family using our HMM-based
approaches. This family shows evolution occurring during January 2011. In this
case, we do not observe significant spikes for Word2Vec or HMM2vec with their
longer time windows. In [30], no evolutionary points are detected for this family.

Dorkbot: Similar to CeeInject, we obtain strong results on Dorkbot from all of
our experiments. Specifically, the evidence strongly points to malware evolution
during 2011.

Hupigon: The results received from Word2Vec technique show that significant
malware evolution in this family happened during the July 2010–April 2011
period. Results from the HMM approaches narrow the time period to Febru-
ary 2011. Results given by the SVM approach in [30] are consistent with these
results.

Ircbot: The results generated by Word2Vec indicates that malware evolution
occurred in this family slowly throughout 2011. That is, there is no major spikes
observed, but the graph shows a slow changing trend.

Obfuscator: We could not derive significant information from this family. Graphs
plotted on this family had many spikes which we could not interpret regarding
malware evolution.

Rbot: Graphs generated based on Word2Vec show significant evolution in this
malware family. Significant results were not observed for this family in any
previous research.

VbInject: We could not observe a significant spike in this malware family in any
of our experiments.

Vobfus: The results generated by our experiments shows that evolution in this
family occurred during the December 2009–January 2011 timeframe. The results
given in [30] indicate evolution during November 2010–May 2011.

Winwebsec: We observe evolution in this malware family using Word2Vec,
where a spike appears in December 2010–July 2011. The previous research
in [30] did not indicate evolution for this family.

Zbot: Experiments conducted on this family inidcate significant changes. Specif-
ically, we observe a spike between April 2011–November 2011.

Zegost: From our Word2Vec experiments, we see significant spikes in the
August 2010–September 2011 and July 2010–July 2011 timeframes.

Our experiments indicate significant evolution in almost all the malware fam-
ilies considered. By comparing the results given by our two HMM techniques,
HMM2Vec, and Word2Vec, we can see that there are clear similarities in the results
for most families. When we observe such similar evolution points across different
experiments, it increases our confidence in the results. As further evidence, we found
that the evolutionary points generated in previous research in [30] matches with our
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experiments, and we detect additional points of interested, as compared to previous
research, indicating that our techniques may be somewhat more sensitive.

In some cases, we found potential evolutionary points with the HMM techniques,
but not with HMM2Vec or Word2Vec. We conjecture that this is a result of the
longer time windows (one year) used in the latter two approaches, while the HMM
techniques are based on monthly time windows. These longer time windows may
not be as sensitive in cases where a changes are less pronounced or transient.

4 Conclusion and Future Work

In previous research—first in [36] and subsequently in [30]—it has been shown
that malware evolution can be detected using machine learning techniques. In this
paper, we extend this previous work by exploring additional learning techniques.
We find that various HMM-based techniques and Word2Vec provide powerful tools
for automatically detecting malware evolution.

Here, we conducted all of our experiments based on mnemonic opcodes derived
from the malware samples. For future work, it would be useful to consider exper-
iments with other features extracted from the malware samples. While mnemonic
opcodes perform well, extracting such opcodes is relatively expensive. It is possible
that other, less costly features can be used. Also, by considering dynamic features,
we might gain more information about evolution within a malware family. Finally,
the use of additional neural networking and deep learning techniques should be
considered. Word2Vec performed well, and it is likely that more sophisticated
techniques would result in more discriminative ability, which would enable more
fine grained analysis of evolutionary trends.

Appendix

See Figs. 5–22.
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ASMWINWEBSEC : Chi-square distance between feature weight vectors
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Fig. 5 Logistic regression results for Winwebsec

ASMZEGOST : Chi-square distance between feature weight vectors
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Fig. 6 Logistic regression results for Zegost
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ASMVBINJECT : Euclidian distance between feature weight vector
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Fig. 17 Word2Vec for Zbot with V = 2
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Fig. 19 Word2Vec for Zbot with V = 5
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Gambling for Success: The Lottery
Ticket Hypothesis in Deep
Learning-Based Side-Channel Analysis
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Abstract Deep learning-based side-channel analysis (SCA) represents a strong
approach for profiling attacks. Still, this does not mean it is trivial to find neural
networks that perform well for any setting. Based on the developed neural network
architectures, we can distinguish between small neural networks that are easier
to tune and less prone to overfitting but could have insufficient capacity to model
the data. On the other hand, large neural networks have sufficient capacity but can
overfit and are more difficult to tune. This brings an interesting trade-off between
simplicity and performance.

This work proposes to use a pruning strategy and recently proposed Lottery
Ticket Hypothesis (LTH) as an efficient method to tune deep neural networks for
profiling SCA. Pruning provides a regularization effect on deep neural networks
and reduces the overfitting posed by overparameterized models. We demonstrate
that we can find pruned neural networks that perform on the level of larger networks,
where we manage to reduce the number of weights by more than 90% on average.
This way, pruning and LTH approaches become alternatives to costly and difficult
hyperparameter tuning in profiling SCA. Our analysis is conducted over different
masked AES datasets and for different neural network topologies. Our results
indicate that pruning, and more specifically LTH, can result in competitive deep
learning models.
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1 Introduction

Several side-channel analysis (SCA) approaches exploit various sources of infor-
mation leakage from electronic devices. Common examples of side channels are
timing [15], power [16], and electromagnetic (EM) emanation [26]. Besides a
division based on side channels, it is possible to divide SCA based on the attacker’s
capabilities into non-profiling and profiling attacks. Non-profiling attacks require
fewer assumptions but often require thousands to millions of measurements (traces)
to break a target, especially if protected with countermeasures. Profiling attacks are
considered one of the strongest possible attacks as the attacker has control over a
clone device to build its complete profile [6]. This profile is given by a parametric
statistical model used by the attacker to generalize to side-channel information
collected from similar devices to recover the secret information.

The history of profiling side-channel analysis (SCA) spans around 20 years, and
it is possible to distinguish among several research directions. The first direction
used techniques like (pooled) template attack [6, 8] or stochastic models [28] and
managed to improve the attack performance over non-profiling attacks significantly.
Then, the second direction moved toward machine learning in SCA, and again, a
plethora of results [12, 17, 24] indicated that machine learning could outperform
other profiling SCA methods. More recently, as the third direction, we see a
change of focus to deep learning techniques. Intuitively, we can find at least two
reasons for this: (1) deep learning show superior practical results in breaking targets
protected with countermeasures [19], and (2) deep learning does not require pre-
processing like feature selection [22] or dimensionality reduction [1]. While the
SCA community progressed quite far in the deep learning-based SCA in just a few
years, there are many knowledge gaps. One example would be how to successfully
and systematically find neural networks that manage to break various targets.

Thus, we still need to find approaches that allow designing neural networks that
perform well for various targets. We aim to have an approach that transforms a
good-performing architecture for one scenario into a good-performing architecture
for a different scenario. Finally, it would be ideal if the top-performing architectures
could be small (so they are more computationally efficient, and hopefully, easier to
understand). Unfortunately, this is not easy as the search space turns into infinite
neural network configuration possibilities. There are no general guidelines on how
to construct a neural network that will break a target. Current efforts mainly con-
centrate on finding better hyperparameters by defining modest and optimal ranges
for hyperparameters, resulting in large and exhaustive search spaces. Examples of
applied hyperparameters search in profiling SCA are random search [21], Bayesian
optimization [32], reinforcement learning [27], or approaches following a specific
methodology [31, 35]. Still, there are alternatives to how to provide neural networks
that are small and perform well. Note that larger neural networks can also perform
well for profiling SCA. However, they suffer more from overfitting, and tuning large
models becomes more difficult due to the increased hyperparameter search spaces.
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Regularization techniques are indicated to correct large models by limiting their
capacity, although constructing efficient regularizers can be a highly complex task.

In the machine learning domain, there is a technique called pruning (or sparsi-
fication) that refers to a systematical removal of parameters from neural networks.
Commonly, pruning is used on large neural networks that show good performance.
The goal is to produce a smaller network with similar performance to be deployed in
memory-constrained devices. Also, pruning offers an alternative and cheap solution
for regularizing large deep learning models. While pruning [4, 13] is a rather
standard technique in deep learning, it has not been investigated before in the SCA
domain to the best of our knowledge. Similarly, the Lottery Ticket Hypothesis [9]
attracted quite some attention in the machine learning community, but none (as far
as we know) in the SCA community.

This chapter applies the recent Lottery Ticket Hypothesis (LTH) in the profiling
side-channel analysis. After training a (relatively large) neural network, we apply
the pruning process by removing the activity of small weights from the neural
network. We then re-initialize the pruned neural network with the same initial
weights set for the original large neural network. The pruned and re-initialized
network shows equal or, most of the time, superior performance compared to the
baseline trained network. We emphasize:

• Pruning is convenient for deep neural networks that overfit. Finding efficient and
small networks is more difficult than starting with a large model and then pruning
it. In this chapter, we consider neural network architectures with up to one million
trainable parameters.

• Pruning has two main advantages for SCA: (1) When the baseline model is not
carefully tuned and overfits or underfits, pruning (and specially LTH process)
may “tune” the model size. (2) Pruning acts as a strong regularizer, which
is important for noisy and small SCA datasets. Moreover, techniques such
as explainability and interpretability can be used to define pruning strategies
efficiently.

The results demonstrate that when the large network cannot reach a successful
attack (low guessing entropy), applying the Lottery Ticket Hypothesis leads to a
successful key recovery, even when the number of profiling traces is low. More
importantly, we verify that when training a large deep neural network provides
guessing entropy close to a random guess, a pruned and re-initialized neural network
can reduce the entropy of the target key. Our main contributions are:

1. We introduce the pruning approach into profiling SCA, enabling us to propose
a procedure that can work on top of other approaches. Our approach can be
applied to any neural network, regardless of whether it is selected randomly or
obtained through some other methodology. Naturally, depending on how good is
the original network, the results from our approach can differ.

2. We demonstrate that the Lottery Ticket Hypothesis holds for SCA, which
is a significant finding due to different metrics used in SCA. The original
publication [9] measures LTH efficiency through test accuracy. Here, our metric
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is guessing entropy from the attack traces. As reported in this chapter, we can find
smaller, better, and stable networks by using the pruning and weight initialization
based on LTH, even when the original network does not return successful attack
results.

2 Background

2.1 Notation

Let calligraphic letters like X denote sets, and the corresponding upper-case letters
X denote random variables and random vectors X over X . The corresponding
lower-case letters x and x denote realizations of X and X, respectively. Next, let
k be a key candidate that takes its value from the keyspace K , and k∗ the correct
key. We define a dataset as a collection of traces T, where each trace ti is associated
with an input value (plaintext or ciphertext) di and a key ki . When considering only
a specific key byte j , we denote it as ki,j , and input byte as di,j .

The dataset consists of |T | traces. From |T | traces, we use N traces for the
profiling set, V traces for the validation set, and Q traces for the attack set. Finally, θ
denotes the vector of parameters to be learned in a profiling model, and H denotes
the hyperparameters defining the profiling model.

2.2 Supervised Machine Learning in Profiling SCA

Supervised machine learning considers the machine learning task of learning a
function f mapping an input X to the output Y (f : X → Y ) based on input-
output pairs. The function f is parameterized by θ ∈ R

n, where n represents the
number of trainable parameters.

Supervised learning happens in two phases: training and test, corresponding to
SCA’s profiling and attack phases. Thus, in the rest of this chapter, we use the terms
profiling/training and attack/testing interchangeably. As the function f , we consider
a deep neural network with the Softmax output layer.

The goal of the training phase is to learn parameters θ ′ that minimize the
empirical risk represented by a loss function L on a dataset T of size N .

In the attack phase, the goal is to make predictions about the classes

y(t1, k
∗), . . . , y(tQ, k∗),

where k∗ represents the secret (unknown) key on the device under the attack (or the
key byte). The outcome of predicting with a model f on the attack set is a two-
dimensional matrix P with dimensions equal to Q × c (the number of classes c
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depends on the leakage model as the class label v is derived from the key and input
through a cryptographic function and a leakage model). To reach the probability that
a certain key k is the correct one, we use the maximum log-likelihood approach:

S(k) =
Q∑

i=1

log(pi,v). (1)

The value pi,v denotes the probability that for a key k and input di , we obtain the
class v.

We are interested in reaching good generalization with machine learning algo-
rithms, denoting how well the concepts learned by a machine learning model apply
to previously unseen examples. At the same time, we aim to avoid underfitting
and overfitting. Overfitting happens when a model learns the detail and noise in
the training data, negatively impacting the model’s performance on unseen data.
Underfitting happens with a model that cannot model the training data or generalize
to unseen data.

In SCA, an adversary is not interested in predicting the classes in the attack phase
but in obtaining the secret key k∗. To estimate the effort required to obtain the key,
we will use the guessing entropy (GE) or success rate metrics [29]. An attack outputs
a key guessing vector g = [g1, g2, . . . , g|K |] in decreasing order of probability,
which means that g1 is the most likely key candidate and g|K | the least likely key
candidate. The success rate is the average probability that the secret key k∗ is the first
element of the key guessing vector g. Guessing entropy is the average position of
k∗ in g. Commonly, averaging is done over 100 independent experiments to obtain
statistically significant results. As common in the deep learning-based SCA, we
consider multilayer perceptron (MLP) and convolutional neural networks (CNNs).

2.3 Leakage Models and Datasets

During the execution of the cryptographic algorithm, the processing of sensitive
information produces a specific leakage. In this chapter, we consider the Hamming
weight leakage model since the considered datasets leak significantly in this model.
There, the attacker assumes the leakage is proportional to the sensitive variable’s
Hamming weight. This leakage model results in nine classes when considering a
cipher that uses an 8-bit S-box (c = 9).

ASCAD Datasets The first target platform we consider is an 8-bit AVR micro-
controller running a masked AES-128 implementation [3]. There are two versions
of the ASCAD dataset. The first version of the ASCAD dataset has a fixed key and
50,000 traces for profiling and 10,000 for testing.The second version of the ASCAD
dataset has random keys, and it consists of 200,000 traces for profiling and 100,000
for testing. For both versions, we attack the key byte 3 unless specified differently.
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For the ASCAD dataset, the third key byte is the first masked byte. For ASCAD with
the fixed key, we use a pre-selected window of 700 features, while for ASCAD with
random keys, the window size equals 1400 features. These datasets are available
at [2].

CHES CTF 2018 Dataset This dataset refers to the CHES Capture-the-flag (CTF)
AES-128 dataset, released in 2018 for the Conference on Cryptographic Hardware
and Embedded Systems (CHES). The traces consist of masked AES-128 encryption
running on a 32-bit STM microcontroller. We use 45,000 traces for the training
set (CHES CTF Device C), containing a fixed key. The attack set consists of 5000
traces (CHES CTF Device D). The key used in the training and validation set is
different from the key configured for the test set. CHES CTF 2018 trace sets contain
the power consumption of the full AES-128 encryption, with a total number of
650,000 features per trace. The raw traces were pre-processed in the following way.
First, a window resampling is performed. Later, we concatenated the trace intervals
representing the processing of the masks (beginning of the trace) with the samples
indicating the processing of S-boxes located after an interval without any particular
activity (flat power consumption profile). The resulting traces have 2200 features.
The original dataset is available at [7], and the processed traces are provided at [25].

3 Related Works

The goal of finding neural networks that perform well in SCA is probably the
most explored direction in machine learning-based SCA. The first works commonly
considered multilayer perceptron and reported good results even though there
were not many available details about hyperparameter tuning or the best-obtained
architectures [10, 11, 20, 33]. In 2016, Maghrebi et al. made a significant step
forward in the profiling SCA as they investigated the performance of convolutional
neural networks [19]. Since the results were promising, this paper started a series
of works where deep learning techniques (most dominantly MLP and CNNs) were
used to break various targets efficiently.

Soon after, works from Cagli et al. [5], Picek et al. [23], and Kim et al. [14]
demonstrated that deep learning could efficiently break implementations protected
with countermeasures. While those works also discuss hyperparameter tuning, it
was still not straightforward to understand the effort required to find the neural
networks that performed well. This effort became somewhat clearer after Benadjila
et al. investigated hyperparameter tuning for the ASCAD dataset [3]. Indeed, while
considering only a subset of possible hyperparameters, the tuning process was far
from trivial.

Zaid et al. proposed a methodology for CNNs for profiling SCA [35]. While the
methodology has limitations, the results obtained are significant as they reached top
performance with never smaller deep learning architectures. This direction is further
investigated by Wouters et al. [31] who reported some issues with [35] but managed
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to find even smaller neural networks that perform similarly well. Still, the proposed
methodologies have some issues. First, it is not easy to use those methodologies and
generalize for other datasets or neural network architectures. Second, the conflicting
results among those methodologies indicate it is difficult to find a single approach
that works the best for everything.

Perin et al. conducted a random search in pre-defined ranges to build deep
learning models to form ensembles [21]. Their findings showed that even random
search (when working on some reasonable range of hyperparameters) could find
neural networks that perform extremely well. Finally, van ver Valk et al. used a
technique called mimicking to find smaller neural networks that perform like the
larger ones [30]. Still, the authors did not use pruning but ran experiments until they
found a smaller network that outputs the same results as the larger one. Thus, the
approaches are significantly different.

Thus, while the approaches mentioned work as evident from the excellent attack
performance, there are still unanswered questions. What is clear is that we can reach
good results with (relatively) small neural networks. What remains to be answered is
how to adapt those methodologies for different datasets, or can we find even smaller
neural network architectures that perform as well (or better). We aim to provide the
answers to those questions in this work.

4 The Lottery Ticket Hypothesis (LTH)

The Lottery Ticket Hypothesis (LTH) was originally proposed by Franke and Carbin
in [9] as a technique to improve pruned neural network performances. The main
goal of pruning is to remove unnecessary weights to achieve the smallest neural
network by keeping the original baseline performance. The baseline model refers
to the trained neural network architecture that is not pruned. This way, pruned
neural networks are suitable for memory-constrained devices and can deliver faster
inference. With the LTH, authors verified that re-initializing the pruned neural
network with the same initial weights from the baseline neural network shows
equivalent or superior performance to the baseline model. In short, authors define the
following: “Lottery Ticket Hypothesis: a randomly initialized dense neural network
contains a sub-network that is initialized such that - when trained in isolation - it
can match the test accuracy of the original network after training for at most the
same number of iterations”.

A fixed sparsity level gives the amount of pruned weights and denotes the
percentage of the removed network (e.g., 90% sparsity on an MLP would remove
90% of weight connections). The top-performing sub-networks are then called the
winning tickets. There are two main ways to deploy LTH: one-shot pruning and
iterative pruning. The latter defines the next sparsity level according to the results
obtained from the previously evaluated sparsity level amount. This way, instead
of defining a fixed sparsity level as in the case of one-shot pruning, the process
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iteratively finds the maximum possible sparsity level that delivers satisfactory
results.

4.1 Pruning Strategy

To find an efficient pruned network, the large overparameterized baseline model
must be trained before applying pruning to remove unnecessary weights. The
pruning process applied in this work removes the smallest weights from the trained
weights obtained from training the baseline model for a fixed amount of epochs.
The activations in the forward propagation are mostly affected by larger weight
values. Therefore, pruning the smallest weights remove those weights that are
not significantly impacting the predictions. Different pruning strategies could be
considered. Here we show that even the most simple method based on weight
magnitude already delivers efficient results.

As shown in the experimental results section, we apply the LTH process on
public (and protected) AES datasets, which also works when considering other than
accuracy performance metrics (e.g., success rate, guessing entropy). The process
starts by training an overparameterized neural network model for a single target
AES key byte (note that our baseline models are assumed to be overparameterized
in comparison to state-of-the-art works, e.g., [27, 31, 35]). Afterward, the model
is pruned by removing smallest weights, and this pruned model is re-initialized and
retrained (with more efficiency, e.g., fewer epochs) for all AES key bytes. Therefore,
LTH reduces the complexity of deep neural network tuning in profiling SCA. We
give the pruning strategy procedure for LTH in Algorithm 1. Although our process
iterates over all sparsity levels s (in our case, from 1 to 99%), we do not consider
it as iterative pruning because we do not set a metric to stop the process. Our main
goal is to evaluate the profiling attack performance for all evaluated sparsity levels.

Algorithm 1 Pruning strategy
1: procedure PRUNING STRATEGY(original neural network f , original dataset x, random initial

weights θ0, training epoch θj , trained weight θj , pruning ratio P%, mask m)
2: for s = 1 to 99 do
3: θj ← Pretrain Model f (x,θ0) for j epochs
4: m ← Prune s% of the smallest weights from θj

5: for i = 1 to j do
6: Train f (x,θ0m)

7: end for
8: end for
9: end procedure

In Fig. 1, we depict an one-shot pruning procedure. The first part of the figure
displays the reference training procedure with no pruning where the weights at the
beginning of the training process are different from those at epochs A and B. The
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Fig. 1 One-shot pruning procedure for LTH

lower figure shows the setup when we prune the smallest weights and are left to
choose whether we randomly initialize the remaining weights or re-initialize them
from the original weights.

4.2 Winning Tickets in Profiling SCA

In [9], a winning ticket is defined as a sub-network that, when trained in isolation
(after being re-initialized with the same baseline model initial weights), provides
classification accuracy equivalent or superior to the baseline model. For profiling
SCA, we define winning ticket as a sub-network that provides a test guessing
entropy lower than or equivalent to the guessing entropy obtained from the original
baseline model. Note that hyperparameters defined for the baseline model (which
affects the total number of training parameters) and the number of profiling traces
directly affect the chances to identify a winning ticket as demonstrated in Sect. 5.

Recall, pruning refers to removing neurons (neuron-based pruning) or weight
connections (weight-based pruning) from the neural network activity. The most
popular pruning technique consists of keeping a number of weight connections
based on their weight value. This means that the smallest weights are pruned out



226 G. Perin et al.

from the model.1 However, one should note that the concept of winning ticket does
not imply that pruning is applied to well-selected pruned weights or neurons. For
instance, if one prunes a certain percentage of elements selected at random and the
remaining sub-network still performs as well as the baseline model, the resulting
model is still called a winning ticket. Obviously, pruning techniques should also
be explored to find a sub-network with more efficiency. In Sect. 5, we provide
an extensive set of experimental results showing that pruning the smallest weights
provides excellent results for SCA. Still, we do not claim that pruning, e.g., random
weights, would not give good results for specific settings.

Ideally, deep learning-based SCA requires selecting the smallest possible neural
network architecture that provides good generalization for a given target. Small
models are faster to train and easier to interpret. The challenge of finding a well-
performing small architecture may grow proportionally to the difficulty of the eval-
uated side-channel dataset (misalignment, noise, countermeasures). Nevertheless,
side-channel traces usually provide a low signal-to-noise ratio, and regularization
techniques play an important role in leakage learnability. Small models are self-
regularized, mainly because they offer less capacity to overfit the training set.
This justifies the importance of finding winning tickets in SCA. Regardless of the
evaluated dataset, starting from a large baseline model and applying the Lottery
Ticket Hypothesis improves the chances to create a small and efficient neural
network model.

5 Experimental Results

5.1 Baseline Neural Networks

In our experiments, we define six different baseline models: three MLPs and
three CNNs. Here, the main idea is to demonstrate how pruning and weight re-
initialization (the Lottery Ticket Hypothesis) provide different SCA results if the
baseline model varies in size or capacity. The MLP models are selected based on
the sizes of commonly used architectures from the related works [3, 19, 21]. CNN
models contain relatively fewer trainable parameters, and we define them based on
efficient results obtained with smaller models as presented in [21, 31, 35].

Table 1 lists the hyperparameter configurations for MLP4, MLP6, and MLP8
models. The main idea is to verify how pruning and re-initialization work for MLP
architectures with different numbers of dense layers and, consequently, different
number of trainable parameters. Note that we have not selected very large neural
network models. All of them contain less than one million trainable parameters.
Here, the goal is to demonstrate that even a moderately-sized model can be signif-
icantly reduced according to the Lottery Ticket Hypothesis procedure presented in

1 Similarly, pruning can be considered as keeping the largest weights in model.
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Table 1 MLP architectures (batch size 400, learning rate 0.001, ADAM, selu activation func-
tions). Number of parameters vary for different datasets due to different input layer dimensions

Layer MLP4 MLP6 MLP8

Dense_1 200 neurons 200 neurons 200 neurons

Dense_2 200 neurons 200 neurons 200 neurons

Dense_3 200 neurons 200 neurons 200 neurons

Dense_4 200 neurons 200 neurons 200 neurons

Dense_5 – 200 neurons 200 neurons

Dense_6 – 200 neurons 200 neurons

Dense_7 – – 200 neurons

Dense_8 – – 200 neurons

Softmax 9 neurons 9 neurons 9 neurons

Parameters (ASCAD Random Keys) 402,609 483,009 563,409

Parameters (ASCAD Fixed Key) 262,609 343,009 423,409

Parameters (CHES CTF 2018) 562,609 643,009 723,409

Algorithm 1 and still keep or provide improved profiling SCA results. While it could
be said that neural networks with up to one million trainable parameters are small,
we note that the state-of-the-art results report significantly smaller architectures
(even significantly fewer than 100,000 trainable parameters) [27, 31, 35].

The principle also holds for the chosen CNN models. Table 2 shows three CNN
architectures, denoted as CNN3, CNN4, and CNN4-2. We defined relatively small
CNNs (but still larger than state-of-the-art in, e.g., [35]), which are sufficient to
break the evaluated datasets. CNN3 has only one convolution layer, while CNN4
and CNN4-2 contain two convolution layers each. In particular, CNN4-2 has larger
dense layers than CNN4 to allow more complex relations between the input-output
data pairs to be found (and allow more overfitting to happen). It is important to
note that we define the same models for three different datasets. It is expected
that for baseline models (without pruning), the performance might not be optimal
for all cases. Although it is out of this chapter’s scope to identify one model
that generalizes well for all scenarios, we demonstrate that applying the Lottery
Ticket Hypothesis procedure is a step forward in this important deep learning-based
profiling SCA research direction.

We also provide experimental results demonstrating that the procedure described
in Sect. 4 depends on several aspects such as the number of profiling traces and the
sparsity level in the pruning process. By identifying the optimal sparsity level for
pruning, we can drastically improve the performance of re-initialized sub-networks.
Moreover, in some scenarios, we show that even when a large baseline model cannot
recover the key, the pruned and re-initialized sub-network succeeds, especially when
the number of profiling traces is small.

Interpreting Plots
This section’s results are given in terms of guessing entropy for different baseline
models, datasets, and sparsity levels. The sparsity level is provided in the x-axis,
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Table 2 CNN architectures (batch size 400, learning rate 0.001, ADAM, selu activation function).
Number of parameters vary for different datasets due to different input layer dimensions

Layer CNN3 CNN4 CNN4-2

Conv1D_1 16 filters ks=10,
stride=5

16 filters ks=10,
stride=5

16 filters ks=10,
stride=5

MaxPool1D_1 ks=2, stride=2 ks=2, stride=2 ks=2, stride=2

– BatchNorm BatchNorm BatchNorm

Conv1D_2 – 16 filters ks=10,
stride=5

16 filters ks=10,
stride=5

MaxPool1D_2 – ks=2, stride=2 ks=2, stride=2

– – BatchNorm BatchNorm

Dense_1 128 neurons 128 neurons 256 neurons

Dense_2 128 neurons 128 neurons 256 neurons

Softmax 9 neurons 9 neurons 9 neurons

Parameters
(ASCAD Random
Keys)

302,713 47,305 124,489

Parameters
(ASCAD Fixed Key)

159,353 32,969 95,817

Parameters (CHES
CTF 2018)

466,553 63,689 157,257

where we apply pruning to the trained baseline neural network from 1% up to
99%. In each plot, there is a dashed green line that represents the average resulting
guessing entropy for the baseline model without pruning. Thus, the green line
is shown together with the plots to indicate the obtained guessing entropy when
baseline models are trained for 300 epochs without any pruning. We consider 300
epochs to skip possible underfitting scenarios. The models we consider range from
32,969 to 723,409 trainable parameters, and with 300 epochs, there are no extreme
overfitting cases.

The dashed red line is the resulting average guessing entropy after the trained
baseline model is pruned according to the indicated sparsity level (x-axis) and
initialized with random weights and trained for 50 epochs. Finally, the blue line
is the resulting average guessing entropy from the same previous pruned model and
re-initialized with initial weights from the baseline model according to LTH and
trained for 50 epochs. For each sparsity level, each experiment is repeated ten times.
Therefore, each plot results from training 98 × 2 × 10 = 1960 pruned models. The
plots also present the margin variation obtained with ten experiments (depicted as
the area in the respective color).

We briefly discuss the limits that pruning and the Lottery Ticket Hypothesis offer
regarding the results and their explainability:
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1. Pruning allows smaller neural networks that perform on the level or even better
than larger ones. This results from the regularization effect provided by pruning
out small weights according to some strategy (random pruning or LTH).

2. The Lottery Ticket Hypothesis assumes there will be smaller, good performing
sub-networks, so-called winning tickets. Winning tickets in profiling SCA allow
reaching small sub-networks with good attack performance, as measured with
GE. This provides an alternative solution for hyperparameter tuning in which
pruning is used to extract the best possible performance from a model by
disabling unnecessary weight connections.

3. In profiling SCA, finding an efficient model is also characterized by determining
a good balance between the model’s fitting capacity (i.e., its number of trainable
parameters) and its generalization. Regularization is the method that provides this
balance if one chooses to avoid tuning the model’s hyperparameters. However,
finding good regularizers might also pose critical difficulties, especially when
there are more hyperparameters to be tuned due to the regularizer choice.
Therefore, the pruning, and LTH process, offer a cheap and easy-to-deploy
alternative to regularize a large model. However, not all neural network sizes
will necessarily be converted from a baseline model that performs poorly into
an optimal one just by applying pruning strategies as regularizers. Other aspects,
such as dataset nature and the number of profiling traces, also will affect the
pruned model’s performance.

4. Pruning and LTH are not methods to provide explainability. However, explain-
ability and interpretability can be used to improve the pruning strategy. This can
be done by analysing, e.g., gradients [18], neuron relevance to classification [34]
or simply weight magnitude [9].

5.2 ASCAD with a Fixed Key

Figures 2, 3, and 4 provide results for the ASCAD Fixed Key dataset when MLP4,
MLP6, and MLP8 are used as baseline models, respectively, for different number

Fig. 2 ASCAD Fixed Key, MLP4. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces
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Fig. 3 ASCAD Fixed Key, MLP6. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces

Fig. 4 ASCAD Fixed Key, MLP8. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces

of profiling traces. There, we can immediately conclude that random initialization
(random init in figure legends) and LTH initialization (LTH init in figure legends)
provide different final guessing entropy results for different MLP sizes and the
number of profiling traces. For the LTH case, the model size and the number of
profiling traces have a small impact, and we can observe that, for all scenarios,
pruning up to 90% of the weights show similar key recovery results.

On the other hand, if the pruned models are initialized with random weights,
the model’s performance is directly related to model size and the number of
profiling traces. Adding more profiling traces improves the behavior of the model
that is randomly initialized, approaching the model’s behavior that is re-initialized
according to LTH. The baseline model performs better than the pruned model that
uses random initialization if the percentage of pruned weights is larger than 50% (for
MLP8), and the number of profiling traces is sufficient to build a strong model. For
the pruned model that follows the LTH initialization, the baseline model performs
better only if we prune more than 90% of weights.

Interestingly, we can observe that pruning and LTH weight initialization show
very stable results. Repeating the experiments ten times for each sparsity level tends
to provide similar final guessing entropy values. Random weight initialization after
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Fig. 5 ASCAD Fixed Key, CNN3. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces

Fig. 6 ASCAD Fixed Key, CNN4. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces

pruning clearly shows different final guessing entropy results, which is an obvious
consequence of the randomness of weight initialization.

Next, we give results for the three different CNN architectures. Figures 5 and 6
indicate that for 30,000 training traces, as the dataset is small, the baseline model
generally performs well but shows signs of overfitting. Then, pruning up to 60% of
weights improves the performance regardless of the weight initialization procedure,
although the LTH approach shows more stable and superior results. Increasing the
number of traces shows improved behavior for the baseline model. Still, carefully
selected sub-networks are sufficient to break the target, even when pruning 80% of
weights.

Going to a more complex architecture (CNN4), the baseline model performs
well and can reach a guessing entropy of one. However, this baseline model shows
more variation from the ten repeated experiments. Simultaneously, pruning enables
similar performance where the larger the training set, the smaller the differences
between weight initialization procedures (LTH initialization or random). In Fig. 7,
we consider the most complex CNN architecture. Interestingly, for 40,000 and
50,000 traces, we observe an even better performance of pruned networks when
compared to the baseline model for up to 60% pruned weights. Again, LTH
initialization tends to provide more stable results.
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Fig. 7 ASCAD Fixed Key, CNN4-2. (a) 30,000 profiling traces. (b) 40,000 profiling traces. (c)
50,000 profiling traces

Fig. 8 ASCAD Random Keys, MLP4. (a) 60,000 profiling traces. (b) 100,000 profiling traces. (c)
200,000 profiling traces

5.3 ASCAD with Random Keys

In this section, we provide results for the ASCAD Random Keys dataset, as
introduced in Sect. 2.3. Again, we apply the LTH procedure for a different number of
profiling traces (60,000, 100,000, and 200,000) on the six different baseline models
(MLP4, MLP6, MLP8, CNN3, CNN4, and CNN4-2).

Figure 8 shows results for different number of profiling traces and the MLP4
baseline model. With four dense layers, this MLP can be considered a small model,
which is sufficient to break the ASCAD dataset for a large number of profiling
traces (above 100,000), as indicated by the baseline model guessing entropy results.
However, if the number of profiling traces is reduced (60,000), the guessing entropy
result for the baseline model trained for 300 epochs is worse due to overfitting. On
the other hand, applying the LTH process on this MLP4 baseline model shows good
results even when the number of profiling traces is reduced. A natural alternative to
fix the baseline model training would be to reduce the number of epochs to limit the
overfitting. However, we expose this result (Fig. 8a) to demonstrate how pruning
(even from 1% of weights) already regularizes the model and delivers successful
attack results (we also must mention that pruned model is trained for fewer epochs,
also reducing overfitting).



The Lottery Ticket Hypothesis in Deep Learning-Based SCA 233

Fig. 9 ASCAD Random Keys, MLP6. (a) 60,000 profiling traces. (b) 100,000 profiling traces. (c)
200,000 profiling traces

Fig. 10 ASCAD Random Keys, MLP8. (a) 60,000 profiling traces. (b) 100,000 profiling traces.
(c) 200,000 profiling traces

The observations are confirmed in Figs. 9 and 10 for MLP models with
more capacity (MLP6 and MLP8). Indeed, profiling sets that are too small cause
overfitting for the baseline model, which can be easily resolved following the
pruning method. Notice that random initialization always works worse than LTH
initialization, and it also gives more irregular behavior due to the randomness in
the process. This is even more evident in Fig. 10 where the variation of random
initialization after pruning is very significant. This confirms that the LTH is valid
in the profiling SCA context. As shown in Fig. 9, pruning approximately 90% of
the weights from the baseline model results in a successful attack when weights are
initialized with the LTH process.

Comparing Figs. 9 and 10, the larger baseline models tend to provide less
successful results when the LTH procedure is applied. Larger baseline models may
overfit training data more easily, and, as a consequence, the pruning process is
applied to a model that might overfit. The solution for this problem is to consider
early stopping for the baseline model training. This way, pruning would be applied
to the baseline model weights when they reach the best training epoch. To confirm
our hypothesis, we can consider Fig. 10c. The baseline model (MLP8) is trained
on 200,000 profiling traces for 300 epochs and does not overfit, as seen in the final
baseline model’s guessing entropy. In this case, the pruned model performance with
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Fig. 11 ASCAD Random Keys, CNN3. (a) 60,000 profiling traces. (b) 100,000 profiling traces.
(c) 200,000 profiling traces

Fig. 12 ASCAD Random Keys, CNN4. (a) 60,000 profiling traces. (b) 100,000 profiling traces.
(c) 200,000 profiling traces

LTH initialization is as good as for smaller baseline models trained on the same
number of profiling traces (see, e.g., Fig. 9c).

The CNN architectures selected for this analysis show better guessing entropy
results for the baseline model when more profiling traces are used, as shown in
Figs. 11, 12, and 13. However, when less profiling traces are used, as is the case
of results provided in Figs. 11b, 12b, and 13b, the baseline guessing entropy is
not reaching one on average. Adding more profiling traces helps, but the number
of profiling traces should align with the model complexity. The evaluated CNN
models worked well for the ASCAD Fixed Key dataset, as shown in the last section.
However, these models (especially CNN4 and CNN4-2) appear less appropriate for
the ASCAD Random Keys dataset. In such cases, pruning plays an important role in
(partially) overcoming this. After pruning, it is possible to reach very low GE values
(under 5) for a specific percentage of pruned weights. In particular, results show that
pruning plus LTH initialization is better than pruning plus random initialization.
For all cases, we can prune up to around 50% of weights and still reach good
performance even though we use (relatively) simple CNN architectures.
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Fig. 13 ASCAD Random Keys, CNN4-2. (a) 60,000 profiling traces. (b) 100,000 profiling traces.
(c) 200,000 profiling traces

Fig. 14 CHES CTF 2018, MLP4. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

5.4 CHES CTF 2018

For the CHES CTF 2018 dataset, we repeated the experiments on the same neural
network architectures defined in Tables 1 and 2. In this case, we observed much
better results for the three selected MLPs and CNN3 than results obtained for
CNN4 and CNN4-2. These results again confirm the practical advantage of the LTH
procedure in profiling SCA.

Figure 14 shows the guessing entropy for different sparsity levels on three
different number of profiling traces: 20,000, 30,000, and 40,000. As indicated by the
dashed green line in Figs. 14a, 14b, and 14c, the baseline guessing entropy cannot
reach one for MLP4 trained on 300 epochs. Adding more profiling traces helps,
but still, GE stays slightly above one on average. When the network is pruned,
we can immediately see how GE improves, especially for sparsity levels around
80–95%. The LTH initialization shows better (at least more stable) results than
random initialization. Figures 15 and 16 confirm our observations as more profiling
traces is required for good attack performance for the baseline model, especially
as the architecture becomes more complex. On the other hand, we can prune up to
95% of weights if we follow the LTH initialization and still reach superior attack
performance.
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Fig. 15 CHES CTF 2018, MLP6. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

Fig. 16 CHES CTF 2018, MLP8. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

Results for CNNs on the CHES CTF 2018 dataset are acceptable (i.e., converging
to GE close to one) for the CNN3 architecture only, as shown in Fig. 17. There,
we see the benefit of adding more profiling traces as the baseline model overfits.
Still, some sub-networks are providing better attack performance. For CNN4 and
CNN4-2 (Figs. 18 and 19), the baseline model provides poor performances when
trained on 300 epochs. We postulate this happens as the baseline model has a
significantly larger capacity than needed, so it either overfits or underfits, becoming
similar to random guessing. In other words, CNN4 and CNN4-2 on smaller profiling
sets (lower than 30,000 traces) show no generalization for the baseline model,
indicating that these two models are not compatible with the target dataset. We
can observe how the LTH procedure reduces guessing entropy for specific sparsity
level ranges even with those models. Observing Figs. 18 and 19, for sparsity
levels around 70%, LTH initialization reach significantly lower guessing entropy
values (GE ≤ 70) after training for 50 epochs. Increasing the number of attack
traces (we consider only 2000 attack traces) could lead to successful key recovery,
which is particularly interesting if a baseline model provided performance close to
random guessing. When the number of profiling traces is increased to 40,000 traces
(Figs. 18c and 19c), the baseline model shows slightly better results and the LTH
initialization still improves the attack performance. In this case, we can verify that
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Fig. 17 CHES CTF 2018, CNN3. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

Fig. 18 CHES CTF 2018, CNN4. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

Fig. 19 CHES CTF 2018, CNN4-2. (a) 20,000 profiling traces. (b) 30,000 profiling traces. (c)
40,000 profiling traces

random initialization might not be a good procedure, as the guessing entropy results
are inferior to the baseline model results.
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5.5 General Observations

Based on the conducted experiments, we provide several general observations:

• If the baseline model works poorly for a limited set of attack traces, pruning
might still improve performance.

• If the baseline works well and does not overfit, then pruning maintains the
performance but produces smaller and regularized networks.

• If there are not enough profiling traces for the model capacity, it will overfit, and
pruning can help avoid that.

• More profiling traces improve pruning results, but it also reduces differences
between weight initialization techniques.

• Pruning and LTH initialization procedure works the best, provided the neural
network architectures are large enough to utilize the winning tickets.

• Pruning can improve the attack results as indicated by the SCA performance
metrics.

6 Conclusions and Future Work

This chapter discussed how pruning could improve the attack performance for
deep learning-based side-channel analysis. We considered the recently proposed
Lottery Ticket Hypothesis that assumes there are small sub-networks in the original
network that perform on the same level as the original network. To the best of our
knowledge, both of those concepts were never before investigated in profiling SCA.
Our experimental investigation confirms this hypothesis for profiling SCA, which
allows us to prune up to 90% of weights and still reach good attack performance.
Thus, we manage to reach the same attack performance for significantly smaller
networks (easier to tune and faster to train). What is more, we show how pruning
helps when a large network overfits or has issues due to imbalanced data. In such
cases, pruning, besides resulting in smaller architectures, enables improved attack
performance.

As future work, we plan to consider more sophisticated pruning techniques
and different leakage models. Finally, as discussed, pruning allows smaller neural
networks and good performance but does not provide insights into neural networks’
explainability. It could be interesting to consider various feature visualization
techniques to evaluate the important features before and after the pruning. Also,
explainability and interpretability techniques could be efficiently applied here to
select weights to be pruned.
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Evaluating Deep Learning Models and
Adversarial Attacks on
Accelerometer-Based Gesture
Authentication

Elliu Huang, Fabio Di Troia , and Mark Stamp

Abstract Gesture-based authentication has emerged as a non-intrusive, effective
means of authenticating users on mobile devices. Typically, such authentication
techniques have relied on classical machine learning techniques, but recently, deep
learning techniques have been applied this problem. Although prior research has
shown that deep learning models are vulnerable to adversarial attacks, relatively
little research has been done in the adversarial domain for behavioral biometrics. In
this research, we collect tri-axial accelerometer gesture data (TAGD) from 46 users
and perform classification experiments with both classical machine learning and
deep learning models. Specifically, we train and test support vector machines (SVM)
and convolutional neural networks (CNN). We then consider a realistic adversarial
attack, where we assume the attacker has access to real users’ TAGD data, but not the
authentication model. We use a deep convolutional generative adversarial network
(DC-GAN) to create adversarial samples, and we show that our deep learning model
is surprisingly robust to such an attack scenario.

1 Introduction

With the ubiquity of technology, authentication has become an essential part of
everyday life. Passwords and PINs are the most common forms of authentication,
but biometrics are also popular. Biometric authentication includes physiological
(e.g., facial recognition and fingerprint) and behavioral (e.g., gait and keystroke
dynamics) approaches [5].

While physiological biometric authentication has proven to be highly effective,
sensors and equipment required for such approaches are usually costly. Additionally,
attackers can sometimes bypass such a system if they have access to a copy
of the required features [31]. On the other hand, behavioral biometrics not only
have the potential to be cost effective, they may also be more secure, at least in
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cases where attackers have difficulty imitating the relevant features. Furthermore,
the non-intrusive nature of behavioral biometrics may be considered desirable, in
comparison to physiological biometric authentication.

Gesture-based authentication is a relatively recent behavioral biometric that has
achieved promising results. There are various techniques for analyzing gestures,
including acceleration, angular motion, 3D motion, and a mix of the three. Several
machine learning techniques, including those we discuss in Sect. 3, have been
applied to the gesture-based authentication problem.

In this research, we explore the effectiveness of deep learning techniques on
gesture-based authentication. Our research is based on a new dataset that we have
collected. Given that our tri-axial accelerometer gesture data (TAGD) are time
series, we consider two time series classification (TSC) techniques: support vector
machines (SVM) and one-dimensional convolutional neural networks (1D-CNN).
When combined with feature extraction techniques, our SVM model provides for
rudimentary analysis of our TAGD data, as well as a basis for comparison to our
1D-CNN model. We also generate adversarial samples using generative adversarial
networks (GAN) and use these samples to explore the robustness of our 1D-CNN
model against a realistic adversarial attack.

The remainder of this paper is structured as follows. Sect. 2 discusses relevant
work in the field of gesture-based authentication and adversarial attacks on bio-
metric authentication. Relevant background information on the machine learning
techniques we consider is presented in Sect. 3. Section 4 provides an overview of our
dataset, including specific steps of the data collection process and data preprocessing
techniques. Details of our adversarial strategy are introduced in Sect. 5. We present
our experimental results for our classification models and an adversarial attack
in Sect. 6. Our conclusion and a brief discussion of future research directions are
provided in Sect. 7.

2 Related Work

Relative to the vast research literature on behavioral biometrics, there is compar-
atively little work on gesture-based authentication. In this section, we provide an
overview of research on gesture-based authentication and adversarial attacks on
such security systems.

Most gesture-based authentication techniques can be categorized into two main
methods, namely, touchscreen and motion gestures [11]. There are, however, studies
that combine both into a single authentication system [8].

Touchscreen-based gesture authentication methods typically analyze touch
dynamics, including various inputs recorded from a touchscreen interface such
as finger size and pressure. One approach consisted of collecting finger behavior
and position data and authenticated users via SVMs [3]. Another study employed
particle swarm optimization to find patterns in touchscreen dynamics [24].
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Motion gestures generally rely on accelerometer and gyroscope data to analyze
the acceleration and angular motion of the mobile device. Prior research in this
domain has applied dynamic time warping (DTW) [22], SVMs [23], and hidden
Markov models (HMM) [15] to authenticate users. One gesture-based approach
employed a more sophisticated method that involved the “leap motion” controller
that collects 3D motion data and applied similarity thresholds to authenticate
users [19]. Another approach analyzed full-body and hand-gestures in 3D space
using two-stream CNNs [32].

Adversarial attacks on gesture-based authentication is not a well-researched
area, but there are a handful of relevant studies in the general field of behavioral
biometrics. One study analyzed behavioral mouse dynamics and found that deep
learning authentication models were susceptible to adversarial attacks [28]. Adver-
sarial samples have been generated using a fast gradient sign method (FGSM) to
create perturbations in the data, with a gated recurrent unit (GRU) then used to
generate adversarial samples. Another study [1] analyzed the resilience of con-
tinuous touch-based authentication systems (TCAS) to adversarial attacks. These
researchers found that their TCAS trained with the help of generative adversarial
networks (GAN) had a lower false acceptance rate than that of vanilla TCAS.
The paper [2] reports on experiments with randomization attacks on gesture-based
security systems that use SVMs, and finds that their models are highly vulnerable
to adversarial attacks.

Similarly, adversarial learning on time series classification has not seen much
research. Most adversarial attacks involve small perturbations of the original data
using state-of-the-art FGSM or basic iterative method (BIM) in order to “trick” a
classification or regression model. A study of adversarial attacks on multivariate
time series regression found that three of the most popular deep learning models—
CNNs, GRUs, and long short-term memory (LSTM)—were highly susceptible
to such attacks [25]. Another study also used FGSM and BIM to create small
perturbations in time series data, which significantly lowered the classification
accuracy of deep learning models for vehicle sensors and electricity consumption
data [13].

3 Background

In this section, we discuss the machine learning techniques that form the basis of
our experiments. These techniques, namely, support vector machines, convolutional
neural networks, and generative adversarial networks, will serve as the basis for our
classification experiments in Sect. 6. We also introduce our strategies for adversarial
attacks.
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Fig. 1 The kernel trick

3.1 Support Vector Machines

Support vector machines (SVMs) are one of the most popular supervised learning
techniques for classification and regression. SVMs attempt to find the optimal
separating hyperplane between two labeled sets of training data [27]. However, a
dataset need not be linearly separable, in which case we can employ the “kernel
trick.” As depicted in Fig. 1, the kernel trick maps the input data into a higher-
dimensional space where it is more likely to be linearly separable. The kernel trick,
together with “soft margin” calculations that allow for classification errors, makes
an SVM an extremely powerful and flexible tool in the field of machine learning.

A classification problem with a small training sample size and high dimension-
ality is prone to overfitting [9]. Feature selection techniques can help to prevent
this problem by discarding features, with minimal loss—or even improvements—in
performance. In our SVM experiments, we used support vector machine recursive
feature elimination (SVM-RFE) for feature selection. SVM-RFE consists of elim-
inating the least significant feature (based on linear SVM weights), then training a
model on the reduced feature set. This process is repeated until the desired number
of features is reached, or the performance degrades beyond acceptable limits.

3.2 1D Convolutional Neural Networks

Typically, convolutional neural networks (CNN) are associated with feature extrac-
tion and classification for images, which generally involves two-dimensional con-
volutional neural networks (2D-CNN). In such a model, 2D data (e.g., images) are
fed into a CNN and classified via a final fully-connected layer.

In this paper, we do not consider images; instead, we have temporal sequences
of fixed length. Such data is suitable for one-dimensional convolutional neural
networks (1D-CNN). While not as common as 2D-CNNs, 1D-CNNs are used
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for signal processing and sequence classification, with numerous applications in
biomedical and civil engineering [21].

The architecture of a 1D-CNN is analogous to that of a 2D-CNN, with the key
differences being the dimensionality of the input data and the convolution operation.
2D-CNNs typically use a rectangular kernel that slides from left to right, top to
bottom. In contrast, 1D-CNNs employ a kernel that spans some number of variables
and slides along a vector.

3.3 Adversarial Strategy

We also consider how our deep learning models perform under adversarial attacks.
While several studies analyze adversarial attacks involving small perturbations of
the original data [20], we explore a scenario where we assume the intruder has
access to a real users’ gesture data. We test both poisoning and evasion attacks
using learning models to generative adversarial samples; specifically, we use a type
of generative adversarial network (GAN) to produce adversarial samples.

3.3.1 Deep Convolutional Generative Adversarial Networks

Two competing neural networks are trained in a GAN—a generative network and
a discriminative network—with the generative network creating fake data that
is designed to defeat the discriminative network. The two networks are trained
simultaneously following a game-theoretic approach. In this way, both networks
improve, with the ultimate objective being a model (discriminative, generative, or
both) that is stronger than it would have been if it was trained only on the real
training data; see [12] for additional details.

An overview of GAN structure is depicted in Fig. 2. Among many other uses,
GANs have been used to generate realistic adversarial samples.

Fig. 2 Overview of GAN structure
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4 Dataset

In this section, we give an overview of the data collected and specify the steps in the
data collection process. We also include a discussion of data preprocessing and the
feature engineering techniques that we have employed.

4.1 Data Collection

In this research, we collect users’ tri-axial accelerometer gesture data (TAGD) while
the user holds a smartphone and writes their “signature” in the air, similar to the
process in [18]. The accelerometer sensor of the Physics Toolbox Sensor Suite [10]
was used to collect data. A screenshot of the application is shown in Fig. 3. The
tri-axial acceleration is represented as separate curves—the red curve represents

Fig. 3 Screenshots of physics toolbox sensor suite app. (a) Accelerometer sensor. (b) App settings
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acceleration along the x-axis, the green curve represents acceleration along the y-
axis, the blue curve represents acceleration along the z-axis, and the white curve
represents the total magnitude of acceleration. Data is collected at a frequency
of 100 Hz, i.e., 100 data points per second. We performed data collection solely
on the Apple iOS platforms in order to reduce the possibility of smartphone type
being a confounding variable. We note that iPhone models varied from iPhone 8 to
iPhone X.

After installing the app, he user performs the following steps to collect signature
data.

1. Tap the red button to start recording accelerometer data
2. Move the smartphone in the air to draw a signature
3. Tap the red button again to stop recording data
4. Upload data in the form of a CSV file into Google Drive

These steps were repeated 50 times to collect 50 signatures for each user.
In total, we collected 50 signatures from each of 46 different users who volun-

teered to provide such data. Users typically chose their initials as their signature, but
they were free to create their own unique signature. Generally, the time to write each
signature varied between 3 and 7 seconds, and the entire data collection process for
one individual required about 20 minutes. Our dataset is freely available for use by
other researchers at [17]. A sample of our TAGD data is shown in Fig. 4.
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Fig. 4 Sample tri-axial acceleration time sequence
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4.2 Data Preprocesssing

The raw tri-axial data is of variable length. As discussed below, we resize all
signatures to the same size, as most traditional classification techniques require input
data of a fixed size. We have applied several feature engineering techniques to the
resulting time series.

4.2.1 Feature Engineering

As noted above, each signature is a temporal sequence of tri-axial accelerometer
data. First, we extract statistical features based on the acceleration for each axis,
ignoring the sequential nature of the data. The resulting distributions vary—we
compute the following statistical measures of shape, center, and spread for each
of the three axes.

Length (L) The number of data points in the signature.
Mean (μ) The center of the distribution is the mean

μ = 1

n

n∑

i=1

xi = 1

n
(x1 + x2 + · · · + xi)

Median (m) The median is another measure of the center of the distribution.
Standard deviation (σ ) The standard deviation

σ =

√√√√√√

n∑

i=1

(xi − μ)

n − 1

measures the variability in the signature data.
Kurtosis (k) The kurtosis is computed as

k =

n∑

i=1

(xi − μ)4

nσ 4

and it measures the weight of the tails relative to the center of
the distribution and provides additional information related to the
signature motion.

Skewness (s) The symmetry of the distribution, which is computed as
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s =

n∑

i=1

(xi − μ)3

nσ 3

can help us understand the “smoothness” of motion in a signature.

All of these features provide some information about underlying patterns in users’
signatures.

For each signature, we calculate a feature vector of the form

(L,μx, μy, μz,mx,my,mz, σx, σy, σz, kx, ky, kz, sx, sy, sz)

consisting of the measures of shape, center, and spread of the distribution, as
discussed above. This feature vector of 16 elements is utilized only in our SVM
experiments, below.

4.2.2 Time Series Resampling

Since 1D-CNNs and GANs require feature vectors of fixed length, we use
tslearn [30], we resize all the TAGDs to length 400. The resizing function
in tslearn interpolates for arrays less than the target size. We chose to resample
all the time series to length 400 since the median length of the sequences is 380,
while the mean length is 400.

5 Implementation

In this section, we discuss specific details of the models that we use in relation to
our TAGD data. We also outline the adversarial attacks that we consider.

5.1 DC-GAN Structure

We use deep convolutional GANs (DC-GAN) to replicate our time series data in
a form that will serve as adversarial samples [4]. The generator and discriminator
models are both based on 1D-CNN models. The generator essentially performs the
functions of a convolutional layer in reverse—the input is an arbitrary sequence of
values and it uses transposed convolution layers to shape the data into a desired
form. The discriminator can be based on a traditional convolutional neural network.
The fully-connected layer outputs a value between −1 and +1, with a negative
output indicating a fake sample and positive output indicating a real sample. The
generator and discriminator are connected by a loss function, which provides
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Fig. 5 DC-GAN generated acceleration sequences. (a) Acceleration sequence after 10 epochs. (b)
Acceleration sequence after 25 epochs. (c) Acceleration sequence after 50 epochs. (d) Acceleration
sequence after 100 epochs

feedback to both models. Over several epochs of training, the generator should
becomes better at generating adversarial samples while the discriminator should
become better at distinguishing between real and fake samples.

In our GAN model, the generator has an input consisting of a sequence of 100
values sampled from a normal distribution. After the data passes through three
transposed convolution layers, the sequence of 100 values are transformed into a
sequence of the same size as the TAGD, that is, 400 × 3. The discriminator model
closely follows the architecture of the 1D-CNN classification model outlined above,
with the major difference being the binary output of the fully-connected layer. The
generator and discriminator are connected by a binary cross entropy loss function.
In our experiments, we vary the number of training epochs to see how effective the
adversarial samples are in breaking down our model.

In Fig. 5, we have examples of TAGD generated using DC-GANs with different
training epochs. The number of training epochs is directly related to how well the
DC-GAN model can replicate data. As we can see in Fig. 5a and b, the data is quite
random doesn’t resemble the real TAGD in Fig. 4, whereas Fig. 5c and d appear
closer to the real TAGD. As we train the DC-GAN more epochs, the adversarial
samples resemble the real data more.
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5.2 Adversarial Attack

Similar to [26], we “poison” our training dataset with adversarial samples generated
from DC-GANs, meaning that we mix in adversarial samples with our real training
dataset. Then, we train our 1D-CNN on the poisoned dataset and try to classify real
data. The accuracy of classifying with the poisoned training dataset suggests how
well our 1D-CNN can survive a poisoning attack while simultaneously indicating
how well our DC-GAN can generate adversarial samples.

6 Experiments and Results

In this section, we present and analyze the results of the experiments outlined in
the previous section. For our first experiment, we provide the results of a multiclass
classification problem using SVMs, based on the statistical features discussed in
Sect. 4.2.1. Then we apply a deep learning technique, 1D-CNNs, in the multiclass
classification problem. Both of these techniques, SVMs and 1D-CNNs, produce
strong results. Then we move on to adversarial learning where we use GANs to
generate adversarial samples. With the GAN-generated adversarial samples, we
show that our deep learning model is robust under a poisoning type of adversarial
attack.

The authentication problem is inherently a binary classification problem. For the
technique considered in this paper, the confusion matrix is of the form given in
Fig. 6, where

TP = true positives

FP = false positives

TN = true negatives

Fig. 6 Generic confusion
matrix
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FN = false negatives

Note that appending an “R” to TP, FP, TN, or FN represents the corresponding rate.
We use several metrics in our multiclass classification problem. The most basic

metric we consider is the accuracy, which we calculate from a 46 by 46 confusion
matrix. Of course, higher accuracy indicates a more successful model.

We also measure the false acceptance rate (FAR), which is the rate at which a
different user is classified as the actual user, and the false reject rate (FRR), which
is the rate at which real users are mis-classified as other users, that is,

FAR = FPR = FP

FP + TN

FRR = FNR = FN

TP + FN

Colloquially, the FAR is sometimes referred to as the fraud rate, while the FRR is
known as the insult rate.

Since we are dealing with multiple users, we calculate FAR and FRR for each
individual user and report the average for the 46 different users [14]. Intuitively,
lower FAR and FRR indicates greater success in the classification model.

In our SVM experiments, we use SVM and RFE libraries from scikit-learn.
In our 1D-CNN and GAN experiments, we implemented Keras libraries [6] to
develop our models. For all the experiments, we use an 80–20 train-test split, i.e.
80% of the data is used to train the model, while the remaining 20% is used for
testing.

6.1 SVM Results

We first considered rudimentary experiments with various kernels and values of
parameters and found that a linear kernel with regularization parameter C = 1000
worked the best for multiclass classification. As a result, for all experiments in this
section, we use an SVM with linear kernel and C = 1000.

Here, we train our SVM model on the feature vector described in Sect. 4.2.1 and
use SVM-RFE to select the strongest features. We analyze the relationship between
the number of features and the FAR, FPR, and accuracy.

Using all 16 features discussed in Sect. 4.2.1, the SVM achieved a 95% classi-
fication accuracy and 0.0014 and 0.057 FAR and FRR, respectively. These results
(and more) are summarized in Fig. 7.

As we eliminate features based on the rankings determined by SVM-RFE, the
classification accuracy in Fig. 7c generally decreases, dropping to about 89% with 9
of the 16 features. This is still quite strong, considering the number of classes. As we
can see from Fig. 7, the accuracy generally decreases slightly as we eliminate more
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Fig. 7 Linear SVM results for selected combinations of features

features, although the accuracy does not drop below 90% until we have eliminated 7
features. Similarly, the FAR is exceptionally low even as features are eliminated,
staying below 1% for every combination of features. However, the FRR starts at
around 5% and increases to more than 20% once we have eliminated 10 features.

6.2 1D-CNN Results

We also experiment with a 1D-CNN as our classification model, where the model
follows the architecture in [7]. The 1D-CNN model is trained on temporal sequences
of fixed length, as described in Sect. 5. The model performs one-dimensional con-
volutions along the time axis with RELU activation functions after each convolution
layer. The first convolution layer produces 128 filters, while the second convolution
layer produces 256 filters. A dropout layer follows the convolution layers to prevent
overfitting [16]. Then we have a 1D max-pooling layer to downsample the data and
highlight the key features. The output of the max-pooling layer is passed through
a flatten layer, which is then passed through two fully-connected layers. The last
fully-connected layer produces the value that corresponds to the classification. This
model is illustrated in Fig. 8.

After fine-tuning hyper-parameters (dropout rate and number of filters), we
moved on to experiment with kernel size and stride length. We found the accuracy
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Fig. 8 1D-CNN architecture

Table 1 Stride length versus
kernel size

Kernel

Stride 3 5 10 25

1 0.90457 0.89391 0.91276 0.90870

3 0.92696 0.93348 0.93630 0.93587

6 0.93087 0.94000 0.94109 0.94022

hovered around 89–91%. According to [29], the performance of our 1D-CNN
should be more receptive to changes in hyper-parameters involving the convolution
layers.

We tested different combinations of kernels and stride lengths in the convolution
layers. These results are summarized in Table 1. We see that most of the results
are fairly strong, ranging from a low accuracy of 90% to a high of 94%. Generally,
as the kernel size increases, the accuracy increases. Similarly, as the stride length
increases, the accuracy tends to increase. This is most likely due to the fact
that larger kernels and stride lengths produce more refined features for the fully-
connected layers.

6.3 Adversarial Results

We trained a GAN to generate adversarial samples, and using these samples to
determine whether our deep learning model is robust under adversarial attack. First,
we determine how close our GAN-generated data is to real data through a simulated
poisoning attack. Then we test how well the adversarial samples can evade an
authenticator model.

As outlined in Sect. 5.2, we poison our training dataset with an increasing
percentage of fake data. All real samples are always included, so any changes
in classification accuracy should be caused by our adversarial (fake) samples.
We trained our DC-GAN for different numbers of epochs and different numbers
of adversarial samples. Generally, a higher number of epochs results in better
imitations of the original data. Increasing the number of adversarial samples in the
training dataset gauges how well our 1D-CNN can resist large-scale poisoning.
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Table 2 Adversarial attack results (1840 real samples)

epochs

Adversarial samples 10 25 50 100

100 0.93609 0.93130 0.94761 0.94565

250 0.94587 0.94848 0.93783 0.94196

600 0.94087 0.93978 0.94002 0.94152

1840 0.94000 0.94152 0.92239 0.93435

The results of our poisoning attacks are given in Table 2. The accuracy remains
relatively high at more than 90%, even for high training epochs and up to a 1:1
ratio of real to fake data. Classification accuracy does decrease slightly when there
are more adversarial samples in the training dataset, but the loss in accuracy is not
large. These results show that our 1D-CNN is highly resistant to poisoning attacks.

We conjecture that the reason for the limited success of our adversarial attack is
that it is exceedingly difficult to generate realistic signatures of the type considered
in this paper. While the real signatures in our dataset vary wildly, those that
we generated using DC-GAN appear to exhibit more homogeneity. We plan to
investigate this issue further in future work.

7 Conclusion and Future Work

Previous research has shown that SVMs are a viable techniques for accelerometer-
based gesture authentication [18]. In this paper, we expanded on and improved upon
previous work. First, we refined the feature selection process with SVM-RFE to
select the best features, while maintaining a high classification accuracy. Then, we
used deep learning models, specifically 1D-CNNs, for classification. We obtained
strong results, with greater than 90% classification accuracy, slightly surpassing the
accuracy of our SVM model. Lastly, we experimented with adversarial attacks on
our 1D-CNN model, namely, poisoning and evasion attacks. These simulate realistic
attacks, assuming an intruder has access to the real data, but not the model itself. Our
results indicate that our 1D-CNN is robust under such attacks, achieving greater
than 90% accuracy for poisoning attacks and near perfect accuracy for evasion
attacks.

For future work, additional machine learning techniques could be considered.
For example, long-short term memory (LSTM) models could be used instead of
1D-CNNs, since LSTMs generally perform well on sequential data. Additionally, as
mentioned in Sect. 6.3, we would like to explore alternative methods of generating
adversarial samples to determine whether we can improve on the limited adversarial
attack results obtained with DC-GANs.
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Clickbait Detection for YouTube Videos

Ruchira Gothankar, Fabio Di Troia , and Mark Stamp

Abstract YouTube videos often include captivating descriptions and intriguing
thumbnails designed to increase the number of views, and thereby increase the
revenue for the person who posted the video. This creates an incentive for people
to post clickbait videos, in which the content might deviate significantly from the
title, description, or thumbnail. In effect, users are tricked into clicking on clickbait
videos. In this research, we consider the challenging problem of detecting clickbait
YouTube videos. We experiment with multiple state-of-the-art machine learning
techniques using a variety of textual features.

1 Introduction

Today, web content is increasingly popular and people rely on information obtained
from the internet. Furthermore, with the diversity of available resources, the amount
of time spent on the internet has increased. Many platforms provide a medium where
virtually anyone can publish information that is accessible to a large number of
people. However, the credibility of such information is not guaranteed.

Online sources of information include blogs, video sharing platforms, and social
media, among others. Many of these applications have been developed with the main
intent to generate revenue. Hence, unscrupulous people can use false information to
increase their viewership and increase their revenue. Clickbait is false and deceptive
information that lures users to click a link, watch a video, or read an article. It
aims to exploit the user’s curiosity by providing misleading—though captivating—
information. Clickbait has become a marketing tool in many sectors to entice users
and thereby to generate revenue. Publishing eye-catching information to manipulate
and trick users is a common practice to increase the viewership and spread brand
awareness. A clickbait can be an image, a sensational headline, or a misleading
video or audio content. While clickbait sources help in gaining attention, there are
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many disadvantages and negative ramifications. In fact, clickbait not only wastes the
time of viewers, but also affects the trustworthiness of the underlying platform [25].

YouTube is a video publishing platforms where users upload videos and share
them with others. When uploading a video, the user adds a title, a description, and
a thumbnail. The other users then view the title and thumbnail before deciding
whether to view the video. Hence, this data become crucial parameters on which
the users can base their decision to watch a video or not. For this reason, many
YouTube content creators (aka YouTubers) use clickbait title and thumbnails that
might deviate from the actual content to increase viewership for a video, and thereby
generate more revenue.

A recent example includes the COVID-19 pandemic, where individuals have
posted misleading health-related content, including some fake cures for COVID-
19. Some other common examples of clickbait are video titles such as “You’ll
Never Believe What Happened Next. . .”, “The 10 documentaries you should watch
before you die”, “You Can Now Travel Abroad Without Having to. . .”,“You Won’t
Believe. . .” and so on [13]. Figure 1 shows an example of clickbait video on
YouTube.

Fig. 1 Clickbait video example [30]
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The clickbait problem is somewhat similar to that of spam detection. Spam,
which is unsolicited emails, often includes misleading messages that are sent to
deceive users by redirecting them to websites for the purpose of advertising or
attack. Therefore, considerable research has been focused on detecting spam. In this
research, we are concerned with detecting clickbait YouTube videos. The YouTube
platform relies on users to manually flag suspected malicious or clickbait content.
However, a more automated approach would clearly be desirable. We consider
machine learning and deep learning based solutions to the clickbait detection
problem.

The remainder of this paper is organized as follows. Section 2 considers relevant
previous work and background topics related to natural language processing (NLP).
In Sect. 3, we discuss our experimental setup, including the datasets used. Section 4
contains our experimental results and our analysis of these results. In Sect. 5, we
give our conclusions and we discuss possible directions for future work.

2 Background

This Section discusses relevant work done in this field. We mainly focuses on
clickbait detection, fake news detection, image forgery detection, and hoax detec-
tion. Apart from these topics, we also discuss advancements in natural language
processing (NLP).

2.1 Related Work

Clickbait is a way to attract the attention of the users by luring them to access
specific contents. However, misleading information is present on the internet in
multiple forms and is often used interchangeably in different contexts. For example,
a hoax is spreading false stories of, say, a celebrity death [30], while an example of a
forgery is an image that suggests false information. We now discuss and analyze the
performance of previous works on clickbait, fake news, forgery, and hoax detection.

2.1.1 Clickbait Detection

In 2016 [4], Chakraborty et al. implemented an ML classifier to detect clickbait.
They also created a browser extension to help readers navigate around clickbait.
They used the headlines from the Wiki-news corpus and used 18,513 articles as
legitimate posts. For the clickbait posts, they used articles from popular domains
containing illegitimate content. To train their classifier, they used a set of 14 features
spanning linguistic analysis, word patterns, and N -gram. They achieved an accuracy
of about 89% using a support vector machine (SVM) classifier.
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Elyashar et al. [8] developed an approach based on feature engineering. Their
work focused on detecting clickbait posts in online social media. They performed
linguistic analysis using a machine learning classifier which could differentiate
between legitimate and illegitimate posts. The dataset used for analysis was
provided by the 2017 Clickbait Challenge [20]. The results of their experiments
suggest that malicious content tends to be longer than the benign content. They also
concluded that the title of the post played an important role to identify a clickbait.

Glenski et al. [11] developed a network model which is a linguistically infused
network to detect fake tweets. This model, which is based on long short term
memory (LSTM) and convolutional neural networks (CNN), used the text of tweets,
images, and description for training. Furthermore, the pretrained embedding model
GloVe was used as the embedding layer. They achieved an accuracy of 82%.
Zhou [36] proposed a self-attentive neural network model using gated recurrent
units (GRU) for predicting fake tweets. They performed multi classification using
the annotation scheme. As proof of the success of their approach, they ranked first
in the Clickbait Challenge 2017 with an F-score of 0.683.

2.1.2 Fake News Detection

Fake news is a type of misinformation that has received considerable attention in
recent years. The main idea is to analyze the text content of a news item to check
if the statements are valid or not. Ahmad et al. [2] implemented an ensemble model
based on the linguistic features of the text which involved a combination of multiple
machine learning algorithms, namely, random forest, multilayer perceptron, and
support vector machine (SVM), to detect fake news. They used XGBoost as an
ensemble learner, achieving an accuracy of 92%.

Thota et al. [28] presented a paper on detecting fake news using natural language
processing. They used TF-IDF and Word2Vec with a dense neural network based
on the news headline. In another paper on fake news detection, Jwa et al. [14]
implemented a model using bidirectional encoder representations from transformers
(BERT). The deep contextualizing nature of BERT has yielded strong results,
including the ability to determine the relationship between the headline and the body
of a news article.

2.1.3 Forgery Detection

As the name suggests, image forgery detection consists of trying to detect malicious
information that is conveyed through images. In 2018, Zhang et al. [35] developed a
“fauxtography” detector which could detect images which are misleading on social
media platforms.

Palod et al. [19] passed pretrained Word2Vec comment embeddings through an
LSTM network to generate a “fakeness” vector, and achieved an F-score of 0.82.
Shang et al. [25] proposed a model that involved network feature extraction,
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metadata feature extraction, and linguistic feature extraction to detect clickbait
in YouTube videos. The network feature extraction used comments in the videos
and extracted semantic features. In the linguistic feature extraction, they relied
on document embedding for comments using Doc2Vec, and they also employed
a metadata module. In 2019, Reddy et al. [22] implemented a model using word
embedding and trained on a support vector machine (SVM). In [7], Dong et al. have
proposed a “deep similarity-aware attentive model” that focuses on the relation
between the titles that are misleading and the target content. This method was
quite different from traditional feature engineering and seemed to work reasonably
well. In [24], Setlur considered a semi-supervised confidence network along with a
gated attention based network. Based on a small labeled dataset, this method gave
promising results.

In many of the above approaches, only the textual information given by the
title and the description, along with the metadata features, have been taken into
consideration while training a model. An exception is the work in [25], where the
authors have also used comments to extract features. It is also worth noting that the
embedding layers of Word2Vec, BERT, and Doc2Vec have been used in all of the
implementations mentioned above.

In this research, we experiment with multiple embedding layers, including BERT,
DistilBERT, and Word2Vec. In previous research, BERT has proven to be effective
because of its deep contextualizing nature [14]. A combination of multiple models,
known as ensemble learning, has given interesting results in [28], and we also
consider ensemble models in the form of random forest classifiers.

2.1.4 Hoax Detection

Articles in which facts are knowingly misrepresented can be viewed as hoaxes.
These reports provide deceptive information to readers and present it as legitimate
facts. One of such examples can be a fake story about a celebrity death. In [27],
the authors have proposed a technique that uses logistic regression for classifying
hoaxes. In the model proposed, they have used features based on user interaction
and have achieved an accuracy of 99%. Zaman et al. [33] employed a nïve Bayes
algorithm which uses the feedback from users as an input to verify if a news is a
hoax. Kumar et al. [16] have proposed a method which uses random forest classifier
to classify the credibility of the articles on Wikipedia. They achieved an accuracy
of 92%. Hoax detection is, though, a less explored area, as compared to the topics
discussed above.

2.2 Natural Language Processing

Natural language processing (NLP) is the ability of a machine to process and
understand the language of a human. It is used to solve many real-world problems,
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Fig. 2 NLP advancements in recent years [21]

such as machine translation, question answering, and predicting words. Figure 2
shows a timeline of some recent advances in NLP.

In the early 1990s, statistical and probabilistic approaches were employed to
train NLP algorithms. However, with the arrival of the Web, the amount of data
grew considerably, and such algorithms became inadequate. In 2001, Bengio et
al. experimented with feedforward neural networks. Later, recurrent neural networks
(RNN) and long short-term memory (LSTM) models were introduced [12]. As
of 2012, techniques such as latent semantic indexing (LSI), latent semantic analysis
(LSA), and support vector machines (SVM) became popular in the NLP domain.
Part of speech (POS) tagging is a commonly used approach.

In 2013, Tomas et. al. introduced Word2Vec, which is used to generate vector
representations of words. These embeddings are obtained from the weights of a
relatively simple neural network, and the vectors can capture important semantic
information, based on the cosine distance between Word2Vec embeddings [23].

Global vector for word representation (GloVe) was introduced in 2014 and is
an attempt to combine the benefits of LSA, LSI, and Word2Vec. It is based on
the occurrence of a word in the entire corpus. CNNs and LSTMs have become
popular for NLP related tasks in recent years, as such models can capture effectively
utilize sequential information [12]. LSTM is a highly specialized type of RNN that
mitigates the gradient issues that occur with plain vanilla RNNs. Gated recurrent
unit (GRU) is a variant of LSTM introduced in 2014 that is lighter, in the sense of
having fewer parameters that need to be trained.

Sutskever et al. [26] proposed a sequence-to-sequence learning approach which
uses an encoder-decoder architecture. In fact, such encoder-decoder models appear
to be the main language modeling frameworks for NLP tasks today. The concept of
an attention mechanism was proposed by Bahdanau et al. [3] in 2015 to overcome
the limitation of fixed vector length for input sentences in sequence-to-sequence
models [31]. Attention provides information about the importance of a part of a
sentence during the decision process.

To better deal with the inherent complexity of attention mechanisms, transform-
ers were introduced [18]. Transformer includes multiple stacks of encoder-decoder
architecture, where at each step in the processing, the model takes the output of
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Fig. 3 Architecture of a transformer [18]

the previous step as an input. Figure 3 shows the architecture of a transformer
where the decoder is on the right and the encoder is on the left. Initially, the input
tokens are converted to embedding vectors. Since this model does not have any
RNN units, position indices are stored in a n-dimensional vector space in the form
of embeddings. There are three fully connected layers in this particular attention
mechanism, namely, the input key K , the value V , and the query Q, which is a
matrix of queries. The algorithm defines weights for words based on all the words
in K , and it generates a vector representation for all words based on multi-head
attention [18]. The other processes include context fragmentation, and multiple
parallel attention layers. Some example of deep learning models that make use of
transformers include BERT, RoBERTa, mBERT, and DistilBERT.

Bidirectional encoder representations from transformer (BERT) uses a trans-
former which is based on attention to learn the contextual relation between words. It
involves an encoder which reads the input, and decoder which predicts the output. It
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Fig. 4 Input for the BERT model [15]

is called bidirectional because instead of reading input sequentially from a specific
direction, the transformer reads the sequence of words in both directions. This helps
in learning the context of words based on previous and subsequent words. Figure 4
illustrated the input pattern used in a BERT model.

BERT has four pretrained versions with different layers, hidden nodes, and
parameters. Each of these BERT models can be fine-tuned for a specific task by
adding additional layers. DistilBERT is a lighter and a faster variant of BERT.

2.3 Learning Techniques

In this section, we discuss the various machine learning techniques that we
have employed in this research. Specifically, we have performed experiments for
YouTube clickbait detection based on logistic regression, random forest, and MLP,
with various embedding mechanisms.

2.3.1 Logistic Regression

Logistic regression is a supervised learning algorithm that is used for categorical
data where some parameter—which depend upon the input features and the output—
is a categorical prediction. In Logistic regression, a sigmoid function is fitted on the
data. The formula for the sigmoid function is

σ(wT x + b) = 1

1 + e−(wT x+b)
(1)

which produces a value in the range of 0–1, and hence it can be interpreted as a
probability. The clickbait detection problem can be treated as a type of binomial
logistic regression, where the output can be either zero or one [1].
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2.3.2 Random Forest

A random forest is based on simple decision trees—a large group of decision trees
operate together in an ensemble-like manner. Each tree is trained on a subset of
the data and features, a process known as boostrap aggregation, or bagging. In
bagging, the data for each tree is randomly selected with replacement [32]. The
final prediction of the random forest can be obtained via a simple voting scheme.
A random forest mitigates the tendency of individual decision trees to overfit the
training data.

The important hyperparameters in a random forest are n-estimators, n-jobs, max-
features, and min-sample-leaf. The n-estimators parameter represent the number of
trees that are constructed. Typically, adding more trees increases performance at
the cost of computation time. The max-features parameter is the number of features
required to split at a specific node. The parameter n-jobs is the number of processors
that work in parallel.

2.3.3 Multilayer Perceptron

A multilayer perceptron (MLP) is a basic type of feedforward neural network that
includes input and output layers, along with at least one hidden layer. An MLP with
two hidden layers is illustrated in Fig. 5.

The output layer of an MLP can be used for prediction or classification. Next, we
briefly discuss regularization and activation functions; see [9] for additional details
on these and related topics.

Neural network models are prone to overfitting. An overfitted model is very
effective in classifying the training data but it obtains poor accuracy in predicting
the test data—in effect, the model has “memorized” the training data, rather than
learning from the training data. One useful technique to prevent overfitting is the
use of dropouts, where some number of nodes are ignored during various training
steps [9]. This simple approach forces nodes that would otherwise atrophy to
become active in the learning process.

An activation function is used to determine the output of node in a neural
network. There are multiple types of activation functions, including tanh, sigmoid,
ReLU, and leaky ReLU [9]. In this research, we have experimented with ReLU and
tanh.

3 Implementation

This section includes details on the implementation used in this research. We
discuss the setup used to train and execute the various machine learning models,
the experimental design, and so on.
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Fig. 5 MLP with two hidden layers

Table 1 Host machine configuration

Component Details

Model ASUS ZenBook

Processor Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz 1.99 GHz

RAM 16.0 GB

System type 64-bit OS

Operating system Windows 10

3.1 Hardware and Software

In this research, we used multiple Conda virtual environments for each implementa-
tion. Conda is an open source package and environment management system which
runs on multiple operating systems [5]. The host machine was configured as given
in Table 1. All the training and the experiments were run on the host machine.
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Fig. 6 Overview of clickbait classification model

3.2 Approach

Our clickbait detection experiments are based on a set of labeled videos. The
problem is formulated as a binary classification problem where for each video a
machine learning algorithm classifies it is clickbait or non-clickbait. The informa-
tion from multiple sources (e.g., title, description, comments) are combined and fed
to the classification model. The performance is evaluated and analyzed by multiple
measures, specifically, precision, recall and the F-score.

There are three types of features considered in this research. The first involves
features from the profile of the user who posted the video (subscriptions count,
views count, and videos count). The second type of feature is based on extracting
textual information from the video (title and description). The third component
involves statistical features related to the video (like count, dislike count, like-
dislike ratio, views, and number of comments). A classification model performs
binary classification (clickbait or non-clickbait) based on some combination of these
features. An overview is provided in Fig. 6.

3.3 Features

Features that provide information regarding the reputation of the channel and the
videos include the number of subscribers of the YouTube channel, the number of
likes or upvotes, and the age of the channel. These statistical features represent the
response of viewers to the channel. Previous related work claimes that videos that
are clickbait tend to have a relatively small number of subscribers and likes [30].

Usually, the number of views for the clickbait and non-clickbait videos are quite
similar [34]. Useful information in determining the credibility of a video is given
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Table 2 Dataset statistics Data Item Min Mean Max

Title length 10 54 107

Description length 15 1131 5162

View count 21 5,660,978 2,543,466,463

Comment count 0 522 49,060

Like count 0 49,615 13,542,232

Subscriber count 977 10,200 23,695,417

Dislike count 0 1320 516,171

by the dislike ratio, the favorites count, the video age, the views count, and the
comments count. Sometime, in clickbait videos the uploader disables the comment
section. This itself provides clues about the video [30].

Textual features include the headline of the video, the description of the video,
and the comments by the viewers. YouTubers who upload clickbait usually employ
techniques which are deceptive. They use catchy and exaggerated phrases for the
title and description of the video. Some common phrases are “viral,” “top.” “won’t
believe”, “epic”, and similar. We tokenize the text and embed it in classification
models using various embedding techniques, including Word2Vec, BERT, and
DistilBERT

3.4 Dataset

Every month, billions of people visit YouTube and the videos are watched for over
a billion hours. A large number of videos are also uploaded by the users. In fact,
YouTube is a platform where people can generate revenue by uploading videos and
gaining viewership for their videos.

In this research, the evaluation is done on a dataset of 8219 labeled videos,
where 4300 are non-clickbait and 3919 are clickbait. The dataset was crawled
from the Google YouTube API for the list of video IDs fetched from the Github
source [17]. These sources were randomly selected and manually verified by the
authors. The statistics for various parameters are shown in Table 2.

3.5 Experiments

In this research, we experimented multiple techniques including multiple language
modeling techniques. We used Word2Vec, BERT, and DistilBERT for word embed-
dings. Architecture for the individual models is also shown. A grid search was
used for training and building the models to obtain the best set of parameters. All
experiments are based on an 80–20 training-testing split of the data, and 5-fold
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cross validation was used in each case. In this section, we briefly describe each of
our models, and in the next section we give the results for each experiment.

3.5.1 Experiment I: Logistic Regression with Word2Vec

In this experiment, we used a Word2Vec model provided by Gensim [10] to generate
the vector representations of words in the dataset. A logistic regression model is
trained on these embeddings along with additional features, specifically, comments
count, likes count, dislikes count, and subscriptions count for the channel.

3.5.2 Experiment II: Random Forest with Word2Vec

In this experiment, a random forest classifier is trained on the Word2Vec embed-
dings. We again used the Word2Vec model provided by Gensim. The values tested
for n-estimators is 10, 20, 30, 50, and 100. The set of input features are title,
description, and metadata features such as comments count, likes count, dislikes
count, and subscriptions count for the channel.

3.5.3 Experiment III: MLP with Word2Vec

In this case, we again use the Word2Vec model provided by Gensim. The embedding
for title and description is concatenated with the metadata features of the video and
is fed to an MLP for classification. The batch size is 10 for 40 epochs. The activation
functions used are ReLU and sigmoid. Figure 11 in the Appendix provides the
overall architecture of the model.

Note that we use two input embedding layers for textual data (namely, title and
description), which are then concatenated together. After this step, the output from
the dense layer is flattened and concatenated with the input for the metadata features.
Finally, a fully connected layer is used for classification.

3.5.4 Experiment IV: MLP with DropOut, Batch Normalization, and
Word2Vec

This experiment is an optimization of the previous experiment. In this model,
additional dense layers, along with batch normalization and dropout rate of 0.5, are
employed. We have used parametric rectified linear units (PReLU) as the activation
function. The batch size is again 10 for 40 epochs. Figure 12 in the Appendix
illustrates the overall architecture of the model.

In this model, the output from the embedding layers for the textual data is
concatenated, followed by a fully connected dense layer, batch normalization, and
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activation. This output is finally flattened and concatenated with the metadata
features.

3.5.5 Experiment V: MLP with BERT

In this experiment, we have used BERT embedding for title and description of the
video. The advantage of using BERT as an embedding model is that it provides
context-based representation for each word in a sentence. In contrast, Word2Vec
provides representations which are fixed irrespective of where the word is used in
the sentence. The pretrained model of BERT that is used in this experiment has 12
layers, 110M parameters, and 768 hidden layers. The BERT tokenizer is used to
split the words into tokens and attention masks are used for padding. The mask
value of one is for tokens that are not masked, while the value zero means that
the token is added by padding and should not be considered for attention. The
model uses Adam optimizer, and the batch size is 10 for 5 epochs, and we have
used sequence of length 180 for this experiment. Figure 13 in the Appendix shows
the model architecture.

Note that the output of the BERT embedding layer is followed by a dense layer,
which is then concatenated with the metadata features. After this, a dropout layer
followed by a fully connected layer is used for classifying the data.

3.5.6 Experiment VI: MLP with DistilBERT

DistilBERT is a faster, lighter model that is a variant of BERT—it runs 60% faster
and has 45% fewer parameters than BERT [6]. For this experiment, we have used
a pretrained DistilBERT model. The embeddings for tile and description are fed
into a MLP and, later, concatenated with the metadata features of the video and the
YouTube channel. The model uses Adam optimizer and the batch size is 10 for 5
epochs. Figure 14 in the Appendix gives details on this model architecture.

Note that in this model, the input from the metadata features is concatenated. Of
course, the output layer is a dense layer that is used for classification.

4 Results

Recall that in experiment I, we have use logistic regression with Word2Vec
embeddings for the features title and description, along with the metadata features.
In this case, we achieve an accuracy of 52% with just title as input, and an accuracy
of 70% with all of these features. This model is fast to train and much simple to
implement. Figure 7 shows the ROC curve for this logistic regression model.

Experiment II involves using a random forest classifier based on the title,
description, likes count, dislikes count, comments count, and subscriptions count.
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Fig. 7 ROC curve for logistic regression

Table 3 Random forest
based on title and like/dislike
counts

Class Precision Recall F-score Support

Non-clickbait 0.81 0.80 0.81 1275

Clickbait 0.80 0.81 0.80 1182

Accuracy – – 0.80 2457

Macro avg 0.80 0.80 0.80 2457

Weighted avg 0.80 0.80 0.80 2457

We used Word2Vec embeddings for title and description. We trained this model in
multiple sets of inputs. The first set of inputs includes just the title and metadata
features. The last set of inputs included all the features. Not surprisingly, we find
that the accuracy improves as more features are added.

Table 3 shows precision and accuracy of 80.1% for the model with the first set
of input features, that is, title and two metadata features for likes count and dislikes
count.

Table 4 shows the report for this experiment when we use the title and all the
metadata as features. The accuracy for this experiment is 92.5%. The report shows
the precision and recall of the model in classifying clickbait and non-clickbait
videos. The model performs slightly better in classifying non-clickbait videos.

Figure 8 shows the ROC curve for the random forest model where the input
features included title, description, and all the metadata features, that is, count,
dislikes count, comments count, subscriptions count, and views count. The AUC
for this model is 0.95 with an accuracy of 94%. This shows that the model performs
well and that adding more features increases the accuracy of the model.

In experiment III a simple MLP is used for classification, based on Word2Vec
embeddings for title and description that are concatenated with metadata features.
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Table 4 Random forest
based on title and metadata
features

Class Precision Recall F-score Support

Non-clickbait 0.93 0.93 0.93 1275

Clickbait 0.92 0.92 0.92 1182

Accuracy – – 0.93 2457

Macro avg 0.93 0.93 0.93 2457

Weighted avg 0.93 0.93 0.93 2457

Fig. 8 ROC curve for random forest

In this case, the test accuracy is observed to fluctuate during the training process, but
the best average accuracy achieved is better than 91%. Figure 9a shows the accuracy
for this experiment over the 30 training epochs.

In experiment IV, a modified MLP is used with batch normalization and PReLU
as an activation function. In this case, the accuracy is slightly worse than in
experiment III, although the training is more stable, as can be observed in Fig. 9b.

In experiment V, we have used a transfer learning model based on BERT for
word embeddings. This experiment with BERT gives an accuracy of 94.5%. In this
experiment the length of the input sequence is fixed at 180 characters. Figure 9c
shows the plot for accuracy over training epochs for both the train and validation
sets. Note that the number of epochs is small due to the extended training time
required, as compared to other models considered.

In experiment VI, we have used a lighter variant of BERT model for the word
embeddings, namely, DistilBERT. The accuracy achieved in this case is around 92%.
This model is significantly faster to train than the BERT, although the accuracy
obtained with BERT is slightly better than using DistilBERT. Table 5 shows the
precision and recall for experiment VI, while Fig. 9d shows the training and test
accuracy over epochs.
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Fig. 9 Accuracy over training epochs for experiments III through VI. (a) Experiment III. (b)
Experiment IV. (c) Experiment V. (d) Experiment VI

Table 5 Results for
experiment VI (MLP with
DistilBERT)

Class Precision Recall F-score Support

Non-clickbait 0.92 0.95 0.93 884

Clickbait 0.93 0.89 0.91 754

Accuracy – – 0.92 1638

Macro avg 0.92 0.92 0.92 1638

Weighted avg 0.92 0.92 0.92 1638

In Fig. 10 we summarize the results of our six experiments in terms of accuracy
(to two decimal places). Note that in the bar graph in Fig. 10, “LR” is shorthand for
linear regression, “RF” is short for random forest, and “MLP+” is used to denote our
MLP model that includes dropout and batch normalization. The bars from left-to-
right represent experiments I through VI, as discussed in Sects. 3.5.1 through 3.5.6,
above.
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Fig. 10 Accuracy comparison of experiments

5 Conclusion and Future Works

The goal of this research was to utilize state-of-the-art techniques to classify
YouTube videos as clickbait or non-clickbait. A YouTube video has multiple
characteristics that can serve as useful features for such classification. We leveraged
three main types of such features, namely, user profile, video statistics, and textual
data. In this research, multiple classification techniques were considered, including
logistic regression, random forest, and MLP, and we employed Word2Vec, BERT,
and DistilBERT as language models. The best accuracy was achieved using an
MLP classifier based on BERT embeddings, but a the more lightweight DistilBERT
performed almost as well. We also confirmed that the accuracy of the models could
be increased by adding more features. Although there is relatively little work that
is directly comparable to the research reported here, our results—as summarized in
Fig. 10—improve significantly on the previous work discussed in Sect. 2.1.1.

For future work, more features can be included. For instance, the transcript of
the video might contain useful information. For example, the “distance” between
the transcripts and the title could provide important insight, as the content of
clickbait videos often differs significantly from the title. The network structure of
the comments and replies, which represents the semantic features and attributes, can
also be considered [25].
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In this research, we experimented with BERT, Word2Vec, and DistilBERT
for word embeddings. For future work, DocToVec embeddings could also be
considered. We used random forest classifier, and other ensemble techniques could
be considered, including, such as XGBoost. In addition, a careful analysis of the
relative strength of the various features considered in this research would be useful.
Finally, we plan to experiment with state-of-the-art attentive language models, such
as XLNet, which is claimed to be better than BERT for determining long-term
dependencies [29].

Appendix: Model Architectures

See Figs. 11, 12, 13, and 14.

Fig. 11 Architecture of model for experiment III
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Fig. 12 Architecture of model for experiment IV
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Fig. 13 Architecture of model for experiment V
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Fig. 14 Architecture of model for experiment VI
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Abstract The dependence of everyday human endeavours to information systems
of different sorts is continuously increasing, simultaneously as important activities
such as work and healthcare are evolving so as to exploit the capabilities of com-
puters and networks. At the same time, malicious cyber activities are becoming ever
more often and more destructive as criminals also exploit technological progress. In
this context, the necessity for system survivability is becoming more important than
expecting that computer system security will avert all possible attacks. Artificial
intelligence is a technology that is achieving maturity and contributing in a variety
of applications. This chapter presents approaches for applying artificial technology
schemes in order to promote survivability by detecting evidence of cyber attacks.
This chapter presents three recently proposed schemes that detect such behavior in
different contexts. The first scheme aims at the detection of threats within data from
emails, programs and network traffic. The second scheme pursues the detection of
unexpected system behavior by using a clone of the operational system. The third
scheme is focusing on the use of redundant resources, such as those encountered in
cloud computing schemes, and on the events following a cyber-attack that is already
partially successful and affecting the pooled computing resources. The scheme can
be used as a toolkit for preventing the negative effects of computer virus cyber-
attacks and ensuring high availability for cloud pooled resources.
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1 Introduction

Economic, cultural and virtually all sectors of everyday life are over a period
of several decades now becoming increasingly dependent on information systems
and the electronic services provided via them, while critical fields like medicine
and defense are following the same trend. With cyber-crime and other forms of
malicious cyber activity continuing to rise, information systems need to display
increased survivability i.e., the capacity to continue operating despite attempted
or partially successful cyber-attacks. Artificial intelligence-based techniques are
therefore being sought that are capable of providing early warnings about intrusions
to information systems.

During the last two years, a large proportion of the population saw their ability
to work becoming dependent to the existence of internet connectivity and the
health of computers. The measures taken to prevent the spreading of COVID19
caused a dramatic increase in the use of computer systems for working remotely
while services involving critical sectors such as finance, health, commerce etc. are
being offered on-line. The already existing requirement for effective cyber-security
has become even more crucial and urgent, whilst new cybersecurity threats are
emerging and evolving rapidly. System users and operators require trustworthy and
adaptive frameworks to ensure security. The use Artificial Intelligence techniques
has also been increasing over the years, with the technology exhibiting maturity.
Computer information systems are designed to get more and more intelligent,
becoming able to perform difficult decision-making tasks and in less time. In
military environments mission areas are studied using simulation and object-
oriented architectures [1]. They imitate the human cycle of sensing, reasoning,
and acting quite satisfactorily that their significance in process automation [2].
Furthermore, machine learning leverages analytical model building to provide more
than the expected performance [3]. It is evident that security is a crucial factor for
the uninterruptible operations within this highly complex environment [4, 5]. AI
algorithms are therefore being employed as a tool to constantly monitor computer
information systems and produce warnings of imminent cyber-threats.

With an ever-increasing number of human activities depending on information
systems, the notion of survivability of an information system has been proposed [5–
7] that describes the ability of such a system to avert aspiring cyber attackers, avoid
total collapse and maintain a reduced service level during a successful attack and
promptly recover after the attack has been stopped. Cyber-security efforts aim to
promote survivability by focusing on the three R’s, namely robustness, response
and resilience [8]. Artificial Intelligence (AI) based cyber defend systems follow
the same principles and AI techniques have been proposed that pursue increases in
survivability by targeting the 3Rs. AI techniques promote robustness by enhancing
a system’s ability to maintain expected behavior in the event when it is processing
unexpected input by developing self-testing and self-healing software [8]. Such
input may arise from errors, random events or malicious activity. In the context
of response, AI enables a system to defeat an attack without intervention and
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simultaneously optimize its response strategy and adjust its aggressiveness based
on previous successes [8]. For example, systems exist that create their own honey-
pots for attackers and their own decoys. Finally, resilience is promoted by AI by
enhancing the system’s ability to detect threats and anomalies and hence increasing
their ability to withstand attacks [8].

Given the complexity of current information systems, as well as of cyber-
attacks, that are inherently of a deceptive nature, constant monitoring is required
for survivability and the 3R’s [8]. Monitoring is used for detecting deviations of
the actual system from expected behavior early, in order to trigger the appropriate
response. An AI system watching for such deviations needs profound knowledge
of the expected behavior. This can be achieved via the use of a clone copy
of the deployed system that acts as a control system, operating in a controlled
environment and providing benchmarks for the real systems expected behavior [8].
The sensitivity of this type of monitoring can be adjusted to be compatible to the
requirements of the application. A formal model for developing the clone system
has been presented [9] that is suitable for operation in conjunction with a decision
support system for promoting business goals, including cyber resilience.

This chapter presents three recently proposed schemes that detect such behavior
in different contexts.

The first scheme aims at the detection of threats within data. Malicious code
fragments are a critical risk to progressively more complex military computer
systems. Data from emails, programs and network traffic are collected and analyzed
to provide the datasets to model the threats and provide the tools to enhance
detection algorithms and evaluate existing protection schemata. In this work, open
datasets of threats for training and testing AI detection algorithms are used that
have been classified to benign and malicious code based on the features extracted.
Natural Language Processing algorithms have been used to train the classifiers
using a combination of the methods to provide better results. The overall detection
rate achieved is 87.76% in the tests and provides the basis for the usage of this
methodology and the integration to existing protection schemata.

The second scheme is targeting the facilitation of detection of unexpected system
behavior. One approach to this end, is the use of a clone of the original system that is
deployed in a controlled environment and its behavior is considered as a benchmark
for the expected behavior of the original system. AI algorithms are trained via
adversarial exercises and simulated attacks to recognize divergence between the two
systems and produce relevant cyber risk warnings. The presented technique focuses
on the implementation of the clone system with emphasis on decision support and
the prediction of breakdowns, optimization of service and quality improvement.

The third scheme is focusing on the use of redundant resources, such as those
encountered in cloud computing schemes, and on the events following a cyber-attack
that is already partially successful and affecting the pooled computing resources. A
mathematical model is proposed that considers the impact of the malicious activity
on resources and the failures of individual machines. A Semi-Markov approach
is used to create a technical subsystem that monitors states in order to solve the
problem of analyzing overall availability level, detecting failures and quantifying the
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impact of the operation of malicious software. The scheme can be used as a toolkit
for preventing the negative effects of computer virus cyber-attacks and ensuring
high availability for cloud pooled resources.

2 Related Work

An availability model has been presented [10] for an Infrastructure–as–a–Service
(IaaS) Cloud with multiple pools of physical machines (PMs). An independent,
autonomous mathematical model was proposed that considers abrupt failures of
PMs of the pool caused by the impact of deliberate malicious activity, hardware
and software failures or other unforeseen interactions with on information resources
of the IaaS Cloud. The model is constructed using a stochastic Semi-Markov
(SMP) approach. The model employs monitoring of the states of the observed
system and its subsystems in order to solve task of determining and analyzing
the overall availability level for the IaaS Cloud resource, to the extent that this
is affected by the failures and negative impact of the malicious computer viruses
and other cyber threats. The study presents the results compared to benchmark
steady state availability for the IaaS Cloud, failure rates and repair rates of the
PMs that were obtained via observation. For the presented results, overall estimates
of availability are obtained, considering the consequences of the activation of two
types of malicious computer viruses by using the monolithic SMP model for an IaaS
Cloud with three pools of PMs. Therefore, two additional branches of deliberate
malicious impacts on PMs resources are required to be implemented by using
proposed SMP availability model for an IaaS Cloud.

From the above considerations, it is concluded that the overall effort to promote
survivability against cyber-threats, it is necessary to use AI to monitor the content of
the emails, data in the databases, scripts, executable code that may contain malicious
code. This widespread range of sources of possible cyber-threats should undergo a
scanning and cleaning process before being used. Multiple approaches for detection
methodologies have been proposed which demonstrates that the problem of data
monitoring for potential dangers is a hard problem [8]. The proposed methodologies
can be categorized as signature and non-signature based approaches [9]. The
contribution of AI techniques is fundamental towards the aim of detecting all types
of threats in data. Relevant datasets have been created with annotations if they
belong to malicious code [10]. Machine learning algorithms include Supervised,
unsupervised, reinforcement methods. The three schemes that were outlined above
and are presented in this chapter promote the use of artificial intelligence in order
to (i) produce early warning indicators of cyber threats in data, (ii) detect divergent
system behavior that could be a sign of ongoing malicious activity within the system
and (iii) monitor the availability of pooled cloud resources and the operational state
of their individual physical machines during the period that they are suffering from
the impact of computer viruses. In all these cases, the final goal is the assurance of
increased survivability for systems.
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3 Security Infringement Detection

In this section a technique for detecting security infringements in information
systems is presented, that is based on a combination of learning techniques.
More specifically, the techniques considered are Linear classifiers, Naïve Bayes
classifiers, Decision trees with Random Forest technique and Convolutional neural
networks employing deep learning.

PE Format
From a practical point of view, part of the analysis is based on the examination of
Portable Executable (PE) files, a common type of files in the Windows Operating
System. They include .exe, .dll, and .sys files. All these files include a PE header,
which is a set of instructions to the Windows OS about the analysis of the code that
follows. The fields of PE header are usually used as features for the detection of
malicious software [11]. Programming libraries in Python can be used to extract the
values of PE header.

Many fields in PE files do not follow a strict organization. There exist redundant
fields and spaces which can be replaced by malicious code.

3.1 Static Analysis of Code

When static analysis is used, the sample code is tested without being executed. The
obtained information may be the PE of the file [12–14] or even more specialized like
YARA signatures [15]. In this section, several features will be presented that can be
extracted from the executable files via statistical analysis. These features are used in
the experiments performed on the dataset to train and the classification algorithms.

It has been proposed in literature [10] that emails be classified using machine
learning classifier in a cloud computing system. The security requirements of
defense information systems and cloud computing infrastructure have been analyzed
and benchmarks of the necessary performance have been determined. Information
system users and security software are aware that malware is more likely to be
embedded in files of certain types such as executable, shell script etc. Hence
attackers are adjusting by masking the true nature of malicious code by hiding it
inside normally harmless files or files of unknown type [13]. It is therefore necessary
to develop techniques capable of determining the type of file given byte sequences
correspond to, without depending on the standard identification criteria normally
used by operating systems e.g. file extensions, file headers etc. This part of the study
was focused on scanning files in order to definitively determine the type of the file by
examining and recognizing the nature of its contents. A database of files was created
for this purpose by scraping various internet sources such as GitHub and malware
repositories, providing current samples of both benign and malicious files [13]. A
base-64 encoding was used for binary data, when this was not already present. Script
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Fig. 1 Exploring the PE header of a benign executable using a hex editor

files, e.g. Javascript, were processed in plain text format. The obtained files are
thoroughly filtered, adapted and selected for the testing environment.

In Fig. 1 the loading process of an executable file is visualized, and the code
image is examined.

Various parts of the file can hence be examined, including the special field
e_magic in DOS header which contains the MZ character series that corre-
sponds to 0x4D 0x5A sequence, and the special header field PE defined as the
IMAGE_NT_HEADERS structure. For the purposes of determining the file type,
the fact that for static analysis the file is not loaded in memory is advantageous,
since in this way the significant risk of malicious code concealment is avoided.

The malicious data is obtained from public databases which include real data
and is available for comparison. This PE dataset contains 425 different samples,
378 benign and 47 malicious [13, 14].

Natural Language Processing (NLP) provides a wide range of techniques in
text selection, analysis, and estimation. Since the content of the test and training
databases is encoded as character sequences, that may be considered as text, the
problem of classifying the file content as benign or malicious may be approached
as an NLP problem [13]. It is noted that the data has been already annotated for the
benign and malicious code fragments. Thus, supervised learning is used to design
the classifiers.

Similarity between files can be measured using the hash functions used in
cryptographic applications. The requirement in this case it to calculate quantitative
similarity scores for file comparison, via similarity hashing algorithms. It hence
becomes possible to detect modifications involving copying, insertions, deletions
and tampering of the content. These scores can then by used a distance measure
for clustering algorithms. Similarity hashing is more suitable in the current context,
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since it provides information about the nature and the extent of the intervention to
the data, rather than a decision on whether two files are identical [13].

3.2 Methodology

The code sequences of the database are processed by means of static analysis of their
respective files that are used for training and applying the following classification
techniques.

• Linear classifier with Gaussian calculation of the parameters
• Naïve Bayes classifier
• Decision trees with Random Forest technique to solve regression and classifica-

tion problem
• Convolutional neural networks employing deep learning for malware detection

The overall process is to create a dictionary of all the test cases. All data are
created as arrays of words using suitable delimiters. Duplicate entries are removed
resulting a dictionary of unique words. Data is transformed into vectors where the
entries are used as input to the algorithms.

The header is analyzed by parsing into items or tokens that may be bytes,
strings, or any other combination. A sequence of N such items is called N -Gram
and this model has been used in many quantitative studies like computational
linguistics, speech recognition, bioinformatics, etc. [16, 17]. The N -Gram model
has been successfully used to create Markov chains for statistical prediction and
text generation from a corpus [13]. In the context of malware detection, N -Gram
counts and assortments are used as a basis of the local statistical analysis of the core
data to provide a malicious code identification tool. In this study, data was analyzed
in 4-Grams of characters and the 10 most frequent ones in each file were used as
features. Once this process is completed, a global set of the most useful N -Grams is
determined, since for any database of significant size, it is infeasible to consider the
large number of all possible N -Grams. For this purpose, the N -Grams that should be
chosen are the ones that present the highest discriminating capabilities i.e. ones that
are more often observed in a specific type of data, based on the particular dataset.
The resulting sequences are generally quite long scoring highly complicated search
space. The above feature selection is utilized to enhance performance and reduce
the dimensionality of the problem.

The filtering approach deals with the selection of the samples and the assignment
of labels. The dataset is separated into learning and test subsets, created as the N -
Grams from data and the feature vectors and normalized. The splitting is such that
the proportion of each of the two types of data is equal in the global, the training
and the test sets.

The classification algorithms receive as input both the data from the PE headers
and the features extracted from the N -Gram analysis. Each item is mapped to a
numerical vector x using hashing vectorizer, combined with a Term-Frequency



292 N. Doukas et al.

Times Inverse Document Frequency (TFIDF) transformer [18], the text data is
converted into numeric form [18–20]. These phases correspond to the considerations
and the processing already described in the current Section.

For this study, instead of optimizing a single classifier, a composite scheme
utilizing several classifiers was used. A majority decision rule was then used
in order to produce the final classification. The distance between points can be
calculated with standard distances, like Euclidean, Manhattan or Chebyshev [21].
The Euclidean distance was used in the experiments in this study. A brief description
of the classifiers used will be given in the following paragraphs, with detailed
emphasis only on aspects that are different from their standard form described in
literature. Further details about these schemes are widely available e.g., [21–24].

For a given classification scheme, decision thresholds and similar decision
parameters obtained by training may require post adjustment in order to tune the
different false positive/false negative detection probabilities required in a particular
application.

Binary Classification Method
For a given item yielding the observations feature vector x, a discrimination function
f is given as

f (w, x) ∈ R

where w is a set of parameters selected so as to achieve the best separation of the
data. In linear models for classification have the general form

f (w, x) = wT x + w0

which are inadequate in most situations since the classes are not linearly separable.
In the multiple classes case, a k-rank discrimination function is used.

Naïve Bayes Algorithm
Data belong to two classes, i.e., benign and malicious. We have

P(Benign|k) = P(Benign)P (k|Benign)

P (k)

and

P(Malicious|k) = P(Malicious)P (k|Malicious)

P (k)

where k is the vector of N features.
Assuming that the features in k are mutually independent, the algorithm calcu-

lates the probabilities for new each sample case and compares the two probability
values. The larger value is the winner. In the case where the two values are equal the
algorithm cannot provide an answer.
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Decision Trees
Using supervised learning a decision tree can be constructed to according to an
if-logic. The data are classified using well defined questions like a calculated
quantity is over a given value. Pro-pruning procedures can be used like minimum
tree depth, the maximum leaf nodes, and the minimum samples for each leaf, are
used to minimize the size of the evaluated tree. In general, decision trees offer low
generalization.

A particular consideration in the case of the Decision Tree was the imbalance
caused in the classification mechanism by the fact that benign files were more
amply available than malicious ones. The reasons for this imbalance can be readily
comprehended by considering the fact that users tend to promptly delete any file
they perceive as a threat, e.g. based on the information from an antivirus program.
The imbalance can be corrected using several schemes [21]. One scheme involves
using class weights for each class that are inversely proportional to the frequency of
this class in the data. Another approach is to restore balance by randomly repeating
data samples of the least populated class within the iterations of the training epochs.
Alternatively, samples from the most populated class can be discarded, for the
purpose of equalizing the effect. All these methods were shown to improve the
classification performance.

Random Forest
After the calculation of the N -Gram, the names of the units and their number that
belong to the PE hear of each file, while the data that cannot be analyzed are omitted.
Using a hashing vectorizer the text data are converted into numerical values. A
random forest classifier [22] is used for the training, test, and validation data.

Convolutional Neural Network
The Convolutional Neural Network CNN is constructed following the steps [23,
24].

• Declaration of the required programming libraries
• Create a list of files and locations
• The bytes of the file are stored to an array
• Data are divided to train, validate and test
• Optimizer rate is defined
• The structure of the neural network is created
• The model is constructed

For a given number of epochs and batch size, the data are used to train the CNN.

The Aggregated Model
Once trained all models an aggregation of all results takes place. Each method
has its own strong aspects, and a soft voting procedure takes place to get the final
classification decision. In Table 1 a proposed aggregation classifier is presented.
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Table 1 Outline of the
composite classification
scheme used

Steps Details

Data preparation PE headers are being processed

Feature extraction Dictionaries and hashing

Training base classifiers Naïve Bayes

Random Forest

Convolution Neural Network

Feature identification Is the pattern recorded in the

database as known case

Soft voting engine Validate the result, find a weighted

average, insert in the quarantine,

update the database

Fig. 2 Confusion matrix for
binary classification
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3.3 Results

Applying the combined detection algorithm to the provided dataset the confusion
matrix in Fig. 2 is derived. True positive and true negative detection rates are both
over 80%. This performance is considered satisfactory as a base for the malicious
activity warning system application. With this starting point, the sensitivity of the
scheme may be adaptively adjusted for the probability of a false alarm, in order to
provide the required compromise between the frequency of alerts and the level of
security required. Application of the scheme on the entire dataset produces a correct
classification ratio of 87.76%. The efficiency of algorithm varies according to the
size of training data.

For the particular case of the Deep Learning Malware Detector algorithm Table 2,
the changes in performance with an increasing number of epochs is summarized.
The loss function is the objective function that is used to rank and compare the
candidate solutions. Epochs are full training cycles used it the training iteration. The
results demonstrate that large increases in the number of epochs are not necessary
in order to achieve the best possible accuracy of decisions.
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Table 2 Deep learning
testing accuracies

Epochs Loss Accuracy

1 0.3860 0.8604

5 0.3534 0.8906

10 0.3431 0.8813

60 0.3054 0.8996

200 0.4362 0.8709

3.4 Evaluation

The problem of using AI techniques in order to analyze the contents of files for
the purpose of determining if potentially malicious code is present was analyzed
and formulated as a NLP problem. Existing NLP software tools were used in order
to design an end-to-end scheme for processing stored data and producing warning
of the potential existence of malware, using machine leaning. The preprocessing
require in order to extract the necessary features from the raw data was determined
based on particular considerations arising from the nature of the problem. Datasets
and data dictionaries were obtained from the performed training of the schemes that
can be reused in order to repeat the detection task in other contexts. The datasets may
be enriched with additional examples when these are available, in order to improve
the classification performance. The framework designed is of particular importance
for military applications due to the ability for tuning its sensitivity.

The application of the scheme in specific contexts may be easily tested and
benchmarked before deployment to the production environment. This scheme
simultaneously illustrates, both in theoretical and practical terms, the feasibility and
benefits of using AI classifiers in order to produce indicators of cyber threats and
malicious cyber activity. The scheme is essentially used to develop a model for
the potential malicious activity. Using this model, it significantly improves security
compared to customized rules and datasets. The data and the software tools and
libraries used are open source. They can hence take advantage of improvements
proposed by the community and continue building knowledge on the appearance
of new threats. The composite classification approach used provided, combined
with the NLP formulation of the problem provided superior results compared
to those expected form applying the individual methods. Numerical data of the
benchmark performance of this technique were produced that can be used in future
enhancements. The scheme is suitable for demanding applications, such as military
environments.

4 Digital Twin Cyber Resilience Decision Support

In the introduction, the notion of how using a duplicate system operating in
a controlled environment for the prompt and early detection of cyber-attacks
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was presented. A formal model supporting the specification, implementation and
deployment of digital twin (DT) systems using AI and Internet of Things (IoT)
concepts was recently presented [9]. The formal model contributes to the design
of DTs capable of detecting diversions from the expected behavior and hence
supporting decisions and giving early warnings of cyber threats.

A DT is an exact copy of the actual system under modeling, that exhibits identical
dynamic behavior in the environment, but under controlled conditions. The purpose
of this system is to provide benchmark or reference behavior for the expected
behavior of the actual system so as to enable automated anomaly detection. Ideally,
the duplicate system has the same physical structure as the actual one. The overall
system concept is illustrated in Fig. 3. However, since the actual system model may
include non-replicable entities such as people or behaviors, some of the duplicate
subsystems may have to be virtualized. This technology, together with simulation
primitives, exhibits a wide variety of prospective applications for the purposes of
predicting breakdowns, anomalies and cyber-attacks, optimizing service plans, and
optimizing performance. The technology has been demonstrated to cooperate with
IoT, AI and Virtual and Augmented Reality subsystems [9]. Thus, DT is a purely
digital replica system that exhibits the same behavior as the real-world object,
process or system in a controlled environment. DTs can also be considered at sub-
system level to formulate components for creating twins of larger systems.

The DT concept arises from the Industry 4.0 movement and has been developed
in order to facilitate the following [9].

Fig. 3 Overall system concept
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• The detection of divergence in behavior due to physical faults, adversarial
intervention or erroneous input,

• Planning by means of the prediction of outcomes
• Global system optimization and decision making.

The concept of DT is related to previous concepts of computer aided design and
to the notions of online customer profiles, but current DTs involve four significant
differences:

• The model reliability with an emphasis on how they support specific performance
aims;

• Communication with the real world, for monitoring and control in real time;
• The use of advanced big data analytics and artificial intelligence to open

innovative deduction perspectives;
• The capability of evaluating what-if scenarios and conducting realistic exercises.

DT systems are combined with AI subsystems in order to promote survivabil-
ity thereby improving performance and reducing downtime. Machine learning
algorithms for manufacturing are shaped and tuned to the specific challenges of
systems—such as reducing losses, improving process stability, limiting downtime
and detecting anomalies [9].

Applications of AI in currently active operational systems include the predictive
maintenance of production computer systems and machines, the use of image pro-
cessing technologies for the automatic sorting of items such as consumer products,
like batteries or food, or user communication using text-based dialog systems e.g.,
in chatbots. AI supported DT systems are critically dependent on the availability
of databases containing real-world or high-quality, artificial performance data.
Furthermore, a prerequisite for the successful deployment of AI enabled DT systems
is advanced digital maturity of the organization. In physical terms, this implies
e.g., the installation of suitable digital sensor systems in many applications along
the field of operations. In terms of management know-how, the development of AI
applications requires the availability of knowledge of data analysis and/or computer
science. However, since this knowledge is not or only to a limited extent available
to many organizations, external services are a solution [9]. Modular designs are
feasible, in the context of which specific isolated cognitive AI-based services, such
as image or face recognition or the conversion of speech into text can be delegated
to external entities, like cloud processing resources, in the case where the size of the
organization does not permit in-house support for all functionalities.

Additionally, due to the continuously increasing potentials of AI supported
applications, the information processing environment paradigms are evolving.
Applications involving pattern recognition tend for example to become more
autonomous and cost efficient [9]. Simultaneously, AI systems bring improvements
in the system’s ability to forecast user and environment dependent parameters such
as customer actions and wishes, adversarial activities and external interventions.
As a result, innovative operational models arise that focus on adapting to the
deployment environment, including user behavior. As the AI’s acquaintance with the
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user, the equipment and the environment progresses, deviations from the expected
norm become easier to be identified as potential cyber-attacks.

Further amplification of the benefits of the application of AI systems, data
stores of limited scope need to be integrated with others in broad range data
platforms that promote cross-application collaboration and the creation of digital
ecosystems. This necessity is caused by the fact that AI is critically dependent on the
volume of training data, including synthetic ones generated from digital models. The
training data must include information regarding all possible states of the entities of
interest. The quality, the representativeness and the robustness of the training data
significantly affect the performance of the system and its overall effectiveness.

Even though AI does not demand the existence of analytical knowledge about
the problem to be solved, such as the divergence from the expected behavior caused
by the actions of a cyber intruder, data describing all occurrences that may be
encountered during normal operations.

Possible benefits from the application of AI include the following [9].

i. Collection of statistics necessary for highlighting disruptions from normal behav-
ior occurring over the entire dataset.

ii. Identification of critical situations encountered at operation time that are not
provided for with the predictive analytics;

iii. Processing of large volumes of data produced at operation time and identifying
and assessing inconsistencies.

Current research activities on Artificial Intelligence in operations data analysis
focuses on the following topics [9].

i. Hierarchical and distributed neural networks-based system with combined
relearning

ii. Big Data analytics for multi drone fleets-based monitoring adverse occurrences,
such as accidents in remote locations

iii. Deep learning of neural networks for image recognition in space monitoring and
manufacturing

iv. Machine vision of autonomous systems
v. Expert systems for logistics based on fuzzy logic

vi. Text recognition using deep learning neural networks
vii. Application of AI for development and implementation of IoT for industry

domains.

4.1 Landscape Model Development

The concept of the Landscape has been proposed [9] that is an instrument for
representing and analyzing the state of technological development in an entity.
Entities may be systems of different sizes, from an information system to a country.
It is significant regarding the Industry 4.0 movement which includes modern
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technologies such as AI, Digital Twins, IIoT etc. The landscape usually consists of a
disorganized set of technologies, actors involved, development and implementation.
Such a collection cannot serve as a model and be used in any analysis using formal
techniques [9]. It has been proposed to describe the landscape in terms of a formal
model as

LS = {Reg, T ech,Ent, t,Mtt ,Met }

where Reg is a region or location or set of regions, {Regi}, i = 1, . . . , n, T ech is
a technology or set of technologies {T echj }, j = 1, . . . , m, Ent is a technology
or set of entities or enterprises {Entk}, k = 1, . . . , p, t is the time or time-slot of
interest, MT T is a mapping M : T → T connecting technologies, and MET is a
mapping M : E → T describing technologies included in entities.

The model can be described by

• different technologies, locations etc.
• metrics obtained from n,m, p and the cardinalities of the sets Reg, T ech,Ent

The set-theoretical model of the landscape can be also represented as a connected
graph with weighted nodes and links. More specifically,

• the set of nodes is defined by T ech

• the weight of each node is given by the number of entities including the
technology

• the weight of each connection is given by the number of unique technologies
included by the two entities.

For the case of enterprises, this model allows the evaluation of the most developed
technologies and the description of the activities of each enterprise.

A variant of the set-theoretical model of the landscape has been presented [25]
that is applicable for the case of Digital Twins. The model is given by

DT = {PE,V M, Ss,DD,CN}

where PE are physical entities, V M are virtual models, Ss are services, DT are
data and CN are connections [25]. In this context, the physical entities need to be
represented as virtual models in the digital twin, in order to reproduce their behavior.
They can be units, systems or systems of systems.

The virtual models are representations of the PEs that maintain their physical
and operational properties and present the same behavior for the same events.
Additionally, they follow the same rules or logical abilities, such as reasoning,
evaluation and decision making.

The data comes at different times, from different sources, are multidimensional
and heterogeneous. Some of the data may be actual observations, some may be
artificially generated and finally, some may be the product of knowledge of the
functionality of the system. Data from multiple sources may be fused according
to the needs of the application.
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The services cover services offered and services received by the DT. The
offered services can be simulation, verification, monitoring, optimization etc., while
received services include data services, knowledge banks, computing services etc.

The DTs are connected with their real duplicates to perform complex operations
and analyses. Each DT contains six connections

• physical entities to virtual model
• physical entities to data
• physical entities to services
• virtual models to data
• virtual models to services
• services to data

Digital twins designed using such models have been developed for production
lines, training personnel, business process optimization, smart cities, construction,
healthcare, shipping etc. In the context of cyber resilience, it is proposed that
DTs are used for parallel and dynamic monitoring. This concept [8] employs
continuous monitoring of the operational system under observation. Due to the
diverse and unpredictable nature of possible cyber attacks, the proposed approach
for detecting such events is by detecting divergence of the observed system behavior
from expected system behavior. This detection needs to be early and prompt in
order for the possible attack to be adequately deterred. It is hence proposed that
the DT is operated in parallel to the operational system and an AI monitoring
system is used to compare the performance of the two systems. The AI system
receives input from the data connection and obtains monitoring and telemetry
information. Additional training for recognizing divergent behavior is provided to
the AI system by executing simulated attacks on the DT. The AI system hence
produces security alerts regarding detected divergent behavior. The sensitivity of
the alerts is configurable via suitable thresholds of the severity of the attack. Current
research involves the additional development of the set-theoretical model so as to
further formalize the design and implementation of the DT and its software and
hardware components.

5 Semi-Markov Cloud Availability Model

The capability of assessment of the level of survivability achieved following the
consequence of cyber-attacks before and after the introduction of the AI survivabil-
ity promoting schemes is an indispensable tool for the successful development of
such schemes.

Cloud Infrastructure–as–a–Service (IaaS) is an extensively used and appreciated
cloud computing model with applications to a diverse variety of tasks in different
operational environments, manufacturing installations, as well as in the scientific
domain. The successful deployment of IaaS Cloud implementations critically
depends on the existence of robust solutions to the problem of maintaining avail-
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ability and guaranteeing cybersecurity for the cloud infrastructure components [10].
Therefore, the challenge of ensuring the availability level of the IaaS Cloud in
an environment of diverse cybersecurity threats becomes a particularly significant
component of the cybersecurity effort at national level. In order to address this
problem, cloud service providers and users of cloud services require techniques
capable of determining the effective cybersecurity level for IaaS Cloud, taking
into account reliability characteristics of physical machines (PMs) in the process.
Such resources typically include different types of servers based on virtual and real
physical computer systems components.

Given that cybersecurity and reliability for cloud infrastructure components and
availability of the IaaS Cloud are all elements of the overall system survivability, it
has been proposed [10] to employ a monolithic Semi-Markov (SMP) model for the
purpose of quantifying the overall availability level of the cloud infrastructure. As
the global monitoring parameter, the steady state availability was used in order to
derive state information [10].

In the research presented in [10] the monolithic SMP model was used for
obtaining overall estimates of availability in the context where the effects of two
types of malicious computer viruses were required to be studied for an IaaS Cloud
instance encompassing three pools of PMs. For this purpose, the proposed SMP
availability model for an IaaS Cloud [10] was used in order to implement two
branches of deliberate malicious impacts on PMs resources.

Virtually all cloud service providers and users are currently appreciating the
necessity to apply significant amounts of effort in order to maintain availability
and promote cybersecurity of the IaaS Cloud. A variety of modeling approaches
have been employed as instruments for the development of a toolkit necessary
for preventing the adverse impact of deliberate malicious activity and ensuring
increased availability level of the cloud services [10]. These approaches include
models based on [10]

• stochastic non-state-space
• state-space,
• continuous-time Markov chains and
• discrete-time Markov chains (DTMCs).

Other schemes presented in literature employ non-Markovian approaches in order
to solve identical tasks in preference to Markov models [10]. Alternative SMP
models have also been proposed [10]. The research presented in [10] involves the
development of two types of SMP models. The first proposed SMP model is one that
can be solved through usage of Embedded Markov Chains for Cloud Systems [10].
The second proposed SMP model is also a model based on embedded DTMCs. The
SMP based approach is then employed for the modeling and the determination of the
steady-state availability of an IaaS Cloud with three pools of PMs. The modelling
includes consideration of sudden failures and deliberate malicious impacts [10].

The model is not bound to a particular cloud architecture, but considers a generic
simplified structure for the implementation of the PMs pools belonging to a single
IaaS Cloud. According to this structure, an IaaS Cloud consists of hot, warm and



302 N. Doukas et al.

cold pools of PMs. Hot pool PMs are powered on and operational. Warm pool
PMs are also powered on, but are not active. Finally, cold pool PMs are turned
off. Additionally, it assumes that all PMs in a pool belong to the same kind: a
hot pool contains only fully operational PMs, a warm pool also includes normal
working machines, but these PMs are not ready and a cold pool contains only turn
off PMs. A specialized Technical and Information Monitoring System (TIMS) is
used to monitor the sequence of states the system is following. Furthermore, TIMS
is responsible for performing repair, remove or replacement operations for failed
PMs. The entire range of deliberate malicious effects on software and hardware
components of IaaS Cloud is also detected by TIMS [10]. The example considered
involves the spreading of the WanaCry and Petya ransomware within the system.

The aim of the model is not to provide comprehensive screening and absolute
protection from ransomware attacks; the operation of model is based on considering
the stochastic process of the spreading of the impact of the malware on the cloud
infrastructure. The ultimate purpose for using the Semi-Markov model is to obtain
availability estimates of the timeframe for users to observe the effects of the
ransomware to the system [10].

The model design is based on the assumption that there exists a relation between
the ransomware attack and the reduction of the overall availability level and
performance of the IaaS Cloud. Suppose that attack develops in accordance with
familiar scenario, namely: first phase, when virus penetrates to physical machine
and tries to impact information resource allocated by the PM (WannaCry pattern);
second phase, when virus spreads by using of cryptography and ransomware
techniques (Petya pattern). In Fig. 4, the finite graph is illustrated of the SMP
availability model considering deliberate double insidious malicious impacts on
information resources of IaaS Cloud. According to the model description given
earlier on, the model also considers that the IaaS Cloud consists of three identical
PMs, which are deployed as hot, warm and cold physical machine, respectively [10].

The proposed model additionally contains the TIMS component which, together
with additional devices, are responsible for monitoring the system and detecting
unauthorized intrusions. Vendors and users of cloud computing platforms are
generally incorporating rigorous and effective monitoring systems, that comprise the
Monitoring plane [10]. The Monitoring plane provides the functionality necessary
to detect multiple instances of unauthorized penetrations employing different points
of access. The model proposed can be used as an additional analytical toolkit to
develop of anomaly detection technique based on considering different adverse
effects, such as sudden failures of PMs and separate deliberate hacker attacks.
The SMP availability model considering the adverse effects of deliberate malicious
activities on information resources of IaaS Cloud consists of 20 states. Two branches
for the activation and evolution of the viruses within the system are modeled. First
branch is branch of activation of the WannaCry virus and second branch is the
branch of the dispersion of the Petya virus. Table 3 separates the state transitions
occurring in Fig. 4 for the case of each of the malwares that cause them in the context
of the SMP availability model. The model is considering the impact of malicious
activities internal to the information resources of the IaaS Cloud consisting of three
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Fig. 4 Finite graph of the SMP availability model for the IaaS Cloud

Table 3 System state
transitions caused by the two
types of malware [10]

WannaCry virus Petya ransomware

0
p0,3−−→ 3

p3,5−−→ 5 0
p0,4−−→ 4

p6,4−−→ 6
p6,8−−→ 8

5
p5,7−−→ 7 7

p7,11−−→ 11
p11,12−−−→ 12

p12,15−−−→ 15

8
p8,13−−→ 13

p13,14−−−→ 14
p14,15−−−→ 15

15
p15,18−−−→ 18

p18,19−−−→ 19
p19,17−−−→ 17

PMs, as well as the impact of external malicious actions. Furthermore, according to
previous experience [10] the monitoring system may be used, which this is a really
effective means in order to achieve timely detection, but not prevention, of attacks
on cloud assets and resources. In Fig. 4, the following conventions are observed
for the presentation of the states of the second model: available states are in yellow
color, unavailable states are in red color, control and monitoring states for TIMS
system are green color.

As illustrated in Fig. 4, if three PMs fail the IaaS Cloud becomes unavailable.
Consider the occasion where the system state is unavailable for the IaaS Cloud.
Following that, the IaaS Cloud becomes available when the model has been in the
states s0, s7, s8, s15. In state s0, the IaaS Cloud is operational, because all three
PMs are available. The opposite situation can only arise when system enters states
s3, s4, s11, s13, s18. These states may be described as states of viruses’ attacks, when
the system is unavailable due to hidden failures of PMs. The subset of states for
TIMS involves all remaining states, namely s1, s2, s5, s6, s9, s12, s14, s16, s19.
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Indeed, the states s1, s2, s5, s6, s9, s12, s14, s16, s19 are states, when system main-
tainers will have the ability to exploit the findings of TIMS in order to determine and
solve control or monitoring tasks, including measures to implement the defensive
features, regarding the viruses’ activity.

In order to solve task pertaining to the SMP modeling for cloud infrastructure,
it is proposed [10] that the control of the technical and information states the hot
PMs perform over the deterministic period of time T , and transitions from states
si to states sj are given by

Q0,1(t) = Q012(t) = Q7,9(t) = Q8,10(t) = Q15,16(t) =
{

0 if t < T

1 if t > T

It is also proposed [10] that transitions for the TIMS from state si to sj state occur
during period of time τc as

Q1,0(t) = Q2,0(t) = Q5,3(t) = Q6,4(t) = Q9,7(t) = Q10,8(t)

= Q12,11(t) = Q14,13(t) = Q16,15(t) = Q19,18(t) =
{

0 if t < τc

1 if t > τc

The transitions for branch of activation of the WannaCry virus can be written
based on hypoexponential distribution as [10]

Q10(t) = Q10(t) =
{

1 − αe−λ1t + βe−λ2t if t < T

0 otherwise

where a = λ2
λ2−λ1

, β = λ1
λ2−λ1

.
Then, the transitions for branch of development of the Petya virus can be written

based on hyperexponential distribution as [10]

Q0,4(t) = Q6,8(t) = Q7,11(t) = Q8,13(t)

= Q12,15(t) = Q14,15(t) = Q15,18(t)

= Q19,17(t) =
{

ρ(1 − e−λ3t ) + ω(1 − e−λ4t ) if t < T

0 otherwise

where ρ ∈ [0, 1], ω = 1 − ρ.
For other states, the exponential and Erlang-k, (k = 2) distributions are used in

order to describe all times to sudden failures and recoveries of PMs respectively.
The cumulative distribution functions for these states are stipulated in Table 4 [10].

Next, if by using the steady-state probability vector, all previous equations and
total probability relation

∑19
i=0 πi = 1, the required result is obtained as A = π0 +

π7 + π8 + π15, where π0, π7, π8, π15 are steady states for states s0, s7, s8, s15.
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Table 4 Transitions for
failures and recoveries of
PMs for the IaaS cloud

Transitions for PMs CDFs for time transitions

1 → 7

2 → 8

9 → 15

10 → 15

16 → 17

exp(λs)

7 → 0

8 → 0
Erlang(2, μ1)

15 → 7

15 → 8

17 → 15

Erlang(2, μ2)

Simulation results presented in [10] demonstrate the capability of the SMP to
model the expected behavior of the system, where the modelling prediction of the
availability matches the observed values and reducing the spreading rate of the
viruses, the availability increases.

The modeling results have several theoretical and practical implications [10].
Theoretical perspectives involve the development of Semi-Markov availability
models with special states. This type of models may be solved using embedded
DTMCs. Practical perspectives relate to the availability assessments of IaaS Cloud
and possibility to optimize the architecture and diversification of specific services
to be provided. AI techniques are an ideal technique to be employed for this
optimization.

Future research could be dedicated to specifying numerical values of parameters
for modeling availability assessments of IaaS Cloud with three pools of physical
and virtual machines using AI for continuous tracking of such parameters.

6 Future Work

As it was explained in the introduction section of this chapter, cybersecurity is a
problem concerning not solely the technical community, but society in general due
to its dependence on information systems. AI techniques have been identified as a
feasible means of processing large volumes of data for the purpose of identifying
threats and divergent behavior. The technology of AI assisted cybersecurity has not
yet reached the required level of maturity [26]. There exist several issues that need
to be further studied. The success of any AI algorithm is highly dependent on the
quantity and quality of the data used for its training.

Current techniques for AI based cybersecurity are primarily based on data
originating internally from the organization that they concern. Internal data are
naturally closer and more fitted to the organization’s internal structure and may
allow a quicker learning curve about detecting previous attacks and existing
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threats. However, the ability to exploit external data offers the prospective for
better resilience and hence survivability, by considering the broader trends and
developments in the Cyberspace. To this extent, data from GitHub was used in
first scheme presented in this chapter, in order to support the recognition of benign
files. The fact that a new dataset can be regularly rebuilt in an automatic way, gives
the scheme the ability to adapt to emerging threats. Further data sources need to
be exploited such SourceForge, search engines, feeds of threat intelligence data
by industry and hacker forums that would provide more insight into software like
exploit development kits, trends in threat design etc. Additionally, exploitation of
data from public or private cyber threat reporting repositories and stores should be
considered.

Adversarial Machine Learning (ML) is a growing class of techniques that aim
to deceive algorithms by generating data that can pass as rel data. Malicious users
are using such techniques for a variety of purposes, including generating AI driven
system attacks [26]. Adversarial ML defense focuses on threat modeling, attack
simulation, countermeasures, detection and evasion [26]. These schemes attain
learning with small datasets and can hence quickly adapt to evolving environments,
similarly to human actors. The second scheme presented in this chapter contributes
in this direction by providing the infrastructure for realistic attack simulation
detection and countermeasure exercises. Due to the dynamic nature of cyberattacks,
it is proposed in literature that AI algorithms should not be allowed to take the
relevant decisions, but rather support human operators in deciding. The second
scheme presented in this paper should be used to become a fundamental part
of the code of an AI based cybersecurity decision support system. To the same
end, the third scheme presented, involving the SMP used for modeling system
availability is suitable for providing such decision support systems with insight into
the survivability prospects of cloud systems and the health of each one of their
pooled resources.

7 Conclusions

Three techniques were presented, capable of producing indicators of malicious
activity within information processing systems that could be associated with the
presence of cyber-attacks. The first scheme concerned the detection of threats
within data. Executable code, e-mail messages and network packets were processed
via AI algorithms in order to model the threats and achieve effective detection
of computer viruses and other dangerous content. Open databases and Natural
Language processing were employed in order to train different types of classifiers
and optimize the results. The second scheme was related to the detection of
unexpected system behavior that can be associated to an ongoing cyber-attack.
Such behavior can be identified by operating a clone system of the system under
observation and using its behavior as a benchmark for the expected behavior for
the original system. A technique has been proposed that enables the design and
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implementation of the clone systems in order to facilitate decision support. AI
algorithms can be trained in order to detect diversions of the observed from the
expected behavior and produce timely warnings. The final scheme focused on the
cloud processing paradigm and was related to the examination of its availability and
the detection failures of its constituent subsystems. The analysis was based on a
Semi Markov model that enables monitoring of system states, analyzing availability
and measuring the impact of the activation of computer viruses within the system.
These results contribute to the prevention of the adverse effects of computer viruses
and the assurance of high availability of computer systems.
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Machine Learning and Deep Learning
for Fixed-Text Keystroke Dynamics

Han-Chih Chang, Jianwei Li, Ching-Seh Wu, and Mark Stamp

Abstract Keystroke dynamics can be used to analyze the way that users type by
measuring various aspects of keyboard input. Previous work has demonstrated the
feasibility of user authentication and identification utilizing keystroke dynamics. In
this research, we consider a wide variety of machine learning and deep learning
techniques based on fixed-text keystroke-derived features, we optimize the resulting
models, and we compare our results to those obtained in related research. We
find that models based on extreme gradient boosting (XGBoost) and multi-layer
perceptrons (MLP) perform well in our experiments. Our best models outperform
previous comparable research.

1 Introduction

Today, popular forms of biometric authentication include fingerprints and facial
recognition. However, such biometric techniques do not resolve all authentication
issues. For example, studies show that the elderly are reluctant to use facial
recognition and fingerprint recognition for authentication on mobile phones, while
young people prefer to type instead of using other ways to authenticate [20].
Therefore, some passive biometric have recently emerged. In this research, we
consider biometric based on keystroke dynamics. Such techniques are applicable
to the authentication problem, and can also potentially play a role in intrusion
detection.

Keystroke dynamics are derived from typing behavior. This approach typically
relies on features such as the duration of keyboard events, the duration of the
“bounce,” the time difference between each character, and so on [38]. Such data can
be collected through monitoring keyboard input and recording, for example, the time
intervals between each keystroke. However, it is worth noting that a biometric based
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on keystroke dynamics is unlikely to be powerful enough to serve as a standalone
authentication technique, and hence keystroke dynamics generally must be used in
conjunction with other types of authentication, such as passwords [30]. In its related
role as an IDS, keystroke dynamics may be competitive with other approaches [38].

Compared with popular biometric technologies such as fingerprints and iris
scans, keystroke dynamics has some advantages. First, in terms of hardware,
keystroke features can be gathered through a simple API interface, with the
collected data then passed to a model for evaluation. Hence, no additional hardware
deployment is involved, which reduces the cost. Second, as alluded to above,
keystroke information can be obtained in a more passive and natural manner, which
eases the collection burden on users. Third, keystroke dynamics can be used in an
ongoing, real-time IDS mode to judge whether current behavior is consistent with
a specific user’s previous behavior. In contrast, in a typical username and password
authentication scenario, such passive monitoring is not an option. Therefore,
keystroke dynamics can serve to enhance security beyond the authentication phase.

Of course, there are also some disadvantages to using keystroke dynamics for
authentication. One issue is that if a user has an injured hand or is simply distracted
or overly emotional, their typing patterns may not be consistent with the patterns
used for training. Furthermore, another disadvantage is that typing patterns may vary
based on different keyboards, or even due to new applications or software updates,
which indicates that models must be updated regularly. Although such concerns are
legitimate, it is clear that these issues can be mitigated, and hence the utilization of
keystroke dynamics is likely to increase in the near future.

In this research, we analyze various keystroke dynamics data and train machine
learning and deep learning models to distinguish between users. Features include
individual key presses and flight time, among others. Note that for the sake of user
privacy, we do not store sequences of actual keystrokes, and hence the text itself is
not used for modeling purposes.

We consider a wide variety of learning techniques, including k-nearest neighbors
(k-NN), random forests, support vector machines (SVM), convolutional neural net-
works (CNN), recurrent neural networks (RNN), long short-term memory (LSTM)
networks, extreme gradient boosting (XGBoost), and multilayer perceptrons (MLP).

Much of the previous research in this field is based on multiclass models trained
on relatively small amounts of data per user. There are several inherent problems
with such an approach. For example, if a new user is added, or the typing content
(e.g., password) is changed, the model needs to be retrained. Furthermore, until
recently, most work in this field considered only traditional statistical machine
learning methods, with limited use of modern deep learning techniques. In contrast,
we focus on modern machine learning and deep learning techniques, and we are
able to improve on previous related work.

The remainder of this paper is organized as follows. Section 2 discusses relevant
background topics, including introducing the learning techniques considered. We
provide a survey of previous work in Sect. 3, while Sect. 4 describes the dataset used
in our experiments. Our experimental results are presented in Sect. 5. Lastly, Sect. 6
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summarizes our main results and we include a discussion of possible directions for
future work.

2 Background

In this section, we discuss keystroke dynamics in general and we consider previous
work in this field. In the next section, we introduce the dataset and the various
machine learning models that we use in this research.

2.1 Keystroke Dynamics

According to [27], “keystroke dynamics is not what you type, but how you type.”
Most previous work on typing biometrics can be divided into either classification
based on a fixed-text or authentication based on free-text [30]. For fixed text, the
text used to model the typing behavior of a user and to authenticate the user is the
same. This approach is usually applied to short text sequences, such as passwords.
Classification can be based on various timing features related to the characters
typed [10]. Moreover, by combining a password along with a username, such a
system can be further strengthened [26]. A comprehensive discussion related to the
fixed-text data problem can be found in [30].

As for the free text case, the text used to model typing behavior of a user and to
authenticate the user is not necessarily the same. This approach is usually applied
to long text sequences, and can be viewed as a continuous form of authentication
or as an intrusion detection system (IDS). Again, in this paper we only consider the
fixed-text problem.

Previously, many different distance-based methods have been applied to
keystroke dynamics. More recently, machine learning techniques have been
considered, including support vector machines (SVM), recurrent neural networks
(RNN), and so on [38]. The learning techniques evaluated in this paper are
introduced below.

2.2 Learning Techniques

For our experiments, we have considered a wide variety of learning techniques. We
introduce these learning techniques in this section.
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2.2.1 Random Forest

A random forest [14] is a supervised, decision tree-based machine learning method
that is often highly effective for classification and regression tasks. This technique
consists of a large number of individual decision trees, where each decision tree is
based on a subset of the available features, and a subset of the training samples. The
subsets used for each decision tree are selected with replacement. A majority vote
or averaging of the component decision trees is used to determine the random forest
classification.

2.2.2 Support Vector Machine

Support vector machines (SVM) [30] are a powerful class of supervised machine
learning techniques. The key idea of an SVM is to construct a hyperplane, so that
the data can be divided into categories [34]. The so-called “kernel trick” enables
us to efficiently deal with nonlinear transformations of the feature data. As with
random forests, SVMs often perform well in practice.

2.2.3 K-Nearest Neighbors

The k-nearest neighbors (k-NN) algorithm [24] is an intuitively simple technique,
whereby we classify a sample based on the k nearest samples in the training
set. In spite of its simplicity, k-NN often performs well, although overfitting is
a concern, especially for small values of k. Both k-NN and random forest are
neighborhood-based algorithms, although the neighborhood structure determined
by each is significantly different.

2.2.4 T-SNE

The method of t-distributed stochastic neighbor embedding (t-SNE) is a non-
linear dimensionality reduction technique that was originally proposed in [35]. It
is typically used for data visualization, to reduce the dimensionality of the feature
space, and for clustering. In contrast to the more well-known principal component
analysis (PCA), t-SNE is better able to capture non-linear relationships in the data.

2.2.5 XGBoost

XGBoost, the name of which is derived from extreme gradient boosting, is a
popular technique that has played an important role in a large number of Kaggle
competitions. In comparison to the simpler AdaBoost technique, XGBoost has
advantages in terms of dealing with outliers and misclassifications.
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Data augmentation consists of generating synthetic data based on an existing
dataset. Such “fake” data can be used to make up for a lack of data for a given
problem. Data augmentation has often proved valuable in practice. We consider data
augmentation in our XGBoost experiments.

2.2.6 LSTM and Bi-LSTM

Long short-term memory (LSTM) is a highly specialized recurrent neural network
(RNN) architecture that is able to better deal with the vanishing and exploding
gradient issues that plague plain “vanilla” RNNs [34]. Consequently, LSTMs
generally perform much better over longer sequences as compared to vanilla RNNs.

A bi-directional LSTM (bi-LSTM) combines two LSTMs, one computed in the
forward direction and another computed in the backward direction. Bi-LSTMs are
well-suited to sequence labeling tasks and have proven to be strong at modeling
contextual information in natural language processing (NLP) tasks.

In our LSTM and bi-LSTM experiments, we consider two different encoding
methods. In addition to the standard raw feature encoding, we also experiment with
one-hot encoding. Assuming that a feature can take on m possible values, a feature
value of k has a one-hot representation consisting of a binary vector of length m

with a 1 in the kth position and 0 elsewhere. When training, one-hot encoding has
a natural interpretation as a vector of probabilities, and hence it is well suited to
training involving a softmax output layer, for example.

We also consider attention mechanisms. The idea of an attention mechanism is
intuitively simple—we want to force the model to focus on some specific aspect of
the training data. Attention is somewhat related to regularization, in the sense that
we reduce the potential for over-reliance on some parts of the training data, which
can lead to various pathologies, including overfitting.

2.2.7 Convolutional Neural Network

Convolutional neural networks (CNN) are designed to deal effectively and effi-
ciently with local structure. CNNs have proven their worth in the realm of image
analysis. Most CNN architectures include convolutional layers, pooling layers, and
a fully-connected output layer.

2.2.8 Multi-Layer Perceptron

The structure of a generic multi-layer perceptron (MLP) includes an input layer,
one or more hidden layers, and an output layer. Each node, or neuron, in a hidden
layer includes a nonlinear activation function, which is the key to the ability of an
MLP to deal with challenging data. To mitigate overfitting, we employ dropouts for
regularization in our MLP experiments [23].
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3 Previous Work

In this section, we first consider distance-based methods. Then we discuss more
recent work that relies on various machine learning techniques.

The concept of keystroke dynamics first appeared in the 1970s and was focused
on fixed-text data [12]. In subsequent years, Bayesian classifiers based on the mean
and variance in time intervals between two or three consecutive key presses were
applied to the problem [28]. The result in [28] claim a classification accuracy of 92%
on a dataset with 63 users.

Typical of early work in this field are nearest neighbor classifiers based on various
distance measures. Initially, Euclidean distance or, equivalently, the L2 norm was
used. In contrast to the L2 norm, the L1 norm (i.e., Manhattan distance) makes it
easier to determine the contributions made by individual components, and it is more
robust to the effect of outliers. In [24], it is shown that among all distance-based
techniques, the best performance is obtained from a nearest neighbor classifier that
uses a scaled Manhattan distance.

Neither the L1 nor the L2 norm deal effectively with statistical properties, and
hence statistical-based distance measures have also been considered. For example,
Mahalanobis distance has been widely used in keystroke dynamics research [4].

Recently, research in keystroke dynamics has been heavily focused on machine
learning techniques. Such research includes k-nearest neighbors (k-NN) [37], K-
means clustering [17], random forests [25], fuzzy logic [15], Gaussian mixture
models [16], and many other approaches. In the remainder of this section, we discuss
some relevant examples of machine learning based research focused on fixed-text
keystroke dynamics.

In [36], support vector machines (SVM) are used to extract features from the data
that are then used for classification. Another popular machine learning technique
has been used in keystroke dynamics is hidden Markov models (HMM). An HMM
includes a Markov process that is “hidden” in the sense that it can only be indirectly
observed [33]. In [7], an HMM is used to learn the time intervals in keystroke
dynamics.

A number of neural network architectures have also been applied in keystroke
dynamics in recent years [5, 22]. Deep learning techniques have also been success-
fully applied to classification and have achieved better performance, as compared
to previous techniques, such as those considered in [29]. Deep networks usually
require a relatively long time to train, and hence Adam optimization and leaky
rectified linear unit (leaky relu) activation functions are often used to speed up the
learning process [23].

In [2], a genetic algorithm known as neuro evolution of augmenting topologies
(NEAT) is considered. This algorithm achieves a high accuracy on a custom dataset.

In [8], keystroke dynamics authentication based on fuzzy logic is considered,
and an accuracy of 98% is achieved. This model evolves in the sense that it can
update keystroke templates when a user login is successful. The research in [21] uses
extreme gradient boosting (XGBoost), random forest, multilayer perceptron (MLP),
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and other machine learning methods to perform multiclass classification on the
Carnegie Mellon University (CMU) dataset, which is the same dataset considered
in this paper. In [21], a highest accuracy of 93.79% is achieved using XGBoost.
However, these authors do not discuss hyperparameter tuning, and thus it may be
possible to improve on their results.

As the name suggests, the equal error rate (EER) is the point where the false
acceptance rate (FAR) and false rejection rate (FRR), at which point the sum of the
FRR and FAR is minimized. The value of the EER is serves as an indicator of the
performance of a system, enabling the direct comparison of different biometrics—
the lower the value of EER, the better the performance of the system. The EER is
easily obtained from an ROC curve.

The authors of [6] propose using convolutional neural networks (CNN) for
authentication based on keystroke dynamics. Their model architecture is very
similar to that in [18], with the main ideas deriving from a sentence classification
task. They feed time-based feature vectors into the model directly instead of
reshaping the vectors into matrices. They also explore the influence of different
kernel sizes, different numbers of kernels, and different numbers of neurons in the
fully connected layer. Their model is evaluated on an open fixed-text keystroke
dataset, and their best equal error rates (EER) are 2.3 and 6.5% with and without
data augmentation, respectively.

Time-based features and pressure-based features are considered in [1]. By
combining the information of these two kinds of features, the authors achieve good
performance. In addition, they deal with typos—when a typo is recognized, the
duration of keystroke time between the wrong key and back-space key is ignored,
as is the duration between the back-space key and the correct key.

Another study considers deep belief networks (DBN) to extract hidden features,
which are then used to tune a pre-trained neural network [9]. The authors of [9]
claim that deep learning techniques significantly outperform other algorithms on
the CMU fixed-text dataset.

The CMU keystroke dataset is a well known public fixed-text dataset and has
been extensively studied. The use of a common dataset enables research to be
directly compared. In [24], the authors introduce this dataset and achieve a baseline
result with an EER of 9.6%. There are now many studies that use this same dataset
and outperform this baseline result. For example, in [6], the authors obtain an EER
of 2.3%, based on a CNN with data augmentation, while in [23], an EER of 3% is
attained using a multi-layers perceptron (MLP).

As an aside, we note that other keystroke features might be of interest. For
example, keystroke acoustics for user authentication are considered in [32]. In this
research, a dataset containing 50 users results in an EER of 11%, which shows
that acoustical information can be informative. However, an advantage of keystroke
dynamics is that such information is easily collected directly from any standard
keyboard.
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Table 1 Keystroke features in CMU dataset

Notation Number Summary Description

H 11 Hold time The length of time that a key is pressed

DD 10 Down-down The length of time from one key press to the next
key press

UD 10 Up-down The length of time from one key being released
until the next key is pressed

Total 31 – —

4 Dataset

The Carnegie-Mellon University (CMU) fixed-text dataset is used for all experi-
ments considered in this paper. The CMU dataset commonly serves to benchmark
techniques in keystroke dynamics research [3, 6, 11, 13, 21, 23, 31]. This dataset
includes 51 users’ keystroke dynamics information, where each user typed the
password “.tie5Roanl” a total of 400 times, consisting of 50 repetitions over
each of 8 sessions. Between sessions, a user had to wait at least one day, so that the
day-to-day variation of each subject’s typing was captured [24]. Furthermore this
password was chosen to be representative of a strong 10-character password, as it
contains a special symbol, a number, lowercase letters, and a capital letter. Each time
this password is typed, 31 time-based features were collected, as listed in Table 1.
Note that the Enter key is pressed after typing the 10-character password. Hence,
there are 11 keystrokes, consisting of 10 consecutive pairs.

Individual keystrokes in a sequence can be viewed as words in a sentence, in the
sense that we can tie the UD-time and DD-time from two adjacent keystrokes with
the duration of the previous keystroke. Following this approach, for each keystroke,
we obtain a vector consisting of three features, which we interpret as an 11 × 3
matrix. Thus, our feature “vectors” consist of a sequence of these matrices. We refer
to this matrix as the “fixed keystroke dynamics sequence,” which we abbreviate as
fixed-KDS.

5 Experiments and Results

This section contains the results of our fixed-text experiments on the CMU dataset.
We provide some analysis and discussion of our results.

As mentioned above, in the CMU dataset, the data is arranged as a table with 31
columns, representing the collected information for one timing of the password. For
example, one column is H.period which is the hold time for the “.” key. The
hold time is the length of time when the key was depressed. Another example is
the column DD.period.t, is the time interval between when the “.” key was
pressed until the “t” key was pressed. The overall table is 20,400 × 31, where each
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Fig. 1 Keystroke dynamics features

row corresponds to the timing information for a single repetition of the password
by a single subject. Figure 1 illustrates the timing relationship between consecutive
keystrokes.

5.1 Data Exploration

There are 31 timing features in the CMU dataset, which can be divided into three
groups which we denote as DD, UD and H. Here, we analyze the data to determine
whether there is any significant difference among these three groups. For this data
exploration, we have randomly selected six of the 51 subjects for analysis.

In Fig. 2a, each line graph represents the 400 input feature vectors corresponding
to a given subject. From this figure, we observe that most of the feature vectors
are fairly consistent in that they follow a similar pattern for a given subject. This
indicates that subjects tend to be relatively consistent with respect to this particular
feature group. This observation can be seen as a positive indicator of the potential
to successfully classify the subjects. However, when the six subjects’ average cases
are compared in Fig. 2b, the results show that the subjects have somewhat similar
typing patterns.

The analogous results for the key-up key-down features are shown in Fig. 3. We
observe that this data is similar to key-down key-down data in Fig. 2.

In Fig. 4a, we compare the six subjects based on the hold-time feature, and here
the differences are more pronounced. In particular, the average cases in Fig. 4b
reveal more substantial differences. These results indicate that the hold duration
should be a strong feature for distinguishing users.
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Fig. 2 Key-down key-down for six subjects (400 keystrokes). (a) Individual. (b) Average

To further explore the data, we apply t-SNE as a clustering technique to gain
insight into how the data is distributed. In this case, we consider a subset consisting
of the first seven subjects, using all 400 records for each of these subjects. The result
in Fig. 5 show that the subjects can be clustered into different groups. This is again
promising, as it indicates that we should have success in distinguishing users.
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Fig. 3 Key-up key-down for six subjects for (400 keystrokes). (a) Individual. (b) Average

5.2 Classification Results

In this section, we give our classification results. Here, we experiment with k-NN,
random forest, SVM, XGBoost, MLP, CNN, RNN, and LSTM.
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Fig. 4 Hold time for six subjects (400 iterations). (a) Individual. (b) Average

5.2.1 K-Nearest Neighbor Experiments

We optimize with respect to three parameters of the k-NN algorithm, namely, the
number of neighbors, the weight function used for prediction, and the distance
category. As in all of our parameter tuning experiments, we employ a Bayes model
to generate a suit of parameters with the highest probability being the best result.
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Fig. 5 T-SNE of features of seven subjects

Table 2 Results for k-NN Parameter Search space Accuracy

n_neighbors [5,50] 82.27%

weight Uniform, distance
p [1, 2, 3]

Experiments 50

Table 2 shows the search space for each parameter and the best accuracy achieved.
Boldface entries in Table 2 are used to indicate the optimal parameter values.

5.2.2 Random Forest Experiments

We optimize four parameters of the random forest algorithm, namely, the number
of decision trees, the maximum depth of each decision tree, the minimal number
of samples in a leaf node, and the minimum number of samples required to split.
Again, we make use of different combinations of values of these parameters to
build a Bayes model, which generates a set of parameters that will, with high
probability, yield the best result. Table 3 shows the range considered for each of
these parameters, the optimal values that we found (in boldface), and the best result
obtained.
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Table 3 Results for random forest

Parameter Search space Accuracy

n_estimaters [100, 1000] 93.55%

max_depth None, 5, 10, 15, 20, 30, 35, 40

min_samples_leaf [1, 10]

min_samples_split [2, 5]

Experiments 50

Table 4 Results for SVM

Parameter Search space Best value Accuracy

C Real(1e-6, 1e+6, log-uniform) 920,319 88.02%

Gamma Real(1e-6, 1e+1, log-uniform) 0.61620

Degree [1, 8] 8

Kernel linear, poly, rbf rbf

Experiments 50 –

Table 5 Accuracy of four
features for XGBoost

Feature Description Accuracy

H Hold time 76.91%

DD Key-down key-down 76.39%

UD Key-up key-down 81.10%

All H, DD and UD 95.15%

Table 6 Selected parameters
for XGBoost

Parameters Value

learning-rate 0.21

n-estimators 1000

max-depth 2

min-child-weight 1.4

5.2.3 Support Vector Machine Experiments

Here, we consider four parameters of an SVM, namely, the value of the regulariza-
tion parameter, the kernel function, and the two coefficients of the kernel function.
Again, a Bayes model is built to search the optimal values of these parameters. The
search space for each parameter, the optimal values, and the best accuracy are given
in Table 4.

5.2.4 XBGoost Experiments

Next, we classify the samples using XGBoost. Here, we consider each of the three
feature groups (DD, UD, and H) individually, as well as the combination of all
three. The multi-classification results for the 51 subjects are shown in Table 5 and
the model parameters used to achieve these results are given in Table 6.
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Table 7 Results for
XGBoost

Description Data size Accuracy

No augmentation 16,320 95.42%

Augmentation 48,960 96.39%

Table 8 Results for MLP

Parameters

Model Input-channel Output-channel Num-layers Learning-rate Accuracy

MLP 31 100 3 0.001 95.96%

Based on these results, we conduct further experiments with XGBoost.
Given the fairly limited size of the training data, we apply a simple data
augmentation strategy—we randomly perturb each timing feature based on a range
of (−0.02, 0.02). In this experiment, we set the augmentation ratio to two, meaning
that the amount of augmented date is two times the amount of original data. We
find that this data augmentation provides a slightly improvement in the accuracy, as
shown in Table 7.

5.2.5 Multilayer Perceptron Experiments

Our generic MLP consists of four fully connected layers, in which the number of
neurons are 512, 256, 144, and 51, respectively. The output of the last layer is fed
into a softmax function to calculate the corresponding probability for each class.
A rectified linear unit (relu) activation function and a batch normalization layer are
used in the first and second dense layers. We use the cross entropy loss function for
this model—additional parameters are listed in Table 8. This MLP model yields an
impressive accuracy ot 95.96%.

5.2.6 Convolutional Neural Network Experiments

The input for our CNN model is the fixed-KDS data structure, which we discussed
in Sect. 4. The architecture of our CNN is based on that of the so-called textCNN
in [18], which is used to process sequential text data. The key idea is to apply
multiple rectangular kernels, instead of more typical square kernels. Specifically,
the width of all kernels is the same as the embedding size for each word, so the
output for each convolution is a one-dimension vector. Then multiple max-pooling
layers are used to process these vectors to yield one feature for each kernel. Finally,
these generated features are concatenated into a one-dimension vector, and multiple
fully-connected layers are used to produce the class prediction. Our CNN model is
illustrated in Fig. 6.

In our keystroke dynamics model, we view each keystroke event as a “word”
and each keystroke sequence as a “sentence.” In this way, six different convolution
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Fig. 6 Architecture of CNN for free-text datasets

kernels are applied to this sequential data, and continuous max-pooling layers
extract the most important feature from each kernel. Then the concatenated vector
is fed into three dense layers, with a softmax function is used to generate the
probability for each class. In addition, a dropout layer is added after the penultimate
layer. The cross entropy loss function is used. For these CNN experiments, the best
result we obtain is an accuracy of 92.57%.

5.2.7 Recurrent Neural Network Experiments

The architecture of our RNN-based neural network is shown in Fig. 7. The input
data for this model is the fixed-KDS, as discussed in Sect. 4. The idea behind this
model comes from the field of sentiment analysis. Since keystroke data is inherently
sequential, we applying a two-layers bi-directional RNN. In this experiment, the
cross entropy loss function is used, and the best result we obtain is an accuracy
of 93.45%.
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Fig. 7 Architecture of bi-RNN

Table 9 Results for LSTM and bi-LSTM with one-hot encoding

Parameters

Model Input-size Hidden-size Num-layers Learning-rate Accuracy

LSTM 31 5 1 0.3 91.28%

Bi-LSTM 31 5 1 0.3 90.02%

5.2.8 LSTM Experiments

Next, we apply both LSTM and bi-LSTM with one-hot encoding. In these exper-
iments, one-hot encoding is applied on both the subject and the timing features,
which then serve as the feature vectors for the LSTM and bi-LSTM. The accuracies
we obtain for LSTM and bi-LSTM are shown in Table 9. Although these results are
reasonably strong, they are not competitive with our XGBoost experiments.

We further consider a bi-LSTM with attention, primarily as a way of analyzing
feature importance. The attention matrix in the form of a heatmap, appears in Fig. 8.
This matrix consists of the weights determined by the attention layer. In this matrix,
the x-axis represents the 31 features, while the y-axis is based on 20 consecutive
training samples. We observe that after several epochs, the attention seems to have
a tendency to converge to specific features—at the end of the training, we find
the most significant features are DD.period.t, DD.e.five, UD.Shift.r.o,
DD.n.l, and DD.l.Return.

5.3 Summary and Discussion

We summarize our experimental results for the CMU fixed-text dataset in Fig. 9.
The result shows that among all models we have considered, XGBoost with
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Fig. 8 Attention matrix heatmap
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Fig. 9 Summary of our results

data augmentation, denoted XGBoost-augment, achieves the highest accuracy
at 96.39%.

While XGBoost with data augmentation achieves the best results, MLP does
nearly as well. When comparing the training times for these two models, we find
that XGBoost with data augmentation take 18 minutes to train, while MLP requires
about half an hour. Both of these are very reasonable training times, but if great
efficiency during training is required, then XGBoost with data augmentation may
be the better choice.
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Fig. 10 Comparison to previous work

In Fig. 10 we provide a comparison of our best result to previous work. We see
that our best accuracy of 96.39% offers a modest improvement over previous work
in this field.

6 Conclusion and Future Work

In this paper, we tested and analyzed a wide variety of machine learning techniques
for biometric authentication based on fixed-text typing characteristics. We found
that XGBoost with data augmentation performed best, with MLP performing nearly
as well. Our results improved upon previous research involving the same dataset.

There are many avenues available for future work. For example, we model
optimization and model fusion would be interesting. For model optimization, we
could consider techniques from contrastive learning and self-supervised techniques
to see whether these approaches can improve our model.

As another example of possible future work, the robustness of various techniques
can be evaluated using an algorithm known as POPQORN [19]. The idea behind
POPQORN is to observe the effect of outside disturbances to the model and thereby
measure its robustness.
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Machine Learning-Based Analysis
of Free-Text Keystroke Dynamics

Han-Chih Chang, Jianwei Li, and Mark Stamp

Abstract The development of active and passive biometric authentication and
identification technology plays an increasingly important role in cybersecurity.
Keystroke dynamics can be used to analyze the way that a user types based on
various keyboard input. Previous work has shown that user authentication and
classification can be achieved based on keystroke dynamics. In this research, we
consider the problem of user classification based on keystroke dynamics features
collected from free-text. We implement and analyze a novel a deep learning model
that combines a convolutional neural network (CNN) and a gated recurrent unit
(GRU). We optimize the resulting model and consider several relevant related
problems. Our model is competitive with the best results obtained in previous
comparable research.

1 Introduction

Recently, passive biometric authentication and identification techniques have
received considerable attention. In this research, we consider such a passive
biometric based on keystroke dynamics. The resulting technique is applicable
to the authentication problem, and can also potentially play a role in intrusion
detection.

Keystroke dynamics are based on typing behavior, such as the duration of key-
board events, the duration of key presses, the time difference between key presses,
and so on. Such data can be collected from a standard keyboard by monitoring input
and recording the time intervals between each keystroke. Keystroke dynamics may
not be strong enough too be used as a standalone authentication system and hence
it is typically combined with another type of authentication, such as a password. In
its role as an IDS, keystroke dynamics may be competitive with other techniques.
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Compared with most other biometric technologies (e.g., fingerprint), keystroke
dynamics has advantages. For example, no special hardware is required to collect
keystroke features, and keystroke data can be obtained in a passive manner, which
reduces the burden on users. In addition, keystroke dynamics can be used as part
of a real-time intrusion detection system (IDS)—in contrast to a typical username
and password authentication system, where ongoing monitoring is not a realistic
option. In addition to playing a role in authentication, keystroke dynamics can serve
to enhance security after a user has been authenticated.

Disadvantages of keystroke dynamics based authentication might arise if a user
has an injured hand, a user is distracted, or the hardware (e.g., keyboard) has
changed. We believe that that these—and related—disadvantages can be overcome,
and we expect that the use of keystroke dynamics in security applications will
increase in the future.

In this paper, we analyze free-text keystroke dynamics data and train deep
learning models to distinguish between users. The features we consider are related
to keystroke timing, and are all obtained from standard keyboards. Furthermore, we
do not utilize the characters that are typed, and hence user privacy is maintained.

We focus primarily on a novel model architecture that combines a convolutional
neural network (CNN) and a gated recurrent unit (GRU). We experiment with non-
timing features and we employ concepts from Siamese networks [10], and we
experiment with pre-trained models and attention.

Here, we only consider free-text data [2]. As our free-text dataset, we use [33],
which contains keystroke data from 148 participants. The primary goal of this
research is to achieve a high accuracy from a biometric system that uses features
derived from keystroke dynamics. Among other desirable properties, we would
ideally like our models to be scalable and robust.

We experiment with a far wider variety of models and parameters than in any
previous work. Among many other aspects of the keystroke dynamics problem that
we consider, we determine feature importance for some of our complex models
using “explainability” concepts. For our best model, we obtain extremely high
accuracy, and an equal error rate that is comparable to previous work.

The remaining sections of this paper are organized as follows. Section 2 discusses
relevant background topics, with the focus on a survey of previous work. Section 3
describes the dataset used in our experiments and outlines the machine learning
techniques that we employ. Our free-text experimental results are presented in
Sect. 4, while Sect. 5 summarizes our main results, and include suggestions for
future work.

2 Background

In this section, we discuss keystroke dynamics and we provide a selective survey of
previous work in this field. We also introduce the machine learning models that we
employ in this research.
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2.1 Keystroke Dynamics

According to [25], “keystroke dynamics is not what you type, but how you type.”
Most previous work on typing biometrics can be divided into either classification
that relies on fixed-text or authentication based on free-text data [28]. For fixed-text,
the text used to model the typing behavior of a user and to authenticate the user is
the same (e.g., a password). This approach is usually applied to short text sequences.
Classification is generally based on timing features related to the character typed [7].
An thorough discussion of the fixed-text problem can be found in [28].

For the free-text case, the text used to model typing behavior of a user and
the text used to authenticate the same user is, in general, not the same. Free-text
usually implies long text sequences, and can be viewed as a continuous form of
authentication or as part of an IDS.

In the past, distance based methods were popular for the analysis of keystroke
dynamics. More recently, machine learning techniques have come to the fore,
including support vector machines (SVM), recurrent neural networks (RNN),
hidden Markov models (HMM), k-nearest neighbors (k-NN), multilayer perceptrons
(MLP), and so on [36].

Next, we discuss relevant previous work. Then, in the subsequent section, we the
dataset and learning techniques used in our experiments.

2.2 Previous Work

In this section, we first consider distance-based methods. Then we discuss more
recent work that is based on a wide variety of (mostly) modern machine learning
techniques.

2.2.1 Distance Based Research

The concept of keystroke dynamics can be traced back to the 1970s, at which time
the analysis was focused on fixed-text data [8]. Subsequently, Bayesian classifiers
based on the mean and variance in time intervals between two or three consecutive
key presses were applied to keystroke dynamics data [26]. For example, in [26] the
authors claim an accuracy of 92% over a dataset consisting of 63 users.

Typical of relatively early work in this field are nearest neighbor classifiers based
on distance measures. Euclidean distance or, equivalently, the L2 norm was often
used. More success was found using the L1 norm (i.e., Manhattan distance), which
makes it easier to single out the contribution made by individual components, In
addition, the L1 norm is more robust with respect to outliers. In [21], the best result
obtained from a distance-based technique uses a nearest neighbor classifier based on
a scaled Manhattan distance. Subsequently, statistical-based distance measures—
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such as Mahalanobis distance—were used with success in keystroke dynamics
research [3].

The equal error rate (EER) is a point on the ROC curve where the sum of the
false accept rate (FAR) and false rejection rate (FRR) is minimized. The EER is
a commonly used measure of success for biometric systems—the lower the value
of EER, the better the performance of a system. For example, in [21] the authors
achieve an equal error rate (EER) of 0.096.

2.2.2 Machine Learning Based Research

Recently, research in keystroke dynamics has been dominated by machine learning
techniques. Such techniques include K-nearest neighbors (k-NN) [35], K-means
clustering [16], random forests [22], fuzzy logic [11], Gaussian mixture mod-
els [14], and many, many more.

In comparison to the fixed-text problem, the number of research studies involving
free-text data is much smaller. In [34] it is claimed that the amount of research done
with fixed-text was eight times as much as that for free-text, as of 2013.

Free-text presents several challenges as compared to fixed-text. For example, in
free-text, the number of keys typed can differ greatly. There may also be word-
specific dependencies in free-text [31] that would not be relevant in fixed-text.

As an aside, we note that other keystroke features might be of interest. For exam-
ple, keystroke acoustics are considered in [30], where a dataset containing 50 users
yields an EER of 11%. This results shows that acoustic-based typing information
can be useful for authentication. However, an advantage of keystroke dynamics
based on timing features is that such information can be easily collected from any
standard keyboard.

3 Implementation

In this section, we first introduce the keystroke dynamics dataset considered in this
research. Then we discuss the various learning techniques that we have applied to
this free-text dataset.

3.1 Dataset

For our free-text data, we choose to use the so-called Buffalo dataset [33], which
was collected by researchers at SUNY Buffalo. This dataset contains long fixed-
text and free-text keystroke data from 157 subjects, with each subject using the
keyboard over three sessions [33]. For the fixed-text, users were requested to type
Steve Jobs’ Stanford commencement speech, which was split into three pieces. In
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free-text, users are requested to answer two survey style questions and one scene
description. The time duration within each session was about 50 minutes, with
about 5700 keystrokes, on average, and hence over 17,000 for the three sessions
combined. Furthermore, there was a 28 day time interval between sessions, and four
different types of keyboards were used. In this paper, we only consider the Buffalo
free-text keystroke data.

Note that the Buffalo free-text dataset is divided into two subsets, referred to as a
“baseline” subset and a “rotation” subset. In the baseline subset, there are 75 users
using the same type of keyboard across all three sessions. For the rotation subset,
there are 74 users using three different types of keyboard across their three sessions.
The data collected on each keystroke consists of the name of the key, the key event
(key-down or key-up), and a timestamp (measured in milliseconds).

3.2 Techniques Considered

In our free-text experiments, we also employ machine learning models that are
somewhat more complex and experimental in nature, as compared to those typically
used in comparable research. Next, we briefly discuss both of the models we
consider.

3.2.1 BERT

Bidirectional encoder representations from transformers (BERT) is a language
model developed by Google [6] that is designed to serve as an encoder in an encoder-
decoder model. The BERT encoder converts words into vector representations that a
corresponding decoder can then use to generate the output. BERT training is divided
into two major steps which are known as pre-training and fine-tuning. In the pre-
training phase, Google has used a large amount of text data to train the model in
an unsupervised manner. In fine-tuning, labeled training data is used to adapt the
model to a specific problem. In our experiments, we use the pre-trained model and
the fine-tuning is performed based on the words typed by a user.

3.2.2 CNN-GRU Model

We propose a novel hybrid CNN-GRU model that is designed to learn from a
sequence of individual keystroke features. This model was inspired by related work
in [20].

The core idea of using a GRU is that it can take advantage of sequential
information in a user’s typing behavior. Since a GRU is a type of recurrent neural
network, it has the ability to learn the current characteristics of the input based on
previous characteristics. In addition, we use a CNN before the GRU, with the aim
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of providing enhanced features to the GRU. In effect, this CNN step can be viewed
as a form of feature engineering. In our CNN, the length of the convolutional kernel
corresponds to the number of sequences that are covered. The convolution operation
has the ability to produce a “higher-level” keystroke signature. Subsequently, these
signatures serve as the input to the GRU. After training the GRU, a user’s keystroke
behavior pattern is obtained.

We also implement dropout within the proposed model. The idea of dropout was
introduced in [32] as a regularization technique for deep neural network. As the
name indicates, for dropouts we randomly drop nodes (neurons) along with their
connections from the neural network during training. This has the effect of training
each mini-batch over a different network. Dropouts serve to prevent overfitting
by forcing nodes that would likely otherwise atrophy to be active in the learning
process.

For this proposed model, we use the BCEWithLogitalLoss activa-
tion function, as opposed to the more typical sigmoid. According to [27],
BCEWithLogitalLoss is more stable than sigmoid or BCELoss.

4 Free-Text Experiments

This section provides our experiments and results for the machine learning tech-
niques discussed above when applied to the Buffalo free-text dataset. We also
provide some analysis of our experiments.

The Buffalo free-text dataset contains three different sessions. Thus, we perform
threefold cross validation with each session serving as a fold. We use the notation
s01-train-s2-test to mean that we use sessions 0 and 1 for training, with session 2
reserved for testing—the notation for the other folds is analogous.

4.1 Text-Based Classification

First, we attempt to classify based on the text typed by users. Ultimately, we want to
classify users based on their keystroke dynamics, but by first focusing solely on the
characters typed, we can see how much information is contained in users’ differing
responses, as opposed to their typing characteristics.

For our text-based experiment, we use BERT for multi-classification of the 148
users in the free-text part of the Buffalo dataset, based on words typed. This
experiment, which we refer to as BERT-word, was complicated by various typos
that had to be corrected.

The result of this experiment is extremely poor, and testing loss does not decrease
significantly. One problem may be that the dataset is too small, as the training data
for each user consists of only about 15 lines of words, with 2 lines for testing. Note
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ID[x] ID[y] H[x] H[y] D[x]U[y] D[x]D[y]

Fig. 1 Keystroke timing feature vector

that each line contains about 18 words. In a typical NLP application, we would have
hundreds of times more data for training and testing.

The bottom line is that we are not able to classify users based on the actual
text that was typed with an accuracy greater than guessing. Although additional
experiments might be helpful, it appears that there is little useful information
contained in the raw text. We now turn our attention to keystroke dynamics based
models.

4.2 Keystroke Dynamics Models

Here, we apply and analyze our novel CNN-GRU architecture, which we outlined
in Sect. 3.2.2, above. This model is based only on keystroke dynamics, as opposed
to the actual text typed by a user.

The goal here is to build a model that could be used as part of an ongoing
intrusion detection system (IDS). That is, the model would be used to periodically
verify the identity of a user in real time.

For our dataset, we employ the baseline subset of the Buffalo free-text, in which
each of 75 users typed across three sessions. After determining the basic parameters
of our model, we consider a wide variety of modifications.

4.2.1 Features

We consider three types of features in our experiments, namely, timing features, rate
features (discussed below), and “fusion.” For the fusion case, we simply combine
the timing and rate features.

First, we consider timing features only. In this case, we transform the free-
text keystroke data into a fixed-length keystroke sequence, then further convert the
sequence into a keystroke vector. The format of the keystroke vector is presented
in Fig. 1, where x and y are consecutive keystrokes. Note that x and y are simply
numeric values representing the position in the keystroke sequence—the key that
was pressed in not recorded. That is, we do not use what was typed as a feature, just
how it was typed. This assures that a user’s typing is not revealed by our analysis.

The notation H[x] is the hold duration of the key, U[x] is the key-up time (the
timestamp when key is released), and D[x] is the key-down time (the timestamp of
the key was pressed). Therefore, D[x]U[x] is the time duration that a key was
pressed until it was released, and D[x]D[y] is the time duration between two
consecutive keys being pressed. In all cases, x and y indicate any key being pressed.
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After obtaining the keystroke vectors, we normalize the timing features. As
discussed in [37], this normalization results in features with mean 0 and variance 1.

Next, we consider “rate” features. Traditionally, keystroke dynamics is based on
timing, as discussed above. However, other typing habits can also serve as indicators
of typing behavior. For example, features that relate to the use of the left and right
hands may help the model to distinguish between users.

In addition to conventional timing features, we further consider seven features
consisting of the rate at which various keys are pressed. Specifically, we consider
rate at which each of the delete, left shift, right shift, left caps, right caps, control
key, and the combination of left and right arrow keys are pressed. These features
will surely be useful for distinguishing a user’s handedness, but they may also be
useful as more general indications of typing style.

As a first experiment, we consider different numbers of key-strokes for analysis.
Specifically, we consider conventional key-length 100 and rate features with key-
length 500. For each user, we append the rate features after the timing features. We
have tested models with three different kinds of features, namely, timing only, rate
only, and combined. The accuracy of the timing feature only is 84.72%, while the
accuracy improves to 90.82% after combining with the rate features.

For some users, the rate features make a large difference, but for others they
actually make the results worse. For example, user 1 with timing feature alone has
an accuracy is only about 60%. But if we combine with the rate feature, accuracy
increases to 95%. In this case, the mixed features seem to be effective. However,
for user 7, the timing feature alone yield an accuracy of 82%, but if we include the
rate features, the accuracy drops to 50% for the fusion case, while considering rate
alone, the accuracy is 87.5%. In some cases it is better to use timing alone while in
some other cases, it is better to combine both, and yet other cases it is best to just use
rate features. But in most cases, the accuracy is increased when using the combined
features. The result of first seven users is shown in Fig. 2.

Finally, we consider feature “fusion,” that is, we combine timing and rate
features, using the same key length for both. We have also experimented with
independent key-lengths, but this does not improve on the results presented here.

Next, we combine the rate features with the timing feature using the idea from
Siamese network [10]. A Siamese network has two inputs, which are fed into two
neural networks that, respectively, map the inputs into a new space. A distance-
related loss function is used to train the network parameters, so that the trained
network can measure the similarity of the two inputs. For the rate features, we apply
a linear transformation using the torch.nn.Linear() module from PyTorch,
while conventional features use a multi-kernel CNN-GRU. We then concatenate the
two features together and pass them through a fully connected layer to obtain the
desired output.

The results of our fusion experiments are summarized in Table 1. We observe that
when we apply longer key lengths, the result tend to improve. However, the reason
we stop at key length 250 is that some users typed much less than was typically the
case. Regardless, these experiments show that the this fusion approach is effective,
and achieves very high accuracy for this authentication problem.
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Table 1 Feature fusion for different key lengths

Parameters Test session

Model Kernel Key-length s0 s1 s2 Average

CNN-GRU 2,2,2 50 89.2% 89.7% 89.6% 89.5%

2,2,2 150 92.5% 93.1% 93.7% 93.1%

2,2,2 200 93.4% 93.6% 94.3% 93.8%

2,2,2 250 94.6% 94.1% 93.8% 94.2%

Table 2 Best result for
parameter tuning of kernel

Parameters

Model Kernel Out-channel RNN-size Accuracy

CNN-GRU 2,2,2 32 8 92.10%

4.2.2 Parameter Tuning

Next, we perform parameter tuning on our CNN-GRU model. The hyperparameters
that we vary include the learning rate, kernel size of the CNN, and keystroke
length, among others. Since our model is implemented in Cuda [12], we are able
to efficiently test many parameter values.

As discussed above, our original model uses a single kernel CNN-GRU model
and achieves an average accuracy of 84.7%. We consider a multi-kernel CNN, where
the kernel is a list so that different combinations can be tested. When we include
the rate features, we obtain a best average accuracy of 92.1% using the model
parameters in Table 2.

In a multi-kernel model, when the kernel sizes differ, features are observed on
different scales—when the kernel size is large, the receptive field is bigger and
more of the input is observed. The tradeoff is that larger kernel sizes tend to result
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Table 3 Parameter tuning
CNN kernel

Test session

Model Kernel s0 s1 s2 Average

CNN-GRU 2 85.0% 85.6% 83.5% 84.7%

2,4,6 89.2% 90.1% 90.7% 90.0%

2,4,6,8 87.9% 88.1% 87.9% 88.0%

2,2,2 91.7% 92.4% 92.3% 92.1%

4,4,4 89.6% 90.4% 90.0% 90.3%

Table 4 Parameter tuning CNN out channel

Parameters Test session

Model Kernel Out-channel s0 s1 s2 Average

CNN-GRU 2 16 90.9% 90.4% 90.7% 90.6%

2 32 92.4% 92.1% 91.4% 92.0%

2 48 92.6% 92.4% 91.8% 92.3%

2 64 92.6% 92.2% 91.8% 92.2%

2 96 91.6% 92.3% 92.3% 92.1%

2 128 92.1% 92.5% 91.6% 92.1%

Table 5 Parameter tuning CNN convolution

Parameters Test session

Model Conv. Learning rate s0 s1 s2 Average

CNN-GRU 3 0.001 91.1% 90.6% 89.9% 90.5%

3 0.01 91.6% 92.3% 91.6% 91.8%

6 0.01 92.1% 92.1% 91.8% 91.8%

9 0.01 91.5% 92.1% 90.8% 91.5%

in overfitting. Furthermore, when we combine different kernels together, padding
issues arise. The purpose of padding is to make the size of the feature map consistent
with the size of the original image, with padding determined by the size of the filter
and the size of the stride. Padding enables us to use all of the actual data.

Our multi-kernel experiment results are given in Table 3. None of these results
improve on our best previous accuracy of 92.3%.

Another parameter of interest in our CNN is the “out channel” which is the
number of channels produced by the convolution. The results obtained when
experimenting with this parameter are given in Table 4. Here, we obtain a marginal
improvement on our previous best accuracy.

We also conduct experiments varying the depths of convolutional layers. These
experimental results for three to nine layer modes are summarized in Table 5.
Somewhat surprisingly, these result indicate that higher layer models do not seem to
improve over our 3-layer model. In the realm of future work, it would be interesting
to experiment with other deep networks, such as ResNet, DenseNet, and SENet.
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Table 6 Analysis of attention layer

Parameters Test session

Model Kernel Attention s0 s1 s2 Average

CNN-GRU 2 — 90.16% 88.37% 88.54% 89.02%

2 � 89.91% 89.17% 88.92% 89.00%

2,2,2 — 91.70% 92.40% 92.30% 92.10%

2,2,2 � 92.00% 92.40% 92.50% 92.30%

Table 7 Attention and rate features (baseline subset)

Test session

Model Hyperparameter Value s0 s1 s2 Average

CNN-GRU CNN kernel 2 95.4% 94.5% 94.0% 94.6%

CNN out 48

RNN size 8

Learning rate 0.001

Weight-decay 0.00001

Step-scheduler 70

Key-length 250

Epochs 80

Attention Yes

Rate features 7

Next, we experiment with an attention mechanism in both the single kernel and
multi-kernel cases. When using conventional features only, we obtain a marginal
improvement, as summarized in Table 6.

After experimenting with additional parameter tuning, we find the best model
uses the parameters in Table 7. These parameters will be used in all subsequent
experiments.

4.2.3 Fine Tuning

In this section, we consider a model for multi-classification of all 75 users (as
discussed above) and then use this model in a pre-trained mode to construct a binary
classification model. We refer to this two-step process as “fine tuning.”

Note that here we consider binary classification of each user, and hence each
user will have their own model. We then consider the average case for each of the
resulting 75 models to obtain our accuracy results. In the multi-classification stage,
we construct a single model among 75 users that we then use as a pre-trained model
to construct each of the binary classifiers via “fine-tuning.”

We have experimented with a wide variety of parameters at the multiclass stage.
We obtain a best result of 76.96% using the parameters shown in Table 8.
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Table 8 Best parameters for multi-classification (baseline subset)

Test session

Model Hyperparameter Value s0 s1 s2

CNN-GRU CNN kernel-size 3 77.74% 77.38% 76.96%

CNN out-channel 192

RNN size 32

Learning rate 0.01

Weight-decay 1e−5

Step-scheduler [80,350,390]

Key-length 250

Epochs 400

Table 9 Fine-tune results (baseline subset with freeze)

Parameters Test session

Model Freeze Learning rate s0 s1 s2 Average

Fine-tune — 0.01 96.7% 97.4% 97.1% 97.1%

— 0.001 97.3% 97.3% 96.9% 97.2%

— 0.0001 94.5% 95.2% 94.6% 94.7%

� 0.01 94.4% 94.7% 93.6% 94.2%

� 0.001 94.0% 93.9% 94.0% 94.0%

� 0.0001 84.5% 84.5% 85.1% 84.7%

Table 10 Test and validation ratios

Test Validation

User ID Pos Neg Ratio Pos Neg Ratio

1 310 12,797 0.02422 2643 115,319 0.0229

2 182 12,925 0.01408 1673 116,289 0.0144

3 248 12,859 0.01929 2109 115,853 0.0182

4 173 12,934 0.01338 1697 116,265 0.0146

5 184 12,923 0.01424 1607 116,355 0.0138

After obtaining our best pre-trained model, we further apply it in a binary classi-
fication model. In the best case, we obtain an accuracy of 97.2%, as summarized in
Table 9.

It can be seen from the result in Table 10 that the ratio of positive samples to
negative samples in the validation and test sets is roughly equal, which means that
we have data with similar distributions for evaluation and testing. In Table 10, we
consider user IDs from 1 to 5.

In addition, both the training and validation sets use random sampling, while the
test set runs on all samples. Therefore, in the test set, the number of samples for
label 0 (not users) is much more than the number of samples for label 1 (users). The
results shown in Table 11 indicate that a model that can better discriminate samples
with label 0 will be stronger.
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Table 11 Test and validation Test session

Data s0 s1 s2 Average

Val 89.67% 87.98% 87.70% 88.45%

Test 94.74% 89.22% 90.05% 91.34%

Table 12 Label-swap Test session

Metric s0 s1 s2 Average

Accuracy 94.74% 89.22% 90.05% 91.34%

Precision 99.60% 99.58% 99.49% 99.57%

Recall 95.05% 89.45% 90.40% 91.63%

F1 score 97.25% 94.04% 94.46% 95.25%

We further analyze the precision, recall, F1 score, and perform parameter
adjustments for the labels 0 and 1. Note that originally, label 1 is used as the positive
label (user). However, since the data is so imbalanced, we swap the positive and
negative label to observe the result on the multi-kernel (2-2-2) model. These label
switching results are shown in Table 12. We observe that this model has a strong
ability to detect intruders—the precision in the best case is virtually 100%. This
experiment indicates that our model would work well as an IDS.

4.2.4 GRU with Word Embedding

In addition to keystroke features, we experiment with some text-based features in
out GRU model. This does raise security concerns, since we must record what a
user actually types, as opposed to simply using keystroke dynamics. But, we want
to determine whether this additional level of detail can result in an improved model.

We use the nn.Embedding for word vectors in PyTorch, which provides a
mapping between words and their corresponding vectors. The embedding weights
can be trained, either by random initialization or by pre-trained word vector
initialization. This technique can be used to determine the positional relationship
of two keys on the keyboard. For example, keys that are positioned next to each
other can be classified as adjacent, and their vector should be similar. Furthermore,
other relationships can be determine, such as keys that are pressed with the left hand,
as compared to those that are pressed with the right hand.

We implement this word embedding in our GRU model. Note that no CNN
model is used in this experiment. We compare the experimental results for different
dimensions of word embedding vectors with and without attention. The result of
these experiments are summarized in Table 13. Note that embedding weights are
trained by random initialization. Unfortunately, this model suffers from overfitting,
as can be seen from the graphs in Fig. 3.

In an attempt to deal with this overfitting issue, we use Word2Vec [23, 24] to
generate vector embeddings. Specifically, we train on a sentence in two directions



344 H.-C. Chang et al.

Table 13 Word embedding for GRU

Parameters Test session

Model Embedding size Attention s0 s1 s2 Average

GRU 3 — 85.53% 83.68% 83.54% 84.25%

3 � 85.10% 84.52% 82.67% 84.10%

5 — 83.22% 81.98% 80.76% 81.99%

5 � 83.41% 81.95% 80.64% 82.00%

10 — 81.31% 79.29% 78.57% 79.72%

10 � 80.96% 79.27% 77.99% 79.41%

Fig. 3 Word embedding with GRU showing overfitting

Table 14 Word embedding and pre-trained vectors

Parameters Test session

Model Embedding size Pre-trained s0 s1 s2 Average

GRU 3 — 85.53% 83.68% 83.54% 84.25%

3 � 84.99% 83.47% 82.53% 83.66%

with random text length from 6 to 12 characters. We find that keys that are close
together result in a higher score. For example, A and S, which are adjacent on a
standard QWERTY keyboard, have a cosine similarity of 0.9918, while A and P,
which are on opposite ends of the keyboard, have a cosine similarity of 0.7891.

The experimental results obtained of comparing random initialization and initial-
ization with pre-trained vectors using a GRU model are shown in Table 14. Again,
these results still clearly result in overfitting. When embedding is used, the model
can reach a training accuracy of about 0.998, but the loss during testing increases.

When we apply word embedding in the CNN-GRU model, the overfitting issue
is resolved—these results are given in Table 15. However, the result of word
embedding do not outperform our previous experiment. This result is significant,
since it shows that for our free-text dataset, there is nothing to be gained by using
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Table 15 Word embedding for CNN-GRU

Parameters Test session

Model Kernel Embedding s0 s1 s2 Average

Word-CNN-GRU 2 2 91.28% 93.07% 88.56% 90.07%

CNN-GRU 2,2,2 None 94.74% 89.22% 90.05% 91.34%

Table 16 CNN-transformer
results

Test session

Model s0 s1 s2 Average

CNN-encoder 89.89% 86.22% 84.97% 87.03%

the actual text typed by a user, as compared to simply using keystroke dynamics.
Since using the text would raise serious privacy concerns, it is beneficial that we do
not have to use such data to obtain optimal results.

4.2.5 CNN-Transformer

Next, we experiment with a transformer technique on our CNN-GRU model, which
we refer to as the CNN-Transformer model. Specifically, we apply positional
encoding before the encoder layer—the result of this experiment is shown in
Table 16. This result is significantly worse than our previous best model, so we
do not pursue this approach further.

4.2.6 CNN-GRU-Cross-Entropy-Loss

Cross entropy can be used to determine how close the actual output is to the expected
output. This loss function combines the two functions of nn.LogSoftmax()
and nn.NLLLoss(). This function is considered useful when dealing with an
imbalanced training set, and we have such a dataset.

In this experiment, we change the activation function from

BCEWithLogitsLoss

to

CrossEntropyLoss.

Furthermore, we calculate the output during training and testing with softmax and
argmax, respectively. The result for this experiment is given in Table 17. We see
that this is a strong model, indicating that imbalance may be an issue that we should
address. Nevertheless, this experiment does not improve on our best results.
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Table 17 CNN-GRU-cross-entropy results

Test session

Model s0 s1 s2 Average

CNN-GRU-cross-entropy 98.3% 96.7% 95.2% 96.7%

Table 18 Multi-classification on rotation subset

Parameters

Model Kernel Out-channel RNN-size Epochs Accuracy

CNN-GRU 2 96 8 120,240 58.22%

16 192 64 40,80 49.16%

Table 19 Fine-tuning on rotation subset (without freeze)

Test session

Model Learning rate s0 s1 s2 Average

CNN-GRU 0.001 86.9% 83.7% 91.1% 87.2%

0.01 89.8% 86.7% 93.2% 89.9%

4.2.7 Rotation Subset

To this point, our best model uses the fine-tuning technique discussed in Sect. 4.2.3.
Based on this model, we also consider the so-called rotation subsets of the Buffalo
free-text dataset, in which 73 users use different keyboards in different sessions.

In this experiment, we build a multi-classification model on the rotation sub-
set and obtain the result shown in Table 18. Compared to our previous multi-
classification results, the classification here is much worse. This is to be expected,
since each session of the data is obtained from a different keyboard.

Next, we use a multi-classification model as a pre-trained model to build binary
classifiers, analogous to the fine-tuned models discussed above. The fine-tune results
based on the rotation subset is shown in Table 19.

From these results, we observe that the use of different keyboards will likely
create serious difficulties for modeling based on keystroke dynamics. Thus, we
conclude that different models will be needed for the same user when using different
keyboards.

4.2.8 Robustness

We also want to consider the robustness of our models. There are various definitions
of robustness, but in general, we want to quantify the effect of a changing environ-
ment on a model. There is no standard way to measure robustness for keystroke
dynamics. Here, we use a technique known as synthetic minority oversampling
technique (SMOTE) to generate synthetic data that has similar characteristics to
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=⇒

Fig. 4 SMOTE illustrated

Table 20 SMOTE results for CNN-GRU

Parameters Test session

Model Kernel SMOTE ratio Result s0 s1 s2 Average

CNN-GRU 2,2,2 — Validation 89.57% 87.56% 87.66% 88.26%

Test 94.74% 89.22% 90.05% 91.34%

8 0.1 Validation 79.76% 77.91% 77.93% 78.35%

Test 98.05% 97.39% 96.50% 97.31%

8 0.5 Validation 73.47% 71.02% 71.32% 71.94%

Test 98.49% 98.32% 98.07% 98.26%

the training data. We then measure robustness in the sense of how well our models
perform on this SMOTE-generated data.

SMOTE is typically applied as a data augmentation technique to an imbalanced
dataset. The idea behind SMOTE is to generate similar samples to the training
data using a straightforward interpolation approach [9]. The concept of SMOTE
is illustrated in Fig. 4, where the hollow circles on the right-hand side represent
augmented data points that are obtained by interpolating between actual data points.

In this set of experiments, we use 6×250 dimensional array as the feature vector,
and use the imbalanced-learn package in Python package to generate SMOTE
data points. First, we use SMOTE to increase the positive samples and apply a
“smoothing ratio” of 0.1 which means that we increase in the number of positive
samples to 0.1 times the number of negative samples. We also experiment with a
smoothing ratio of 0.5. The training and validation results of these experiment are
summarized in Table 20.

The performance on the SMOTE data shows that after augmenting, the accuracy
decreases on the validation set, while the performance on the test set has improved.
The is typically a sign of overfitting, and we speculate that SMOTE has, in effect,
introduced noise that has resulted in this overfitting. As further evidence, when
adding a higher proportion of SMOTE data, the performance on the validation set
reduces further, while performance on the test set improves.

We also perform experiments for different ratios of under sampling. That is, we
reduce the number of negative samples to a specified proportion of the positive
samples. The results of these experiments are given in Table 21. As expected, these
results show minimal change, as compared to the corresponding base models in
Table 20.
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Table 21 SMOTE results for CNN-GRU with undersampling

Parameters Test session

Model Kernel SMOTE ratio Result s0 s1 s2 Average

CNN-GRU 2,2,2 — Validation 89.57% 87.56% 87.66% 88.26%

Test 94.74% 89.22% 90.05% 91.34%

8 0.1 under Validation 82.82% 81.40% 80.80% 81.67%

Test 93.61% 89.90% 90.47% 91.33%

8 0.5 under Validation 82.70% 80.64% 80.49% 81.28%

Test 93.38% 91.11% 89.96% 91.48%

8 1.0 under Validation 82.60% 81.09% 80.77% 81.49%

Test 93.03% 91.17% 90.01% 91.40%

Table 22 SMOTE ratio 0.5
with label-switching

Test session

Metric s0 s1 s2 Average

Accuracy 98.49% 98.22% 98.08% 98.26%

Precision 98.81% 98.79% 98.81% 98.80%

Recall 99.67% 99.42% 99.24% 99.44%

F1 score 99.24% 99.10% 99.02% 99.12%

We further analyze the precision, recall and F1 score of our models. Note that
in these experiments we also perform label switching. As discussed above, label
switching may provide a better indication of the utility of a model in the IDS case.
The results of these experiments are given in Table 22.

Comparing the result for the “label-switch” case in Table 12, we conclude that
the higher the SMOTE ratio, the higher the recall, and the lower the precision. This
implies that the model is more capable of capturing data with label 0 (which, due
to label switching, represents the positive case), but the accuracy of the model’s
judging label as 0 is also lower.

4.2.9 Explainability

Next, we briefly consider the “explainability” of our model. That is, we would
like to gain some insight into how the model is actually making decisions. Most
machine learning techniques are relatively opaque, in the sense that it is difficult to
understand the decision-making process. This is especially true of neural network
based techniques, and since our model combines multiple techniques, it is bound to
be even harder it interpret directly.

Here, we consider local interpretable model-agnostic explanations (LIME) [29]
to try to gain insight into the role of the various features in our model. LIME perturbs
the input and compares the corresponding outputs. If a small change in an input
feature causes the classification to switch, then we can judge the importance of a
specific feature to the model’s decision-making process.
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Fig. 5 LIME illustrated

The concept behind LIME is illustrated in Fig. 5, where the solid black circles
and hollow red circles represent two categories, and the blue curve is the decision
boundary between the classes. LIME uses a simplified linear model—represented in
the figure by the dashed line—to predict the classes. Locally, this linear model will
likely be very accurate, although it would typically fail badly globally. By using a
simple linear model, we can, for example, more easily determine the most relevant
features.

In our LIME experiment, we select user 46 and the “s12-train-s0-test” case. For
this experiment, the best validation accuracy we obtain is 96.88% and the best test
accuracy is 99.31%.

For the sake of brevity, we omit the details of our LIME experiments but, in
summary, we find that LIME indicates that our model focuses more on holding time
and difference time. In general, it appears that a good model focuses less on key-id,
which indicates that it may not be a good feature to distinguish users. For additional
details on our LIME experiments, see [5].

4.2.10 Equal Error Rate

The equal error rate (EER) is an objective standard to measure classifiers. In a
biometric system, the false accept rate (FAR) is the rate at which a user can
authenticate as someone else, whereas the false reject rate (FRR) is the rate at
which a user cannot authenticate as themselves. When these rates are equal, the
value is called equal error rate. The lower the EER value, the higher the accuracy
of the biometrics system. In practice, we would likely not set the system parameters
so that the FAR is equal to the FRR. For example, in a financial application that
requires high security, the FAR should be very low, which necessitates a somewhat
higher FRR. Nevertheless, the EER allows us to easily compare different biometric
systems.

Here, we use a sigmoid function for output, so that we can obtain the prediction
result in the form of a probability. Then we use the prediction and ground-truth to
calculate the confusion matrix. After obtaining labels, we construct an ROC curve
to obtain the FPR and TPR and, finally, we determine the EER from the ROC curve.
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Table 23 EER for various models (baseline subset)

Model s01-train-s2-test

Pre-trained word embedding with CNN-GRU 0.1091

CNN-Transformer-encoder 0.1257

CNN-GRU-cross-entropy-loss 0.1502

CNN-GRU-without-sampler-at-best-val 0.0609

CNN-GRU-without-sampler-at-best-eer 0.0611

CNN-GRU-without-sampler-at-non-best-val 0.0594

CNN-GRU-with-sampler 0.0826

CNN-GRU-without-sampler-fine-tune 0.0412 (0.7187-multi)

CNN-GRU-without-sampler-fine-tune 0.0386 (0.7599-multi)

Table 24 EER for various
models (all subsets)

Model s01-train-s2-test

CNN-GRU-attention-without-sampler 0.1389

CNN-GRU-attention-non-without-sampler 0.1239

CNN-GRU-fine-tune 0.1029

Table 25 Best model for EER (all subsets)

Test session

Model s0 s1 s2 Average

CNN-GRU-without-sampler-fine-tune 0.0690 0.0841 0.0557 0.0696

The EER results with s01 for training and s2 for testing for various models
discussed above are provided in Table 23. The best EER we obtain is 0.0386, and
when we use this model over all sessions we obtain an average EER of 0.0394.

After determining the best result on the baseline subset, we then apply this model
to all 148 users. The resulting EER for all subset for different models is shown in
Table 24. However, we see that the result is poor, which is apparently due to the
rotation subset, where different keyboards are used across sessions, and the fact that
some users do not type much data in the baseline subset. Thus, it is more realistic
to set a threshold for the key length with different users—in this case, we obtain a
best EER result in Table 25. From the last two lines in Table 25, we observe that the
model that has the higher multi-classification accuracy results in a lower EER for
the fine-tuned case.

4.2.11 Knowledge Distilling

Knowledge distilling is somewhat analogous to explainability. In knowledge distil-
lation we “compress” a model, in the sense that we try to replace a complex model
with a much simpler one that achieves comparable results. The goal is to extract the
essence of a complex model within a much simpler form.
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Table 26 EER results for
knowledge distilling

Model s01-train-s2-test

Student-1-Teacher-1 0.1333

Student-1.5-Teacher-0.5 0.1409

Student-1.99-Teacher-0.01 0.1762

Student-0.99-Teacher-0.01 0.1355

Student-0.5-Teacher-1.5 0.0864

Student-0.5-Teacher-1.99 0.1097

Student-0.01-Teacher-1.99 0.0925

Table 27 Results for tuning pos-weight (baseline subset)

pos-weight

Metric Fine-tune 0.1 2 10 50

ERR 0.0395 0.0428 0.0413 0.0392 0.0813

Accuracy 99.33% 99.41% 99.21% 99.03% 96.81%

Precision 78.46% 84.57% 74.82% 67.51% 50.87%

Recall 76.88% 69.45% 78.92% 83.28% 82.77%

F1 score 74.63% 72.92% 73.40% 71.64% 56.64%

AUC 98.84% 98.74% 98.87% 98.88% 98.28%

This method knowledge distilling was first proposed in [4]. Then in [13] a
“teacher” and “student” model was proposed from the concept of mentoring. The
output of the teacher network is used as a soft label to train a student network. For
our model, the EER results obtained based on teacher-student knowledge distilling
with different parameters are shown in Table 26.

Note that in this experiment, we simply use a multi-classification model as the
teacher and the corresponding binary classification as the student model. With this
type of approach, we hope to see that the teacher can improve the results given by
the student model, as indicated by a low EER. However, in our experiments the EER
is not competitive with our fine tuning model. Hence, we cannot draw any strong
conclusions from this experiment, but this is worth pursuing as future work.

4.2.12 Weighted Loss

In the CNN-GRU fine-tune model, we select BCEWithLogitsLoss as our
criterion to calculate the loss. However, we did not specify the parameter of
pos-weight which is the weight of positive samples in the original experiment.
In this experiment, we use the fine-tune model as a backbone and try to tune
the positive weights and compare with our previous results. The results of these
experiments are given in Table 27.

Note that the results in Table 27 are average among the three different test ses-
sions. From the result in Table 27, we observe that when the value of pos-weight
is 0.1, the precision is best, while the recall rate decreases, as compared to the
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Table 28 Result for
ensembles (baseline subset 1)

Model

Metrics Ensemble Fine-tune Softmax Transformers

ERR 0.082 0.0395 0.1644 0.1449

Accuracy 99.28% 99.33% 96.80% 87.03%

Precision 76.71% 78.46% 41.69% 19.10%

Recall 78.34% 76.88% 71.30% 76.26%

F1 score 74.29% 74.63% 47.46% 23.21%

AUC 95.18% 98.84% 84.23% 93.37%

Table 29 Various model
combinations

Model Combination

A Fine-tune, pos-w 0.1, pos-w 2, pos-w 10, pos-w 50

B Fine-tune, pos-w 0.1, pos-w 2, pos-w 10

C Fine-tune, pos-w 0.1, pos-w 10

Table 30 Results for
ensembles (baseline subset 2)

Model

Metrics Fine-tune A B C

ERR 0.0395 0.0285 0.0312 0.0322

Accuracy 99.33% 99.41% 99.69% 99.37%

Precision 78.46% 81.31% 82.98% 82.32%

Recall 76.88% 80.92% 78.79% 77.99%

F1 score 74.63% 78.67% 78.31% 77.75%

AUC 98.84% 99.28% 99.24% 99.18%

original fine-tune model. Moreover, when the value of pos-weight is higher, the
precision decreases while the recall increases, which nicely illustrates the inherent
trade-off between these measures. Based on these results, we can adjust the value of
pos-weight depending on different application scenarios.

4.2.13 Ensemble Models

In this section, we consider three ensemble models which include various com-
binations of fine-tuning, softmax, and transformer. The results for these cases are
given in Table 28. Note that the results in Table 28 are each an average among three
different test sessions. Since the results for the softmax and transformer models are
much worse than the fine-tune model, the resulting ensembles only improve slightly
in terms of precision and recall, and only for some users.

We further ensemble the models with different pos-weight values, with the
fine-tune model as the backbone. The parameters of the three ensembles considered,
which we denote as models A , B, and C , are specified in Table 29. Note that the
results in Table 30 represent the average among the three different test sessions. We
observe that the EER, precision, and recall rates all improve with these ensemble
techniques.
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Fig. 6 Accuracies and EER of models (baseline subset)

4.2.14 Discussion

Figure 6 summarizes the results of our free-text experiments, both in terms of EER
and accuracy. Note that the best accuracy and the best EER were both achieved with
the CNN-GRU-without sampler-fine-tune model.

In our experiment, we have applied a sampler to train so as to deal with the
situation of imbalanced data. As for feature engineering, we transform the data
into a vector which includes the label of the key and the timing features. Then,
we compute the mean and variance and center the data, which enable us to achieve
better performance.

We perform parameter tuning on the models and obtain a great improvement in
accuracy. The result shows that longer keystroke sequence and larger out-channel
size generally result in higher accuracy, while more convolutions do not improve
our model. After parameter tuning, we apply an attention layer on the outputs of the
GRU and find that some users’ accuracy slightly improves. Moreover, we expand the
keystroke dynamics features to include rate features. Although the accuracy result
of do not greatly improve, the EER does achieve better performance.

We also use a multi-classification model as a pre-trained model for binary
classification. The results indicate that such a pre-trained multi-classification model
can achieve higher accuracy and a lower EER for the corresponding binary
classification model.

Finally, we compare our free-text experiments to previous work. From the results
in Table 31, we see that our best model is competitive with the best EER previously
obtained, while the accuracy of several of our models exceed 99%.
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Table 31 Comparison to previous work for Buffalo free-text dataset

Research Models Accuracy EER

Lu et al. [20] CNN-RNN — 0.0236

Ayotte et al. [1] ITAD metrics — 0.0530

Huang et al. [15] SVM — 0.0493

Our research Fine-tune CNN-GRU Greater than 99% 0.0690

5 Conclusion and Future Work

In this paper, we developed and analyzed machine learning techniques for bio-
metric authentication based on free-text data. We focused on a novel CNN-GRU
architecture, and we experimented with an attention layer, rate features, pre-trained
models, ensembles, and so on. The maximum multiclass classification accuracy that
we achieved with our model was 99.31%, with an EER of 0.069. As far as we are
aware, this is the best accuracy attained to date for the Buffalo free-text dataset, and
our EER is competitive with the best results previously obtained. In addition, for
our CNN-GRU model, we considered “explainability” and knowledge distillation,
among many other relevant topics.

The high accuracy and low EER for our free-text results indicate that passive
authentication and intrusion detection may be practical, based on keystroke dynam-
ics. That is, in addition to an initial authentication at login time, a user can be
periodically re-authenticated by passively monitoring typing behavior. In this way,
intrusions can be detected in real-time, with a minimal burden placed on users and
administrators.

There are many avenues available for future work. For example, we plan to
perform extensive model optimization and model fusion. For model optimization,
we will consider techniques from contrastive learning [18] and self-supervised
learning [19] to see whether these approaches can improve our model.

As another example of possible future work, we plan to evaluate the robustness
of our technique using an algorithm known as POPQORN [17]. The idea behind this
technique is to observe the effect of outside disturbances to the model and thereby
determine its robustness.

Of course, more and better data is always useful, and this is especially true in
free-text analysis. Having more realistic and longer-term free-text datasets over a
larger number of users would add credence to the results obtained in any research.
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Free-Text Keystroke Dynamics for User
Authentication

Jianwei Li, Han-Chih Chang, and Mark Stamp

Abstract In this research, we consider the problem of verifying user identity
based on keystroke dynamics obtained from free-text. We employ a novel feature
engineering method that generates image-like transition matrices. For this image-
like feature, a convolution neural network (CNN) with cutout achieves the best
results. A hybrid model consisting of a CNN and a recurrent neural network (RNN)
is also shown to outperform previous research in this field.

1 Introduction

User authentication is a critically important task in cybersecurity. Password based
authentication is widely used, as are various biometrics. Examples of popular
biometrics include fingerprint, facial recognition, and iris scan. However, all of
these authentication methods suffer from some problems. For example, passwords
can often be guessed and are sometimes stolen, and most biometric systems require
special hardware [14, 17, 23]. Moreover, research has shown, for example, that the
accuracy of face and fingerprint recognition on the elderly is lower than for young
people [13]. Thus, an authentication method that can resolve some of these issues is
desirable.

Intuitively, it would seem to be difficult to mimic someone’s typing behavior to
a high degree of precision. Thus, patterns hidden in typing behavior in the form of
keystroke dynamics might serve as a strong biometric. One advantage of a keystroke
dynamics based authentication scheme is that it requires no specialized hardware. In
addition, such a scheme can provide a non-intrusive means of continuous or ongoing
authentication, which can be viewed as a form or intrusion detection. Coursera, an
online learning website, currently employs typing characteristics as part of its login
system [15].
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Research into keystroke dynamics began about 20 years ago [16]. However,
early results in this field were not impressive. Most of the existing research in
keystroke dynamics has focused on fixed-text typing behavior, which is viewed
as one-time authentication [2, 5, 12, 14, 23]. Compared with fixed-text keystroke
dynamics, the free-text case presents some additional challenges. First, the number
of useful features may differ among input sequences. Second, the optimal length of
a keystroke sequence for analysis is a factor that must be considered—a longer
sequence is slower to process and might include more noise, while a shorter
sequence may lack sufficient distinguishing characteristics. Moreover, for free-text
keystroke sequences, it is more challenging to extract an effective pattern, thus the
robustness of any solution is a concern.

In this paper, we consider the free-text keystroke dynamics-based authentication
problem. For this problem, we propose and analyze a unique feature engineering
technique. Specifically, we organize features into an image-like transition matrix
with multiple channels, where each row and column represents a key on the
keyboard, with the depth corresponding to different categories of features. Then
a convolutional neural network (CNN) model with cutout regularization is trained
on this engineered feature. To better capture the sequential nature of the problem,
we also consider a hybrid model using our CNN approach in combination with a
gated recurrent unit (GRU) network. We evaluate these two models on open free-
text keystroke datasets and compare the results with previous work. We carefully
consider the effect of different lengths of keystroke sequences and other parameters
on the performance of our models.

The contribution of this paper include the following:

• A new feature engineering method that organizes features as an image-like matrix
for free-text keystroke dynamics-based authentication.

• An analysis of cutout regularization as a step in the image analysis process.
• A careful analysis of various hyperparameters, including the length of keystroke

sequence in our models.

The remainder of this paper is organized as follows. Section 1 introduces the
basic concept of keystroke dynamics-based authentication, and we outline our
general approach to the problem. In Sect. 2, we discuss background topics, including
the learning techniques employed and the datasets we have used. Section 2 also
provides a discussion of relevant previous work. Section 3 describes the features
that we use and, in particular, we discuss the feature engineering strategy that we
employ to prepare the input data for our continuous classification models. Then, in
Sect. 4, we elaborate on the architectures of the various models considered in this
paper, and we discuss the hyperparameter tuning process. Section 5 includes our
experiments and analysis of the results. Finally, Sect. 6 provides a conclusion and
points to possible directions for future work.
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Table 1 Use cases for keystroke dynamics-based systems

Text Scenario Precision Recall Input length

Fixed One-time authentication High High Short

Free Intrusive detection Low High Long

Either Identification High Low Either

2 Background

Authentication is the process that allows a machine to verify the identity of a user.
By the nature of the problem, authentication is a classification task. Keystroke
dynamics is one of many techniques that have been considered for authentication.
One advantage of keystroke dynamics is that such an approach requires no special
hardware.

Precision and recall are two metrics used to evaluate classification models.
Precision is the fraction of true positive instances among those classified as positive,
while recall is the fraction of true positive instances that are correctly classified as
such. Table 1 lists some examples of use cases, along with the general degree of
precision and recall that typically must be attained in a useful system. Depending
on the scenario, too many false positives (i.e., low precision) can render an IDS
impractical, but an IDS must detect intrusions (high recall) or it has clearly failed
to perform adequately. On the other hand, in the identification problem, we must be
confident that our identification is correct (high precision), even if we fail to identify
subjects in a number of cases (low recall).

We note in passing that even if the precision and recall are both high, practical
usage scenarios for keystroke dynamics based systems may be limited by the length
of the keystroke sequence required for analysis. In cases where a short keystroke
sequence suffices, the technique will be more widely applicable.

For a usage scenario, consider password-protected user accounts. Keystroke
dynamics would provide a second line of defense in such an authentication
system. In a two-factor authentication system, an attacker would need to also
accurately mimic a users tying habits. Note that the second “factor” (i.e., keystroke
dynamics) is transparent from a user’s perspective—the keystroke-related biometric
information is collected passively, and requires no additional actions from a user
beyond typing his or her password.

Even in cases where the length of the keystroke sequence must be relatively long
in order to achieve the necessary accuracy, keystroke dynamics systems could still
be useful. For example, suppose that a user needs to reset their password for a high-
security application, such as an online bank account. Most such systems require the
user to answer a “secret” security question or multiple such questions. It can be
difficult for users to remember the answers to security questions, and the answers
themselves (e.g., “mother’s maiden name”) are often not secret. Replacing these
question with a keystroke dynamics system would free the user from the need to
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remember answers, as the user would simply need to type a sufficient number of
characters in the user’s usual typing mode.

From the use-case point of view, keystroke dynamics-based systems can be
classified into those for which long input sequences are acceptable, and those for
which short input sequences are essential. We can also classify keystroke dynamics
systems according to whether they are based on fixed-text or free-text. In this paper,
we only consider free-text.

2.1 Related Work

Previously, most work in keystroke dynamics was based on fixed-text, but recently
more attention has been paid to free-text keystroke analysis. There are two
commonly used free-text keystroke datasets, which we refer to as the Buffalo
dataset [20] and the Clarkson II dataset [22]. We discuss these datasets in more
detail in Sect. 2.2. Yan et al. [20] introduced the Buffalo dataset, which they use
to evaluate a Gaussian mixture model (GMM) proposed by Hayreddin et al. [4].
The best EER obtained is 0.01. Their experiments are limited to keystroke data
generated using the same keyboard. In our research, we evaluate our models on the
entire Buffalo dataset, which includes different keyboards.

Pilsung et al. [9] divide the keyboard into three areas, left, right, and space, which
correspond to the keys that are typically typed by the left hand (L), right hand (R),
and thumbs (S), respectively. In this way, the time-based features extracted from
different adjacent keystroke pairs fall into eight categories, which are denoted as
L-L, L-R, R-R, R-L, R-S, S-R, L-S, S-L. Then they compute average time-based
histogram over each group and concatenate these values to form a feature vector. In
this way, the free-text keystroke sequence is embedded into a vector of fixed length
eight, which can then be used in different detection models. However, their method
fails to preserve most of the sequential information that is available in keystrokes.

To improve the performance of authentication systems based on free-text,
Junhong et al. [10] propose a novel user-adaptive feature extraction method to
capture unique typing pattern behind keystroke sequences. The method consists of
ranking time-based features, and splitting all of these features into eight categories
based on the rank order. Similar to the method proposed in [9], they calculate
the average time-based feature of each category as a single feature value and
concatenate these features to form a vector. Their experiments show that the method
significantly improves performance, as compared with the method in [9]. However,
they are still discarding a significant amount of the information available in the raw
keystroke dynamics data.

Eduard et al. [17] explore the use of multi-layer perceptrons (MLP) for keystroke
based authentication. Their model considers time-based information between dif-
ferent keys separately, and does not aggregate information from the entire keystroke
sequence. The performance appears to be relatively poor.
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Bernardi et al. [3] propose a feature extraction model to capture user input
patterns; additional related work by these authors can be found in [21]. In [3],
the authors test the impact of different numbers of layers in various deep learning
networks and compared the effectiveness of deep networks with classical machine
learning methods. They attain a highest accuracy of 99.9% using an MLP with
nine hidden layers. However, their architectures are limited to feed-forward fully-
connected layers, and better results require a large number of hidden layers. Also,
the dataset used in their research is different from that used in our research, and thus
the results are not directly comparable.

Kobojek et al. [11] uses an RNN-based model for classification based on
keystroke data. They make use of keystroke sequential data. They achieve a best
EER that is relatively high at 13.6%.

Influenced by the work in [11], Xiaofeng et al. [14] divide continuous keystroke
dynamics sequences into keystroke subsequences of a fixed length and extracts time-
based features from each subsequence. These features are then organized into a
fixed-length sequence, and the resulting data is fed to a complex model consisting
of a combined CNN and RNN. They consider an overlapping sliding window, and
the they use a majority vote system to further improve the accuracy. They best EERs
of 2.67 and 6.61% over a pair of open free-text keystroke datasets. In our research,
we propose a new architecture that is inspired by the model in [14].

2.2 Datasets

In this paper, we evaluate various models based on two open-source free-text
keystroke dynamics datasets. The two datasets we consider are from Clarkson
University [22] and SUNY Buffalo [20]. Next, we discuss these datasets.

2.2.1 Buffalo Keystroke Dataset

The Buffalo free-text keystroke dataset was collected by researchers at SUN Buffalo
from 148 research subjects. In this dataset, the subjects were asked to finish two
typing tasks in a laboratory. For the first task, participants transcribed Steve Jobs’
Stanford commencement speech, which was split into three parts. The second task
consisted of responses to several free-text questions. The interval between the two
sessions was 28 days. Additionally, only 75 of the subjects completed both typing
tasks with the same keyboard, while the remaining 73 subjects typed using three
different keyboards across three sessions.

The Buffalo dataset includes relatively limited information. Specifically, the key
that was pressed, along with timestamps for the key-down time and the key-up
events. The average number of keystrokes in the three sessions exceeded 17,000 for
each subject. Additionally, some of the participants used keyboards with different
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key layouts to input text information. This dataset also provides gender information
for each subject.

2.2.2 Clarkson II Keystroke Dataset

The Clarkson II keystroke dataset is a popular free-text keystroke dynamics dataset
that was collected by researchers at Clarkson University. This dataset includes
keystroke timing information for 101 subjects in a completely uncontrolled and
natural setting, with the date having been collected over a period of 2.5 years.
Compared with other datasets which are controlled to some degree, the partici-
pants contribute their data with different computers, different keyboards, different
browsers, different software, and even different tasks (e.g., gaming, email, etc.).
Models that perform well on this dataset should also perform well in a real-world
scenario.

Unfortunately, the Clarkson II dataset only provides very limited features—
specifically, the timestamps of key-down and key-up events. The average number
of keystrokes for each research subject is about 125,000. However, the number of
keystroke events is far from uniform, with some users having contributing only a
small number of keystrokes. Therefore, we set a threshold of 20,000 keystrokes,
which gives us only 80 subjects.

2.3 Deep Leaning Algorithms

In this research, we apply deep learning methods to the free-text keystroke datasets
discussed above. Our best-performing architecture is a novel combination of neural
network based techniques. In this section, we briefly discuss the learning techniques
that we have employed.

2.3.1 Multilayer Perceptron

Multilayer perceptrons (MLP) [18] are a class of supervised learning algorithms
with at least one hidden layer. Any MLP consists of a collection of interconnected
artificial neurons, which are loosely modeled after the neurons in the human brain.
Nonlinearity is provided by the choice of the activation function in each layer. MLP
is related to the classic machine learning technique of support vector machines
(SVM).
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2.3.2 Convolutional Neural Network

Convolutional neural networks (CNN) [1] are a special class of neural networks that
make use of convolutional kernels to efficiently deal with local structure. CNNs
are often ideal for applications where local structure dominates, such as image
analysis. CNNs with multiple convolutional layers are able to extract the semantic
information at different resolutions and have proven to be extremely powerful in
computer vision tasks.

2.3.3 Recurrent Neural Network

Recurrent neural networks (RNN) [8] are used to deal with sequential or time-
series data. For example, sequential information is essential for the analysis of
text and speech. Plain “vanilla” RNNs suffer from vanishing gradients and related
pathologies. To overcome these issues, highly specialized RNN architectures have
been developed, including long short-term memory (LSTM) [8] and gated recurrent
units (GRU) [6]. In practice, LSTMs and GRUs are among the most successful
architectures yet developed. In this research, we focus on GRUs, which are faster to
train than LSTMs, and perform well in our application.

2.3.4 Cutout

Fully connected neural networks often employ dropouts [19] to reduce overfitting
problems. While dropouts work well for models with fully-connected layers, the
technique is not suitable for CNNs. Instead, we use cutout regularization [7] with
our CNN models. Cutouts are essentially the image-based equivalent of dropouts—
we cut out part of the image when training, which forces the CNN to learn from
other parts of the image. In addition to helping with overfitting, a model that is able
to handle images with such occlusions is likely to be more robust.

3 Feature Engineering

As mentioned in Sect. 2, we consider two open source keystroke datasets. Both
the Buffalo and Clarkson II datasets are free-text, and only provide fairly limited
information. Therefore, we will have to consider feature engineering as a critical
part of our experiments. In this section we consider different categories of features
and various types of feature engineering.
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Fig. 1 Five time-based features

3.1 Features

With the development of mobile devices, modern keyboards are no longer limited
to physical keyboards, but also include most virtual devices that allow user input.
Ideally, we would like to consider patterns in user typing behavior with respect
to time-based information and pressure-based features. However, pressure-based
features are not directly available from the datasets used in this research. In the
future, datasets obtained using mobile devices could include such information,
which should enable stronger authentication and identification results.

Again, in this research we necessarily focus on time-based features, because that
is what we have available in our keystroke datasets. The five time-based features
that we consider are illustrated in Fig. 1.

Let A and B represent two consecutive input keys, with press and release repre-
senting a key-down and key-up event, respectively. The five time-based features are
duration, down-down time (DD-time), up-down time (UD-time), up-up time (UU-
time), and down-up time (DU-time). Duration is the time that the user holds a key in
the down position, while the other four features are clear from the figure. Note that
for any two consecutive keystroke events, say, A and B, six features can be extracted,
namely, duration-A, duration-B, DD-time, UD-time, UU-time, and DU-time.
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3.2 Length of Keystroke Sequence

As mentioned in Sect. 2, we can divide keystroke dynamics-based authentication
into four categories depending on the length and consistency of the keystroke
sequence. For our free-text keystroke datasets, the data consists of a long keystroke
sequence of thousands of characters for each user. In previous research, such
long sequences have been split into multiple subsequences, and we do the same
here. Each subsequence is viewed as an independent keystroke sequence from the
corresponding user. Previous research has shown that short keystroke subsequences
decrease accuracy, while the longer keystroke subsequences may incorporate more
noise. Therefore, we will need to experiment with different lengths of keystroke
subsequence to determine an optimal value.

3.3 Keystroke Dynamics Image

In Sect. 2, we introduced the keystroke datasets used in this paper. As mentioned
in the previous section, we divide the entire keystroke sequence into multiple
subsequences, and in Sect. 3.1 we discussed the six types of timing features that
are available. Thus, for a subsequence of length N , there are 6(N − 1) features that
can be determined from consecutive pairs of keystrokes, where repeated pairs are
averaged and treated as a single pair. For example, for a subsequence of length 50,
we obtain at most 6 · 49 = 294 features. We view each keystroke subsequence as
an independent input sequence for the corresponding user. Next, we propose a new
feature engineering structure to better organize these features.

The features UD-time, DD-time, DU-time, and UU-time are determined by
consecutive keystroke events. Therefore, we organize these four features into a
transition matrix with four channels, which can be viewed as four N × N matrices
overlaid. This approach is inspired by RGB images, which have a depth of three,
due to the R, G, and B channels.

Each row and each column in our four-channel N×N feature matrix corresponds
to a key on the keyboard, and each channel corresponds to one kind of feature.
Figure 2 illustrates how we have organized these features into transition matrices.
For example, the value at row i and column j in the first channel of the matrix
refer to the UD-time between any key presses of i followed by j within the current
observation window.

The final feature is duration, which is organized as a diagonal matrix and added
to the transition matrix as a fifth channel. Note that if a key or key-pair is pressed
more than once, we use the average as the duration for that key or key-pair. In this
channel, only diagonal locations have values because the duration feature is only
relevant for one key at a time. The final result is that all of the features generated
from keystroke subsequence are embedded in a transition matrix with five channels,
which we refer to as the keystroke dynamics image (KDI).
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Fig. 2 Keystroke dynamics image for free-text

To prevent the transition matrix from being too sparse, we only consider time-
based features for the 42 most common keystrokes. These 42 keys include the 26
English characters (A-Z), the 10 Arabic numerals (0-9), and six meta keys (space,
back, left-shift, right-shift, tab, and capital). Therefore, the shape of the transition
matrix is 5 × 42 × 42, with the five channels as discussed above.

3.4 Keystroke Dynamics Sequence

Above, we provided details on the time-based image-like feature that we construct,
which we refer to as the KDI. In this section, we discuss the application of an
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RNN-based neural network to the KDI. Our goal is to use this feature to better
take advantage of the inherently sequential nature of the keystroke dynamics data.

A keystroke in a keystroke sequence can be viewed as a word in a sentence.
For our two free-text keystroke datasets, the keystroke sequence is different for
each input and each user. For this data, we consider various encodings of each
keystroke and use this encoding information in the embedding vector. Specifically,
we experiment with index encoding and one-hot encoding. The resulting embedding
vectors are used to construct a keystroke dynamics sequence, which we abbreviate
as KDS. These KDS vectors will be used in our RNN-based neural networks.

3.5 Cutout Regularization

As mentioned in Sect. 2.3.4, we employ a cutout regularization to prevent overfitting
in our CNN. By artificially adding occlusions to our image-like data, the network is
forced to pay attention to all parts of the image, instead of over-emphasizing some
specific parts. We apply cutouts to our novel KDI data structure, which is discussed
in Sect. 3.3, and the KDS, which was mentioned in Sect. 3.4. The dark blocks in
Fig. 2 illustrate cutouts.

4 Architecture

In this section, we discuss the classification models in more detail. We also discuss
hyperparameters tuning for the models considered.

4.1 Multiclass vs Binary Classification

The Buffalo and Clarkson II keystroke datasets are based on 101, and 148 subjects,
respectively. Regardless of the dataset, our goal is to verify a user’s identity based
on features derived from keystroke sequences. While this is a classification problem,
we can consider it as either a multiclass problem or multiple binary classification
problems. In a practical application, the number of users could be orders of
magnitude higher than in either of our datasets. To train a multiclass model on a
large number of users would be extremely costly, and each time a new user joins,
the entire model would have to be retrained. This is clearly impractical.

To train and test our models, we require positive and negative samples for
each user. All the data available for a specific user will be considered as positive
samples, while an equivalent number of negative samples are selected at random
(and proportionally) from other users’ samples. In practice, the number of non-target
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Table 2 Best
Hyperparamters of deep
learning models

Parameter Search space

Training epochs 100, 200, 500, 1000

Initial learning rate 0.1, 0.01, 0.001, 0.0001

Optimizer Adam, SGD, SGD with Momentum

Learning schedule StepLR (0.1, 0.3, 0.5), Plateau

Experiments 50

users may be very large. In that case, we could draw negative samples from a a fixed
number of non-target users.

4.2 Hyperparameter Tuning

For the deep learning methods used in our experiments, we employ a grid search to
find the best parameters for the initial learning rate, optimizer, number of epochs,
and learning rate schedule. The values shown in Table 2 were tested, and those in
boldface were found to generate the best result. To allow for a direct comparison
of our different models, we use these same hyperparameters for all of our deep
learning models. Note that a learning rate of 0.01 generates the best results for CNN,
MLP, LSTM, GRU, while a learning rate of 0.001 generates best result in our RNN
experiments.

4.3 Implementations

For our keystroke dynamics experiments, we evaluate two kinds of models.
Specifically, a CNN is applied to the our novel KDI image-like features, while a
hybrid model that combines CNN and GRU is applied to the KDS features. The
KDI is presented in Sect. 3.3, while the free-KDS is described in Sect. 3.4.

4.3.1 CNN

The architecture of our CNN is shown in Fig. 16 in the Appendix. The input of this
model is the KDI, and hence we view the transition matrix as an image. Here, a
“stage” includes two conv2d layers and a maxpooling layer, not counting the
activation function.

In each stage, there are two convolutional layers and a maxpooling layer.
Moreover, a relu function is employed after each convolutional layer. Following
these two stages, there are three fully connected layers, and a dropout layer is
added to prevent overfitting. Finally, a sigmoid function is used to compute the final
probability of a positive sample.
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4.3.2 CNN-RNN

The architecture of our CNN-RNN is illustrated in Fig. 17 in the Appendix. The
input to this model is the KDS mentioned in Sect. 3.4. Note that 32 convolutional
kernels shift in the keystroke sequence direction, and thus a sequence matrix with
embedding size 32 is generated. This resulting output matrix is fed into a 2-layers
GRU network, which is followed by a fully connected layer. Since this is a binary
classification model, a sigmoid function is used to compute the probability of a
positive sample.

5 Experiment and Result

In this section, we provide experimental results for our free-text binary classification
experiments. The results of the various models considered are analyzed and
compared. Note that in all of our experiments, we apply 5-folds cross validation
and average the performance for each user.

5.1 Metrics

We adopt two metrics to evaluate our results. The first metric is accuracy, which
is simply the number of correct classifications divided by the total number of
classifications. More formally, accuracy is calculated as

accuracy = TP + TN

TP + FP + TN + FN

where TP and TN are true positives and true negatives, while FP and FN are false
positives and false negatives.

There are two kinds of classification errors, namely, false positives and false
negatives. There is an inherent trade-off between the false positive rate (FPR) and
the false negative rate (FNR), in the sense that by changing the threshold that we
use for classification, we can lower one but the other will rise. For a metric that is
threshold-independent, we compute the equal error rate (EER) which, as the name
suggests, is the value for which the FPR and FNR are equal. The EER is obtained
by considering thresholds in the range of [0, 1] to find the point where the FPR and
FNR are in balance. Figure 3 illustrates a technique for determining the EER.
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Fig. 3 Equal error rate

5.2 Result of Free-Text Experiments

For our free-text experiments, we focus on the effect of the lengths of keystroke
sequences, kernel sizes for the CNN, encoding methods for the keystroke sequence
data, and different hyperparameters of the RNN. Additionally, we explore the
performance of models with and without cutout regularization.

5.2.1 Length of Keystroke Subsequence

First, we experiment with different lengths of keystroke subsequences. Specifically,
we consider lengths of 50, 75, and 100 keystrokes. The results of these experiment
are given in Figs. 4 and 5 for the Buffalo and Clarkson II datasets, respectively. From
these results, we observe that when the length of a keystroke sequence has minimal
impact on the accuracy or EER.

From these results, we observe that when the length of a keystroke sequence
is relatively short, there is insufficient information to support strong authentication
and, conversely, when the sequence is too long, the additional noise degrades the
accuracy. Moreover, the results shows that the CNN-based model is more robust
when the length of the keystroke sequence changes, which can be explained by the
KDI mitigating the noise inherent in longer sequences. To accelerate the training
process, we adopt the length 100 for the keystroke subsequences in all subsequent
experiments.



Free-Text Keystroke Dynamics for User Authentication 371

0.00 0.05 0.10 0.15 0.20 0.25 0.30

CNN length 50

CNN length 75

CNN length 100

CNN-RNN length 50

CNN-RNN length 100

0.0088

0.0057

0.0078

0.0085

0.0104

0.0142

EER

0 20 40 60 80 100

CNCNCNNNN lengtlengtlengthhh 505050

CNCNCNNNN lengtlengtlengthhh 757575

CNCNCNNNN lengtlengtlengthhh 100100100

CNN-RNCNN-RNCNN-RNNNN lengtlengtlengthhh 505050

CNN-RNCNN-RNNN lengtlengthh 7575

CNN-RNCNN-RNCNN-RNNNN lengtlengtlengthhh 100100100

98.56

98.75

98.53

98.50

98.21

97.68

Accuracy (percentage)

Accuracy
EER

Fig. 4 Keystroke lengths (Buffalo dataset)
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Fig. 5 Keystroke lengths (Clarkson II dataset)

5.2.2 CNN Kernel Sizes

In any CNN, the kernel size is a critical parameter. To determine the optimal kernel
size, we experiment with three square kernels (3 × 3, 5 × 5, and 7 × 7) in our basic
CNN model. For the CNN part of our hybrid CNN-RNN model, we experiment with
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Fig. 6 Kernel size (Buffalo dataset)
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Fig. 7 Kernel size (Clarkson II dataset)

three sizes of rectangle kernels (2 × 8, 3 × 8, and 5 × 8). These experimental results
for the basic CNN and hybrid CNN-RNN are given in Figs. 6 and 7.

We note that the kernel size makes no appreciable difference for the basic CNN
model on the Buffalo dataset, while the two larger kernels both perform equally well
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Fig. 9 Embedding methods (Clarkson II dataset)

on the Clarkson II dataset. For the CNN-RNN model, the results are also mixed,
with the smaller kernel giving the best results over the two datasets. We adopt 3 × 3
square kernels for CNN-based models and 2×8 kernels for CNN-RNN based model
in subsequent experiments.

5.2.3 Embedding Method

As mentioned above in Sect. 3.4, we consider two embedding methods, namely,
index encoding and one-hot encoding. These experimental results are given in
Figs. 8 and 9 for the Buffalo and Clarkson II datasets, respectively. From these
results, it is clear that one-hot encoding is far superior to index encoding, and hence
in subsequent experiments, we use one-hot encoding.
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5.2.4 RNN Structure

We experiment with three types of RNN-based networks in our CNN-RNN archi-
tecture. Specifically, we consider a plain RNN, GRU, and LSTM. The advantages of
GRU and LSTM are that they can capture more long-term information than a plain
RNN. The results of these experiments are given in Figs. 10 and 11.

For the Buffalo keystroke dataset, the performances of our three different
models are virtually identical, which indicates that the most valuable information
is contained in adjacent keystroke pairs. However, for the Clarkson II keystroke
dataset, we find that the GRU is more effective than the other two architectures.
A plausible explanation is that LSTM is more prone to overfitting, while RNN is
simply less powerful. And it appears that the GRU is slightly better at dealing with
noisy data.

5.2.5 Cutout Experiments

It is likely that the data extracted from keystroke dynamics sequences is noisy
because of the various extraneous factors that can influence typing behavior. We
use cutout regularization, since it is useful at preventing overfitting, and since it
is believed to reduce the effect of noisy information. The results of our cutout
experiments are given in Figs. 12 and 13. We observe that cutout regularization has a
significant positive effect on the performance of our models, which is most obvious
in the CNN-based model. This is reasonable, since the cutout concept derives from
the field of computer vision and our input data (i.e., KDI) is an image-like data
structure.
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Fig. 10 CNN-RNN (Buffalo dataset)
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Fig. 11 CNN-RNN (Clarkson II dataset)
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Fig. 12 Cutout regularization (Buffalo dataset)

5.3 Discussion

In our experiments, the performance on the Buffalo dataset is consistently higher
than that of the Clarkson II dataset. It is likely the case that the latter dataset
contains noisier data, as it was collected over a period of 2.5 years and under far
less controlled conditions. We also find that our CNN-based model (KDI + CNN)
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Fig. 13 Cutout regularization (Clarkson II dataset)
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Fig. 14 Comparison to previous work (Buffalo dataset)

consistently generates better results than our RNN-CNN based model (Free-KDS +
CNN-RNN). Comparing our results with the previous work in [14], we observe that
in terms of EER, our two models both perform better on the Buffalo dataset, but
slightly worse on the Clarkson II dataset. These results are summarized in Figs. 14
and 15.
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6 Conclusion

This research focused on authentication based on keystroke dynamics derived
features in the free-text case. We found that dividing the sequence into a number of
fixed-length subsequences was an effective feature engineering strategy. In addition,
we developed and analyzed an image-like engineered feature structure that we refer
to as KDI, and we compared this to another structure that we refer to as KDS.
The KDI was used as the input for our CNN experiments, while the KDS served
as the input data for our CNN-RNN experiments. In both cases, we applied cutout
regularization.

The experimental results reported here show that our pure CNN architecture
outperforms our combination of CNN and RNN, and cutout significantly improves
the performances of both models. Moreover, our two modeling approaches both
outperform previous work on the Buffalo keystroke dataset and yield competitive
results for the Clarkson II dataset.

In the realm of future work, we conjecture that generative adversarial networks
(GAN) will prove useful in this problem domain. More fundamentally, we believe
that improved (and larger) datasets are necessary if we are to make significant
further progress on this challenging authentication problem.
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Appendix

See Figs. 16 and 17.
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Fig. 16 Architecture of CNN for free-text datasets
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Fig. 17 Architecture of CNN-RNN for free-text datasets
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