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Abstract. The shift towards advanced electricity metering infrastruc-
ture gained traction because of several smart meter roll-outs during the
last decade. This increased the interest in Non-Intrusive Load Moni-
toring. Nevertheless, adoption is low, not least because the algorithms
cannot simply be integrated into the existing smart meters due to the
resource constraints of the embedded systems. We evaluated 27 features
and four classifiers regarding their suitability for event-based NILM in a
standalone and combined feature analysis. Active power was found to be
the best scalar and WaveForm Approximation the best multidimensional
feature. We propose the feature set [P, cosΦ, TRI, WFA] in combina-
tion with a Random Forest classifier. Together, these lead to F1-scores
of up to 0.98 on average across four publicly available datasets. Still, fea-
ture extraction and classification remains computationally lightweight
and allows processing on resource constrained embedded systems.

Keywords: NILM · Non-Intrusive Load Monitoring · Feature
evaluation · Appliance classification

1 Introduction

Reducing our electricity consumption is a vital step to achieve the goal of saving
earth’s energy resources. In the residential or industrial domain energy monitor-
ing and eco-feedback help by raising the awareness of an unnecessary electricity
consumption of particular devices. To pinpoint user to specific appliances that
consume too much energy, appliance specific consumption data are required.
These can be retrospectively provided by utilizing existing smart meter infras-
tructure with Non-Intrusive Load Monitoring (NILM). NILM methods disag-
gregate the composite load into the load of each electrical consumer by incor-
porating machine learning approaches. These approaches can be classified into
event-based and event-less methods. The latter apply disaggregation for each
new data entry, while event-based approaches apply disaggregation whenever a
new appliance event was recognized in the aggregated load. After identifying
events, a classifier is typically used to determine to what appliances these events
belong to. The generated list of events is finally used to reconstruct the load
profile of the appliance, e.g. by grouping switch-on and switch-off events and
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assigning a known average consumption to times an appliance was switched on.
The steps to detect and classify an appliance event include the extraction and
pre-processing of the event, feature extraction, and finally classification. Classi-
fication algorithms working with a large number of features may achieve high
classification performances (F1-score > 0.9 such as proposed in [14]). However,
the deployment on smart meters is hindered by the amount of features due to
the required computational resources to calculate them and a typically linear
increase in complexity for most classifiers.

The contributions of this work mainly include: (1) An evaluation of 27 fea-
tures and four classifiers regarding their suitability for the task of appliance
classification. (2) An evaluation of several combinations of these features with
the goal to find a trade-off between feature dimensionality and classification
performance. (3) The proposition of the feature set [P, cosΦ, TRI,WFA] with
a Random Forest classifier for the task of appliance classification on resource
constrained systems.

The remainder of this paper is organized as follows: Sect. 2 provides an
overview of the NILM pipeline and lists state-of-the-art features and classifiers
for event-based NILM as well as existing datasets for NILM. Section 3 introduces
the event detector used to generate the training data, the features and classifiers
as well as the evaluation strategy. Section 4 presents the results of the stan-
dalone feature analysis. The feature selection scheme for the combined analysis
is explained in Sect. 5 and the results of the analysis are presented and discussed
in Sect. 6. Finally, concluding remarks are provided in Sect. 7.

2 Related Work

The general NILM process can be divided into the two steps (1) Data Acquisi-
tion and (2) Disaggregation as shown in Fig. 1. Data Acquisition is comprised of
measuring the required attributes (such as active- and reactive power) and per-
forming general pre-processing steps while the Disaggregation step is a specially
designed and often individually trained algorithm. Most of the disaggregation
algorithms that have been proposed by researchers can be categorized into event-
based and event-less approaches (e.g. according to [27,33]).

Smart Meter
Data

(1) Data Acquisition (2) Disaggregation Load 

A

(a) Event Detection
(b) Event 

      Event-less NILM
      Event-based NILM

Fig. 1. General pipeline of event-less and event-based NILM systems
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Event-less approaches optimize an overall system state using individually
trained appliance models. These models are typically based on Hidden Markov
Model (HMM) [21,25] or Artificial Neural Network (ANN) [6,19]. As the opti-
mization step is recalculated for each new data input, event-less approaches
typically suffer from high computational complexity and can, therefore, only be
applied to lower sampling rates (<1Hz). According to Anderson et al. [2] the
event-based NILM process introduces two additional sub-steps as depicted in
Fig. 1: (a) Event Detection and (b) Event Classification. Event Detection relies
on the concept of the Switch Continuity Principle (SCP). The SCP was intro-
duced by Hart [10] in 1992 and states that at a specific point in time only a
single event, i.e. appliance state change, can occur and that overall, the number
of events is small. This allows to treat events as signal anomalies, which need
to be detected during event detection. Event Classification (also called appli-
ance classification) follows the pattern recognition paradigm. Features, which
are typically handcrafted by domain experts, are extracted from each event and
are fed into a classifier, which outputs more details about the type of event (e.g.
a specific appliance turning on). As the classification step is only applied to
events, which are typically rare, event-based NILM systems are computational
less expensive compared to event-less approaches, which perform the inference
step for each new sample. The Disaggregation step uses the generated list of
appliance events to extract estimated load profiles for each appliance (e.g. by
recognizing the appliance’s state transitions such as from on to off and mapping
a known average consumption to each state).

2.1 Event Classification

Over the years, several hand-crafted features, for the task of event classification,
have been introduced by various researchers. The most frequently used features
are surveyed e.g. by Liang et al. [24]. Kahl et al. [17] evaluated 36 features in
a stand-alone feature analysis as well as their combination using a feature for-
ward selection technique. The authors found that across all used datasets, the
phase angle difference between voltage and current (cosΦ) was the best scalar
feature (F1 = 0.49) while Current Over Time (COT) achieved the best multi-
dimensional feature performance (F1 = 0.8). Different classification algorithms
have been evaluated for the task of appliance classification such as Random
Forests (RF) [4,8,26] Support Vector Machines (SVM) [16], k-Nearest Neighbour
(kNN) [8,16,32] and more recently Artificial Neural Networks (ANN) [4,5,14].
Hubert et al. [13] and Kahl et al. [17] surveyed several algorithms for appliance
classification. Hubert et al. [13] focused on Deep Neural Networks (DNNs) and
identified higher sampling rates, the use of larger receptive fields, and an ensem-
ble of input features, amongst others, as promising techniques to improve the
performance of such networks. Kahl et al. [17] directed their focus on standard
machine learning algorithms and identified that kNN performs quite well for the
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task of appliance classification despite its comparable low computational com-
plexity. It is further noted that the training of ANNs constitutes a large burden
for resource constrained embedded systems such as smart meters. Depending on
the system’s restrictions, a computationally lightweight algorithm such as kNN
may be better suited.

2.2 Datasets

To achieve comparable results, experiments are typically carried out using pre-
recorded datasets. In the domain of event-based NILM, several high-frequency
datasets exist such as WHITED [15], PLAID [7], REDD [20], BLUED [1], UK-
DALE [18], BLOND [22], and FIRED [28]. They mainly differ in the used Data
Acquisition System (DAQ). The data sampling frequencies range from 8 kHz for
FIRED up to 250 kHz for BLOND-250. While WHITED and PLAID include
isolated appliance events recorded in a laboratory setup, the remaining datasets
include aggregated data of real world deployments.

3 Background

This section details the event detection algorithm, the extracted features, and
the basic classifiers used throughout this work.

3.1 Event Detection

Event detection, often referred to as edge detection, describes the process of
identifying relevant changes in a signal. We use an event definition for electrical
power signals, which has been proposed by Wild et al.: “An event is a transition
from one steady state to another steady state, which definitely differs from the
previous one [...] [or] a so-called active section where the signal is somehow
deviating from the previous steady state” [31]. As appliance event detection is a
research field on its own (see e.g. [2,27,31]) and a deeper evaluation would go
beyond the scope of this paper, we choose a relatively simple expert heuristic
event detector based on work by Weiss et al. [30]. It uses a threshold-based
setup, which is applied on the apparent power signal (S). At first, the signal is
filtered using the combination of a median filter to remove outliers and a mean
filter to further smooth the signal. Both filters have a width of 3 s. Afterwards,
the absolute difference between adjacent samples of the apparent power signal is
calculated (ΔS). Next, a 3 VA filter is applied to the signal, which sets all values
below 3 VA to zero as

ΔSfiltered(i) =

{
0 if ΔS(i) < 3V A,
ΔS(i) else.

(1)



A Feature and Classifier Study for Appliance Event Classification 103

Each non-zero portion in the filtered signal is regarded as an event (up or down).
If multiple events happen within a time window of 3 s, we only keep the first
one. This ensures that fluctuations after an event are not regarded as a new
event. Figure 2 shows the different stages of the event detection process for the
apparent power signal of an espresso machine.

Fig. 2. Event detection applied to the 1 Hz apparent power signal of the espresso
machine from the FIRED [28] dataset.

All significant events are clearly visible as peaks after the filtering process
(green signal). The times, which are finally considered as events, are highlighted
by red and blue triangles.

To be able to calculate high-frequency features for a detected event, we
extract voltage and current waveforms 500 ms prior till 1 s after the timestamp
of the event. We refer to this 1.5 s time interval as the Region of Interest (ROI)
in the following. We further force each ROI to begin with a positive zero-crossing
of the voltage measurements. All 27 features explained in the following can be
extracted for each event from its corresponding ROI data.

For this evaluation, we solely use start-up events taken from individual device
profiles. This means that no current is drawn in the first 500 ms. Figure 3 shows
the current drawn in the ROI during a start-up event of two different appliances
from the PLAID dataset.
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Fig. 3. Start-up transient ROI of a fridge and an air conditioner extracted from the
PLAID [7] datasets. The red circles show the COT feature. (Color figure online)

3.2 Feature Selection

We have selected a set of 27 features, which have been introduced by various
domain experts in related works [17,24,26]. All used features are summarized in
Table 2 and can be extracted from the time or frequency domain of the ROI of
an event. According to the Nyquist-Shannon theorem, current and voltage wave-
forms with a sampling rate fs of more than 2 · (18 + 1) · f0 are required, as we
analyze the signals for frequency components up to the 18th harmonic f18 of the
grid line frequency f0, so fs > 1900 Hz for f0 = 50 Hz. To avoid aliasing artifacts,
we apply a Butterworth low-pass filter (order = 6, fcutoff = 1kHz) to the current
and voltage waveforms to suppress higher frequencies before extracting any fea-
ture. The feature set includes both transient and steady state features. Steady
state features include several electrical measurands such as phase angle between
voltage and current (cosΦ), resistance (R), admittance (Y ) or active (P), reac-
tive (Q), and apparent power (S ), which can be calculated on the basis of a
single main cycle. Transient features such as Current Over Time (COT) or Tem-
poral Centroid (TC) describe the change of certain electrical characteristics (such
as the current) over a certain time window. The set further includes features,
which stem from excessive feature engineering such as the V-I Trajectory (VIT).
The VIT was first introduced by Lam et al. [23] in 2007. The authors state
that it shows a very high discriminative power, which has been proven by other
researchers such as [12,17,29]. To calculate the VIT, the first ten periods of
the current and voltage waveforms after the event are averaged and normalized.
Afterwards, the averaged period is sub-sampled to 20 samples resulting in a fea-
ture vector of size 40 if voltage and current are linked together. Figure 4 shows
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the VIT of six different appliances from the FIRED [28] dataset. While we can
assume that most of these can be distinguished quite well (e.g. television, fridge,
vacuum cleaner, smartphone charger), some devices like the espresso machine
and the kettle may be difficult to keep apart using VIT as the exclusive feature.
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Normalized Voltage

Fig. 4. Averaged and normalized VIT of six different appliances from the FIRED [28]
dataset. The red dots show the sub-sampled values used in the feature vector. (Color
figure online)

A second feature that stems from feature engineering is the relative Harmonic
Energy Distribution (HED). The HED is a vector containing the first 18 har-
monic current components normalized by the magnitude of the fundamental
frequency as

HED =
1

xf0

· [xf1 , xf2 , . . . , xf18 ] . (2)

Figure 5 shows the normalized spectrum of two appliances with a strong odd-
even harmonic imbalance from the BLOND [22] dataset. The extracted HED is
marked with red circles.
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Fig. 5. The spectra of a notebook and a rotary multi-tool included in the BLOND [22]
dataset, normalized to their fundamental frequency f0. Both devices induce a strong
odd-even harmonic imbalance. The extracted HED is highlighted by red circles. (Color
figure online)

The feature Current Over Time (COT) describes the amount of Root Mean
Square (RMS) current in the first 25 consecutive mains cycles after an event.
The mains cycle in which the event happens is not included, as its corresponding
RMS current depends on the specific time the event occurred within the cycle.

COT =
[
IRMS(1), IRMS(2), . . . , IRMS(25)

]
. (3)

Figure 3 shows the current signal (ROI) of two appliances from the PLAID [7]
dataset and the extracted COT.

For the corresponding formulas to calculate the remaining features used in
this work (see Table 2), we refer to Kahl et al. [17] and Liang et al. [24]. Since
we use feature combinations with different ranges, we apply feature scaling to
prevent undesired feature weighting. Each dimension x in the feature space is
scaled using z-score normalization by xscaled = x−μ

σ with μ being the mean of
all training samples and σ being the standard deviation.

3.3 Classifiers

We used four different classifiers in this work: (1) SVM, (2) kNN, (3) RF, and
(4) XGBoost. These have been specifically selected for the following reasons:
As will become apparent in the following, the number of training samples, i.e.
appliance events, is comparably low. The used classifiers generally work quite
well on smaller training sets (<50k samples) compared to e.g. ANN. The number
of events differ depending on the appliance type (e.g. more fridge events than iron
events) resulting in imbalanced training sets. While kNN is generally invariant to
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imbalanced data, RF, SVM, and XGBoost can be adapted using class weighting
or resampling strategies. Furthermore, all classifiers can be easily adapted to
multi-class classification tasks and, due to their low hyper-parameter space, allow
a comparably fast retraining. We applied a grid search technique to tune the
parameters of each classifier based on the parameter sets listed in Table 1. For
all remaining hyper-parameters, the standard values of the scikit-learn library
are used.

Table 1. Hyper-parameter grid used while tuning each classifier.

Classifier Parameters Combinations

kNN k ∈ [1, 2, . . . , 20] 20

SVM C ∈ [0.01, 0.1, 1, 10, 100, 1000] 84

γ ∈ [10000, 1000, 100, 10, 1, 0.1, 0.01]

kernel ∈ [RBF, linear]

RF maxdepth ∈ [10, 20, . . . , 100] 40

nestimators ∈ [10, 50, 100, 1000]

XGBoost γ ∈ [0.5, 1, 1.5] 9

nestimators ∈ [100, 200, 1000]

3.4 Metrics and Cross Validation

For each dataset, all events were shuffled and split into 80% training and 20%
test samples (stratified). This allows to estimate the classification score when
picking events at random as a potential NILM system would be exposed to.
During grid search we applied a 5-fold random stratified split Cross Validation
(CV) and averaged the results for an improved generalization estimate. During
CV and for the reported scores, the confusion matrix notation in terms of True
Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives
(FN) is used to calculate Accuracy (Acc), Precision (Pre), Recall (Rec) and F1

score (F1) as:

Acc =
TP + TN

TP + TN + FP + FN
(4) Pre =

TP

TP + FP
(5)

Rec =
TP

TP + FN
(6) F1 =

TP

TP + 0.5 · (FP + FN)
(7)

We use macro-averaging and calculate the unweighted means of each metric.
Therefore, all classes contribute equally to the average of each metric ensuring
that a class with more support in terms of the available number of samples (i.e.
events) is not preferred. To simplify evaluation, we treat two different appliances
of the same type (e.g. two monitors) as the same target class (→monitor). Classes
with a support of less than 5 samples are removed from the evaluation.
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4 Standalone Analysis

In a first step, each feature is evaluated individually by training each classifier
solely on a single feature. As Hyper-Parameter Optimization (HPO) is performed
for each classifier, each dataset, and each feature individually, a total of 4·4·27 =
432 different grid search instances are evaluated. The final results are reported
in Table 2 and represent the F1-scores of the selected models applied to the
test set. The results show that some features alone (e.g. VIT, WFA, COT, or
HED) already show decent classification capabilities (F1-score>0.8) while other
features like Positive-Negative half cycle Ratio (PNR) or Periods to Steady State
(PSS) stand out with exceptionally poor F1-scores. As found by Kahl et al. [17]
among others, these features may be bad at discerning different appliances but
can be used to recognize specific appliances, which exhibit certain electrical
characteristics. In the time domain, e.g., the VIT already reached an F1-score
of 0.99 and 0.95 on the laboratory datasets WHITED and PLAID, respectively.
Those high scores could not be matched for the FIRED and BLOND datasets,
which represent data closer to a real-world scenario. In the spectral domain,
the HED achieves comparatively high scores of 0.97 on WHITED and PLAID
while again not matching such performance on FIRED (0.89) and BLOND (0.8).
Log Attack Time (LAT), PNR, Max-Min Ratio (MAMI), Max-Inrush Ratio
(MIR), PSS, and Spectral Flatness (SPF) show a very low average F1-score
(�<0.2). As found by Kahl et al. [17] among others, these features may be bad
at distinguishing a larger set of different appliances but can be used to recognize
specific appliances, which exhibit certain electrical characteristics. Interestingly,
those features (except MAMI) show consistent better results on BLOND and
PLAID compared to FIRED and WHITED. Both BLOND and PLAID have a
larger inner-class variability compared to FIRED and WHITED indicating that
these features might still improve classification performance if more data are
available for training.

Table 2. Classification results of a single feature applied to each dataset (WHITED,
PLAID, FIRED, and BLOND) using four classifiers (kNN, SVM, RF, and XGBoost
(xgb)). HPO using grid search and 5-fold CV has been applied. The features with the
highest F1-scores for each dataset are highlighted bold in the time and spectral domain,
respectively.

Feature Dim. WHITED PLAID FIRED BLOND �
knn svm rf xgb knn svm rf xgb knn svm rf xgb knn svm rf xgb

Time domain

Active power (P) 1 0.49 0.45 0.48 0.51 0.58 0.53 0.56 0.57 0.65 0.62 0.63 0.66 0.5 0.49 0.49 0.49 0.54

Reactive power

(Q)

1 0.29 0.3 0.31 0.32 0.37 0.41 0.43 0.34 0.47 0.53 0.54 0.52 0.36 0.32 0.36 0.34 0.39

Apparent power

(S)

1 0.53 0.49 0.48 0.5 0.45 0.46 0.43 0.43 0.59 0.62 0.62 0.6 0.41 0.42 0.41 0.43 0.49

Resistance (R) 1 0.52 0.5 0.49 0.55 0.43 0.4 0.44 0.46 0.68 0.55 0.66 0.65 0.41 0.42 0.4 0.42 0.5

Admittance (Y) 1 0.51 0.5 0.49 0.55 0.43 0.43 0.44 0.46 0.68 0.63 0.66 0.65 0.41 0.41 0.39 0.42 0.5

Crest factor (CF) 1 0.15 0.17 0.17 0.18 0.38 0.36 0.32 0.39 0.33 0.33 0.32 0.31 0.42 0.31 0.41 0.42 0.31

Form factor (FF) 1 0.27 0.22 0.26 0.26 0.44 0.44 0.43 0.46 0.36 0.3 0.37 0.37 0.34 0.34 0.35 0.33 0.35

(continued)
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Table 2. (continued)

Feature Dim. WHITED PLAID FIRED BLOND �
knn svm rf xgb knn svm rf xgb knn svm rf xgb knn svm rf xgb

Log attack time

(LAT)

1 0.05 0.05 0.05 0.05 0.12 0.16 0.15 0.15 0.1 0.09 0.09 0.09 0.19 0.22 0.23 0.19 0.12

Temporal centroid

(TC)

1 0.15 0.17 0.15 0.15 0.38 0.42 0.37 0.42 0.3 0.22 0.23 0.22 0.25 0.23 0.27 0.25 0.26

Positive-negative

half cycle ratio

(PNR)

1 0.04 0.03 0.09 0.05 0.19 0.18 0.16 0.19 0.19 0.19 0.2 0.19 0.18 0.15 0.18 0.12 0.14

Max-min ratio

(MAMI)

1 0.06 0.06 0.06 0.07 0.28 0.26 0.18 0.25 0.28 0.3 0.29 0.32 0.13 0.11 0.12 0.11 0.18

Peak-mean ratio

(PMR)

1 0.2 0.19 0.16 0.19 0.4 0.3 0.43 0.37 0.38 0.37 0.37 0.39 0.4 0.38 0.42 0.38 0.33

Max-inrush ratio

(MIR)

1 0.07 0.04 0.07 0.06 0.16 0.17 0.16 0.14 0.12 0.12 0.11 0.1 0.13 0.13 0.14 0.12 0.12

Mean-variance

ratio (MVR)

1 0.21 0.24 0.3 0.28 0.41 0.34 0.36 0.38 0.42 0.41 0.4 0.4 0.33 0.34 0.35 0.32 0.34

Waveform

distortion (WFD)

1 0.27 0.24 0.24 0.23 0.35 0.36 0.38 0.39 0.44 0.44 0.43 0.45 0.3 0.31 0.28 0.3 0.34

Period to steady

state (PSS)

1 0.01 0.03 0.03 0.03 0.11 0.12 0.12 0.12 0.09 0.12 0.12 0.12 0.11 0.12 0.12 0.12 0.09

Phase angle

(cosΦ)

1 0.26 0.24 0.26 0.27 0.48 0.46 0.42 0.49 0.45 0.45 0.43 0.44 0.43 0.44 0.38 0.44 0.4

Inrush current

ratio (ICR)

1 0.17 0.07 0.15 0.16 0.27 0.23 0.27 0.36 0.41 0.22 0.44 0.37 0.27 0.25 0.26 0.25 0.26

Waveform

approximation

(WFA)

20 0.92 0.91 0.93 0.83 0.93 0.92 0.9 0.9 0.91 0.93 0.88 0.84 0.84 0.82 0.75 0.8 0.88

Current over time

(COT)

25 0.8 0.84 0.93 0.86 0.81 0.72 0.86 0.87 0.88 0.93 0.95 0.94 0.8 0.81 0.83 0.83 0.85

V-I Trajectory

(VIT)

40 0.93 0.99 0.95 0.89 0.91 0.93 0.95 0.88 0.7 0.82 0.77 0.72 0.82 0.85 0.71 0.78 0.85

Spectral domain

Total harmonic

distortion (THD)

1 0.37 0.39 0.34 0.37 0.49 0.5 0.48 0.51 0.42 0.4 0.43 0.41 0.38 0.34 0.39 0.38 0.41

Spectral flatness

(SPF)

1 0.06 0.07 0.09 0.1 0.2 0.19 0.21 0.22 0.17 0.17 0.15 0.18 0.23 0.21 0.19 0.21 0.17

Odd-even

harmonics ratio

(OER)

1 0.09 0.09 0.12 0.09 0.26 0.28 0.26 0.3 0.28 0.25 0.26 0.25 0.29 0.25 0.3 0.21 0.22

Spectral centroid

(SC)

1 0.12 0.12 0.13 0.14 0.31 0.3 0.25 0.26 0.22 0.2 0.22 0.23 0.33 0.31 0.29 0.3 0.23

Tristimulus (TRI) 3 0.89 0.86 0.86 0.79 0.87 0.82 0.82 0.79 0.77 0.81 0.84 0.77 0.61 0.64 0.63 0.59 0.77

Harmonic energy

distribution

(HED)

18 0.97 0.93 0.97 0.83 0.97 0.88 0.94 0.93 0.85 0.85 0.89 0.88 0.7 0.8 0.77 0.77 0.87

Unsurprisingly, features showing better performance have the drawback of a
high dimensionality (e.g., 40 for VIT and 20 for WFA). If the focus is shifted
towards the best performing scalar features (F1-score > 0.4), classical electrical
features such as P, S, R, Y, cosΦ, and Total Harmonic Distortion (THD) can be
identified. It is argued that these features may be of choice for lightweight NILM
algorithms deployed on resource constrained systems such as smart meters.
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5 Feature Selection

Some of the features already performed quite well in the standalone analysis.
However, it can be assumed that the combination of multiple features leads
to even better classification scores. While combining all 27 features may result
in better classification performance, the number of dimensions should be held
small to save computational resources and to prevent performance degradation,
which stem from larger feature spaces also known as the curse of dimensionality.
Therefore, in a second analysis several feature combinations are evaluated based
not only on their final classification score but also on their overall dimensionality.
While the standalone feature VIT already reaches an F1-score of up to 0.99 in
the experiments, its large dimensionality may hamper a possible application.
Furthermore, it might be possible that a combination of multiple features of
smaller dimensionality even outperforms VIT. Consequently, a second analysis
is conducted for which the combination of several features up to a maximum
dimensionality N is examined.

While Principal Component Analysis (PCA) can deliver valuable informa-
tion about the expressiveness of a certain feature, it does look at each feature
dimension individually and, therefore, does not account that other dimensions
are already calculated for certain multidimensional features such as e.g. HED.
Since an excessive evaluation that considers all possible feature combinations
is not feasible (

∑27
k=0

(
27
k

)
), a simple greedy heuristic i.e. a sequential selection

algorithm is used. The algorithm starts by adding the best performing scalar
feature (featx) to a feature set (F0 = {featx} with dimensionality N0 = 1). It
then evaluates all combinations of Fi with another scalar feature featj . The best
performing combined set (Fi+1 = Fi ∪ {featj}) is stored resulting in a dimen-
sionality of Ni+1 = Ni +1. It is then checked if any of the possible combinations
of non-scalar features (FNS

i+1 ), which result in the same dimensionality Ni+1,
outperforms Fi+1. If this is not the case, the algorithm continues with Fi+1, oth-
erwise FNS

i+1 is used. This process is repeated until a maximum dimensionality
Nmax is reached. The performance of each tested feature set is stored.

6 Combined Analysis

The selection scheme is executed for all 27 features on all datasets with a kNN,
SVM, and RF classifier. XGBoost was left out due to its extensive computational
requirements and comparable low performance on the standalone feature evalua-
tion (see Table 2). The results of this experiment, which are visualized in Fig. 6,
highlight that feature combinations with rather low dimensionality (N < 10)
already lead to classification scores of over 0.98 on WHITED and PLAID. The
evaluation further highlights that the performance on recordings in laboratory
setups (PLAID and WHITED) is generally better and more consistent compared
to more representative real-world data (FIRED and BLOND). This is, however,
expected due to the lower noise-level in laboratory environments.

In this evaluation, all classifiers performed equally well. Only for the BLOND
dataset, SVM classifiers outperform the others by quite a margin. Table 3 shows
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Fig. 6. Results of the proposed feature selection strategy for all classifiers (line styles)
and all datasets (line colors).

the specific feature sets that have been chosen by the selection scheme for dif-
ferent dimensionalities N . As a tradeoff between dimensionality, performance,
and computational effort, it is proposed to use features up to a dimensionality
of 25. The feature set, which has been proposed by the algorithm for N = 25
(see Table 3), depends on the used classifier. However, it always includes the
features WFA and Tristimulus (TRI). It is decided to supplement these features
with P and cosΦ resulting in the proposed feature set [P, cosΦ, TRI,WFA]. P
has already been evaluated in Table 2 as being the best scalar feature with an
average F1-score of 0.54. cosΦ reoccurs in nearly all feature sets (see Table 3)
and is added to accommodate the reactive component, which may be intro-
duced by an appliance. TRI further showed high classification results in Table 2
and represents the only frequency domain feature in the set. TRI is preferred
over the actually better performing HED (see Table 2), as it requires only three
dimensions instead of 18. From the corresponding formulas, it can be seen that
TRI also represents a compressed form of the HED feature. While WFA (with a
dimensionality of 20) did not outperform 20 scalar features, its simple calcula-
tion and the overall best results obtained in the standalone feature analysis (see
Table 2) justifies its inclusion in the set that is finally proposed.

With these four features, the proposed set is of comparatively small dimen-
sionality, computationally lightweight enough for resource constrained systems,
and still delivers decent classification results. To emphasize this, the proposed
set and the combination of all 27 features was evaluated on all classifiers and
datasets. The results are shown in Table 4. A slight performance increase can
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even be identified if the proposed feature set is used instead of all features due
to the course of dimensionality. With a dimension reduction from 128 to 25, the
proposed set still outperforms the combination of all features, highlighting the
effectiveness of the proposed feature set.

Table 3. Used features for selected dimensionalities N of the proposed feature selection
strategy. The F1-scores for each dataset and classifier (Clf.) are shown in addition to
the F1-scores averaged over all datasets.

N Clf. Featureset WHITED PLAID FIRED BLOND �F1

5 knn P, Y, THD, cosΦ, OER 0.98 0.97 0.94 0.82 0.93

5 rf P, Y, THD, cosΦ, MV R 0.96 0.96 0.93 0.77 0.91

5 svm P, Y, THD, cosΦ, MV R 0.96 0.98 1.0 0.81 0.93

22 knn P, Y, THD, cosΦ, OER, FF, R, S, 0.87 0.96 0.91 0.89 0.91

PMR, WFD, TC, ICR, MV R, SC, Q, CF,

PNR, MAMI, SPF, LAT, PSS, MIR

22 rf P, Y, THD, cosΦ, MV R, WFD, SC, 0.98 0.97 0.92 0.87 0.93

LAT, OER, SPF, ICR, CF, S, PSS,

MIR, PNR, R, MAMI, Q, TC, PMR, FF

22 svm P, Y, THD, cosΦ, MV R, CF, R, 0.95 0.96 0.97 0.88 0.94

OER, FF, SC, Q, PMR, S, WFD, SPF,

ICR, TC, PNR, MAMI, LAT, PSS, MIR

25 knn WFA, TRI, cosΦ, Y 0.99 1.0 0.92 0.9 0.95

25 rf WFA, TRI, LAT, S 0.98 0.98 0.91 0.88 0.94

25 svm WFA, TRI, S, THD 0.98 0.95 0.93 0.95 0.95

32 knn WFA, TRI, cosΦ, Y, R, OER, 0.99 1.0 0.93 0.89 0.95

MV R, THD, P, S, SC

32 svm WFA, TRI, S, THD, R, CF, Y, 0.98 0.97 0.93 0.96 0.96

cosΦ, MV R, FF, OER

32 rf WFA, TRI, LAT, S, CF, Y, MAMI, 0.98 0.97 0.91 0.89 0.94

SC, SPF, MIR, OER

The average F1-scores of the proposed set over all datasets exceed 0.94 inde-
pendent of the used classifier. The RF classifier performs best with an average
F1-score of 0.98. It is, however, noted that a computationally fairly simple kNN
classifier with k=1 already achieves a rather high F1-score of 0.97 on WHITED
and 0.98 on PLAID. kNN is a so called lazy learning algorithm that requires no
internal parameter tuning except for the choice of the number of neighbors (k) to
consider. During training, the complete training set is stored. During inference, a
new sample is assigned to the most common class within its k-nearest neighbors.
To reduce the required memory of a kNN classifier, which linearly increases with
the number of training samples, the Condensed Nearest Neighbor Rule [11] can
be applied. Because of its simple training and the ability to reduce the required
memory, it is argued that kNN should be the classifier of choice if deployed
(including training) on systems with small computational resources such as typ-
ical smart meters. However, for systems with sufficient computational power,
SVM and RF should be the classifiers of choice. XGBoost has shown enormous
potential by leading many machine learning competitions during the recent years
[9]. Even though it exhibits the worst performance across all classifiers in the
analysis at hand, it is argued that XGBoost might still outperform RF and SVM
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Table 4. Classification results for all 27 features and for the proposed feature combi-
nation [P, cosΦ, TRI, WFA]. The best results are highlighted in bold.

Clf. WHITED PLAID FIRED BLOND

Pr Re Ac F1 Pr Re Ac F1 Pr Re Ac F1 Pr Re Ac F1 �F1

Using all 27 feature; overall vector dimension: 128

knn 0.97 0.97 0.96 0.97 0.98 0.97 0.97 0.97 0.89 0.87 0.99 0.86 0.94 0.94 0.99 0.94 0.93

svm 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.91 0.94 1.0 0.92 0.96 0.88 0.99 0.91 0.95

rf 1.0 1.0 0.99 1.0 0.99 0.98 0.98 0.98 1.0 0.98 1.0 0.98 0.97 0.88 0.99 0.91 0.97

xgb 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.97 0.9 0.87 0.99 0.87 0.95 0.86 0.99 0.89 0.92

Using the feature set [P, cosΦ, TRI, WFA]; overall vector dimension: 25

knn 0.97 0.97 0.96 0.97 0.98 0.98 0.98 0.98 0.91 0.92 0.99 0.91 0.95 0.89 0.99 0.91 0.94

svm 0.98 0.97 0.97 0.97 0.96 0.96 0.95 0.96 0.92 0.95 1.0 0.93 0.94 0.96 0.99 0.95 0.95

rf 0.99 0.99 0.98 0.99 1.0 0.99 0.99 0.99 1.0 0.98 1.0 0.98 0.96 0.95 0.99 0.95 0.98

xgb 0.94 0.91 0.93 0.91 0.97 0.96 0.97 0.97 1.0 0.97 1.0 0.98 0.95 0.86 0.98 0.89 0.94

for other hyperparameter choices as the ones tested during these evaluations (see
the used grid search parameters in Table 1). However, due to its large hyperpa-
rameter space and, therefore, extensive training time, RF and SVM were selected
in favor, representing a tradeoff between the required training time and possible
gain in classification performance. Figure 7 shows the confusion matrix of the
RF classifier using the proposed feature set on the PLAID dataset (the corre-
sponding performance metrics are shown in Table 4. Despite the overall F1-score
of 0.98, only some appliances with rotary motors (fan, heater, and air condi-
tioner) are confused with one another. Due to the outstanding performance of
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Fig. 7. Confusion matrix of a RF classifier with the feature set [P, cosΦ, TRI, WFA]
applied to the PLAID dataset.
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the RF classifier with the feature set [P, cosΦ, TRI,WFA], it is proposed to use
their combination as a benchmarking algorithm when comparing novel appliance
classification algorithms, similar to the low-frequency disaggregation algorithms
that have been implemented as benchmarks in NILMTK [3].

7 Conclusion

In this work, we used four electricity datasets recorded at higher sampling rates
to evaluate 27 features and four classifiers for the task of event classification.
The best standalone features are P and WFA with corresponding F1-scores of
0.54 and 0.88, respectively. A feature selection algorithm revealed the feature
set [P, cosΦ, TRI,WFA] for a desired dimensionality of 25. This set achieved
F1-scores of 0.98 on average using a RF classifier. As all classifiers appeared to
be suitable, the performance of classifier ensembles should be investigated in
future work.
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