Chapter 6 Role of Enzymes in Biodegradatison of Pesticides: General Aspects and Recent Advances

Rupa Rani, Vipin Kumar, and Pratishtha Gupta

Abstract Environmental pollution is one of the prominent problems of the twentyfirst century. Since the introduction of pesticides for the killing of pests leads to an increase in crop productivity, indiscriminate use of pesticides for pest and vector control causes soil and water pollution due to environmental persistence, toxicity and accumulation. Several physicochemical strategies have been employed for the degradation of pesticides from polluted soil and water, but these techniques are costly and produce toxic products. Consequently, there is a need for effective and safe techniques for pesticides bioremediation. This chapter presents an overview of pesticides with various physicochemical and biological strategies for efficient pesticides bioremediation. This chapter also deals with several bacteria and fungi that have been employed in the biodegradation of pesticide residues. Biodegradation ability is based on enzymes which include oxidoreductase (GOX), monooxygenase (Esd, Ese, Cytochrome P450), dioxygenases (TOD), carboxylesterases (E3), phosphotriesterases (OpdA, OPH, PTE), haloalkane dehalogenases (AtzA, LinB and TrzN), haloalkane dehydrochlorinases (LinA), diisopropylfluorophosphatase (DFPase), paraoxonase (PON1), SsoPox, organophosphate acid anhydrolase (OPAA).

Keywords Pesticides · Biological methods · Bioremediation · Enzymes

R. Rani (🖂) · V. Kumar · P. Gupta

Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 S. Siddiqui et al. (eds.), *Pesticides Bioremediation*, https://doi.org/10.1007/978-3-030-97000-0_6

		-
Pesticides	Characteristics	Examples
Acaricides	Kill mites feeding on animals and plants	Chlorenthol, chlorfenson, bifenazate, cyhexatin, dicofol, dinoseb
Fungicides	Kill fungi (such as moulds, blights, rusts, and mildews)	Azoxystrobin, Bordeaux mixture, captan, dinocap, pentachlorophenol (PCP), sulphur, thiram
Herbicides/ weedicides	Kill weeds and other plants	Dinoseb, atrazine, isoproturon, maleic hydrazide, simazine, 2,4D, 2,4,5-T, Dicamba
Insecticides	Kill insects and arthropods	Aldrin, aldicarb, carbamyl, DDT, endosulfan, HCH, lindane, malathion
Molluscicides	Kill snails and slugs	carbonyl, metaldehyde, methicarb, PCP, phorate
Microbial pesticides	Kill microorganism pests	Bordeaux mixture, cupric hydroxide, streptomycin, tetracycline
Nematicides	Kill nematodes that feed on plant roots	Aldicarb, methyl isocyanate, methyl bromide
Rodenticides	Control rodents including mice	Aluminium phosphide, methyl bromide, sodium fluoroacetate, zinc phosphide, warfarin

Table 6.1 Pesticides, their characteristics and examples

Source: Duke (2018)

6.1 Introduction

During the green revolution, to meet the need of food production for increasing human population, fertilizers and pesticides were used to increase crop productivity and prevent pest attacks (Verma et al. 2014). Pesticides are various groups of inorganic and organic chemicals such as insecticides, herbicides, fungicides, rodenticides, nematicides used to control or kill pests such as insects, herbs, weeds, rodents, nematode, and microorganisms (Table 6.1). An increase in the consumption of pesticides, with the introduction of aldrin, benzene hexachloride (BHC), dieldrin, dichlorodiphenyltrichloroethane (DDT), endrin, and 2,4-dichlorophenoxyacetic acid (2,4D) was mainly began after World War II (Ortiz et al. 2013). However, indiscriminate and unregulated use of pesticides has increased its residues in air, water, soil, and food chain causing negative effects to human health, birds, wildlife, domestic animals, fish (Sharma et al. 2016).

In addition to this, pesticides can be categorized according to their chemical composition, which comprises four main groups, namely organochlorines, organophosphorus, carbamates and pyrethrin and pyrethroids (Fig. 6.1) with examples (Table 6.2).

147

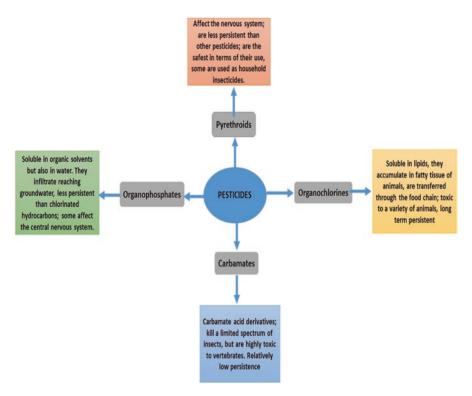


Fig. 6.1 Type of pesticides based on the chemical composition

Types of pesticides	Examples
Organochlorines	Endosulfan, DDT, aldrin, chlordane, dicofol, dieldrin, endrin, fipronil, lindane, heptachlor, hexachlorocyclohexane
Organophosphorus	Azinphos-methyl, acephate, bromophos, chlorpyrifos, coumaphos, diazinon, dimethoate, dichlorvos, disulfoton, dioxathion, ectophos, fenitrothion, fenitrooxon, glyphosate, fonofos, leptophos, mathamidophos, malathion, parathion, profenofos, phenthoate, phosmet, phorate, phosphothion, trichlorfon
Carbamates	Aldicarb, carbofuran, carbaryl, cartap, carbosulfan
Pyrethroids	Chlorfenvinphos, cypermethrin, deltamethrin, flumethrin, fenvalerate, ivermectin, permethrin

Table 6.2 Types of pesticides and their examples

Source: Huang et al. (2018)

6.2 Organochlorine Pesticides

Organochlorine pesticides or chlorinated hydrocarbons are organic compounds consisting of five or more covalently bonded chlorine atoms, mainly used in agriculture for controlling pests, vector control and in public health. These are non-polar, lipophilic, and persistent. Therefore, unregulated and indiscriminate application of organochlorine pesticides leads to a long-term residual effect in the environment which results in environmental pollution and accumulation in mammals. Aldrin, chlordane, dieldrin, DDT, endosulfan, and lindane are the most common examples of organochlorine pesticides (Ahmad and Ahmad 2014).

6.3 Organophosphorus Pesticides

Organophosphorus pesticides are a broad spectrum of pesticides as they control a wide range of pests. These can be heterocyclic, cyclic, and aliphatic with phosphorus present in the centre. These pesticides are less toxic as compared to organochlorine pesticides. They have multiple functions such as it can be used as stomach and contact poisons as well as fumigants resulting in nerve poisons. They showed toxicity to vertebrates and invertebrates by binding to acetylcholinesterase or cholinesterases leading to interruption of nerve impulses. Common examples of organophosphorus pesticides are parathion, malathion, diazinon and glyphosate (Ortiz-Hernández et al. 2013).

6.4 Carbamates

Carbamates can be used as a contact poison, stomach poison and fumigant poison. It is similar to organophosphates in the mode of action, such as by interrupting nerve signals transmission leads to poisoning which causes the death of pest. However, their origin is different, as carbamates are obtained from carbamic acid, whereas organophosphates are derived from phosphoric acid. It can also be used as a contact poison, stomach poison and fumigant poison. Carbamates cause less environmental pollution due to their similar molecular structure to that of natural organic substances resulting in easy degradation. Some of the widely used insecticides are bendiocarb, carbaryl, carbofuran, dioxacarb, fenoxycarb, fenobucarb, isoprocarb, methomyl and propoxur (Kaur et al. 2019).

6.5 Pyrethroids

Synthetic pyrethroid can be synthesized by copying the structure of natural pyrethrins and used against household pests. As compared to natural pyrethrins, synthetic pyrethroid pesticides are non-persistent with longer residual effects. These pesticides are low toxic to mammals and birds while more toxic to insects and fish. These pesticides are less toxic as compared to organophosphates and carbamates. Allethrin, cyfluthrin, cypermethrin, deltamethrin, and permethrin are the most used synthetic pyrethroid pesticides (Ortiz-Hernández et al. 2013).

6.6 Different Approaches for Pesticide Remediation

Several methods such as physicochemical and biological play major roles in the remediation of contaminated sites as well as decreasing the residual levels to safe and acceptable levels resulting in minimizing the toxic effects of pesticides on the human health and environment.

6.6.1 Physicochemical Methods

Physicochemical treatments, such as the Fenton process, heterogeneous photocatalysis (HPC), plasma oxidation and ozonation, thermal desorption (at low temperature) and incineration (Table 6.3) have been applied for the removal of contaminants.

6.6.2 Biological Methods

Several biological systems, mainly bacteria and fungi are used in the degradation of pesticides from contaminated sites. Because of the adaption of several metabolic pathways, wide distribution and diversity, microorganisms can be vitally used for the remediation of pesticides. The degradation efficacy relies on optimization of environmental conditions, for instance, pH of the soil, temperature, moisture contents as well as microbial community (Chishti et al. 2013; Javaid et al. 2016). Various microorganisms that have the potential to degrade pesticides are listed in Table 6.4.

Physicochemical methods	Characteristics	Limitations
Fenton process	Production of reactive hydroxyl radicals ('OH) by oxidation of Fe^{2+} ions in the presence of hydrogen (H ₂ O ₂), permanganate (MnO ⁴⁻), persulfate (S ₂ O ₈ ²⁻), and ozone (O ₃) (Baldissarelli et al. 2019)	Reduces soil pH, which makes it harmful for soil microorganisms resulting in hindering the cultivation of crops (Cheng et al. 2016)
Heterogeneous photocatalysis (HPC)	Use of TiO_2 , ZnO, ZnS as photosensitizers in photo induced processes. Semiconductors stimulate the displacement of electrons through ultraviolet irradiation from the valence to the conduction band, resulting in the production of hydroxyl radicals used in the degradation of pollutants (Santos et al. 2015)	It depends on the particle size, structure, morphology, surface, and adsorption. Recovering semiconductors to be reused is laborious and challenging (Castro et al. 2016)

Table 6.3 Characteristics and limitations of different physicochemical methods

Physicochemical methods	Characteristics	Limitations
Plasma oxidation and ozonation	Produce electrons with a high electric charge. Provide energy for reactive molecules, for instance, hydrogen peroxide, hydroxyl, ozone, oxygen and forming free radicals (Aggelopoulos et al. 2015; Cheng et al. 2016)	Need high energy for generating oxidizing compounds (Brillas et al. 2003)
Thermal desorption (at low temperature)	The heating of contaminated media in the gas stream at a temperature between 300 and 1000°F leads to the volatilization of organic compounds. The products formed are passed through a burner (contaminants are destroyed) or condenser (converts the gas phase into a liquid phase) or they are encapsulated by carbon adsorption beds (immobilize, but do not destroy the contaminants) (Parte et al. 2017)	Need highly specialized facility and cost-effective (Parte et al. 2017)
Incineration	The heating (at a temperature between 1000 and 1800 °F) of contaminated media leads to volatilization of organic compounds and partial oxidation. Further, the destruction of organic compounds at 1600 and 2200 °F temperature, which leads to the formation of ash which will be further disposed of in a landfill, if it meets safety regulations (Parte et al. 2017)	Need highly specialized facility and cost-effective (Parte et al. 2017)

Table 6.3 (continued)

 Table 6.4
 Pesticide degradation by microorganisms

Pesticides Organophos

(continued)

Pesticides	Types	Bacteria	References
Organochlorine	Endosulfan	Pseudomonas sp. TAH	Zaffar et al. (2018)
		Pseudomonas mendocina ZAM1	Mir et al. (2017)
		Stenotrophomonas maltophilia OG2	Ozdal et al. (2017)
		Pseudomonas sp. RPT 52	Gupta et al. (2016)
		Klebsiella sp. M3	Singh and Singh (2014)
		Alcaligenes faecalis strain JBW4	Kong et al. (2014)
		Bacillus subtilis	Kumar et al. (2014)
		Agrobacterium tumefaciens	Thangadurai and Suresl (2014)
		Alcaligenes faecalis JBW4	Kong et al. (2013)
		Pseudomonas, Bacillus	Harikumar et al. (2013)
		Pseudomonas fluorescens	Giri and Rai (2012)
		Achromobacter xylosoxidans C8B	Singh and Singh (2011)
		Azotobacter sp.	Castillo et al. (2011)
		Pseudomonas sp. IITR01	Bajaj et al. (2010)
		Pseudomonas aeruginosa	Kalyani et al. (2009)
		Bordetella sp. B9	Goswami and Singh (2009)
		Achromobacter xylosoxidans CS5	Li et al. (2009)
		<i>Ochrobacterum</i> sp., <i>Burkholderia</i> sp., <i>Arthrobacter</i> sp.	Kumar et al. (2008)
		Pseudomonas aeruginosa.	Arshad et al. (2008)
		Pseudomonas aeruginosa, Pseudomonas spinosa, Burkholderia cepacia	Hussain et al. (2007)
		Rhodococcus erythropolis, Stenotrophomonas maltophilia	Kumar et al. (2007)
		Bacillus sp.	Shivaramaiah and Kennedy (2006)
		Staphylococcus sp., Bacillus circulans I, Bacillus circulans II	Kumar and Philip (2006)
		Pseudomonas sp.	Lee et al. (2006)
		Klebsiella oxytoca	Kwon et al. (2005)
	Aldrin	Pseudomonas fluorescens	Erick et al. (2006)
	Dieldrin	Bacillus sp., Arthrobacter sp.	Jagnow and Haider (1972)
	Endrin	Micrococcus 204, Arthrobacter sp. 278, Pseudomonas sp. 27, Bacillus sp. 4	Patil et al. (1970)
	DDT	Azoarcus	Ortiz et al. (2013)
		Eubacterium limosum	Yim et al. (2008)
		Ralstonia eutropha strain A5	Hay and Focht (2000)

 Table 6.4 (continued)

(continued)

Pesticides	Types	Bacteria	References
	Methyl	Cyanobacteria	Ibrahim et al. (2014)
	parathion	Pseudomonas sp. strain WBC-3	Wang et al. (2014)
		Stenotrophomonas maltophilia M1	Mohamed (2009)
		Pseudomonas sp. A3	Zhongli et al. (2002)
		Pseudomonas sp. WBC	Yali et al. (2002)
		Plesiomonas sp M6	Zhongli et al. (2001)
		Plesiomonas sp. strain M6	Cui et al. (2001)
	Glyphosate	Pseudomonas aeruginosa and Bacillus megaterium	Al-Arfaj et al. (2013)
		Agrobacterium radiobacter P230	Horne et al. (2002b)
		<i>Geobacillus caldoxylosilyticus</i> T20	Obojska et al. (2002)
		Pseudomonas monteilii	Horne et al. (2002a)
		Nocardiodes simplex NRRL B24074	Mulbry (2000)
	Monocrotophos	Pseudomonas stutzeri MTCC 2300	Barathidasan and Reetha (2013)
		Paracoccus sp. M1	Jia et al. (2007)
		<i>Pseudomonas aeruginosa</i> F10B and <i>Clavibacter michiganensis</i> SBL11	Singh and Singh (2003)
		Pseudomonas mendocina	Bhadbhade et al. (2002a)
	Pseudomonas spp., Bacillus megaterium., Arthrobacter spp., Arthrobacter atrocyaneus	Bhadbhade et al. (2002b)	
	Fenitrothion	Burkholderia sp. NF100	Hayatsu et al. (2000)
Carbamates	Methomyl	Stenotrophomonas maltophilia M1	Mohamed (2009)

In recent years, the use of fungi as an effective tool for the biodegradation process has increased due to relatively easy cultivation and possession of a great enzymatic metabolism (Camacho-Morales and Sánchez 2016). Several studies that reported pesticides degradation by fungi are listed in Table 6.5.

6.7 Several Enzymes Involved in Pesticide Degradation

Enzymes play an essential role in the bioremediation of individual pesticides. The use of enzymes to degrade or transform pesticides is an emerging technology as it is more effective than physicochemical techniques. Enzymes are involved in the pesticide degradation via evolved metabolic resistance and several intrinsic detoxification mechanisms in the target organism, whereas in the environment through biodegradation by water and soil microorganisms. Pesticide metabolism involves (i) transformation of the parent compound to a more water-soluble and a less toxic product via hydrolysis, reduction, or oxidation, (ii) conjugation of pesticide

Pesticides	Compound	Fungi	References	
Organochlorine	Endosulfan	Aspergillus niger	Bhalerao and Puranik (2007)	
		Penicillium sp.	Romero-Aguilar et al. (2014)	
		Trametes versicolor, Pleurotus ostreatus, Gloeophyllum trabeum	Ulčnik et al. (2013)	
		Mortierella sp.	Kataoka et al. (2010a)	
		Trametes hirsuta	Kamei et al. (2011)	
		Botryosphaeria laricina JAS6., Aspergillus tamarii JAS9	Silambarasan and Abraham (2013)	
	Dieldrin	Cordyceps brongniartii ATCC66779, Cordyceps militaris KS-92	Xiao and Kondo (2013)	
		Phlebiabrevispora Nakasone TMIC33929(strain YK543)	Kamei et al. (2010)	
		Mucor racemosus strain DDF	Kataoka et al. (2010b)	
	Endrin	Trichoderma viride	Patil et al. (1970)	
	DDT	Trichoderma viride	Patil et al. (1970)	
	Heptachlor	Phlebia sp.	Xiao et al. (2011)	
Organophosphorus	Chlorpyrifos	Cellulomonas fimi, Phanerochaete chrysosporium	Barathidasan et al. (2014)	
		Trichoderma harzianum, Rhizopus nodosus	Harish et al. (2013)	
		Acremonium sp. GFRC-1	Kulshrestha and Kumari (2011)	
		Verticillium sp. DSP	Fang et al. (2008)	
		Trichosporon sp.	Xu et al. (2007)	
		Hypholama fascicularae, Coriolus versicolor	Bending et al. (2002)	
	Glyphosate	Alternaria alternata	Lipok et al. (2003)	
		Penicillium chrysogenum	Klimek et al. (2001)	
	Monocrotophos (MCP)	Aspergillus niger MCP1	Jain et al. (2012)	

Table 6.5 Pesticide degradation by fungi

metabolites to an amino acid or sugar resulting in a decrease in toxicity as well as increase in water solubility, (iii) conversion of pesticide metabolites into non-toxic secondary conjugates. Bacteria and fungi involved extracellular or intracellular enzymes which are involved in pesticide metabolism (Ortiz-Hernández et al. 2013). Enzymes involved in bioremediation were mainly oxidoreductases, monooxygenase, dioxygenases, carboxylesterases, phosphotriesterases, haloalkane dehalogenases, haloalkane dehydrochlorinases, diisopropylfluorophosphatase, Paraoxonase (PON1), organophosphate acid anhydrolase (OPAA), carboxylesterases (Table 6.6). Several enzymes that have been applied for the degradation of pesticides from polluted environments are present in Table 6.7.

Enzymes	Characteristics
Oxidoreductase (GOX)	Oxidoreductases are a group of an enzyme with broad substrate specificity that catalyses oxidation and reduction reaction by the transfer of electrons from an electron donor (reductant) to an acceptor (oxidant). Glyphosate oxidase (GOX) is a flavoprotein amine oxidase that is involved in herbicide glyphosate bioremediation that catalyses the oxidation of herbicide and releases the keto acid glyoxylate by producing aminomethyl phosphonate (AMPA).
Monooxygenase (Esd and Ese, Cytochrome P450)	Monooxygenases catalyse the transfer of O ² (one atom) to an organic compound, which leads to an increase in reactivity and water solubility of xenobiotic compounds during degradation. Esd and Ese belong to the two-component flavin diffusible monooxygenase family (TC-FDM), which play an important role in the degradation of endosulfan and its toxic metabolite endosulphate. Cytochrome P450 uses oxygen to oxidize or hydroxylate substrates in an enantiospecific manner. It also contains a catalytic Fe ²⁺ -containing porphyrin group which binds to carbon monoxide at 450 nm. Cytochrome CYP1A1 also termed aryl hydrocarbon hydroxylase is an example of cytochrome P450, and has the ability to bioremediation o herbicides such as chlortoluron, atrazine, and norflurazon Cytochrome CYP76B1 is another example of cytochrome P450, which catalyses the oxidative dealkylation of phenylurea herbicides such as linuron, isoproturon, and chlortoluron.
Dioxygenases (TOD)	Dioxygenases are a broad group of enzymes that act similar to monocyclic aromatics, monooxygenase aliphatic olefins and other miscellaneous substrates. Toluene dioxygenase (TOD) is an example of dioxygenase for a range of compounds such as monocyclic aromatics, fused aromatics, linked aromatics and aliphatic olefins.
Carboxylesterases (E3)	Esterase 3 (E3) is an α/β hydrolase fold carboxylesterase, which is involved in detoxification-mediated resistance to organophosphorus and pyrethroid insecticides. It operates through a catalytic triad, including aspartate (E351), serine (S218) and histidine (H471). (continued

Table 6.6 Enzymes and their characteristics

Enzymes	Characteristics
Phosphotriesterase (OPH, OpdA, PTE)	Phosphotriesterase catalyses the hydrolysis of organophosphorus triesters, belongs to the amido- hydrolase metalloenzyme family. Organophosphate hydrolase (OpdA), the enzyme is an $(\alpha/\beta)_8$ barrel structure used as a commercial product to degrade residues of the organophosphorus present in wastes and solid. After poisoning with highly toxic organophosphate pesticides, the addition of OpdA improved survival in rat and monkeys.
Haloalkane dehalogenases (LinB, AtzA and TrzN)	Haloalkane dehalogenases belong to the α/β -hydrolase fold family. LinB, AtzA and TrzN are the examples of haloalkane dehalogenases. LinB plays a crucial role in the degradation of β -HCH and δ -HCH. AtzA and TrzN hydrolyses halide–carbon bonds. In the atrazine catabolic pathway, AtzA is the first enzyme encoded by atzA-atzF from the transmissible pADP1 plasmid. Iron-dependent AtzA was involved in the dechlorination of atrazine and related chloro-s-triazine herbicides. Zinc-dependent TrzN was involved in the dechlorination of amides, S-alkyl groups, O-alkyl groups and halides.
Haloalkane dehydrochlorinases (LinA)	LinA catalyses the dehydrochlorination of the insecticide γ -HCH which can be further catabolised by the other enzymes of the lin operon.
Diisopropylfluorophosphatase (DFPase)	DFPase is a six-bladed β -propeller structure having two Ca ²⁺ ions, which play a vital role in the catalysis and provide structural integrity. Administration of pegylated DFPase in rats reduces the rate of lethality with a subcutaneous $3xLD_{50}$ dose of soman (G-type nerve agents).
Paraoxonase (PON1)	Six-bladed propeller structure that uses Ca ²⁺ ions within its active site. It also exhibited anti-oxidative, anti-inflammatory, anti-atherogenic, anti-diabetic, antimicrobial, properties along with paraoxon and organophosphorus detoxifying properties.
SsoPox	SsoPox is an $(\alpha/\beta)_8$ barrel folded structure in which the active site is present at the C-terminal section of the structure. It showed activities at up to 100 °C in the presence of denaturing agents such as detergents.
Organophosphate Acid Anhydrolase (OPAA)	OPAAs are dipeptidases that cleave dipeptide bonds in which the C-terminal residue is proline. OPAA has undergone a series of mutations to increase its catalytic activity and substrate specificity.

Table 6.6 (continued)

Source: Scott et al. (2008); Verma et al. (2014); Bhandari et al. (2021), Bhandari et al. (2021); Verma et al. (2014), Scott et al. (2008)

Enzyme	Originating species	Cofactor requirements	Documented target pesticide(s)	References
PTE	Brevundimonas diminuta	Zn	Diethyl-VX, Dimethyl-VX	Bigely et al. (2019)
DFPase	Loligo vulgaris	Ca ²⁺	Diisopropyl fluorophosphate, sarin, cyclosarin	Melzer et al. (2012), Zhang et al (2018)
PON1	Human liver	Ca ²⁺	Paraoxon	Purg et al. (2017)
OPAA	Alteromonas sp.	Mn ²⁺	Paraoxon	Xiao et al. (2017)
Ssopox	Sulfolobus solfataricus	Co ²⁺ , Fe ³⁺	Paraoxon	Elias et al. (2008)
Glyphosate oxidase (Gox)	Agrobacterium strain T10, Pseudomonas sp LBr	Flavin (FAD)	Glyphosate	Scott et al., (2008)
Esd	<i>Mycobacterium</i> sp.	Flavin and NADH	Endosulfan and Endosulphate	Scott et al. (2008)
Ese	Arthrobacter sp	Flavin (FMN)	Endosulfan and Endosulphate	Scott et al. (2008)
Cyp1A1/1A2	Mammalian (Rat)	Heme and NADH	Atrazine, chlortoluron and norflurazon	Scott et al. (2008)
Cyp76B1	Helianthus tuberosus	Heme and NADH	Chlortoluron, linuron and isoproturon	Scott et al. (2008)
cytochrome P450	Pseudomonas putida	Heme and NADH	Pentachlorobenzene and Hexachlorobenzene	Scott et al. (2008)
TOD	Pseudomonas putida	Fe ²⁺ and NADH	Trifluralin herbicides	Scott et al. (2008)
E3	Lucilia cuprina	None	Phosphotriester insecticides and synthetic pyrethroids	Scott et al. (2008)
ОРН	Agrobacterium radiobacter	Fe ²⁺ and Zn ²⁺	Insecticides phosphotriester	Scott et al. (2008)
OpdA	Pseudomonas diminuta; Flavobacterium	Fe ²⁺ and Zn ²⁺	Methyl parathion, parathion, malathion, coumaphos	Scott et al. (2008)
PdeA	Delftia acidovorans	None	Organophosphorus compounds	Scott et al. (2008)
LinA	Sphingomonas sp., Sphingobium sp.	None	Hexachlorocyclohexane (γ-isomer)	Scott et al. (2008)
LinB	Sphingomonas sp., Sphingobium sp.	None	Hexachlorocyclohexane $(\beta - \text{ and } \delta - \text{ isomers})$	Scott et al. (2008)

 Table 6.7
 Summary of pesticide degrading enzymes of various microbial strains

(continued)

157

Enzyme	Originating species	Cofactor requirements	Documented target pesticide(s)	References
AtzA	Pseudomonas sp. ADP	Fe ²⁺	Chloro-s-triazine herbicides	Scott et al. (2008)
TfdA	Ralstonia eutropha	Fe ²⁺ and α- ketoglutarate	pyridyloxyacetate herbicides and 2,4-dichlorophenoxyacetic acid	Scott et al. (2008)
TrzN	Nocardioides sp.	Zn ²⁺	Chloro-s-triazine herbicides	Scott et al. (2008)
DMO	Pseudomonas maltophilia	NADH and a Fe-S centre	Dicamba	Scott et al. (2008)
Organophosphate Hydrolase (OpdA)	Agrobacterium radiobacter	Binuclear Fe ²⁺ -Zn ²⁺	Methyl paraoxon	Horne et al. (2002b)

Table 6.7 (continued)

6.8 Conclusion

In addition to controlling or killing pests, pesticides can move off-site resulting in contamination of water, soil and the ecosystem resulting in damage to non-target organisms. The bioremediation process for the detoxification and/or removal of pesticide residues from polluted soil is the best option available in integrated agricultural management practices, due to its eco-friendly, cost-effective and efficacious nature. Various microorganisms (bacteria and fungi) are used in the removal of pesticides from contaminated sites. Bacterial degradation involves specific genes and enzymes for the breakdown of functional groups present in the pesticides. In conclusion, although significant research has been done on the enzymes associated with the biodegradation of pesticides, further research in relevant environmental conditions is needed to confirm the ability of bacteria and fungi for large-scale decontamination. In addition, significant degradation of pollutants will be enhanced using genetically engineered microorganisms that will produce many recombinant enzymes using eco-friendly technology is still unexplored.

References

- Abo-Amer AE (2011) Biodegradation of diazinon by *Serratia marcescens* DI101 and its use in bioremediation of contaminated environment. J Microbiol Biotechnol 21:71-80
- Agarry SE, Olu-Arotiowa OA, Aremu MO et al (2013) Biodegradation of dichlorovos (organophosphate pesticide) in soil by bacterial isolates. Biodegradation 3:11-16
- Aggelopoulos CA, Svarnas P, Klapa MI et al (2015) Dielectric barrier discharge plasma used as a means for the remediation of soils contaminated by non-aqueous phase liquids. Chem Eng J 270:428-436

Ahmad M, Ahmad I (2014) Bioremediation of pesticides. Biodegradation and bioremediation. Studium Press LLC, Boca Raton, pp. 125-165

- Al-Arfaj A, Abdel-Megeed A, Ali HM et al (2013) Phyto-microbial degradation of glyphosate in Riyadh area. Int J Microbiol Res 5:458
- Anwar S, Liaquat F, Khan QM et al (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by *Bacillus pumilus* strain C2A1. J Hazard Mater 168:400-405
- Arshad M, Hussain S, Saleem M (2008) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by *Pseudomonas aeruginosa*. J Appl Microbiol 104:364-370
- Awad NS, Sabit HH, Abo-Aba SE et al (2011) Isolation, characterization and fingerprinting of some chlorpyrifos-degrading bacterial strains isolated from Egyptian pesticides-polluted soils. Afr J Microbiol Res 5:2855-2862
- Bajaj A, Pathak A, Mudiam MR et al (2010) Isolation and characterization of a *Pseudomonas* sp. strain IITR01 capable of degrading α-endosulfan and endosulfan sulfate. J Appl Microbiol 109:2135-2143
- Baldissarelli DP, Vargas GDLP, Korf EP et al (2019) Remediation of soils contaminated by pesticides using physicochemical processes: a brief review. Planta Daninha 37 e019184975
- Barathidasan K, Reetha D (2013) Microbial degradation of monocrotophos by *Pseudomonas* stutzeri. Indian Streams Res J 3:1
- Barathidasan K, Reetha D, Milton DJ et al (2014) Biodegradation of chlorpyrifos by co-culture of Cellulomonas fimi and *Phanerochaete chrysosporium*. Afr J Microbiol Res 8:961-966
- Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59-63
- Bhadbhade BJ, Dhakephalkar PK, Sarnaik SS et al (2002a) Plasmid-associated biodegradation of an organophosphorus pesticide, Monocrotophos, by *Pseudomonas mendocina*. Biotechnol Lett 24:647-650
- Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002b) Biomineralization of an organophosphorus pesticide, Monocrotophos, by soil bacteria. J Appl Microbiol 93:224-234
- Bhalerao TS, Puranik PR, (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, *Aspergillus niger*. Int Biodeterior Biodegrad 59:315-321
- Bhandari S, Poudel DK, Marahatha R et al (2021) Microbial Enzymes Used in Bioremediation. J Chem
- Bhuimbar MV, Kulkarni AN, Ghosh JS (2011) Detoxification of chlorpyriphos by *Micrococcus luteus* NCIM 2103, *Bacillus subtilis* NCIM 2010 and *Pseudomonas aeruginosa* NCIM 2036. Res J Envir Earth Sci 3:614-619
- Bigely AN, Desormeaux E, Xiang DF et al (2019) Overcoming the challenges of enzyme evolution to adapt phosphotriesterase for V-agent decontamination. Biochemistry 58:2039–2053
- Brillas E, Calpe JC, Cabot PL (2003) Degradation of the herbicide 2, 4-dichlorophenoxyacetic acid by ozonation catalyzed with Fe²⁺ and UVA light. Appl Catal B: Environ 46:381-391
- Camacho-Morales RL, Sánchez JE (2016) Biotechnological use of Fungi for the degradation of recalcitrant agro-pesticides. In Mushroom Biotechnology. pp.203-214
- Castillo JM, Casas J, Romero E (2011) Isolation of an endosulfan-degrading bacterium from a coffee farm soil: Persistence and inhibitory effect on its biological functions. Sci Total Environ 412:20-27
- Castro DC, Cavalcante RP, Jorge J, Martines MA et al (2016) Synthesis and characterization of mesoporous Nb2O5 and its application for photocatalytic degradation of the herbicide methyl-viologen. J Braz Chem Soc 27:303-313
- Cheng M, Zeng G, Huang D et al (2016) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582-598
- Chishti Z, Hussain S, Arshad KR et al (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manage 114:372-380
- Cui Z, Li S, Fu G (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922-4925
- Duke SO (2018) Interaction of chemical pesticides and their formulation ingredients with microbes associated with plants and plant pests. J Agric Food Chem 66:7553-7561

- Elias M, Dupuy J, Merone L et al (2008) Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol 379:1017–1028
- Erick RB, Juan A-O, Paulino P, Torres LG (2006) Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or *Pseudomonas fluorescens* free cell cultures. J. Environ Sci Health B 41:553-569
- Fang H, Xiang YQ, Hao YJ et al (2008) Fungal degradation of chlorpyrifos by *Verticillium* sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi. Int Biodeterior Biodegrad 61:294-303
- Fawzy IE, Hend AM, Osama NM et al (2014) Biodegradation of chlorpyrifos by microbial strains isolated from agricultural wastewater. J Am Sci 10:98-108
- Ghanem I, Orfi M, Shamma M (2007) Biodegradation of chlorphyrifos by *Klebsiella* sp. isolated from an activated sludge sample of waste water treatment plant in damascus. Folia Microbiol 52:423-427
- Giri K, Rai JPN (2012) Biodegradation of endosulfan isomers in broth culture and soil microcosm by *Pseudomonas fluorescens* isolated from soil. Int J Environ Stud 69:729-742
- Goswami S, Singh DK (2009) Biodegradation of α and β endosulfan in broth medium and soil microcosm by bacterial strain *Bordetella* sp. B9. Biodegradation 20:199-207
- Gupta M, Mathur S, Sharma TK et al (2016) A study on metabolic prowess of *Pseudomonas* sp. RPT 52 to degrade imidacloprid, endosulfan and coragen. J Hazard Mater 301:250-258
- Harikumar PS, Jesitha K, Sreechithra M (2013) Remediation of endosulfan by biotic and abiotic methods. J Environ Prot Sci 4:418
- Harish R, Supreeth M, Chauhan JB (2013) Biodegradation of organophosphate pesticide by soil fungi. Advanced BioTech 12:4-8
- Hay AG, Focht DD (2000) Transformation of 1, 1-dichloro-2, 2-(4-chlorophenyl) ethane (DDD) by *Ralstonia eutropha* strain A5. FEMS Microbiol Ecol 31:249-253
- Hayatsu M, Hirano M, Tokuda S (2000) Involvement of two plasmids in fenitrothion degradation by *Burkholderia* sp. strain NF100. Appl Environ Microbiol 66:1737-1740
- Horne I, Sutherland TD, Harcourt RL et al (2002b) Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68:3371-3376
- Horne I, Sutherland TD, Oakeshott JG et al (2002a) Cloning and expression of the phosphotriesterase gene hocA from *Pseudomonas monteilii* C11bb. The GenBank accession number for the hocA gene is AF469117. Microbiology 148:2687-2695
- Huang Y, Xiao L, Li F et al (2018) Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules 23:2313
- Hussain S, Arshad M, Saleem M et al (2007) Biodegradation of α -and β -endosulfan by soil bacteria. Biodegradation 18:731-740
- Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of bacterial for degradation of selected pesticides. Adv Biores 4:82-85
- Ibrahim WM, Karam MA, El-Shahat RM et al (2014) Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. Biomed Res Int. Article ID 392682 6 pages https://doi.org/10.1155/2014/392682
- Jagnow G, Haider K (1972) Evolution of 14CO₂ from soil incubated with dieldrin-14C and the action of soil bacteria on labelled dieldrin. Soil Biol Biochem 4:43-49
- Jain R, Garg V, Singh KP, Gupta S (2012) Isolation and characterization of monocrotophos degrading activity of soil fungal isolate *Aspergillus Niger* MCP1 (ITCC7782. 10). Int J Environ Sci 3:841
- Javaid MK, Ashiq M, Tahir M (2016) Potential of biological agents in decontamination of agricultural soil. Scientifica.
- Jia KZ, Li XH, He J et al (2007) Isolation of a monocrotophos-degrading bacterial strain and characterization of enzymatic degradation. Huanjing kexue 28:908-912. PMID: 17639959
- Kalyani SS, Sharma J, Singh S et al (2009) Enrichment and isolation of endosulfan-degrading microorganism from tropical acid soil. J Environ Sci Health B 44:663-672

- Kamei I, Takagi K, Kondo R (2010) Bioconversion of dieldrin by wood-rotting fungi and metabolite detection. Pest Manag Sci 66:888-891
- Kamei I, Takagi K, Kondo R (2011) Degradation of endosulfan and endosulfan sulfate by white-rot fungus *Trametes hirsuta*. J Wood Sci 57:317-322
- Kataoka R, Takagi K, Sakakibara F (2010a) A new endosulfan-degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J Pestic Sci 1003160118
- Kataoka R, Takagi K, Kamei I et al (2010b) Biodegradation of dieldrin by a soil fungus isolated from a soil with annual endosulfan applications. Environ Sci Technol 44:6343-6349
- Kaur R, Mavi GK, Raghav S et al (2019) Pesticides classification and its impact on environment. Int. J. Curr Microbiol Appl Sci 8:1889-1897
- Klimek M, Lejczak B, Kafarski P et al (2001) Metabolism of the phosphonate herbicide glyphosate by a non-nitrate-utilizing strain of *Penicillium chrysogenum*. Pest Manag Sci 57:815-821
- Kong L, Zhu S, Zhu L et al (2013) Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J Environ Sci 25:2257-2264
- Kong L, Zhu S, Zhu L et al (2014) Colonization of *Alcaligenes faecalis* strain JBW4 in natural soils and its detoxification of endosulfan. Appl Microbiol Biotechnol 98:1407-1416
- Korade DL, Fulekar MH (2009) Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. J Hazard Mater 172:1344-1350
- Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47:219-225
- Kumar A, Bhoot N, Soni I, John PJ (2014) Isolation and characterization of a *Bacillus subtilis* strain that degrades endosulfan and endosulfan sulfate 3 Biotech 4:467-475
- Kumar K, Devi SS, Krishnamurthi K et al (2007) Enrichment and isolation of endosulfan degrading and detoxifying bacteria. Chemosphere 68:317-322
- Kumar M, Philip L (2006) Endosulfan mineralization by bacterial isolates and possible degradation pathway identification. Bioremediat J 10:179-190
- Kumar M, Lakshmi CV, Khanna S (2008). Biodegradation and bioremediation of endosulfan contaminated soil. Bioresour Technol 99:3116-3122
- Kwon GS, Sohn HY, Shin KS et al (2005) Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by *Klebsiella oxytoca* KE-8. Appl Microbiol Biotechnol 67:845-850
- Lakshmi CV, Kumar M, Khanna S (2008) Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int Biodeterior Biodegrad 62:204-209
- Lee JB, Sohn HY, Shin KS et al (2006) Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate. J Agric Food Chem 54:8824-8828
- Li W, Dai Y, Xue B et al (2009) Biodegradation and detoxification of endosulfan in aqueous medium and soil by *Achromobacter xylosoxidans* strain CS5. J Hazard Mater 167:209-216
- Li X, He J, Li S (2007) Isolation of a chlorpyrifos-degrading bacterium, *Sphingomonas* sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158:143-149
- Lipok J, Dombrovska I, Wieczorek P et al (2003) The ability of fungi isolated from stored carrot seeds to degrade organophosphonate herbicides. In Pesticide in air, plant, soil & water system. Proceedings of the XII Symposium Pesticide Chemistry, Piacenza, Italy, 4-6 June 2003 (pp. 575-580). La Goliardica Pavese srl.
- Liu ZY, Chen X, Shi Y et al (2012) Bacterial degradation of chlorpyrifos by *Bacillus cereus*. In Advanced Materials Research Trans Tech Publications Ltd 356:676–80
- Mahiuddin M, Fakhruddin ANM, Abdullah-Al-Mahin et al (2014) Degradation of the organophosphorus insecticide diazinon by soil bacterial isolate. Int J Biotechnol 3:12-23
- Melzer M, Heidenreich A, Dorandeu F et al (2012) In vitro and in vivo efficacy of PEGylated diisopropyl fluorophosphatase (DFPase). Drug Test Anal 4:262-270
- Mir ZA, Ali S, Tyagi A et al (2017) Degradation and conversion of endosulfan by newly isolated *Pseudomonas mendocina* ZAM1 strain. 3 Biotech 7:211
- Mohamed MS (2009) Degradation of methomyl by the novel bacterial strain Stenotrophomonas maltophilia M1. Electron J Biotechnol 12:6-7

- Mulbry W (2000) Characterization of a novel organophosphorus hydrolase from *Nocardiodes simplex* NRRL B-24074. Microbiol Res 154:285-288
- Ning J, Gang G, Bai Z et al (2012) In situ enhanced bioremediation of dichlorvos by a phyllosphere *Flavobacterium* strain. Front Environ Sci Eng 6:231-237
- Obojska A, Ternan NG, Lejczak B et al (2002) Organophosphonate utilization by the thermophile *Geobacillus caldoxylosilyticus* T20. Appl Environ Microbiol 68:2081-2084
- Ortiz I, Velasco A, Le Borgne S, Revah S (2013) Biodegradation of DDT by stimulation of indigenous microbial populations in soil with cosubstrates. Biodegradation 24:215-225
- Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E et al (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. Biodegradation-life of Science 251-287
- Ozdal M, Ozdal OG, Algur OF et al (2017) Biodegradation of α-endosulfan via hydrolysis pathway by *Stenotrophomonas maltophilia* OG2. 3 Biotech 7:113
- Parte SG, Mohekar AD, Kharat AS (2017) Microbial degradation of pesticide: a review. Afr J Microbiol Res 11:992-1012
- Patil KC, Matsumura F, Boush GM (1970) Degradation of endrin, aldrin, and DDT by soil microorganisms. Appl Microbiol 19:879-881
- Purg M, Elias M, Kamerlin SCL (2017) Similar active sites and mechanisms do not lead to crosspromiscuity in organophosphate hydrolysis: implications for biotherapeutic engineering. J Am Chem Soc 139:17533-17546
- Romeh AA, Hendawi MY (2014) Bioremediation of certain organophosphorus pesticides by two biofertilizers, *Paenibacillus (Bacillus) polymyxa (Prazmowski)* and *Azospirillum lipoferum* (Beijerinck). J Agric Sci Technol 16:265-276
- Romero-Aguilar M, Tovar-Sánchez E, Sánchez-Salinas E et al (2014) *Penicillium* sp. as an organism that degrades endosulfan and reduces its genotoxic effects. Springer Plus 3:1-11
- Santos LM, Amorim KPD, Andrade LS et al (2015) Dye degradation enhanced by coupling electrochemical process and heterogeneous photocatalysis. J Braz Chem Soc 26:1817-1823
- Scott C, Pandey G, Hartley CJ et al (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65
- Sharma A, Bhatt P, Khati P et al (2016) Microbial degradation of pesticides for environmental cleanup. In Bioremediation of Industrial Pollutants 178–205
- Shivaramaiah HM, Kennedy IR (2006) Biodegradation of endosulfan by a soil bacterium. J Environ Sci Health B 41:895-905
- Silambarasan S, Abraham J (2013) Mycoremediation of endosulfan and its metabolites in aqueous medium and soil by *Botryosphaeria laricina* JAS6 and *Aspergillus tamarii* JAS9. PLoS One 8:77170
- Singh BK, Walker A, Morgan JAW et al (2003) Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198-5206
- Singh BK, Walker A, Morgan JAW et al (2004) Biodegradation of chlorpyrifos by *Enterobacter* strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855-4863
- Singh DP, Khattar JIS, Nadda J et al (2011) Chlorpyrifos degradation by the cyanobacterium *Synechocystis* sp. strain PUPCCC 64. Environ Sci Pollut Res 18:1351-1359
- Singh S, Singh DK (2003) Utilization of monocrotophos as phosphorus source by *Pseudomonas aeruginosa* F10B and *Clavibacter michiganense* subsp. insidiosum SBL 11. Can J Microbiol. 2003 Feb;49(2):101-9. doi: https://doi.org/10.1139/w03-013
- Singh M, Singh DK (2014) Biodegradation of endosulfan in broth medium and in soil microcosm by *Klebsiella* sp. M3. Bull Environ Contam Toxicol 92:237-242
- Singh NS, Singh DK (2011) Biodegradation of endosulfan and endosulfan sulfate by *Achromobacter xylosoxidans* strain C8B in broth medium. Biodegradation 22:845-857
- Thabit TMAM, El-Naggar MAH (2013) Diazinon decomposition by soil bacteria and identification of degradation products by GC-MS. Soil Environ 32

- Thangadurai P, Suresh S (2014) Biodegradation of endosulfan by soil bacterial cultures. Int Biodeterior Biodegrad 94:38-47
- Ulčnik AKCI, Cigić IK, Pohleven F (2013). Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J Microbiol Biotechnol 29:2239-2247
- Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-stateof-art. Rev Environ Sci Biotechnol 13:429-466
- Wang L, Chi XQ, Zhang JJ et al (2014) Bioaugmentation of a methyl parathion contaminated soil with *Pseudomonas* sp. strain WBC-3. Int Biodeterior Biodegrad 87:116-121
- Xiao P, Mori T, Kamei I (2011) Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia. FEMS Microbiol Lett 314:140-146
- Xiao PF, Kondo R (2013) Biodegradation of dieldrin by cordyceps fungi and detection of metabolites. In Applied Mechanics and Materials Trans Tech Publications Ltd. vol. 295, pp. 30–34
- Xiao Y, Yang J, Tian X et al (2017) Biochemical basis for hydrolysis of organophosphorus by a marine bacterial prolidase. Process Biochem 52:141-148
- Xu G, Li Y, Zheng W et al (2007) Mineralization of chlorpyrifos by co-culture of *Serratia* and *Trichosporon* spp. Biotechnol Lett 29:1469-1473
- Xu, G, Zheng W, Li Y et al (2008) Biodegradation of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol by a newly isolated *Paracoccus* sp. strain TRP. Int Biodeterior Biodegrad 62:51-56
- Yali C, Xianen Z, Hong L et al (2002) Study on *Pseudomonas* sp. WBC-3 Capable of Complete Degradation of Methylparathion [J]. Acta Microbiol Sin 4.
- Yang L, Zhao YH, Zhang BX et al (2005) Isolation and characterization of a chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67-73
- Yim YJ, Seo J, Kang SI et al (2008). Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium *Eubacterium limosum* under anaerobic conditions. Arch Environ Contam Toxicol 54:406-411
- Zaffar H, Ahmad R, Pervez A et al (2018) A newly isolated Pseudomonas sp. can degrade endosulfan via hydrolytic pathway. Pestic Biochem Physiol 152:69-75
- Zhang H, Yang L, Ma YY et al (2018) Theoretical studies on catalysis mechanisms of serum paraoxonase 1 and phosphotriesterase diisopropyl fluorophosphatase suggest the alteration of substrate preference from paraoxonase to DFP. Molecules 23:1660
- Zhongli C, Ruifu Z, Jian H et al (2002) Isolation and characterization of a p-nitrophenol degradation *Pseudomonas* sp. strain p3 and construction of a genetically engineered bacterium. Wei Sheng Wu Xue Bao 42:19-26
- Zhongli C, Shunpeng L, Guoping F (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922-4925
- Zhu J, Zhao Y, Qiu J (2010) Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1. Afr J Microbiol Res 4:2716-2719