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Preface

Pesticide exposure is one of the foremost concerns about environmental safety
worldwide. Almost 1.8 billion people are engaged in agricultural practices, with
majority of them using synthetic pesticides to safeguard the food and commercial
products they produce. Pesticides are used by most people commercially and for
public health programs, while many others use them in their lawns, gardens, and
household protection. Although efforts have been made to reduce pesticide usage by
practicing organic agricultural techniques and by applying alternative pest manage-
ment technologies to get rid of pests, it is imperative to find appropriate substitutes
of chemical pesticides. Continued pesticide exposure from a variety of sources,
such as work exposure, spray drifts, garden and home usage, food, residues in
household dust, drinking water, and soil, is currently posing a severe health hazard
in both developing and industrialized countries. In the process of making decisions
concerning the usage of pesticides, both new and old, risk assessment remains
critical.

Because of the substantial risks to human health, their use has been restricted,
and alternative cleanup systems have been established for persistent pesticides at
various contaminated sites. For pesticides degradation, biological techniques like
biostimulation, bioaugmentation, biosurfactants, and bioremediation are accessible
at polluted sites, although the last one has been proved as the most ideal approach
to mitigate the hazardous effects of pesticides. In the presence of sufficient nutrition
and environmental conditions, bioremediation technique uses biological agents
such as microbes to break down pollutants. The nature of pollutants, properties of
polluted sites, pH, and temperature are crucial factors which have an important role
in the bioremediation process.

Bioremediation is an environment-friendly mechanism that involves the use of
microbes (especially fungi and heterotrophic bacteria), green plants (known as phy-
toremediation), and their enzymes to degrade/transform hazardous pollutants into
materials like water, carbon dioxide, inorganic salts, microbial biomass, and other
by-products that are less hazardous than parent materials, as well as generating
value-added products which are beneficial for the society. Environment Canada,
USEPA, and other regulatory authorities across the world have recognized this
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technology and it has been proven as a viable solution for cleanup of contaminated
soil, water, and sediment at multiple sites all over the world. The elimination of a
broad range of noxious and hazardous contaminants from polluted sites necessitates
a better understanding of various degradation pathways which is critical for human
and environmental safety.

In the present volume, 19 chapters contributed by international subject profes-
sionals have been divided into three parts. Part I covers concepts and mechanisms
of usage of pesticides bioremediation. Part II deals with latest tools and techniques
of pesticides bioremediation, while Part III focuses on applications and global case
studies of pesticides bioremediation. This volume on pesticide bioremediation will
be of utmost interest to researchers, scholars, and students who are working in the
realm of pesticides and bioremediation. Furthermore, this book will assist policy-
makers and administrative authorities around the world in making pesticide man-
agement policies using sustainable bioremediation approaches.

Researchers, academicians, industrialists, environmentalists, practicing and pro-
fessional engineers, scientists, policymakers, regulatory experts, waste site manag-
ers, and students at the bachelor’s, master’s, and doctoral levels, as well as other
enthusiastic persons who are passionately devoted to environmental conservation
for sustainable development, will be benefitted immensely from this volume. The
numerous strategies presented in this volume reflect the vital research and future
development trends.

The volume editors would like to express their sincere gratitude to all the authors
for their outstanding contributions. Going through the interesting and exciting infor-
mation synthesized by the learned and diligent authors in the form of book chapters
was an incredibly delightful experience. We would also like to thank editorial and
production team from the Springer, particularly Mr. Herbert Moses, Project
Coordinator (Books), Zachary Romano, Publishing Editor, and Aaron Schiller,
Assistant Editor, for their timely and whole-hearted support.

Dr. Sazada Siddiqui would like to thank all her colleagues and friends at the
Department of Botany, College of Science, King Khalid University, Abha, Kingdom
of Saudi Arabia. She is incredibly thankful to her husband Mr. Syed Mohammad
Afroz, family, and in-laws (Late Dr. Syed Afaq Husain, Mrs. Fakhra Shaheen, Mr.
Syed Mohd. Parvez, Mrs. Shaista Zulfeqar, and Arisha Fatima) for their immense
support and encouragement. Dr. Mukesh Kumar Meghvansi takes this opportunity
to thank his family members (wife, Mrs. Manju Meghvansi, and two incredible
daughters, Lakshita and Parnika) for their incredible support and generous permis-
sion to borrow their earmarked quality time for the editorial work related to
this volume.

Abha, Saudi Arabia Sazada Siddiqui
Gwalior, India Mukesh Kumar Meghvansi
Jaipur, India Kamal Kishore Chaudhary
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Chapter 1
Impact of Organochlorine Pesticides
on Soil Microflora and Soil Fertility

D. Ajitha and Linu Mathew

Abstract Microflora is the soil microbes present in the top layer of soil, along with
the plant roots. They include bacteria, actinomycetes, fungi, and algae. By decom-
posing organic matter and adding humus, they augment the fertility of the soil. They
are significant in nutrient cycling, rock and mineral weathering, and stabilizing soil
aggregates. The unnecessary anthropogenic activities and inappropriate quantities
of chemicals, especially organo-chorine pesticides, to increase agricultural produc-
tivity threaten the soil microflora and the healthy soil structure. Hence, a shift
towards alternative cropping systems is essential for protecting the delicate ecologi-
cal balance. This chapter discusses the influence of soil microflora on soil fertility,
the impact of organochlorine pesticides on the soil microflora, and methods to
reduce pesticide toxicity on soils.

Keywords Microflora - Organochlorine pesticides - Persistent organic pollutants -
Hexachlorocyclohexane - Dichloro-diphenyl-trichloroethane - Plant growth-
promoting rhizobacteria

1.1 Introduction

Soil microfiora is the soil microbes present in the rhizosphere soil as an intimate
part of the soil organic matter. The population of these microbes is highest in the
rhizosphere soil due to the presence of growth-promoting substances secreted by
plants (Bulgarelli et al. 2013). Soil microflora includes bacteria, actinomycetes,
fungi, and algae, with hundreds of genera and species (Muller et al. 2016). There
may be millions of soil microbes per gram of soil. They decompose organic matter
and increase soil fertility by producing humus (Rangaswami and Bagyaraj 2005),
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improving the texture and structure, buffering capacity, and the soil’s ability to
hold water.

Additionally, they are significant in nutrient recycling, weathering rocks and
minerals, and stabilizing soil aggregates. Hence, they are called the “Soil Engineers,”
as they play a prominent role in soil formation and ecosystem conservation
(Nannipieri et al. 2003). They also detoxify the organic and inorganic pollutants in
the soil.

1.2 Soil Microflora and Soil Fertility

Soil microflora is the microorganisms living in soil concerning soil fertility (Bollen
1959). They are influenced by soil moisture, soil temperature, other radiant ener-
gies, aeration of the soil, pH, food availability, biotic components, and other inhibit-
ing influences. Soil fertility is the capability of the soil for supplying plant nutrients
and the crop-producing power of the soil in a particular climate. Two types of soil
fertility are recognized: active and potential (Rangaswami and Bagyaraj 2005).
Active fertility is the immediately available fertility from the soil, whereas potential
fertility is produced by the microbial and chemical action on soil minerals and
organic matter. Soil microorganisms augment the potential fertility and make the
soil alive.

1.2.1 Soil Microorganisms

The top 5 cm of the soil harbor 75% of microorganisms and comprise the bacteria,
the actinomycetes, the fungi, soil algae, and soil protozoa in the order of their rela-
tive abundance (Table 1.1) (Rao 1999).

1.2.1.1 Bacteria

About one-half of the microbial biomass present in the soil is made of bacteria.
Bacteria in the soil are cocci, bacilli, or spirilla; bacilli are the most common type,
and spirilla is the least common (Rangaswami and Bagyaraj 2005). Most soil bacte-
ria are heterotrophs, feeding on dead plant material and organic waste. The bacteria
are good decomposers aiding in nutrient recycling by converting inaccessible nutri-
ents to accessible and usable forms for plants.
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Table 1.1 Microorganisms found in topsoil

Number/gm
Soil microorganisms in soil Biomass | Dominate in
Bacteria—Highest in number 9-10 billion | 40-500 Hardy, tolerate disturbed
soil/tilled soil
Actinomycetes—10 times smaller in 1 billion 40-500 Hardy, tolerate disturbed
number to bacteria soil/tilled soil
Fungi—Smaller in number, but 70,000— 1100- Undisturbed soil/untilled
dominate the soil biomass 1,000,000 11,000 soil
Algae 1000-100,000 | 1-50 Undisturbed soil/untilled
soil
Protozoa 100-10,000 varies Hardy, tolerate disturbed
soil/tilled soil

1.2.1.2 Actinomycetes

They are an intermediate group between fungi and bacteria and share several fea-
tures with bacteria. The number and type of actinomycetes increase in decomposing
organic matter. They help in humus formation by decomposing organic components
resistant to bacterial degradation. (Rangaswami and Bagyaraj 2005). They can live
in dry and low nitrogen soil. They produce the characteristic soil smell. Many of
them are antibiotic producers.

1.2.1.3 Fungi

They are present in the soil as mycelial bits, rthizomorphs, or various spore forms.
They are heterotrophs and are numerous in the surface layers of well-aerated culti-
vated soils (Brussaard 1997) and active in forming ammonium and simple nitrogen
compounds in soil, help in soil aggregation and humus formation from raw organic
residues. Mycorrhiza is a mutually beneficial relationship between some fungi and
plant roots (Morton 1981). Here, the fungi supply the plant with nutrients and obtain
food from the plant in return. Though many fungi are helpful, some could be harm-
ful to soil organisms (Johns 2017). Some of their functions are:

1. Decomposers are the saprobes converting dead organic material into fungal bio-
mass, carbon dioxide, organic acids, and other small molecules (Wilson 2018).

2. Mutualists are the mycorrhizal colonizers of plant roots. They solubilize inor-
ganic phosphorous and make available other plant nutrients in exchange for pre-
pared food from the plant.

3. Parasites colonize plants and other organisms, causing death and reduction in
crop production.
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1.2.1.4 Soil Algae

They are abundant in soils rich in water content and sunlight. They augment the
water retention of soil. They are unicellular, filamentous, or colonial and capable of
photosynthesis (Rao 1999). They cement soil particles together and reduce soil
erosion.

1.2.1.5 Protozoa

They are unicellular life forms and abundant in the upper layer of the moist soil.
They use dormant hardy cysts to weather adverse soil conditions. Some protozoa
are potential biological control agents against plant pathogens and some waterborne
and vector-borne human pathogens, e.g., Entamoeba (Johns 2017).

1.2.1.6 Soil Viruses

They are sub-microscopic and obligate parasites on other soil microorganisms like
bacteria, actinomycetes, fungi, and algae. Some of the plant and animal viruses also
reach the soil. They influence soil biology, soil ecology and are a potential reason
for microbial deaths. Viruses are found to occur abundantly in all the areas, even
where bacterial populations differ significantly (Johns 2017).

1.2.2  Role of Soil Microbes in Soil Fertility

Soil microorganisms decompose organic matter, mineralize and fix nitrogen, phos-
phorus, and potassium, and thereby help in plant growth, degrade toxic chemicals,
suppress pathogens, and produce plant growth-promoting substances. They also
stimulate plants' immune systems and activate stress responses (Reitz et al. 2015).
Many of these organisms live close to other organisms in the soil rather than living
independently. The different functions they perform in soil are;

1. Augmenting soil fertility, mainly by nitrogen-fixing bacteria (Bano and
Igbal 2016).

Certain bacteria and blue-green algae live symbiotically and fix atmospheric
nitrogen in the root nodules of legumes. In Rhizobia-Legume symbiosis, Rhizobia
fix atmospheric nitrogen in nodules of the legume host's roots to an available
form and receive carbohydrates in return (Morton 1981).

2. Soil loosening and adding organic matter to the soil by decomposition.

The plants absorb the nutrients released by the decomposition of organic mat-
ter. Degradation of organic matter starts by leaching out of water-soluble com-
ponents followed by degradation of its structure by bacteria, fungi, and other
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microflora, making it soft and pliable and further decomposes. Thus, soil micro-
flora rejuvenates the environment by maintaining the process of life, death,
and decay.

3. Developing healthy soil structure: Soil microbes cement the soil by producing
gummy substances (polysaccharides and mucilage) (Usharani et al. 2019).

4. Cycling nutrients: Soil microorganisms participate in biogeochemical cycles,
namely, carbon, nitrogen, and sulfur cycles.

5. Locking carbon into the soil for long periods: This reduces greenhouse gas-
induced climate change.

6. Biodegradation of pesticides in a slow natural process (Tarla et al. 2020).

1.3 Organochlorine Pesticides’ (OCP’s) Impact
on Soil Microflora

Pesticides are significant in modern agriculture for increasing agronomic yield and
getting good profits. They are substances used to control, kill, or repel pathogens,
pests, and weeds and are termed insecticides, fungicides, bactericides, and herbi-
cides (Tomlin 2009; Castelo-Grande et al. 2010; Tarla et al. 2020). The overuse of
topsoil and the alterations in soil chemical and physical fertility upset the soil's
biological fertility and productivity. The World Health Organization (WHO 1979)
observes that agrochemical poisoning is increasing in developing countries (Payet
2021). The intensive, indiscriminate, and prolonged use of agrochemicals harms
biodiversity, sustainability, food security, and safety. They alter the soil microbial
functions, soil biochemistry, and ecological balance (Chen et al. 2001; Hagerbaumer
et al. 2015).

Organochlorine pesticides (OC) are synthetic chlorinated hydrocarbon deriva-
tives. They are highly persistent in the environment and are called persistent organic
pollutants (POPs). Chemically, some of the organochlorine pesticides are Dichloro-
diphenyl-trichloroethane  (DDT), Dichloro-diphenyl-dichloroethane (DDD),
Dicofol, Lindane, Eldrin, Aldrin, Dieldrin, Isodrin, Chlorobenziate, Benzene hexa-
chloride (BHC), Methoxy chloro Aldrin, Chlordane, Heptachlor, Endosulfan,
Isobenzan, Toxaphene, and Chloro propylate. They are highly toxic, persistent, and
slow degrading. They also show low water solubility with high lipid solubility and
high bioaccumulation. Organochlorines make about forty percent of all the pesti-
cides used (Gupta 2004; Food and Agricultural Organization—FAO 2005).
According to the World Health Organization (WHO 1990) study, developing nations
use 80% pesticides. Low cost and the broad spectrum of action prompt these coun-
tries to use DDT, Hexa-chloro Cyclohexane (HCH), aldrin, and dieldrin (Lallas
2001; Gupta 2004; FAO 2005). High persistence and bioaccumulation make them
environmental hazards (Jayaraj et al. 2016). Highly hazardous endosulfan persists
moderately with a half-life of 50 days (Quijano 2002). DDT and its transformation
products, namely 1,1-dichloro2,2-bis(p-chlorophenyl) ethylene (DDE),
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1,1-dichloro-2,2-bis(p-chlorophenyl) ethane (DDD), and 1,1,1-trichloro-2-(o-
chlorophenyl)-2-(p” chlorophenyl) ethane (o,p’-DDT) persist still in New Zealand
soil even after banning DDT in 1970 (Boul 1995; Aislabie et al. 1997). All these
products of DDT and the heavy use of other pesticides cause DNA damage, changes
in enzyme activity, alter membrane stability, cause acute and chronic health effects
like neurological damage and endocrine disruptions (Jayaraj et al. 2016; Tarla et al.
2020). Hence, the use of these is banned by the Stockholm convention (Payet 2021).
Despite the ban, many developing countries are using these OC compounds.

Soil microbial ecosystems are degraded by the indiscriminate use of organochlo-
rine pesticides (Onder et al. 2011). OCPs contamination level and vegetation cover
shape the microbial diversity and community structure in the abandoned insecticide
plant sites (Sun et al. 2019). The misuse or overuse of pesticides adversely affects
both the aquatic and terrestrial species, along with the microorganisms that inhabit
these environments; posing a severe threat to the ecosystem (Grande et al. 1994; De
Lorenzo et al. 2001; Frankart et al. 2003; Liess et al. 2005; Castillo et al. 2006;
Wang et al. 2006). Continuous use of these pesticides affects the soil microflora and
all other organisms that depend on them. E.g., the soil organisms like an earthworm
take up DDT in the soil. When the birds ingest these earthworms, DDT enters their
body and gets accumulated, finally resulting in the reduction of the avian population
(Fry 1995).

The indiscriminate spraying of the pesticides across the cropping field results in
more than 95% of the herbicides and insecticides reaching non-target soil microor-
ganisms than their targeted pest species (Miller 2004). A tiny fraction (0.3%) of
applied pesticides reaches the target pest, while 99.7 % go elsewhere (Pimentel
1995). They enter the environment through direct application, volatilization from
applied surfaces, industrial discharge into the soil or water bodies, and landfilling
with the discarded polluted wastes (Simonich and Hites 1995; Pereira et al. 2010).
They affect the non-target organisms and especially the microflora of that locality.
Due to their peculiar structure, OC compounds have definite physicochemical fea-
tures such as persistence, bioaccumulation, and toxicity. A persistent chemical has
a half-life of more than two months in water bodies and more than six months in soil
sediments. The organochlorines have moderate to high persistence with a half-life
of 60 days to 10-15 years. DDT, the most commonly used agriculture chemical, is
highly persistent (half-life of 2—15 years) (Augustijn-Beckers et al. 1994).

1.3.1 Infiltration of Organochlorine Pesticides into
the Microbial Environment

OCPs adsorb to the surface soil particles and persist for months to years without
leaching down to the soil (Yang et al. 2012; Kim et al. 2014; Odukkathil and
Vasudevan 2016. Doolotkeldieva et al. 2018). The organochlorine insecticides enter
the soil either during the direct soil application or as runoff from sprayed leaves and
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stems of crop species (Hlindin and Bennett 1970; Cope 1971). They also come to
the soil from the dead and decaying target and non-target organisms containing
insecticides. The careless disposal of pesticides and their vessels produces localized
high insecticide concentrations.

1.3.2 Biological Accumulation of Organochlorine Pesticides
in the Microbial Environment

Biological accumulation is the addition of a chemical from the ecosystem into an
organism. Other terms like bioconcentration, biomagnification, and ecological mag-
nification express biological accumulation (Bevenue 1976). Kneip and Laur (1973)
made a clear distinction between bioconcentration and biomagnification.
Bioconcentration is the ability of the organism to accumulate a chemical from the
surroundings and is expressed as a percent accumulation and concentration factor.
However, biomagnification is the increased accumulation of a chemical in increas-
ing trophic levels of a food chain.

There is only scanty information on the metabolism and accumulation of organo-
chlorines (Lal and Saxena 1982). Accumulation mechanisms, metabolic pathways
of pesticide degradation, and the enzymatic breakdown of pesticides need further
clarification and elucidation. However, some microorganisms accumulate very high
concentrations of OCPs. A marked difference was shown by three different species
of fungi, bacteria, and actinomycetes in collecting DDT and dieldrin from water
samples (Chacko and Lockwood 1967). After 4 h of incubation, 60-63% of DDT
and 75% of Dieldrin were accumulated by the fungi, while Agrobacterium tumefa-
ciens accrued 100% of the DDT and 90% of the dieldrin. Yeast cells accrued
94-97% of DDT (Boush 1972). In different species of algae, organochlorines get
concentrated in different ratios (Rice and Sikka 1973), and bacteria show rapid
accumulation of organochlorine insecticides (Lal and Saxena 1982).

1.4 OCPs and Soil Microflora and Fertility

Microbial communities play essential roles in improving the different soil pro-
cesses, such as decomposition of organic matter, nutrient recycling, energy transfer
through the food chain, and numerous microbe—microbe, plant-microbe, and ani-
mal-microbe interactions (Lal and Saxena 1982) and thereby maintaining balanced
ecosystems and healthy soil (Yang et al. 2017). They respond rapidly to changes in
the soil and thereby act as bioindicators of soil health. (Cycon et al. 2012; Panettieri
et al. 2013; Wyszkowska et al. 2014). Organochlorine-microorganism interactions
disturb the soil ecosystem and reduce soil fertility (Handa et al. 1999). Pesticides
negatively impact soil microorganisms, soil respiration, and soil fertility (Dutta
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et al. 2009; Sofo et al. 2012). The exogenous applications of OCPs reduce the
growth, colonization, and metabolic activities of the beneficial root-colonizing
microbes like bacteria, arbuscular mycorrhiza, fungi, and algae in soil (Debenest
et al. 2010; Menendez et al. 2010; Tien and Chen 2012). OCPs accumulating in the
soil are toxic to decomposers, including soil bacteria and fungi, but the exact mech-
anism of toxicity is unknown (Wojcik et al. 2018). It was proposed that the occur-
rence of OCP in the soils may lead to the impoverishment of the decomposer
communities, causing the extinction of soil bacteria and fungi due to the biocidal
activity (Liu et al. 2008; Mertens et al. 2005; Chaurasia et al. 2013). Though the
exact mechanism of the biocidal effects of OCP in the soil is not known; Liu et al.
(2008) and Endo et al. (2006) hypothesized a suicidal pathway, where the OCP
acquired by the decomposer organism are partially de-halogenated to more toxic
products than the parent compound leading to their death.

Adsorbed OCPs on the soil organic matter influence the residue levels of OCPs
in the soil (Gong et al. 2004; Zhang et al. 2006; Pateiro-Moure et al. 2008). It affects
the soil pH by modifying the humus structure (Wenzel et al. 2002). It adversely
affects nitrogen fixation, nitrification, and ammonification by activating or deacti-
vating specific soil microbes and microbial enzymes (Hussain et al. 2009; Munoz-
Leoz et al. 2011). For example, ammonification is higher in the presence of
pesticides and causes an antagonistic action in the populations of Azospirillum spp.
(Srinivasulu et al. 2012). A reduced or inhibitory nitrogenase activity by applying
endosulfan and Y-HCH was also reported (Martinez-Toledo et al. 1998;
Niewiadomska 2004; Niewiadomska and Klama 2005; Prasad et al. 2011). In con-
taminated soils with pesticide concentrations of 0.02—10 times that of field recom-
mended doses of lindane, dichlorvos, endosulfan, and chlorpyrifos, the biochemical
processes of nitrification and denitrification are diminished (Madhaiyan et al. 2006).
At higher doses, pesticides often reduce the ammonification process (Cycon et al.
2010). OCP inhibited the ammonification step in bulk soils and reduced the number
of microbial communities (Blondel et al. 2017). Organochlorine insecticides, espe-
cially DDT and endosulfan, are detrimental to photosynthetic autotrophs (Fries
1972; Rani et al. 2018; Shahid et al. 2021). Although OCPs did not affect the algal
number, they significantly reduced the ATP detected in the algal extracts (Clegg and
Koevenig 1974). The insecticides interfere with photophosphorylation in the light
reaction of photosynthesis in these algae, thereby reducing ATP production and CO,
fixation.

Pesticides may also selectively inhibit or kill certain microbes and augment oth-
ers by removing competition (Hussain et al. 2009). The recurrent use of complex
chemicals kills microbial life, valuable for the healthy soil ecosystem (Shang et al.
2019). Soil-dwelling microbes can be mutated by pesticides making them useless to
the soil ecosystem (Aktar et al. 2009). The effect of the pesticide on the growth and
survival of the beneficial microbes can be either detrimental, stimulatory, or with
zero impact (Patnaik et al. 1996). The long residual effect and persistence of lindane
and DDT in soil harm the microbial biomass (Singh and Singh 2005), microbial
processes, and microbial enzymes (Patnaik et al. 1996). Sprayed pesticides get
washed down the crop contaminating the soil and reducing soil fertility by
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hampering autochthonous soil flora (Wu et al. 2018; Zaller et al. 2018). DDT,
methyl parathion, and pentachlorophenol can block the chemical signals needed for
bacterial nitrogen fixation (Kumar 2015), thereby depleting soil nitrogen and reduc-
ing crop yields (Fox et al. 2007; Kumar 2015). Pesticide mixtures are more harmful
to soil microbes. OCP pesticide spraying on virgin soils resulted in the loss of
33,397 fungal and 61,005 bacterial species (Egbe et al. 2021) with significant
extinction of susceptible strains (Tejada et al. 2015; Yang et al. 2017; Doolotkeldieva
et al. 2018). The reduction in Chloroflexi, Verrucomicrobia, and Nitrospirae popula-
tions and the complete extinction of Euryarchaeota, Bathyarchaeota, and Chlorobi
populations in the contaminated soil indicate that these phyla are sensitive to OCPs
toxicity (Demanou et al. 2006). Overuse of OCP resulted in the disappearance of
Nitrospirae, providing a low nitrate value (Egbe et al. 2021). Also, OCP application
resulted in the extinction of the ecologically significant phylum Glomeromycota
with obligate symbionts (Lin et al. 2015). The disappearance of such sensitive
microorganisms serves as a bio-indication of OCPs’ pollution. The following details
stress the specific mechanisms of OCP on different soil microbes.

1.4.1 Impact of OCP on Different Microbes
1.4.1.1 Bacteria

Bacteria show more sensitivity to insecticides than filamentous forms (Stojanvic
et al. 2013). Many organochlorine pesticides such as aldrin, dieldrin, chlordane,
endrin, and heptachlor were detrimental to bacteria at a 10,000-ppm concentration
(Lal and Saxena 1982). They inhibited many Gram* stains with no effect on Gram
strains (Audus 1960). Dieldrin and heptachlor at 50 and 100 ppm reduced the
growth of Pseudomonas fluorescens and Streptomyces aureus (Collins and Langlois
1968). They selectively block the electron transport chain and the cell wall or mem-
brane components. Kepone, an organochlorine insecticide, is highly persistent in
the environment (Jones and Hodges 1974; Orndorff and Colwell 1979). A field
study for 2 years on Kepone Otoxicity showed that Gram  bacteria, mainly
Pseudomonas sp., Vibrio sp., and Aeromonas hydrophila, were at risk to <1 mg of
Kepone per liter (Orndorff and Colwell 1980). The destructive action of DDT,
aldrin, and dieldrin targeted the structure and function of biological membranes.
DDT altered the composition of fatty acids and the ratio of polar phospholipid
groups in E. coli cell membranes (Rosas et al. 1980). Previously, in Bacillus subtilis,
the lethal action of DDT binding to the cell membranes was reported (Hicks and
Corner 1973).



12 D. Ajitha and L. Mathew

1.4.1.2 Cyanobacteria

In certain cyanobacterial species, supplementing suitable nutrient salts can alleviate
the toxicity of organochlorines. Increased concentrations of K,HPO,, Ca (NO;),,
and CaCl, assuaged the toxicity of BHC in the blue-green alga Nostoc muscorum
(Kar and Singh 1979) suggesting the chance of BHC interacting with these to form
complexes with less toxicity.

1.4.1.3 Fungi

Dieldrin and aldrin at very high concentrations of 2000 ppm had no substantial
effect on fungal populations (Tu and Miles 1976). Nevertheless, high soil concen-
tration of endrin altered soil microbiota (Bollen and Tu 1971). Organochlorine
insecticides inhibited cell division in Saccharomyces cerevisiae (Nelson and
Williams 1971). Aldrin interfered with the oxidative enzymes and inhibited the
metabolism of pentoses, hexoses, and tricarboxylic acid cycle intermediates in
Rhizobium sp (Juneja and Dogra 1978).

1.4.1.4 Algae

Even high concentrations of BHC did not upset the algal population (Vance and
Drummond 1969). Organochlorine insecticides in aquatic environments destroy
sensitive zooplanktons and thereby cause phytoplankton blooms by removing com-
petition and predation. Organochlorine insecticides inhibited algal photosynthesis
(Wurster Jr. 1968; Bowes and Gee 1971; Mosser et al. 1972a, b; Cole and Plapp Jr.
1974). Even the lowest concentration of DDT distorted the chloroplasts in Nitzschia
delicatissima (MacFarlane et al. 1971).

1.4.1.5 Protozoans

Protozoans are the most resistant microorganism to DDT. DDT at one ppm did not
show any toxicity on Euglena gracilis, Paramecium bursaria, and P. multimicronu-
cleatum and concentrated DDT to 99-900 folds (Gregory et al. 1969). DDT concen-
tration of 100 ppm did not affect the growth of E. gracilis (Poorman 1973). But,
several protozoans, including amoebae and flagellates, were killed by 5 and 50 ppm
DDT (MacRae and VInckx 1973). In three ciliate protozoans, Stylonychia notop-
hora (Lal and Saxena 1980), Blepharisma intermedium, and Tetrahymena pyrifor-
mis (Lal and Saxena 1979), low concentrations of DDT, up to 1 ppm, neither affected
the morphology nor cell division. But, at high concentrations of 50 and 100 ppm,
DDT was inhibitory to cell division. Stylonychia notophora treated with 100 ppm
DDT revealed many nuclear morphology changes, like deep incisions, chromatin
loosening, and macronuclear fragmentation (Lal and Saxena 1980).
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In a nutshell, organochlorine insecticides interfere with membrane permeability,
photosynthetic machinery, oxidative metabolism, nucleic acid, and protein synthe-
sis. They alter the plasma membrane architecture and change its lipid composition;
thus, compromising cell permeability and cellular physiology (Lal and Saxena 1982).

1.4.2 Synergism of OCP on Soil Microflora

Applied pesticides may act as an energy source to some microbial groups by increas-
ing their number, growth, and interference in the soil ecosystem (Gill and Garg
2014). Certain strains of microbes are exclusive to the OCP-contaminated soil.
These strains invade adjacent environments by human activities. For example,
applied endosulfan amplified bacterial biomass by 76% and fungal biomass by 47%
(Xie et al. 2011). About 63,474 fungi and 38,212 counts of bacteria were exclusive
to the OCP impacted soil (Egbe et al. 2021). OCP contaminated soil showed promi-
nence of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes
(Doolotkeldieva et al. 2018). Some prominent representatives in the OCP contami-
nated soil include Bacillus (Kafilzadeh et al. 2015; Kumar et al. 2014), Burkholderia
cepacia (Hussain et al. 2007), and Rhodanobacter lindaniclasticus (Nalin et al.
1999). Both a- and B-endosulfan degradation was reported in Bacillus subtilis and
B. circulans enriched cultures (Kumar et al. 2014; Kafilzadeh et al. 2015).

Enterobacteriaceae capable of mineralizing and tolerating OCPs occurred abun-
dantly in the OCPs' impacted soil (Egbe et al. 2021). These bacteria can resist
organochlorine toxicity and use pesticides for their growth (Phugare et al. 2013;
Wang et al. 2019; Ekram et al. 2020; Ramya and Vasudevan 2020). Long-term expo-
sure to organochlorines may lead to the emergence and evolution of resilient
microbes with pesticide degrading and detoxifying genes. The facultative anaerobe
Enterobacter sp can degrade pesticides without forming any toxic by-products
(Ekram et al. 2020; Ramya and Vasudevan 2020). Also, Klebsiella sp is one of the
dominant bacteria present in pesticide-contaminated soils (Wang et al. 2019),
degrading endosulfan competently (Seralathan et al. 2015). Escherichia/Shigella
spp. are also crucial in OCPs' metabolism (Kulkarni and Kaliwal 2018; Sirajuddin
et al. 2020). E. coli strains degrade lindane, acetofenate, and other organochlorines
(Kulkarni and Kaliwal 2018; Sirajuddin et al. 2020). Bradyrhizobiaceae,
Acidobacteriaceae (Cederlund et al. 2014; Lu and Lu 2018), and Rhodospirillaceae
present in the OCP polluted soil help in tolerating pollutants and degrading OCPs
and improve the soil fertility (Jeffries et al. 2018) indicating the ecological impor-
tance of these in nutrient recycling and other changes in the agricultural soil
(Shettigar et al. 2012; Jeffries et al. 2018). Bradyrhizobiaceae species with the nif-H
sequence in water-stressed paddy soil with elevated CO, and a high dose of N,
(Kumar et al. 2020) can fix nitrogen and utilize organic compounds for growth
(Tikariha and Purohit 2019).

Mortierella species are slow-growing saprophytic fungi that degrade a range of
toxic materials like organochlorines and thus improve soil health (Kataoka et al.



14 D. Ajitha and L. Mathew

2010; Clemmensen et al. 2015). Mortierella elongata hydrolyzed endosulfan to
endosulfan lactone (Bhandari 2017; Kataoka et al. 2010). Moreover, OCPs serve as
complex organic carbon sources and increase species richness and evenness among
fungi in OCP-contaminated soil (Egbe et al. 2021). Soil organic matter also affects
the OCP's behavior in soils (Mishra et al. 2012). Hydrophobic organochlorine pes-
ticides bind with soil organic matter. By increasing soil organic matter, we can sup-
ply more carbon and thus enable microbial degradation.

1.5 Alleviating Pesticide Toxicity

The unhealthy agricultural practices and the use of inappropriate quantities of pes-
ticides for increasing agrarian productivity have resulted in a decrease in the abun-
dance of soil microbes, threatened sustainability, and the healthy soil system (Shang
et al. 2019). Accumulation, toxicity, and transport of POPs damage the soil and
other ecosystems. A shift towards alternative cropping systems is essential for pro-
tecting the delicate ecological balance of soil and biodiversity. Some treatment
methods are outlined below to minimize the adverse effects of DDT and other OCPs.

1.5.1 Biopesticides

They are natural biochemical substances derived from naturally occurring products.
They can be derived from microbes (microbial pesticides) or plants. They are sig-
nificant in pest management, act as an eco-friendly alternative to chemicals, and
minimize soil contamination without harming the soil microbes (Meena et al. 2020).
They also ensure good soil health, environmental stability, and ecological balance
and improve the nutrient uptake efficiency of plants (Gupta and Dikshit 2010).

1.5.1.1 Microbial Pesticides

Biopesticides made from microorganisms specific to target pests do not harm the
environment and other soil microbes and offer a better and good ecological solution
(Gupta and Dikshit 2010). The most commonly used microbial pesticides are
Bacillus thuringiensis (Bt), Baculoviruses, and Trichoderma. Bacillus thuringiensis
is being used against moth larvae of plant pests (Meena and Meena 2016).
Baculoviruses are target-specific to the lepidopteran pests of cotton, rice, and veg-
etables (Alam 2000). Trichoderma and Trichoderma-based products work best
against soil-borne pathogens (i.e., root rot) and control rots and wilts in dryland
crops such as pulses (Gupta and Dikshit 2010). Entomo-pathogenic nematodes
(EPN) (Heterorhabditis sp. and Steinernema sp.) are potent against insect pests
belonging to Diptera, Coleoptera, Lepidoptera, and Orthoptera, and other



1 Impact of Organochlorine Pesticides on Soil Microflora and Soil Fertility 15

soil-inhabiting insects (Sharma et al. 2011). They are safe and easy to apply.
However, limiting factors such as the high cost of production, reduced shelf-life,
moisture, temperature, and UV sensitivity prevent their broader application (Lacey
and Georgis 2012).

1.5.1.2 Plant-Based Biopesticides

They are the specific compounds produced from plants that stimulate or subdue
diverse soil microbes (Neal et al. 2012). Examples include plant growth-promoting
rhizobacteria (PGPR) Pseudomonas fluorescence which benefits plants like toma-
toes (Sood 2003). Neem cake oil offers much-required nutrition for soil microbes,
augments soil physico-chemistry, and controls wide ranges of pests (Gopal et al.
2007). Insecticides like azadirachtin have been recognized as effective anti-fungal
(Govindachari et al. 2000) and antimicrobial (Coventry and Allan 2001).

1.5.2 Bioremediation

Bioremediation uses living organisms, mainly microbes, to biodegrade and detoxify
harmful chemicals from the environment. This method was effectively used to
reclaim OCPs, DDT, HCH, and PCBs contaminated soils and sediments (Mansouri
et al. 2017; Sadiq et al. 2018; Vergani et al. 2019).

1.5.2.1 Microbial Bioremediation

Microbial pesticide remediation is cost-effective and thermodynamically reason-
able (Parte et al. 2017). Under favorable conditions, microbes use pesticides as car-
bon and sulfur sources and electron donors. Bioremediation results in the complete
mineralization of the pesticides to H,O and CO, without building up any intermedi-
ates. Microorganisms enzymatically convert the pollutants to fewer toxic products
in a suitable environment for growth and microbial activity (Lacey and Goettel
1995; Vidali 2001). Surfactant Tween 80 encouraged Pseudomonas aeruginosa to
remove 94% endosulfan at pH 8.5 by producing less toxic endodiol and endosulfan
sulfate (Jayashree and Vasudevan 2007). Similarly, Stenotrophomonas maltophilia
(85.5%), Citrobacter amalonaticus (56.7%), and Acinetobacter Iwoffii (80.2%)
degraded endosulfan (Ozdal et al. 2016).

Although HCHs are degraded under aerobic and anaerobic conditions, the pesti-
cides are more persistent under aerobic conditions (MacRae et al. 1984). Organic
materials such as straw and glucose had a stabilization effect on degrading HCH
(Zhao et al. 2020). Also, the marine bacterium - Paracoccus sp. DDT-21 consumed
DDT as a nutrient source (Rashed et al. 2021). Streptomyces sp.—strain 885
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successfully degraded DDT and can be used for remedying DDT-contaminated soil
(Tto et al. 2021).

1.5.2.2 Bioremediation by Earthworms

Earthworms enhanced DDT removal from soils by speeding up the biological deg-
radation (Xu et al. 2021). Earthworm cast enables complete degradation of DDT,
improves soil properties, and stimulates the growth of indigenous microorganisms.
Ten new DDT degrading bacteria genera (Streptomyces, Streptacidiphilus,
Dermacoccus, Brevibacterium, Bacillus, and Virgibacillus) were found in the drilo-
sphere soil, which cleaves the DDT ring structure. Bacillus and Dermacoccus are
essential in the dechlorination of DDTs, and bioremediation of DDT-
contaminated soils.

1.5.2.3 Phytoremediation

Phytoremediation is cleaning organic and heavy metal pollutants by plants and rhi-
zosphere microbes (Ali et al. 2013; Dixit et al. 2015; Jan and Parray 2016); an
efficient, inexpensive, and eco-friendly method of environmental restoration. The
success of phytoremediation is determined by soil contaminants and the plants' abil-
ity to take up these from the soil. Rissato et al. (2015) assessed the capacity of
Ricinus communis L to degrade various organic pollutants like HCH, DDT, hepta-
chlor, and aldrin. They found that this plant could efficiently remove 25-70% of
various organic pollutants. Saccharum officinarum (sugarcane) and Candida exhib-
ited enhanced lindane removal from contaminated soil (Salam et al. 2017). Also,
sunflower (Helianthus annuus) could take up the contaminants from the environ-
ment and hence be used for phytoremediation of organic and heavy metal pollutants
(Ojuederie and Babalola 2017).

1.5.3 Microbial Biodegradation of Pesticides

Removal of DDT from the soil is necessary since its degradation products accumu-
late in the primary metabolites. DDT biodegradation in the soil is slow, and several
strategies are proposed for enhanced degradation in situ. One such mechanism is the
microbial degradation of DDT. By adding DDT metabolizing microbes (Fungi and
bacteria) to contaminated soil and supplying suitable environmental conditions,
DDT can be efficiently degraded (Aislabie et al. 1997). Other promising bio-
degraders are ligninolytic fungi and chlorobiphenyl degrading bacteria (Aislabie
et al. 1997). Soil pre-treatment by flooding, the addition of organic matter, and
microbial inoculum enhance DDT degradation by augmenting the microbial access
to the pollutant. However, little is understood about the biodegradation of DDE,
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which is the primary residue in soils. Both aerobic and anaerobic microorganisms
can degrade HCH (MacRae et al. 1984). The inoculation of Bacillus sp. PRB101
showed maximum degradation of endosulfan in the soil after 120 days of inocula-
tion (Rani et al. 2019). This result indicated that plant growth-promoting bacteria
effectively remediate endosulfan contaminated soil thereby enhancing plant bio-
mass production.

The degradation of organochlorine compounds is through two major pathways:-
anaerobic reductive dechlorination and aerobic dehydrochlorination. Many bacte-
rial genera like Klebsiella (Kwon et al. 2005), Pseudomonas (Barragan-Huerta et al.
2007), and Staphylococcus (Sonkong et al. 2008) carry out such reactions. Many
fungi can also degrade organochlorines with basidiomycetes showing more resis-
tance than others (Machado et al. 2005; Rigas et al. 2005). A Trichoderma harzia-
num strain degrade OCPs through an oxidative mechanism (Katayama and
Matsumura 1993). DDT degradation using brown rot fungi (BRF) has a low degra-
dation rate needing prolonged incubation. By adding 10 ml of Pseudomonas aeru-
ginosa into the BRF fungi Daedalea dickinsii culture, the highest biodegradation of
DDT was possible (Rizqi et al. 2021). Table 1.2 outlines the different microorgan-
isms involved in the degradation of organochlorine pesticides.

1.5.4 Education to Farmers, Distributors,
and Other Stakeholders

Farmers are the leading risk group of pesticide toxicity. Other susceptible groups
are formulators, loaders, mixers, production workers, and agricultural farm work-
ers. Educating farmers, distributors, industry, policymakers, and other stakeholders
on the indiscriminate use of pesticides is critical in decreasing harm to humans and
the environment (Meena et al. 2020). They must be aware that pesticides’ judicious
and discriminatory use is vital because the overuse of these chemical pesticides can
bring about several health problems. Also, the continued use of such chemical pes-
ticides may make the soil barren and lifeless.

1.6 Conclusion

Pesticides are hazardous compounds to the environment, soil microflora, and human
health because of their persistence. They negatively affect microbial functions,
diversity, population composition, and biochemical activities. Pesticides affect crop
yield and cause an imbalance in the ecosystem by reducing soil fertility.
Indiscriminate use of pesticides affects crop production and alters the food chains
and ecosystems. Some reviewers claim that the adverse effects of organochlorine
insecticides on microorganisms are due to the high rate of insecticide application.
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However, it is now apparent with the advancements in pesticide technology that
even lower doses of insecticides at standard rates may have antagonistic effects. For
maintaining sustainability, the use of such pesticides should be replaced using bio-
fertilizers and biopesticides. Bioremediation and biodegradation are also the best
methods to combat these OCPs in the soil. Also, pesticide use can be reduced by
culturing vigorous and resistant plants, maintaining native species that are resistant
innately to native pests, and promoting pest predators like frogs and birds. Awareness
among the common public is essential to reduce the lasting ill-effects of using these
pesticides. To conclude, the swelling world demand for quality food requires devel-
oping an ecologically sound strategy for sustaining a “live soil.”
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Chapter 2
Phytoremediation of Environmental

Matrices Contaminated with Photosystem
II-Inhibiting Herbicides

Katarina Kral’ova and Josef Jampilek

Abstract Excessive use of agrochemicals, including photosystem II (PS II)-
inhibiting herbicides, especially after 1950, resulted in significant contamination of
environmental matrices. Although some of these photosynthesis-inhibiting herbi-
cides, including atrazine or simazine, have been banned in many countries due to
their endocrine disrupting activities, their residues from agricultural field runoff
persist mainly in sediments and can be released in aquatic environments where they
can adversely affect non-target species. Phytoremediation is an inexpensive envi-
ronmentally friendly method that uses diverse types of plants to decontaminate soils
and aquatic ecosystems from inorganic and organic contaminants. This chapter pro-
vides a comprehensive overview focused on the phytoremediation of substrates
contaminated with PS II-inhibiting herbicides using grasses, aquatic plants, sea-
weeds and seagrasses, algae and cyanobacteria, woody species, crops, and trans-
genic plants. The mechanism of action of PS II-inhibiting herbicides and the
development of plant resistance to these herbicides are described. The beneficial
impact of microbial species on the degradation of herbicides by microbial species in
the rhizosphere is discussed, and the removal of herbicides from the soil using
electrokinetic-assisted phytoremediation is briefly mentioned.
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Abbreviations

AMR Ametryn

ATP Adenosine triphosphate

ATZ Atrazine

BCF Bioconcentration factor

CAT Catalase

Chl Chlorophyll

CYA Cyanuric acid

Cys Cysteine

DDA Desethyldeisopropylatrazine
DEA Desethylatrazine

DIA Desisopropylatrazine

DOM Dissolved organic matter

GST Glutathione-S-transferase

HA Hydroxyatrazine

HXZ Hexazinone

1Cy, Herbicide concentration that is required for 50% inhibition
ISO Isoproturon

LAC Laccase

MTZ Metribuzin

NADPH Nicotinamide adenine dinucleotide phosphate, reduced
PAH Polycyclic aromatic hydrocarbons
PCBs Polychlorinated biphenyls

PET Photosynthetic electron transport
Pheo Pheophytin

PQ Plastoquinone

PRO Prometryn

PS Photosystem

RC Reactive center

ROS Reactive oxygen species

SIM Simazine (SIM)

SNP Nitroprusside

TBR Terbutryn

TBZ Terbuthylazine

TF Translocation factor

WOC Water oxidizing complex
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2.1 Introduction

Intensive use of effective herbicides to achieve improved yields in the second half
of twentieth century was accompanied with increasing contamination of environ-
mental matrices with these toxic compounds. However, due to mobility of herbi-
cides in environmental matrices, they can be transported to places distant from their
application. For example, 32% of U.S. water bodies contained atrazine (ATZ;
6-chloro-N-ethyl-N’-(propan-2-yl)-1,3,5-triazine-2,4-diamine) in an average
amount of 0.17 pg/L (Beaulieu et al. 2020a). Moreover, the amounts of herbicides
in water markedly fluctuate between seasons and reflect their spatial and temporal
use, whereby sediment can function as a principal secondary emission source, par-
ticularly for the historic-use pesticides including ATZ, simazine (SIM; 6-chloro-
N,N’-diethyl-1,3,5-triazine-2,4-diamine), and isoproturon (ISO;
1,1-dimethyl-3-[4-(propan-2-yl)phenyl]Jurea) (Cui et al. 2020). Therefore, it is
important to ensure effective removal of herbicides residues from environmental
matrices near their application and for this purpose phytoremediation techniques are
frequently used (Moeder et al. 2017; Gikas et al. 2018; Qu et al. 2018; Wang et al.
2018; Aguiar et al. 2020b; Prosser et al. 2020; Wang et al. 2021; Perez et al. 2022).
These environment friendly green methods use the ability of plants to take up her-
bicide from contaminated substrates and allocate it in the tissues of plant organs.
Plant using enzymes, can transform herbicides to degradation products within plant
tissues and by releasing the exudates can improve microbial activity and promote
biochemical transformations in the soil. Moreover, mycorrhizal fungi and the
microbial consortia associated with the root surface increase mineralization at the
root/soil interface (Schnoor et al. 1995).

Runoff loss of herbicides from crop fields can be significantly reduced by grass
hedges (Wang et al. 2018) and considerable reduction of the mobility of pesticides
and nutrients can be achieved by vegetated buffers (Prosser et al. 2020). Buffer
strips are vegetation areas located in the direction away from a source of pollutants
or a plume or along a waterway (i.e., riparian corridors). On the other hand, imple-
menting of filter strips connected with displacement of cropland and grassed water-
ways may reduce yields and profits (Abimbola et al. 2021). The ability of vegetated
ditches to remove organic pollutants and contaminants originating from domestic
sewage and agricultural runoff was discussed by Moeder et al. (2017). A vegetal
filtering system composed of short-rotation willow crops suitable for remediation of
pesticide-contaminated groundwater was described by Lafleur et al. (2016) and for
removal of contaminants, also grass and grass with poplar buffer strips were found
to be suitable (Caron et al. 2010; Franco and Matamoros 2016). In floating treat-
ment wetlands used for removal of contaminants from surface water bodies, the
vegetated mats are floated on the surface of water and roots situated in the water
column remove the contaminants (Shahid et al. 2018; Hwang et al. 2021). For effec-
tive remediation of waters contaminated with compounds of agricultural origin also
constructed wetlands (CWs) can be used (Gikas et al. 2018; Papadopoulos and
Zalidis 2019; Zhao et al. 2019). However, for removal of emerging organic
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pollutants, hybrid CWs, which combine vertical flow CW, horizontal flow CW, and
free water surface CW are suitable (Ilyas et al. 2021).

Besides aquatic plants (Qu et al. 2017, 2018, 2020; Li et al. 2019a; Papadopoulos
and Zalidis 2019; Qu et al. 2020; Vieira et al. 2021a; Perez et al. 2022) and woody
species (Fiore et al. 2019; dos Santos et al. 2018, 2020; Kumar et al. 2019; Yao et al.
2019) used for remediation of pesticide-contaminated areas, application of grasses
(Mimmo et al. 2015; Del Buono et al. 2016; Sun et al. 2016; Khrunyk et al. 2017;
Sanchez et al. 2017; Pannacci et al. 2020; McKnight et al. 2022) and transgenic
plants (Vail et al. 2015; Azab et al. 2016, 2020; Zhang et al. 2017a) was found to be
effective. Because herbicides similarly to other toxic contaminants frequently
adversely also affect the development, growth, and performance of non-target
plants, the plant species suitable for phytoremediation purposes must be tolerant to
herbicidal contaminants present in soils and waters. On the other hand, algae (Kabra
et al. 2014; Yang et al. 2019; Hu et al. 2021), cyanobacteria (Gonzélez-Barreiro
et al. 2006; Campos et al. 2013; Breda-Alves and Fernandes 2021), seaweeds
(Rodrigues et al. 2018; Ojemaye et al. 2020), and seagrasses (Gao et al. 2017, 2019;
Wilkinson et al. 2017), which can serve as indicators of fresh and marine water
contamination with herbicides, can be applied also as effective phytoremediators
capable not only absorb the herbicides from aqueous medium but also transform
them to less toxic metabolites. However, considering the higher persistence of her-
bicides in the sediments, it is necessary to monitor, whether the content of herbi-
cides in edible seaweeds do not exceed the permissible levels.

It could be mentioned that beside killing unwanted vegetation such as weeds, the
herbicides can be absorbed also by crops, i.e., non-target plants (Jiang et al. 2020;
Ju et al. 2020; Pintar et al. 2020; Wang and Liu 2020; Zhang et al. 2021), and there-
fore to ensure food safety consistent surveillance of their contents in crops is neces-
sary also at application of wastewater containing herbicides for irrigation (Pico
et al. 2019) and at application of excessive amounts of herbicides in greenhouses.
Comparison of ATZ contents in greenhouse (from not detectable levels to 137 ng/g)
and open-field agricultural soils (from not detectable levels to 134 ng/g) in China
showed higher ATZ levels of greenhouse soils and even in 60% of the greenhouses
the ATZ levels were considerably higher than in the open-field soils in their vicinity
(Dou et al. 2020).

Photosystem (PS) II-inhibiting herbicides showing adverse impact of photosyn-
thetic processes include phenylcarbamates, pyridazinones, triazines, triazinones,
phenylcarbamates, pyridazinones uracils, amides, uracils, nitriles, ureas, benzothia-
diazinones, nitriles, and phenylpyridazines (WSSA 2011).

Triazines are usually generally used as pre- and post-emergence herbicides and
they are able to control both grasses and broad leaf weeds in many numerous agri-
cultural crops (LeBaron et al. 2008). The main representative and most commonly
used herbicide of this group is ATZ with estimated global annual consumption of
70,000-90,000 tons, whereby about 5% of its amounts applied in agriculture move
into water bodies via surface runoff or leaching (Hou et al. 2017; Szewczyk et al.
2020). According to la Cecilia and Maggi (2016), the half-life (#,,,) of ATZ biodeg-
radation in surface water is 10-105 days. Douglass et al. (2014) reported that ¢/, of
ATZ mineralization in water was estimated in the range from 7 days to 5 years.
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Moreover, ATZ herbicide and its degradation products can be desorbed from sedi-
ment (where it persists longer than in water) and be released into water (Boithias
et al. 2014). Because ATZ, SIM, ISO, and prometryn (PRO; 6-(methylsulfanyl)-
N,N'-di(propan-2-yl)-1,3,5-triazine-2,4-diamine) were found to show endocrine
disrupting activities (Orton et al. 2009; Zorrilla et al. 2010; Hrouzkova and Matisova
2012; Park et al. 2014; Grasselli et al. 2018; Harper et al. 2020; Hayes et al. 2020;
Horak et al. 2021; Rohr 2021), their use in European Union was banned. For exam-
ple, the European Union banned the use of ATZ in 2004 because groundwater levels
exceeded the limits set by regulators (European Commission 2004), which resulted
in effective reduction of ATZ in coastal waters (Nodler et al. 2013), and thereafter
ATZ was replaced by terbuthylazine (TBZ; N-tert-butyl-6-chloro-N'-ethyl-1,3,5-
triazine-2,4-diamine). However, residues of ATZ in environmental matrices and
environment contamination caused by its permanent use in many countries outside
European Union require efficient techniques for their removal, including phytore-
mediation and phycoremediation. Rohr (2021) focused on the history of ATZ and
analyzed a smear campaign supported by huge funds, lawsuits, investigative reports,
and research manipulation to satisfy economic, political, or ideological issues that
were accompanied by ethically questionable decisions by responsible authorities
and should be avoided in the future to protect human and environmental health.

This chapter provides a comprehensive overview focused on phytoremediation
of substrates contaminated with photosystem II (PS II)-inhibiting herbicides using
grasses, aquatic plants, seaweeds and seagrasses, algae and cyanobacteria, woody
species, crops, and transgenic plants, including mechanism of action of these herbi-
cides, and beneficial impact of microbial species on degradation of herbicides in the
rhizosphere. Structures of PS II-inhibiting herbicides discussed in this chapter are
shown in (Fig. 2.1).
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2.2 Photosystem II-Inhibiting Herbicides

According to classification of herbicides based on their mode of action given by the
Weed Science Society of America (WSSA), PS II inhibitors include Group 5 (phe-
nylcarbamates, pyridazinones, triazines, triazinones, uracils), Group 7 (amides,
ureas), and Group 6 (benzothiadiazinones, nitriles, and phenylpyridazines)
(WSSA 2011).

2.2.1 Mechanism Mode of Action of PS
II-Inhibiting Herbicides

Photosystem II (PS II) is a membrane protein supercomplex situated in the thyla-
koid membranes of photosynthesizing organisms that uses light energy for catalyz-
ing oxidation of water and reduction of plastoquinone (PQ). Redox components
involved in the light-driven electron transport from H,O to the PQ pool following
redox components of PS II are involved: the water oxidizing manganese cluster
(WOC), the amino acid tyrosine (Y, ) situated on the D, protein on the donor side of
PS 11, the reaction center chlorophyll of the PS II reaction center (RC; Pgg), pheo-
phytin (Pheo), and two plastoquinone molecules, Q, and Qg (Fig. 2.2). After absorp-
tion of photons charge separation between Py, and Pheo occurs, creating Pggy'/
Pheo™. Oxidation of water is driven by oxidized primary electron donor Pg,*, which
oxidizes Y, situated on the D, protein on the donor side of PS II, and four Mn ions
occurring in WOC undergo light-induced oxidation as well. On the acceptor side of
PS II electron is transported from Pheo™ to Q, functioning as an one-electron accep-
tor the Q, site. From Q, protein, the electron is transported to another plastoquinone
molecule, Qg (plastoquinone molecule acting as a two electron acceptor), which is
loosely bound at the Q site to D, protein, and after two photochemical turnovers of
the RC it unbinds from RC as fully reduced and protonated, and diffuses in the
hydrophobic core of the membrane. The Qg-binding site will be thereafter occupied
by an oxidized PQ plastoquinone molecule (Whitmarsh 1998; Whitmarsh and
Govindjee 1999; Barber 1999, 2016; Barber and Tran 2013).

PS II-inhibiting herbicides inhibit photosynthetic electron transport (PET) at the
acceptor side of PS II via binding to the niche of the redox-active quinone Qg, which
is situated on the D, protein. Consequently, PET from Q, to Qg is inhibited and
production of adenosine triphosphate (ATP) and reduced nicotinamide adenine
dinucleotide phosphate (NADPH), which are indispensable for the fixation of CO,,
is ceased, which results in plant growth inhibition. Due to PET inhibition, Q, cannot
be reoxidized, which contributes to stimulated formation of chlorophyll (Chl) in the
triplet state. Triplet excited chlorophyll (*Chl*) can transfer excitation to the O, in
ground state generated from the water splitting reaction during photosynthesis,
whereby singlet oxygen ('O,), which is a very harmful reactive oxygen species
(ROS), is formed. Due to chain reaction of lipid peroxidation and oxidation of
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proteins, which can be initiated by both *Chl* and 'O,, loss of assimilation pigments
(Chls and carotenoids) and damage of membranes is observed. At binding of phe-
nolic herbicides the formation of *Chl* and subsequently generating of 'O, is stimu-
lated to a greater extent than by binding of triazine and urea herbicides, resulting in
increased efficiency of photodamage (Rutherford and Krieger-Liszkay 2001).
Although Qg is displaced by all PS II-inhibiting herbicides from its binding site,
binding site of these herbicides is not identical to the binding site of the secondary
quinone, Qg, but there is a significant special overlap. ATZ and diuron
(3-(3,4-dichlorophenyl)-1,1-dimethylurea) bind to 34 kDa protein, while phenolic
herbicides bind to 43-51 kDa PS II RC reaction center proteins (Oettmeier et al.
1982; Oettmeier 1985).

Takahashi et al. (2010) investigated structures of phenolic herbicides and their
binding sites in the Qg pocket of PS II and based on docking calculations found that
deprotonated bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) binds to D;-His,;s
at the CO group, in contrast to the protonated form of bromoxynil and diuron that
bind without an interaction with D,-His,;s to the opposite side of the pocket. Based
on the finding that in the dark, ATZ noncompetitively inhibits the binding of HCO;~
to the PS II complexes, it was suggested that besides of a high-affinity ATZ binding
site per PS II complex situated in Qg niche on the reducing side of PS II, there are
also a specific low-affinity herbicide binding site, although light eliminates the
inhibiting effects of ATZ on bicarbonate binding (Stemler and Murphy 1985).
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Diphenylcarbazide, which is known to supply electrons at the donor side of PS 11
in'Y, intermediate, was reported to displace ATZ and metribuzin (MTZ; 4-amino-6-
tert-butyl-3-(methylsulfanyl)-1,2,4-triazin-5(4H)-one) from their binding site in the
Qg pocket (Purcell et al. 1991; Borse et al. 2000).

2.2.2 Development of Plant Resistance of Plants to PS
II-Inhibiting Herbicides

Long-term application of large amounts of PS II-inhibiting herbicides resulted in
the development of weed resistance to these agrochemicals. It could be mentioned
that the D, polypeptide protein is encoded by the psbA chloroplast gene and is
highly conserved in photosynthesizing organisms not only in vascular plants but
also in algae and cyanobacteria. The resistance to PS II-inhibiting herbicides is
related to associated mutations in the psbA gene, leading to an amino acid exchange
in the D, polypeptide (Qg binding protein) (Trebst 1991). In vascular plants a single
amino acid substitution of serine (Ser) to glycine (Gly) at position 264 in the D,
protein causes the resistance to ATZ (Hirschberg et al. 1984; van Rensen and de Vos
1992). On the other hand, rapid detoxification of ATZ in tolerant crops results from
glutathione-S-transferase (GST) activity. In MTZ-resistant wild radish beside the
known Sery,-Gly mutation also higher level of “*C-MTZ metabolism was observed,
resulting in reduced translocation of '*C in the plants (Lu et al. 2019a). At the pres-
ence of Ser,s-Gly mutation, resistance against ATZ is connected by abolishing
H-bonds. However, Lu et al. (2019b) also investigated an ATZ-resistant wild radish
population, which displayed a novel Phe,,-Val substitution, and these plants were
moderately resistant to ATZ, MTZ, and diuron; the Phe,;4-Val substitution was sup-
posed to affect indirectly hydrogen bond formation between the herbicides and
Sery, residue, resulting in a resistance against these PS II-inhibiting herbicides.
When investigating the mechanism of ATZ resistance in Amaranthus tuberculatus
from Nebraska it was found that psbA gene did not exhibit known point mutations
associated with ATZ resistance, but in the resistant plants, conjugation of ATZ medi-
ated by GST was faster than in ATZ-susceptible plants, suggesting that metabolism-
based resistance to ATZ was predominant (Vennapusa et al. 2018). Novel
methyltransferases enhancing detoxification and degradation of ATZ residues to
less toxic compounds in Oryza sativa rice plants were identified by Lu et al. (2016).

In Sisymbrium orientale L. plants from near Horsham (Victoria, Australia), two
resistant populations were found showing a 311- and 315-fold higher resistance to
ATZ than susceptible population and based on the sequencing of the chloroplast
psbA gene it was found that this was related to a missense mutation of Ser,g, to gly-
cine in both populations. However, these S. orientale populations showed no resis-
tance to diuron (Dang et al. 2017). Antonacci et al. (2020) considering the structure
of D, protein of the PS II of green alga Chlamydomonas reinhardtii, designed in
silico a novel 50-mer biomimetic peptide in the region of D, protein from the resi-
due 211-280, which enabled ATZ binding with residues of three amino acids, Ser,y,
Asn,,;, and His,;, via three H-bonds.
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2.3 Removal of Contaminants by Physicochemical Methods
Versus Phytoremediation

For pesticide removal several physicochemical methods can be used (e.g., Marican
and Duran-Lara 2018; He et al. 2019). Methods based on physical processes are, for
example, the use of adsorbents such as biochar (Gamiz et al. 2019; Suo et al. 2019;
Mandal et al. 2021), activated carbon (Gonzalez et al. 2020; Pimenta et al. 2020;
Vieira et al. 2021b), zeolites (Kucherova et al. 2018; Toledo-Jaldin et al. 2018; Rad
and Anbia 2021), polymeric materials (Ronka 2016a, b; Romita et al. 2019;
Baigorria et al. 2021), etc. Chemical treatments use various agents to improve the
extraction of harmful compounds such as pesticides to less toxic or no toxic com-
pounds via chemical reactions. Chemical treatments involve advanced oxidation
processes (Babu et al. 2019; Zhou et al. 2019; Esquerdo et al. 2020; Garrido-
Cardenas et al. 2020; Ghavi et al. 2021), Os/H,0O, oxidation (Chen et al. 2020;
Rekhate and Srivastava 2020), UV-H,0, oxidation (de Oliveira et al. 2019), photo-
catalysis (Kaur and Kaur 2021; Kelly et al. 2021; Saravanan et al. 2021), Fenton
reaction (Sangami and Manu 2017a, b; Dolatabadi et al. 2021), photodegradation
(Liu et al. 2016; Shawky et al. 2020), or ultrasound-assisted remediation (Castelo-
Grande et al. 2017). On the other hand, phytoremediation technologies using plants
to decontaminate environmental matrices represent a green, inexpensive, and envi-
ronmentally friendly solution based on the ability of plants to remove, break down,
or immobilize contaminants and pollutants, and are applied to remediate contami-
nants and pollutants from soils, sediments, sludges, groundwater, surface water, or
wastewater (Sun et al. 2016; Dong et al. 2016; Yadav et al. 2016; Akhtar et al. 2017;
Dhanwal et al. 2017; Qu et al. 2017; Schwitzguébel 2017; Ribeiro et al. 2019.
Papadopoulos and Zalidis 2019). The most important phytoremediation techniques
include: (i) phytoextraction, (ii) rhizofiltration, (iii) phytostabilization, (iv) phyto-
degradation, (v) rhizodegradation, and (vi) phytovolatilization (Fig. 2.3) (Pascal-
Lorber and Laurent 2011; Yadav et al. 2016; Dhanwal et al. 2017; Masarovicova
and Kral'ova 2018; Bhat et al. 2020; Kanwar et al. 2020; Tonelli et al. 2020; Kristanti,
et al. 2021).

Phytoextraction (also known as phytoaccumulation) is the removal of contami-
nants from soil and water by plant roots and their allocation to shoots. Non-
biodegradable contaminants, such as toxic metals accumulated in the shoots, can
then be harvested, and thus definitively eliminated from the environment (Sheoran
et al. 2016; Teofilo et al. 2020).

Rhizofiltration uses the absorption, concentration, and precipitation of contami-
nants by the roots and is suitable for the remediation of contaminated aquatic eco-
systems using aquatic or terrestrial plants. In contrast to phytoextraction,
contaminants are not transferred to the shoots, and once saturation is achieved, the
plants are harvested by roots (Han et al. 2021; Kristanti et al. 2021).

Phytostabilization uses the adsorption of contaminants on the surface of the roots
and thus prevents their migration; consequently, migration of contaminants by wind
and water erosion and as well as leaching and dispersion of the soil are restrained
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Fig. 2.3 Different kinds of phytoremediation techniques

which indicates a favorable impact of the plant cover on the surface of contaminated
soils. Thus, plants grown on contaminated soil have favorable impact on the envi-
ronment (Radziemska et al. 2017; Schachtschneider et al. 2017). Phytodegradation
(also known as phytostimulation and phytotransformation) eliminates organic con-
taminants taken up by plants by their decomposition in root and shoot tissues
through metabolic processes. Plant enzymes including peroxidases, phenoloxi-
dases, nitroreductases, or esterases rise the polarity of contaminants by inserting
functional groups (e.g., —OH groups) and further increase of the polarity achieved
by conjugation with plant biomolecules leads to reduced toxicity (He et al. 2017,
Qu et al. 2018).

Rhizodegradation (also known as phytostimulation) is the break down of organic
contaminants by root-associated microorganisms. The microbial activity of these
microorganisms, which consume organic pollutants as a source of energy and nutri-
tion and can degrade them into non-toxic or less harmful compounds, is supported
by exudates released by plant roots (Dominguez et al. 2020; Sivaram et al. 2020).

Phytovolatilization is the release of contaminants (either in their original form or
after metabolic modification) by a plant in a volatile form via transpiration into the
atmosphere, whereby the contaminants could be in their original or metabolized
form (Limmer and Burken 2016; Zhang et al. 2020). In addition, plants capable of
absorbing huge quantities of water can prevent spreading of contaminated wastewa-
ter to neighboring environment through hydraulic control (Lewis-Russ et al. 2009;
Yadav et al. 2010; Danielescu et al. 2020; Ciampi et al. 2021) and restoring infertile
areas with planting of resistant plant species that effectively cover the soil (phy-
torestoration), which can inhibit transfer and migration of contaminated soil parti-
cles with bound contaminants and prevent soil erosion caused by wind as well as



2 Phytoremediation of Environmental Matrices Contaminated with Photosystem... 41

surface water runoff, can be used for ecosystem restoration (Lin et al. 2007; Burges
et al. 2018; Pandey et al. 2020).

For evaluation of the plant bioremediation ability, the bioconcentration factor
(BCF), known also as bioaccumulation factor, i.e., defined as the ratio of the con-
taminant concentration in plant dry mass (pg/g d.m.) to its concentration in the soil
(pg/g soil) or external solution (pg/mL) is used. On the other hand, the translocation
factor (TF) corresponds to the ratio of contaminant concentration observed in the
shoots to this in the roots and reflects the effectiveness of plants in translocating
contaminant from roots to the above-ground part of plants (Tu and Ma 2002; Deng
et al. 2004; Masarovicova et al. 2010a).

Recently, several comprehensive review papers related to phytoremediation were
published, which were focused, for example, on the use of phytoremediation for
removal of organic pollutants (Tripathi et al. 2020), polycyclic aromatic hydrocar-
bons (PAHs) (Gabriele et al. 2021; Kumar et al. 2021), polychlorinated biphenyls
(PCBs) (Jing et al. 2018), organic pollutants such as explosives in impacted military
ranges (Fayiga 2019), or pharmaceuticals and personal care products (Nguyen et al.
2019), decontamination of pesticide-contaminated areas (Kumar et al. 2019; Tarla
et al. 2020), use of invasive plants (Prabakarana et al. 2019; Singh et al. 2021) or
transgenic plants for removal of heavy metals (Ibafiez et al. 2015; Gunarathne et al.
2019; Prasad 2019), use of natural and artificial soil amendments improving phy-
toremediation effectiveness (Poonam Kumar 2019) or utilization hairy root cultures
for phytoremediation purposes (Majumder et al. 2016; Moola et al. 2021).

In summary, environmentally friendly phytoremediation techniques are less
invasive and require less equipment compared to physicochemical methods, are
inexpensive, can be used for various types of contaminants, and their use prevents
the natural environment. On the other hand, there are certain disadvantages associ-
ated with the use of phytoremediation, such as incomplete prevention of pollutant
leaching to groundwater, impaired plant performance/survival in highly toxic sub-
strates, dependence on climatic conditions and soil properties, risk of bioaccumulat-
ing harmful contaminants entering the food chain, and the long time required for
effective, though not always complete removal of contaminants (Tonelli et al. 2020;
Masarovi¢ova and Kralova 2012, 2017, 2018).

2.4 Degradation of Herbicides by Microbial Species

Sene et al. (2010) summarized the findings related to degradation of ATZ by iso-
lated microbial species/and microbial consortia and focused attention on the devel-
opment of techniques applied for microbial removal of ATZ in natural environments
using microbial species. Wan et al. (2021) analyzed the content of triazine herbi-
cides, ATZ, TBZ, SIM and their degradation products, desethylatrazine (DEA),
desisopropylatrazine (DIA), desethyldeisopropylatrazine (DDA, also known as
didealkylatrazine), hydroxyatrazine (HA), and desethylterbuthylazine in surface
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water from northern Vietnam. In the samples of lake water, the chlorotriazines with
total content of 49.3 ng/L were found to be the major herbicides in the samples of
lake water; the content of ATZ and its metabolites (in ng/L) in these samples
decreased as follows: 11.0 (DIA) > 10.9 (ATZ) > 4.98 (HA) > 3.56 (DEA) > 1.85
(DDA). Chlorotriazines and their degradation products (the total content of 164
ng/L) were also evaluated as major pesticide contaminants in river water; the con-
tent of ATZ and its metabolites (in ng/L) in these samples decreased as follows: 116
(ATZ) > 21.3 (HA) > 11.7 (DIA) > 8.50 (DEA) > 5.88 (DDA). The structures of
ATZ degradation products are shown in Fig. 2.4 and the structure of TBZ degrada-
tion product desethylterbuthylazine is shown in Fig. 2.5.

The rhizodegradation by Inga striata and Caesalphinea ferrea tree species con-
tributed to more rapid degradation of ATZ residues resulting in elimination of
adverse impact of ATZ to herbicide-sensitive plants. In the rhizospheric soils of tree
species  Mycobacterium,  Bradyrhizobium,  Conexibacter,  Rhodoplanes,
Solirubrobacter, , Streptomyces, Geothrix, Gaiella, Geothrix, Haliangium, and
Nitrospira species were found to be predominant and rhizosphere soils contained
also some ATZ degradation genes (Aguiar et al. 2020a).

Although soil microbial communities practically are not affected by herbicide
treatment in the long-term, it is desirable to design multi-site microbiological field
studies involving multiple locations; for effective herbicide degradation, microbial
mixed cultures should be evaluated; and the attention should also be paid to coexis-
tence of multiple microbial species (along with their identification) on a single
resource, which may ameliorate the degradation potential of the herbicide.
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2.5 Vascular Plant Species and Algae Used
for Phytoremediation of PS II-Inhibiting Herbicides

2.5.1 Grasses

Grasses have extensive root system enabling effective absorption of water and nutri-
ents and their highly branched (fibrous) roots stabilize the soil and prevent erosion.
Due to this large root system the grasses are suitable candidates for phytoremedia-
tion purposes, and in addition, they can also effectively metabolize or degrade
organic contaminants, including herbicides (Khrunyk et al. 2017; Sanchez et al.
2017; Panja et al. 2018; Ma et al. 2020; Liu et al. 2020a; Pannacci et al. 2020;
Phouthavong-Murphy et al. 2020; McKnight et al. 2022).

Sui and Yang (2013) investigated bioaccumulation of ATZ and content of ATZ
residues in the soil in three ryegrass cultivars cultivated in soil containing 0.8 mg/kg
ATZ. They found that the presence of plants pronouncedly reduced ATZ residue in
soil, and ATZ content in the rhizosphere was also considerably lower compared to
non-rhizosphere soil. Although ATZ suppressed the activities of some enzymes in
soil, including urease, polyphenol oxidase, invertase, and acid and alkaline phos-
phatases, in the presence of tested ryegrass cultivars they were successfully acti-
vated. Among investigated ryegrass cultivars, Changjiang II cv. was found to be the
most tolerant against ATZ, which was reflected not only in superior growth charac-
teristics, but also in higher Chl content and lower damage caused by oxidative stress
compared to Abode and Jiawei cultivars. All three cultivars accumulated more ATZ
in shoots than in roots. Abode and Jiawei cultivars accumulated ca. 2.70 mg/kg in
shoots and 0.58 mg/kg in roots, which corresponds to BCF,,, of 3.41 and TF of
4.66. On the other hand, the BCF,,,, and TF values for the most tolerant Changjiang
II cv. were lower, ca. 1.9 and 3.9, respectively.

Three prairie grasses, switchgrass (Panicum virgatum L.), Yellow Indiangrass
(Sargassum nutans), and big bluestem (Andropogon gerardii) grown three weeks on
sterilized sand or in hydroponic solution supplemented with *C-labeled ATZ were
investigated by Khrunyk et al. (2017) for their ability to remove ATZ. ATZ uptake
by P. virgatum and A. gerardii from hydroponic medium achieved ca. 40% of the
C contained in hydroponic solution and 20-33% in sand cultures, suggesting that
these species are suitable for phytoremediation purposes. On the other hand,
S. nutans was characterized with low ATZ uptake from hydroponic medium.
Prevailing ATZ amount absorbed by investigated grasses from sand culture under-
went degradation to metabolites, whereby increasingly enhanced ATZ degradation
from sand to roots and leaves was observed, and in the leaves 60-80% of detected
4C belonged to metabolites; whereas desisopropylatrazine (DIA) was found to be
the main ATZ metabolite in roots, higher amount of DDA observed in leaves indi-
cated further metabolism in this plant organ.

An experiment performed with P. virgatum seedlings cultivated in sand contain-
ing 10 pg ATZ/g showed that 7 days after treatment ATZ metabolites were detected
in leaves, but not in the sand and roots, suggesting that this plant can degrade ATZ
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(Murphy and Coats 2011). Albright et al. (2013) treated switchgrass-soil column
system with 16 ppm ATZ and found that up to first 2 weeks of the experiment ATZ
was detected in both soil and seedlings, however, by day 21 of the experiment, its
level did not reach the limit of detection. Whereas DEA and DDA metabolites were
detected during the experiment, the presence of DIA could not be verified. In
another experiment, using treatment with 4 ppm ATZ solution, the researchers
detected DEA and DIA metabolites already one day after treatment, while DDA and
cyanuric acid (CYA) were observed later, and HA metabolite was not detected. The
increase in the portion of ATZ metabolites was accompanied with decreasing lev-
els of ATZ.

Lin et al. (2008) investigated ATZ uptake, phytodegradation, and detoxification
in the rhizosphere using orchardgrass (Dactylis glomerata L.), tall fescue (Festuca
arundinacea), timothy (Phleum pretense), smooth bromegrass (Bromus inermis),
and switchgrass (P. virgatum) grasses. In the presence of grasses, ATZ occurring in
soil showed by 20—-45% higher biological degradation or chemical hydroxylation of
ATZ compared to control. Switchgrass was able to degrade >80% of ATZ soil resi-
dues to less toxic metabolites, and 25 days after herbicide application to transform
47% of these residues to hydroxylated metabolites characterized with lower mobil-
ity. In the tissues of P. virgatum and F. arundinacea the hydroxylated metabolites
were detected as predominant ATZ degradation compounds, while as the main deg-
radation products in cool-season species D. glomerata L., P. pratense, and B. iner-
mis N-dealkylated metabolites were estimated. The warm-season species P. virgatum,
showing not only high tolerance to ATZ but also powerful ATZ degradation capac-
ity, was evaluated as a suitable grass to be used in riparian areas to diminish ATZ
toxicity and mobility. Among seven plants (D. glomerata L., B. inermis Leyss.,
F. arundinacea Schreb., Desmanthus illinoensis, P. virgatum L., Lolium perenne L.,
and Tripsacum dactyloides) the best efficiency for stimulation of ATZ degradation
in the rhizosphere showed 7. dactyloides (eastern gamagrass), which was able to
degrade 90% ATZ in its rhizosphere compared to 24% observed in soil without
plants; the other tested species considerably enhanced ATZ degradation as well.
Correlation was found between ATZ dealkylation and enhanced activities of
B-glucosidase and dehydrogenase enzymes as well as hydrolysis of fluorescein
diacetate. The tested plants, especially eastern gamagrass, were evaluated as species
suitable to be incorporated into vegetative buffer strips for efficient ATZ removal,
supporting degradation of the herbicide moved therein by surface runoff (Lin et al.
2011). The degradation of ATZ and SIM in herbicide-contaminated soil was faster
with planted Pennisetum clandestinum compared to unplanted soil, achieving
approx. 45% and 52% degradation of ATZ and SIM for 80 days, while in unplanted
soil the corresponding degradation of herbicides was approx. 22% and 20%, respec-
tively. Simultaneously, soil dehydrogenase activity and microbial biomass and soil
dehydrogenase activity in soil with planted P. clandestinum increased about seven-
fold compared to soil without plants. Moreover, the suspension of rhizosphere soil
contaminated with herbicides degraded both tested herbicides in a mineral salt
medium more effectively than the non-rhizosphere soil suspension (Singh
et al. 2004).
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Comparison of L. perenne and F. arundinacea grasses and Hordeum vulgare and
Zea mays crops for removing ATZ from herbicide-contaminated soil (2, 5 and
10 mg/kg) 16 days after treatment showed that the investigated plants were able to
reduce ATZ shoot concentration by 88.6-99.6% of the initial ATZ concentration
compared to 63.1-78.2% reduction observed with unplanted soil. The tested plant
tissues contained ATZ and its metabolites, DEA and DIA; the highest bioaccumula-
tion of ATZ derivatives (up to 38.4% of the ATZ dose applied to soil) was observed
with maize. Effective ATZ removal from soil can be associated with successful rhi-
zosphere degradation/mineralization of herbicide by microorganisms or plant
enzymes and its degradation within plants (Sanchez et al. 2017).

Sowing of ryegrass (22 kg/ha) after harvest of maize, which was treated post-
emergently by ATR 500-Dow using a dose 2 L/ha, resulted in pronounced ameliora-
tion of ATZ degradation, improved agronomical properties of soil, and suppressed
movement of herbicide due to rainfall. Such ryegrass intercropping strategy can
considerably contribute to lower environmental contamination with ATZ in areas
with intensive agronomical practices (Merini et al. 2012).

Resistant Lolium rigidum population collected from a triazine tolerant Brassica
napus field from Western Australia, showing a low-level (approximately 3.0-fold)
resistance to MTZ and ATZ, showed 2.3-fold greater “C-MTZ metabolism com-
pared to susceptible L. rigidum plants. However, no differences were observed
between sequences of the psbA gene of resistant and susceptible plants, and MTZ
foliar uptake and translocation in both types of plants were comparable as well.
MTZ resistance in L. rigidum can be due to enhanced MTZ metabolism involving
cytochrome P,s5, monooxygenase (Ma et al. 2020).

Effective shortening of #,, of PRO by 11.5 day was observed using vetiver grass
(Chrysopogon zizanioides L.) hydroponically cultivated in the presence of herbicide
for 67 days, whereby the removal of PRO followed first-order kinetics. TF value of
PRO in day 67 reached a value of 0.11 (Sun et al. 2016). Switchgrass plants, which
were cultivated in pots and treated with solution containing 4 ppm “C-ATZ, were
after 4 days transplanted, and further 4 days were cultivated in pots with fresh sand.
The amounts of parent ATZ in these plants showed a decrease, while the amounts of
metabolites increased; CYA metabolite in a switchgrass was detected as well
(Albright and Coats 2014).

The presence of Pennisetum alopecuroides (L.) considerably enhanced efficiency
of ATZ degradation in laterite soils (51.46 vs. 15.22%) due to increased levels of
bioavailable ATZ in rhizosphere. Both uptake of ATZ by plant roots and acropetal
translocation from roots to shoots were limited. P. alopecuroides roots and its acrop-
etal transfer from roots to shoots were restricted. However, ATZ speciation in rhizo-
sphere and non-rhizosphere soil differed from each other due to decreasing pH
values and organic matters in the rhizosphere (Lin et al. 2018). Italian ryegrass
(Lolium multiflorum L.) was able to remove up to 30—40% of TBZ from aqueous
solution containing up to 2.0 mg/L. TBZ, although the herbicide adversely affected
plant growth. Dose dependent activation of GST was observed in response to
herbicide-induced stress. At exposure to 1 and 2 mg/L. TBZ, ascorbate peroxidase
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activity was induced at the beginning of the experiment, but later showed a decrease
or disappeared (Mimmo et al. 2015).

Due to the extensive root system, grasses are suitable for removing various types
of contaminants, including pesticides, PAHs or heavy metals from environmental
matrices. The most favorable grasses to clean soils containing organic contami-
nants, including herbicides, are those that are fast-growing, produce large biomass,
can effectively metabolize or degrade these contaminants, and are tolerant to abiotic
stresses. In addition, plant diversity, which stimulates microbial activity in soils, can
also contribute to the mitigation of organic contaminants in grass soils. Thanks to
the effective elimination of a wide scale of contaminants (both heavy metals and
harmful organic compounds) through grasses, the multi-contaminated soils can be
successfully remediated as well. Grass-planted buffer belts can effectively reduce
herbicide runoff from fields.

2.5.2 Aquatic Plants

Macrophytes are aquatic plants growing in or near water, which colonize many dif-
ferent types of aquatic ecosystems, including lakes, wetlands, rivers, marine envi-
ronments, etc. They are classified in three classes: floating, emergent, and submerged
macrophytes. While floating macrophytes live exclusively on the surface of water
bodies; and emergent macrophytes are attached with roots to the substrate occurring
at the bottom of water bodies, but their leaves grow to or above the water surface;
submerged macrophytes are steadily permanently submerged in water (Ekperusi
et al. 2019). Mechanisms and applications of phytoremediation in engineered wet-
lands were overviewed by Zhang et al. (2010). Macrophytes belong to plant species
frequently used for efficient decontamination of aqueous environment from herbi-
cide residues (Akhtar et al. 2017; Li et al. 2019a; Papadopoulos and Zalidis 2019;
Qu et al. 2017, 2020; Vieira et al. 2021a).

2.5.2.1 Freshwater Macrophytes

Qu et al. (2017) who investigated ATZ distribution and its phytoremediation by
Potamogeton crispus and Myriophyllum spicatum in lake sediments found 6-fold
higher ATZ absorption by sediments compared to soils; sediments planted with
these submerged macrophytes achieved over 45 days ATZ removal >90% compared
to 77.2 + 2.12% observed with unplanted sediments. P. crispus and M. spicatum
also significantly reduced the t;,, value of ATZ dissipation estimated in unplanted
sediment (14.30 days) to 8.60 and 9.72 days, respectively, suggesting that these
plant species are suitable to be used for remediation of ATZ-contaminated sedi-
ments. Qu et al. (2020) used sediments (unplanted as well as planted with P. crispus
and M. spicatum macrophytes) from two lakes, Tangxunhu Lake (TL) and Honghu
Lake (HL), contaminated with 2.0 mg/kg ATZ, and investigated the factors affecting
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the fate of herbicide. After incubation lasting 30 and 60 days, the TL sediments
planted with P. crispus contained 0.61 = 0.071 and 0.21 + 0.05 mg/kg ATZ, while in
those planted with M. spicatum 0.78 £ 0.087 and 0.34 + 0.05 mg/kg ATZ was pres-
ent. On the other hand, after 30 days in HL sediments planted with P. crispus, ATZ
concentration of 0.54 = 0.070 mg/kg was observed, while in those planted with
M. spicatum it was 0.68 = 0.10 mg/kg. Hence, the concentrations of ATZ in planted
sediments were pronouncedly lower than 0.99 + 0.16 mg/kg and 1.11 + 0.14 mg/kg
estimated in unplanted HL and TL sediments after 30 days. After 3 month the ATZ
levels in both planted sediments were <0.040 mg/kg. Measurable levels of ATZ
degradation products, HA, CYA, HA and biuret were observed from day 30 to day
60, however, after 3 months in TL sediment CYA and biuret, but in HL sediment
only biuret was detected. The researchers also found that alkaline sediment showed
a higher residual rate of ATZ, and ATZ concentration in the alkaline sediment inter-
stitial water had 3-threefold higher ATZ concentration compared to this observed in
acidic sediment interstitial water.

The aquatic plant Hydrocotyle vulgaris cultivated in hydroponic solution in the
presence of 0.55 + 0.013 mg PRO/L was able to remove up to 94.0% of herbicide in
30 days, achieving t;, of PRO of 5.58 days, while the corresponding t;,, observed
without H. vulgaris was 27.16 days. After 30 days the plant tissue contained ca.
22% of the initial herbicide concentration and 11.7% was degraded by the plant; as
degradation products of PRO in hydroponic solution 2,4-diamino-1,3,5-triazine
(Fig. 2.5) and in plant tissue CYA were estimated (Ni et al. 2018).

Uptake and bioaccumulation of ATZ and linuron (3-(3,4-dichlorophenyl)-1-
methoxy-1-methylurea) by two hydroponically cultivated model aquatic macro-
phyte species, submerged species Echinodorus horemanii and free-floating species
Eichhornia crassipes, were studied by Pi et al. (2017). The estimated whole-plant
uptake rate constants for ATZ were 90.0 + 8.3 L/kg and 38.4 + 2.9 L/kg per day
using E. horemanii and E. crassipes, respectively, whereas for linuron the whole-
plant uptake rate constants were 76.2 + 5.9 L/kg per day (E. horemanii) and 129 +
9.4 L/kg per day (E. crassipes), respectively. On the other hand, elimination rate
constants of ATZ and linuron in E. horemanii were 0.25 + 0.02 and 0.35 + 0.03 per
day, while in E. crassipes the corresponding values achieved 0.25 + 0.02 and 0.32 +
0.02 per day, respectively. The steady state bioconcentration factors (BCF) of ATZ
in leaf, root, and whole plant were 319 + 23.3, 30.3 + 2.5, and 259 + 18.3 L/kg for
E. horemanii, and 138 = 12.5, 56.9 £ 4.3 and 106 + 8.4 L/kg for E. crassipes, while
those of linuron were 244 + 19.6, 40.9 = 3.0 and 214 + 15.4 L/kg for E horemanii,
and 222 + 18,432 + 32.4 and 307 + 21.7 L/kg for E. crassipes.

Potential of water lettuce (Pistia stratiotes L.) for phytoremediation of ATZ-
contaminated waters was investigated by Vieira et al. (2021a). In plants exposed to
150 mg/L ATZ for 24 h enhanced ROS levels due to oxidation stress caused dam-
ages to cell membranes, increased the rate of electrolyte leakage in leaves, had
adverse impact on photosynthesis, reduced the levels of assimilation pigments, and
decreased CO, assimilation rate by ca. 55.81%. The estimated 24 h ICy, value was
123.89 pg/L, and the ATZ toxicity was pronouncedly alleviated by addition of 0.05
mg/L of sodium nitroprusside (SNP), a NO donor (ICsy: 199.93 pg/L). SNP also
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considerably improved P. stratiotes growth rate, which was suppressed by
ATZ. Increased tolerance of water lettuce plants to ATZ in the presence of SNP was
reflected also in higher uptaken ATZ amounts (8.0 vs. ca. 4.3 pg/g fresh weight) and
higher BCF (28.8 vs. 55.2) and TF (0.17 vs. 0.9). In contrast to beneficial impact of
SNP on ATZ stressed leaves, in the roots the combine treatment of ATZ and SNP
resulted in an increase of mitotic index, suggesting that NO stimulated cell division,
likely as a defense response to ATZ toxicity, aimed to replace the roots destroyed by
herbicide with the formation of new root cells, and thus to ensure to the mainte-
nance of root function. Addition of SNP clearly improved the efficacy of the phy-
toremediation of ATZ-contaminated aqueous environment.

ATZ amount absorbed by M. spicatum, a cosmopolitan species that primarily
colonizes eutrophic waters, was 18.29-fold higher than the ATZ amount in sedi-
ments, the equilibrium being achieved after 15-day incubation, and ATZ concentra-
tion in plant achieved 30.67 + 4.10 mg/kg. However, at prolongation of the exposure
to 60 days the levels of herbicide in the plants decreased, suggesting that the degra-
dation of ATZ exceeded its uptake by plant. Moreover, phytodegradation of ATZ in
M. spicatum to HA, DEA, HA, CYA, DDA, CYA and biuret was observed. On day
15, in M. spicatum-grown sediment considerably higher levels of HA, CYA and
biuret were observed than in unplanted sediment, suggesting that the plant stimu-
lated ATZ degradation and removal through rapid dechlorination. The levels of
CYA even pronouncedly exceeded those observed in unplanted sediment during the
whole incubation period of 60 days; during this period DIA, DEA, and DDA were
not detected in all the sediments during this period. Rhizosphere microorganisms
contributed to ATZ degradation, whereby M. spicatum growth contributed to the
increase of dominant sediment microbial populations, from which 41.08-63.43%
were Proteobacteria. Considering that among the genera of ATZ-degrading bacteria
(Acetobacter, Pseudomonas, Clostridium, and Burkholderia) Acetobacter was pre-
dominant, it can be supposed to be responsible for rhizodegradation of ATZ (Qu
et al. 2018).

In an experiment lasting 2 months, ATZ was eliminated faster in pots, in which
submerged macrophytes, M. spicatum and P. crispus were cultivated than in
unplanted pots, whereby ATZ was converted predominantly to DDA and
HA. Submerged macrophytes are favorable as phytoremediators because they can
absorb ATZ, resulting in remediation of the contaminated sediment and water (Li
et al. 2019a). Bouldin et al. (2006) investigated ATZ uptake and accumulation in
hydroponically cultivated Juncus effusus (perennial herbaceous flowering plant)
and Ludwigia peploides (floating primrose-willow) at concentrations, which were
estimated based on calculation using recommended field applications, and consider-
ing a 5% runoff model from a 0.65-cm rainfall event on a 2.02 ha field. After 8 h and
24 h, J. effusus absorbed by roots 75.4 and 86.8% ATZ, respectively, and the total
ATZ uptake by plant after 8 days achieved 14697.1 pg/kg; herbicide distribution
throughout the plant was as follows: 37% (adsorbed), 32% (roots) and 32% (upper
biomass). On the other hand, ATZ uptake from hydroponic solution by L. peploides
after 8 h was distributed as follows: 30.2% (adsorbed), 40.4%, (roots) and 29.4%
(upper biomass), and after 48 h plant upper biomass contained 4980.2 pg ATZ/kg.
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Lemna gibba and Azolla caroliniana plants hydroponically cultivated in the pres-
ence of 10.0 mg/L. ATZ were able to remove ATZ from the solution; in the removed
amounts achieving 0.016 and 0.018 mg ATZ/g per gram of fresh mass, respectively,
probably due to ATZ adsorption by dead plant material, because high herbicide
doses were toxic and caused chlorosis and necrosis (Guimaraes et al. 2011).

Investigation of short-term accumulation of ATZ by Typha domingensis,
Sagittaria lancifolia, and Echinochloa pyramidalis from a wetland model system
showed that the plant roots accumulated 40% of herbicide, while 30% were accu-
mulated in soil and 10-20% in water. Beside the applied ATZ concentration, the
accumulation was found to depend on the plant species. At treatment with 30 ppm
ATZ, the accumulated amounts of ATZ in roots of tested plants were ca. 7.5 mg/kg
for E. pyramidalis, and ca. 10 mg/kg for T. domingensis and S. lancifolia, respec-
tively (Cejudo-Espinosa et al. 2009). Typha latifolia L. in constructed wetland
microcosms efficiently remediated TBZ herbicide, whereas increasing levels of its
degradation products (desethylterbuthylazine and DIA) were detected in surface
water. Between the investigated plant densities of 10 and 30 rhizomes/m?, the higher
plant density contributed to a more efficient reduction of herbicide (7.3 vs. 23.4%);
the t;,, value related to the rate of reduction of herbicide was achieved within 30
days compared to the 61 days observed with lower plant density. The accumulated
TBZ in T. latifolia foliage was 2.96-fold higher than in the roots (3219.5 vs. 1088.6
ng/g) (Papadopoulos and Zalidis 2019).

Although all three types of macrophytes can be used to remove herbicides from
aquatic environments contaminated with herbicides, for sites with highly contami-
nated sediments, submerged and emerging aquatic plant species are preferred that
are anchored with roots to the substrate occurring at the bottom of the water bodies
and can degrade herbicides persisting in the sediment; consequently, the herbicides
occurring in sediment cannot be released back into the water. However, it is desir-
able to minimize the entry of herbicides into rivers and lakes by avoiding overuse of
herbicides and by implementing of vegetated buffers, vegetated ditches, etc., pro-
nouncedly reducing the loss of herbicide runoff from crop fields.

2.5.2.2 Seaweeds and Seagrasses

Seaweeds and seagrasses are marine macrophytes forming the predominant part of
the photosynthesizing biomass in coastal habitats. For the coastal ecosystem, a great
risk represents industrial discharge and agricultural runoff, resulting in accumula-
tion of harmful organic contaminants. Seaweeds and associated microbiomes can
play a crucial role in remediation of aquatic ecosystem (Haynes et al. 2000; Alam
2021; Barot and Kumar 2021). For example, Sargassum spp. can be utilized as eco-
logical filter for elimination of organic and inorganic pollutants (Lopez-Miranda
et al. 2020), and bioremediation potential of biomass of these brown seaweeds can
be used for remediation of coastal ecosystems (Saldarriaga-Hernandez et al. 2020).
The bioaccumulation of organochlorine pesticides in seaweeds decreased in the
order of Sargassum wightii (Pheophyta) > Gelidiella acerosa (Rhodophyta) >
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Gracilaria verrucosa (Rhodophyta) > Ulva lactuca (Chlorophyta) (Sundhar et al.
2020). Laminaria sp. (brown seaweed) was able to remove and degrade phenan-
threne and pyrene in its tissues via the enzyme-oxidation process (Wang and Zhao
2007), and green seaweed Ulva rigida removed polychlorinated biphenyls PCBs
contained in sediments (Cheney et al. 2014).

Seaweeds could also be used for the remediation of the environment contami-
nated with toxic metals and serve as indicators of heavy metal contamination,
because the metal content accumulated in seaweeds often correlates with its content
in surrounding seawaters and sediments (Malea and Kevrekidis 2014; Chalkley
et al. 2019; Sun et al. 2019a; Bonanno et al. 2020; Jampilek and Kral'ova 2021).

Investigation of marine seaweeds Ulva sp. and Codium fragile grown in the near
shore marine environment of an urban setting (Camps Bay, Cape Town, South
Africa) for their potential to accumulate SIM and ATZ showed BCF (L/kg) values
for SIM of 20,141 (Ulva) and 20,822 (Codium), respectively; while for ATZ the
estimated BCF values were 11,423 (Ulva) and 14,899 (Codium), respectively. As
both seaweeds showed BCF > 5000 L/kg, they could be considered as bioaccumula-
tive. Whereas concentration of both herbicides in the marine sediment was approx.
24 ng/g, the concentrations of SIM achieved 84.2 ng/g d.w. in Ulva and 87.0 ng/g
d.w. in C. fragile; the concentrations of ATZ were ca. 24 ng/g d.w. in Ulva and 28.2
ng/g d.w. in C. fragile. It could be emphasized that consumption of edible seaweeds
originating from herbicide-contaminated environment can adversely affect human
health. The evaluated hazard quotients reflecting the non-carcinogenic effect due to
long-term exposure to herbicides were 0.2 for ATZ (for both seaweeds), while for
SIM they achieved values of 4.7 (Ulva) and 4.9 (Codium), respectively, suggesting
that SIM can pose adverse health effects. The carcinogenic risk assessment also
confirmed pronouncedly higher risk of SIM compared to ATZ (0.110 vs. 0.011 for
Ulva and 0.114 vs. 0.015 for Codium) (Ojemaye et al. 2020).

Carafa et al. (2009) implemented, calibrated, and validated a bioaccumulation
model to predict concentrations of ATZ, SIM, and TBZ in the macroalga U. rigida,
and compared simulated data with experimental data obtained from samples origi-
nating from the Sacca di Goro lagoon (Northern Adriatic). This model was able to
predict properly the concentrations of herbicides detected in U. rigida.

Rodrigues et al. (2018) studied the spatial and temporal occurrence of the pesti-
cides, including ATZ and TBZ herbicides in the River Mondego estuary (Portugal),
and determined their amounts in surface water, and sediment, as well as in macroal-
gae (Ulva sp., Gracilaria gracilis, Fucus vesiculosus, Gracilaria gracilis, Ulva sp.)
and aquatic plants (Zostera noltii, Spartina maritime, Scirpus maritimus, Spartina
maritime, Zostera noltii). Bioaccumulated ATZ in G. gracilis achieved a value of 20
ng/g and bioaccumulated TBZ in Ulva sp. was 149 ng/g d.w. TBZ herbicide was
detected in Ulva sp. in August, suggesting a seasonal impact; a spatial gradient
concerning this herbicide was also observed. It could be mentioned that bioaccumu-
lated amounts of TBZ in Ulva estimated in two sampling stations (108 ng/g and 149
ng/g d.w., respectively) exceed the maximum residue levels for algae (50 ng/g)
established by Commission Regulation 149 of the European Parliament and of the
Council (2008). On the other hand, in three tested aquatic plants the pesticides
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exceeding quantification limits of respective method quantification limits were not
detected.

Seagrasses, the flowering plants grown in marine environment are also endan-
gered by harmful contaminants, which can accumulate in their tissues (Olisah et al.
2021). Concentrations of herbicides are usually highest near seaside and in the
vicinity of seagrass meadows, showing no tolerance to PS II herbicides. Chronic
exposure of seagrasses to these herbicides causes a decline in photosynthesis and
results in reduced growth and survival (Flores et al. 2013; Negri et al. 2015;
Wilkinson et al. 2015a, b). The transport of these herbicides through the leaf and
hydrophobic semi-permeable cell membrane to reach their side of action is more
facile for herbicides showing higher lipophilicity compared to less lipophilic ones
(e.g., hexazinone) (Wilkinson et al. 2015a). Consequently, the phytotoxicity of indi-
vidual PS II herbicides to seagrasses significantly differ each from other and, for
example, diuron was found to exhibit approx. 8-fold higher potency than ATZ
(Flores et al. 2013).

Eelgrass (Zostera marina L.) is the most distributed seagrass in temperate waters
in coasts of both the Pacific and Atlantic oceans in the Northern Hemisphere.
Exposure of Z. marina L. to ATZ (1, 3 and 10 pg/L) for one month reduced its pho-
tosynthetic efficiency, increased the N content and reduced C:N ratio of leaf tissue.
Whereas the levels of carbohydrates as well as intermediates of tricarboxylic acid
cycle (glucose, sucrose, mannose, and maltotriose) were reduced, the levels of
y-aminobutyric acid increased, which can be related to the oxidative stress gener-
ated by the PET inhibition in PS II caused by ATZ. At exposure to ATZ also the
levels of 1-aminocyclopropane carboxylic acid, which functions as a signaling mol-
ecule, were enhanced (Gao et al. 2019). Pollution by diuron and nitrate was reported
to increase the sensitivity of Z. marina seagrass to infections with Aplanochytrium
sp. and Labyrinthula zosterae causing seagrass wasting-type disease, resulting in a
decline of seagrass meadows (Hughes et al. 2018). Increased phytotoxic impact on
the tropical seagrass Halophila ovalis was also observed at its exposure to diuron at
temperatures differing from the thermal optimum (31 °C) for photosynthetic effi-
ciency (Wilkinson et al. 2017). Similarly, co-exposure of the Z. marina to high
temperatures (>31 °C) and ATZ resulted in more harmful impact to eelgrass than
treatment with individual stressors (Gao et al. 2017).

Although concentrations of triazine herbicides ranging from <10 to 440 ng/L,
which were observed in a tropical coastal area in China (the northeast coast of the
Island Hainan), do not present acute toxic impact on seagrass beds, at long-term
chronic exposure combined with rising sea surface temperature, damaging effects
on seagrasses could not be excluded (Dsikowitzky et al. 2020). Although seaweed
and seagrass play a key role in remediation of coastal aquatic ecosystems by accu-
mulating heavy metals and accumulating/detoxifying harmful organic compounds,
including herbicides from agricultural runoff, careful levels of toxic compound resi-
dues need to be closely monitored, especially for consuming species of seagrass and
seaweed, which must not exceed the maximum permitted levels. The selection of
the most appropriate species of seaweed/seagrass for certain contaminated sites
must be made on the basis of their remediation efficiency with respect to the
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predominant contaminants. Planting coastal forests with efficient species of phy-
toremediators could also make a significant contribution to reducing the entry of
herbicides into coastal aquatic ecosystems.

2.5.3 Algae and Cyanobacteria

Algae are photosynthesizing organisms living in all aquatic ecosystems (freshwater,
saltwater, and brackish water) and producing ca. 50% of all oxygen on Earth. As
primary producers, they represent the basic level of aquatic ecosystem trophic pyra-
mid (Chapman 2013). Many synthetic pollutants and toxic metals present in marine
and freshwater environment adversely affect algae at both cellular and molecular
levels, ultimately resulting even in their death, which might have dramatic conse-
quences on the remaining ecosystem. On the other hand, algae can accumulate or
degrade contaminants and can therefore be used to phytoremediation; and they
purify a contaminated aquatic environment via degradation, immobilization, adsorp-
tion, bioaccumulation, and co-metabolism (Masarovicova et al. 2010b; Kumar and
Singh 2017; Kralova et al. 2019; Usmani et al. 2022; Kralova and Jampilek 2021).
Besides pesticide removal, algae and cyanobacteria can remediate wastewater and
remove nutrients from municipal and industrial sources (Subashchandrabose et al.
2013; Pacheco et al. 2015; Brar et al. 2017; Yu et al. 2019; Liu and Hong 2021;
Mohsenpour et al. 2021), and they can contribute to restoring of salt-affected envi-
ronmental matrices as well (Li et al. 2019b; Rocha et al. 2020; Vo et al. 2020; Gao
etal. 2021; Mohseni et al. 2021). Metabolic mechanisms responsible for the removal
of pesticides by microalgae and methods used to improve this removal ability were
discussed by Nie et al. (2020).

In Chlorella vulgaris algae exposed to ATZ for 4 and 8 days, it was found that the
herbicide damaged RC of PS II, and inhibited PET at the oxidizing and reducing
sides of PS II, and can influence absorption, transfer, and utilization of light energy
(Sun et al. 2020). Cyanobacterium Microcystis novacekii grown in WC culture
medium supplemented with ATZ was able to remove 27.2% ATZ from the culture
supernatant, and low level of degradation (<9% at a dose 500 pg ATZ/L) suggested
efficient ATZ bioaccumulation by cyanobacterium. At tested ATZ doses (50-500
pg/L), the culture medium did not contain ATZ metabolites, and Microcystis nova-
cekii also showed superb tolerance to ATZ reflected in ICs, (96 h) of 4.2 mg/L, sug-
gesting that this cyanobacterium could be wused for remediation of
herbicide-contaminated surface waters (Campos et al. 2013). On the other hand,
Scenedesmus obliquus and Microcystis aeruginosa exposed to ATZ for 6 days prac-
tically did not reduce ATZ concentration in culture medium and ATZ degradation by
these species was also negligible.

At exposure to ATZ, the BCFs related to algal dry mass for green algae decreased
as follows: 324.1 = 10.7 (Pediastrum sp.) > 175.4 = 7.4 (Chlamydomonas sp.) >
172.7 = 11.7 (Chlorella sp.) > Scenedesmus quadricauda, while for diatoms they
decreased in the following order: 45.5 + 2.7 (Synedra radians) > 42.2 + 1.9 (Synedra
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acus) > 40.9 + 2.2 (Cyclotella gamma), and 8.0 £ 0.9 (Cyclotella meneghiniana);
higher BCFs were found to be associated with enhanced ATZ sensitivity. Similarly,
ATZ accumulation in green algae, Chlorophyta (5.43—12.73 ng/mg) was found to be
considerably higher than in diatoms (5.43-12.73 ng/mg vs. 0.33-1.69 ng/mg). High
correlation was found between algal cell biovolume and surface area and ATZ accu-
mulation effectiveness of algal cells. Despite considerably higher ATZ concentra-
tions levels in the algal cells compared to that observed in medium, ATZ removal
from solution by algae was only 1-3% (Tang et al. 1998).

Gonzdlez-Barreiro et al. (2006) reported that cyanobacterium Synechococcus
elongatus exposed to 0.25 and 0.75 pM ATZ in culture medium was able to remove
80 and 70% ATZ, respectively, from the medium at 12 h and similarly, this cyano-
bacteriumexposedtoterbutryn(TBR; N-tert-butyl-N'-ethyl-6-(methylsulfanyl)-1,3,5-
triazine-2,4-diamine) removed >80% of this herbicide from solution at 12 h of
exposure. The maximum accumulated amounts of tested herbicides were 9 pmol
ATZ/g d.m. observed after 12 h of culture, and 12 pmol TBR/g d.m. after 18 h of
culture. On the other hand, the maximum accumulated amounts of these herbicides
by C. vulgaris were 11 pmol ATZ/g d.m. (after 12 h) and 12 pmol TBR/g d.m. (at
18 h of culture). Whereas ATZ and TBR did not affect algal cell viability in C. vul-
garis, the viability of Synechococcus elongatus in the presence of TBR showed a
strong decrease but the herbicide was maintained in cells and was not released to
medium suggesting that cells were no viable. Consequently, it can be assumed that
in contrast to C. vulgaris, which maintained their cellular integrity, S. elongatus
lost it.

At exposure of Chlamydomonas mexicana algae to 10, 25, 50, and 100 pg/L ATZ
for two weeks, reduction of herbicide concentration in medium by 41%, 30%, 18%,
and 20% was observed, suggesting ATZ accumulation by algal cells. At day 6 of
exposure to 10, 25, 50, and 100 pg/L. ATZ, herbicide bioaccumulation of 0.41, 0.39,
0.62, and 0.52 pg/g fresh weight of cells was observed, however with prolongation
of exposure, after 14 days 36%, 25%, 14%, and 16% ATZ degradation was observed.
Consequently, despite adverse impact of ATZ on the growth of C. mexicana, due to
its ability to accumulate and simultaneously also degrade this herbicide, this algal
species is a good candidate for remediation of ATZ-contaminated water. It could be
mentioned that at low ATZ concentration (10 pg/L) the content of polyunsaturated
fatty acids in C. mexicana decreased, likely due to protective adaptation of micro-
alga, but at high herbicide concentrations showed an increase, suggesting cellular
damage (Kabra et al. 2014).

In the presence of 5 and 50 pg/L ISO, the cultures of green algae Chlamydomonas
reinhardtii bioaccumulated it in algal cells with BCFs of ca. 280 and 50, respec-
tively, while at exposure to 25 pg/L ISO, the BCFs estimated on day 1 and 6 of
cultivation were ca. 30 and 135.7, respectively. C. reinhardtii was also able to
degrade ISO, whereby at exposure to 25 pg/L and 50 pg/L ISO for 3 days, the algae
degraded 6.3 and 15.1% of herbicide accumulated in algal biomass, suggesting that
the ratio of ISO degradation showed an increase with increasing bioaccumulated
herbicide amount. However, it could be mentioned that the application of increasing
concentration of ISO resulted in increasing inhibition of algal growth and increased
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the level of oxidation stress, which was accompanied by up-regulation of several
genes encoding antioxidant enzymes and increased levels of thiobarbituric acid
reactive substances (Bi et al. 2012). Jin et al. (2012) investigated bioaccumulation
and catabolism of PRO in C. reinhardtii using PRO concentrations ranging from 2.5
to 12.5 pg/L. The BCF values decreased with increasing herbicide concentration
from ca. 750 to ca. 210 at 2.5 and 12.5 pg/L PRO, respectively, and the highest
accumulated amount of 1.47 mg/kg fresh weight was observed on day four of the
exposure. After incubation also lower amounts of PRO were estimated in medium
with algal cells compared to control. On day 5, PRO accumulated in algal cells
showed a decrease <50%, suggesting simultaneous accumulation and degradation
of herbicide.

Beaulieu et al. (2020b) reported that current national environmental guidelines
and standards cannot sufficiently prevent unfavorable impact of PS II-inhibiting
herbicides, ATZ and diuron, at environmentally relevant concentrations on phyto-
plankton cultures and communities. Hu et al. (2021) performed photocatalytic deg-
radation of ATZ lasting 60 min, resulting in degradation of 31.4% of ATZ, providing
DIA, DEA, and DDA degradation products, and then the researchers cultivated
C. vulgaris algae in such diluted degraded solutions containing 40 pg/L and 80 pg/L
of ATZ as well as its degradation products DIA, DEA, and DDA; after 8 days,
83.0% and 64.3% ATZ removal was estimated. Chlorella sp. cultivated in degraded
ATZ solution was characterized with lower removal efficiency and growth rate com-
pared to that of pure ATZ solution having the same concentration. Pronouncedly
lower values of performance index on absorption basis observed with algae culti-
vated in degradation ATZ solution compared with pure ATZ indicated possible
inhibitory impact of degradation products on C. vulgaris. Both ATZ and its degrada-
tion products inhibited photosynthesis in C. vulgaris; they reduced light absorption,
inhibited PET, and caused a decrease in utilization of light energy via energy
dissipation.

The assessed total concentrations of ten triazine herbicides of 6.61 nmol/L,
which exceeded the "no observed effect concentrations” for phytoplankton in the
Bohai Sea and the Yellow Sea in (China), were assessed as 6.61 nmol/L, and inhib-
ited fluorescence intensity of Chla in Phaeodactylum tricornutum Pt-1 by 13.2%,
which corresponded approximately to the toxicity caused by ATZ dose of 14.08
nmol/L. ATZ remarkably disturbed multiple metabolic pathways related to photo-
synthesis and carbon metabolism, which can adversely affect the primary produc-
tivity of coastal waters. Based on BCFs estimated for ATZ, which were in the range
of 69.6-118.9, it could be supposed that herbicide contamination can have negative
impact on marine food web and eventually endanger the seafood safety (Yang
et al. 2019).

At exposure of living C. vulgaris to 2 pg/L mixture of ATZ and ISO for one hour
using stirring, the biosorption efficiency of 85.60-88.15% was observed, although
at application of lyophilized algal biomass it achieved even 96-99%. However, in
long-term study lasting 5 days, the growing algae were able to remove up to 96.5%
and 95.7% of SIM at the initial herbicide SIM concentrations of 2 pg/L and 10 pg/L,
respectively; effective removal of ATZ and ISO exceeding 90% was observed as
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well. The bioremoval of herbicides in the short-term experiment of 60 min occurred
likely by biosorption, while in the long-term experiment combine mechanism of
herbicide removal can be supposed, involving biosorption as well as metabolization
of ATZ and its degradation mediated by algae (Hussein et al. 2017).

Several species of algae cannot only effectively accumulate heavy metals but can
also degrade toxic herbicides and can therefore be used to remediate herbicide-
contaminated waters. The growth of some algae, although they accumulate herbi-
cides, is adversely affected and algae may die before they metabolize the herbicide
to less toxic metabolites, which can pose a danger to the marine food chain.
Therefore, species of green algae and cyanobacteria that are more resistant to herbi-
cides and have an effective detoxification mechanism are suitable for application in
herbicidal/contaminated waters.

2.5.4 Woody Species

Fast-growing trees commonly used in short-rotation coppicing could be effectively
used for phytoremediation of soils containing inorganic and organic contaminants,
whereby tree planting is also beneficial for land restoration (Masarovi¢ova and
Kralovd 2017, 2018; Gomez et al. 2019; Kanwar et al. 2020). Fast-growing tree
species such as poplars and willows characterized by high water use can reduce
mobility of contaminants and stabilize the contaminated substrate. Moreover, they
can stimulate degradation of organic contaminants via root exudates and promote
microorganisms present in the rhizosphere (Marmiroli et al. 2011; Robinson and
Mclvor 2013; Coninx et al. 2017). Ability of Populus nigra L. to detoxify chloroac-
etanilide herbicides via glutathione conjugation was reported by Komives et al.
(2003). Fast-growing woody species producing high biomass yields in a short
period could also be used for effective phytoremediation of heavy metal-
contaminated areas (Marmiroli et al. 2011; Liu et al. 2013; Masarovicova and
Kralova 2017, 2018; Abdelsalam, et al. 2019; El Rasafi et al. 2021; Nissim et al.
2021; Qu et al. 2021). Potential for the phytostabilization of heavy metals such as
Cu, Cr, Ni, Cr, Cu, and Pb in the riparian zone of the Sava River showed also Ulmus
glabra Huds, which transported most of the accumulated Cu and Zn to the leaves
(Mataruga et al. 2020).

Uptake, hydrolyzation, and dealkylation of ATZ to less toxic metabolites by pop-
lar using “C-ATZ were investigated by Burken and Schnoor (1997) who found that
ATZ metabolism occurred roots, stems, and leaves of poplar plants, and increased
residence time in tissues contributed to more complete metabolism. When poplar
cuttings were exposed to herbicide for 50 days, in leaves only 21% of the '“C label
was detected, and after 80 days, this portion decreased to 10% of the C label.
Although Populus sp. was mostly investigated as an effective phytoremediator of
metal-contaminated soils, the ability of poplar cuttings to take up, hydrolyze, and
dealkylate ATZ to metabolites showing lower toxicity was reported also by Chang
etal. (2005). These researchers found that ATZ metabolism in plant organs advanced
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with the prolongation of the residence time in the tissues. Hybrid poplar (Populus
deltoides x nigra, DN34) can be considered as an appropriate tree species for reme-
diation of ATZ-contaminated soils . The faster degradation of ATZ in rhizosphere
soil than in non-rhizosphere soil can be associated with higher abundance of bacte-
ria in the rhizosphere microenvironment of hybrid poplar, while in non-rhizosphere
microenvironments ATZ showed adverse impact on the microbial biomass (Yao
et al. 2019).

Brazilian trees species Calophyllum brasiliense, Eremanthus crotonoides,
Calophyllum brasiliense, Inga striata, Hymenaea courbaril, Inga striata, and
Protium heptaphyllum were tested on their ability for phytoremediation of soil con-
taminated with ametryn (AMR; N-ethyl-6-(methylsulfanyl)-N'-(propan-2-yl)-1,3,5-
triazine-2,4-diamine) and hexazinone (HXZ;
3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione),
whereas C. brasiliense and H. courbaril were found to be tolerant to both herbi-
cides, and P. heptaphyllum showed tolerance only to AMR. On the other hand,
E. crotonoides, 1. striata, and P. heptaphyllum did not survive when exposure to
HXZ. Comparison of mean AMR residual found in control soil without plants (9.0
ng/g) and in soils with planted trees 80 days after application of herbicides showed
57.7 ng/g for H. courbaril, 14.23 ng/g for P. heptaphyllum, 5.02 ng/g for I. striata,
2.24 ng/g for C. brasiliense, and 2.42 ng/g for E. crotonoides; mean HXZ residual
in soil was 14.35 ng/g for C. brasiliense and 20.87 ng/g for H. courbaril, while for
the control a concentration of 11.89 ng/g was detected. As the best tree species suit-
able for remediation of soils containing the above-mentioned PS II herbicides,
C. brasiliense was evaluated (dos Santos et al. 2018). dos Santos et al. (2020) inves-
tigated tolerance to ATZ and remediation potential of some trees (/nga edulis Mart.,
Myrsine gardneriana A.DC., Schizolobium parahyba (Vell.) Blake. Myrsine gard-
neriana A.DC., Schizolobium parahyba (Vell.) Blake, Toona ciliata M. Roem.,
Trichilia hirta L., and Triplaris americana L.) irrigated monthly with ATZ solutions
(1000 g/ha) and found that saplings of M. gardneriana, I. edulis, S. parahyba, T. cil-
iate, S. parahyba, and T. hirta tolerated ATZ, while intoxication was observed in
S. parahyba and T. americana. Treatment with ATZ enhanced the biomass for
T. hirta, impaired growth and biomass in 7. americana but did not affect these char-
acteristics in the rest of tested plants. Common riparian forest species, Cecropia
hololeuca Miq and Trema micranta (L.) Blum grown in soil microcosms and treated
with ATZ at the bottom of the microcosm using a dose corresponding to a 1/10 of
the field-recommended dose, were able to take up 45% (C. hololeuca) and 35%
(T. micrantha), respectively, from the applied herbicide.

ATZ was bioaccumulated mainly by thick, fine roots, and leaves, and higher ATZ
mineralization was observed in planted microcosm compared to that without plants
(102 vs. 1.2%) (Bicalho and Langenbach 2012). Among investigated riparian forest
species, C. hololeuca and T. micranta, which were cultivated in microcosms supple-
mented with 4C-tebuthiuron (1-(5-tert-butyl-1,3,4-thiadiazol-2-y1)-1,3-
dimethylurea), seedlings of C. hololeuca showed high survival and high herbicide
uptake of 45+5%, in contrast to 7. micrantha, which was characterized with low
survival rate and not even a half uptake (45+5% vs. 20+7%) and low survival rate.
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High radioactivity estimated in the first fallen leaves of C. hololeuca but low radio-
activity levels in fallen leaves at the end of the experiment suggested that plant
detoxified the contaminant by discarding it via leaf fall. While after 78 days only
0.9% of the applied herbicide was mineralized in both species and no metabolites
were detected, it can be concluded that tebuthiuron is not easily biodegradable and
persists in the environment for long time (Bicalho and Langenbach 2013). C. holo-
leuca and eucalyptus were able to remediate ATZ-contaminated soils (Red-Yellow
Latosol and Quartzarenic Neosol soil), while Hymenaea courbaril was effective
phytoremediator in the Quartzarenic Neosol soil. In these experiments eucalyptus
was found to be the most tolerant species to ATZ (Heemann et al. 2018).

Short-rotation willows were successfully used to filter/degrade ATZ and ethylene
urea occurring in groundwater flowing out of an apple orchard, and concentrations
of herbicides in the willow plots were lower than in the control, while concentration
of DEA metabolite was higher in the willow plots (Lafleur et al. 2016).

Whereas a riparian 60 m woody buffer zone consisting predominantly of trees
with a height of 15-20 m such as Anadenanthera colubrina, Sebastiania commer-
soniana, Anadenanthera colubrina, Vernonia discolor, Jacaranda puberula,
Syagrus romanzoffiana, Jacaranda puberula, Ilex theezans, Cedrela fissilis, Ocotea
porous, Ocotea odorifera, and Tabebuia alba was able to remove fluazifop-p-butyl
(butyl (2R)-2-(4-{[5-(trifluoromethyl)pyridin-2-ylJoxy } phenoxy)propanoate) lac-
tofen  (1-ethoxy-1-oxopropan-2-yl  5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-
nitrobenzoate) and fluazifop-p-butyl (butyl (2R)-2-(4-{[5-(trifluoromethyl)
pyridin-2-ylJoxy } phenoxy)propanoate) herbicides to non-detectable levels, for ATZ
a residual level of 0.3 pg/L was detected (Aguiar et al. 2015). Caesalpinia ferrea,
Cedrela fissilis, Schinopsis brasiliensis, and Handroanthus serratifolius forest spe-
cies were found to be not appropriate for removal of ATZ and 2,4-dichlorophenoxyacetic
acid herbicides at conditions simulating riparian region near cultivated lands, while
Inga marginata, which was tolerant to ATZ, was able to reduce its amounts in the
soil (Fiore et al. 2019).

As above-mentioned, fast-growing trees are not only excellent phytoremediators
of soils contaminated with heavy metals, but can also effectively degrade toxic
organic contaminants, including herbicides, to less toxic compounds. A riparian for-
est buffer zone consisting mainly of trees can effectively reduce herbicide contami-
nation in soils and the efficiency of decontamination can be increased by co-planting
suitable grasses. Woody plants, such as willows and poplars, which can reduce the
mobility of contaminants in soils, can stimulate the degradation of organic contami-
nants by root exudates; promote microorganisms present in the rhizosphere, and
phytometabolize a significant part of the herbicide in their shoots. As a result, har-
vesting the above-ground part of willows several times during the season can
increase the efficiency of phytoremediation and emphasize that these species can be
successfully used to rehabilitate multi-contaminated soils containing heavy metals
in addition to herbicides; in addition, the harvested biomass can subsequently be
used for energy production.
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2.5.5 Crops

Although herbicides are used to control the unwanted vegetation, they can also neg-
atively affect growth and performance of crops. In addition, herbicides can be accu-
mulated/degraded by herbicide tolerant crops cultivated on herbicide-treated areas.
To avoid adverse impact of herbicides or their metabolites accumulated in edible
parts of crops, their rigorous monitoring focused on the compliance with the per-
missible limits of herbicide content is necessary (Dong et al. 2016; Pecev-Marinkovic
et al. 2019; Singh et al. 2020).

Analysis of spatial and temporal distribution of triazine herbicides in soils of
agricultural regions of Liaoning (China) showed predominant occurrence of ATZ,
SMZ, PRO, DEA, and DDA. However, despite a high prevalence, these herbicidal
compounds were present at relatively low concentration. Maximum ATZ concentra-
tion in the soils was 73.80 pg/kg and maximum estimated ATZ content in maize was
12.52 pg/kg (Wang and Liu 2020).

Inoculating of Pennisetum americanum (L.) K. Schum with Pseudomonas chlo-
roraphis PAS18 producing indole-3-acetic acid enhanced its tolerance against ATZ
and attenuated ATZ toxicity, which was reflected in reduced ATZ accumulation in
plants. While at application of 20 and 100 mg/kg ATZ the herbicide concentration
in plant roots with inoculating strain was 0.74 + 0.12 mg/kg and 1.77 £ 0.19 mg/kg,
respectively, compared to 1.09 = 0.11 mg/kg and 3.40 + 0.33 mg//kg in roots with-
out inoculation, in leaves of plants with inoculating strain, ATZ concentration
achieved ca. 1 mg/kg at treatment with 20 mg/kg ATZ and was lower than that esti-
mated in leaves of plants without inoculation. However, at application of 100 mg
ATZ/kg, the leaf concentrations of both inoculated and non-inoculated plants con-
tained only a little higher and comparable ATZ levels. The beneficial effect of
P. americanum inoculation with P. chlororaphis PAS18 was reflected also in
enhanced Chl content, increased activity of superoxide dismutase, and increased
psbA gene expression, thereby improving the repair of the damaged PS II. Moreover,
PAS18 strain regulated the flux of Ca?* in inoculated plants and in this way also
regulated the defense of the plant against stress induced by ATZ (Jiang et al. 2020).

In wheat plants hydroponically cultivated in the presence of 10 mg/L. ATZ, the
herbicide concentrations in plants organs increased within 6 h, and then decreased;
at 48 h they achieved 2.86, 2.49 and 1.86 mg ATZ/kg in leaves, stems, and roots,
respectively, suggesting upward translocation potential of ATZ. After 48 h, the
BCFs of ATZ related to leaves, stems and roots were 0.424, 0.369 and 0.27 L/kg,
respectively. During the first 12 h the TFen00t a0d TFp5em Showed an increase with
prolongation of the treatment up to 1.34 and 1.11, respectively, and then remained
stable. The ATZ translocation was supported primarily by the relatively steady tran-
spiration of tested wheat Triticum aestivum plants. ATZ concentration in root organ-
elles pronouncedly exceeded ATZ concentration in the soluble fractions and was
only insignificantly higher than that in cell wall. Higher ATZ adsorption by fresh
roots compared to dead roots suggested that the ATZ root uptake occurred primarily
via the symplastic pathway, and it was acropetally translocated. ATZ allocated
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predominantly in aerial plant part, which can threaten the product safety of wheat
(Ju et al. 2020).

Glomus caledonium, an arbuscular mycorrhizal (AM) fungus, affected ATZ
accumulation and metabolism in Z. mays plants grown and cultivated in soil con-
taminated and supplemented with 0.5, 2, and 5 mg/kg ATZ. Roots of mycorrhizal
plants accumulated 132.4-260.5% more ATZ than non-mycorrhizal roots, whereby
with increasing ATZ dose the accumulated ATZ concentration in both root types
increased. On the other hand, at application of 0.5, 2, and 5 mg/kg ATZ, the accu-
mulated herbicide concentration of inoculated shoots showed a decrease by 57.2,
31.3, and 55.5%, respectively, and thus, the shoots accumulated the lowest ATZ
amount at application 2 mg/kg ATZ. Whereas in both soils (without and with
G. caledonium) DEA and DIA metabolites were not detected, using ATZ dose of 5
mg/kg, their concentrations in mycorrhizal colonized roots were 2.6-and 3.8-fold
higher compared to non-inoculated roots. Hence, G. caledonium contributed to
improved ATZ degradation in roots. After harvest of maize plants the residual ATZ
concentrations in soil considerably decreased with mycorrhizal treatment compared
to non-inoculated treatment (73.7% vs. 31.4% at treatment with 2 mg/kg ATZ)
(Huang et al. 2007).

Liu et al. (2017) investigated break down and accumulation of AMR in soils and
in T. aestivum, Zea mays, Lolium perenne, and Medicago sativa plants. AMR con-
centration in rhizosphere soil of 4 tested species was lower than in non-rhizosphere
soil, and represented 33.4% (alfalfa), 38.0%, (ryegrass), 55.4% (wheat), and 72.8%
(maize) of that observed in non-rhizosphere soil, suggesting that in rhizosphere soil
higher amounts of herbicide are degraded or absorbed by plant roots from soil.
BCFs related to roots decreased in the order 2.876 (alfalfa) >2.193 (wheat) > 1.562
(ryegrass) > 0.500 (maize), while BCFs related to shoots decreased as follows:
2.172 (alfalfa) > 1.593 (wheat) > maize (0.330) > ryegrass (0.305). The TF value of
5.122 estimated for ryegrass was considerably higher than TFs of other plants
(1.276 for alfalfa, 1.382 for wheat and 1.517 for maize). Thus, it can be supposed
that ryegrass has a powerful degradation mechanism for AMR in roots and shoots,
and its particularly high TF compared to other 3 tested plant species indicates poten-
tial of this plant to be used for AMR removal from soils. Moreover, it could be
mentioned that the concentrations of low molecular weight organic acids such as
citric acid, malonic acid, and malic acid (low molecular weight organic acids) in
soils planted with ryegrass exceeded those observed with other tested plants. It can
be supposed that exudation of organic acids from plant roots induced by AMR also
remarkably contributed to the degradation of the herbicide. In ryegrass plants treated
with AMR pronouncedly higher activities of catalase (CAT), laccase (LAC) and
GST were observed compared to untreated plants, whereby a 28.84- and 6.16-fold
increase of CAT activity in ryegrass L. perenne root and shoot over the control was
observed. It can be supposed that similarly to findings reported for ATZ (Zhang
et al. 2014), GST in ryegrass played a role involved in the degradation mechanism
of AMR; in L. perenne, LAC can be involved in a defense or detoxification mecha-
nism as well.
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Rice mutants Osmet1-1/2, which was defective in the genomic CG DNA meth-
ylation, accumulated considerably less ATZ than the corresponding wild-types, and
numerous differentially methylated loci, which were associated with activation of
genes responsible for degradation of ATZ in rice plants, were detected. Based on the
finding that demethylated loci OsGTF, OsHPL 1, and OsGLH, which were expressed
in eukaryotic yeast cells, reduced ATZ concentration in the medium by 48%, 43%,
and 32%, respectively, it can be concluded that for the removal of ATZ in Oryza
sativa plants activation of the loci mediated by ATZ-induced hypomethylation is
responsible (Ma et al. 2019). ATZ uptake by rice plants and its degradation in plants
were affected by abiotic stresses such as presence of arsenate or phosphate defi-
ciency, which generated oxidative stress. In the presence of arsenate an increase of
H,O, content to 110-285% was accompanied with increased ratios of degradation
products in shoots. Similarly, also in phosphate-deficient systems at low ATZ levels,
considerable increase of H,O, contents as well as in the ratios of DIA and DEA in
shoots was observed (Chen and Su 2018).

During phytoremediation of ATZ-contaminated soil using Pennisetum america-
num lasting 28 days, the plant was able to adjust soil, environment, and bacterial
properties; rhizosphere soil of P. americanum was characterized with enhanced ure-
ase activity, CAT activity, and the content of water-soluble organic carbon content.
Bacteria (Rhizobium, Paenibacillus, Rhizobium, Mycoplana, and Sphingobium)
improving soil nutrient cycling and degradation of organic contaminants were only
observed in rhizosphere soil (Cao et al. 2018).

Application of Triton X-100 surfactant and dissolved organic matter (DOM)
reduced sorption and enhanced desorption of ATZ in soil and considerably stimu-
lated ATZ mobility in soil and ATZ concentration in leachate of the soil column.
ATZ accumulation in both roots and shoots of Z. mays L. plants cultivated in soil
supplemented with 1.0 mg ATZ/kg and watered (relative water content of 60%)
showed an increase with increasing surfactant concentration, while increasing
amount of DOM was reflected in reduced ATZ levels (Tian et al. 2019).

Due to the possible accumulation of herbicides in the plant organs of crops
intended for human or animal consumption, it is always necessary to estimate
whether the non-metabolized amounts of herbicides and their degradation metabo-
lites in the consumable plant organs do not exceed the permitted limits. On the other
hand, crops which have an effective degradation mechanism for various herbicides,
for example, through the exudation of organic acids from plant roots can be success-
fully used for remediation of matrices contaminated with herbicides. Unmetabolized
amounts of herbicides allocated in roots of plants can be definitively removed after
harvest of crops by plough-up.
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Eremanthus crotonoides and Inga striata, which were used for phytoremediation of
soils containing up to double concentration of ATZ recommended commercial dose,
showed lower photosynthesis rate and fixation of CO, compared to uncontaminated
soil, and were characterized with reduced physiological variables. However, these
plants were able to reduce ATZ residues in soil, suggesting that they, when planted
on ATZ-contaminated soil, can function as a filter preventing the entry of higher
herbicide amounts into watercourses (Aguiar et al. 2020b).

In pots sprayed with 22.5 g/L. ATZ before transplanting 15 days old Amaranthus
hybridus and Corchorus olitorius, decreased ATZ concentration in soil from 4.66
mg/L (after 2 weeks of plant growth) to 1.96 mg/L at plant harvest after 2 months.
BCF factors suggested effective ATZ uptake from soil by roots. In C. olitorius the
highest BCFs were observed for the applied ATZ dose 90 g/L, reaching maximum
value at day 15, and showing a strong decrease within the following period up to
harvest. For A. hybridus the decrease of BCF with increasing time was moderate.
The TFs were <1 in A. hybridus, suggesting higher ATZ accumulation in roots,
while the TFs >1 estimated for C. oliforius indicated higher ATZ accumulation in
leaves. The minimum ATZ concentrations detected in consumable leaves ranged
from 0.22 mg/g d.m. in A. hybridus to 0.99 mg/g d.m. in C. olitorius, whereby the
concentration of 0.22 mg/g d.m. corresponds to 19.8 mg/kg of wet mater and is
>39000-fold higher than the tolerable daily intake of ATZ (0.0005 mg/kg).
Consequently, it is necessary to exclude the use of ATZ at cultivation of these plants
with edible leaves (Houjayfa et al. 2020).

Zhang et al. (2016) identified transcriptome involved in ATZ detoxification and
degradation in alfalfa (Medicago sativa) plants. At exposure to ATZ considerable
up-regulation of several genes encoding glycosyltransferases, glutathione
S-transferases, glycosyltransferases, or ABC transporters, and differentially
expressed genes involved in oxidation-reduction, conjugation, oxidation-reduction,
and hydrolysis for of ATZ degradation were observed, indicating that for degrada-
tion and detoxification and degradation of ATZ in M. sativa alfalfa different path-
ways could be responsible.

At cultivation of Canna indica cultivated in nutrient solution containing 0.5
mg/L PRO, shortening of the dissipation half-life by 17 days was achieved com-
pared to that without C. indica, and potential degradation of herbicide occurred
between days 10 and 16 (Sun et al. 2019b). Inoculation with the arbuscular mycor-
rhizal fungus Funnelliformis mosseae mitigated the adverse impact of ATZ on
growth, biomass, and Chl content of C. indica, and reduced the oxidative stress
induced by herbicide. After exposure of untreated C. indica plants to ATZ for 14
days, 20.5-55.3% ATZ removal was observed, while at inoculation with F. mosseae
it raised to 35.6-75.1% (Dong et al. 2017). Thiols-related protein genes from alalfa
Medicago sativa plant, which were exposed to environment containing ATZ resi-
dues, were highly up-regulated, and most of differentially expressed genes was
involved in regulation of responses to stresses; the detoxified forms of ATZ in plants
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were ATZ-thiols conjugates, cysteine (Cys) S-conjugate, ATZ-HCI+Cys (cysteine
(Cys) S-conjugate), being the most important metabolite. Whereas under ATZ stress
some conjugates were observed not only in alfalfa but also in rice plants, it can be
supposed that both plants can share some detoxification mechanisms and pathways
and that in detoxification of ATZ the low molecular weight thiols play a decisive
role (Zhang et al. 2017b).

After 24 h of exposure of Arabidopsis thaliana plants to different doses of ATZ,
HA and DEA and HA it was found that their root-level contamination affected early
plant growth and development, whereby the involvement of distinct mechanisms
showing direct impact on respiration and root development was suggested.
Consequently, besides PS II also additional target points for these compounds could
be assumed (Alberto et al. 2017). Improved phytoaccumulation of ATZ by A thali-
ana using sucrose amendment was described by Sulmon et al. (2007). Under natural
conditions exposure of Acorus calamus and Iris pseudacorus to 4 mg/L ATZ did not
affect their growth but the growth of Lythrum salicaria showed a decrease. These
three plants were able considerably reduce ATZ concentration in a cultivation solu-
tion compared with solution without plants. In the hydroponic system the contribu-
tion of the plants/microbial populations to the degradation of ATZ was 76.6%/5.4%
for of I. pseudacorus, 65.5%/11.4% for L. salicaria and 61.8%/17.4% for A. cala-
mus (Wang et al. 2012).

The herbicidal nanoscale formulation of ATZ encapsulated in poly(e-
caprolactone), which was foliar applied to Brassica juncea plants, adhered to the
leaf and penetrated into mesophyll tissue and was transported directly through vas-
cular leaf tissue and into cells causing degradation of chloroplasts (Bombo et al.
2019). It could be mentioned that nanosized ATZ formulations can exhibit the same
or higher herbicidal effect at lower applied dose than bulk herbicides, and thus, they
contribute much less to environmental contamination (de Oliveira et al. 2015;
Preisler et al. 2020). In general, plants suitable for phytoremediation of areas con-
taminated with herbicides must be sufficiently tolerant to the herbicides to be
removed, and due to the effective detoxification mechanism, their consumable plant
parts must be free of herbicide and its toxic metabolites. In addition, inoculation
with appropriately selected microbial species/microbial consortium is favorable for
increased herbicide degradation in soil and plant tissues.

2.5.7 Transgenic Plants

Transgenic plants contain artificially inserted gene/genes, whereby the new trans-
genic DNA targets the nucleus of the plant cell. Such genetically modified plants are
characterized with insect resistance, herbicide tolerance, they are not sensitive to
abiotic stresses, show resistance against plant diseases, ensure high yield, and can
be used also for remediation of polluted environment (Rani and Usha 2013; Verma
2013; Fasani et al. 2018; Boechat et al. 2021; Sharma et al. 2021; Ojuederie et al.
2022). According to Maestri and Marmiroli (2011), for production of transgenic
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plants suitable for phytoremediation several approaches are possible such as (i)
transformation with genes from mammals, bacteria, etc.; (ii) transformation with
genes from other plant species; and (iii) overexpression of genes from the same
plant species (Maestri and Marmiroli 2011).

Current findings related to engineered transgenic plants, which can be used in
decontamination of environmental matrices contaminated with organic pollutants
and heavy metals, were summarized by Fasani et al. (2018) and Boechat et al.
(2021), whereby the researchers focused also on the ability of the rhizospheric
microorganisms in maintaining diversity and functions in plant-soil ecosystem. In a
chapter focused on the utilization of transgenic plants in phytoremediation of envi-
ronmental matrices contaminated with toxic metals and metalloids, Gunarathne
et al. (2019) also paid attention to the risks associated with their use. Because plants
did not dispose the catabolic pathway enabling them completely degrade the herbi-
cides, their potential ability for remediation of these harmful herbicides can be
enhanced by transferring the genes involved in xenobiotic degradation from
microbes/ or other eukaryotes to plants (Eapen et al. 2007). ATZ degradation with
transgenic plants has been reviewed by Dhankher et al. (2011).

Whereas actual weed management uses pre-emergence herbicides with residual
activity to ensure absence of weeds in the field already before crop establishment,
due to increasing occurrence of resistant weed populations the selection of suitable
herbicide sensitive to weed population is challenging. Therefore, the use of geneti-
cally modified crops possessing multiple herbicide-tolerant traits enabling applica-
tion mixtures of herbicides, which would be toxic to conventional crops, can be
considered as favorable (Liu et al. 2020b).

Transgenic plants of A. thaliana plants expressing CYP1A?2 gene exhibited con-
siderable resistance to SIM supplemented into growth medium or applied in form of
spray on plant leaves and the herbicide treatment with SIM did not affect both pri-
mary root length and rosette diameter and primary root length. The transgenic
A. thaliana plants showed tolerance up to 250 pmol/L of SIM, while wild type of
A. thaliana plants was strongly injured already at treatment with >50 pmol/L
SIM. Consequently, these transgenic A. thaliana plants expressing CYP1A2 gene
can be used as potential phytoremediator for phytoremediation of SIM-contaminated
environmental matrices (Azab et al. 2016).

Engineered rice plants overexpressing glycosyltransferase | (ARGT1), which is
responsible for transformation of ATZ residues in plants, exhibited considerably
higher tolerance to ATZ than the wild type. At exposure to 0.2-0.8 mg/L ATZ these
engineered rice plants showed higher biomass and remarkably higher Chl content
(36-56%) and lower membrane damage (up to 69%) and ATZ content in the grains
(by 30-40%) than the wild type. In this transformed line 8 ATZ metabolites formed
in Phase I reaction and 10 conjugates formed in Phase II reaction were detected,
from which three ATZ-glycosylated conjugates were identified first time (Zhang
et al. 2017a).

Introduction of the human cytochrome P50 CYP1Al gene into O. sativa rice
plants ensured them tolerance to 8.8 pM ATZ and 50 pM SIM and both herbicides
were metabolized by the transgenic plants more rapidly compared to control plants.
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Kawahigashi et al. (2005) performed small-scale experiments, in which the residual
SIM and ATZ amounts in cultivation medium containing CYP1A1 transgenic
achieved only 12.3 and 43.4% and 12.3% of SIM and ATZ amounts observed in
control cultivation medium. On the other hand, residual amounts of ATZ and SIM
in the medium when non-transgenic rice plants were used achieved 68.3 and 57.2%
of the control. Transgenic rice plants with introduced human cytochrome P,s,
CYPI1A1 gene were able to eliminate 1.3-fold and 1.4-fold more ATZ and SIM from
the soil than the control plants.

Vail et al. (2015) studied the biodegradation of ATZ by transgenic grasses (tall
fescue, perennial ryegrass, and switchgrass) (Festuca arundinacea, Lolium perenne,
and Panicum virgatum) and Medicago sativa alfalfa expressing a modified bacterial
ATZ chlorohydrolase gene (p-atzA). Resistance of plants cultivated on agar or in
hydroponic solution to ATZ showed correlation with the levels of gene expression
and ATZ degradation. Due to expression of p-atzA in transgenic F. arundinacea,
ATZ was transformed into HA and other ATZ metabolites. The advantage of trans-
genic plants is more rapid metabolization of herbicides compared to control plants,
and by combined transgenic plant-microbe remediation system herbicide removal
efficiency can be considerably enhanced. In addition, to planting appropriate plant
species, such as transgenic grasses, on herbicide-contaminated area that provide
efficient biodegradation of herbicides, cultivation of transgenic crops characterized
by rapid biotransformation of herbicides can help reduce environmental contamina-
tion by herbicides. However, it can be mentioned that many people avoid consump-
tion of transgenic crops.

2.6 Electrokinetic-Assisted Phytoremediation

Electrokinetic-assisted phytoremediation, i.e., combination of low intensity electric
fields and plants is an environment friendly method that can be used to remove pol-
lutants from contaminated soils (Rodriguez et al. 2022). Sanchez et al. (2020) inves-
tigated electrokinetic-assisted phytoremediation of ATZ-polluted soils (2 mg/kg) in
a mesocosm scale experiment lasting 19 days with continuous application of direct
current electrical field (0.6 V/ecm) without changing polarity and using Lolium
perenne L. weed as model plant. The final distribution of water and ATZ in the soil
was affected by electro-osmosis, gravity, and plant roots, and ATZ accumulated
predominantly in the cathode section. In electrokinetic-assisted phytoremediation
the removal of ATZ occurring by biochemical degradation was strongly improved in
the presence of L. perenne plants achieving ATZ removal yield of 61.01% compared
to 40.20% observed with unplanted soil.

The application of an electric field of 2 V/cm applied each 2 h during a period of
4 h a day and with the use of periodical polarity inversion (each 2 h) to ATZ-spiked
soils (5 and 10 mg/kg), in which Z. mays plants were cultivated, slightly reduced the
biomass of plants, and pronouncedly increased the ATZ accumulation as well as
accumulation of main ATZ metabolites in plant tissues, achieving enhancement of
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ATZ removal up to 36.5% compared to the phytoremediation process without appli-
cation of electric field (Sanchez et al. 2018). Enhanced ATZ removal from soils and
considerably enhanced ATZ accumulation in L. perenne (predominantly in shoot
biomass) were also observed with continuously applied electric field (1 V/cm; 24 h
per day); ATZ half-life value in the soil decreased significantly compared to control
(5.4 vs. 8.4 days) as well (Sanchez et al. 2019).

2.7 Conclusion

To feed the increasing human population, efficient agricultural management using
effective herbicides is essential to achieve high crop yields for safe food products.
However, the benefits of using effective herbicides to provide improved crop yields
are accompanied by the negative impact of persistent residues of toxic herbicides or
their metabolites in environmental matrices on non-target organisms. PS II herbi-
cides have been used extensively worldwide since the second half of the 20th cen-
tury, but as the endocrine disrupting properties of simazine and atrazine have been
confirmed, many countries, including the EU, have banned their use. On the other
hand, some other herbicides from the PS II herbicide group have been largely
replaced by others which show a different mechanism of action. However, residues
of these herbicides and their metabolites in soils and sediments pose a permanent
environmental risk and can also contaminate aqueous ecosystems. Therefore, their
removal from environmental matrices is most desirable. In addition to methods
using physical processes or chemical treatments to remove herbicides, microbial-
supported phytoremediation is an excellent green, ecological, and inexpensive tool
to significantly reduce residues of these herbicides in agricultural soils and waters.
Strict adherence to regulations prohibiting the use of certain herbicides and moni-
toring of their residues in the environment is highly desirable. However, there are
still countries, including some developed countries, which, for example, due to the
excellent herbicidal activity of atrazine, continue to use it despite proven adverse
health effects. In addition, the sale of banned herbicides with adverse effects on
non-target organisms and human health from countries where they are banned to
developing countries should also be stopped. Reduced contamination of environ-
mental matrices with synthetic herbicides can also be achieved by applying their
nanoscale formulations showing a comparable or better herbicidal effect than their
bulk counterparts. However, prior to application, all nanoscale herbicidal formula-
tions must be inspected for possible toxic effects on non-target organisms and
appropriate rules for their use must be adopted. Due to the ongoing climate change,
which may affect the bioavailability of herbicides to living organisms and increase
the herbicide runoff from fields into rivers and lakes, in addition to careful monitor-
ing of herbicide content in environmental matrices, their permanent and effective
removal from soils and surface waters is desirable. In addition to the known active
plant species, which function as phytoremediators, the search for other plant and
microbial species suitable for phytoremediation of environments contaminated with
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toxic synthetic herbicides as well as the use of transgenic plants can increase the
effectiveness of this environmentally friendly green technique in cleaning contami-
nated soils and waters.
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Fipronil Microbial Degradation:
An Overview From Bioremediation
to Metabolic Pathways
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Abstract Fipronil is an insecticide that is widely used in several crops such as
soybeans, corn, and sugar cane. Although it is used in a few countries, it has been
banned due to its toxicity in some European countries such as France, Italy,
Germany, and others. There are some papers describing fipronil degrading microor-
ganisms and their applications in bioremediation. The bacterial enzymes and, con-
sequently, the genes responsible for the oxidation or reduction of this compound
have not been described yet, as it is the case for other pesticides. Thus, this chapter
will present all the available information on fipronil biodegraders, bioremediation
cases, and the metabolic pathways involved on its biodegrading. In addition to
exploring the molecular, omics, and analytical methods necessary to elucidate, in
the near future, the metabolic pathways and enzymes are responsible for the degra-
dation of fipronil.
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3.1 Introduction

Pesticides are widely used in large productive areas where monocultures are affected
by pests and weeds. In this context of traditional production, there is a dependence
on these compounds to increase agricultural productivity. However, indiscriminate
use is often observed both from the point of view of the concentration and of the
type of the pesticide used. As an example, we can mention countries such as Brazil,
which still use products that are banned in several European countries, for instance,
the insecticide fipronil.

This xenobiotic compound is also recalcitrant and has been shown to be toxic,
causing both acute and chronic effects (Gibbons et al. 2015; Ali et al. 2016). The
European Union has prohibited the use of fipronil on agricultural crops due to the
toxicological and ecological risks of the compound and its metabolites. China has
completely prohibited its use since 2009 (Li et al. 2020)

Although the toxic effects of fipronil have already been extensively studied in
target and non-target organisms (Ali et al. 2016), research on the microbial biodeg-
radation and behavior of this compound in the environment are limited (Zhu et al.
2004; Masutti and Mermut 2007; Kumar et al. 2012; Mandal et al. 2013, 2014;
Uniyal et al. 2016a, b; Wolfand et al. 2016; Gajendiran and Abraham 2017; Cappelini
et al. 2018; Abraham and Gajendiran 2019; At et al. 2019; Bhatti et al. 2019; Prado
et al. 2021; Bhatt et al. 2021a, b).This chapter will address both the basic aspects of
the molecule and its short- and long-term toxic effects, as well as the aspects of the
molecule’s biodegradation, metabolite formation, and known metabolic pathways.
In addition, there is a lack of information on the description of the enzymes that is
involved in the oxidation, reduction, and hydrolysis of the molecule. For this reason,
the methods used for the study of the metabolic pathways will be described, high-
lighting the most recently applied omics studies.

Understanding the degradation pathways of fipronil is extremely important,
since the metabolites formed as fipronil-sulfide, fipronil-sulfone, fipronil desulfinyl,
and fipronil amide are more toxic than the parent compound. So far, the bacteria
described as biodegrading fipronil oxidize or reduce the compound, as will be
described in the chapter. The two fungi described to date as fipronil degraders pro-
duce other metabolites, probably because they have different enzyme pathways that
are being elucidated.

It is interesting to note that although there are a greater number of studies with
fipronil biodegrading bacteria, there is still no inference of enzyme complexes
implicated in the metabolic pathways. Knowledge of the enzymes involved in a
biodegradative process is important as more effective degradation can be induced
through the application of systems biology and metabolomics tools. In addition, for
bioremediation processes, immobilized enzymes can be used directly at the con-
taminated site. From the point of view of the evolution of omics tools, it would not
be as complex today as in the past to describe the enzymes responsible for the trans-
formation of fipronil and its metabolites as in the past. Transcriptomics and pro-
teomics provide possible ways for the definition of the complete metabolic pathway



3 Fipronil Microbial Degradation: An Overview From Bioremediation to Metabolic... 83

of fipronil degradation, as we see for other toxic pesticides such as atrazine, which
is described in the Kegg database (Kanehisa and Goto 2000).

This chapter will address the current state of research taking place in the area of
microbially assisted fipronil degradation and the integrative role of omics approaches
in describing new pathways.

3.2 Fipronil

Discovered in 1987 by Rhone-Poulenc Agro Company (now Bayer Corpscience)
and registered in 1996 in the United States. Since 2003, the active ingredient fipronil
has been under the control of BASF (Badische Anilin & Soda Fabrik), a leading
German chemical company in the pesticide market (Gunasekara et al. 2007). Used
in the agricultural system of regions with tropical and subtropical climates, fipronil
has a great potential for action, acting on a wide range of insects and even arachnids.
Representing the group of insecticides of the phenylpyrazole family, fipronil over
the years has won the agricultural market, being used on various crops such as cot-
ton, soybean, rice, potato, and especially on corn and sugarcane crops. The use of
fipronil aims to form a barrier against insect attack on crops, thus reducing damage
to growers (Baldaniya et al. 2020).

Fipronil (molecular formula C;,H,CL,F¢N,OS) and chemical name received by
the International Union of Pure and Applied Chemistry (IUPAC) (RS) -5-amino-1-
[2,6-dichloro-4-  (trifluoromethyl)  phenyl] -4-  (trifluoromethylsulfinyl)
-1H-pyrazole-3-carbonitrile (Fig. 3.1) is presented in powder form at 20 °C, with a
molecular weight of 437.1 g mol~! and a density of 1.477-1.626 g mol~! (Hainzl
and Casida 1996). Fipronil is also highly soluble in organic media. The fluorine
groups when placed in organic media increase their solubility, so the use of numer-
ous organic solvents such as acetone is used for better homogeneity of the solution
(Hidaka et al. 2015).

The large-scale ability to attack pests allows activity on several groups of plagues
such as ticks, cockroaches, grasshoppers, fleas, mosquitoes, both in their larval and
adult stages(Gunasekara et al. 2007). Its phenylpyrazole classification gives it the

Fig. 3.1 Molecular N
structure of fipronil / /
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ability to act on the central nervous system of insects, mainly in receptors of gamma-
aminobutyric acid (GABA), preventing the correct flow of chloride ions, causing
death, so it has great potential against insects (Cole et al. 1993).

Although fipronil is widely used on crops, it is prohibited in the European Union.
The marketing prohibition was due to its high degree of toxicity, evidenced by the
serious problems caused to animals that, after ingestion, were damaged by intoxica-
tion by contaminated food (Kim et al. 2020). Absorption of fipronil occurs through
the intestinal tract. Contact with the agent can be through the skin, eyes, respiratory
tract, or ingestion. The maximum blood concentration of fipronil occurs 4— 6 h after
ingestion and its excretion occurs mainly in feces and to a lesser extent in urine
(Gupta and Anadén 2018)

3.3 Toxicity

Fipronil does not present great damage to living beings in its original molecular
form. However, after degradation of the molecule, its metabolites are highly toxic.
One of the characteristics of fluorinated compounds is the production of metabolites
more toxic than its initial compound, as is the case of fipronil-sulfone, the most
toxic metabolite of fipronil (Wolfand et al. 2016).

Fipronil metabolites are highly harmful and reactive compounds. Their presence
poses risks to the environment because of their high persistence due to their recalci-
trant molecules, composed of cyclic carbon chains. Since the discovery of the toxi-
cological potential to terrestrial and aquatic ecosystems, which mainly affects the
quality of life of living organisms, ecotoxicological studies have become present
and necessary to monitor the quality of the environment in general, especially in
impacted areas (Konwick et al. 2006; Pino-Otin et al. 2020).

In line with the above, environmental studies found fipronil toxicity on non-
target organisms, such as pollinating insects, mainly bees. The agent present in the
seed coat, when sown or harvested, was found to cause dust, possibly causing insect
intoxication. These parallel damages caused by the compound are the main prob-
lem, from an environmental point of view. It is estimated that almost 75% of all
agricultural production worldwide depends on the process of natural insect insemi-
nation. Therefore, the agricultural sector may suffer losses over the years if the
agricultural cultivation model is not rethought. Therefore, environmental studies
have been highlighted over the years, seeking to understand and minimize the
anthropogenic problems caused to the environment (Zaluski et al. 2015).

Due to insect resistance to pyrethroids, carbamates, and mainly organophos-
phates, which are also highly toxic to living organisms, an increase in the use of
fipronil has been observed (Wang et al. 2016). However, despite having a relatively
low toxicity, fipronil began to be used more and more over the years, which gener-
ated a relative accumulation of the agent in the environment, with an increase in the
damage caused. Through analysis and observations of animals, plants, and microor-
ganisms, it is possible to verify the environmental quality of the ecosystem under
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study (Van der Oost et al. 2003). Thus, the use of experimental models becomes
extremely importance to evaluate the level of environmental impact and how it can
influence the physiology of the organisms present there, being used as ecotoxico-
logical markers of environmental quality (Van der Oost et al. 2003; Gupta and
Anadén 2018). Table 3.1 shows the relationship of the toxicological potential of

fipronil in some experimental models already analyzed and reported in the literature.

Table 3.1 Relationship of fipronil toxicity in non-target organisms

Fipronil
Organisms concentration | Observed damage Reference
Japanese quail 11.3 mg kg™! Mutagenesis; renal and hepatic toxicity | Ali et al.
(Coturnix coturnix (2016)
Japonica)
Sprague-Dawley rats | 4.85 mg kg™! Thyroid endocrine disruptor; thyroid Ehsan et al.
and mitochondrial cytotoxicity (2016)
Zebrafish (Danio 13.47 mg L= | Reduction of cell proliferation; Park et al.
rerio) Neurotoxicity; vascular damage (2020)
Chironomus riparius | 0.084 pg L' Decreased antioxidant activity; change | Monteiro
in globin activity and expression of etal. (2019)
motor proteins, cytoskeleton, and
biosynthesis
Male albino rats 0.1-10 mg L' | Decreased antioxidant activity; Mossa et al.
increased lipid oxidation; hepatic and | (2015)
renal toxicity
Wistar rats 70-280 Decrease of the pregnancy rate; change | Ohi et al.
mg kg™ in the estrous cycle; hormonal changes | (2004)
(estradiol and progesterone)
Rainbow trout 0.246 mg L=' | Very high toxic Gupta and
(Oncorhynchus Anadoén
mykiss) (2018)
Bluegill sunfish 0.083 mg L' | Extremely toxic
(Mola mola)
Daphnia spp. 190 pg L! Moderately toxic
Crayfish 14-20 pg L! Moderately toxic
Estuarine mysids 0.14 pg L Extremely toxic
Copepods 6.8 pg L! Damage to the reproductive system; Chandler
(Amphiascus decrease reproductive rate et al. (2004)
tenuiremis)
Male buffalo calves | 0.5 mg kg™! Loss of body mass; muscle weakness; | Gill and
Alopecia; depression Dumka
(2013)
Nile tilapia 0.042 mg L' | Increasing hepatic enzymes activity; El-Murr et al.
(Oreochromis endocrine disruptor; decreased (2019)
niloticus) antioxidant activity
Bee (Apis mellifera) | 0.19 pg/bee Behavioral changes; reduction of motor | Zaluski et al.
(ingestion) activities; paralysis and lethargy (2015)
0.009 pg/bee
(contact)




86 M. R. L. Bonfi et al.

According to studies, it is known that aquatic ecosystems present high levels of
contamination by pesticides, micropollutants, and other emerging pollutants. This is
justified by the constant contact of organisms with contaminants, which can pro-
mote, in addition to the damage shown in Table 3.1, the bioaccumulation of fipronil
in organisms, evolving over time to diseases and irreparable chronic damage
(Konwick et al. 2006). Another factor pointed out as an increase in the incidence of
aquatic pollutants is linked to the strong presence of agriculture near water bodies.
As well as the influence of environmental and natural factors, such as rainfall, leach-
ing, soil fixation, and absorption, or even the illegal disposal of untreated industrial
and domestic effluents, which turns water bodies into the main recipients of these
toxic compounds (Furihata et al. 2019).

The increased use of fipronil led to the need to study its mechanisms of action,
its effects and environmental behavior with the purpose of maximizing and facilitat-
ing the recovery of degraded areas. Using the knowledge and tools of environmental
biotechnology, the application of techniques such as bioprospecting allows the iso-
lation of microorganisms capable of biodegrading xenobiotics in contaminated
areas, and the use of bioremediation for decontamination (Kumar et al. 2011).
Omics approaches, such as metagenomic analyses of contaminated soils, allow the
identification of microorganisms present in a particular contaminated region
(Jeffries et al. 2018). Characterization of the microbiota in particular ecosystems
reveals the predominant groups and also using the Whole Genome Shotgun (WGS)
method it is possible to detect which genes are related to the process of metabolism
of xenobiotic compounds (Kumar et al. 2015).

3.4 Fipronil Degradation

Previous studies conducted with fipronil have shown a high persistence of the insec-
ticide in the environment, presenting under natural conditions a half-life of up to
200 days (Wolfand et al. 2016). Environmental conditions are important factors for
the degradation process of xenobiotic compounds. In general, pesticides and other
xenobiotic molecules can be modified by physical processes (adsorption and sorp-
tion), chemical processes (hydrolysis and photolysis), and also biological processes
(biodegradation), as shown in (Fig. 3.2) (Wolfand et al. 2016). Thus, in order to
minimize the presence of toxic compounds from the environment, these strategies
can be adopted for removal and/or degradation management, hoping to reduce tox-
icity within the affected ecosystems (Bonmatin et al. 2015).

Among the approaches for the remediation of contaminated areas, biological
processes are the most widely used, due to their high degradation potential and low
cost. Biodegradation is the basis of these processes and, in general, occurs naturally
in the environment provided that there are microorganisms capable of metabolizing
the toxic compound and favorable environmental conditions.

Over the years, procedures and techniques have been advanced and improved,
with the process of biodegradation providing the development of the bioremediation
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technique. This technique can be applied in situ (occurs in the affected area) or ex-
situ (occurs outside the affected environment). Factors such as the presence of other
nutrients, pH range, humidity, climatic variations, and temperature are what will
determine the time required for the degradation process of fipronil (Kumar et al.
2011). It is important to note that bioremediation is a monitored and controlled
biological decontamination process. Degrading microorganisms and bioremedia-
tion techniques started to be studied subsequent to an investigation, which revealed
the presence of microorganisms present in the impacted environments. These micro-
organisms (indigenous) were able to metabolize the toxic compounds to survive
through not previously studied enzymatic devices (Kumar et al. 2011). Based on
this, the study aimed at bioprospecting microorganisms with the potential to degrade
xenobiotics has intensified within the scope of environmental biotechnology.

3.4.1 Bacteria Biodegradation

Fipronil, as already reported, is most toxic after initial degradation of its molecule.
Studies have already identified the formation of four metabolites from the degrada-
tion of fipronil, through chemical, physical, and/or biochemical processes. Thus, the
degradation pathways shown are those of photolysis (fipronil-desulfinyl), hydroly-
sis (fipronil amide), reduction (fipronil-sulfide), and oxidation (fipronil-sulfone)



88

M. R. L. Bonfi et al.

(Fig.3.3). As mentioned earlier in this chapter, few studies report on the biodegrada-

tion of fipronil by bacteria.

The biodegradation process basically consists of stimulating the enzymatic
machinery of bacteria to metabolize toxic compounds. The process of fipronil
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Fig. 3.3 Metabolites produced in the degradation pathway of fipronil
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metabolism is still not entirely clear, but it is known that each group of bacteria has
specific ways of degrading the compound. As an example, aerobic bacteria are
known to have the greatest ability to oxidize fipronil generating fipronil-sulfone,
while microaerophilic or anaerobic bacteria further reduce fipronil, forming fipronil-
sulfide (Gunasekara et al. 2007; Gajendiran and Abraham 2017). These bacteria aim
to degrade fipronil into less toxic molecules, through partial, major or total metabo-
lization of the pesticide to mineralization, a process that results in H,O and CO,
(Bhadbhade et al. 2002; Abraham and Silambarasan 2014).

Studies show that the degradation of fipronil is affected by the diversity of micro-
biota that can be found in places that have a history of contamination by the insec-
ticide, such as in soils of agricultural crops. The application of microorganisms in
the recovery of contaminated areas has become an innovative and effective tool,
which can be carried out through the use of a single microorganism or by a consor-
tium (Pereira and Freitas 2012). Bacteria have already been shown to be natural
biodegraders of toxic compounds similar to fipronil, as shown in Table 3.2. However,
the biggest problem is the need for bacteria to be in direct contact with contami-
nants, which is not the reality of the environment, where there is a homogeneous
dispersion in the soils of both contaminants and microorganisms. Some genera of
bacteria have chemotaxis capacity, sensing the presence of the contaminant and
going to it, either through their bacterial branched filaments, such as bacteria from
the phylum actinobacteria or through the mobility of their flagella, such as diazotro-
phic bacteria of the genus Burkholderia, Azospirillum, Azotobacter, Mesorhizobium,
Rhizobium among other genus (Kumar et al. 2011; Berkelmann et al. 2020)

3.4.2 Biodegradation by Fungi

Studies involving selection and analysis of degradation of fipronil by fungi are even
more scarce than those involving bacteria, as shown in Table 3.2. The processes of
biodegradation of the environment are mostly focused on the use of bacteria as
active detoxification. However, fungi also have an excellent enzymatic machinery to
perform this task. Bacteria and fungi are essential for the processes of biogeochemi-
cal cycling of organic matter in ecosystems, playing an important ecological role
(Luo et al. 2017).

Fungi are eukaryotic microorganisms that have the function of degrading most
old plant material, leaf litter, and tree trunks. It is important to note that the aspects
of biodegradation and bioremediation are derived from biological processes that
have existed in nature since forever (Kumar et al. 2011). In this way, environmental
recovery practices are based on the use of microorganisms or organisms (such as
plants) to metabolize toxic compounds. This capacity has already been evidenced
due to the selective pressure capacity exerted by the environment itself, pressing
only resistant microorganisms capable of degrading toxic compounds (Verma
et al. 2014).
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Bacteria
Gram Degradation/
Microorganism nature | Metabolism concentration Reference
Bacillus thuringiensis G+ Aerobic 89-98% Mandal et al.
(80 mg kg™") (2013)
Bacillus firmus G+ Aerobic 100% Mandal et al.
(0.50- (2014)
1.50 mg kg™)
Bacillus sp. FA4 G+ Aerobic 74% (50 mg L") | Bhatt et al. (2019)
Bacillus sp. FA3 G+ Aerobic 76% (50 mg L=") | Bhatt et al. (2021b)
Bacillus megaterium G+ Aerobic 94% (0.6 g L") Prado et al. (2021)
Bacillus cereus D2 G+ Aerobic 89% (20 mg L") | Gangola et al.
(2021)
Paracoccus sp. G- Aerobic 50% (20 mg kg™") | Kumar et al.
(2012)
Stenotrophomonas G- Aerobic 70% (50 mg L") | Uniyal et al.
acidaminiphila (2016a))
Staphylococcus arlettae G+ Facultative 81% (10 mg L") | Atetal. (2019)
aerobic
Bacillus thuringiensis G+ Aerobic 66% (10 mg L")
Streptomyces rochei G+ Aerobic 100% Abraham and
AJAG7 (500 mg L) Gajendiran (2019)
Gammaproteobacteria G- Facultative 50% (20 mg kg™') | Kumar et al.
anaerobic (2012)
Acinetobacter G- Aerobic 86% (50 pg kg™') | Uniyal et al.
calcoaceticus (2016b)
Acinetobacter oleivorans | G- Aerobic 89% (50 pg kg™")
Fungi
Aspergillus glaucus - Aerobic 100% Gajendiran and
AJAG1 (900 mg L") Abraham (2017)
Trametes versicolor - Aerobic 96% (800 pg L") | Wolfand et al.
(2016)

G+: Positive gram nature; G-: Negative gram nature

It is known that fungi have advantages of use in bioremediation processes, when
compared to bacteria. As already explained, bacteria need direct contact with the
pesticide to metabolize it, but this does not apply to filamentous fungi. Unlike bac-
teria, which mostly have the need to absorb the xenobiotic molecule to metabolize
it, filamentous fungi are able to secrete enzymes through their hyphae, reaching a
greater area of contact with pesticides and other toxic compounds (Kumar et al.
2011). This fact has already been proven by comparing studies, in which the ability
of fungi as Aspergillus glaucus AJAG1 metabolize 900 mg L' of fipronil, while
bacteria like Streptomyces rochei AJAGT degraded 500 mg L.
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3.5 Enzymes

The transformation of toxic molecules through microbial biodegradation involves a
complex metabolic process, centered on enzymes that are fundamental in this trans-
formation. Enzymes are proteins that accelerate chemical reactions. In the case of
xenobiotic compounds, i.e., that do not exist in nature, often the enzymes responsi-
ble for the transformation of the compound are enzymes that act on molecules natu-
rally present in environments, such as phenolic compounds, lignin among others.

Bacteria and fungi are mainly responsible for the degradation of pesticides in the
environment, since they have species diversity and consequently metabolic diver-
sity. A pesticide can either be used as the main source of carbon and energy through
complete mineralization of the compound, or it can be transformed through come-
tabolism into other molecules. Mineralization is more efficient, as it results in inor-
ganic molecules, CO,, and water, which are non-toxic molecules. In cometabolism,
several microorganisms present in the environment are responsible for the transfor-
mation of the molecule. So, a different source of carbon is needed, since the pesti-
cide is not used as an energy source, then the degradation of the compound is partial.
In cometabolism each microorganism can be responsible for a part of this modifica-
tion, culminating in a non-toxic or even nutritious product at the end of the transfor-
mation chain. The main objective of this process is to reduce toxicity to the
environment. Figure 3.4 summarizes the three stages of a pesticide biodegradation
process (Van der Oost et al. 2003; Ortiz-Hernandez et al. 2013; Zulfigar and Yasmin
2020). According to (Fig. 3.4) in stage I the pesticide is transformed by oxidation,
reduction, or hydrolysis, which results in a compound that is more soluble in water
and less toxic. The most active classes of enzyme in this stage are hydrolases and
esterases and mixed function oxidases (MFO).

In stage II, the metabolites resulting from the previous phase are linked to sugars
or amino acids, also resulting in more water-soluble and less toxic products. The
system responsible for this stage is glutathione S-transferases (GST).

In stage III, a secondary conjugation occurs, in which fungi and bacteria produce
hydrolytic enzymes, peroxidases, and oxygenases, both intra and extracellular.

Stage |
Stage Il Stage Ill
Pesticide ;
Metabolites :
transformation by S Metabolites
ol conjugation — sugar conjugation
Cediinn or amino acid
reduction or Intra and extracellular
hydrolysis enzymes by fungi and
Result: increase Result: increase bacteria: hydrolytic,
water solubility and water solubility and peroxidases and
Less toxicity Less toxicity oxygenases

Fig. 3.4 Three stages of pesticides biodegradation by microorganisms
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Table 3.3 Herbicides most used in the world and the respective classes of enzymes related to the
compound biotransformation

Herbicides Enzyme class Reference

Glyphosate Oxidoreductases Pundir et al. (2017)
Transferases

2,4-D Cytochrome P-450 Nykiel-Szymanska et al. (2018)

(2,4-Dichlorophenoxyacetic Oxidoreductases (Pundir et al. 2017)

acid Hydrolases Han et al. (2020)
Transferases
Oxygenases

Atrazine Hydrolases Pundir et al. (2017)

Paraquat Transferases Pundir et al. (2017)
Oxidoreductases

Diuron Ligninolytic enzymes da Silva Coelho-Moreira et al.
Cytochrome P-450 (2013)
hydrolases Khurana et al. (2009)

Metolachlor Oxidoreductases Sanyal and Kulshrestha (2004)
(hydroxylases)

Table 3.4 Insecticide most used in the world and the respective classes of enzymes related to the
compound biotransformation

Insecticides Enzyme class Reference
Acephate phosphotriesterase, paraoxonase 1, and Lin et al. (2020)
carboxylesterase
Thiamethoxam | Nitro reductase Zhou et al. (2014)
Imidacloprid | Cytochrome P450 Pang et al. (2020)
Oxidoreductases
Bifenthrin Hydrolysis Chen et al. (2012), Zhang et al.
(2018)
Fipronil Ligninolytic enzymes Wolfand et al. (2016);
Cytochrome P-450Laccase Gajendiran and Abraham
(2017)
(Gangola et al. 2021)

Various enzymes participate in the metabolism of a pesticide, carrying out meta-
bolic reactions such as hydrolysis, oxidation, reduction of a nitro grouping (NO,) to
an amino (NH,), oxidation of a NH, group to NO,, dehalogenation, replacement of
a sulfur (S) with an oxygen (O,), addition of a hydroxyl radical (OH) in a benzene
ring, metabolism of the side chains and cleavage ring.

Although, to date, there is no consensus on which enzymes are specifically used
by bacteria to degrade fipronil, Tables 3.3 and 3.4 will show the enzymes already
described for biodegradation of other pesticides (herbicides and insecticides,
respectively). The tables were built taking into account the most widely used herbi-
cides and insecticides in the world (Mcdougall 2017). The EMBL Enzyme Portal
tool (Pundir et al. 2017) was used when it presented data on the biodegradation of
the compounds. If the tool did not return a result, searches were carried out on the
basis of articles.
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3.6 Partial Metabolic Pathways

Although fipronil metabolic pathways are not fully described yet, this compound is
degraded by living organisms. In vivo studies have shown that mammals present
oxidation as the main form of degradation, which is the reason for the elevated rate
of the metabolite fipronil-sulfone found in aerobic organisms (Gupta and Anadén
2018). Analyzes exhibited modifications on microsomal liver cells showing
increased activity of the cytochrome P450 complex (Wang et al. 2016).

Classified as hemeprotein type b, the P450 complex acts as a peroxisome organ-
elle found in eukaryotes, oxidizing free radicals present in these organisms. The
oxidation system acts through the dependent relationship of the substrate NADPH-
cytochrome-P450 reductase and fractions of the phospholipid membrane, so that
the oxidation reactions occur, as shown in Fig. 3.5 (Sirokd and Drastichové 2004).

Responses caused by xenobiotic substances modify the redox balance of living
beings, causing damage to their homeostatic system and cellular stresses. Pollutant
detoxification reactions, such as fipronil, are already known, presenting their action
in two stages (I and II). In step I, the oxidation of fipronil occurs, adding an oxygen
molecule to the sulfur (S) of the trifluoromethylsulfonyl group, linked to the carbon
(C) “4” of the pyrazole ring, by the action of oxidative enzymes. This process occurs
to make the fipronil molecule more polar, facilitating the process of metabolism and
excretion from the system. The second (II) stage occurs differently when comparing
animals and fungi. In animals, the detoxification process occurs through the action
of catalytic enzymes such as glutathione S-transferase (GST) and N-acetyltransferase
(NAT). In fungi, the process is mediated primarily by the hydroxylation of the C 3
or C 5 (meta position) of the aromatic ring, with consecutive glycosylation of the
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Fig. 3.5 Mechanism of action of cytochrome P450
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added hydroxyl (Casley et al. 2007; Girvan and Munro 2016). Processes mediated
by the enzymes CYP1A1, CYP3A4-AS5, and CYP2B6.

The processes mediating fipronil metabolism are not yet known, but by observ-
ing the glycosylation of the fipronil molecule, it is possible to assume that it would
make the molecule easier to be degraded. As already shown for fungi, they have the
ability to secrete enzymes, unlike bacteria. Some enzymes involved in the process
of secretion and degradation of fipronil have already been reported, such as lac-
cases, peroxidases, among others, but none described exactly the pathway of degra-
dation (Wolfand et al. 2016).

To date, no study has revealed how bacteria actually metabolize fipronil.
However, parallel studies have shown that strains of Bacillus thuringiensis have the
ability to metabolize compounds consisting of a benzene ring. For example, it has
been reported in studies with degradation of benzo (a) pyrene via hydroxylase
enzymes of the P450 complex, were controlled by the enzymes CYP450 and
CYP106A2 (Lu et al. 2019). Thus, the hypothesis is that the bacteria would also be
able to metabolize fipronil using the same P450 mechanisms as a possible metabolic
pathway.

3.7 Methods for Studies Past, Present, and Future—
Molecular, Omics, and Analytical

In this topic, examples of processes and procedures performed for the study of
enzymes responsible for the degradation of toxic compounds will be described. This
type of study leads to the definition of metabolic pathways and will be presented in
two periods: before and after the development of omics sciences and their
applications.

A widely studied pesticide due to its high toxicity is the herbicide atrazine, the
publications of its metabolic degradation pathway date from studies carried out in
the 1990s (Souza et al. 1995, 1996; Boundy-Mills et al. 1997) Based on the exam-
ples mentioned above, it appears that the study of a metabolic degradation pathway
is interdisciplinary since it involves several areas such as microbiology, biochemis-
try, molecular biology, and biophysics. Figure 3.6 shows a sequence of methods and
analyses that are performed to describe a single reaction within a compound’s deg-
radation pathway, and often the complete transformation of the toxic compound into
CO, and H,0 involves numerous enzymes. In the items below, a general process
used in the past for the study of the metabolic degradation pathways will be
described:

A. The initial process would be to bioprospect a microorganism with the potential
to degrade a toxic compound. Usually, this isolation takes place in contaminated
places, or from the biological treatment of wastewaters. For the isolation, a min-
imal salt culture medium is used and the toxic compound is added in different
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Enzyme Classification
Oxidation?

Reduction?
Hydrolysis ¢

Enzyme gene cloning
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Aminoacid sequence
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Enzyme Kinetics
Protein conformation

Fig. 3.6 Flowchart showing the study of new microbial enzymes responsible for the degradation
of toxic compounds. This flowchart represents the studies carried out before the omics sciences.

concentrations. Another possibility is to add some minimal carbon source, since
degradation by cometabolism is also possible;

B. With an isolated microorganism, several assays can be performed, such as a
growth curve for several days or even months, following degradation analysis of
the compound using analytical tools such as High-Performance Liquid
Chromatography (HPLC) or Gas Chromatography (CG). The detection of
formed metabolites is extremely important to infer which enzymatic reactions
occur and a possible degradation pathway;

C. Then each enzyme will be studied separately, according to the metabolite
formed, it is possible to infer the class of enzyme involved in the reaction;

D. The cloning of the gene responsible for encoding the enzyme using a library of
cosmid clones has long been used. After the entire sequence of processes for
obtaining the clones, the verification through the phenotype is carried out in a
culture medium containing the toxic compound as an energy source;

E. Thus, clones that show growth are sequenced, and the nucleotide sequence is
analyzed by bioinformatics tools such as, for example, Blastx at NCBI (National
Center for Biotechnology information) (Altschul et al. 1990).

F. In addition to molecular and bioinformatics tools, it is possible to extract extra
and intracellular protein from the cultured clone and perform an electrophoresis
separation, extracting the target molecular weight content and then purifying it
by chromatography;

G. The characterization of the enzymes, such as amino acid sequence, metal analy-
sis, kinetics and protein conformation, can confirm the information previously
found in Blastx.
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This sequence of analyzes must then be performed on all clones that show growth
in the different metabolites of the toxic compound, in order to propose the complete
degradation pathway.

Due to the importance of analytical and molecular approaches in degradation
studies, these will be discussed in more detail throughout the chapter.

3.7.1 Analytical Approaches

The presence of toxic contaminants in the environment, such as fipronil, is difficult
to analyze, and is identified and quantified according to the type of environmen-
tal matrix.

There are several possibilities of analytical methods for analyzing fipronil. The
use of liquid chromatography coupled with tandem mass spectrometry (LC-MS/
MS) has been shown to be a technique of very high resolution and quality when in
trace concentrations of fipronil 0.1-0.5 ng L=! (Li et al. 2020). For analyses involv-
ing large-scale laboratory routines, cheaper techniques are indicated, such as gas
chromatography coupled with tandem mass spectrometry. (GC-MS/MS). This tech-
nique has the advantage of having an affinity for volatile organic compounds used
for the solubilization of fipronil, in addition to presenting high sensitivity of quanti-
fication (0.08-4.6 pg L") and low cost for analysis (Li et al. 2019). GC-MS has the
advantage of minimizing matrix effects that are often found in environmental sam-
ples. However, it is noteworthy that the LC-MS technique in general presents greater
sensitivity when compared to GC-MS, but presents a high cost of maintenance and
material investments of the equipment (Li et al. 2019, 2020).

3.7.2  Omics Approaches: New Insight into a Bioremediation

Bioremediation has the potential to clean up and restore contaminated environments
in an economical and sustainable manner. Nevertheless, the limited information on
the control of growth and metabolism of microorganisms in polluted environments
provides some limitations to its implementation. However, the rapid advancement
in the use of omics technologies allows a new understanding of the bioremediation
techniques.

Omics approaches also allow a better understanding of the individual microor-
ganism and also provide insight into microbial communities at the system level and
finally provide information to elucidate the metabolic networks as well as the inter-
actions between species during the mineralization process of different compounds.
This section of this chapter focuses mainly on works that have used omics tech-
niques to understand the processes that occur in microbial communities, as well as
in individual microorganisms, thus understanding their metabolic interactions. In
this way, using the multi-omics approach, it is possible to design new metabolic
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pathways and use them to build microbial strains and/or consortia for better removal
of recalcitrant compounds from the environment (Laczi et al. 2020).

By the end of the last century, most of the studies related to bioremediation used
pure microbial cultures obtained by conventional isolation approaches to be used
for the elimination of different pollutants (Loffler and Edwards 2006). However, it
has been accepted that many of the microorganisms responsible for the degradation
of these compounds are not investigated using classical culture approaches (Amann
et al. 1995; Oberhardt et al. 2015). This fact showed that even if a microorganism
was able to degrade a compound under optimal conditions in the laboratory, the
same was not observed or repeated in the field. These were examined and could be
associated with the impact of ambient stressors, horizontal gene transfer, metabo-
lites, or further uncertain constituents arising from associated microbes. In the
unavailability of new generation genetic approaches, it was difficult to solve the
discrepant outcomes achieved in the laboratory setting and in situ trials. In this
regard, that many characteristics of traditionally isolated microorganisms may be
lost in native habitat, which may be due to the specific island approaches, is well
known. Moreover, a microorganism isolated as a single culture might be an unsuc-
cessful degrader under laboratory conditions, as its pivotal synergistic partners were
removed throughout isolation steps (Francois et al. 2016). Consequently, to aid a
better understanding of the degradation capacity of microorganisms, methods able
to investigate the mechanisms of the whole have been necessary to investigate the
processes at the system level.

The state of the art of molecular technologies allows us to reveal even more roles,
pathways, relationships, and metabolic networks. Therefore, their implementation
in biodegradation has the potential to transform the bioremediation strategies
(Lovley 2003). Some work that describes new degradation pathways using omics
technologies as a framework, focusing mainly on metatranscriptomics will be sum-
marized below. And the use of RT-PCR in the discovery and/or description of new
degradation pathways will also be discussed.

3.7.3 Metatranscriptomics

The metatranscriptomic approach allows direct access to the transcriptome informa-
tion of microorganisms able to grow or not in culture medium using mass sequenc-
ing of the components of microbial communities in targeted ambient sources.
Metatranscriptomic sequencing allows random sequencing of mRNAs as a unit to
understand the regulation of intrinsic processes in microbial communities. The
overall process for metatranscriptomic data is illustrated in Fig. 3.7. Briefly, the first
step is to extract total RNA from the sample. The RNA that presents a certain qual-
ity will be fragmented and the corresponding dataset building and testing for quality
will be performed. Next, the qualified library is sequenced. The raw sequence data-
set generated is used for further bioinformatics support.
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Fig. 3.7 Outline of the protocol for obtention of the gene expression patterns of the microbial
populations using the meta transcriptome approach

Metatranscriptome exploration employing the next-generation sequencing tech-
niques allows us to obtain gene expression patterns of microbial populations, reveal-
ing new insights into unknown biological systems and remedying the technical
constraints associated with isolating individual bacteria. An example of this is that
in a current study, Atashgahi et al. 2018 revealed the involvement of Peptococcaceae
as the dominant constituents involved in early benzene degradation under anaerobic
conditions using a metatranscriptomic approach. For this, the researchers used a
continuous anaerobic culture that was inoculated with benzene-contaminated soil
supplemented with benzene and nitrate. It was shown that the culture was composed
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of predominantly gram-positive microorganisms associated with Peptococcaceae
(Van der Zaan et al. 2012; Van der Waals et al. 2017). Subsequently, a metatran-
scriptomic screen of this particular microbial assemblage was performed to select
for transcripts implicated in anaerobic benzene metabolism, and a strongly tran-
scribed gene cluster that encoded a putative anaerobic benzene carboxylase (AbcA
and AbcD) and a benzoate-coenzyme A ligase (Bz/A) was found, suggesting a piv-
otal role of Peptococcaceae in the anabolic degradation of benzene. At this point it
is worth mentioning that subsequent attempts made to isolate benzene-degrading
components from Peptococcaceae were unsuccessful, probably as they require sym-
biotic associations with partner species (Atashgahi et al. 2018).

In accordance with the above study, (Falk et al. 2019) performed total RNA
extractions and metatranscriptomic analyses on sediments obtained near the Detroit
River in a gradient of established contaminated sections with the goal of investigat-
ing relationships between contaminant grades and microbial gene transcript pat-
terns and also diversity. Differential expression analysis at DESeq?2 indicated that
microbial transcripts related to methanogenesis, beta-oxygenation, and nitrate
reduction were highly consistent in these contaminated sediments.

In other study (Reid et al. 2018) pioneered the reporting of in situ functional
changes in freshwater microbial ecosystems through the use of metatranscriptomics,
which allowed them to gain insight into gene expression with hydrocarbon-
contaminated sites. For this purpose, sediments of three different sites along the
Athabasca River tributaries, that have been known to contain bitumen outcrops,
were selected for the metatranscriptomic analysis. Within the most relevant result,
the presence of genes responsible for methanogenic activity (i.e., mcr) could also be
involved in reverse methanogenesis. Thus, occurrence of this type of genes able to
operate under methanogenic as well as methanotrophic influences suggests the
necessity of an increased feature of the AOM/aerobic-MOB process, that has
remained an unfruitful endeavor so far (Timmers et al. 2017). For the author, the
knowledge of microbial functions in this habitat and the syntrophic relationships
unraveled with the use of these new molecular approaches are becoming the new
model for the study of microbial ecology and biogeochemistry in general.

Metatranscriptomics was also used to describe enzymes involved in the early
steps of anaerobic benzene catabolism. In a research published by (Luo et al. 2014),
cultures from microcosms derived from groundwater and soil from a gas station on
cartwright Avenue in Toronto, ON, Canada were analyzed. Among other findings,
abundant coverage of pathways related to anaerobic benzoate metabolism was
determined, compatible to a central linkage of benzoate in the anaerobic metabo-
lism of benzene and benzoate. In this context, gene transcripts corresponding to
known or hypothesized enzymes implicated in the anaerobic metabolism of mono-
aromatic compounds were identified and this enabled the building of three parallel
hypothesized pathways for benzoate catabolism: one found in Azoarcus/Aromatoleum
spp., one identified in Thauera spp. (Alpha proteobacteria), and the other in obligate
anaerobes (bam genes).

Finally, as mentioned above, clearly the next-generation sequencing that emerged
in the genome and metagenome study has been effectively adapted to support gene
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expression studies with RNAseq and, in turn, the study of biological frameworks
such as metatranscriptomics. A rapidly increase in the number of research projects,
the majority of them involving differential gene expression studies aimed at getting
information regarding the functional members, genes, and pathways inside a micro-
biome, have been undertaken in this emerging area. However, such an approach has
as a disadvantage the lack of referenced sequenced genomes, and this may lead to a
less than optimal fraction of reads for any given data set to be functionally or taxo-
nomically classified. Because of this, there are ongoing endeavors to assembly
metatranscriptomic data together with metagenomic data from the identical or simi-
lar sample, if available(Shakya et al. 2019). Although metatranscriptomics still
needs to be improved, algorithms and tools are constantly being developed that will
allow metatranscriptomics to facilitate our understanding of microbiomes and the
relevant pathways involved in the metabolism carried out by microorganism of
interest (Shakya et al. 2019).

3.7.4 RT-PCR Approach

In the post-genomic era, quantification of gene expression is a widely employed and
relevant approach to analyze the condition of several cellular events in specific con-
ditions. Currently, reverse transcription quantitative PCR (RT-qPCR) is widely used
as the instrument to quantify nucleic acid molecules in biological and environmen-
tal samples and extensively deployed for environmental approaches in bioremedia-
tion, wastewater management, bioenergy, and others (Rossmassler et al. 2019). It is
regarded as the most important medium-throughput gene expression analysis tech-
nology due to its sensitivity, precision, and fast execution (Derveaux et al. 2010).
Several studies have utilized this approach to improve the knowledge about genes
and pathway in different environments. Here we summarize the relevant studies
where the use of reverse transcription quantitative PCR describes new genes and/
or routes.

Herath et al. (2016) employed qPCR approach to elucidate the genetic machin-
ery of Desulfatibacillum alkenivorans AK-01 varying the carbon source (n-alkanes
C13 to C18). The authors have conjectured the two cluster of genes (two genomic
loci coding for the alkylsuccinate synthase (ASS) gene) would be differentially
expressed depending on the substrate used for growth. In this context, to obtain
information regarding the possible co-transcription of 14 genes around assAl,
RT-PCR was performed and they were able to verify that transcription occurs across
11 regions composing putative cluster 1. In addition, RT-PCR was also performed
to investigate transcription in all intergenic regions surrounding assA 1, and RT-PCR
found that it does not have transcription in all intergenic regions downstream and
upstream of Dalk 1724 and Dalk 1724, respectively. Moreover, the 12 genes that
were transcribed together codify both subunits (Small and large) of a putative lao/
AO ATPase, methylmalonyl-coA mutase, the activase (AssD) of ASS, a putative
mmgE/prpD protein, putative ass subunits (AssB, AssC, AssA, and a MasE-like
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protein), a putative chaperone protein (AssEl), a hypothetical protein, and an
uncharacterized protein (AssF1). Overall, these findings provided novel informa-
tion on the study of upregulation of genes implicated in fumarate metabolism.

In other work (Lourdes Moreno et al. 2011) determined the sequence of a gene
cluster of Halomonas organivorans that synthesizes genes related with phenol
metabolism, in addition to the analyses of the gene arrangement, providing the first
report describing the phenol catabolic genes implicated in the metabolism of phenol
in halophiles. For this purpose, RT-PCR analysis was performed using H. organiv-
orans cultures on medium containing benzoic acid, glucose, and phenol a carbon
source. The results obtained in this study provide an ideal template for investigating
the prospective use of this extremophile species in the treatment of saline sites.

Magnetospirillum sp. strain 15-1 (Meyer-Cifuentes et al. 2020), capable of
degrading toluene, was used to examine the regulation of the enzyme benzylsucci-
nate synthase (BSS, encoded by bss genes), which catalyzes the major step in the
anaerobic degradation of toluene. The main goal of the research was to examine the
effect of both oxygen and toluene on the expression of the bss gene and the synthe-
sis of BSS. The expression of BSS was also studied under nitrate-reducing condi-
tions using various amounts of this compound. Cultures of Magnetospirillum sp.
strain 15-1 prepared anoxically with toluene or benzoate as the only carbon source
and various amounts of nitrate as electron acceptor were used to obtain cDNAs. The
cDNAs of the transcribed intergenic regions of the bss, tdi, and bbs genes, as also a
fragment of the xyIR transcript, were amplified by PCR with degenerate primers.
The results allowed the authors to conclude that the regulation of BSS gene expres-
sion appeared to be more complex than yet imagined. In Magnetospirillum sp. strain
15-1, post-transcriptional regulation of BSS synthesis might give the cells an extra
regulatory overlay to better address its dynamic redox environment. Furthermore,
the metabolically diverse strain 15-1 apparently has more than one regulatory com-
ponent besides the established TdiRS system to control the level of bss and bbs
transcription. With such information on the regulation of ISS synthesis, further
enhancement of the anaerobic degradation of toluene at contaminated sites will be
allowed.

A qPCR approach was employed to identify genes encoding for fumarate-related
enzymes (FAE) involved in o-xylene degradation in a metagenomic culture
(Rossmassler et al. 2019). Culture enriched for more than 20 years with o-xylene
were used. As a starting point, metagenomic sequences of gene products were
searched close to any of the previously identified FAEs. Thirty-four contigs were
identified and selected for further analysis. Primers were designed to detect genes
encoding for the putative FAE that were found in the metagenome. Studying these
cultures post extended period with o-xylene, a novel FAE gene was identified.
Sequencing and screening for the novel FAE-encoding genes were enabled by
metagenomics, highlighting the utility of metagenomics to aid in the successful of
novel and more accurate qPCR assay aimed at functionally targeted genes in
selected mixed microbial populations. In addition, they have developed primers that
targeted currently missing genes in o-xylene degradation route and showed these
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primers to be useful for environmental samples and also to provide supporting for
study of the ability to degrade pollutants.

In conclusion, reverse transcription quantitative PCR (RT-qPCR) was used in
several works for the determination of new pathways and the discovery of new
genes. This approach can also be used for validation and/or as complementary tech-
niques with high-throughput techniques (multi-omics). In short, the use of various
“omics” tools has provided crucial information on metabolism and provides insight
into pathways used by microorganisms that have so far been explored.

3.8 Conclusions

In conclusion to all content covered, it appears that so far there are less than 20
publications regarding microorganisms that biodegrade fipronil. Few articles
reported a previous metabolic pathway. Only studies with fungi inferred the enzymes
or enzyme systems involved. Thus, the need for a greater focus on the biodegrada-
tion and bioremediation of fipronil’s enzymatic metabolic pathways is highlighted,
mainly using molecular and omics approaches in order to obtain data regarding the
degradation efficiency of the compound and the relationships between species and
the environment during the biodegradation process in situ mainly. These efforts will
result not only in the description of the enzyme systems involved in the degradation
of fipronil but also important knowledge on how to apply these enzyme systems
and/or microorganisms in the cleaning up of environments contaminated with
fipronil.
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Chapter 4
Bioremediation of Cucurbitacins
from Cucurbitacin Phytonematicides

Phatu W. Mashela, Ebrahim Shokoohi, Ashwell R. Ndhlala,
Kgabo M. Pofu, and Dineo Raphasha

Abstract Effective microorganisms (EM) had no effect on cucurbitacin content
during fermentation of cucurbitacin phytonematicides. However, under field condi-
tions, the products have short application intervals, suggesting the post application
existence of bioremediation factors of cucurbitacins. The objective of the review
was to investigate the factors that could be responsible for the bioremediation pro-
cess of cucurbitacins from Nemarioc-AL and Nemafric-BL phytonematicides,
which are novel products serving as alternatives to fumigant nematicides. The latter
had been internationally withdrawn from the agrochemical markets due to their
environment-unfriendliness. Among the EM constituents used during fermentation,
only Lactobacillus species, technically, the lactic acid bacteria, were the remaining
EM after the fermentation process. Lactobacillus species do not release reductase
enzymes, which have the potential to bioremediate cucurbitacins and therefore, the
existence of extended shelf life in plastic containers. Although cucurbitacin phyto-
nematicides have long shelf lives, after field application, the efficacy is short-lived,
suggesting the existence of bioremediation factors in soil environments. In the
review, we noted that due to the lipophilic properties of cucurbitacins, the products
could be subjected to biosorption in lipid-rich epicuticles of nematodes. Total pro-
tein of the root-knot (Meloidogyne species) nematode versus increasing phytonema-
ticide concentration exhibited negative quadratic relations to the minimum point,
after which the total protein increased. After biosorption to lipid-rich epicuticle by
hydrophilic part of cucurbitacins, the hydrophobic part becomes predisposed to the
protein-rich subepicuticular layers, resulting in isoprenylation (protein-breakdown)
and after the minimum point, farnesylation (protein biosynthesis) occurred, result-
ing in increase of total protein. In conclusion, ecdysozoans, which are the cuticle-
bearing super phylum, represented by plant nematodes in the current review, offer
potential existence of bioremediation process of cucurbitacins from cucurbitacin
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phytonematicides through biosorption, isoprenylation, and farnesylation reactions,
thereby opening a frontier in bioremediation of cucurbitacin phytonematicides by
these microorganisms, which are numerous in the soil environment.

Keywords Biosorption - Cucurbitacins - Ecdysozoans - Farnesylation -
Isoprenylation - Lactobacillus species - Meloidogyne species - Reductase enzymes
- Total protein

4.1 Introduction

Cucurbitacins occur as a class of highly oxygenated triterpenoids with tetracyclic
cucurbitane nucleus skeletons: (the 19-(10 — f)-abeo-10a-lanost-5-ene (Chen et al.
2005, 2014)), within the Cucurbitaceae Family and at least five other families
(Abbas et al. 2013). Although cucurbitacins have a common nucleus skeleton, the
primary cucurbitacins that are biosynthesized in plants as triterpenoids are cucur-
bitacin B and E, each with an acetyl function at C-25 (Gry et al. 2006). More than
20 other cucurbitacins are produced from cucurbitacin B and E through one of the
following chemical reactions: hydrogenation by cucurbitacin A% _reductase, deacet-
ylation by cucurbitacin acetylesterases, hydroxylation, dehydrogenation, and isom-
erization (Schabort and Teijema 1968; Dirr et al. 1986; Gry et al. 2006; Zhou et al.
2016). Generally, cucurbitacins differ from one another from hydroxylation at C-2,
C-3, C-19, and C-24, the existence of a double chemical bond between C-1 and C-2
or between C-23 and C-24, the acetylation of C-25 hydroxyl groups and the pres-
ence of a ketone function at C-3 (Chen et al. 2005, 2014). The listed chemical reac-
tions are important in explaining the potential reversal chemical processes that
could enhance the bioremediation of cucurbitacins. Due to their wide-ranging bio-
logical activities, cucurbitacins have been widely investigated in pharmacological
studies related to potential treatment of human diseases, particularly cancers and
inflammation (Chen et al. 2005, 2014; Abbas et al. 2013; Mirr et al. 2019). In tradi-
tional medicine, cucurbitacin plant organs are widely used for treatment of various
diseases (Mphahlele et al. 2012). Cucurbitacins had been recently introduced into
the agriculture sector for managing plant nematode population densities as cucur-
bitacin phytonematicides (Mashela et al. 2017a). The latter are used as alternative to
fumigant synthetic chemical nematicides, which had been internationally with-
drawn from the agrochemical markets due to their degradation of ozone layer, and
therefore, contributing directly to the incident of global warming (Mashela
et al. 2017a).

The two cucurbitacin phytonematicides are derived from fruits of wild Cucumis
species as crude extracts through bacterial fermentation process. The products,
along with their purified active ingredients, have been widely investigated for their
efficacies on suppression of plant nematodes and the amelioration of phytotoxicity
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on plants using the Curve-fitting Allelochemical Response Dose (CARD) computer-
based algorithm model (Liu et al. 2003; Dube and Mashela 2016; Mashela et al.
2017a). The model demonstrated that most r strategist nematode species were
highly sensitive to the test products, with efficacies that have relative impact effects
from 90 to 100% when compared with nematode-inoculated plants without phyto-
nematicides. The efficacies of these products were comparable to those of synthetic
chemical systemic nematicides such as aldicarb and fenamiphos (Mashela et al.
2008). In contrast, the K strategist nematode Steinernema feltiae, widely used as a
biocontrol agent of insects and worms, is tolerant to the test phytonematicides
(Madaure et al. 2018), through morphological adjustment to cucurbitacin phytone-
maticides (Mashela et al. 2020a). Generally, r strategist nematodes are smaller, with
higher reproductive rates and shorter ontogenies, whereas the opposite is true for the
K strategists (Andrews and Rouse 1982). The non-phytotoxic concentration of these
phytonematicides technically referred to as the Mean Concentration Stimulation
Point (MCSP), along with the application interval that successfully suppressed
nematode population densities, were each nematode- and crop-specific (Mashela
et al. 2017a). The MCSP values ranged from 2 to 3%, whereas application intervals
ranged from 14 to 22 days (Mashela et al. 2017a). Using empirically derived appli-
cation frequency values for given plant cultivars, the dosage model was developed
as the product of MCSP and the application frequency, which provided the total
concentration of the phytonematicide applied from the initial to the final application
prior to harvest. Similarly, when using second-stage juveniles (J2) of the citrus nem-
atode (Tylenchulus semipenetrans) as an indicator for application interval, the find-
ings confirmed the empirically derived values of using MCSP and nematode
ontogeny, namely, approximately two to three weeks for liquid formulation and
approximately eight weeks for granular phytonematicides (Mashela et al. 2017a, b).

Granular formulations of cucurbitacin phytonematicides consistently suppressed
nematode population densities when assessed at eight weeks after application
(Mashela 2002; Sithole et al. 2016; Mashela et al. 2017a). However, increased pop-
ulation densities of 7. semipenetrans were observed when the trial was terminated
at approximately 17 weeks post application of granular phytonematicides (Maile
et al. 2013). In a subsequent study using liquid formulation on 7. semipenetrans, J2
responses to Nemarioc-AL phytonematicide and aldicarb over time exhibited nega-
tive quadratic relations. In each case, after the minima were reached, J2 densities
tended to have an upswing trend, suggesting the existence of density-dependent
growth patterns (Mashela et al. 2017a, b). The cited observations suggested that
regardless of the formulation, cucurbitacins as active ingredients of the cucurbitacin
phytonematicides could undergo degradation, which could be driven by either abi-
otic or biotic factors. In most cases, abiotic degradation factors for soil-drenched
products like phytonematicides include soil temperature, soil type, organic matter
content, and/or soil pH (Jgrgensen 2007), whereas biotic factors could include
microbes such as bacteria and fungi (Singh et al. 2019). The biodegradation of
chemicals from the environment through living entities such as microbes is techni-
cally referred to as bioremediation (Jgrgensen 2007; Odukkathil and Vasudevan
2013; Canak et al. 2019). In the current study, bioremediation of cucurbitacins from
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the cucurbitacin phytonematicides was investigated to identify potential biological
entities that serve as the bioremediation drivers, along with the potential bioreme-
diation drivers.

4.2 Cucurbitacin Phytonematicides

Cucurbitacins are biosynthesized as secondary metabolites through either MEP/
DOXP or Mevalonate pathway, which predominantly occur inside the mitochondria
and serve as key component to ensure that the high-energy Acetyl-Co-A molecules
do not accumulate at the entry site of the Krebs cycle, chemically referred to as the
tricarboxylic acid cycle (TAC). Generally, a large number of secondary metabolites
which are formed during glycolysis and the movement of the Acetyl-Co-A to TAC
through the Mevalonate pathway or the D-Glyceraldehyde 3-phosphate through the
MEP/DOXP pathway to form the triterpenoids are purposely removed as high-
energy molecules from the primary metabolism pathway that takes Acetyl Co-A to
TAC (Campbell and Reece 2005). The secondary metabolite pathway converts the
high-energy Acetyl-Co-A or Glyceraldehyde 3-phosphate molecules into low-
energy molecules such as cucurbitacins in a step-by-step conversion from precursor
to precursor using specific chemical reactions facilitated by enzymatic activities in
specific biosynthetic pathways (Chen et al. 2005, 2014). Since primary metabolism
occurs in all living cells, precursors for cucurbitacins originate from all such cells,
from where they are translocated to organs where low-energy cucurbitacins can be
compartmentalized and used by resident plant organs in defense against herbivorous
animals.

4.2.1 Sources of Cucurbitacin Phytonematicides

Nemarioc-AL and Nemafric-BL phytonematicides have A and B that represent
active ingredients cucurbitacin A and B, respectively, with L depicting that the prod-
uct is available as a liquid formulation. The two products are derived from oven-
dried fruits of wild cucumber (Cucumis myriocarpus) and wild watermelon
(C. africanus), indigenous to South Africa, with biodiversity center in Limpopo
Province (Kristkova et al. 2003). Cucumis myriocarpus contains high cucurbitacin
A (C3,H,600) content in roots and fruit exclusively, with leaves being used as vege-
table by the local people. In contrast, high cucurbitacin B (C;,H,30s) occurs in all
organs of Cucumis africanus.
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4.2.2 Preparation of Cucurbitacin Phytonematicides

Harvested fruits from the two plant species are cut into pieces and preserved through
oven-drying. In medicinal plants, the materials are dried at 40 °C for 72 h in order
to preserve the active ingredients (Miiller and Heindl 2006). However, when fresh
fruit pieces from the two Cucumis species were dried at 40 °C, the hyphae of the
fungus that is resident on fruits of Cucumis species, namely, Penicillium simplicis-
simum, proliferated, resulting in rotting of the material (Mphahlele et al. 2012). The
suitable temperature where P. simplicissimum would not thrive, which also resulted
in the optimization of cucurbitacins, was derived at 52 °C for 72 h (Shadung et al.
2016). After drying, raw materials were ground separately in a Wiley mill (Thomas
Scientific, Swedesboro, NJ, USA) to pass through a 1 mm sieve and stored in closed
containers (Shadung and Mashela 2016). Fruits of the two plant species were sepa-
rately fermented using effective microorganisms (EM) that comprised yeast bacte-
ria, lactic acid bacteria, photosynthetic bacteria, and actinomycete bacteria, with
each playing a distinct role in ensuring that the final product was of high quality.
Raw materials used in the fermentation process of the two phytonematicides were
summarized to enhance clarity on the inputs of the products (Table 4.1). The 20 L
air-sealed plastic container had an outlet dangled in a 2 L bottle half-filled with
water to allow for the escape of toxic gaseous end-products produced during the
fermentation process.

4.2.3 Role of EM Components During
the Fermentation Process

Fermentation refers to metabolic processes whereby organic molecules are con-
verted into acids, gases, or alcohol in the absence of electron transport chain that
requires oxygen. In simple terms, fermentation pathways regenerate the coenzyme
nicotinamide adenine dinucleotide (NAD"), which is used in cytoplasmic glycolysis
to release energy in the form of adenosine triphosphate (ATP). Generally, fermenta-
tion during glycolysis yields a net of two ATP molecules, while mitochondrial

Table 4.1 Raw materials for preparation of cucurbitacin phytonematicide in a 20 L plastic
container

Material Nemarioc-AL Nemafric-BL
Ground Cucumis fruits 80 g 40¢g
Chlorine-free water 16 L 16 L

Sugar 100 g 100 g
Molasses 100 mL 100 mL
Effective microorganisms 100 mL 100 mL
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respiration in the presence of oxygen yields the grand total of 38 ATP molecules
from one glucose molecule. The organic molecules in phytonematicides include
sugars in the form of purified sugars and molasses, cellulose, lignin, starch, and
various other secondary metabolites, which EM constituents should biodegrade and
release into solution during the fermentation process in chemical processes which
are driven by various enzymes, but which are out of the scope of the current work.

Lactic acid bacteria hydrolyze the toughest materials in cell walls of plants,
namely, cellulose and lignin (Madigan and Martino 2006). The final product of cel-
lulose and lignin fermentation is lactic acid, which promotes the reduction of pH of
the phytonematicide solution (Higa and Parr 1994). Yeast bacteria also reduce pH
by hydrolyzing glucose to pyruvic acid through the anaerobic glycolysis pathway
(Stetter 2006). The latter, without oxygen cannot proceed to Krebs cycle, the tricar-
boxylic acid cycle (TAC) that serves as the final electron acceptor during the
enzyme-driven release of energy in the form of adenosine triphosphate (ATP) mol-
ecules, for use in biological activities. The pH of the finished liquid phytonemati-
cides gradually decreased from 7.0 to 3.7 in 14 days after fermentation. Such
conditions favor the thriving of bacteria at the expense of fungal growth (Madigan
and Martino 2006). Yeast bacteria also release antimicrobial chemicals that add to
the sterilization of the finished phytonematicide by preventing fungal growth that
might even include the elimination of the previously described P. simplicissimum in
cucurbitacin phytonematicides. During fermentation, the materials release copious
sulfur as hydrogen sulfur (H,S), where NAD of photosynthetic bacteria is reduced
to NADH by H* ion from H,S during Photosystem II (Campbell and Reece 2005).
The released S is oxidized to form SO,*, which is a lethal gas (Stetter 2006). Soon
after its formation, SO,* is reduced by 2H* from H,O molecule to form a strong
acid, sulfuric acid (H,SO,), with highly corrosive capabilities. The Gram-positive
actinomycete bacteria, which are oxygen-tolerant, have the capability to release
chitinase that hydrolyzes chitin in exoskeletons of insects, insect eggs, nematode
eggs, and mycelia of various fungi (Madigan and Martino 2006). Apparently, the
constituents of EM have no biodegradation capabilities on cucurbitacins, for other-
wise EM would not be suitable for use.

4.2.4 Unique Features of Cucurbitacin Phytonematicides

Cucurbitacin A is partially polar and slightly soluble in water, whereas cucurbitacin
B is non-polar and insoluble in water (Chen et al. 2005). Both cucurbitacin A and B
have high boiling points at sea level (760 mmHg = one atmosphere sea level), which
occur at 731 °C and 699 °C, respectively (Krieger 2001). In contrast, at sea level,
methyl bromide and Nemacur boil at 3.56 °C and 49 °C, respectively (Pesticidal
Manual 1979; Windholz 1983). Generally, when Cucumis fruit pieces are oven-
dried at 52 °C, the precursors and their related enzymes continued down their
respective biosynthetic pathway, with subsequent formation of the low-energy
cucurbitacins as demonstrated during the storage of raw materials of the
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cucurbitacin phytonematicides in sealed and unsealed plastic containers (Shadung
and Mashela 2016). Similarly, containerized phytonematicides during the shelf life
studies had limited degradation rate, except under chilled conditions (Mashela
et al. 2020b).

4.2.5 Shelf Life of Cucurbitacin Phytonematicides

Cucurbitacin phytonematicides did not conform to the Arrhenius model, established
for shelf life of various products, with product quality versus time exhibiting nega-
tive linear relations (Labuza and Riboh 1982; Steel 2004). Under chilled conditions
(5 °C, 95-98% RH), Nemarioc-AL phytonematicide degraded rapidly with negli-
gent shelf life (Mashela et al. 2020b). In most cases, cucurbitacin A breaks down
rapidly into cucumin (C;sHy09) and leptodermin (CsgHusOg) (Jeffrey 1980).
However, Nemafric-BL phytonematicide with its stable cucurbitacin B versus stor-
age time exhibited positive quadratic relations with shelf life spans of 35 weeks
under chilled conditions (Mashela et al. 2020b). Under fixed tropical conditions
(38 °C, 90% RH), Nemarioc-AL and Nemafric-BL phytonematicides versus time
exhibited positive quadratic relations with shelf life spans of approximately 35 and
825 weeks, respectively. Extended shelf life in the two test phytonematicides were
temperature-dependent, with tropical conditions being the most favorable for the
storage of the products, which is well suited for use in tropical regions, where plant
nematodes abound. The observed shelf life spans suggested the existence of unique
features in both products when stored under tropical conditions. In contrast, with
daily sampling for cucurbitacin during a 15-day period, cucurbitacin E-glycoside
versus time exhibited negative quadratic trends, which were also temperature-
depended (Martin et al. 2002).

4.3 Bioremediation Drivers
of Cucurbitacin Phytonematicides

Bioremediation of pesticides has been defined as a process where the active ingre-
dients are removed from the environment by microorganisms through biodegrada-
tion or biosorption processes, thereby decontaminating the environment (Ying
2018). Such processes reduce or eliminate the efficacy of the products against the
target pests (Ying 2018). Historically, bioremediation factors include plants, bacte-
ria, and fungi (Davison 2005; Kvesitadze et al. 2006; Juwarkar et al. 2010;
Odukkathil and Vasudevan 2013; Singh et al. 2019), driven by factors such as
microbe type, temperature, nutrition, enzymes, antimicrobial chemicals, types of
chemical reaction such as the redox reactions and the size of the chemical com-
pounds (Norris 1993; Varjani and Upsani 2017). In some cases, bacteria that release
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acids during bioremediation have the tendency to eliminate pathogenic fungi but
could also eliminate other essential bacteria through the production of antimicrobial
chemicals as by-products (Slonczewki et al. 2009; Chen et al. 2020). The focus of
the current study, bioremediation factors of cucurbitacins, focused on both conven-
tional and unconventional factors. The latter involved running short-term experi-
ments to validate claims, which are being advanced in the study.

4.3.1 Potential Effects of Plants on Bioremediation
of Cucurbitacins

Bioremediation of chemicals using plants is referred to as phytoremediation, which
occurs in one of three forms, namely, phytoextraction, phytotransformation, and
rhizodegradation (Vidali 2001; Kvesitadze et al. 2006). In phytoextraction, the test
chemical accumulates in organs of the plant, referred to as phytoaccumulation
(Kvesitadze et al. 2006). In contrast, phytotransformation and rhizodegradation
each results in degradation of the chemicals without absorbing them and are techni-
cally referred to as phytodegradation (Kvesitadze et al. 2006). In living plants,
cucurbitacin A was stored in fruit and roots of C. myriocarpus, whereas cucurbita-
cin B is stored in all organs of C. africanus plants (Jeffrey 1980). In chemical resi-
due studies of the cucurbitacin phytonematicide in tomato production, cucurbitacin
A and B were hardly detected in tomatoes or foliage of indigenous vegetable, night-
shade (Solanum nigrum) (Dube and Mashela 2016; Shadung et al. 2017). In olives
and strawberries, chemical residues of another non-polar triterpenoid, azadirachtin
(C35H44014), were also not detected (Caboni et al. 2002, 2006). Generally, non-polar
molecules, including glucose, cannot be transported through the bipolar membranes
in the symplastic pathway of the endodermis into or out of the vascular bundle
(Campbell and Reece 2005). In a tomato-cowpea or tomato-sweet stem sorghum
rotation, where nematode population densities on tomato plants were managed
using the cucurbitacin phytonematicides, chemical residues of cucurbitacins stimu-
lated growth of cowpea plants (Mashela 2014) and sweet stem sorghum as succes-
sor crops (Mashela and Dube 2014). Observations in the cited two last studies
suggested that phytoextraction and rhizodegradation of cucurbitacins in plants
hardly occurred. Generally, the rate of bioremediation is influenced by numerous
abiotic and biotic factors, including the size of the chemical compound (Varjani and
Upsani 2017). Due to the large size of cucurbitacins and other triterpenoids, these
chemicals probably have slower rates of biodegradation.

The two phytonematicides, when applied using empirically based concentration
and application interval, did not suppress nematode population densities indefi-
nitely, thereby necessitating the need for the establishment of the application inter-
vals (Mashela et al. 2017a). The latter had been empirically designed in such a
manner that the products would interrupt the ontogeny of the test nematode at least
once, depending on the length of ontogeny of the managed nematode species.
Generally, the application interval of the test phytonematicides is approximately
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14-19 days for Meloidogyne species, which suggest the existence of cucurbitacin
degradation processes in the soil as induced by either abiotic or biotic factors, or
both. Plants infected by Meloidogyne species usually release copious concentration
of amino acids into the rhizosphere, thereby modifying the rhizosphere through
reducing soil pH (Wallace 1973). Acidic conditions in the rhizosphere of such plants
might suppress most fungal pathogens while promoting bacterial growth, some of
which might play undocumented roles in bioremediation processes of
cucurbitacins.

4.3.2 Bioremediation of Cucurbitacins by Effective Microbes

At 35 weeks after storage of the phytonematicides, components of the constituents
of EM from Nemafric-BL phytonematicide solution were subjected to the phyloge-
netic tree constructed based on maximum-likelihood analysis of 16S rRNA gene
(Shokoohi 2020, unpublished data). Briefly, the South African strain of Lactobacillus
was clustered with other Lactobacillus species that included L. vini and L. mobilis,
along with unidentified Lactobacillus species (Fig. 4.1). Comparison of the 16S
rRNA gene sequence of Lactobacillus isolates from Nemafric-BL phytonemati-
cides corresponded with L. mobilis (acc. nr. AB242320) from the GenBank data-
base at 87% similarity with 151 nucleotide differences. Besides, with L. vini (acc.
nr. AY681132) the test strain had 87% similarity with 151 nucleotide differences.
The 16S rRNA nucleotide sequence BLAST had a similarity from 85 to 87% with
molecular strains of Lactobacillus species in the Genbank, without trace of most
other bacteria that were used in the fermentation process of Nemafric-BL phytone-
maticide. In EM, to protect the intellectual property, the constituents of EM were
provided in general terms, without providing the species names (Higa and Parr
1994). In the current study, Lactobacillus species, commonly called lactic acid bac-
teria, displayed all other components of EM, suggesting the existence of a consor-
tium of Lactobacillus species in the constituents of EM. In mutant bitter Hwakesbury
watermelon (Citrullus lanatus Thumb. Naakai (syn. Citrulus vulgaris Schad) study,
Bacillus species remained as the dominant bacteria without affecting cucurbitacin
E-glycoside content in the extracted solution (Martin et al. 2002).

Most bioremediation processes involve oxidation-reduction (redox) reactions,
characterized by the existence of electron donors and electron acceptors (Vidali
2001). In order to enhance the understanding of why Lactobacillus species elimi-
nated the other EM constituents, let us briefly review how the species achieve this
feat. Fermentation is the process that includes two phases, first is the breakdown of
glucose (glycolysis) to pyruvate molecules, with the net gain of two ATP and two
NADH molecules in the cytoplasm of bacteria. The ATP molecules are used by
Lactobacillus species for biological activities such as movement, feeding, and
reproduction. In the second phase of fermentation, the produced NADH donates its
electron in the form of H to the pyruvate molecules to convert them to lactic acids,
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Fig. 4.1 Phylogenetic tree of South African strains of Lactobacillus species (blue color) derived
from Nemafric-BL phytonematicide using Neighbor Joining method through MegaX software
(Shokoohi 2021, unpublished data)
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with NAD?* being regenerated for re-use during glycolysis as an electron acceptor
to allow the production of ATP to continue in the cytoplasm (Fig. 4.2).

In Lactobacillus species, the fermentation process had been described as being
either homolactic or heterolactic fermentative process, where glucose molecules are
metabolized through the phosphoketolase pathway as explained below (Vidali 2001):

Homolactic fermentative process : glucose + 2ADP + Pi — 2lacticacids + 2 ATP

Heterolactic fermentative process : glucose + ADP + Pi — lacticacids + ethanol + CO, + ATP

Energy-wise, the homolactic fermentation process is the more efficient than the
other is, since one molecule of glucose is metabolized to two molecules of lactic
acids and two molecules of ATP as end-products with Pi being the phosphorus
derived from the substrate. In contrast, during the heterolactic fermentation process,
one glucose molecule is metabolized to one lactic acid, one CO,, and one ATP as
end-products (Vidali 2001). In addition to the formation of the released acids and
hydrogen peroxide (H,0,), which also suppresses anaerobic bacteria except
Lactobacillus species that are oxygen-tolerant. The latter also produce copious
quantities of bacteriocins, salivaricins, and sodium butyrate, which inhibit growth of
pathogenic microbes, including bacteria, fungi (Barbour et al. 2020), providing an
explanation why the cucurbitacin phytonematicide is highly aseptic cucurbitacins
known to be biodegraded by reductase enzymes (Ellis, 2002), but such enzymes are
hardly produced by Lactobacillus species (Ellis 2002). Just to emphasize, in addi-
tion to other reductase-producing microorganisms (Yum et al. 1999), which are not
part of the EM constituents, there could be many other bioremediation factors in the
soil, which would help in the explanation of the loss of efficacy in the test products
over time (Mashela et al. 2017a).

§ ———8

+
2 Pyruvic Acid| 2 NADH 2 NAD 2 Lactic Acid

Fig.4.2 Lactic acid fermentation uses pyruvic acid and NADH to generate NAD* and lactic acids,
with NAD+ being reused in glycolysis to produce NADH and ATP, where ATP is used for biologi-
cal activities—all in the absence of oxygen. The circles represent C atoms
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4.3.3 Bioremediation of Cucurbitacins by Ecdysozoans

Ecdysozoans constitute one of the major groups within the Kingdom Animalia and
include eight phyla, with the commonly reported being the Arthropoda, Kinorhyncha,
Loricifera, Priapula, Onychophora, Nematomorpha, Nematoda, and Tardigrada
(Ruggiero et al. 2015). Unlike other animals that build rigid skeletons using mineral
elements, ecdysozoans build the cuticles as exoskeletons using organic material.
Such exoskeletons are thinner and lighter than mineral skeletons, and therefore, do
not require joints to allow flexibility as is the case in mineral skeletons. However,
exoskeletons are sufficiently rigid to prevent growth of the body and therefore,
ecdysozoans regularly shed off their cuticles, a process called ecdysis (molting),
controlled by steroid hormones called ecdysteroids (Niwa and Niwa 2014). In the
current work, we used the nematode cuticle to expound how ecdysozoans could
play a role in bioremediation of cucurbitacins from the test cucurbitacin
phytonematicides.

4.3.3.1 Nematode Cuticles

The nematode cuticle consists of four main layers, the outer layer (epicuticle), corti-
cal layer, the collagen layer (with 4 distinct sublayers), and the hypodermal layer
(Perry and Moens 2013). Only the epicuticle and median layers are shed off during
the molting process (Fig. 4.3), whereas the hypodermis is used to generate the new
cuticle (Schultz et al. 2014). The newly molted juvenile exits the shed cuticular
layer through the stoma. The epicuticle is formed by lipids, which are coated with a
glycoprotein, technically referred to as a surface coat that plays a protective role to
the epicuticle. Lipids in the epicuticle enhance mobility of nematodes in aqueous
solutions due to their incompatibility (Schultz et al. 2014). The collagen has four
protein-rich sublayers, (a) cortical layer with insoluble proteins called cuticulins,
(b) median layer with pillar-like proteins filled with gelatinous matrix, (c) basal
layer with distinct soluble proteins in the form of fiber and those as dense gelatinous
matrix (Fig. 4.3).

A annular furrow B

annulus Surlace coal anewdus  Anoutar furrow

Fig. 4.3 Schematic nematode cuticle being molted (a) and cuticle layers (b) of Caenorhabditis
elegans from transmission electron microscopy photograph (Schultz et al. 2014, improved from
Shokoohi 2019)
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4.3.3.2 Role of Epicuticle in Bioremediation of Cucurbitacins

Cucurbitacins are lipophilic (Van Wyk and Wink 2004), which confers them the
status of being hydrophobic (Patel et al. 2009). The two properties improve the
loading capabilities of cucurbitacin drugs (Patel et al. 2009). Lipids in the epicuti-
cles have the capability of attracting cucurbitacin molecules from aqueous solutions
and therefore their chemical status of being lipophilic. This attraction provides suf-
ficient explanation why nematodes are highly sensitive to cucurbitacin phytonema-
ticides in crude and purified forms (Dube and Mashela 2016, 2017, 2018; Dube
et al. 2019). The attraction of cucurbitacins by the epicuticles removes the active
ingredients of cucurbitacins from the environment, which agrees with the descrip-
tion of bioremediation processes (Jgrgensen 2007; Canak et al. 2019). Once cucur-
bitacins are removed from the environment by the epicuticles, they can, due to their
hydrophobic properties, further be attracted to proteins in the middle layers, which
are replete with proteins, and therefore, well-suited for these roles, referred to as
isoprenylation and farnesylation reactions.

4.3.3.3 Role of Subcuticular Layers in Bioremediation of Cucurbitacins

Isoprenylation is the addition of hydrophobic molecules such as cucurbitacins
through the prenyl groups (3-methylbut-2-en-1-yl) to the proteins (Marshall 1993;
Casey and Seabra 1996; Novelli and D’ Apice 2012), whereas the addition of lipids
to proteins is lipidation. The prenyl groups are important for protein-to-protein
binding through specialized prenyl-binding domains. Prenylation involves the
transfer of either a farnesyl or a geranylgeranyl moiety to C-terminal cysteine(s) of
the target protein, using one of three enzymes, namely, farnesyl transferase, Caax
protease, and geranylgeranyl transferase I (Novelli and D’ Apice 2012). Importantly,
farnesyl is one of the enzymes required in the biosynthesis of cucurbitacins through
the MEP/DORXP pathway (Chen et al. 2005).

4.3.3.4 Evidence of Isoprenylation and Farnesylation in Nematodes

After exposing J2 of the southern root-knot nematode, M. incognita, to a geometric
series (0, 2, 4, 8, 18, 32 and 64%) of Nemafric-BL phytonematicides for 72 h, total
protein was determined using TruSpecCHNS Macro (Leo, St. Joseph, MI, USA)
(Mashela and Shokoohi 2021). Briefly, data were subjected to analysis of variance
using SAS software to establish the significance at 5% level probability. Prior to
subjecting the data to lines of the best fit, data expressed as exponentials (2°, 21, 22,
23, 24,25 and 2) were transformed using log," = x (1) to homogenize the variance
(Causton 1977). Using x = -b\/2b, relation from the quadratic relation,
Y = byx* + bix + ¢, the minimum total protein was accrued at 4.9% (transformed
data) phytonematicides. During isoprenylation, which breaks down the proteins,
there was a gradual decrease of total proteins (Fig. 4.4). After the minimum, the
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Fig. 4.4 Response of total protein to increasing concentration of Nemafric-BL phytonematicide
(Mashela and Shokoohi 2021)

total protein started to increase, thereby supporting the view of farnesylation. The
latter is a type of isoprenylation where a post-translational modification of proteins
in which an isoprenyl group is added to a cysteine residue, which is an important
process to mediate protein-to-protein interactions, thereby increasing total proteins
to enable protein-to-protein membrane interactions to occur (Marshall 1993; Casey
and Seabra 1996; Novelli and D’Apice 2012). Both isoprenylation and farnesyl-
ation as observed in this study supported the principles of density-dependent growth
patterns, which occur when biological entities are subjected to increasing concen-
tration of allelochemicals such as cucurbitacins (Liu et al. 2003; Mashela
et al. 2017a).

4.4 Conclusion and Future Perspectives

Bioremediation processes involving secondary metabolites of phytonematicides
involve various processes. Such processes require some knowledge of the biosyn-
thetic pathways, including the precursors and enzymes involved in such processes,
along with enzymes that can play arole in the reversal of the processes. Lactobacillus
species do not produce reductase enzymes that have capabilities of hydrolyzing
cucurbitacins, but the soil is replete with reductase-producing microorganisms,
which could play some role in bioremediation process of cucurbitacins. In the cur-
rent study, supported by empirical-evidence, we concluded that in addition to other
potential bioremediation factors of cucurbitacins, the ecdysozoans play an active
role in bioremediation of cucurbitacins through biosorption, isoprenylation, and
farnesylation reactions due to the unique properties of cucurbitacins and cuticles.
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Future studies with other cuticle-bearing organisms in the super phylum ecdysozo-
ans would provide an essential explanation on limited persistence of cucurbitacin
phytonematicides when applied under field conditions.
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Chapter 5

Following the Steps Towards Glyphosate
Bioremediation. How Close Are

We to Field Success?

Neli Romano-Armada and Verdnica B. Rajal

Abstract Glyphosate-based herbicides (GBHs) are used in agriculture either for
cropping glyphosate-resistant species or to control weeds in various crops, from
herbaceous plants like tomatoes to trees such as vines and even forest plantations.
Their extensive use exposes the land surface and water bodies to the herbicide, pos-
ing a risk to non-target organisms worldwide. GBHs are broken down in the envi-
ronment by the whole soil or water microbiome. There is incomplete understanding
of different bacterial groups' roles in this process. Although not every single species
can be isolated, its functional profile or metabolism counts. A species can be
removed from the ensemble without a major negative impact on the overall process
as long as other microorganisms perform that same function. We currently have
some insight into what single bacteria do when degrading glyphosate. In fact, the
classic approach for bioremediation consists of isolating and studying the removal
potential of single type of microorganism. Using this approach, researchers have
identified the aminomethylphosphonic acid (AMPA) and sarcosine pathway as a
primary route of glyphosate breakdown. However, there remains a need for a
glyphosate removal strategy that mimics natural microbiomes' action to avoid
glyphosate pseudo persistence by accumulation in the environment.
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5.1 Introduction: Glyphosate

In the mid-20th century, there was a shift in agricultural practices that allowed an
increase in food production. Known as the Green Revolution, crop yields increased
because of the combination of new developments in technology for mechanization,
generation of higher-yielding plants, and synthesis of novel agrochemicals
(Pellegrini and Fernandez 2018; John and Babu 2021). Although there were undeni-
able positive impacts on food security and land use reduction, the environmental
cost of higher energy consumption and contamination associated with agrochemi-
cals production was significant (Pellegrini and Ferndndez 2018; John and
Babu 2021).

Among the novel compounds to improve crop yield, a herbicide introduced in
the seventies, commonly known as glyphosate (N-(phosphonomethyl)glycine), rev-
olutionized the market by allowing higher profits from cropping glyphosate-resistant
(GR) plants (Duke and Powles 2008; Benbrook 2016). This synthetic compound, a
glycine analogue, interferes with the shikimic acid pathway (present in plants and
some microorganisms) by inhibition of the enzyme 5-enolpyruvylshikimate-3-
phosphate (EPSP) synthase, preventing the production of amino acids critical for
protein synthesis and growth. Hence, glyphosate kills organisms without resistance
(Fig. 5.1). To date, there have been 11 herbicide modes of action described, and
glyphosate is the only compound within its group. Glyphosate-based herbicides
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Fig. 5.1 Glyphosate's mode of action. (1) Contact and absorption: after application, glyphosate
readily penetrates the cuticle; (2) Translocation: cell to cell migration begins towards the phloem
which transports it throughout the plant; and (3) Site of action: glyphosate reaches the plant's
growing tissues; (4) Mechanism of action: inhibition of the enzyme 5-enolpyruvylshikimate-3-
phosphate synthase (EPSPS) that catalyzes the reaction between shikimate-3-phosphate (S3P) and
phospho-enolpyruvate (PEP) to produce 5-enolpyruvilshikimate-3-phosphate (ESP), which after
dephosphorylation becomes a precursor of the amino acids phenylalanine, tyrosine, and tryptophan
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(GBHs) act as broad-spectrum systemic post-emergence herbicides, i.e., after emer-
gence and growth. Once in contact with the herbicide, a plant absorbs it through its
green organs (stems and leaves) to later translocate it to regions of active growth,
where it accumulates hindering plant development (Duke and Powles 2008)
(Fig. 5.1).

However, since its introduction, the use of glyphosate has diversified. Because of
its herbicidal power and alleged low toxicity, its use expanded beyond agriculture
(Duke 2018). Indeed, it was used in different countries to keep weeds away from
roadsides (Huang et al. 2005) and railways (Amaro-Blanco et al. 2019; Kudsk and
Mathiassen 2020), to maintain clean schoolyards or sidewalks (Markets and Markets
2017), to clean water bodies (Robichaud and Rooney 2021), and even to fight illegal
drug production by spraying coca plantations in the middle of the Colombian jungle
(Camacho and Mejia 2017; Idrovo and Rodriguez-Villamizar 2018).

5.2 Current Use and Concerns

During its early years, glyphosate was used moderately compared to other herbi-
cides. However, the introduction of genetically engineered (GR) crops in 1996 was
the starting point of a worldwide explosion in the use and mass production of GBHs
(Benbrook 2016; Duke 2018). Two major factors drove glyphosate's use increase;
first the generation of GR staple crops such as soybean (Glycine max), corn (Zea
mays), and cotton (Gossypium hirsutum L.), and later in the year 2000, the loss of
patent protection which enabled industries all over the world to manufacture techni-
cal grade glyphosate or other GBHs (Benbrook 2016). Since its introduction, solely
in agriculture, glyphosate application worldwide rose from about 51 million kg to
approximately 747 million kg in two decades (Benbrook 2016). Moreover, a recent
forecast for the glyphosate market estimated an annualized average revenue growth
rate of 6.32% between 2016 and 2022, projecting that by 2022 it will reach USD
9.91 billion (Markets and Markets 2017).

Regarding the environmental fate of glyphosate used in agriculture, there are two
possible outcomes for the sprayed plants. Regular plants (without glyphosate resis-
tance) will die, and their biomass along with the residual herbicide will accumulate
in the soil surface until its degradation. However, GR species will incorporate the
glyphosate, translocating it to different tissues, and finally exuding part of the her-
bicide by the roots and storing the remaining part in the fruits or grains of oilseed
plants. However, when the GR plant dies, it will also leave its glyphosate-containing
biomass to degrade in the soil surface, just like non-GR plants. The storing of
glyphosate in plant biomass expands its life in the environment (Mamy et al. 2016).
In soil, the herbicide favors quality degradation by changing chemical, physical, and
biological properties, affecting adversely the soil's microbiota (Romano-Armada
etal. 2017), which is often in charge of keeping the balance between the soil's biotic
and abiotic components to sustain its quality and health (Martinez et al. 2018).
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Glyphosate residues in the soil bind tightly to inorganic particles, preventing the
herbicide from moving into ground water, but not from being transported by runoff.
Contrary to previous conclusions that the herbicide was immobilized by adsorption
to the sediment in water bodies, recent studies show the potential of glyphosate
toxicity in wetlands via biofilm concentration. The herbicide concentrates in bio-
films and finds its way up in the trophic chain (Beecraft and Rooney 2021).
Moreover, low doses of GBHs in the water stimulate the growth of harmful algae
(Dabney and Patifio 2018), adding to the detrimental effect of the herbicide in water
ecosystems.

5.3 Ecosystem Effects

Although GBHs are designed to facilitate agriculture, they can indirectly affect the
crops negatively by altering the microbial soil dynamics in charge of recycling
nutrients and controlling phytopathogens, and by chelating metals preventing the
proper nutrient uptake by the plants (Martinez et al. 2018). The selection pressure
caused by years of GBH's application upon the rhizosphere microbiome is believed
to be involved in the emergence of the so-called superweeds (i.e., plants with natural
resistance to multiple herbicides) via microbial acquired resistance and horizontal
gene transfer (Cuhra 2018). Glyphosate is not the sole culprit for this phenomenon,
accounting for 42 resistant weed species worldwide; it only poses a medium risk of
herbicide resistance compared to other herbicides (Moss et al. 2019). However, it
plays an important role because of its unique mode of action, and it is part of the
problem along with other herbicides used in unsustainable agricultural practices
around the world (Davies et al. 2019; Moss et al. 2019).

When considering yield and revenue, it is easy to forget that weeds are living
organisms as well, and they are part of the ecosystem. Therefore, as a part of the
agroecosystem, weeds also provide environmental services by harboring decom-
posers, predators, and pollinators. The practice of farming herbicide-resistant crops,
in addition to the abuse of glyphosate application to control weeds, has a relevant
impact on biodiversity in two major direct ways by changing the plant and microbial
composition of either soil or water bodies. Thus, the trophic nets are altered at two
critical levels: producers and decomposers, disrupting proper nutrient cycling and
energy transfer along with other systemic functions such as pollination (Schiitte
et al. 2017). To mention a notable example of the impact of weed control on biodi-
versity at a global scale, the use of glyphosate to grow herbicide-resistant crops in
the United States is believed to be one of the culprits for reduction of the monarch
butterfly (Danaus plexippus) population. The primary hypothesis is that the extended
use of glyphosate decimated the population of milkweeds (Asclepias syriaca) in the
reproduction areas of the butterfly, reducing the food availability for its larvae with
a consequent life cycle perturbation (Belsky and Joshi 2018).
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5.4 Glyphosate's Paradox

Due to the accumulation of glyphosate in the environment, many non-target organ-
isms are constantly exposed to it (Primost et al. 2017). Different reports showed the
toxic effects of glyphosate along a range of animals, from lower invertebrates to
higher vertebrates (Gill et al. 2018). Although the shikimic acid pathway is absent
in mammals, several adverse effects such as genotoxicity, cytotoxicity, and endo-
crine disruption have also been reported in humans (Gill et al. 2018). The innocuous
status of glyphosate has been challenged over the last two decades. Concerned
researchers showed alarming data that led to a change in categories for glyphosate
from safe to probably carcinogenic for humans in 2015 by the International Agency
for Research on Cancer (IARC) (Cressey 2015; Sergi 2019). However, since then,
other studies and literature revisions dissent with [ARC's conclusion stating that the
data does not support glyphosate's carcinogenic and genotoxic risk to humans
(Acquavella et al. 2016; Brusick et al. 2016; Williams et al. 2016).

Although the controversy surrounding glyphosate's safety (Peterson Myers et al.
2016; Duke 2020), and the use of alternative herbicides when possible (Buerge et al.
2020), there is a tendency to sustain its use because of its high herbicidal effective-
ness compared to other compounds and its unique mode of action (Fig. 5.1). Within
the technological package of many cash crops, other herbicides such as atrazine,
paraquat, and metolachlor (regarded as endocrine disruptor, associated with
Parkinson's disease and classified as Category III by the US EPA, respectively) pres-
ent higher risks for human health and the environment regarding toxicity and eco-
system organization perturbation (Klingelhofer et al. 2021). Scientists who believe
that the benefits of using glyphosate instead of other herbicides outweigh its harm-
ful potential are searching for alternatives to reduce negative environmental impacts
and human health deterioration due to glyphosate overuse and accumulation.
Therefore, as expected, the countries currently leading glyphosate-related research
(USA, Brazil, Canada, China, and Argentina) are those with the highest values of
herbicide use (Klingelhofer et al. 2021).

5.5 Glyphosate Removal Efforts

Glyphosate is virtually everywhere (Lupi et al. 2015); the compound's high stability
and the current rate of application in agriculture turn it into a pseudo-persistent pol-
lutant. Thus, there is a threat of environmental degradation because of its accumula-
tion due to a combination of overuse and slow degradation once in the environment
(Primost et al. 2017). In this regard, several physical and chemical methods of deg-
radation have been explored (Fig. 5.2), most of which consist of adsorption and
advanced oxidation processes (Feng et al. 2020). However, these alternatives are not
practical when facing the need to remediate large soil extensions or water volumes.
In these cases, biologically mediated remediation deems to be the best option.
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ADSORPTION OXIDATION MICROBIAL

* Clays * Photolysis based + C-Nbond cleavage
* Activated carbon * Fenton based (AMPA pathways)

* Biochar * Electrochemical * C-Pbond cleavage
* Exchange resins * Qzonation (Sarcosine pathways)

Fig. 5.2 Physical, chemical, and biological alternatives for glyphosate removal

Microbial-mediated degradation of pesticides is an environmentally friendly and
cost effective alternative. Nevertheless, this technique requires long residence time,
even at favorable environmental conditions, for the biological treatment to achieve
high mineralization rates (Feng et al. 2020). Also, in the case of glyphosate, special
attention must be paid to the production of intermediate metabolites such as amino-
methylphosphonic acid (AMPA) with higher environmental persistence and destruc-
tive potential (Primost et al. 2017). In the soil system, the amount of AMPA (in
combination with the soil microbial biomass) serves as a good predictor of soil
degradation (Romano-Armada et al. 2019).

To date, as proposed by Zhan et al. (2018), the AMPA and the sarcosine pathway
are the two major microbial metabolic pathways described for glyphosate break-
down. The pathway yielding AMPA and glyoxylate involves cleavage of the C-N
bond via catalysis of glyphosate oxidoreductase (Bhatt et al. 2021), then the inter-
mediate metabolite AMPA can be excreted in the environment or further degraded
through the action of C-P lyase. The sarcosine pathway, involves direct cleavage of
the glyphosate C—P bond by the enzymatic complex C-P lyase, producing phos-
phate and sarcosine, which are later used in microbial metabolism (Fig. 5.3). In both
pathways, the intervention of C-P lyase is key to mineralize glyphosate, removing
the AMPA metabolite from the environment (Bhatt et al. 2021).

Until the late 1980s, the sarcosine pathway was thought to be exclusive to Gram
negative microorganisms (Wackett et al. 1987) because of the absence of evidence
showing C-P lyase expression in Gram positive bacteria. However, Gram positive
strains Arthrobacter sp. GLP-1, Arthrobacter sp. GLP-1/Nit-1, and Streptomycetes
sp. StC can degrade glyphosate by means of the sarcosine pathway (Pipke et al.
1987; Pipke and Amrhein 1988b; Obojska et al. 1999). Moreover, Bacillus cereus
CB4 presents both AMPA and sarcosine pathways as degradation mechanisms (Fan
et al. 2012). Nevertheless, within the Fungi kingdom, thus far only Purpureocillium
lilacinum and Penicillium 4A21 are thought to be able of using the sarcosine path-
way (Spinelli et al. 2021; Correa et al. 2023) (Table 5.1).

Regardless of the glyphosate degrading pathway present used by the microor-
ganisms described in the literature, most microbial isolates can use glyphosate as a
phosphorus source. Conversely, not many are able to use the compound as a carbon
and nitrogen source. In fact, only four strains have been described that are capable
of using the compound as a carbon source: Achromobacter sp. LW9, Agrobacterium
radiobacter SW9, Comamonas odontotermitis P2, and Ochrobactrum intermedium



5 Following the Steps Towards Glyphosate Bioremediation. How Close Are We... 133

C-P lyase HCHO
S o Formaldehyde
NJL i

SGI'WSIHS OJ\/NHR
0,
Acelylation QR ﬁt) 1’ 0 Microbial
pr— \)ko“ biosynthesis
and metabolism
Acetylglyphosate
thpl_msata 0 o )
in e — OHJIV,O—., co,
Glyphosate-Based Glyoxylic acid
Herbicides
Glyphosate
oxidoreductase
C-P lyase

HCHO
Fnrrnaldehyde

, g ; CHy- N"l:
i _l__.""' L _H,N;;%H_ Methylamine NH;
oo HCHO -
AMPA o 0 . I:rmaidehyd&
O:EJJ\ i
o

ol
Frkdnmient Phosphonoformaldehyde L PO

Fig. 5.3 Degradation pathways of glyphosate in bacteria (Feng et al. 2020)

Sq20; three others are able of using it as nitrogen source: Arthrobacter sp. GLP-1/
Nit-1, Streptomycete sp. StC, and Penicillium chrysogenum (Table 5.1).

5.6 Current Approach for Bioremediation

The alternatives described for bioremediation have focused on microbial isolation
for their use in glyphosate removal (Elarabi et al. 2020; Masotti et al. 2021).
Oftentimes, the sources of isolation are contaminated soils or soils from fields with
a long history of herbicide application (Dick and Quinn 1995; Fan et al. 2012;
Sviridov et al. 2012; Ermakova et al. 2017; Firdous et al. 2018; Xu et al. 2019; Pérez
Rodriguez et al. 2019; Firdous et al. 2020). However, promising microorganisms
come from sources as diverse as sewage sludge (Balthazor and Hallas 1986; Wackett
et al. 1987; Jacob et al. 1988; Mcauliffe et al. 1990; Obojska et al. 1999), rhizo-
sphere (Kryuchkova et al. 2014), and even samples of everyday domestic appliances
such as the water from a central heating system (Obojska et al. 2002) (Table 5.1).
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Glyphosate microbial remediation studies commonly involve using it as a nutri-
ent source, either of carbon, nitrogen, or phosphorus (Table 5.1). Bacteria use
diverse mechanisms to break down the compound, consequently removing it from
the environment. Degradation of the herbicide is the main researched strategy, i.e.,
there are no studies that show microbial bioremediation by inner cell accumulation
(if possible) or EPS immobilization of the compound. Moreover, within pesticides
degradation strategies, microorganisms are commonly assayed as single strains or
forming consortia.

Bacteria present a higher degradation efficiency for glyphosate when applied in
consortia, which have a higher diversity of catabolic pathways for biodegradation,
rather than as cultures of single organisms (Géngora-Echeverria et al. 2020). Hence,
bioremediation of many toxicants through microbial consortia proved to be more
efficient than using pure cultures (Pileggi et al. 2020). For example, this strategy
enhanced the removal of contaminants such as lindane and Cr (VI) from liquid and
soil systems (Aparicio et al. 2018; Raimondo et al. 2020). Unfortunately, field eval-
uations of bioremediation potential are scarce (Pérez Rodriguez et al. 2019), reach-
ing oftentimes a maximum assay scale of controlled bioremediation of environmental
samples within the laboratory (Fu et al. 2016; Cheloufi et al. 2017), turning the
isolated bacteria into good prospects for a bioreactor but with little impact at the
field level.

5.7 Setting the Basis for the Future in Bioremediation

Understanding the role of specific enzymes and functional genes of single microor-
ganisms involved in glyphosate breakdown is critical to overcoming scale setbacks
(Pérez Rodriguez et al. 2019; Bhatt et al. 2021; Masotti et al. 2021). This informa-
tion gives insights for proper land management to favor the microbial activity by
generating optimal soil environmental conditions such as pH, aeration, humidity,
and carbon to nitrogen ratio. Current studies about environmental degradation
explore microbial community molecular metadata via next-generation sequencing
(NGS) and high-throughput DNA sequencing (Miseq), to give insight about diver-
sity and abundance as health and quality biomarkers. In the study of soil degrada-
tion due to Lanzhou lily (Lilium davidii var. unicolor) monoculture in China, specific
shifts in the microbial structure were identified as positively and negatively related
to lily's culture, concluding that the phylum Proteobacteria and the genus
Sphingomonas could be considered as good indicators of sustainable soil manage-
ment (Shi et al. 2021).

However, studies of glyphosate's impact on the soil microbiota have not given
consistent results (Roslycky 1982). Depending on the study, the experimental out-
comes of the impact of glyphosate's application on the soil microbial community
gave conflicting results, showing negative effects (Kremer and Means 2009; Zobiole
et al. 2011; Tofino Rivera et al. 2020), inconclusive or unknown knock-on effects
(Lane et al. 2012; Mandl et al. 2018), no effect at all (Kepler et al. 2020), or even
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potential positive effects (Locke et al. 2008). These results serve as good reminders
that the soil system is complex and dynamic, and its behavior depends on a wide set
of environmental, social, and economic variables. Several years of specific pesti-
cides application or tilling leave a legacy that shapes the microbiome of a soil, lead-
ing, for example, to completely different microbiomes in adjacent plots.

5.8 Changing Lanes Towards Future Strategies

Although some studies stated that the response of a soil microbiome towards
glyphosate application can be applicable to other soils (Busse et al. 2000), the avail-
able literature proves otherwise. For example, the prokaryote and fungal soil com-
munity sequencing of a 2-year long field study on corn and soybean cropped in a
range of different sites showed no significant differences in composition between
soils from plots with and without GBH's application (Kepler et al. 2020). Conversely,
the high-throughput sequencing of the bacterial and fungal microbiome of vineyard
soils with different under-vine weed control managements showed dramatic differ-
ences in the microbial community composition of soils treated with glyphosate
compared to other management practices (Chou et al. 2018). Nevertheless, a recent
study proved the potential of a synthetic microbial community tailored to mimic the
root microbiome of Arabidopsis, which after slight composition modifications was
able to induce plant growth promotion under the application of low doses of glypho-
sate (Ramirez-Villacis and Finkel 2020).

Understanding the soil microbiome behavior when faced with glyphosate is par-
amount in weed management science (Gornish et al. 2020) for many reasons. First,
to avoid inducing glyphosate resistance by horizontal gene transfer from bacteria to
plants (Cuhra 2018). Second, to avoid inducing emergence of phytopathogens
which require the input of other pesticides (Kremer and Means 2009; Zobiole et al.
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Fig. 5.4 Hypothetical behavior of different types of soil and root microbiomes after the first input
of glyphosate followed by continuous and systematic application. Understanding the microbial
community strengths and weaknesses is essential for the future search for bacterial ensembles
which prove resilient to glyphosate's application negative effect
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2011). And finally, to apply agricultural practices that favor optimal soil environ-
mental conditions for microbial communities with the potential to improve plant
growth (Ramirez-Villacis and Finkel 2020) and soil quality after glyphosate
application.

Currently, it is possible to determine changes in the microbial community's com-
position and functions following a perturbation event. Hence, through the interpre-
tation of such responses, the likelihood of identifying the strengths and weaknesses
of the microbial community faced with glyphosate application is higher. Targeting
resilient microbiomes opens up the opportunity for two strategies of in situ glypho-
sate degradation: taking them as a template for synthetic communities' creation, or
to enrich and use them to inoculate the soil. Both alternatives could speed up the
process for successful bioremediation at the field level (Fig. 5.4).

5.9 Conclusion

Future studies should be performed to weigh the impact of glyphosate application
on the soil microbial community's functional structure and metabolism. There is a
need to change the current approach on bioremediation, which seeks solutions
through a reduced number of microorganisms, to explore the possibilities given by
omics methodologies combined with ecological analysis of the soil microbiome.
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Chapter 6

Role of Enzymes in Biodegradatison

of Pesticides: General Aspects and Recent
Advances

Rupa Rani, Vipin Kumar, and Pratishtha Gupta

Abstract Environmental pollution is one of the prominent problems of the twenty-
first century. Since the introduction of pesticides for the killing of pests leads to an
increase in crop productivity, indiscriminate use of pesticides for pest and vector
control causes soil and water pollution due to environmental persistence, toxicity
and accumulation. Several physicochemical strategies have been employed for the
degradation of pesticides from polluted soil and water, but these techniques are
costly and produce toxic products. Consequently, there is a need for effective and
safe techniques for pesticides bioremediation. This chapter presents an overview of
pesticides with various physicochemical and biological strategies for efficient pes-
ticides bioremediation. This chapter also deals with several bacteria and fungi that
have been employed in the biodegradation of pesticide residues. Biodegradation
ability is based on enzymes which include oxidoreductase (GOX), monooxygenase
(Esd, Ese, Cytochrome P450), dioxygenases (TOD), carboxylesterases (E3), phos-
photriesterases (OpdA, OPH, PTE), haloalkane dehalogenases (AtzA, LinB and
TrzN), haloalkane dehydrochlorinases (LinA), diisopropylfluorophosphatase
(DFPase), paraoxonase (PONI), SsoPox, organophosphate acid anhydro-
lase (OPAA).
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Table 6.1 Pesticides, their characteristics and examples

Pesticides Characteristics Examples
Acaricides Kill mites feeding on animals | Chlorenthol, chlorfenson, bifenazate,
and plants cyhexatin, dicofol, dinoseb
Fungicides Kill fungi (such as moulds, Azoxystrobin, Bordeaux mixture, captan,
blights, rusts, and mildews) | dinocap, pentachlorophenol (PCP), sulphur,
thiram
Herbicides/ Kill weeds and other plants Dinoseb, atrazine, isoproturon, maleic
weedicides hydrazide, simazine, 2,4D, 2,4,5-T, Dicamba
Insecticides Kill insects and arthropods Aldrin, aldicarb, carbamyl, DDT, endosulfan,
HCH, lindane, malathion
Molluscicides Kill snails and slugs carbonyl, metaldehyde, methicarb, PCP,
phorate
Microbial Kill microorganism pests Bordeaux mixture, cupric hydroxide,
pesticides streptomycin, tetracycline
Nematicides Kill nematodes that feed on | Aldicarb, methyl isocyanate, methyl bromide
plant roots
Rodenticides Control rodents including Aluminium phosphide, methyl bromide,
mice sodium fluoroacetate, zinc phosphide,
warfarin

Source: Duke (2018)

6.1 Introduction

During the green revolution, to meet the need of food production for increasing
human population, fertilizers and pesticides were used to increase crop productivity
and prevent pest attacks (Verma et al. 2014). Pesticides are various groups of inor-
ganic and organic chemicals such as insecticides, herbicides, fungicides, rodenti-
cides, nematicides used to control or kill pests such as insects, herbs, weeds, rodents,
nematode, and microorganisms (Table 6.1). An increase in the consumption of pes-
ticides, with the introduction of aldrin, benzene hexachloride (BHC), dieldrin,
dichlorodiphenyltrichloroethane (DDT), endrin, and 2,4-dichlorophenoxyacetic
acid (2,4D) was mainly began after World War II (Ortiz et al. 2013). However, indis-
criminate and unregulated use of pesticides has increased its residues in air, water,
soil, and food chain causing negative effects to human health, birds, wildlife,
domestic animals, fish (Sharma et al. 2016).

In addition to this, pesticides can be categorized according to their chemical
composition, which comprises four main groups, namely organochlorines, organo-
phosphorus, carbamates and pyrethrin and pyrethroids (Fig. 6.1) with examples
(Table 6.2).
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Fig. 6.1 Type of pesticides based on the chemical composition

Table 6.2 Types of pesticides and their examples

Types of
pesticides Examples

Organochlorines Endosulfan, DDT, aldrin, chlordane, dicofol, dieldrin, endrin, fipronil,
lindane, heptachlor, hexachlorocyclohexane

Organophosphorus | Azinphos-methyl, acephate, bromophos, chlorpyrifos, coumaphos,
diazinon, dimethoate, dichlorvos, disulfoton, dioxathion, ectophos,
fenitrothion, fenitrooxon, glyphosate, fonofos, leptophos, mathamidophos,
malathion, parathion, profenofos, phenthoate, phosmet, phorate,
phosphothion, trichlorfon

Carbamates Aldicarb, carbofuran, carbaryl, cartap, carbosulfan

Pyrethroids Chlorfenvinphos, cypermethrin, deltamethrin, flumethrin, fenvalerate,
ivermectin, permethrin

Source: Huang et al. (2018)

6.2 Organochlorine Pesticides

Organochlorine pesticides or chlorinated hydrocarbons are organic compounds con-
sisting of five or more covalently bonded chlorine atoms, mainly used in agriculture
for controlling pests, vector control and in public health. These are non-polar, lipo-
philic, and persistent. Therefore, unregulated and indiscriminate application of
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organochlorine pesticides leads to a long-term residual effect in the environment
which results in environmental pollution and accumulation in mammals. Aldrin,
chlordane, dieldrin, DDT, endosulfan, and lindane are the most common examples
of organochlorine pesticides (Ahmad and Ahmad 2014).

6.3 Organophosphorus Pesticides

Organophosphorus pesticides are a broad spectrum of pesticides as they control a
wide range of pests. These can be heterocyclic, cyclic, and aliphatic with phospho-
rus present in the centre. These pesticides are less toxic as compared to organochlo-
rine pesticides. They have multiple functions such as it can be used as stomach and
contact poisons as well as fumigants resulting in nerve poisons. They showed toxic-
ity to vertebrates and invertebrates by binding to acetylcholinesterase or cholines-
terases leading to interruption of nerve impulses. Common examples of
organophosphorus pesticides are parathion, malathion, diazinon and glyphosate
(Ortiz-Hernandez et al. 2013).

6.4 Carbamates

Carbamates can be used as a contact poison, stomach poison and fumigant poison.
It is similar to organophosphates in the mode of action, such as by interrupting
nerve signals transmission leads to poisoning which causes the death of pest.
However, their origin is different, as carbamates are obtained from carbamic acid,
whereas organophosphates are derived from phosphoric acid. It can also be used as
a contact poison, stomach poison and fumigant poison. Carbamates cause less envi-
ronmental pollution due to their similar molecular structure to that of natural organic
substances resulting in easy degradation. Some of the widely used insecticides are
bendiocarb, carbaryl, carbofuran, dioxacarb, fenoxycarb, fenobucarb, isoprocarb,
methomyl and propoxur (Kaur et al. 2019).

6.5 Pyrethroids

Synthetic pyrethroid can be synthesized by copying the structure of natural pyre-
thrins and used against household pests. As compared to natural pyrethrins, syn-
thetic pyrethroid pesticides are non-persistent with longer residual effects. These
pesticides are low toxic to mammals and birds while more toxic to insects and fish.
These pesticides are less toxic as compared to organophosphates and carbamates.
Allethrin, cyfluthrin, cypermethrin, deltamethrin, and permethrin are the most used
synthetic pyrethroid pesticides (Ortiz-Herndndez et al. 2013).
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6.6 Different Approaches for Pesticide Remediation

Several methods such as physicochemical and biological play major roles in the
remediation of contaminated sites as well as decreasing the residual levels to safe
and acceptable levels resulting in minimizing the toxic effects of pesticides on the
human health and environment.

6.6.1 Physicochemical Methods

Physicochemical treatments, such as the Fenton process, heterogeneous photoca-
talysis (HPC), plasma oxidation and ozonation, thermal desorption (at low tempera-
ture) and incineration (Table 6.3) have been applied for the removal of
contaminants.

6.6.2 Biological Methods

Several biological systems, mainly bacteria and fungi are used in the degradation of
pesticides from contaminated sites. Because of the adaption of several metabolic
pathways, wide distribution and diversity, microorganisms can be vitally used for
the remediation of pesticides. The degradation efficacy relies on optimization of
environmental conditions, for instance, pH of the soil, temperature, moisture con-
tents as well as microbial community (Chishti et al. 2013; Javaid et al. 2016).
Various microorganisms that have the potential to degrade pesticides are listed in
Table 6.4.

Table 6.3 Characteristics and limitations of different physicochemical methods

Physicochemical

methods

Characteristics

Limitations

Fenton process

Production of reactive hydroxyl radicals
(‘'OH) by oxidation of Fe** ions in the
presence of hydrogen (H,0,), permanganate
(MnO*), persulfate (S,04%), and ozone (O3)
(Baldissarelli et al. 2019)

Reduces soil pH, which
makes it harmful for soil
microorganisms resulting in
hindering the cultivation of
crops (Cheng et al. 2016)

Heterogeneous Use of TiO,, ZnO, ZnS as photosensitizers in | It depends on the particle
photocatalysis photo induced processes. Semiconductors size, structure, morphology,
(HPC) stimulate the displacement of electrons surface, and adsorption.

through ultraviolet irradiation from the
valence to the conduction band, resulting in
the production of hydroxyl radicals used in
the degradation of pollutants (Santos et al.
2015)

Recovering semiconductors
to be reused is laborious
and challenging (Castro

et al. 2016)

(continued)
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Table 6.3 (continued)

Physicochemical

methods Characteristics Limitations

Plasma oxidation | Produce electrons with a high electric charge. | Need high energy for

and ozonation

Provide energy for reactive molecules, for
instance, hydrogen peroxide, hydroxyl, ozone,
oxygen and forming free radicals
(Aggelopoulos et al. 2015; Cheng et al. 2016)

generating oxidizing
compounds (Brillas et al.
2003)

Thermal
desorption (at low
temperature)

The heating of contaminated media in the gas
stream at a temperature between 300 and
1000°F leads to the volatilization of organic
compounds. The products formed are passed
through a burner (contaminants are destroyed)
or condenser (converts the gas phase into a
liquid phase) or they are encapsulated by
carbon adsorption beds (immobilize, but do
not destroy the contaminants) (Parte et al.
2017)

Need highly specialized
facility and cost-effective
(Parte et al. 2017)

Incineration

The heating (at a temperature between 1000
and 1800 °F) of contaminated media leads to
volatilization of organic compounds and
partial oxidation. Further, the destruction of
organic compounds at 1600 and 2200 °F
temperature, which leads to the formation of
ash which will be further disposed of in a
landfill, if it meets safety regulations (Parte
et al. 2017)

Need highly specialized
facility and cost-effective
(Parte et al. 2017)
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Table 6.4 Pesticide degradation by microorganisms

Pesticides
Organopho:

(continued)



152 R. Rani et al.
Table 6.4 (continued)
Pesticides Types Bacteria References
Organochlorine Endosulfan Pseudomonas sp. TAH Zaffar et al. (2018)
Pseudomonas mendocina ZAM1 | Mir et al. (2017)
Stenotrophomonas maltophilia Ozdal et al. (2017)
0G2
Pseudomonas sp. RPT 52 Gupta et al. (2016)
Klebsiella sp. M3 Singh and Singh (2014)
Alcaligenes faecalis strain JBW4 | Kong et al. (2014)
Bacillus subtilis Kumar et al. (2014)
Agrobacterium tumefaciens Thangadurai and Suresh
(2014)
Alcaligenes faecalis IBW4 Kong et al. (2013)
Pseudomonas, Bacillus Harikumar et al. (2013)
Pseudomonas fluorescens Giri and Rai (2012)
Achromobacter xylosoxidans C8B | Singh and Singh (2011)
Azotobacter sp. Castillo et al. (2011)
Pseudomonas sp. IITRO1 Bajaj et al. (2010)
Pseudomonas aeruginosa Kalyani et al. (2009)
Bordetella sp. B9 Goswami and Singh
(2009)
Achromobacter xylosoxidans CSS | Li et al. (2009)
Ochrobacterum sp., Burkholderia | Kumar et al. (2008)
sp., Arthrobacter sp.
Pseudomonas aeruginosa. Arshad et al. (2008)
Pseudomonas aeruginosa, Hussain et al. (2007)
Pseudomonas spinosa,
Burkholderia cepacia
Rhodococcus erythropolis, Kumar et al. (2007)
Stenotrophomonas maltophilia
Bacillus sp. Shivaramaiah and
Kennedy (2006)
Staphylococcus sp., Bacillus Kumar and Philip
circulans I, Bacillus circulans II | (2006)
Pseudomonas sp. Lee et al. (2006)
Klebsiella oxytoca Kwon et al. (2005)
Aldrin Pseudomonas fluorescens Erick et al. (2006)
Dieldrin Bacillus sp., Arthrobacter sp. Jagnow and Haider
(1972)
Endrin Micrococcus 204, Arthrobacter Patil et al. (1970)
sp. 278, Pseudomonas sp. 27,
Bacillus sp. 4
DDT Azoarcus Ortiz et al. (2013)

Eubacterium limosum

Yim et al. (2008)

Ralstonia eutropha strain AS

Hay and Focht (2000)

(continued)
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Pesticides Types Bacteria References

Methyl Cyanobacteria Ibrahim et al. (2014)

parathion Pseudomonas sp. strain WBC-3 | Wang et al. (2014)
Stenotrophomonas maltophilia Mohamed (2009)
M1
Pseudomonas sp. A3 Zhongli et al. (2002)
Pseudomonas sp. WBC Yali et al. (2002)
Plesiomonas sp M6 Zhongli et al. (2001)
Plesiomonas sp. strain M6 Cui et al. (2001)

Glyphosate Pseudomonas aeruginosa and Al-Arfaj et al. (2013)
Bacillus megaterium
Agrobacterium radiobacter P230 | Horne et al. (2002b)
Geobacillus caldoxylosilyticus Obojska et al. (2002)
T20
Pseudomonas monteilii Horne et al. (2002a)
Nocardiodes simplex NRRL Mulbry (2000)
B24074

Monocrotophos | Pseudomonas stutzeri MTCC Barathidasan and
2300 Reetha (2013)
Paracoccus sp. M1 Jia et al. (2007)
Pseudomonas aeruginosa F10B Singh and Singh (2003)
and Clavibacter michiganensis
SBLI11
Pseudomonas mendocina Bhadbhade et al.

(2002a)

Pseudomonas spp., Bacillus Bhadbhade et al.
megaterium., Arthrobacter spp., (2002b)
Arthrobacter atrocyaneus

Fenitrothion Burkholderia sp. NF100 Hayatsu et al. (2000)

Carbamates Methomyl Stenotrophomonas maltophilia Mohamed (2009)

M1

In recent years, the use of fungi as an effective tool for the biodegradation process
has increased due to relatively easy cultivation and possession of a great enzymatic
metabolism (Camacho-Morales and Sanchez 2016). Several studies that reported pes-
ticides degradation by fungi are listed in Table 6.5.

6.7 Several Enzymes Involved in Pesticide Degradation

Enzymes play an essential role in the bioremediation of individual pesticides. The
use of enzymes to degrade or transform pesticides is an emerging technology as it
is more effective than physicochemical techniques. Enzymes are involved in the
pesticide degradation via evolved metabolic resistance and several intrinsic detoxi-
fication mechanisms in the target organism, whereas in the environment through
biodegradation by water and soil microorganisms. Pesticide metabolism involves (i)
transformation of the parent compound to a more water-soluble and a less toxic
product via hydrolysis, reduction, or oxidation, (ii) conjugation of pesticide
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Table 6.5 Pesticide degradation by fungi
Pesticides Compound Fungi References
Organochlorine Endosulfan Aspergillus niger Bhalerao and
Puranik (2007)
Penicillium sp. Romero-Aguilar
et al. (2014)
Trametes versicolor, Ul¢nik et al. (2013)
Pleurotus ostreatus,
Gloeophyllum trabeum
Mortierella sp. Kataoka et al.
(2010a)
Trametes hirsuta Kamei et al. (2011)
Botryosphaeria laricina Silambarasan and
JASG., Aspergillus tamarii Abraham (2013)
JAS9
Dieldrin Cordyceps brongniartii Xiao and Kondo
ATCC66779, Cordyceps (2013)
militaris KS-92
Phlebiabrevispora Nakasone | Kamei et al. (2010)
TMIC33929(strain YK543)
Mucor racemosus strain DDF | Kataoka et al.
(2010b)
Endrin Trichoderma viride Patil et al. (1970)
DDT Trichoderma viride Patil et al. (1970)
Heptachlor Phlebia sp. Xiao et al. (2011)
Organophosphorus Chlorpyrifos Cellulomonas fimi, Barathidasan et al.
Phanerochaete (2014)
chrysosporium
Trichoderma harzianum, Harish et al. (2013)
Rhizopus nodosus
Acremonium sp. GFRC-1 Kulshrestha and
Kumari (2011)
Verticillium sp. DSP Fang et al. (2008)
Trichosporon sp. Xu et al. (2007)
Hypholama fascicularae, Bending et al.
Coriolus versicolor (2002)
Glyphosate Alternaria alternata Lipok et al. (2003)
Penicillium chrysogenum Klimek et al.
(2001)
Monocrotophos Aspergillus niger MCP1 Jain et al. (2012)
(MCP)

metabolites to an amino acid or sugar resulting in a decrease in toxicity as well as
increase in water solubility, (iii) conversion of pesticide metabolites into non-toxic
secondary conjugates. Bacteria and fungi involved extracellular or intracellular
enzymes which are involved in pesticide metabolism (Ortiz-Herndndez et al. 2013).
Enzymes involved in bioremediation were mainly oxidoreductases, monooxygen-

ase,

dioxygenases,

carboxylesterases,

phosphotriesterases,

haloalkane
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dehalogenases, haloalkane dehydrochlorinases, diisopropylfluorophosphatase,
Paraoxonase (PON1), organophosphate acid anhydrolase (OPAA), carboxylester-
ases (Table 6.6). Several enzymes that have been applied for the degradation of
pesticides from polluted environments are present in Table 6.7.

Table 6.6 Enzymes and their characteristics

Enzymes

Characteristics

Oxidoreductase (GOX)

Oxidoreductases are a group of an enzyme with broad
substrate specificity that catalyses oxidation and
reduction reaction by the transfer of electrons from an
electron donor (reductant) to an acceptor (oxidant).
Glyphosate oxidase (GOX) is a flavoprotein amine
oxidase that is involved in herbicide glyphosate
bioremediation that catalyses the oxidation of herbicide
and releases the keto acid glyoxylate by producing
aminomethyl phosphonate (AMPA).

Monooxygenase (Esd and Ese,
Cytochrome P450)

Monooxygenases catalyse the transfer of O? (one atom) to
an organic compound, which leads to an increase in
reactivity and water solubility of xenobiotic compounds
during degradation.

Esd and Ese belong to the two-component flavin
diffusible monooxygenase family (TC-FDM), which play
an important role in the degradation of endosulfan and its
toxic metabolite endosulphate.

Cytochrome P450 uses oxygen to oxidize or hydroxylate
substrates in an enantiospecific manner. It also contains a
catalytic Fe?*-containing porphyrin group which binds to
carbon monoxide at 450 nm. Cytochrome CYP1A1 also
termed aryl hydrocarbon hydroxylase is an example of
cytochrome P450, and has the ability to bioremediation of
herbicides such as chlortoluron, atrazine, and norflurazon.
Cytochrome CYP76B1 is another example of cytochrome
P450, which catalyses the oxidative dealkylation of
phenylurea herbicides such as linuron, isoproturon, and
chlortoluron.

Dioxygenases (TOD)

Dioxygenases are a broad group of enzymes that act
similar to monocyclic aromatics, monooxygenase
aliphatic olefins and other miscellaneous substrates.
Toluene dioxygenase (TOD) is an example of
dioxygenase for a range of compounds such as
monocyclic aromatics, fused aromatics, linked aromatics
and aliphatic olefins.

Carboxylesterases (E3)

Esterase 3 (E3) is an o/p hydrolase fold carboxylesterase,
which is involved in detoxification-mediated resistance to
organophosphorus and pyrethroid insecticides. It operates
through a catalytic triad, including aspartate (E351),
serine (S218) and histidine (H471).

(continued)
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Enzymes

Characteristics

Phosphotriesterase (OPH, OpdA,
PTE)

Phosphotriesterase catalyses the hydrolysis of
organophosphorus triesters, belongs to the amido-
hydrolase metalloenzyme family. Organophosphate
hydrolase (OpdA), the enzyme is an (a/f3)g barrel
structure used as a commercial product to degrade
residues of the organophosphorus present in wastes and
solid.

After poisoning with highly toxic organophosphate
pesticides, the addition of OpdA improved survival in rats
and monkeys.

Haloalkane dehalogenases (LinB,
AtzA and TrzN)

Haloalkane dehalogenases belong to the o/f—hydrolase
fold family. LinB, AtzA and TrzN are the examples of
haloalkane dehalogenases.

LinB plays a crucial role in the degradation of 3-HCH
and 5-HCH.

AtzA and TrzN hydrolyses halide—carbon bonds. In the
atrazine catabolic pathway, AtzA is the first enzyme
encoded by atzA-atzF from the transmissible pADP1
plasmid. Iron-dependent AtzA was involved in the
dechlorination of atrazine and related chloro-s-triazine
herbicides.

Zinc-dependent TrzN was involved in the dechlorination
of amides, S-alkyl groups, O-alkyl groups and halides.

Haloalkane dehydrochlorinases
(LinA)

LinA catalyses the dehydrochlorination of the insecticide
y-HCH which can be further catabolised by the other
enzymes of the lin operon.

Diisopropylfluorophosphatase
(DFPase)

DFPase is a six-bladed B-propeller structure having two
Ca’" ions, which play a vital role in the catalysis and
provide structural integrity.

Administration of pegylated DFPase in rats reduces the
rate of lethality with a subcutaneous 3xLDs, dose of
soman (G-type nerve agents).

Paraoxonase (PON1)

Six-bladed propeller structure that uses Ca** ions within
its active site.

It also exhibited anti-oxidative, anti-inflammatory,
anti-atherogenic, anti-diabetic, antimicrobial, properties
along with paraoxon and organophosphorus detoxifying
properties.

SsoPox

SsoPox is an (a/p)g barrel folded structure in which the
active site is present at the C-terminal section of the
structure. It showed activities at up to 100 °C in the
presence of denaturing agents such as detergents.

Organophosphate Acid Anhydrolase
(OPAA)

OPAAs are dipeptidases that cleave dipeptide bonds in
which the C-terminal residue is proline. OPAA has
undergone a series of mutations to increase its catalytic
activity and substrate specificity.

Source: Scott et al. (2008); Verma et al. (2014); Bhandari et al. (2021), Bhandari et al. (2021);

Verma et al. (2014), Scott et al. (2008)
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Table 6.7 Summary of pesticide degrading enzymes of various microbial strains
Originating Cofactor Documented target
Enzyme species requirements | pesticide(s) References
PTE Brevundimonas | Zn Diethyl-VX, Dimethyl-VX | Bigely
diminuta et al.
(2019)

DFPase Loligo vulgaris | Ca** Diisopropyl Melzer
fluorophosphate, sarin, et al.
cyclosarin (2012),

Zhang et al.
(2018)
PONI1 Human liver Ca* Paraoxon Purg et al.
(2017)
OPAA Alteromonas sp. | Mn** Paraoxon Xiao et al.
(2017)
Ssopox Sulfolobus Co*, Fe** Paraoxon Elias et al.
solfataricus (2008)
Glyphosate Agrobacterium Flavin (FAD) | Glyphosate Scott et al.,
oxidase (Gox) strain T10, (2008)
Pseudomonas sp
LBr
Esd Mycobacterium | Flavin and Endosulfan and Scott et al.
sp. NADH Endosulphate (2008)
Ese Arthrobacter sp | Flavin Endosulfan and Scott et al.
(FMN) Endosulphate (2008)
CyplAl/1A2 Mammalian (Rat) | Heme and Atrazine, chlortoluron and | Scott et al.
NADH norflurazon (2008)
Cyp76B1 Helianthus Heme and Chlortoluron, linuron and | Scott et al.
tuberosus NADH isoproturon (2008)
cytochrome P450 | Pseudomonas Heme and Pentachlorobenzene and Scott et al.
putida NADH Hexachlorobenzene (2008)
TOD Pseudomonas Fe?* and Trifluralin herbicides Scott et al.
putida NADH (2008)

E3 Lucilia cuprina | None Phosphotriester Scott et al.
insecticides and synthetic | (2008)
pyrethroids

OPH Agrobacterium | Fe** and Zn** | Insecticides Scott et al.

radiobacter phosphotriester (2008)
OpdA Pseudomonas Fe?* and Zn** | Methyl parathion, Scott et al.
diminuta; parathion, malathion, (2008)
Flavobacterium coumaphos

PdeA Delftia None Organophosphorus Scott et al.
acidovorans compounds (2008)

LinA Sphingomonas None Hexachlorocyclohexane Scott et al.
sp., Sphingobium (y-isomer) (2008)
sp.

LinB Sphingomonas None Hexachlorocyclohexane Scott et al.
sp., Sphingobium (B— and d—isomers) (2008)

sp.

(continued)



158 R. Rani et al.

Table 6.7 (continued)

Originating Cofactor Documented target
Enzyme species requirements | pesticide(s) References
AtzA Pseudomonas sp. | Fe** Chloro-s-triazine Scott et al.
ADP herbicides (2008)
TfdA Ralstonia Fe?* and pyridyloxyacetate Scott et al.
eutropha o- herbicides and (2008)
ketoglutarate | 2,4-dichlorophenoxyacetic
acid
TrzN Nocardioides sp. | Zn** Chloro-s-triazine Scott et al.
herbicides (2008)
DMO Pseudomonas NADH and a | Dicamba Scott et al.
maltophilia Fe-S centre (2008)
Organophosphate | Agrobacterium Binuclear Methyl paraoxon Horne et al.
Hydrolase (OpdA) | radiobacter Fe*-Zn* (2002b)

6.8 Conclusion

In addition to controlling or killing pests, pesticides can move off-site resulting in
contamination of water, soil and the ecosystem resulting in damage to non-target
organisms. The bioremediation process for the detoxification and/or removal of pes-
ticide residues from polluted soil is the best option available in integrated agricul-
tural management practices, due to its eco-friendly, cost-effective and efficacious
nature. Various microorganisms (bacteria and fungi) are used in the removal of pes-
ticides from contaminated sites. Bacterial degradation involves specific genes and
enzymes for the breakdown of functional groups present in the pesticides. In con-
clusion, although significant research has been done on the enzymes associated with
the biodegradation of pesticides, further research in relevant environmental condi-
tions is needed to confirm the ability of bacteria and fungi for large-scale decon-
tamination. In addition, significant degradation of pollutants will be enhanced using
genetically engineered microorganisms that will produce many recombinant
enzymes using eco-friendly technology is still unexplored.
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Chapter 7

The Environmental Implication

and Microbial Remediation of Pesticide
Pollution: A Critical Assessment

of the Concept, Strategies, and Future
Perspective

Barkha Kamal, Rekha Goswami, and Abhilasha Mishra

Abstract The environment is polluted with organic contaminants from many
sources such as the transportation, chemical industry, and pesticide application in
agricultural regions. Pesticides are used in over 500 distinct formulations in the
environment today, with agriculture accounting for the majority of pesticide use.
Organic (carbon-based) compounds that comprise manufactured molecules have
been classified as persistent organic pollutants. These contaminants stay in soils for
a long period, where they enter into the food chain directly or seep down to under-
ground water. Their potential as carcinogens, as well as their prevalence in the
water, soil, and air, raised concerns about their remediation. Bioremediation is a
process which utilizes microbes or microbial enzymes to treat polluted places in
order to restore them to their previous state. Microbes either consume the toxins or
assimilate all toxic substances from the environment, making the area virtually
contaminant-free. Organic molecules are generally eaten up, whereas heavy metals
and pesticides are digested within the system. In this chapter, various microbes and
recent advance tools for enhanced efficiency of pesticides bioremediation have been
discussed in detail.
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7.1 Introduction to Persistent Agrochemical/Pesticides

Persistent Organic Pollutants (POPs) are harmful substances which emerged due to
anthropogenic activities. POPs impart negative consequences on habitats, wildlife,
and people. The environment is polluted with organic contaminants by direct input,
transit, and precipitation processes from many sources such as the transportation,
chemical industry and other organics, chlorination treatment, and pesticide applica-
tion in agricultural regions (Kordel et al. 1997; Widenfalk 2002). Many concern
pollutants are toxic and recognized that they are harmful to human-being.
Unfortunately, these chemicals are persistent in environment in many circumstances
(Berdowski et al. 1997). These pollutants can infect drinking water wells once they
have entered into the groundwater and cause health problems. Long-range atmo-
spheric transmission is also a possibility for these compounds. The tendency of
these compounds to accumulate in animal fat tissue is one of the main concerns.
Because of the increasing quantities of hazardous substances within higher trophic
level species, such as mammals, indirect accumulation or biomagnifications may
create health concerns over time (Kaufman 1983; Moerner et al. 2002). Other com-
pounds are waste products produced by human and natural activities, with human
activity accounting for the majority of discharges (furans and dioxins). POPs include
highly dangerous industrial chemicals, i.e., PCBs (Polychlorinated biphenyls), pes-
ticides, i.e., DDT (Dichlorodiphenyltrichloroethane), and unintentional by-products
such as furans and dioxins, among other substances due to commercial operations
and burning. POPs are among the most harmful pollutants discharged into the envi-
ronment by humans, according to extensive scientific studies. Persistent and refrac-
tory organic chemicals, for example, chlorinated aromatics, heterocyclics, and
nitroaromatics have contaminated groundwater, soil, and sediments. Even after
decades later, the exact regions where chemicals were spilled or released tend to
retain the highest quantities of these contaminants (Kleka et al. 2001; Buccini
2004). Over time, actions were taken to reduce and eliminate the manufacture,
usage, and discharge of these compounds (Moerner et al. 2002). Stockholm
Convention on POPs states that POPs have hazardous properties, bioaccumulate,
nondegradable, and are transferred across international borders by water, air, and
migratory species, accumulating in aquatic and terrestrial ecosystems far from their
point of release. These agreements create stringent worldwide standards for initial
POPs lists. This Convention on POPs emphasizes on lowering and eradicating
twelve POPs (dubbed the "Dirty Dozen") from the environment. Eight pesticides
(DDT, aldrin, dieldrin, chlordane endrin, heptachlor, toxaphene, and mirex); two
chemicals (hexachlorobenzene and polychlorinated biphenyls); and two undesired
by-products (furans and dioxins) are among the twelve substances as mentioned in
(Fig.7.1) (Kleka et al. 2001; Gorman and Tynan 2001). Both instruments also allow
for the addition of additional compounds to these lists. They establish the following
safeguards: Restrictions or prohibition on the manufacturing and use of purpose-
fully created POPs, diminution on their import and export, arrangements for the safe
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Fig. 7.1 Different types of persistent organic pollutants (POPs)

handling of reserved stock, provisions for the reduction of emissions of unintended
produced POPs such as furans and dioxins.

The European Community is dedicated to ensuring that these two environmental
agreements are implemented effectively. Together with the other 15 Member States,
it signed both international instruments on POPs. The Protocol was ratified on April
30, 2004, while the Stockholm Convention was approved on November 16, 2004.
The World Bank is also working on a new programme called Persistent Organic
Pollutants (POPs), which intends to cooperate and to protect environment and
human health around the world against POPs (Buccini 2004). In addition, the scien-
tific community is working on this issue as a result of the deregulation of various
substances, such as pesticides have been evolved for utilized in landfarming and
non-agricultural purposes.

Contamination caused by soil despite the fact that most nations have banned the
use of chlorinated pesticides, these chemicals are nevertheless widely used around
the world. Former production locations and obsolete pesticide supplies both have
significant quantities. This problem is particularly severe in former communist bloc
countries in Eastern Europe and Asia. Pesticides were overproduced and distributed
centrally, resulting in massive volumes of toxic chemicals being accumulated.
Stocks that have been poorly secured and contain a substantial amount of chlori-
nated chemicals are now give rise to a severe threat to the humans and the environ-
ment (Vijgen 2005). Recent studies have shown that methanogenic granular sludge
has a potential to eliminate chlorinated pesticides—HCH, methoxychlor, and DDT
from the soil if used as inoculum. Use of a surfactant was suggested as a way to
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solve these flaws. Surfactant effects on bioremediation of chlorinated pesticide- pol-
lutants soil have been reported (You et al. 1996; Walters and Aitkin 2001; Quintero
et al. 2005).

7.2 Prevalence and Fate of Pesticides in the Environment

Initial considerations on pesticide performance in the environment pesticides have
been used for a long time: Sulphur was utilized as a fumigant by the Chinese about
1000 BC Seed of Strychnos nuxvomica (strychnine) which is also known as Nux
vomica, was used to kill rats, and tobacco leaves water extracts were used on herbs
to remove insects in the 17th century.

In the nineteenth century, pesticides derived from plants involve rotenone from
roots of Derris elliptica and pyrethrum from Chrysanthemum blooms. The weed
killer arsenic trioxide was utilized; the Colorado beetle was controlled with copper
arsenite (Paris Green); and the Bordeaux mixture (copper sulphate, water, and lime)
was used to combat vine downy mildew. 10% Sulphuric acid was utilized to remove
dicotyledonous weeds without hurting monocotyledonous crop cultivated plants
having waxy coats on their leaves in the twentieth century. Pesticide residues were
discovered in certain treated vegetables and fruits in the 1920s, causing public out-
rage. Development of insecticide and use of farmers in cultivation and public health
rose rapidly after WWII. Pesticides are widely used for bug control to prevent the
spread of diseases like malaria, river blindness, and typhus. Pesticides were used in
amount of 140 tonnes in 1940.

Synthetic organic pesticide manufacture and use skyrocketed during the
mid-1940s. The US Environmental Protection Agency had registered around 23,400
pesticide products by 1991 (Singhvi et al. 1994). Pesticides were utilized in 600,000
tonnes in 1997, with the agriculture business accounting for 77%, commercial,
industrial, and government entities for 12%, and private households accounting for
the remaining 11% (Moerner et al. 2002; Fishel 2005). Pesticides are used in over
500 distinct formulations in the environment today, with agriculture accounting for
the majority of pesticide use. Pre-harvest crop losses would average approximately
40% worldwide without adequate pest management, according to study as shown in
(Fig. 7.2).

Post-harvest pest control efforts must also be mandatory, as they pose a risk to
the environment without efficient pesticide control (Kennedy 1998). Pesticides are
applied to crops in the amount of four million tonnes per year around the world for
pest management, however only 1% of the entire pesticides applied exactly reach
the target pests (Pimentel et al. 1993; Zhang et al. 2004).

Their potential as carcinogens, as well as their prevalence in the water, soil, and
air, raised concerns about their continued use in cultivation. Under these circum-
stances, the harmful impact of chemicals use on public health and the environment
has gotten a lot of attention (Gavrilescu and Nicu 2005). One of the areas where
pesticides are thought to pose a threat is the environment. Pesticides constitute an
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Fig. 7.2 Average pesticide use per hectare cropland from 1990 to 2017 (Max Roser 2019)

environmental risk, and a variety of tools are now available to mitigate this risk,
including restrictions on chemical usage and the imposition of fees (Singhvi et al.
1994; Basrur 2002).

Many factors influence the possibility for pesticides to contaminate surface water
or groundwater, including pesticide properties, soil qualities, crop management
practices, and hydraulic loads on the soil. Pesticides come in a variety of sizes and
shapes. This is what enables them to target certain creatures, such as weeds or
insects. Chemical structure also plays a role in determining how a pesticide moves
through the surroundings. A few pesticides are water soluble; some pesticides are
having ability to volatilize from a liquid to a gaseous state and hence can spread in
the air very easily. Other aspects to consider while examining the chemical architect
and ability to decompose or transform in the surrounding environment, as well as
how much it will take for the change to occur. A few pesticides become nontoxic to
both their target organisms and the rest of the atmosphere during metamorphosis.
Other insecticides breakdown into harmful compounds than the original. Various
processes for the fate of pesticides in the environment are shown in (Fig. 7.3).

A few pesticides are water soluble; some pesticides are having ability to volatil-
ize from a liquid to a gaseous state and hence can spread in the air very easily. Other
aspects to consider while examining the chemical architect and ability to decom-
pose or transform in the surrounding environment, as well as how much it will take
for the change to occur. A few pesticides become nontoxic to both their target organ-
isms and the rest of the atmosphere during metamorphosis. Other insecticides
breakdown into harmful compounds than the original.

Pesticides degrade at varied rates depending on their chemical structure in the
environment. For example, soil organisms can destroy one pesticide in existence
while another takes many years to disintegrate (Nash and Woolson 1967; Kerle
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etal. 1996). A pesticide’s structure changes when it is degraded or transformed, and
this changes how it goes in the environment.

7.3 Environmental Implications of Pesticides and Overview
of Mitigation Strategies

Bioremediation is a procedure in which microbes or microbial enzymes treat pol-
luted places in order to restore them to their previous state. Bioremediation methods
are classed as either ex situ or in situ. Pesticides are naturally degraded under envi-
ronmental conditions to either water or CO, or less active by-product is known as in
situ bioremediation. It is a low-maintenance, low-cost, eco-friendly benign, and
long-term solution for contaminated soil clean up. Ex situ bioremediation necessi-
tates excavating contaminated soils and transporting them to another location for
treatment, which can be costly. Generally, in situ bioremediation methods are pre-
ferred over ex situ bioremediation methods to regenerate contaminated soils due to
the huge extent of agricultural land. There are three major classes of bioremediation
methods: (1) bioattenuation, which is based on the natural process of degradation;
(2) The addition of nutrients, water, and electron donors or acceptors to artificially
enhance pesticide decomposition is called biostimulation; (Hussain et al. 2009); and
(3) The microorganisms use that have the ability to break down substances (Goswami
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et al. 2018). A bioremediation technology’s use is influenced by the quantity, and
type and toxicity of the polluting chemical species present.

7.3.1 Bioattenuation, Biostimulation, and Bioaugmentation:
An Efficient Strategies of Bioremediation

7.3.1.1 Bioattenuation

This is a natural biodegradation process that does not require human involvement.
The process of bioremediation is determined by microorganisms’ metabolic ability
to clean or change the pesticide molecule, which is contingent on bioavailability and
accessibility. Biodegradation by microorganisms in agro and, to a lesser amount,
contact with soil matrices is mostly responsible for the processes involved. This
method is frequently referred to as the "do-nothing" approach, however it necessi-
tates continuous monitoring of the contamination in the soil. Natural attenuation
takes time depending on-site circumstances and the type of pollutant (Rifai
et al. 1995).

7.3.1.2 Biostimulation

By providing the right circumstances for microorganisms in a soil, biodegradation
can be accelerated. Moisture, temperature, redox conditions, organic matter, pH,
and nutrients all affect chemical diffusion and microbial activity in the soil, and
hence the efficacy of bioremediation (Hussain et al. 2009). In the biostimulation
process, the correct nutritional ratio of carbon, nitrogen, and phosphorous is critical
(Wolicka et al. 2009). Land farming and composting are biostimulation activities
and they include carbon sources and nutrients, as well as humidity management
(Tyagi et al. 2011; Goswami et al. 2018).

7.3.1.3 Bioaugmentation

In present scenario, the remediation sector and the scientific community have
focused on bioremediation systems that use bioaugmentation processes. Changed
microorganisms are commonly used in bioaugmentation to speed up the detoxifying
and degradation process in contaminated environments. It is possible to employ
changed microorganisms that are isolated from environment or that have been
genetically transformed in the lab (Tyagi et al. 2011). As a result of their weaker
competitiveness and adaptability, bioaugmentation strategies for bioremediation are
more prone to failure than native microorganisms in contaminated soils. As an alter-
native, immobilization of microbial enzymes or degraders on the variety of carriers
provides them more stability and resistant to environmental fluctuations. It is
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therefore possible to restore pesticide-contaminated sites using bioremediation, but
it is still in its early phases of development. Bioremediation is limited to biodegrad-
able chemicals since not all toxins in disturbed soils are substrates for microbial
absorption. (Goswami et al. 2018). Schematic representation of Bioattenuation,
Biostimulation, and Bioaugmentation processes is shown in (Fig. 7.4).

7.4 Bioremediation as a Sustainable Alternative
of Pesticide Degradation

Various agro bioremediation technologies have been devised and deployed, variety
from in situ surface practices through engineered soil pile and land-farming
approaches to the usage of entirely soil slurry reactor systems for excavated soil
treatment. The main aim of the numerous processes is to produce the required envi-
ronment for the proper biological organisms to develop and degrade contaminants.
Bioremediation has now been utilized to successfully repair hydrocarbon-
contaminated locations. The following are some of the benefits of bioremediation
techniques:

e They are usually the most cost-effective remedial options (Grommen and
Verstraete 2002).
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* The practices are adjustable to changing circumstances of environment, and bac-
teria that can breakdown novel synthetic chemical compounds emerge over time
(Mandelbaum et al. 1995).

e The methods are thought to be eco-friendly, but incineration and other processes
that require more energy and equipment are thought to be more polluting.

* The methods can be employed on-site, and in many cases, in situ, among dilute
or extensively scattered pollutants (Iwamoto and Nasu 2001).

On the downside, bioremediation has failed to decrease pollutant levels to estab-
lished concentration criteria on numerous occasions, and the methods/practices are
frequently criticized as being excessively sluggish. Consumers have been hesitant to
employ technology of bioremediation because of its historical background of fail-
ures as a result of the promotion of "quick-fix" technologies (Portier 2012). There
could be a various reason for the failures and slow bioremediation rates, the most
important of which is that the current environmental circumstances are unsuitable
for the growth promotion. Furthermore, the kinetics of biodegradation and micro-
bial growth, including when impurity levels decrease and the rates of subsequent
breakdown, are similar. The surrounding of the pollutants (water solubility, struc-
ture, biodegradability, bioavailability, substrate/metabolite concentration, toxicity,
and co-metabolism potential), the properties of the nature and soil (hetero or homo-
geneous environment; oxygen content, nutrients, and water; presence or absence of
toxins) are the main factors that influence the contaminant degradation rate. In this
systems, fewer microbial interventions are more time-consuming. When non-
homogeneous process of environment, the cost of sampling and analysis rises dra-
matically, and it may become the project’s most expensive component. Increased
use of microbial technology can result in faster processes, more process depend-
ability, and lower end-points (Ward et al. 2003). Natural attenuation procedures can
take anywhere from five to twenty-five years, in situ subsurface processes 0.5-3
years, composting/soil pile processes 1-18 months, slurry phase and land-farming
systems 1—12 months, and acceleration methods 15 days (Ward and Singh 2004).

Per day average pollutant degradation rates in natural absorption processes to
enhance slurry phase systems can range from 5 to 10,000 ppm. To determine the
suitability of bioremediation as a clean up strategy, some authors have suggested
strategy and questions to examine concerning the nature of contaminants, such as
(a) What consequence does the contamination period have on the clean of easily
degradable chemicals, while persistent chemicals may still necessitate remediation?
(b) How effective are recognized systems by microbes and/or the local population
by microbes at degrading contaminants? (c) What variables are limiting population
expansion, pollutant degradation, and the ability to meet clean-up standards? For
remediation of chlorinated solvents, natural attenuation and electron donor admin-
istration were options, while biostimulation was evaluated for the action of phenols
and chlorinated solvents (Hughes et al. 2000). For treating polycyclic aromatic
hydrocarbons (PAHs), bioventing using low-rate airflow to provide sufficient oxy-
gen for sustainable microbial activity along with prevention of contaminant volatil-
ization was a possibility. For nitroaromatics, phenols, and PAHs, agro treatment or
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composting was used, and bioslurry techniques were used for all of the above com-
pounds. All treatment strategies, with the exception of electron donor administra-
tion, were promising approaches to monoaromatic hydrocarbon bioremediation.

The perceived benefits of bioremediation processes develop commercial interest
and alternative research in bioremediation technologies in the early 1990s, prompt-
ing investors, technologists, and entrepreneurs to establish a large number of biore-
mediation companies with the mission of developing and implementing
bioremediation technologies. To put it mildly, many businesses suffered at best, and
just a few have managed to stay true to their initial aims. Given the abundance of
soil remediation potential, we are still waiting for a robust bioremediation-based
manufacturing sector to emerge. Bioremediation is the way of reducing or eliminat-
ing hazardous pollutants by employing living organisms (typically bacteria, cyano-
bacteria, fungus, actinomycetes, and plants). These creatures could be found in
nature or grown in a lab. These organisms either consume the toxins or assimilate
all toxic substances from the environment, making the area virtually contaminant-
free. Organic molecules are generally eaten up, whereas heavy metals and pesti-
cides are digested within the system. Bioremediation takes advantage of this method
by encouraging the development and/or rapid multiplication of organisms capable
of degrading specific pollutants and converting them to harmless by-products.
Significantly, bioremediation used with a variety of standard physio- chemical treat-
ments to improve their efficacy.

7.4.1 Microbial Degradation

Microbial breakdown occurs when pesticides are used as nutrient by microbes like
fungi and bacteria. Approximately, ten thousand fungal colonies were used in the
bioremediation of pesticides from wastewater and soil (Dindal 1990; Melling 1993).
Microbial metabolic potential use to remove soil contaminants is a safe and cost-
effective alternative to existing physicochemical methods (Vidali 2001). Microbes
(natural attenuation) can be employed to detoxify toxins in the environment
(Siddique et al. 2003). Scientific papers have indicated the use of in situ bioremedia-
tion with naturally existing microorganisms (Swannell et al. 1996; Bhupathiraju
et al. 2002; Moretti 2005). Under soil conditions that encourage microbial growth,
microbial breakdown can be quick and comprehensive. Warm temperatures, a bal-
anced pH, appropriate soil moisture, aeration (oxygen), and fertility are among
these factors. Microbial deterioration is also influenced by the amount of adsorp-
tion. Because adsorbent pesticides are less accessible to some microbes, they
degrade more slowly.
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7.4.2 Chemical Degradation

Pesticide breakdown by chemical mechanisms that do not include a living organism
is known as chemical degradation. The rate and type of chemical reactions are influ-
enced by pesticide adsorption in the soil, soil temperature, moisture, and soil pH
levels. Many pesticides, particularly organophosphate insecticides, are sensitive to
hydrolysis in high pH (alkaline) soils.

7.4.3 Photodegradation

Photodegradation is the degradation of pesticides in presence of sunlight. Foliage
has a broad range of stability when exposed to sunlight and pesticides sprayed on
the soil surface. Pesticide exposure to sunlight can be reduced through mechanical
soil integration during or after application, as well as irrigation or rainfall.

7.4.4 Phytoremediation

Growing plants on contaminated locations allows contaminating components to
penetrate via the roots of the plants and reached in different parts such as leaves,
stems, roots, etc. this process is known as phytoremediation. The key character of
phytoremediation is that it is less damaging to the environment, has a higher level
of public acceptance, and does not require excavation or heavy traffic (Matsumoto
et al. 2009). For their growth and development, plants have a tendency to aggregate
necessary heavy metals such as Fe, Zn, Mn, Mg, Mo, Cu, Ni, etc. and pesticides
from water and soil. Plants have been proven to have valuable enzymatic degrading
processes. Pesticides can be degraded by plants, which have been demonstrated to
have helpful enzymatic pathways (Hance 1973). Plant development is relied on
various environmental parameters such as availability of nutrients, pH, type of soil,
water, and so on, therefore using plants alone in remediation has limitations. Long-
term treatments or use in conjunction with other rapid remedial efforts may thus
yield the greatest benefits from phytoremediation. Plants absorb a wide variety of
compounds that are carried through the air on leaves surface, despite these limits. In
United States and Europe in situ phytoremediation has become very popular
(Meharg and Cairney 2000; Gaur and Adholeya 2004). Phytoremediation is limited
because soil contamination should not go beyond a particular depth where the
plant’s roots come into touch with the pollutants. Because of the restricted growth
rate of a selected species of plants and restriction to the area surrounded by roots,
decontaminating a place often takes longer. To completely recover a site, it may be
essential to go through numerous cycles of culture and harvest. Finally, once vegeta-
tion has been poisoned, it must be properly disposed of Mulligan et al. (2001).
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7.4.5 Fungal Bioremediation

Fungi play an important and significant role in the application of bioremediation.
Fungi are one of the few microbes that release a wide range of extracellular enzymes
(Baarschers and Heitland 1986; Bumpus et al. 1993; Twigg and Socha 2001). The
white-rot fungus Pleurotus pulmonarius and Phanerochaete chrysosporium have
changed very resistant pesticides into hydroxylated and N-dealkylated metabolites.
Phanerochaete chrysosporium is developed as a prototype system for bioremedia-
tion among fungal systems. Biodegradation relies heavily on oxidative enzymes.
White-rot fungus are filamentous organisms that outperform bacteria in terms of the
variety of chemicals they can oxidize (Masaphy et al. 1993; Barr and Aust 1994;
Mougin et al. 1994; Van et al. 1999). Members of the Zygomycetes, such as arbus-
cular mycorrhizal fungi and mucoraceous fungus are certainly other fungi that can
be employed in bioremediation. Other bioremediation alternatives include aquatic
fungi and anaerobic fungi. Saccharomyces cerevisiae, S. carlbergensis, Candida
tropicalis, and Candida utilis, among other fungi employed in bioremediation, are
significant in removing undesirable chemicals from industrial effluents
(Stephen 2001).

7.4.6 Mechanisms of Bioremediation

Bioremediation works by reducing, degrading, detoxifying, mineralizing, or trans-
forming more hazardous pollutants into less toxic pollutants. Agrochemicals, insec-
ticides, chlorinated compounds, xenobiotic compounds, nuclear waste,
hydrocarbons, greenhouse gases, etc. are examples of pollutant types. To remove
harmful waste from a polluted atmosphere, cleaning techniques are used. Through
the all-encompassing and action of microorganisms, bioremediation is utilized in
the degradation, immobilization, eradication, and detoxification of different wastes
of chemicals from the surrounding.

Microorganisms used in bioremediation, as well as the processes and mecha-
nisms involved in both dead and living biomass (Verma and Jaiswal 2016).
Biosorption and bioaccumulation are two different types of bioremediations.
Biosorption is a fast and adjustable passive adsorption mechanism (Ahalya et al.
2003). Metals are retained by physicochemical interactions, viz. complexation,
adsorption, crystallization, ion exchange, precipitation, etc. among the functional
groups and the metal on the cell surface (Gadd and White 1993). pH, temperature,
ionic strength, particle size, amount of biomass, and the availability of other ions in
the solution can all affect metal biosorption (Volesky 2004). As it is independent on
cell metabolism, living organism biomass can be used for biosorption.

Bioaccumulation encompasses both intracellular and extracellular mechanisms,
with passive absorption playing a minor and ill-defined role. Biosorption has a low
selectivity because the binding occurs solely through physical interaction. A
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microorganism’s cell wall contains a variety of macromolecules, including as pro-
teins and polysaccharides that contain a various functional group, such as imidaz-
ole, carboxyl, ester sulphate, sulthydryl, phenol, thioether, carbonyl, amide,
hydroxyl, and amino groups. The cell wall composition of microorganisms can be
influenced by their cultivation method, which can be used to improve their adsorp-
tion capability (Gadd and White 1993). Bacteria can eliminate metals from waste-
water by using functional groups present in their cell walls, such as carboxyl,
aldehydes, and ketones groups, resulting in less chemical sludge (Qu et al. 2014).
Algae like red, brown, and green are also employed as biosorbents. Ion exchange
can be performed by some functional components found in microorganism like
uronic acid with sulfate and carboxyl groups, galactans, xylans, and alginic acid.
The value of utilizing phycobiont as biosorbents is that, unlike other microorgan-
isms, i.e., fungi, and bacteria, they rarely create hazardous chemicals (Das et al.
2008). Adsorption is also done with fungi and yeasts. Fungi have the advantage of
being widely diverse in size, ranging from mushrooms to minute molds. They are
simple to grow and produce a lot of biomasses. Glycoproteins and polysaccharides
which include phosphate, amine, sulfate imidazole, hydroxyl and sulfhydryl groups
are abundant in the fungi cell wall (Varma et al. 2011; Huang et al. 2014) (Tables
7.1-7.3).

The majority of metals are non-biodegradable; therefore, they have a tendency to
accumulate in microorganisms (Fukunaga and Anderson 2011). Cumulation of
metal is affected by a various element, including the degree of temperature, expo-
sure, salinity, and metal content, making it hard to collect specific information on
how it happens in bioremediation (Varma et al. 2011). The metal concentration
regulates the accumulation process, which is complex and varies depending on the
metabolic pathway (Fukunaga and Anderson 2011).

7.4.7 Factors Affecting Microbial Bioremediation

In bioremediation process, it involves microbes, fungus, algae, and plants degrad-
ing, eliminating, altering, immobilizing, or detoxifying various physical and chemi-
cals contaminants from the nature. Microorganisms’ enzymatic metabolic pathways
aid in the progression of biochemical events that aid in pollution breakdown. Only
when microorganisms come into contact with substances that assist them in gener-
ating energy and nourishment to multiply cells to act on pollution. The composition
of chemicals and contaminants concentrations and physicochemical properties of
the environment all influence the efficiency of bioremediation (Fantroussi and
Agathos 2005).

The key contributors include the microbial population’s ability to degrade pollut-
ants, contaminants’ accessibility inhabitants of microbes, and surrounding condi-
tions such as soil variety, temperature, soil pH, nutrients availability, and oxygen.
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Table 7.1 Microbes used in pesticide bioremediation
Name of
S. No. | Microbe used pesticide Result/effectiveness References
1 Delftia lacustris Endosulfan Bacterial isolates promoted Rani et al.
IITISM30 and endosulfan phytoremediation | (2019)
Klebsiella aerogenes in soil
IITISM42
2 Microbial consortia | Phorate Phorate is metabolized between | Jariyal
(Pseudomonas fulva 97.65 and 98.31% at 100, 200, |etal. (2018)
and Brevibacterium and 300 mg kg~!. Metabolites
frigoritolerans, were discovered to be sulfone
Bacillus aerophilus) > sulfoxide
3 Ochrobactrum sp. Quinalphos Hydrolyzed quinalphos to Talwar
strain HZM produce 2hydroxyquinoxaline | et al. (2014)
and diethyl phosphate, which is
used as carbon sources
4 Klebsiella sp Chlorpyrifos The Klebsiella sp isolate was | Jariyal
able to degrade toxic etal. (2018)
chlorpyrifos into nontoxic
products, increasing soil
microorganism growth and
dehydrogenase activity
5 Pseudomonas putida | Methyl parathion | Methyl parathion was removed | Zhang et al.
X3 strain and cadmium completely within 40 h, but the | (2016)
(Genetically existence of cadmium in the
engineered) initial stage of remediation
quiet delayed MP degradation
6 Rhizobium isolates Glyphosate and | SR G was found to be the most | Kumar
(SR G, SR, SROl) |Monocrotophos | efficient in removing etal. (2017)
monocrotophos
(monocomplex) from the
supernatant of glyphosate,
followed by SR I and SR 01
7 Bacillus cereus B Cypermethrin | B. cereus synthesized Narayanan
Pyrethroid hydrolase having et al. (2020)
ability to metabolize 3
Cypermethrin
8. Pseudomonas DT 50 for 2,4-D, | Ochrobactrum sp. pure strain | Virgilio

nitroreducens

diazinon and
carbofuran

showed ability to degrade
atrazine and glyphosate

et al. (2020)

7.4.7.1 Biotic or Biological Factors

Biotic factors aid in the breakdown of organic components by microbes with limited
antagonistic interactions, carbon sources, between microbes, and protozoa—bacte-
riophage interactions. The pace of pollutant degradation is often influenced by the
quantity of catalyst available either in the biochemical reaction or the concentration
of the pollutant. Enzyme activity, mutation, interaction, (competition, predation,
and succession) gene transfer, population size, increased production of biomass,
and composition are among the most important biological aspects (Boopathy 2000;
Madhavi and Mohini 2012).
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Table 7.2 Enzymes used for the bioremediation of pesticides
Enzyme used Pesticide Organism used References
Oxidoreductases | Glyphosate Pseudomonas species Bhatt et al.
(Gox) and strain of LBr (2021)
Agrobacterium T10
Monooxygenase enzymes:
ESd Endosulphan and Endosulphato Species of Sutherland
Mycobacterium genus et al. (2002)
Ese DDDT, Endosulphan, Aldrin, Arthrobacter sp. Kumar and
Malathion, and Endosulphato Sachan
(2021)
CyplAl/1%2 Isoproturon, Atrazine, and Rats Ortiz et al.
Norflurazon (2013)
Cyp76B1 Isoproturon, Linuron, and Helianthus tuberosus Didierjean
Chlortoluron et al. (2002)
P450 Hexachlorobenzene and Pseudomonas putida Jones et al.
Pentachlorobenzene (2001)
Dioxygenases Herbicides Trifluralin Pseudomonas putida Gunjal (2021)
(TOD)
E3 Synthetic pyrethroids and Lucilia cuprina Campbell
insecticides phosphotriester et al. (1998)
Phosphotriesterase enzymes:
OPH/OpdA Flavobacterium sp., phosphotriester Scott et al.
Agrobacterium radiobacter, and (2008)
Pseudomonas diminuta
Haloalkane Dehalogenases:
LinB Hexachlorocyclohexane (f and & | Sphingobium sp. Ito et al.
isomers) (2007)
AtzA Herbicides chloro-s-trazina Pseudomonas sp. ADP | Ortiz et al.
TrzN Herbicides chloro-s-trazina Nocardioides sp. (2013)
LinA Hexachlorocyclohexane Sphingobium sp. Ito et al.
Shingomonas sp. (2007)
TfdA 2,4 -dichlorophenoxyacetic acid | Ralstonia eutropha Kumar and
and pyridyl-oxyacetic Sachan
(2021)
DMO Dicamba Pseudomonas Yao et al.
maltophilia (2015)

Abiotic or environmental factors: Pollutants in the environment interact with the
metabolic activity and physicochemical properties of the microbes targeted through-
out the procedure. The environmental factors influence the success of the microbe—
pollutant interaction. conditions. pH, temperature, moisture, water solubility, soil
structure, nutrients, oxygen content, site conditions and redox potential, resource
deficiency and presence of pollutants, chemical architecture, concentration, type,
toxicity, and solubility are all factors that influence microbial activity and growth

(Madhavi and Mohini 2012; Adams et al. 2015).
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Table 7.3 Various matrixes used for pesticides degradation by cell immobilization

Microorganism used in | Removal

S. No. | Matrix used | Pesticides immobilization rate References

1. Calcium- Coumaphos, an Escherichia coli 80% Mansee
alginate organophosphate et al.
immobilized |insecticide (2005)
cell systems

2. Alginate Organophosphate (OP) | Bacterial consortium | MPt78% | Yanez et al.
Beads and pesticides Methyl TCh (2009)
tezontle parathion (MPt) and 49%

tetrachlorvinphos
(TCh)

3. A ceramic Propachlor Pseudomonas strain 98% Martin
material, (2-chloro-N- etal.
granular isopropylacetanilide) (2000)
sepiolite

4. Green bean | DDT morganii. 68% Barragan
coffee P. Pseudomonas etal.

aeruginosa, P. putida, (2007)
Stenotrophomonas

maltophilia, F.
oryzihabitans,
Flavimonas
oryzihabitans, and
Morganella
aeruginosa

5. Ca-alginate | Diuron herbicide Species of Delftia 65% Bazot and
beads acidovorans WDL34 Lebeau
and Arthrobacter (2009)

In most aquatic and terrestrial environments, contaminant biodegradation can
occur in a pH range of 6.5-8.5, which is usually ideal for degradation. The type and
number of soluble elements that are reachable as in the osmotic pressure and pH
osmotic pressure of aquatic and terrestrial systems, all influence contaminant
metabolism (Cases and De Lorenzo 2005).

7.4.8 Limitations of Bioremediation

Bioremediation technology has a number of drawbacks. The nature of the organ-
isms is a fundamental constraint. Biological pollution remediation is not a good
deed. Rather, it is a plan for ensuring one’s own existence. When it comes to biore-
mediation, the majority of organisms work in environments that meet their demands.
To stimulate the organisms to decompose or absorb the pollution at a reasonable
rate, some form of environmental modification is required. The organism must often
be exposed to less amounts of the contaminant over an extended time period. This
causes the body to develop the metabolic pathways necessary for the pollutant to be
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digested. It is required to provide fertiliser or oxygen to the substance holding the
contaminant when utilizing microorganisms. When done in situ, this can be harmful
to other creatures. When simple chemicals and metals are taken up, the organisms
are likely to be exposed to dangerous quantities of these contaminants. The petro-
leum companies are engaged in a legal battle with the Environmental Protection
Agency over the increased costs of adhering to clean air act standards. When under-
taking in situ remediation, this is a concern. Under laboratory conditions, bioreme-
diation has been shown to be effective. It also works for a variety of field conditions,
according to short-term studies. Bioremediation’s popularity is boosted by the per-
ception that it is more "green" than other remediation procedures. Despite the huge
risks, companies and individuals are investing in biotechnology futures. As a result,
companies of bioremediation and biotechnology have a bright future ahead of them,
regardless of their long-term efficacy.

Bioremediation is only possible with biodegradable chemicals. This approach is
prone to total and quick deterioration. In the environment, biodegradation products
more persistent or harmful as the parent chemical (Sharma 2020).

7.5 Recent Advance Tools Used For Enhanced Efficiency
Of Pesticides Bioremediation

Due to unequal use of pesticides to control pest and vectors, it is highly needed to
come with some techniques or tools to decrease its effects on environment because
the pesticides residues show high toxicity, persistent and recalcitrance behaviour.
Removal of pesticides and its residues by means of bioremediation seems to be very
effective technology because it is having low cost, highly efficient in removing the
toxic content and eco-friendly in nature. During the process of bioremediation,
microbial community plays a vital role and converts most of the toxic compounds
into the nontoxic compounds (Nawaz et al. 2011). In the process of bioremediation,
microbes are considered as one of the best tools for the detoxification process. Many
other tools are also involved in the bioremediation process to enhance its efficiency
towards the removal of pesticides (Demnerova et al. 2005). Some of the effective
strategy and tools in reference to pesticides bioremediation are discussed further.

7.5.1 Enzyme Technology

Generally, the degradation of pesticides through the enzymatic action is highly
active during in situ mechanism and also by targeting specific type of enzymes with
necessary physiological traits. Intrinsic detoxification process, metabolic resistance,
biodegradation via soil and water microorganisms are various methods used for the
degradation of pesticides through enzyme technology. The chemical structure of the



182 B. Kamal et al.

pesticides used in agricultural sectors possesses diverse biochemistry which requires
broad range of catalytic mechanism as well as extensive variety of the enzymes
classes (Scott et al. 2008).

For the pesticides removal, bioremediation is used at a very high extent in which
the rate of degradation totally depends upon the microorganism potentials although
this process worked very slowly, results in decrease of the feasibility during biore-
mediation process (Ghosh et al. 2017). To cope up with this limitation, microbial
enzymes are extracted from the whole organism to use in the rectification of the
pesticides (Thatoi et al. 2014). Basically, enzymes are known as complex biological
macromolecules which enhance the activity rate and act as catalyst in the biochemi-
cal reaction during the degradation of the various pesticides used to control pests.
Enzyme has ability to enhance the reaction rate by depressing the molecules activa-
tion energy (Kalogerakis et al. 2017). Enzymes have ability to increase the reaction
rate by declining the activation energy of the molecules. For the pesticides bioreme-
diation some specific enzymatic systems were highly used such as glutathione S
transferases, hydrolases, and mixed function oxidase system (Li et al. 2007). Classes
of various enzymes used in the bioremediation of the pesticides such as:-

7.5.1.1 Okxidoreductases

This group contains clusters of enzymes which specially enhance the catalytic rate
during the transfer of the electron from oxidation to reduction state of the mole-
cules. Additionally, it requires cofactors which act as electron acceptor, electron
donors, or for both cases. This group of the enzymes further divided into the 22
subclasses. Some of the enzymes used in the bioremediation process of the pesti-
cides describe given below:

Oxygenase

Aromatic compounds or the pesticides degrade aerobically in the presence of oxy-
genase enzymes by means of cleaving the aromatic compound ring by the addition
of one or more oxygen molecules in it. On the basis of number of oxygen atoms
used during the process, this enzyme was categorized into two subgroups, i.e.,
monooxygenase and dioxygenase. Various numbers of herbicides, fungicides, and
pesticides are degraded by oxygenase enzymes (Sivaperumal and Kamala 2017).
The bioremediation process when catalyse by using one oxygen atom then
monooxygenase enzyme works whereas when two oxygen atom works it is called
dioxygenases, with the help of these enzymes the reaction rate as well as solubility
get increased. Previous study showed that dehalogenation, denitrification, deha-
logenation, and hydroxylation are some mechanisms occurs during the degradation
process of pesticides (Arora et al. 2010). As discussed formerly cofactor plays a
vital role during the process of cleaving the aromatic compounds containing pesti-
cides, on basis of this it is further sub-classified into two groups, i.e., flavin
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dependent and P450. The NAD (P) H. Esd (endosulfan diol), Ese (endosulfan ether),
and heme-containing enzyme are the substrates able to reduce flavin and P450
monooxygenases enzyme, respectively (Galdn et al. 2000). ESe and Esd are also
have capability of detoxifying the persistent insecticides which contains endosulfan
and its metabolite endosulfate (Sutherland et al. 2004). Previous studies showed that
there were some monooxygenase enzymes which do not required any cofactors for
the reaction activity such as tetracenomycin F1 monooxygenase and quinol mono-
oxygenases isolated from Streptomyces genus and E.coli bacteria, respectively
(Arora et al. 2010). Various herbicides such as chlortoluron, atrazine, linuron are
degraded by another type of P450 oxidoreductase enzyme, i.e., cytochrome
CYPI1A1, which have tendency to catalyse the degradation rate during the break-
down of the compounds. Mostly enzymes which fall under the class of P450 oxido-
reductase contain iron porphyrin group (Yamada et al. 2002; Didierjean et al. 2002;
Kawahigashi et al. 2005).

Oxidase enzymes are also come under the class of oxidoreductases in which
basically molecular form of oxygen plays a role as electron acceptor. In pesticides
bioremediation one of the enzymes, i.e., glyphosate oxidase, denoted as GOX is
used for remediating the glyphosate herbicide. Basically, GOX is flavoprotein amine
oxidase-based enzyme which is extracted from the bacterial strain of Pseudomonas
species. Glyphosate is a type of herbicides which affects the weeds in large scale by
aiming the enzyme, i.e., 5-enolpyruvylshikimate 3-phosphate synthases (EPSPS)
during shikimic acid pathway. During the remediation process, GOX splits glypho-
sate into aminomethylphosphonate (AMPA) and releases the keto acid glyoxylate
(Scott et al. 2008).

7.5.1.2 Hydrolases

This group of enzymes required no cofactor for the initiation of the degradation dur-
ing bioremediation process. This group of enzymes have potential to hydrolyse vari-
ous biochemical classes belonging to esters, peptide, ureas, thioesters, etc. During
the bioremediation process, this enzyme group does not undergo any kind of cofac-
tors which makes its very compatible and ideal for the removal of pesticides under
enzyme technology. Different types of enzymes used for the remediation of pesti-
cides, such as: -

Phosphotriesterases (PTEs)

PTEs are one of the best pesticides degrading enzymes. Generally, these enzymes
have potential to detoxify and hydrolyse the harmful organophosphate pesticides by
decreasing its ability to deactivate Acetylcholinesterase (AchE) (Singh and Walker
2006; Porzio et al. 2007; Theriot and Grunden 2011; Shen et al. 2010; Holaskova
et al. 2012). Pseudomonas diminuta bacterial strain was very primarily used for the
isolation PTEs enzyme which poses high catalytic behaviour for the organophos-
phate pesticides.
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Esterases

These enzymes basically hydrolyse the group which contain carboxylic esters,
amides, and phosphate esters (Bansal 2012). Various kinds of insecticides such as
carbamates, pyrethroids, and organophosphates are hydrolysed by enzyme named
carboxylesterases due to the presence of ester bond. This class of enzymes are fur-
ther classified into esterases A in which Cys residue present at active centre and
esterases B in which Ser residue present at active centre (Bhatt et al. 2021)

7.5.2 Genetic Engineering

In general, genetic engineering is the technique where the recombinant DNA
(rDNA) play vital role and used to change the genetic structure of the specified
organism. This technique includes disruption, amplification, and modification of the
specific genes that encode the enzyme in the metabolic pathways, minimize path-
ways process, increase redox reaction rates, enable heterologous genes to provide
novel traits (Abraham et al. 2002; Shimizu 2002). During degradation process of the
pesticides various genetic methods have been grown and help in enzyme optimiza-
tion (Shimizu 2002; Cases and De Lorenzo 2005). For the first time organophos-
phate pesticides detoxification was done by genetically modified microorganism
and genes which encoded hydrolases have been cloned and articulated in
Pseudomonas pseudoalcaligens, E. coli, Streptomyces species, pichia species (Fu
et al. 2004; Ningfeng et al. 2004; Yu et al. 2009; Shen et al. 2010; Wang et al. 2012).
Many enzymes have specific gene for its activity and coding such as methyl para-
thion hydrolase coded by the mpd gene and organophosphorus hydrolase coded by
opd gene (Zhang et al. 2005; Yan et al. 2007).

7.5.3 Gene Editing Tool

This technique basically used to modify as well as to manipulate the DNA structure
with the use of molecular scissor engineered nucleases enzymes with great potential
(Butt et al. 2018). These tools help in enhancing the bioremediation process by
eliminating the pesticides, convert the toxic pesticides into the simpler compounds
(Basu et al. 2018; Hussain et al. 2018). Gene editing tools such as ZFN, CRISPR-
Cas, and TALEN are highly used for pesticides bioremediation. (Singh et al. 2018;
Waryah et al. 2018; Wong 2018).

ZFN stands for Zinc Finger Nucleases. It showed potential to behave as DNA
binding domain because of the presence of eukaryotic transcription factors. ZFNs
have nucleotide cleavage domain which is specifically eliminated from the flavo-
bacterium okeanokoites. CRISPR-Cas is one of the most effective and productive
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Fig. 7.5 Gene editing tools for bioremediation (reproduced from Jaiswal et al. 2019 available
under CC BY 4.0)

tools for gene editing during the degradation of pesticides (McMahon et al. 2018;
Yadav et al. 2018).

CRISPR-Cas tools divided into three types I, IL, IIT (Behler et al. 2018). TALENS
stands for Transcription activator like effector nucleases. This one is very advanced
gene editing and modification tool. TALENSs are originated from the Xanthomonas
bacterial species.

Comparatively, CRISPR-Cas tool is found to be very simple, easy to use, as
compared to other two (Ju et al. 2018). CRISPR-Cas tools mainly access the gene
interaction, genetic and phenotypic relation with the gene knock out system (Vander
Sluis et al. 2018). On the other hand, TALENs and ZFN's show positive approach for
mutagenesis due to random binding to DNA sequence (Stein et al. 2018) shown in
Fig.7.5.

7.5.4 Cell Immobilization

Researchers adopted cell immobilization methods to retain catalytic behaviour for a
longer duration (Martin et al. 2000; Richins et al. 2000; Chen and Georgiou 2002).
As compared to other conventional methods of pesticides bioremediation using
whole cell immobilization showed significant results. Previous studies showed that
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due to cellular and genetic structure modification by the immobilization process
which results in showing higher efficiency towards degradation of the pesticides, it
was also observed that immobilized cell is very less vulnerable to get contaminated
by toxic compounds and shows high tolerance to the disturbances occurring during
the reaction process, which makes it is a good candidate for the pesticides bioreme-
diation process (Ha et al. 2008).

Cell immobilization process mainly done by two processes:

A. Based on physical retention
B. Based on chemicals bonds

In cell immobilization method for pesticides bioremediation various kinds of
substrate are used such as clays, glass, ceramics, and silicates (inorganic substrate);
cellulose, starch, dextran, agarose, chitin, alginate, keratin (organic substrate)
(Ahmad and Sardar 2015). For the selection of appropriate substrate materials some
characteristics are to be ensured like sterilization ease, physical behaviour of the
substrate, reusable and must be cost-effective in nature. Various xenobiotic pesti-
cides degradations were done through cell immobilization techniques by using
polymeric gels as a substrate (Uemoto and Saiki 2000).

For the pesticides removal some scientist used volcanic rock known as tezontle,
which is highly porous in structure results in providing large surface areas for the
contact, sterilized and can be reused. In this study biofilm formation by cell immo-
bilization was done by means of the bacterial development into the micro pores
present in the volcanic rocks (Yanez et al. 2009).

Researchers used recombinant E.coli through cell immobilization to decontami-
nate the wastewater containing insecticides compounds (Qiao and Yan 2000).
Experimental observations revealed that the rate of degradation depends upon the
type of ester bonds present. Pesticides compounds which contain carboxyl ester
bonds were degraded very rapidly as compared to other ester bond containing com-
pounds (Huang et al. 2001).

7.6 Conclusions and Future Prospects

Persistent Organic Pollutants (POPs) are harmful substances which emerged due to
anthropogenic activities. POPs impart negative consequences on habitats, wildlife,
and people. Over time, actions were taken to reduce and eliminate the manufacture,
usage, and discharge of these compounds. Many factors influence the possibility for
pesticides to contaminate surface water or groundwater, including pesticide proper-
ties, soil qualities, crop management practices, and hydraulic loads on the soil.
Degradation of pesticides through the enzymatic action is highly active during in
situ mechanism and also by targeting specific type of enzymes with necessary phys-
iological traits. Various enzymes used in the bioremediation of the pesticides such
as oxidoreductases, hydrolases, phosphotriesterases (PTEs), esterases.
Bioremediation technology has a number of drawbacks also. Surrounding
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conditions such as soil variety, temperature, soil pH, nutrients availability, and oxy-
gen affect the microbial degradation of pesticides. During degradation process of
the pesticides various genetic methods have been grown and help in enzyme optimi-
zation. Gene editing tools basically used to modify as well as to manipulate the
DNA structure with the use of molecular scissor engineered nucleases enzymes
with great potential. Although microbial bioremediation is very effective to elimi-
nate pesticide residues from the environment but still it requires popularization and
some modifications for more practical applications.
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Abstract The use of pesticides in agriculture worldwide significantly offers crop
protection from pests, enhances crop yields, and guarantees the quality of the agri-
cultural products during storage, which generates economic benefits for farmers.
Due to this, millions of tons of pesticides are released into crop fields each year.
However, only a small proportion of the total amount of pesticides employed reaches
the biological target. The rest is spread into the environment, causing soil, water,
and air contamination events. The presence of pesticide wastes in the environment
is related to adverse effects on biodiversity and human health. Bioremediation is an
effective strategy for the treatment of pesticide-contaminated sites. However, the
establishment of efficient pesticide bioremediation approaches requires considering
important aspects of microbial metabolism and physiology as well as deep knowl-
edge of the metabolic pathway, enzymes, and cellular processes implicated in
microbial-mediated pesticide biodegradation. Recently, OMIC studies focused on
pesticide biodegradation and bioremediation have generated significant information
on the genes and proteins related to the pesticide degradation processes, the metabo-
lites derived by microbial-mediated pesticide degradation, and the strategies
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employed by the microorganisms to counteract the stress caused by pesticide expo-
sure. In the present chapter, the application of OMIC studies related to pesticide
biodegradation and bioremediation is fully reviewed to describe the relevance of the
global analysis through OMIC approaches to generate scientific information that
lets us achieve a better understanding of the pesticide bioremediation processes.

Keywords Pesticide - Degradation - Transcriptomics - Proteomics - Metabolomics

8.1 Introduction

World population growth has resulted in the demand for goods and services, espe-
cially food. For food production, it is necessary to guarantee the productivity of
crops, so the pesticides application has resulted in a necessary practice to protect
crops from pests and diseases. In modern agriculture, the use of pesticides helps to
reduce crop losses and preserve the quality of farm products (Giri et al. 2021).
Pesticides also have important uses for the control of different pests in homes, gar-
dens, and public facilities (Chandran et al. 2019). Pesticides are synthetic or natural
compounds employed for the control of harmful fungi, insects, rodents that threaten
plants, animals, and the human health (Verma et al. 2014; Spina et al. 2018; Mir
et al. 2020). Over the past few decades, an enormous increase in the use of pesti-
cides has been observed worldwide (Singh et al. 2020a). According to the FAO
(2021), the annual global pesticide utilization is approximately 4.2 million tons, of
which 52% is used in Asia, 32.3% in the Americas, 11.7% in Europe, 2% in Africa,
and 1.7% in Oceania.

As a consequence of pesticides use, these chemicals are dispersed in extended
areas causing severe pollution and environmental threats derived from their persis-
tence and toxicity. In addition, pesticide waste has been contaminating soil, water,
and air, and they can also be found in clandestine deposits or as obsolete or expired
products. A pesticide is recognized as obsolete when it has exceeded its expiration
date, when its use has been prohibited, when it has lost its biological effectiveness,
or when its owners no longer desire it. Its compounds also include waste generated
through pesticide manufacture or formulation, among others. The FAO (2021) has
carried out work with regard to the existence of obsolete pesticides in different parts
of the world, and they report data taken during the last two decades. Thus, the FAO
reports a total stock of 291,000 tons of obsolete pesticides, of which 83% are in
European countries, 9.4% in Africa, and 3.9% in Latin America, while the remain-
ing stocks are in countries of Asia and the Near East.

Due to pesticide waste dispersion, contaminated sites, and the existence of obso-
lete pesticides, it is clear that they represent a risk for the environment and health.
Therefore, the development of strategies for adequate pesticide waste treatment is
crucial. Interestingly, due to economic, environmental, and social acceptance
aspects, pesticide biodegradation is one of the most viable options. Due to their
extraordinary metabolic diversity and genetic plasticity, microorganisms show an
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outstanding capacity to degrade different pollutants, including pesticides (Rodriguez
et al. 2020).

Initial pesticides biodegradation research aimed to isolate and characterize culti-
vable microorganisms, mainly bacteria, capable of degrading and transforming pes-
ticides into less toxic molecules and propose them for polluted sites bioremediation
strategies. In natural environments, there is a great diversity of microorganisms;
however, only a small proportion of such microorganisms can be isolated and suc-
cessfully cultivated in laboratory conditions. To access the biodiversity of the non-
cultivable microorganisms new research tools were developed (Rodriguez et al.
2020), based on the search and identification of enzymes related to the pesticide
degradation process, their transcriptional regulators, as well as studies of their
kinetic behaviors and their structure—function relationship (Castrején-Godinez
et al. 2019).

OMIC technologies constitute a valuable set of tools that permit a better under-
standing of the xenobiotic bioremediation processes and their adequate managing
and monitoring. For example, methods for DNA sequencing have made it possible
to study the genes of a single organism or multiple organisms (genomics); analyze
microbial DNA taken directly from environmental samples (metagenomics); evalu-
ate the microbial gene expression under different environmental and experimental
conditions (transcriptomics); analyze the protein expression patterns (proteomics)
as well as identify and characterize the low molecular weight metabolites (metabo-
lomics) present in microorganisms. Through the application of OMIC technologies
in the field of bioremediation, questions related to the metabolic mechanisms
employed by microorganisms to eliminate pollutants, such as pesticides, can be
answered (Castrejon-Godinez et al. 2019; Dangi et al. 2018; Rodriguez et al. 2020).

In this chapter, we highlight and discuss pesticide biodegradation by bioremedia-
tion processes, the understanding and combining the conventional bioremediation
methods with advanced aspects of the OMIC technologies provide valuable infor-
mation related to the metabolic and functional characteristics of microorganisms
during the pesticide biodegradation processes. The use of OMIC technologies per-
mits the evaluation of key aspects such as changes in the gene and proteins expres-
sion profiles during the pesticide biodegradation process, as well as the
characterization of the metabolites derived from such process.

8.2 Pesticide Classification

According to their main characteristics, such as toxicity, average life, use, and
chemical composition, pesticides are classified in different ways. According to their
chemical composition, pesticides are grouped into several families (Jayaraj et al.
2016). Table 8.1 shows examples of compounds of the most relevant pesticides
families, descriptions of their uses, characteristics, chemical composition, and
structures.



200

A. Rodriguez et al.

Table 8.1 General characteristics of some pesticides (Ortiz-Hernandez et al. 2013; EPA 2018)

Pesticides family | Characteristics Main composition | Example of chemical structure
Organochlorines | Were commonly used | Carbon atoms, a9a
in the past (for chlorine, hydrogen,
example, DDT). and occasionally
Soluble in lipids, oxygen. They are O O
toxic to a variety of | nonpolar and c c
. . - DDT ¢1,1%¢2,2,2-Trichloroethane-1,1-
an1mals, long-term | lipophilic. diylybis(d-chlorobenzene))
persistent. DDT
(1,1"-(2,2,2-Trichloroethane-
1,1-diyl)bis(4-chlorobenzene))
Organophosphates | Are used in Possess central HiCCHs
agriculture, homes, | phosphorus atom in I
gardens, and on the molecule. In "1 SN i j"'!
animals. Soluble in | relation with HSC/I\/LDJE»O CHy
organic solvents but | organochlorines, Diazinon (0,0-Diethyl O_;::;wu‘f_ 5.
also in water. Affect | these compounds (propan-2-yl)pyrimidin-2-yi]
the central nervous | are more stable and Phosphorothioate)
system. They are less toxic in the Diazinon (O, O-Diethyl
absorbed by plants environment. They | O-[4-methyl-6-(propan-2-yl)
and then transferred | can be aliphatic, pyrimidin-2-yl]
to leaves and stems, | cyclic, and phosphorothioate)
which are the supply | heterocyclic.
of insects.
Carbamates Are widely used in Chemical structure
homes, gardens, and | based on a plant o
agriculture. alkaloid o
Carbamate acid Physostigma
derivatives. They venenosum. N
o Carbofuran (2,2-Dimethyl-2,2-
affect the functioning dihydrobenzafitranyl-7 N-
of the nervous methylearbamate)
system in ways Carbofuran (2,2-Dimethyl-2,2-
similar to the dihydrobenzofuranyl-7
organophosphates. N-methylcarbamate)
The effects are
usually reversible in
humans and kill a
limited spectrum of
insects.
Pyrethroids Pyrethroids are Compounds similar

synthetic versions of
the pyrethrin, which
is found in
chrysanthemums.
Are used mainly
household
insecticides and in
agriculture. Are toxic
to the nervous
system.

to the synthetic
pyrethrins (alkaloids
obtained from petals
of Chrysanthemum
cinerariaefolium).

Permethrin (3-phenoxybenzyl (I1RS)-
cis, trans-3-(2,2- dichloravinyl)-2,2-
dimethylevelopray arboxylate)
Permethrin (3-phenoxybenzyl
(IRS)-cis,trans-3-(2,2-
dichlorovinyl)-2,2-dimethylcyc
lopropanecarboxylate)

(continued)
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Table 8.1 (continued)

Pesticides family | Characteristics Main composition | Example of chemical structure

Biological Bacillus thuringiensis | Microorganisms or
is used and applied | their metabolic
against forest pests | products.

and crops,
particularly against
butterflies. Also

affect other
caterpillars. Toxin CrylAc from Bacillus

thuringiensis

Texin CrylAe from Bactllus thuringiensis

8.3 Microbial Biodegradation and Bioremediation
of Pesticides

Because microorganisms are constantly exposed to pesticides, they have developed
catabolic processes for pesticide biodegradation, so they play an essential role in
their elimination from the environment. Biodegradation is a process that eliminates
pollutants or reduces their toxicity or concentration to permitted levels according to
environmental legislation. It involves the breakdown of pesticides by microorgan-
isms, resulting in less complex substances, such as water, CO,, and salts. Complete
degradation of pesticides into inorganic compounds is known as mineralization. In
some cases, the degradation produces less toxic and simpler compounds, which
leads to partial biodegradation (Villaverde et al. 2017; Ortiz-Herndndez et al. 2018).

Studies on microbial pesticides degradation are helpful for the development of
bioremediation strategies. Biodegradation and bioremediation are closely related
processes and are based on the metabolism of pesticides by microorganisms. The
main difference between both processes is that biodegradation is a natural process
that occurs in polluted sites, and bioremediation is a biological technology
(Singh 2008).

The term bioremediation encompasses the use of different biological systems
like bacteria, yeast, fungi, algae, protozoa, among others, to eliminate pollutants
from the environment (soil, water, air) through degradation and, removal, or the
conversion of toxicants pollutants into non-toxicants, resulting in a reduction in the
environmental concentration to permissible levels (Dua and Joshi 2020; Mir et al.
2020; Singh et al. 2020b). Bacteria are the most used biological system in bioreme-
diation because they are easily cultivable in simple low-cost culture media and show
higher growth rates in comparison to other microorganisms. Moreover, bacteria can
be genetically modified, which give them an extra feature that increases their poten-
tial in xenobiotic degradation (Ortiz-Herndndez et al. 2011, 2013). Bioremediation
is an innovative technology that employs the metabolic and physiological potenti-
alities of microorganisms to degrade compounds through the action of enzymes that
modify contaminants to less harmful products (Villaverde et al. 2017) and remove
them from polluted sites (Bhatt et al. 2021). The effectiveness of the bioremediation
processes is dependent on adequate microbial growth and activity, and successful
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bioremediation strategies frequently require the control of environmental parame-
ters at polluted sites to favor the microbial growth and increase the rate of degrada-
tion (Sharma 2012).

Bioremediation can be classified into two categories: In situ, where the degrada-
tion or the removal of the contaminants is carried out in the polluted place, and ex
situ, which requires the mobilization of contaminated water or soil to a site under
controlled conditions for its treatment. In turn, both categories are classified accord-
ing to the information shown in Table 8.2.

The pesticide biodegradation processes are dependent on environmental factors
and the availability of nutrients in polluted sites. High pesticide bioconversion rates
require the bioavailability of the pollutant, as well as the control of environmental
and nutritional factors related to the growth and metabolic activities of microorgan-
isms. They include:

8.3.1 Microbial Population

The pesticide degradation rates in polluted sites are determining by the autochtho-
nous microbial diversity and their capacity to degrade pesticides. The microbial
population, distribution, and ecological interaction between microorganisms affects
the biodegradation potential in this sites. Microorganisms show great genetic and
physiological plasticity; they can adapt over time to environmental changes caused
by the presence of pollutants, enhancing their ability to efficiently degrade pesti-
cides. Bioremediation strategies require the identification characterization and
selection of the microorganisms with the higher effectiveness for pesticide removal
in the condition of the polluted sites (Zulfigar and Yasmin 2020).

Several microorganisms such as bacteria, cyanobacteria, yeast, fungi, and algae
are considered extracellular enzyme-producing. Among microorganisms, due to
their outstanding capability to produce extracellular enzymes such as peroxidases,
laccases, and oxidases, related to the lignin degradation process, the most promising
for the bioremediation of persistent compounds are white-rot fungi, these enzymes
have also been reported as efficient for the degradation of several organic pollutants,
pesticides included. On the other hand, several pesticides degrading bacterial strains
have been isolated from different environments. In these microorganisms, esterases,
cytochrome P450, and glutathione S-transferases are the leading enzymes impli-
cated in pesticide degradation. These enzymes can catalyze key metabolic reactions
for the pesticide degradation processes, such as dehalogenation, hydrolysis, hydrox-
ylation of benzene rings, metabolism of side chains, oxidation of amino groups
(NH,) to nitro groups (NO,), oxygenation of carbon double bonds, reduction of
nitro groups to amino groups, replacement of sulfur atoms with oxygen, and ring
cleavage (Ortiz-Herndndez et al. 2013; Sun et al. 2020).
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Table 8.2 Bioremediation technologies
Strategies Technology Description References
In situ Natural Is a proactive approach that focuses on | Juwarkar
bioremediation attenuation the verification and monitoring of et al. (2014)
technologies natural remediation processes also
known as passive remediation.

Bioventing Involving air supply, this technology Juwarkar
uses the organisms present in the etal. (2014)
contaminated site as well as the
nutrients available to carry out the
degradation process of the contaminants.

Phytoremediation | Use of plants and their associated Verma and
microorganisms to absorb, accumulate, | Shukla
metabolize, volatilize, or stabilize (2016);
contaminants originated from human Kovacs and
activities present in the environment, Szemmelveisz
such as pesticides, petroleum (2017)
hydrocarbons, chlorinated solvents,
explosives, heavy metal, and
radionuclides.

Bioaugmentation | Is the addition of organisms or enzymes | Ajlan (2016);
to a site for eliminating contaminants, in | Chaturvedi
which allochthonous or genetically and Khurana
modified microorganisms capable of (2019);
degrading pollutants are inoculated in Bac¢maga
the contaminated site. et al. (2017);

Nwankwegu
and Onwosi
(2017)

Biostimulation Is based on the addition of electron Ortiz-

acceptors or donors, as well as nutrients | Herndndez

to stimulate the degradation of a
compound by the endogenous microbial
population.

et al. (2018)

(continued)
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Strategies Technology Description References
Ex situ Composting A process of nutrient recycling through | Ortiz-
bioremediation decomposition of biodegradable wastes | Hernandez
technologies by microbes. Can be used not only for | et al. (2018);
the recycling of organic matter but also | Chen et al.
for the removal of chemical (2015a)
contaminants such as synthetic organic
compounds or other xenobiotics,
including pesticides.
Bioreactors Is a container where chemical processes | Ortiz-
are performed by biochemically active | Herndndez
organisms or substances derived from et al. (2018)
them. With the bioreactors, a
biologically active environment is
sought, maintaining the ideal
environmental conditions (pH,
temperature, oxygen concentration, etc.)
for the organisms.
Electro- Consists of the application of electric Annamalai
bioremediation current directly to the soil, which and Sundaram
increases the nutrients bioavailability (2020)
and transforms the contaminants to
simpler compounds.
Biobeds Biobeds are bioreactors developed for | Dias et al.
treating pesticide residues generated (2020)
during agricultural activity, such as
water from the washing of spraying
equipment or any residue from the
preparation of pesticide sprays (Dias
et al. 2020).
Biomineralization | Biodegradation of organic substances Lacina et al.
into inorganic components. (2015)
Biosorption Is based on the uptake of substances by | Flores-
biosorbents agents, as a different sort of | Trujillo et al.
biomass, through physicochemical (2021)
mechanisms such as adsorption or ionic
exchange.

8.3.2 Pesticide Composition

The pesticide biodegradation patterns are influenced by the specific physicochemi-
cal characteristics of each pesticide. Parameters such as molecular weight, struc-
ture, functional groups, and chemical elements present in the molecule greatly
influence the pesticide degradation rates in the polluted sites (Zulfigar and

Yasmin 2020).
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8.3.3 Environmental Parameters

The effectiveness of pesticide remediation in the environment is influenced by dif-
ferent parameters such as moisture, nutritional sources, pH, soil properties, and
temperature. Microorganisms implicated in bioremediation strategies require opti-
mum environmental parameters for survival, development, and adequate metabolic
activities (Zulfigar and Yasmin 2020).

Bioremediation technology has different disadvantages, one of which is the
impossibility of replicating the results obtained at the laboratory level under field
conditions. In addition, the use of bacterial strains of a single species is not enough
to implement the process although the use of genetic engineering to obtain geneti-
cally modified organisms could be an option. Nevertheless, due to limited research
on the characterization of uncultured microorganisms and the inability to replicate
the environmental conditions in which they inhabit, OMIC approaches are being
used to evaluate the potential of non-cultivable microbial strain for biodegradation
and removal of pesticides in contaminated sites.

8.4 Pesticide Degradation Pathways

The role of microorganisms in pesticide degradation has long been recognized.
They are constantly exposed to pesticide compounds and they have developed cata-
bolic processes to degrade them through the use of different strategies and enzy-
matic pathways. Degradation by microorganisms is a process that breaks down
xenobiotic compounds into less complex substances, water, CO,, and salts. Several
pollutants can be completely degraded under soft conditions compared with degra-
dation mediated by physical and chemical means. Because pesticides have various
chemical structures, individual degradation reactions in metabolic pathways must
be versatile; this reaction can include conjugation, hydrolysis, oxidation, and reduc-
tion. These reactions are achieved through the catalytic activities of different
enzymes such as cytochrome P450, dehydrogenases, ligninases, mono- and dioxy-
genases, among others. Bacterial genetics and molecular biology have widely con-
tributed to identifying and characterizing the genes involved in pesticide degradation
and understanding the pesticide degradation processes (Ortiz-Hernandez et al.
2013). Table 8.3 shows a list of genes that encode for enzymes that catalyze reac-
tions making the degradation of different pesticides families possible. Here, we
provide examples of two types of pesticides that are degraded by bacteria contain-
ing genes specific for this purpose.
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Table 8.3 Genes reported with the ability to degrade pesticides

A. Rodriguez et al.

Enzyme Gene Microbial species | Pesticide ‘ Reference
Bacteria
Organophosphorus opd Pseudomonas Parathion Mulbry et al.
hydrolase (OPH) diminuta (1986)
ophB Burkholderia sp. Kim et al.
JBA3 (2007)
ophC2 Stenotrophomonas | Methyl Shen et al.
sp. SMSP-1 parathion (2010)
oph Arthrobacter sp. Isofenphos | Ohshiro et al.
B-5 (1999)
opdE Enterobacter sp. Methyl Chino-Flores
parathion etal. (2012)
Methyl Parathion mpd Plesiomonas sp. M6 | Methyl Fu et al. (2004)
Hydrolase (MPH) parathion
mph Arthrobacter sp. L1 | Methyl Parween et al.
(2006) parathion (2016);
Ortiz-Hernandez
et al. (2013)
mpdB Burkholderia Methyl Ekkhunnatham
cepacia parathion etal. (2012)
Paraoxon
Parathion
Fenitrothion
Organophosphorus Acid | opaA Alteromonas sp. Cyclosarin | Harvey et al.
Anhydrolase (OPAA) ID6.5 (GF) (2005)
Organophosphates opdA Agrobacterium Coumaphos | Horne et al.
Degrading Agrobacterium radiobacter P230 Coroxon (2002a)
(OPDA) Diazinon
Methyl
parathion
Organophosphorus opdB Lactobacillus brevis | Chlorpyrifos | Islam et al.
hydrolase (OpdB) WCP902 (2010)
Aryldialkylphosphatase | adpB Nocardia sp. B-1 Parathion Mulbry (1992)
(ADPase) Coumaphos
Hydrolysis of coroxon hocA Pseudomonas Coroxon Horne et al.
(HOCA) monteilii C11 (2002b)
Phosphonate Ester pehA Burkholderia Glyphosate | Dotson et al.
Hydrolase (PEH) caryophylli PG2982 (1996)
Phosphonatase phn Bacillus cereus Phosphonate | Lee et al. (1992)
Isofenphos-Methyl imh Arthrobacter sp. Isofenphos- | Li et al. (2012)
Hydrolase (Imh) scl-2 methyl
Isofenphos
Isocarbophos
Butamifos
Carbofuran hydrolase med Achromobacter sp. | Carbofuran | Tomasek and

WMI1

Karns (1989)

(continued)



8 Pesticide Bioremediation: OMICs Technologies for Understanding the Processes

Table 8.3 (continued)

207

Enzyme Gene Microbial species | Pesticide Reference
Atrazine chlorohydrolase | azzABCDEF | Pseudomonas sp. Atrazine Sene et al.
(AtzA) ADP (2010)
Hydroxy-atrazine
ethylaminohydrolase
(AtzB)
N-isopropyl-ammelide
isopropyl-amino-
hydrolase (AtzC)
Cyanuric acid
amidohydrolase (AtzD)
Biuret amidohydrolase
(AtzE)
Allophanate hydrolase
(AtzF)
Fungi
P-OPH P-opd Penicillium Methyl Liu et al. (2004)
lilacinum parathion
Parathion
Paraoxon
Coumaphos
Demeton-S
Phosmet
Malathion

8.4.1 Organophosphate Biodegradation Pathway

Organophosphates (OPs) are widely used as insecticide compounds in the agricul-
tural industry to protect crops from different pests (Pinto et al. 2019; Santillan et al.
2020). Different bacteria with the capability of degrading organophosphate pesti-
cides use them as energy, carbon, or phosphorous sources, as has been reported
(Singh 2009). In such bacteria, the organophosphate pesticide biodegradation pro-
cess has been related to the expression of hydrolytic enzymes, denominated as
organophosphorus hydrolases (OPH) or phosphotriesterases. These enzymes are
encoded in the opd gene, a highly conserved sequence in bacteria (El-Sayed et al.
2018). Another important organophosphate pesticide degrading enzyme is methyl
parathion hydrolase (MPH), a phosphotriesterase encoded by the mpd gene that
catalyzes the methyl parathion hydrolysis to yield p-nitrophenol (PNP) and dimeth-
ylthiophosphoric acid (Bara et al. 2017). Subsequently, PNP is degraded through
two oxidative pathways: the Hydroquinone pathway, used mainly by Gram-negative
bacteria such as Moraxella sp., Pseudomonas putida DLL-E4, and Pseudomonas
sp. WBC-3 (Chen et al. 2016), and the Hydroxyquinol pathway in Gram-positive
bacteria, Bacillus sphaericus JS905 and Rhodococcus opacus SAO101 (Zhang et al.
2012). However, some bacteria such as Burkholderia cenocepacia CEIB S5-2
(Ortiz-Hernandez et al. 2021), Burkholderia zhejiangensis CEIB S4-3 (Castrejon-
Godinez et al. 2019), and Serratia sp. strain DS001 (Pakala et al. 2007) can biode-
grade PNP employing both metabolic pathways (Fig. 8.1).
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8.4.2 Carbaryl Degradation Pathway

Another example of a pesticide biodegradation pathway is carbaryl (1-naphthyl-N-
methylcarbamate), an N-methylcarbamate class chemical insecticide broadly used
in agriculture to control pests. The intensive and widespread use of carbaryl causes
pollution in soil and groundwater, as well as adversely affecting plants, animals, and
humans (Siampiringue et al. 2015). Different microorganisms have been reported
with the capability of biodegrading carbaryl (Doddamani and Ninnekar 2001;
Hamada et al. 2015; Li et al. 2019). Swetha and Phale (2005) reported the metabolic
pathway for carbaryl mineralization in Pseudomonas sp. strains C4, C5, and C6. In
carbaryl biodegradation, the first step is carbaryl hydrolysis that renders 1-naphthol
and methylamine as main products. 1-naphthol is then conducted for its degradation
to the intermediate metabolism via the naphthalene pathway, to produce salicylate
and gentisate and finally to the TCA cycle, while methylamine is metabolized via
the glyphosate pathway (Fig. 8.2). The carbaryl mineralization includes the cata-
bolic activity of several enzymes, the first is the metabolic process carbaryl hydro-
lase, codified by the mcbA gene (Trivedi et al. 2016).

8.5 Applications of the OMICs in Pesticides Bioremediation

Bioremediation has a high potential for the effective treatment and restoration of
polluted environments (Bharagava et al. 2017; Pande et al. 2020; Skinder et al.
2020). This environmental remediation approach is based on the isolation, identifi-
cation, and characterization of microorganisms capable of efficiently degrading dif-
ferent xenobiotic compounds. These microorganisms are commonly native to
polluted sites (Watanabe 2001; Singh et al. 2014). However, microorganisms char-
acterized with great bioremediation potential can fail in the complete pollutant bio-
degradation in the field, or their use is not suitable for the treatment of contaminated
sites with the presence of a complex mixture of pollutants (Rayu et al. 2012; Dangi
et al. 2018). Due to this, for successful bioremediation implementation, it is crucial
to determine the factors implicated in the regulation of growth, resistance, and met-
abolic capabilities employed for such microorganisms to deal with xenobiotics
(Singh and Nagaraj 2006). Recently, the application of the OMIC approaches has
taken on great relevance in bioremediation to bring information to solve these kinds
of questions (Rawat and Rangarajan 2019). OMIC research comes from the devel-
opment of technologies for genome sequencing but now, this term includes a set of
research tools such as genomics (genes), transcriptomics (mRNA), proteomics (pro-
teins), and metabolomics (small chemical compounds). The conjunction of these
tools permits the integrative study of a biological system capable of pollutant bio-
degradation at impacted sites (Chakraborty et al. 2012). Therefore, research in pes-
ticide bioremediation can take advantage of these novel technologies for the design
of effective remediation strategies (Rana et al. 2019). Furthermore, these approaches
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permit the integration of the information related to the pesticide biodegrading genes
and enzymes and the metabolites generated through their degradation or produced
in response to the pesticide exposition. Recent studies on the application of these
technologies in pesticide bioremediation are described below.

8.5.1 Genomics

The pesticide degrading capabilities of several microorganisms have been reported
(Abatenh et al. 2017; Endeshaw et al. 2017; Parte et al. 2017; Nayak et al. 2018; Sun
et al. 2020). The bioremediation potential of most of these microorganisms has been
characterized in pure cultures in the laboratory. However, the identification and
characterization of the key genes, enzymes, and catabolic pathways implicated in
pollutant biodegradation in such microorganisms are considered to be a time-
consuming process. The determination of the genomes of pesticide degrading
microorganisms can accelerate the identification of the crucial catabolic genes that
mediate the biodegradation of different pesticides (Kapley and Purohit 2009; Iyer
et al. 2018; Castro-Gutiérrez et al. 2020; Lee and Kalia 2020). Table 8.4 shows
examples of available genomes of microorganisms capable of degrading pesticides,
most of them published in the last five years (2016-2021), highlighting the increas-
ing relevance of this research approach in pesticide bioremediation. According to
the available genomic information, Gram-negative bacteria are the most studied
microorganisms in pesticide biodegradation. The most relevant bacterial genera
reported included Burkholderia, Pseudomonas, Ochrobactrum, Sphingobium, and
Sphingomonas. The genome analysis permits the identification of the structural
genes that coded for the main enzymes implicated in the pesticide biodegradation
pathway and gene sequences implicated in regulating the response to pesticide
exposition (Ortiz-Herndndez et al. 2013). Different authors have proposed that the
genes for pesticide biodegradation identified in genomics studies could be cloned
through recombinant ADN technologies, and their coding enzymes subsequently
produced in heterologous systems for application in microbial bioremediation strat-
egies (Johri et al. 1996; Kulshreshtha 2013; Jaiswal et al. 2019; Mir et al. 2020).

The number of available genomes of microorganisms capable of biodegrading
pesticides has increased in the last few years. However, there is an unbalance
between the reports of pesticide degrading microbial species and the number of
genomes of microorganisms with pesticide degrading capabilities deposited in data-
bases. Moreover, most genomic studies have been carried out on a limited number
of bacterial species, and the more studied pesticides belong to organochlorines and
organophosphorus families. As a result, more genomic studies are necessary, espe-
cially in the genome sequencing of novel pesticide degrading bacterial and fungal
species and the inclusion of a more significant number of pesticide families in the
studies.
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8.5.2 Metagenomics

There is a great diversity of different classes of microorganisms in natural and pol-
luted environments, most of which are uncultivable in laboratory conditions (Tringe
and Rubin 2005). It has been reported that 99% of microorganisms are uncultivable
in the laboratory due to the limitations of culture (Kirk et al. 2004; Ortiz-Hernandez
etal. 2011; Bodor et al. 2020). In this context, the application of genomic approaches
permits the discovery of novel microorganisms with potential for remediation pro-
cesses, avoiding the limitations of the pure-culture based research methodologies.
Metagenomics, also known as community genomics, environmental genomics,
microbial ecogenomics, or population genomics (Panigrahi et al. 2019), is another
emerging approach in bioremediation (George et al. 2010; Bell et al. 2015;
Techtmann and Hazen 2016). Metagenomics analysis involves isolation of micro-
bial DNA directly from an environmental sample such as soil, water, sediments,
among other elements (Hugenholtz and Tyson 2008), avoiding the need for cultivat-
ing the microorganisms (Handelsman 2004; Stefani et al. 2015; Kumar et al. 2020;
Mani 2020). The environmentally isolated DNA could be directly sequenced to
determine the composition of the microbial community present in polluted sites
through the use of phylogenetic markers such as the genes 16S rRNA and recA, or
identification of gene sequences related to enzymatic activities through a sequence
based screening (Paul et al. 2006; Datta et al. 2020; Sharma et al. 2020). Furthermore,
DNA isolated from polluted environments could be cloned into a suitable vector and
introduce the genetic information into a well-characterized organism capable of
growing in laboratory conditions. Subsequently, transformed clones are selected
through functional screening to identify genes that codify for enzymes of interest
for bioremediation purposes (Devarapalli and Kumavath 2015). The metagenomics
analysis (Fig. 8.3) has been used for the identification of microorganisms unable to
grow under laboratory conditions. Therefore, it allows the evaluation of the

Sequence based screening
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Fig. 8.3 General methodology of metagenomics
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functional diversity of microorganisms present in contaminated sites, and also per-
mits the investigation of diverse genes and metabolic pathways, unknown or poorly
characterized, involved in the degradation of xenobiotics such as pesticides (Silva
et al. 2013; Bashir et al. 2014; Jeffries et al. 2018; Pande et al. 2020; Sun et al. 2020).

The information about the enzymes and metabolic pathways identified is useful
for the design of customized microbial strains or microbial consortia for specific
applications in bioremediation (Dangi et al. 2018; Bharagava et al. 2019; Jayaraman
et al. 2019). Recently, metagenomics studies have taken on relevance in the field of
pesticide bioremediation. In Table 8.5, examples of the application of metagenom-
ics in environments polluted by pesticides are shown. Through the metagenomics
studies, it is possible to evaluate the microbial diversity of pesticides polluted sites
(soil, water, sediments) and identify genes that encode for novel and promising
enzymes implicated in pesticide biodegradation processes. Metagenomics studies in
the field of pesticide bioremediation have been focused on the evaluation of micro-
bial diversity present in pesticide polluted sites. However, studies for bioprospect-
ing novel pesticide degrading enzymes are limited. It is important that future
metagenomics studies also include the search of pesticide degrading enzymes and
their biochemical characterization. As mentioned above, metagenomics is an emerg-
ing research approach in pesticide bioremediation. The number of studies is still low
and, most of them are carried out in China and India. However, since there are many
pesticide polluted areas around the world, the bioremediation of such pollution
requires the identification and characterization of microorganisms capable of
degrading pesticides, adapted to the environmental conditions of the polluted sites.
The metagenomics approach could certainly help in solving this task.

8.5.3 Transcriptomics

The transcriptome is defined as the whole set of transcribed genes in an organism
(Singh and Nagaraj 2006). The transcriptome analysis involves different steps,
beginning with the isolation and enrichment of cellular mRNA, followed by a cDNA
library synthesis. Subsequently, sequencing of complete cDNA is carried out, and
the gene sequences are finally analyzed through different bioinformatic tools for
functional analysis (Dangi et al. 2018).

To date, several tools for the detection of mRNAs and their expression levels are
available for transcriptomic studies. The first method applied for evaluation of gene
expression was low-throughput Sanger sequencing, followed by the northern blot-
ting methodology (Alwine et al. 1977), which was performed several decades before
any transcriptomics approaches were available. Subsequently, the reverse transcrip-
tase enzyme discovery allowed the synthesis of complementary DNA by the use of
mRNA as a template. The application of reverse transcriptase allowed researchers
to develop new strategies for the evaluation of the transcriptional profiles in biologi-
cal samples, such as hybridization (DNA microarrays), quantitative real-time PCR
(qRT-PCR) and deep-sequencing technologies, such as RNA sequencing
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(RNA-seq). These latest techniques are currently the most used since 2008, particu-
larly the Solexa and Illumina technologies, which provide high coverage and excel-
lent resolution of the transcriptome’s dynamic nature (Kukurba and Montgomery
2015; Lowe et al. 2017; Chandran et al. 2020).

Environmental pollutants such as pesticides induce the regulation of the gene
expression in microorganisms for adaptation and resistance to adverse effects gen-
erated by pesticide exposure. This process is related to the degradation and miner-
alization of pesticides, and it involves cellular physical and chemical signals (Cao
et al. 2019a). Cell receptors detect these signals in bacteria and fungi to facilitate
pesticide passage through the membrane. The pesticide presence induces modifica-
tion in the gene expression patterns, a process known as transcriptional regulation.

Transcriptomic analysis has enabled the analysis of gene expression changes in
microorganisms in response (degradation or tolerance) to pesticides. In Table 8.6,
transcriptomics studies focused on evaluating microorganism response to pesticide
exposure are shown. These studies have been carried out in several bacterial and
fungi strains. According to the studies, the use of Escherichia coli stands out as a
model for evaluating the adverse effect of pesticide exposition at the transcriptome
level. On the other hand, transcriptomic studies in pesticide degrading bacterial
strains, such as the Gram-negative Burkholderia thailandensis, B. zhejiangensis,
Klebsiella jilinsis, K. pneumoniae, Pseudomonas aeruginosa, and P. putida, as well
as the Gram-positive Rhodococcus erythropolis, allowed the identification of the
genetic mechanism employed by such bacteria to sense, degrade, and resist pesti-
cides. The response to pesticide exposition in fungi such as the yeast Saccharomyces
cerevisiae or the filamentous fungi Aspergillus nidulans, Penicillium digitatum,
P. italicum, Trichoderma asperellum, and T. atroviride has been evaluated through
transcriptomic approaches.

As a result of the transcriptional analysis in microorganisms, it is possible to
identify the genes that encode to key enzymes implicated in the pesticide biodegra-
dation processes and the molecular strategies that they employ to counteract the
adverse effects of pesticide exposure, all of which is important information for the
establishment of successful bioremediation strategies. However, the transcriptomic
studies related to pesticide biodegradation in bacteria and fungi strains are still very
few, evidencing the need to increase the research in the transcriptomics field and the
number of microorganisms and pesticides molecules studied through this approach.

8.5.4 Proteomics

In organisms, the phenotypic characteristics are defined by the expression and the
functionalities of different proteins (Singh 2006; Chandran et al. 2020). Around
three decades ago, Marc Wilkins first introduced the term proteome to depict the set
of proteins expressed by a given organism (Williams and Hochstrasser 1997; Mishra
2010). Subsequently, the concept of proteome evolved to describe all proteins
expressed in a biological sample, their isoforms and modifications, the interactions



8 Pesticide Bioremediation: OMICs Technologies for Understanding the Processes

Table 8.6 Transcriptomic studies in pesticide exposure and biodegradation

221

Pesticide family Pesticide Microorganism Reference
Bacteria
Avermectin Benzene Microbial consortia Luo et al. (2014)
Benzoate Microbial consortia Luo et al. (2014)
Azoic fungicide Carbendazim Rhodococcus sp. CX-1 Long et al.
(2021)
Bipyridyls Paraquat Escherichia coli O157:H7 | Allen and
Griffiths (2012)
Klebsiella pneumoniae Huang et al.
CG43 (2013)
Mycobacterium Namouchi et al.
tuberculosis (2016)
Nitrophenol p-Nitrophenol (PNP) Escherichia coli Chakka et al.
(2015)
Pseudomonas putida Chen et al.
DLL-E4 (2016)
Organochlorine 24D Microbial communities Dennis et al.
(2003)
Chlorimuron-ethyl Rhodococcus erythropolis | Cheng et al.
D310-1 (2018)
Pentachlorophenol Pseudomonas aeruginosa | Muller et al.
(2007)
Organophosphorus Chlorpyrifos Escherichia coli (DE3) Aswathi et al.
(2020)
Glyphosate Burkholderia thailandensis | Kang et al.
(2011)
Escherichia coli Lietal. (2015)
Escherichia coli K12 Lu et al. (2013)
Enterobacter sp. NRS1 Fei et al. (2013)
Methyl parathion Burkholderia zhejiangensis | Castrejon-
CEIB S4-3 Godinez et al.
(2019)
Phoxin Bacillus amyloliquefaciens | Meng et al.
YP6 (2019b)

Ortho-phenylphenate

Ortho-phenylphenol

Sphingomonas
haloaromaticamans P3

Perruchon et al.
(2017)

Pseudomonas aeruginosa

Nde et al. (2008)

Staphylococcus aureus Jang et al.

(2008)

Phenyl urea Linuron Microbial consortia Albers et al.
(2018b)

Sulfonylurea herbicide | Chlorimuron-ethyl Klebsiella jilinsis 2N3 Zhang et al.
(2019b)

Fungi

Anilinopyrimidines Pyrimethanil Saccharomyces cerevisiae ‘ Gil et al. (2018)

(continued)
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Pesticide family Pesticide Microorganism Reference
Azole fungicides Prochloraz Penicillium digitatum Liu et al. (2015)
Penicillium italicum Zhang et al.
(2020a)
Carbamates Carbofuran Saccharomyces cerevisiae | Gil et al. (2018)
Chloroacetanilides Alachlor Saccharomyces cerevisiae | Gil et al. (2011)
S-metolachlor Saccharomyces cerevisiae | Gil et al. (2018)
Phenylamide Diuron Saccharomyces cerevisiae | Gil et al. (2018)
Organochlorine MCPA Saccharomyces cerevisiae | Gil et al. (2018)
Prochloraz Penicillium digitatum Liu et al. (2015)
Organophosphorus Dichlorvos Trichoderma atroviride Zhang et al.
T23 (2015)
Trichoderma asperellum Wu et al. (2018)
TJO1
Glyphosate based Aspergillus nidulans Mesnage et al.
herbicides (2020)

2,4 D 2,4-dichlorophenoxyacetic acid; MCPA 2-methyl-4-chlorophenoxyacetic acid

between them, their structural information, and their higher-order complexes (Tyers
and Mann 2003). For large-scale protein analysis, proteomics research has inte-
grated innovations and technologies such as two-dimensional gel electrophoresis
(2D-GE), protein arrays, label-free quantification mass spectrometry, isobaric tags
for relative and absolute quantitation (iTRAQ) mass spectrometry, X-ray crystal-
lography, and nuclear magnetic resonance (NMR), for identifying differential
expression and providing three-dimensional structure of proteins (Aslam et al.
2017; Sui et al. 2018). In the field of environmental sciences, proteomics has taken
on relevance in the identification of catalytic proteins implicated in the biodegrada-
tion metabolic pathways of different pollutants, including heavy metals, hydrocar-
bons, and pesticides, in bioremediation approaches, as well as in the evaluation of
the microbial resistance and response to the adverse effects derived from xenobiot-
ics exposition (Tang et al. 2010; Seo et al. 2013; Vandera et al. 2015; Festa et al.
2017; Liu et al. 2017; Wei et al. 2017; Rawat and Rangarajan 2019). In the last few
years, several proteomics studies related to pesticide bioremediation have been pub-
lished (Table 8.7). These reports describe the application of proteomics in the eluci-
dation of the degradation pathways for several pesticides belonging to different
chemical families, with organophosphorus, organochlorines, and carbamates as the
most relevant, as well as the protein-based response to the presence of these pesti-
cides. Most proteomic studies have been carried out in bacteria. However, yeast
such as Saccharomyces cerevisiae and filamentous fungi, such as Trichoderma atro-
viride, have also been reported. The application of proteomics approaches in the
pesticide bioremediation research is becoming increasingly relevant. Most pro-
teomic studies have been carried out in vitro; however, in situ application of pro-
teomics approaches for monitoring the microbial activities at the polluted sites still
has technical and methodological drawbacks to address for successful
implementation.
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Table 8.7 Proteomics studies in degradation of the pesticides
Pesticide family Pesticide Microorganisms Reference
Organophosphorus Dichlorvos Trichoderma atroviride | Tang et al.
(2010)
Methyl parathion Fischerella sp. Tiwari et al.
(2018)
Chlorpyrifos Achromobacter sp. C1 | Briceiio et al.
(2020)
Triazophos, methamidophos Enterobacter sp. Z1 Zhang et al.
(2020b)
Chlorpyrifos Pseudomonas Aswathi et al.
nitroreducens AR-3 (2021)
Organochloride Hexachlorobenzene Dehalococcoides Schiffmann
mccartyi CBDB1 et al. (2014)
1,2,3,4,5,6-Hexachlorocyclohexane | Streptomyces sp. M7 Sineli et al.
(HCH) (2018)
Pentachlorophenol (PCP) Rhizopus oryzae ENHE | Ruiz-Lara et al.
(2020)
Carbamate Aminocarb, bendiocarb, bufencarb, | Burkholderia sp. C3 Seo et al.
carbaryl, carbofuran, methiocarb, (2013)
mexacarbate, pirimicarb, propoxur,
xylylcarb
Carbofuran Enterobacter sp. Z1 Zhang et al.
(2020b)
Chloroacetanilide Alachlor Paecilomyces Szewczyk et al.
marquandii (2015)
Butachlor Pseudomonas putida Wagner et al.
ER1 (2017)
Conazole Tetraconazole Saccharomyces Sieiro-
cerevisiae Sampedro et al.
(2020)
Saccharomyces Briz-Cid et al.
cerevisiae T73 (2020)
Dicarboximide Iprodione (IPR) Pseudomonas sp. C9 Bricefio et al.
(2020)
Neonicotinoid Acetamiprid Ensifer adhaerens Sun et al.
CGMCC 6315 (2018)
Nitrophenols p-Nitrophenol Escherichia coli Chakka et al.
(2015)
Rhodococcus sp. Sengupta et al.
(2019b)
Organotin Triphenyltin Escherichia coli Yietal. (2017)
pET32a-CYP450
Ortho-phenylphenate | Ortho-phenylphenol Sphingomonas Perruchon et al.

haloaromaticamans P3

(2017)

(continued)
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Table 8.7 (continued)

Pesticide family Pesticide Microorganisms Reference
Pyrethroid Cypermethrin Bacillus thuringiensis | Pankaj et al.
strain SG4 (2016)
Deltamethrin Bacillus thuringiensis | Guo et al.
(2020)
Quinoline carboxylic | Quinclorac Burkholderia cepacia | Negi et al.
acid WZ1 (2016)
Substituted ureas Linuron Variovorax sp. WDL1 | Breugelmans
et al. (2010)
Sulfonylurea Pyrazosulfuron-ethyl Rhodopseudomonas Luo et al.
herbicide palustris PSB-S (2018)
Triketone Mesotrione Bacillus megaterium Bardot et al.
(2015)
Triazine Desethylatrazine (DEA) and Pleurotus ostreatus Lopes et al.
desisopropylatrazine (DIA) INCQS 40310 (2020)

8.5.5 Metabolomics

Metabolomics is a research field focused on the global analyses of the thousands of
low-mass primary and secondary metabolites present in an organism (Rochfort
2005; Hernandez-Soriano and Jimenez-Lopez 2014; Muthubharathi et al. 2021). In
metabolism, small molecules are intermediate or end products from the enzymatic
reactions. The presence or absence, as well as concentration levels of these metabo-
lites, reflex the metabolic state of an organism under a given condition (Alonso et al.
2015; Van Emon 2016). Different technologies, such as including gas chromatogra-
phy, mass spectrometry, and nuclear magnetic resonance, have been employed for
metabolite identification and quantification (Moco et al. 2007; Viant and Sommer
2013). The information generated from these experimental technologies is analyzed
with the help of different bioinformatic tools (Blazenovi¢ et al. 2018). In environ-
mental sciences, metabolomic studies have been directed to evaluate the presence,
absence, or concentration changes in different small chemical compounds, mainly
those associated with the organism xenobiotic exposure. The concentration levels of
these small chemicals could give information about the cellular metabolic state in
response to changes in the environmental conditions caused by pollutants (Aliferis
and Chrysayi-Tokousbalides 2011).

Pesticide exposure may cause several adverse effects on microorganisms.
Different kinds of small metabolites are produced as a cellular response to this
exposure, while others reduce their cellular concentrations (Villas-Bdas and
Bruheim 2007). The identification of such metabolites may lead to understanding
the metabolic response of these microorganisms, and the mechanisms employed to
fight with the stress generated by the exposure to these toxic chemicals. Furthermore,
the identification of the metabolites derived from the pesticide biodegradation
through metabolomics generates information with multiple applications, such as the
elucidation of the metabolic pathways implicated in the pesticide degradation
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processes, ecotoxicological studies focused on environmental biomonitoring
through the identification of exposure biomarkers, the safety of agricultural prod-
ucts, and the discovery of novel pesticides, with reduced toxicity on non-target
organisms, or more effective in the control of the resistant pest (Lin et al. 2006;
Kikuchi et al. 2018; Kovacevic and Simpson 2020). In Table 8.8 recent metabolo-
mics studies related to pesticide bioremediation are listed. These studies address the
identification of novel pesticide degradation derived metabolites and the microbial
response from toxic effects generated by pesticide in microorganisms, such as fungi
and bacteria, important knowledge for the improvement of bioremediation strate-
gies. In the near future, the application of the findings of metabolomics studies
could help to develop efficient pesticide polluted sites bioremediation processes.

8.6 Future Prospects

Intensive agricultural practices for human and animal consumption have caused a
negative impact on the environment. The constant release of different pesticides is
related to severe pollution in soil, water, and air, threatening flora, fauna, and human
health. Hence it is necessary to apply reliable and cost-effective strategies to reme-
diate pesticide polluted sites. One of the more promising proposed strategies
involves the use of the catalytic capacities of different microorganisms to biode-
grade or remove pesticides from the environment. Several of the high-potential bio-
remediation microorganisms have been isolated from impacted sites and cultured in
the laboratory for their study and characterization. However, much of the microor-
ganisms distributed in polluted sites are uncultivable due to the failure to replicate
the necessary physicochemical and nutritional conditions for proper growth in the
laboratory.

In recent years, OMIC technologies have been demonstrated as useful tools in
the field of pesticide bioremediation research. The information generated through
OMIC approaches has allowed (1) the genomic characterization of the pesticide
degrading microorganisms (genomics), (2) the identification of microbial commu-
nity structure present in polluted sites and the identification of novel enzymes with
potential application in bioremediation strategies (metagenomics), (3) the evalua-
tion of transcriptional changes in microorganisms exposed to pesticides (transcrip-
tomics), (4) the identification and characterization of diverse enzymes related to
pesticide biodegradation as well as the evaluation of the microbial response to pes-
ticide exposure (proteomics), and (5) finally, the detection, identification, and quan-
tification of metabolic by-products derived from pesticide biodegradation, and
changes in primary and secondary metabolism derived from toxic effects of pesti-
cides (metabolomics). Overall, the information generated through OMIC and
MultiOMIC studies gives a better understanding on the microbial pesticide degrada-
tion processes. In the future, OMIC approaches will become more relevant in pesti-
cide bioremediation research.
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Table 8.8 Metabolomics studies in pesticide biodegradation and pesticide exposure microbial

response
Pesticide family Pesticide Microorganism ‘ Reference
Bacteria
Hydroxy-anilide Fenhexamid Lactobacillus casei Lénart et al.
Shirota (2013)
N-methylcarbamates | Carbaryl Burkholderia sp. C3 Seo et al.
(2013)
Organophosphorus Chlorpyrifos Sphingobacterium sp. | Verma et al.
CIB (2020)
Glyphosate Actinobacteria Grube et al.
(2019)
Pseudomonas sp. Grube et al.
(2019)
Serratia sp. Grube et al.
(2019)
Phorate Lactobacillus Lietal. (2018)
plantarum P9
Phoxim Bacillus Meng et al.
amyloliquefaciens YP6 | (2019a)
Enterobacter cloacae | Zhang et al.
(2017)
Profenofos Rahnella sp. PFF2 Verma and
Chatterjee
(2021)
Phenoxy herbicides 2,4-D Escherichia coli BL21 | Bhat et al.
(2015a)
Rhizobium Bhat et al.
leguminosarum bv. (2015b)
viciae 3841
Pyrethroid Cyfluthrin Lysinibacillus Hu et al.
sphaericus FLO-11-1 (2014a)
Photobacterium Wang et al.
ganghwense strain 6046 | (2019a)
Cyhalothrin Bacillus thuringiensis | Chen et al.
ZS-19 (2015b)
Cypermethrin Brevibacillus Tang et al.
parabrevis BCP-09 (2018)
Quinoline carboxylic | Quinclorac Burkholderia cepacia Lii et al. (2003)
acid WZ1
Sulfonylurea Nicosulfuron Pseudomonas sp. Li et al. (2020)
LAM1902
Fungi
Anilides Alachlor Paecilomyces Szewczyk et al.

marquandii IM 6003

(2015)

(continued)
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Table 8.8 (continued)
Pesticide family Pesticide Microorganism Reference
Azole fungicides Difenoconazole Botrytis cinerea Han et al.
(2020)
Epoxiconazole Botrytis cinerea Han et al.
(2020)
Fenarimol Botrytis cinerea Han et al.
(2020)
Fluquinconazole Botrytis cinerea Han et al.
(2020)
Flusilazole Saccharomyces Karamanou
cerevisiae YCF1 and Aliferis
(2020)
Tebuconazole Botrytis cinerea Han et al.
(2020)
Hexaconazole Botrytis cinerea Han et al.
(2020)
Chloropyridinyl Acetamiprid Fusarium sp. CS-3 Shi et al.
neonicotinoids (2018)
Organochlorine B-hexachlorocyclohexane | Penicillium Ceci et al.
griseofulvum (2015)
DDT Rhizopus arrhizus FBL. | Russo et al.
578 (2019)
Trichoderma hamatum | Russo et al.
FBL 587 (2019)
Organophosphorus Dichlorvos Trichoderma Wu et al.
asperellum TJO1 (2020)
Phenylpyrazoles Fipronil Trametes versicolor Wolfand et al.
ATCC 42530 (2016)
Phenoxy herbicides 2,4-D Trichoderma harzianum | Mironenka
M 0961 et al. (2020)
Umbelopsis isabellina | Bernat et al.
(2018)
Sulfonylurea Nicosulfuron Penicillium oxalicum Feng et al.
YC-WMI1 (2017)
Triazine Ametryn Metarhizium brunneum | Szewczyk et al.
(2018)
Atrazine Metarhizium robertsii | Szewczyk et al.

IM 6519

(2020)

Carbendazim

Fusarium graminearum

Sevastos et al.
(2018)

2,4-D 2 ,4-dichlorophenoxyacetic acid, DDT dichlorodiphenyltrichloroethane
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Bioremediation of Pesticides Using
Microbial Consortium: Challenges
and Future Perspectives

Gaye Ezgi Yilmaz, Ilgim Goktiirk, Volkan Safran, Fatma Yilmaz,
and Adil Denizli

Abstract The widespread use of pesticides causes serious environmental and
health problems. Pesticide use not only degrades soil quality but also enters the
aquatic environment, so decontamination of pesticide-contaminated areas is a very
complex process. The conventional methods used to remove polluting chemicals
from the environment are not sufficient for the removal of pesticides. New technolo-
gies such as environmentally friendly, economical, and versatile bioremediation
methods are required that take advantage of the ability of microorganisms to remove
pollution from the environment. The use of microbial consortia has very important
advantages in the bioremediation of pollution caused by pesticides. In this chapter,
recent applications of microbial consortia used in pesticide bioremediation are
discussed.

Keywords Bioremediation - Microbial consortium - Microbial degradation -
Pesticide

9.1 Introduction

Pesticides are widely used in agriculture to increase crop yield and improve the
quality of agricultural products. The abuse of pesticides has resulted in serious food
and environmental contamination around the world. In addition, worrisome prob-
lems for human health emerged as a result. Therefore, policies for pesticide use
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have been established by governments to ensure the correct management of pesti-
cides and various maximum residue levels have been set in food and agricultural
products. Although these measures have shown certain effects, pesticides continue
to be a challenging problem that threatens human health and life (Liu et al. 2019).
Intensive and unconscious use of pesticides can cause contamination of soil, sedi-
ments, and water systems, and as a result, they can accumulate in the food chain and
grow biologically. Several international organizations regulate pesticides, such as
the Environmental Protection Agency (EPA), the United States Department of
Agriculture, the Stockholm Convention, the United States Food and Drug
Administration, and the United Nations Environment Program (Nehra et al. 2021).
The widespread use of pesticides causes serious environmental and health prob-
lems. In addition, intensive pesticide use negatively affects biodiversity. Pesticide
use not only degrades soil quality but also enters the aquatic environment, so decon-
tamination of pesticide-contaminated areas is a very complex process. The old
methods used to remove polluting chemicals from the environment are not suffi-
cient for the removal of pesticides. New technologies such as environmentally
friendly, economical and versatile bioremediation methods are required that take
advantage of the ability of microorganisms to remove pollution from the environ-
ment (Uqab et al. 2016).

In the natural environment, microbes exist in multiple species. Mixed microbial
cultures have received little attention due to the lack of information about their
interactions with each other. In natural environments, microbes can have unique
metabolic properties. Synthetic microbial consortia can perform desired functions
in naturally contaminated sites. Physical and chemical pesticide remediation is
mostly not recommended due to its negative effects such as application difficulties,
high cost, and unsustainability in terms of poor environmental safety. The use of
potential and potent microorganisms and their biocatalytic enzymes derived from
the environment for the pesticide biodegradation and their hazardous metabolites is
effective and environmentally friendly. Microorganisms and their enzymatic powers
can act as effective biological weapons to combat toxic agrochemicals. Potential
bioremediation of chemical pesticides can be achieved with a mixed microbial con-
sortium (Sarker et al. 2021).

Biodegradation of complex hydrocarbon often requires more than one species to
be involved in the degradation process. This is especially true for pollutants com-
posed of many different compounds, and full mineralization to CO, and H,O is
desirable. Mixed population communities with large enzymatic capacities are
required, as individual microorganisms can only metabolize a limited range of
hydrocarbon substrates (Ghazali et al. 2004). The vast majority of microorganisms,
99%, are found in microbial consortia in the open environment. Microbial consortia
have more flexible and adaptive abilities to complex environmental stresses when
compared to pure cultures. The development of climate-adapted mixed cultures is
the most appropriate strategy to allow the emergence of ecologically stable consor-
tia for biodegradation. Recently, there has been an increasing number of studies
investigating the role of microbial consortia and non-culturable microbes in the bio-
degradation of pollutants. Studies have shown that the consortium is more suitable
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for the biodegradation of pollutants in an unstable environment, as synergistic inter-
actions between different bacterial strains allow them to fully mineralize the pollut-
ant (Xu et al. 2020). A wide variety of microorganisms with pesticide degrading
activity have been found. It has been proven that microorganisms such as
Flavobacterium oryzihabitans, Arthrobacter aurescens, and Acinetobacter sp. are
effective in the degradation of atrazine. Similarly, Sphingomonas paucimobilis
microorganism was found to be effective for carbofuran degradation. Besides, dif-
ferent types of microorganisms such as Serratia marcescens, Stenotrophomonas sp.,
Leuconostoc mesenteroides, Artrobacter sp., Mycobacterium sp. were found to be
effective for diazinon degradation (Géngora-Echeverria et al. 2020). As can be seen
from these examples, the use of microbial consortia has very important advantages
in the bioremediation of pollution caused by pesticides. In this chapter, recent appli-
cations of microbial consortia used in pesticide bioremediation are discussed.

9.2 History of Pesticides

Pesticides are important chemicals used to prevent or control plant pests, various
diseases, and pathogenic factors in plants to reduce or eliminate crop losses and
improve crop quality. The most important advantages of pesticides are that they
provide economic benefits such as reducing cost-production factors as well as
increasing product yield and quality. In addition to these, although pesticides have
many advantages, the intensive and uncontrolled use of pesticides causes negative
effects on the environment and the health of living things (Khan et al. 2015). Since
ancient times, people have tried to find and apply effective methods in order to
improve their products and protect them against various pests. An example of this is
that ancient peoples cultivated poisonous and nutritious plants in the same place to
remove pests from nutritive plants, taking advantage of the protective effect of poi-
sonous plants. In addition to this example, elemental sulfur was also used during
this period. These practices can be counted as the first methods applied to destroy
pests. This was followed by the Ebers papyrus, one of the oldest documents on pes-
ticide use, which describes the preparations made to repel insects from plants.
Primitive sulfides are used for the same purposes in traditional Chinese medicine.
Likewise, Homer’s work “Odysseus” is an example of the use of substances to
destroy insects. In the 1500s, the first stages of using mercury and arsenic, called
“para-pesticides,” appeared. The use of these substances started in World War II and
continued until the 1940s and later, the date of the beginning of the synthetic pesti-
cide era. One of the most important events in the history of pesticides was Paul
Muller’s discovery of the first modern pesticide, dichloro-diphenyl-trichloroethane
(DDT), in 1939. This discovery earned him the Nobel Prize in medicine for not only
reducing the damage done by pesticides in agriculture, but also reducing health
problems such as malaria or typhus, but the use of DDT did not last long. Due to the
benefits of pesticides as well as their negative effects on the environment and health,
according to new European Union regulations, manufacturers are required to
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minimize pesticide production in order to reduce the number of serious diseases in
the world (Abubakar et al. 2020).

Most substances used in daily life today are registered as pesticides if they are
marketed to reduce pests. Disinfecting agents are an example of this definition.
Products marketed using pathogen control properties must be registered with the
EPA as pesticides. Boric acid is generally used as a bleaching agent and was regis-
tered as a pesticide used in insect control. Vitamin D3 (cholecalciferol), an essential
nutrient, is also a proprietary pesticide. Since high doses of vitamin D3 kill rats and
mice, products containing vitamin D3 should be registered with the EPA as roden-
ticides. With the spread of chemical synthesis in the early to mid-twentieth century,
there was a shift towards the production and use of pesticides that are less toxic to
crop plants and have high specificity towards target organisms. However, since the
beginning of the 1970s, the idea of developing pesticides that degrade rapidly, are
non-accumulating, and are not toxic to living organisms has come to the fore even
more since the beginning of the 1970s, due to the continuing problems associated
with the accumulation of many pesticides in the environment and the food chain
(Reeves et al. 2019).

9.3 C(lassification and Effects of Pesticides

Pesticides can be classified as destroying, repellent, and mitigating agents. Pesticides
are well soluble in water, have a heat resistant and polar structure, so it is very dif-
ficult to reduce the lethal nature of pesticides due to these properties. Of all pesticide
types, insecticides are considered the most toxic, followed by fungicides and herbi-
cides on the toxicity list, respectively. Pesticides enter ecosystems in two different
ways, depending on their solubility. Water-soluble pesticides enter the soil after they
dissolve in water. It harms non-targeted species through various water sources such
as streams, lakes. Fat-soluble pesticides enter the bodies of animals. This process is
called bioamplification. Pesticides remain in food chains for a long time as a result
of their absorption from the fat tissues of animals. As a result of pesticide accumula-
tion in food chains, the amounts of predators and raptors are directly affected and
this is a major concern. In addition, pesticides can indirectly reduce the number of
weeds and insects. The use of pesticides such as insecticides, herbicides, and fungi-
cides has been associated with the depopulation of rare animal species. In addition,
one of the most important consequences of long-term and frequent use of pesticides
is that it causes bioaccumulation in nature (Mahmood et al. 2016). Most of the pes-
ticides, which consist of four main groups according to their chemical structures,
are synthetic and organic compounds. These groups are organochlorines, organo-
phosphorus, carbamates, and pyrethrins and finally are pyrethroids. Examples of
organochlorines are DDT and BHC, examples of organophosphorus are malathion,
fenthion, dichlorvos, pirimiphos-methyl, examples of carbamates and pyrethrins are
propoxur, bendiocarb and carbaryl, and pyrethroids, for example, cyfluthrin, bifen-
thrin, lambda-cyhalothrin. Organophosphate pesticides, one of the pesticide groups,
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are the most toxic to vertebrates. A very small percentage (~0.1%) of pesticides
used can eliminate target pests, while the rest is released into the ecosystem, causing
various effects (Sarlak et al. 2021).

Organochlorine pesticides were the first-generation synthetic organic pesticides
used for pest and vector control. They have low toxicity and lasting effects. Due to
their stable chemical structure, they are difficult to decompose in the natural envi-
ronment. Due to environmental pollution and accumulation in mammals, causing
various health problems, their use in large quantities and for a long time has been
banned and left its place to other pesticides. DDT, endosulfan, and lindane are
examples of this pesticide class. Organophosphate pesticides have multiple func-
tions and are capable of controlling a large number of pests. Organophosphate pes-
ticides are biodegradable, cause little environmental pollution, and slow down pest
resistance. Methyl parathion, phosphamidon, and fenitrothion are examples of
organophosphate pesticides. Carbamates work on the same principle as organo-
phosphate pesticides by affecting the transmission of nerve signals, poisoning and
causing the death of the insect. Carbamates can be used as fumigants as well as
stomach and contact poisons. Since their molecular structures are very similar to
those of natural organic substances, they can be easily degraded with minimal envi-
ronmental pollution. Propoxur is an example of a carbamate pesticide.

Synthetic pyrethroid pesticides are synthesized by imitating the structure of nat-
ural pyrethrins. They are relatively more stable compared to natural pyrethrins.
While synthetic pyrethroid pesticides are more toxic to insects, they cause less tox-
icity to mammals. Allethrin and permethrin are examples of synthetic pyrethroid
pesticides (Ahmad and Ahmad 2014). Insecticides that are frequently used against
aphids and viral diseases are organophosphorus compounds. Organochlorine, car-
bamate, and pyrethroid pesticides destroy pests, namely Lepidoptera, Hemiptera,
and Diptera. The majority of these pesticides are used to eliminate crop-damaging
insects. Pesticides can be classified according to their use as insecticides used
against insect pests, nematicides used against nematodes, fungicides used against
fungi, herbicides used against weed pests, etc. There is another class of pesticides
made from natural materials called biopesticides (Odukkathil and Vasudevan 2013).
Biopesticides refer to a method of biological control through the interaction of liv-
ing organisms. Biopesticides consist of microbial pesticides, biochemical pesti-
cides, and plant-derived preservatives (PIPs). Plants, insects, microorganisms are
the source of readily available, inexpensive, versatile, and easily degradable
biopesticides.

Target-specific biopesticides are not toxic to humans. With the use of biopesti-
cides, sustainability has been increased and any pollution caused by synthetic pesti-
cides has been reduced. Biopesticides, which are used in integrated crop management
practices around the world, are compatible with other chemical pesticides and play
a very important role in plant protection. Bioinsecticides, bioherbicides, and biofun-
gicides are commonly used biopesticides (Thakur et al. 2020). Synthetic chemical
compounds such as pesticides are used extensively in a variety of agricultural and
household applications around the world to meet food, feed, household needs, and
reduce the pest load. Pesticides are frequently used in homes and public places to
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reduce pathogenic vectors and pests in agricultural systems (Bhatt et al. 2021). In
order to meet the increasing nutritional needs of the ever-increasing world popula-
tion, plant production must also increase. With the right pesticide and pest manage-
ment, the reduction in crop yield (approximately 40% reduction) caused by
approximately 67,000 different crop pests can be greatly altered and the number of
nutrients can be increased (Oaya et al. 2019). Globally, a total of about 9000 insect
and mite species, 50,000 plant pathogen species, and 8000 weed species damage
crops. Pests that cause the most damage to plants can be listed as insect pests, plant
pathogens, and weeds. To eliminate these damages, pesticide use is necessary for
plant production. Crop loss from pest damage can be up to 78% if pesticides are not
used. With pesticide application, crop loss caused by pests can be reduced by close
to 42% (Zhang 2018). Synthetic chemicals are commonly used to enhance crop
productivity. Although synthetic chemicals have these and many other beneficial
properties, their widespread use has also caused negative consequences such as
environmental and health problems. (Chapalamadugu and Chaudhry 1992).

The most widely used pesticides for experimental study can be listed as chlorpy-
rifos, cypermethrin, fenvalerate, and triclopyr butoxyethyl ester (Geetha and Fulekar
2008). Adverse factors such as pollution and loss of biodiversity resulting from the
heavy use of pesticides are major concerns. Chlorpyrifos, which belongs to the
organophosphate group of pesticides, has toxic properties. Chlorpyrifos changes the
structure of microbial in the soil and causes negative effects on the health of living
things. Chlorpyrifos pesticide is very common in food and water (John and Shaike
2015). Cypermethrin is a synthetic pyrethroid pesticide. It is highly toxic to aquatic
invertebrates. It adversely affects human health and cypermethrin has been classi-
fied as a human carcinogen (Tallur et al. 2008). Fenvalerate (FEN) can be absorbed
by animals through the skin, respiratory tract, or digestive tract. FEN shows both
acute and cumulative toxicity (Liu et al. 2010). When pesticides enter the body, they
can reach every organ in the body through the bloodstream and cause accumulation
there. After pesticides enter the cells, cell function balances change drastically and
pesticides cause cell stress. For example, some pesticides have proven to be inhibi-
tors or agonists of mitochondrial enzymes that alter energy expenditure by impair-
ing mitochondrial function. Some pesticides contain endocrine-disrupting chemicals
and can bind or abnormally activate proteins, which are key mediators of the endo-
crine system, to disrupt the function of the endocrine system. Pesticides can also
cause a variety of cell stresses, including cell cycle arrest and endoplasmic reticu-
lum stress (He et al. 2020).

9.4 Bioremediation

Bioremediation is an event that uses organisms and enzymes to detoxify the pol-
luted environment. Bioremediation, a biotechnology approach, can be used to
decontaminate certain pollutants such as pesticides, organic liquids, oils, and
organic sludge. Bioremediation processes can be listed as: mineralization,
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biotransformation, reduction of highly electrophilic halo and nitro groups, and bio-
remediation can be aerobic or anaerobic. The use of sequential anaerobic-aerobic
bioremediation processes in contaminated areas reduces the limitations of the men-
tioned methods previously. Depending on the application area and the contaminated
soil to be treated, bioremediation is grouped as in situ and ex situ technology. The
in situ technique is often chosen in areas where treatment with conventional meth-
ods would result in high costs, and where excavation is technically difficult or
impossible. The in situ method is mainly suitable for soils with sufficient hydraulic
conductivity and low to medium pollution concentration. Advantages of in situ bio-
remediation are summarized as: the bioremediation process is implemented without
significant disruption, eliminates the burden of transportation for purification, the
end products are harmless products, the spread of pollutants is completely avoided
as there is no handling in the process.

On the contrary, the disadvantages of this process are that as the depth of the soil
increases, the availability of oxygen, water, and nutrients decreases, the process is
uncontrolled, making it difficult to determine the extent of remediation of the con-
taminated area, and the overall cost of comprehensive intensive monitoring
increases. Ex situ bioremediation requires excavating the contaminated area and
then treating it in a bioreactor or on-site or a treatment plant. Depending on the state
of the contaminant, ex situ treatment can be applied as a solid phase system or a
slurry phase system. The advantages of ex situ bioremediation are that the treatment
process is subject to control and predictability, biodegradation kinetics can be
increased, pretreatment is possible to increase process efficiency, operating factors
can be optimized for efficient results. Applications are made on-site to eliminate
transportation costs and reduce contamination of healthy soil. Disadvantages of ex
situ bioremediation: it causes extra cost due to transportation cost, there is a possi-
bility of spreading contamination during transportation, it requires technological
equipment to bring the process to the required level of cleanliness (Fenibo 2021).
Many modern physical, chemical, and biological treatment methods are used to
remove pollution, but these methods are not sufficient to remove pollution.
Bioremediation is a very fast, easy, environmentally friendly, and acceptable method
for removing such compounds causing pollution in the environment (Sharma et al.
2018). Bioremediation can be defined as a process that can destroy a wide variety of
pollutants themselves or the harmful properties of pollutants by biological activity.
It is the process by which impurities are biodegraded to a harmless state under cer-
tain conditions or to levels below the concentration values determined by the
authorities (Mueller et al. 1996). With bioremediation, the negative effects of envi-
ronmental pollutants are eliminated by using living organisms such as microorgan-
isms. It uses living organisms that occur naturally in nature to break down harmful
substances or reduce their toxicity. Where environmental conditions are suitable for
microbial growth and activity, microorganisms enzymatically attack pollutants to
convert them into harmless products, resulting in effective bioremediation. Thanks
to bioremediation, many dangerous compounds can be converted into harmless
products. One of the advantages of bioremediation is that it is possible to com-
pletely destroy the target pollutants instead of transferring them from one
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environmental medium to another. Bioremediation is considered a suitable waste
treatment process for contaminated materials. Treatment residues are mostly harm-
less products. Bioremediation is limited to the application of biodegradable com-
pounds. Rapid and complete degradation may not be suitable for all compounds.
Biodegradation products have the potential to be more persistent or toxic than the
main compound. Biological processes have high specificity. For the bioremediation
process to be successful, skilled microbial populations, suitable environmental con-
ditions, and appropriate nutrient and pollutant levels factors are needed (Vidali 2001).

A large number of researchers have recently focused their attention on the deg-
radation of hazardous chemicals by microbial populations. Microbial degradation
has numerous other advantages besides being inexpensive, high cleaning efficiency,
and environmental friendliness. Microorganisms used to degrade various pesticides
have been isolated from various environments and identified. Microbial degradation
encompasses the microbial mechanisms involved in the biodegradation and biore-
mediation of pesticide-induced pollution (Huang and Lu 2021). The bioremediation
process is defined as the microbial degradation of xenobiotics and is an economical
method to remove contaminants. With biodegradation, biological reactions take
place that causes a reduction in toxicity by changing the chemical structure of the
compound. When pesticide degradation occurs, it involves a large number of micro-
organisms. Although each microorganism contributes to biodegradation reactions in
pesticides, no single strain mineralization pattern has been identified. Bacteria are
widely used in bioremediation processes (Doolotkeldieva et al. 2017). Microbial
degradation can be defined as the use of pesticides by microorganisms as a food
source. There are more than 100 million bacteria (5000-7000 different species) and
about 10,000 fungal colonies in 1 g of soil. A safe and economical alternative to
other commonly used physicochemical strategies to remove soil pollutants is the
use of microbial metabolic potential (Anjum et al. 2012). The persistence of pesti-
cides in the environment is affected by the microbial degradation process. The pres-
ence, number, and enzymatic ability of microorganisms affect the dispersion of
unwanted residues and impurities (Villaverde et al. 2017). Bioremediation technol-
ogy is basically the breakdown of pollutants through microbial metabolic activities.
Most of the microorganisms used in the healing process are native microorganisms
(Zhang et al. 2020).

Compared with other physicochemical approaches, bioremediation is a non-
destructive, cost-effective, and highly efficient approach to removing pollution.
Contaminated areas are often contaminated with more than one type of pollutant
and host a variety of different environmental conditions. Therefore, bioremediation
using a single microorganism strain often fails because of the low biodegradability,
adaptability, and viability of microorganisms applied in a contaminated area with
different environmental conditions. To successfully perform bioremediation, many
issues must be addressed, including available organic compounds, the use of suit-
able biodegradable microorganisms and their biodegradation properties, and vari-
ous environmental factors. To overcome these limitations, a microbial consortium
of multiple strains with diverse biodegradation abilities and physiological proper-
ties is implemented (Lee et al. 2018).
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Many highly efficient chemical pesticides have been produced on a large scale
after the discovery of some synthetic pesticides and are widely used to control vari-
ous agricultural pests. Pesticides play an important role in maintaining product
quality and yield, but their unconscious, intense, and continuous use causes serious
problems. The rate of biodegradation of pesticides is very slow compared to other
techniques. Specific microorganisms must be selected to ensure an adequate degra-
dation rate. In bioremediation, the isolation of effective microorganisms naturally
found in a contaminated area is very important (Geed et al. 2017a). Lysinibacillus,
Acinetobacter johnsonii, Pseudomonas sp., and Bacillus sp. strains have been used
for the degradation of pesticides (Geed et al. 2017b). Highly efficient colonization
of fungal populations in polluted soils can be achieved with highly branching and
filamentous growth modes (Verdin et al. 2004). White rot fungi, one of the highly
filamentous types of fungi, have an advantage over other bacterial strains as they
can oxidize very dangerous chemicals (Pointing 2001). Degradation of pesticides
by fungi is generally dependent on ligninolytic enzymes, and fungal degradation of
pesticides that are not very efficient requires long acclimatization and incubation
times (Espinosa-Ortiz et al. 2021). Therefore, many genetically modified fungi spe-
cies have been already patented, and they are seen as a vigorous biotechnological
approach in the biodegradation of soil pollutants (Steffen et al. 2007). The fungi
species reported in pesticide bioremediation are Phanerochaete chrysosporium,
Pleurotus ostreatus, Aspergillus niger, Fusarium proliferatum, Candida sp.,
Trametes versicolor, Cunninghamella elegans, and Penicillium sp. (Conde-Avila
etal. 2020). Besides, bacterial strains of Arthrobacter, Flavobacterium, Micrococcus,
Pseudomonas, Rhizobium, and Sphingomonas genera consume pesticides as
sources of carbon, nitrogen, and phosphorus.

9.5 Developments and Applications
of Bioremediation Techniques

In situ and ex situ bioremediation are the two main approaches named according to
the region selected for the pesticide treatment. The techniques that treat the toxic
pollutants on-site are called in situ bioremediation, while the techniques that treat
hazardous material off-site are called ex situ bioremediation (Giri et al. 2021). The
in situ approach includes stimulating microbial activity by adding microbes and
nutrients and optimizing environmental-related parameters in polluted areas (Seech
et al. 2008). In situ bioremediation, which is a low-maintenance, economical, sus-
tainable, and environmentally friendly approach, involves the biodegradation of
organic pollutants. It is a process in which organic pollutants are reduced to CO,,
water, or other minimally toxic products biologically for the detoxification of con-
taminated regions (Giri et al. 2021).

In situ bioremediation is preferable to ex situ bioremediation for environmental
rehabilitation of watery ecosystems and polluted soils (Jorgensen 2007). The
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condition of the contaminated area depends on many parameters such as the natural
microbial populations, pesticide amount, the level of toxicity, and the applicability
of a specific biotechnological approach. The addition of oxygen, substrates, vita-
mins, and organic/inorganic additives such as phosphate and nitrate stimulates
microbial activity in bio-stimulation. Bioaugmentation is a process where exoge-
nous microbial populations with certain catabolic activities are added to the pol-
luted area or means a biological reactor to support the biodegradation process. In
bioaugmentation, adding pre-grown microbial cultures to increase microbial popu-
lations in a region improves contaminant elimination and reduces cleaning time and
cost (Giri et al. 2021).

The microbial strains as axenic cultures are important in the study of the metabo-
lism, physiology, and molecular assembly associated with pesticide degradation. To
date, approximately 99% of environmental microbes cannot be cultured in laborato-
ries using traditional culture-dependent techniques. So, researchers suppose that
there is a strong possibility that the study of mixed microbial cultures from various
environments can help elucidate their potential impact on pesticide degradation
(Fig. 9.1) (Qian et al. 2020; Bhatt et al. 2021). The degradation studies of atrazine,
2,4-dichlorophenoxyacetic acid, carbofuran, diazinon, and glyphosate have been
evaluated by a bacterial consortium (Géngora-Echeverria et al. 2020). Chlorpyrifos
and 3,5,6-trichloro 2-pyridinol were completely degraded within 9 days using the
consortium (MC-BSPK) of Bacillus sp. MCB, Serratia sp. MC-S, Pseudomonas sp.
MC-S, and Klebsiella sp. MC-K (Sun et al. 2020). A consortium of Staphylococcus
warneri, Pseudomonas putida, and Stenotrophomonas maltophilia was found to be
effective in the degradation of chlorpyrifos (John et al. 2020).

The development of a synthetic microbial consortium in the environment will
require precise control of its growth, yield, and function so that it does not harm the

“ Transfer of the

Additio of
jipasn ar;lexno&_e functional group with Pesticide excretion from
! group in the cellular molecules :
sl I the living systems
. ng and formation of

Biodegradation

i

Quorum sensing

1 1,1

conjugate

Pesticides

Microbial
consortium

Removal of pestic 1
using microbial
metabolism

i

Fig. 9.1 Schematic representation of the pesticide toxicity and application of the microbial con-
sortia. (Reproduced from REF (Bhatt et al. 2021))
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natural environment. Honjo et al. designed a synthetic microbial consortium by
enzyme-producing Escherichia coli and chemical-producing strains (Fig. 9.2)
(Honjo et al. 2019). They used a synthetic quorum sensing (QS) system to enable
task execution through cell-to-cell communication among consortia. The enzyme-
producing strain was programmed to release the saccharification enzyme according
to the strain QS signal. The main task of the strain used to produce the target chemi-
cal is to produce the desired chemical after saccharification.

Genetic circuits that enable specific protein release and QS-dependent cell lysis
have the potential for a variety of bioengineering applications such as useful protein
production, agriculture, and bioremediation. In environments where complex pol-
lutants, soil and water are present, QS helps in improving biodegradation by coor-
dinating the movement of microbes against pollutants.

The process of removing different types of pollutants, such as persistent organic
pollutants (POPs), oil spills, pesticides, xenobiotics, and heavy metals, through bio-
remediation and biofilm has been used frequently in recent years. QS systems regu-
late enzyme production during biofilm-mediated degradation. Most bacteria remain
in the biofilm mode, coated with an extracellular polymeric substance (EPS) under
natural environmental conditions. In the bioremediation process, EPS matrix is a
useful structure of biofilm-forming microbes. The environmental conditions in
which the microbes are found determine the structure of bacterial biofilms and the
content of EPS production (Yadav and Chandra 2020).

In a study, Raimondo et al. (2020) constructed an actinobacteria-rich consortium
that was found to be capable of degrading lindane more efficiently following bio-
stimulation with a sugarcane filter cake. The study conclusion was that the simulta-
neous application of bioaugmentation to a bacterial consortium and bio-stimulation
could lead to the degradation of lindane from contaminated soil.

Villaverde et al. (2017) applied the consortium tested in a soil solution having
diuron, the only carbon source and more than 98.8% of the diuron initially added
was found to be mineralized after a few days. Diuron was degraded in contaminated
soil using the microbial consortium of bacterial strains, viz. Arthrobacter
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Fig. 9.2 Synthetic microbial consortium for cooperative chemical production (Honjo et al. 2019)
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sulfonivorans, Variovorax soli, and Advenella sp. (Villaverde et al. 2017). The
binary bacterial consortium of Pseudomonas fluorescens and Bacillus polymyxa is
able to rapidly degrade aldrin when compared to axenic cultures (Doolotkeldieva
et al. 2017). In a study, Jiang and coworkers performed the degradation of acet-
amiprid by consortium ACE-3 at a broader range of temperatures and pH values and
proved that making such mixed cultures applicable to the bioremediation of various
acetamiprid-contaminated environments. The presence of acetamiprid was observed
in the control sample as seen from the HPLC-MS analysis. Mass spectrometry
revealed the presence of four intermediates formed as a result of the biodegradation
of acetamiprid (Xu et al. 2020).

9.6 Conclusion and Future Outlook

Physicochemical methods such as extraction, adsorption, coagulation/flocculation
used for the removal of pesticide contaminants are mostly costly. In addition, many
physical, biological, and chemical methods used for pesticide treatment are not suf-
ficient to remove pollution. Of all the available methods for the effective degrada-
tion of various pesticides in the environment, bioremediation is the most
environmentally friendly and cost-effective method as it uses a variety of living
organisms that occur naturally and are readily available. Various microorganisms
have been used to convert pesticides into their non-toxic or less toxic or harmless
product forms. Performing bioremediation through microbial consortia is highly
advantageous in terms of target-specific elimination of various pesticides, thanks to
their ability to contain a large number of enzymatic potentials. Bioremediation pro-
cesses combined with legacy methods to eliminate or mitigate the negative effects
of pesticides in high pollution areas have proven to be a promising method, but their
sustainability is questionable. The biochemical pathways of microbial species are
largely dependent on the various physicochemical properties of the soil, so it is very
difficult to completely destroy pesticides in nature. Therefore, further studies are
needed to comment on the degradation processes of microbes and their interactions
with soils with different pollutants and different environmental conditions. Since
the degradation rate of pesticides is quite slow, it takes a long time. Pesticide treat-
ment, investigation of microbes specific to target pesticides, optimization of process
parameters, development of a highly efficient bioreactor, and validation of natural,
easily accessible, and highly porous packaging media should be further explored.
Since biological processes are highly specific, the presence of microbial popula-
tions, suitable environmental growth conditions, and appropriate amounts of nutri-
ents and pollutants must be known. There is a need to develop and design suitable
bioremediation technologies for complex mixtures of pollutants that may exist in
the environment in various forms such as solids, liquids, and gases. Genetic engi-
neering and advanced biotechnology/microbiological approaches while inspiring
rapid advances in pesticide bioremediation improve powerful and highly adaptable
microbial strains and existing treatment facilities/technology. Genes responsible for
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biodegradation can be targeted using these tools. The rapid development of technol-
ogy has made it easier to implement microbial consortia in biotechnology. Large-
scale degradation of pesticides can be achieved with the development of synthetic
microbial consortia with the collaboration of biochemists, microbiologists, environ-
mental engineers, and genetic engineers to solve problems in current bioremedia-
tion methods.
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Chapter 10 )
Advances in Biological Treatment
Technologies for Some Emerging Pesticides

Check for
updates

Buzayehu Desisa, Alemayehu Getahun, and Diriba Muleta

Abstract Although pesticides are highly helpful for crop production, environmen-
tal contamination with persistent and potentially eco-toxic pollutants discourage
their utilization. Soil is full of pesticides with significant environmental and human
health problems. The contaminants’ behavior, types, complexity, toxicity, and their
transformation products have an environmental concern. Pesticides are the known
emerging contaminants (ECs) identified in different environmental sources. Tackling
these pollutants is vital in creating healthy environment in order to ensure food
security and proper water supplies to feed the growing world population. Additional
contaminants are released via physical and chemical remediation methods and are
considered destructive and highly expensive. Thus, bioremediation is an economi-
cal and eco-friendly tool since it uses bacteria, fungi, algae, plants, and their interac-
tions in removing toxicants. Revolutions in genetic engineering techniques aid to
explore pollutant-degrading microbes. Therefore, this review mainly focuses on
portraying pesticides as ECs, the different types and classes of pesticides, and their
fate in the environment. Moreover, the pivotal focus of this review is on the eco-
friendly bioremediation technologies available for the removal of these pollutants to
maintain a sustainable environment with a healthy and productive ecosystem.

Keywords Bioremediation - Emerging contaminants - In situ - Pesticides -
Phytoremediation - Treatment technologies

10.1 Introduction

Global industrialization releases contaminants that can cause harm to all life forms
(Quintella et al. 2019). The quality of the environment outlines the quality of life on
the planet. As stated by Azubuike et al. (2016), unsafe agricultural and ecological
practices can potentially bring environmental pollution. There is also a continuous
application of synthetic fertilizers and other agrochemicals to feed a rapidly
growing global population (Carvalho 2017). Consequently, several toxic
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contaminants enter into the productive farmlands from multiple sources
(Raghunandan et al. 2018). Patel et al. (2020) have indicated emerging contami-
nants (ECs) that are used on the daily basis including pesticides, plasticizers, phar-
maceuticals, personal care products (PCPs), and chemical surfactants. More than
80% of pesticides are in use for a food production system. This amount of pesticides
on the total environment needs immediate bioremediation options in the era of sus-
tainable agriculture.

Crops are severely affected by diverse pests. Accordingly, Pimentel et al. (2001)
have reported that each year China lost 40 million tons (8.8%) of the country’s total
grain output. Likewise, India loses also 11-15% of its total output yearly due to
pests and other causes (Walter et al. 2016). Thus, to ensure food security, pesticides
are extensively used in modern agriculture. Generally, different types of crops are
seriously affected by pests with significant yield losses (Fig. 10.1) and need the
application of agrochemicals. A growing body of evidence shows that pesticides
application can reduce 35—42% crop loss from pests (Pimentel and Burgess 2014).
Sharma et al. (2019) have estimated 3.5 million tons of pesticides usage in 2020
with concomitant pollution of the environment. The complex structure and exis-
tence at low concentrations make these pollutants untraceable and difficult to
remove from the environment (Patel et al. 2020).

The quality of soil and its processes are affected by the use of pesticides in agri-
cultural production systems. Runoff, leaching, and/or vaporization determine the
persistence and movements of pesticides in soil, air, and water (Gavrilescu 2005).
The function and health of living organisms are greatly influenced by the accumula-
tion and magnification of pesticides in the food chain. Due to these threats, pesti-
cides degradation (remediation) is of great importance (Zulfigar and Yasmin 2020).

The physical, chemical, and biological pesticides treatment techniques are used
(Saleh et al. 2020). The environmental risks of chemical and physical methods may
pose low public acceptance, as well as excavation, handling, transportation, and
removal costs, are not always sufficient. Thus, eco-friendly remediation approaches
are needed to destroy and transform pesticides into harmless substances (Morillo
and Villaverde 2017). Likewise, Patel et al. (2020) have presented bioremediation as
an important and eco-friendly technology in pollutants treatment. In this paper, the
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Fig. 10.1 Loss of crop yields by pests. (Modified from Pimentel and Burgess 2014)
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negative impact of pesticides on the natural environment is discussed. The chemical
and physical treatment options are usually costly and are not eco-friendly as well as
aggressive to soil and soil microbiota. Hence, this review provides more insight into
the bioremediation techniques using mainly microbes that have proven effective-
ness and reliability in removing toxicants from the environment.

10.2 Pesticides as Emerging Contaminants (ECs)

Emerging contaminants (ECs) are unregulated compounds discovered in the envi-
ronment. ECs are not yet widely regulated by national or international laws and are
named emerging for the rising level of concern (Glassmeyer 2007; Sauvé and
Desrosiers 2014). Human-induced activities increased the release of ECs into the
natural environment (Arihilam and Arihilam 2019). Such contaminants create
unique and considerable challenges and deserve attention (Bell et al. 2019).
Emerging contaminants cause adverse ecological and human health problems (Patel
et al. 2020; Zhang et al. 2019). Neonicotinoids are a first-hand generation of pesti-
cides applied to control pests (Tomizawa and Casida 2003) and (Cloyd and
Bethke 2011).

10.2.1 Types of Emerging Pesticides

Pesticide is an umbrella term used to kill, repel, and control some forms of animal
and plant life and it can apply to a wide spectrum of chemicals. These synthetic
toxicants vary in their characteristics and are classified under their respective groups
(Freeman 2020). Figure 10.2 indicates percentages of frequently applied pesticides
for agricultural production (Mekouar 2015).

Pesticide classification based on chemical composition is the most common and
useful approach that gives clues about the efficacy, physical, and chemical proper-
ties of the respective pesticides (Yadav and Devi 2017). The chemical and physical
characteristics of pesticides determine their mode of application and need precau-
tions during use (Kaur et al. 2019; Mileson et al. 1998). The chemical classification

Fig. 10.2 The most = Herbicides
applied pesticides (%) for Fungicides
agricultural production. = Insecticides

(Adapted and modified = Bactericides
from Mekouar 2015)
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Fig. 10.3 The chemical composition of pesticides. (Adapted and modified from Kaur et al. 2019)

of pesticides is highly useful for its practical application (Gavrilescu et al.,
2006; Kaur et al. 2019; Zacharia 2011) (Fig. 10.3).

10.2.2 Common Features of Pesticides

Agrochemicals have proven potential to increase the production and productivity of
crops. However, damage to the environment due to the irresponsible use of these
synthetic chemicals decreases their application (Meena et al. 2020). Hence, initia-
tives that address these questions are desirable. Understanding the common features
of a pesticide allows a better pesticide formulation to apply for a particular situation
to maintain the integrity of the environment. The fate of pesticides is mainly deter-
mined by their characteristics (water solubility and persistence) and soil properties
(Gavrilescu 2005; Pereira et al. 2016).
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Fig. 10.4 The persistence of some pesticides in soils. (Data are available in Carvalho (2017)
modified from Carvalho et al. (1997)

Table 10.1 Persistence and toxicity of pesticides. Adapted from Madigan and Martinko (2006)

Toxicity to

Insecticide class | Example Persistence | mammals

Organochlorides | DDT, dieldrin, toxaphene, chlordane, High Relatively low
lindane

Organophosphates | Parathion, malathion, acephate, phorate, Moderate | High
chlorpyrifos

Carbamates Carbaryl, methomyl, aldicarb, carbofuran | Low High to moderate

Pyrethroids Permethrin, bifenthrin, esfenvalerate, Low Low
decamethrin

10.2.3 Persistence of Pesticides

Understanding the properties and the behavior of agrochemicals is important in the
environment. These properties are linked to the products’ mobility in the soil, dis-
sociation in water, bioaccumulation, and durability in the environment (Pereira
et al. 2016). The extended half-life, the more the persistent pesticide. Pesticides
show considerable variations in their persistence in soils (Fig. 10.4). Persistence is
affected by chemical, microbial, and photodegradation processes in the breakdown
of a single pesticide (Schaafsma et al. 2016). The rate of pesticides degradation
depends on its chemistry, soil environment, and microbial activities (Tiryaki and
Temur 2010).

The persistent nature of pesticides in the soil is determined by their continuous
applications and classifies as non-persistent, moderately persistent, or persistent
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(Kerle et al. 2007; Tiryaki and Temur 2010). Less than 1% of the pesticides applied
to crops attain the target pest species while an excess of them moves throughout the
environment and enters marine ecosystems and keeps them there sufficiently long
(Carvalho et al. 1997).

Toxicity is also another important characteristic of pesticides and it can vary
depending on the target organism taken into consideration Table 10.1 (Madigan and
Martinko 2006).

10.2.4 Health Effects of Pesticides

Although pesticides bring indiscriminate use resulted in serious health, they consid-
erably improve crops production and productivity (Tudi et al. 2021). There are
many routes for the entrance of pesticide residues into the food chain and can be
carcinogenic or cytotoxic. This in turn causes different disorders, infertility to the
affected organisms (Audrey et al. 2012). There are multiple uses of pesticides to
destroy weeds, insects, fungi, and rodents (Kumar et al. 2012). Each year, 3 million
insecticide poisoning, 220,000 deaths, and 2.2 million people are exposed in devel-
oping countries (Hicks 2013). The damage of pesticides to living organisms includ-
ing plants is enormous (Rasheed et al. 2019). For instance, photosynthesis is
impaired in susceptible plants (Tandon 2018). The author further remarked that car-
diovascular, retinal, and muscle degeneration occur in humans via herbicides
exposure.

Recently, pesticide poisoning caused greater than 17 million deaths from 1960 to
2019 (Karunarathne et al. 2020). Globally, the accumulation of organochlorine in
the food chain distresses nearly one billion people due to hypertension (Karunarathne
et al. 2020). A study in New York reported the presence of 100% and 47-78% levels
of organophosphate (OP) and organochlorine pesticides (OCPs), respectively in
pregnant women (Whyatt et al. 2002).

10.2.5 Environmental Outcome of Pesticides

Microbial consortia degrade and transform different pesticides and still, the resis-
tant ones stay in the environment and food chains (Garcia-Reyes et al. 2007). There
are different modes of distribution of pesticides from target to non-targeted organ-
isms in the environment (Tiryaki and Temur 2010). Many things happen to pesti-
cides including the leaching of some herbicides into the root zone that can give
better weed control.

The methods of pesticides application cause intoxication to the victimized indi-
viduals (Carvalho 2017). Globally, 355,000 people died each year with excessive
exposure and inappropriate use of toxic chemicals (Alavanja and Bonner 2012).
Pesticides may attribute to the soil, plants, move with eroded soil, dissolve in water,
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Fig. 10.5 The environmental outcome of pesticides. (Adapted from Sarmah et al. 2004)

leach, volatilize, and become airborne (Kerle et al. 2007; Tiryaki and Temur 2010).
The environment is affected by pesticides via bidirectional sources, i.e., point-
source and nonpoint-source pollution (Viman et al. 2010). The former is contamina-
tion that comes from a specific and identifiable place, while the latter is the
contamination that comes from a wide area (Toth and Buhler 2009). Once the pes-
ticides are disposed to the environment, they enter into physical, biological, and
chemical processes which in turn affect their behavior, efficiency, and persistence
(Fig. 10.5; Briggs 2018; Sarmabh et al. 2004).

10.3 Removal Strategies of Pesticides

The prominent stability and water solubility of pesticide residues determine their
persistence in the ecosystem. The physical, chemical, or biological technologies are
used to reduce, eliminate, or stabilize pesticides in the soil (Marican and Duran-
Lara 2018; Saleh et al. 2020). Each treatment technique has its limitations in opera-
tional costs, efficiency, operability, reliability, and toxic byproducts (Khalid et al.
2017; Saleh et al. 2020). The generations of many emerging contaminants that led
to the development of eco-friendly treatment techniques are presented in (Fig. 10.6).
Site characteristics, concentration, and type of pesticides should be considered dur-
ing designing pesticides removal strategies (Morillo and Villaverde 2017).
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10.3.1 Physical and Chemical Methods

One way of pesticides treatment option is by using physical and chemical methods.
The majority of them are costly, destructive (which may implicate some level of
hazard), and time-consuming (Khalid et al. 2017; Monteiro et al. 2012). Activated
carbon and oxidation systems are energy-demanding, expensive, and increase local
water prices by 10-40% (Agerstrand et al. 2015). Physical, chemical, and physico-
chemical degradation have resulted in further environmental deterioration (Huang
et al. 2008). This necessitates the application of economical and eco-friendly pollut-
ants removal options (Monteiro et al. 2012).

10.3.2 Biological (Bioremediation) Processes of Remediation

Bioremediation is a process in which bacteria, algae, plants, fungi, and other biota
are involved in the process of contaminant removal (Garcia-Rodriguez et al. 2014).
During this process, contaminants are degraded, altered, immobilized, or detoxified.
The biological method is an attractive and greener technology that completely
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converts neutralized contaminants and minimize their harmful effect (Nwankwegu
and Onwosi 2017; Sinha et al. 2009).

Ex situ and in situ are the two major types of bioremediation techniques based on
application sites (Azubuike et al. 2016). During the in situ bioremediation method,
pollutants are treated on the place of contamination (natural site) but contaminants
are transported from natural place during ex situ bioremediation (Caliman et al.
2011). Composting, phytoremediation, and bioaugmentation are the main bioreme-
diation methods by involving a diverse group of organisms (Fig. 10.7). Many bacte-
rial genera of Alcaligenes, Flavobacterium, Pseudomonas, and Rhodococcus are
involved in pesticide degradation (Boricha and Fulekar 2009; Richins et al. 1997).
There are various factors for the choice of the most appropriate and feasible in situ
or ex situ bioremediation techniques (da Silva et al. 2020).

Phytoremediation uses plants as the main tool to remove different contaminants
from the environment by involving diverse mechanisms (Fig. 10.8; Schnoor 1997).

10.3.2.1 Off-Site Bioremediation Approaches (OSB)

Off-site biotreatment (OSB) is the removal of contamination out of their natural site
(Pandey et al. 2009). During OSB, contaminated soil is transported to another loca-
tion for treatment and this approach makes OSB more expensive since it incurs the
cost of transportation (Azubuike et al. 2016).

Contaminated Soil Treatment

Contaminated soil treatment is a land farming off-site bioremediation (OSB) technol-
ogy in which contaminants are mixed with amendments in the upper soil horizon
(Castelo-Grande et al. 2010). This process is a proven soil remediation technology that
reduces the concentration of contaminants found in the soil (Parween et al. 2018). Soil
contains microbes (fungi, algae, and bacteria) that can metabolize pesticides to
enhance the remediation process. Land farming is a cost-efficient and eco-friendly
approach to implement (Morillo and Villaverde 2017). The periodic turning of con-
taminated soil helps to increase aeration, moisture, nutrients affect pollutants biodeg-
radation process by stimulating the activities of autochthonous microorganisms
(Sharma 2020). Bhadbhade et al. (2002) have also described 83—93% of the degrada-
tion of the organophosphorus pesticide by soil bacteria. In another study, a 96% reduc-
tion in isoxathion using bacteria (Ohshiro et al. 1996). Furthermore, Tang and You
(2012) have verified that bacteria were capable of degrading 33.1-95.8% of triazophos
pesticides in soil indicating the efficiency of land farming in the removal of toxicants.



10 Advances in Biological Treatment Technologies for Some Emerging Pesticides 269

Composting

It is an aerobic process of degrading organic wastes into humus-like fertilizer by the
involvement of microorganisms. The breakdown of contaminants is accelerated due
to the heat produced during degradation (Niti et al. 2013). Microorganisms present
during composting of wastes with pesticides play a significant role in bioremediation
(Castelo-Grande et al. 2010; Yafiez-Ocampo et al. 2016). The incorporation of differ-
ent leftover wastes brings beneficial microorganisms with pesticide degradation
potential (Bricefio et al. 2007). Three successions of microbes occur during compost-
ing, i.e., psychrophilic, mesophilic, and thermophilic (Pavel and Gavrilescu 2008).
Petruska et al. (1985) have indicated that diazinon 22% and chlordane 50% are lost
during cow manure and sawdust composting due to volatilization. Singh (2008) has
also identified 96.03% endosulfan degradation efficiency as a result of composting.

10.3.2.2 In-Place Bioremediation (IPB)

In-place bioremediation (IPB) remains a technology that removes contaminants
under the natural environment without the need for excavation (Pandey et al. 2009).
Strobel et al. (2011) have found that the effectiveness of IPB can be enhanced by
improving the chemotactic behavior of the degrading microbes. White-rot fungi can
be used in pesticide bioremediation due to the lignin-degrading potential of their
enzyme complex (Magan et al. 2010).

Bioaugmentation

Bioaugmentation is on-site treatment practice done with the addition of cultured
microorganisms to the surface of the soil for contaminant degradation (Cycon et al.
2014). It is considered a green technology because of its eco-friendly approach to
contaminant removal (Cycon et al. 2017). The presence of a complete catabolic
pathway would ensure the complete mineralization of the target pesticides (Isaac
et al. 2017). Castro-Gutiérrez et al. (2019) have indicated atrazine (68.4%), carben-
dazim (96.7%), carbofuran (98.7%), and metalaxyl (96.7%) removal with a bio-
mixture of the active core of bio-purification systems complemented with Trametes
versicolor. A pesticide carbofuran is effectively removed from the contaminated site
by T versicolor inoculation (Madrigal-Ziiiga et al. 2016). Moreover, 85-90% atra-
zine reduction was achieved using 7. versicolor (Bastos and Magan 2009). A novel
bacterium (Achromobacter xylosoxidans PY4) had a 50% potential in metabolizing
aromatic carbon rings (Nzila et al. 2018).
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Phytoremediation

One of the promising cost-effective and eco-friendly strategies is phytoremediation
or plant-assisted bioremediation and employed for over 300 years (Trapp and
Karlson 2001; Zavoda et al. 2001). Phytoremediation is a solar power-driven tech-
nique that used pollutant scavenging potential plant species (Mir et al. 2017). In this
process, contaminated sites are treated as the pesticides are take-up by plants and
converted to less toxic ones (Singh and Singh 2017). Plants eliminate pollutants via
phytoextraction, phytodegradation, phytovolatilization, and rhizodegradation (Truu
et al. 2015). Plants deliver a promising microenvironment that facilitates contami-
nants degradation using both rhizospheric and endophytic bacteria (Niti et al. 2013).

Successful toxic herbicide residues reduction by bacterial endophytes in plants
was investigated earlier (Germaine et al. 2006). In the contaminated soil, improved
atrazine, metolachlor, and trifluralin reduction observed in the place where Kochia
sp. was planted (Coats and Anderson 1997). Herbicides isoproturon and glyphosate
are eliminated from contaminated water by planting Lemna minor (Dosnon-Olette
et al. 2011). Genetic engineering of both microbes and plants provides a promising
bioremediation approach (McGuinness and Dowling 2009). A growing body of evi-
dence shows that transgenic plants are produced to avoid different pesticides from
contaminated places (Kawahigashi 2009). Fifteen different persistent organochlo-
rine pesticides were successfully reduced by Ricinus communis after 66 days of
evaluation (Rissato et al. 2015).

Mycoremediation

It is the involvement of fungi in pollutant removal (Kulshreshtha et al. 2014).
Toxicants/pollutants are accumulated inside fungal structures and are also used as a
carbon source upon enzymatic degradation (Adenipekun and Lawal 2012).
Accordingly, these transformation and detoxification processes can efficiently
remove pesticides from the ecosystem (Tortella et al. 2005). The presence of an
extended hyphal network and uniqueness preferred fungi in pesticide remediation
(Chen et al. 2012).

Ligninolytic fungi secrete several extracellular enzymes to transform recalcitrant
pollutants (Anastasi et al. 2013; Harms et al. 2017). Saprotrophic fungi produce
many enzymes for pesticide degradation (Wu et al. 2015). There are many white-rot
fungal strains reported as lindane, diuron, and other pesticides degraders (Sagar and
Singh 2011; Singh et al. 2020).

Bactoremediation
Pesticides bioremediation uses beneficial bacterial strains as an alternative option

(Gavrilescu 2005). The surging need for green technology forces in searching
potential bacteria strains (Jay et al. 2011). There are many bacterial genera with a
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promising pesticides removal efficiency (Ortiz-Herndndez et al. 2013). Bacterial
species are known to hydrolyze bonds responsible for the enhancement of organo-
phosphorus pesticide degradation (Singh and Walker 2006). Many bacterial species
are effective in pollutant degradation (Huang et al. 2008). A 100% diazinon and
organophosphate removal is seen in Stenotrophomonas sp. (Deng et al. 2015).
Arthrobacter, sulfonivorans, Variovorax soli, and Advenella sp. bring 22-69% diu-
ron mineralization (Morillo and Villaverde 2017). The process of degradation
depends on bacterial type due to the release of different enzymes including oxygen-
ase, hydroxylase, hydrolase, and isomerase (Karigar and Rao 2011).

Phycoremediation

Phycoremediation is one of the green technologies used to remove toxic substances
via the application of microalgae or macroalgae (Rao et al. 2019). The fast growth
nature, utilization of light and organic carbon offer microalgae a better pollution
degradation (Dg¢bowski et al. 2020). Internal defense mechanisms of microalgal
species help to survive in contaminated sites (Torres et al. 2017). Many pollutants
and different heavy metals are eliminated from the contaminated sites using micro-
algae (Danouche et al. 2021). During 11 days of treatment, the removal and reduc-
tion of atrazine herbicides and lindane by green algae Selenastrum capricornutum
have been confirmed in the earlier investigation (Friesen-Pankratz et al. 2003).
Moreover, chlorophenol is transformed and stored in the cells of Chlorella VT-1 by
reducing its toxicity level (Scragg et al. 2003).
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Phytoextraction/Phytoaccumulation

Phytoextraction is the ability of plants or algae to eliminate contaminants from their
site via storage in their parts. The contaminants are phytoextracted in the aboveg-
round plant parts (Singh and Singh 2017). Shoots and leaves are the plant parts
where the pollutants accumulated (Abdel-Shafy and Mansour 2018). Hyper-
accumulators and chelators are the main processes in phytoextraction (Utmazian
and Wenzel 2006). Mukherjee and Kumar (2012) have confirmed that 47.2% and
34.5% organochlorine pesticide (endosulfan) removal using mustard (Brassica
campestris) and maize (Zea mays) respectively. Transport protein inhibitors prevent
the entrance of pollutants into the plant but help to be sequestered into the vacuoles
of root cells (Fig. 10.9; Technology and Council 2009).

Phytodegradation (Phytotransformation)

Phytodegradation/phytotransformation is a process of pollutant degradation using
microorganisms within plant tissues (Abdel-Shafy and Mansour 2018).
Detoxification, transformation, and mineralization are important features involved
in contaminant metabolism (Singh and Singh 2017). In this process, contaminants
are degraded using microbial/plant enzymes. There is no complete breakdown
(H,0, CO,, etc.) for complex and recalcitrant compounds by plants (Newman and
Reynolds 2004). By and large, different pesticides are transformed in plants that
release different enzymes (Kurasvili et al. 2014). For instance, enzyme glucosyl-
transferases detoxify organochlorine in Phragmites australis plants (San Miguel
et al. 2013).

Rhizoremediation

Rhizoremediation is the process of pollutant degradation using catalytic microor-
ganisms in association with plants around the plant rhizosphere (Khan et al. 2013;
McCutcheon and Schnoor 2004). In this method, pesticides are degraded by natu-
rally occurring rhizosphere due to the release of nutrients (Niti et al. 2013). Plant
root exudates act as a carbohydrate source for microbial growth and are used as
chemotactic signals for microbes (Dzantor 2007). The interaction of mycorrhizal
fungi and ryegrass rhizosphere in bioremediation of chlorpyrifos is found effective
(Korade and Fulekar 2009). The microbial populations near the rhizosphere of
plants are stimulated by organics released from roots (Miya and Firestone 2001;
Shaw and Burns 2007). The bacterial species Klebsiella, Pseudoarthrobacter, and
Pseudomonas are known to transform lindane from 10% to 15% (Nagpal and
Paknikar 2006).
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10.4 Detrimental Factors for Emerging Pesticides
Bioremediation in Soil

The final fate of pollutant bioremediation is determined by the chemical nature and
concentration of pollutants, characteristics of the environment, and microorganisms
present in the soil (El Fantroussi and Agathos 2005). Soil type, temperature, pH,
presence of oxygen, and nutrients are some of the factors that remarkably influence
microbial pesticides degradation (Rani and Dhania 2014). Higher pollutant degra-
dation is realized near the sub-surface soil due to higher nutrient levels (Lauber
et al. 2009). Several factors potentially limit pesticides treatment strategies
(Gavrilescu 2005). Soil is the ultimate sink of the pesticides applied in agriculture
and acts as a storehouse of various kinds of microbes (Fig. 10.10).

Water (moisture content) is required for the biodegradation process (Riser-
Roberts 1998). Generally, the optimum moisture level of 25-85% water holding
capacity is needed for soil bioremediation (Niti et al. 2013). Evidence is accumulat-
ing that fluroxypyr degradation is slow under low water holding capacity (Tao and
Yang 2011). Pesticides degradation is also limited if the nutrient availability and
oxygen concentration are minimal. Hence, microbial augmentation can enhance
nutrient availability for better pollution removal (Eskander and Saleh 2017). The pH
of the soil affects the availability of nutrients and microbial activity and thus reduces
the bioremediation process (Odukkathil and Vasudevan 2013). For instance, some
strains of bacteria can degrade over 70% of petroleum at pH 7 and 9 (Xu 2012).

Temperature is the other influential factor affecting the rate of pesticide biodeg-
radation by governing the speed of enzymatic reactions within microorganisms.
Soil temperature less than 20 °C is not conducive for atrazine and lindane removal
and causes leaching from the contaminated site (Paraiba et al. 2003). On the other
hand, better oxyfluorfen biodegradation was seen at 40 °C (55.2-78.3%) than at
28 °C (17.5-36.6%) (El Hussein et al. 2012). Thus, the optimum temperature for
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biodegradation of pesticides may depend on the chemical nature of a pollutant and
a microbe involved in the process of removal.

10.5 Merits and Demerits of Biodegradation of Pesticides

Appropriate methods, suitable environments with the right microorganism are
needed for a successful bioremediation process (Cycon et al. 2017). Residues from
the treatment are usually harmless products (H,O, CO,, and cell biomass) (Rani and
Dhania 2014; Singh 2008). In situ bioremediation is an appropriate bioremediation
or phytoremediation technique and would be self-maintained through all the year.
Bioremediation has also its limitations. Few bioremediations have been found for
each pesticide. One important issue is the time required for remediation because
biological processes are slow compared to conventional physical and chemical
methods. However, bioremediation is superior to physical and chemical remedia-
tion methods since the latter is destructive, costly, and tedious.

10.6 Genetics for Pesticide Degradation

Many pollutants are recalcitrant and remain resistant to microbial attack. This con-
dition necessitates an urgent need for microbial genetic manipulation.
Correspondingly, genetic engineering is a better solution for microbial improve-
ment for a better remediation process (Janssen and Stucki 2020). Soil contains met-
abolically versatile microbes but the search for new strains with potential pesticide
degraders requires genetic modification of existing genetic material from metage-
nomic studies (Maheshwari et al. 2017). Thus, it is possible to develop bacterial
strains that can adapt and immobilize pesticides with a high degradation rate (Saez
et al. 2014). The modifications and manipulation of microbes to effectively remove
contaminants from the site are a suitable and effective approach (Huang and Lu
2021; Ortiz-Hernandez et al. 2013). Genetic alterations allow an alternative for bet-
ter pesticide degradation (Zulfigar and Yasmin 2020). Accordingly, herbicides 2,4-D
and 2,4,5-T were mainly degraded by Pseudomonas sp. and Alicaligenes sp. (Huong
et al. 2008).

10.7 Future Perspectives

The increased food demand to feed the global growing populations prompts the
application of different pesticides to increase the production and productivity of
crops by controlling plant diseases and pests. However, pesticides application brings
serious harm to human and environmental health and demands eco-friendly
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solutions. Thus, bioremediation technologies are considered an eco-friendly strat-
egy to overcome problems associated with synthetic agrochemicals. The under-
standing of the environmental fate and an integrated approach for pesticide
remediation has a vital impact on the knowledge of pesticide science and biological
applications. Furthermore, to avoid bioaugmentation, it is essential to find the most
satisfactory bioremediation strategies.
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Chapter 11
Role of Metal Nanomaterials
in Bioremediation of Pesticides

Rekha Goswami, Barkha Kamal, and Abhilasha Mishra

Abstract Due to increased global demand in agriculture, pesticides are broadly
used in agricultural field for controlling pests that infest crops. The overall use of
pesticides in the world has reached approximately 2 million tons. The World Health
Organization classified itself as very dangerous and highly hazardous. Use of more
chemical pesticides in agriculture causes more pollution and also leads to biomagni-
fications in different trophic level of organisms that affect biodiversity. Several tech-
nologies are being used for controlling pollution, among them nano-biotechnology
is an alternative technology for remediation of pollution. Bioremediation method
utilizes microbes to dispose of pollutants. Carbon nanomaterials, metal nanoparti-
cles, magnetic nanoparticles, and quantum dots are examples of nanomaterials used
for water exceptional monitoring, including those used to detect trace contamina-
tion and pathogens. Nanosized elemental or zero-valent metallic nanoparticles, i.e.,
of iron, silver, gold, copper palladium, and nickel have proven promoting effects
towards contaminated sites with different hazardous pesticides. This chapter is an
effort to consciousness on the promising application of metal nanomaterial-based
technology and its assimilation with diverse essential tactics related to the bioreme-
diation of pesticides.
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11.1 Introduction

Population growth is making more demand in agriculture manufacturing for both
industrial advancement and urbanization which are being important resources of
environmental pollution in the course of the twentieth century. Pesticides are being
used to manage or control the pest populations below the economic injury level.
Pesticides are chemical compounds that are broadly used in agricultural field for
controlling pests that infest crops. These are the substance or mixture of substance
which differ in their physicochemical properties. Hence, they could be classified on
the basis of their properties. Moreover, numerous pesticides based on the demands
are categorized into different classes. Presently, the three most popular classifica-
tions of common pesticides are entry mode, pesticide-based function, and pesticide-
based organism. The overall use of pesticides in the world has reached approximately
2 million tons. The World Health Organization classified itself as very dangerous,
highly hazardous, and moderately dangerous in four different classes based on the
toxicity of pesticides (Pimentel 2002). Due to developing industries and use of
chemical pesticides in agriculture, which causes more pollution and also leads bio-
magnifications in different trophic level of organisms that affect biodiversity.
Several technologies are being used for controlling pollution, among them nano-
biotechnology is an excellent approach for the environmental remediation. In the
present scenario, many pollutants like hydrocarbons, heavy metals, pesticides, and
other toxic substances are being more threat to our surroundings. Among these pol-
lutants, contamination of soils, reduction of soil fertility, air and water are polluted
with various dangerous substances. Although many conventional methods, i.e., pre-
cipitation, electrocoagulation, and adsorption on various substrates are in use, but a
safer and cost-effective and environmentally sustainable approach is highly recom-
mended for environment contaminant remediation (Fomina and Gadd 2014).
Microorganisms are popularly used in bioremediation as it is economical method
compared to other conventional methods. Bioremediation using microorganisms is
greatly dependent on the availability of particular microbial species and combina-
tion of favorable environmental conditions (Adams et al. 2015). Bioremediation
methods are effective for the treatment of contaminated water and soil due to its
ability to degrade contaminates by using natural microbial activities which can be
easily controlled by using different strains. Bioremediation includes any method
that utilizes plants, microbes and their extracts or enzymes to restore the natural
world after it has been contaminated (Rathore et al. 2014; El Amrani et al. 2015).
Nanotechnology has the capacity to offer a sustainable option to the worldwide
demanding situations associated with defensive soil, water, and providing air
cleaner. Nanoscience allows materials to be engineered and controlled at the molec-
ular and atomic levels. Nanomaterials can be produced with specific functions that
enable it to identify a specific contaminant within a mixture. The length of nanoma-
terial along with their excessive floor-to-quantity ratio results very precise detection
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(Das et al. 2015; Asztemborska et al. 2015). Carbon nanomaterials, metal nanopar-
ticles, magnetic nanoparticles, quantum dots are examples of nanomaterials used
for water exceptional monitoring, including those used to detect trace contamina-
tion and pathogens (Xue et al. 2016, 2017). Zero-valent metallic nanoparticles or
nanosized elements, such as of iron, silver, gold, copper palladium, and nickel have
proven promoting effects towards contaminated sites with different hazardous pes-
ticides. (Li et al. 2016). Despite the fact that technology has received a lot of studies
and awareness, there is still a demand to analyze the trends that have emerged in
investigating bioremediation during the last decade; some of the areas of focusing
include the comparability of existing data, the appropriate use of existing technique,
accessibility of in-depth laboratory investigations, geographical diversity, and a lack
of knowledge in the field (Adams et al. 2015).

Bioremediation-related nanotechnology is a technological field that can examine
several components to help clean the environment and to support life-growth situa-
tions. Due to distinctive characteristics of nanomaterial, it attains immense attention
from researchers and scientist in various fields like water remediation, biomedical
application, degradation of pesticides residue, etc. To increase the annual produc-
tion of agricultural crops farmers mostly apply or spray pesticides over agricultural
fields to control crops from pests, weeds, and any disease. Excessive use of pesti-
cides degrades the soil profile and nearby water bodies. This may lead to negative
influence in the growth pattern of flora and fauna. To avoid the drastic effects of
pesticides, residue was majorly done by means of bioremediation. To enhance the
potentiality of bioremediation technology, it will combine with nanotechnology for
an effective reduction of the toxicological effects of pesticides (Rizwan et al. 2014).
This method is known as nano-bioremediation which found to be more sustainable
and cost effective in nature (Koul and Taak 2018). The degradation of pesticides
residue by means of biological processes combining with nanomaterials provides
more surface area for binding, less toxic effect on microorganism, enhances the
activity of microorganism during eradication of pesticides contamination and found
to be more suitable (Kumari and Singh 2016).

Additionally, some researchers name it on the basis of organism used to remedi-
ate the contaminants, such as phyto-nanoremediation (plant based), microbial
nanoremediation (microbes based), and animal-based remediation (EI-Ramady
et al. 2017). It is reported that the working mechanism in between nanoparticles,
biota/microbes, and contaminants depends on many factors such as morphology of
nanoparticles, chemical behavior of nanomaterials and pollutant, pH value, tem-
perature, media, microbes types, etc., which play a vital role during nano-
bioremediation (Tan et al. 2018). Various metal, bimetallic, and metal oxides-based
nanoparticles are the major categories which have been used for the removal and
detection of hazardous pesticides contaminations in different regions. The existing
chapter is an effort to consciousness on the promising application of metal
nanomaterial-based technology and its assimilation with diverse essential tactics
related to the bioremediation of pesticides.
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11.2 Main Classes of Chemical Pesticides Utilized
in Agriculture and Their Harmful Effects

The use of various synthetic pesticides has increased greatly and contributes to
excessive crop yield growth. Soil, groundwater, and sediments constitute the ulti-
mate sink for these contaminants, which are divided into simpler forms or persis-
tent. According to the Stockholm Convention on Persistent Organic Pollutants,
pesticides account for 9 out of 12 persistent organic compounds. For synthetic pest
control, more than 1000 insecticides have been promoted. Pesticides incorporate
herbicides, insect sprays, bactericides, and fungicides and so forth (Adams et al.
2015). Artificially, pesticides are of an extensive assortment, including chlorinated
compounds, sweet-smelling rings, nitrogen and phosphorous-containing mixtures,
and others. The degree of chlorination and lipophilicity of chlorophenol increases
its toxicity and bioaccumulation capacity, Benzene’s subordinates are used in a
wide range of pesticides. Since the aromatic ring has a large negative reverberation
force, benzene and its derivatives are constantly accumulating mixtures (Igbinosa
et al. 2013). Adverse effects on water, air, and soil due to extreme use of chemical
pesticides are shown in (Fig. 11.1). Major chemical pesticides classes include
organochlorine, organophosphate, synthetic pyrethroids, and carbamates (Xue et al.
2016, 2017).

Carcinogenic,
Cytotoxic,

Genotoxic,

Effects on:

Immune system
Respiratory system
Reproduction system
cardiovascular system
Central nervous system

~= Absorbed by crops ====p \/aporized to atmosphe
- Leached below root zome and ultimately to water courses

- Pesticides containing soil surface run off/erosion to water bodies

-—p Redeposited via rainfals, earlier absorbed by clouds from the atmosphere

Fig. 11.1 Excessive use of chemical pesticides and adverse effect in modern agriculture; (1) air,
(2) soil, and (3) water. (Reproduced with permission from Liu et al. 2019)
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11.2.1 Organochlorine Pesticides

The first organic chemicals to be used to control pests and vectors were these. In
broad spectrum, they have long-lasting low toxicity effects. They are, however, dif-
ficult to degrade in the natural environment due to their chemical stability. Their
extensive use polluted the atmosphere and contributed to accumulation in mam-
mals, resulting in poisoning or damage over time. As a result, organochlorine pesti-
cides were outlawed in most cases and were eventually replaced by other pesticides.
Organochlorine pesticides include endosulfan, DDT, and lindane, to name a few
(Barragan-Huerta et al. 2007).

11.2.2 Organophosphate Pesticides

These toxins are distinguished by their various purpose and capability to control a
wide range of pests. They are nerve toxic which used as a stomach toxic, a contact
poison, or a fumigant. These biodegradable pesticides are pollutant-free, and slow
the development of pest resistance. Organophosphate pesticides include methyl
parathion, phosphamidon, and fenitrothion (Das et al. 2015).

11.2.3 Carbamates

These pesticides act in the same way as organophosphate pesticides, disrupting
nerve signal transmission and causing the pest to die from poisoning. Carbamates
can also be used as stomach poisons, touch poisons, and fumigants. Furthermore,
since their molecular structures are largely identical to those of natural organic com-
pounds, they can be degraded naturally with minimal emissions. Carbamate pesti-
cides like propoxur (Tewari et al. 2012).

11.2.4 Synthetic-Pyrethroid Pesticide

These pesticides are combined by imitating the structure of natural pyrethrins.
When compared to natural pyrethrins, they are stable and have longer residual
effects. Artificial pyrethroid pesticides are more harmful to insects as compared to
mammals. Permethrin and allethrin are the example of synthetic-pyrethroid pesti-
cides. The pyrethroids are utilitarian poisons that produce unfriendly impacts in an
optional manner as a result of neuronal hyper edginess.

Harmful impacts of carbamate and organophosphate pesticides happen in the sen-
sory system where synthetics disturb the protein that controls acetylcholinesterase, a
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synapse. World Health Organization (WHO) assesses that 1,000,000 pesticide harm-
ing cases happen each year worldwide. Not just this, a drawn-out proficient openness
to these pesticides additionally brings about expanded danger of a few ongoing and
deadly illnesses like malignancy. Around 100 dynamic fixings in pesticides have been
found to cause disease in exploratory creatures or people (Pimentel 2002).

11.3 Pesticide Bioremediation

Advances in research and ingenuity have enabled us to use natural variety’s capacity
to reduce pollutants, a process known as bioremediation. The guideline of this strat-
egy is to eliminate poisonous toxins from the climate or convert the harmful items
to nontoxic items by utilizing microorganisms (Nawaz et al. 2011). This methodol-
ogy is at present applied to disinfect soil, dregs, surface water, groundwater, and air.
Due to comparatively low capital costs, least disruptive techniques, and inherently
aesthetic design, this technique has become desirable alternatives to conventional
cleanup technologies as compared to traditional physicochemical methods
(Rajendran et al. 2003; Wasi et al. 201 1a, b).

Pesticide consistency in nature results either of their physical and chemical prop-
erties or the absence of life forms capable of degrading them. Certain pesticides
may be lost due to volatilization or corruption as a result of light, warmth, or sticki-
ness. On the other hand, degradation caused by living things (biodegradation) may
be able to significantly reduce pesticides’ persistent presence in the environment.
This knowledge could be used to enhance the disposal of the harmful effects of
contaminations by using living organisms; this process is known as bioremediation.
The organism’s ability to clean up pesticides is basically founded on their biodegra-
dation movement. In spite of the fact that bioremediation has been first and foremost
accomplished utilizing microorganisms (microbes or growths), different organic
entities like plants or green growth can be utilized (Nufiez et al. 2020). Elimination
of pollutants would be valuable but not always possible; however, it could be con-
fined or immobilized by some organisms. Organisms, for example, can accumulate
contaminants and reduce, but do not eliminate, their presence and environmental
effect. That strategy, which is indeed employed, should be included in the concept
of “bioremediation” (Tyagi et al. 2011). Bioremediators would be called those
organisms which can bioremediate, for example, Algicides—Algae, Fungicides—
Fungi. The strategy of Bioremediatory organism like Micro bioremediation or
Bioremediation for Microorganism Phytoremediation for plants.

A fruitful bioremediation procedure requires a proficient bacterial strain that can
degrade the biggest contamination to the least level. The rate of soil biodegradation
is dependent on four parameters, i.e., microorganism physiological condition, pes-
ticide or microorganisms availability, survival or proliferation at a contamination
site of pesticide degrading microorganisms, and the sustained population. The bio-
degrading in surface soil is oxygen consuming and fast because soils have an enor-
mous number of vigorous microorganisms and their number typically diminishes
(Tewari et al. 2012).
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11.3.1 In Situ Bioremediation

This technique is very effective and desirable because of cost effective and creates
less disturbance as they remove toxins in the environment instead of exploring and
transporting them. The soil depth that can be effectively decontaminated limits in
situ treatment. By the circulation of aqueous solutions naturally occurring bacteria
stimulate to degrade contaminants, biodegradation adds oxygen and nutrients to
polluted soils. The most significant treatments are bioventing, biosparging, and bio-
augmentation (Adams et al. 2015).

11.3.2 Ex Situ Bioremediation

Land farming is a simple procedure in which degraded soil is unearthed, spread over
a prepared bed, and intermittently ploughed until toxins are corrupted. Composting
is a procedure that combines polluted soil with nontoxic organic contaminants such
as excrement or rural waste. Biopiles are a hybrid of soil fertilization and agro farm-
ing that provide an ideal environment for native oxygen consuming and anaerobic
microorganisms (Philp and Atlas 2005). Ex situ treatment of water and soil syph-
oned up from a polluted tuft is accomplished using slurry reactors or fluid reactors.
Various methods used for ex situ and in situ bioremediation are shown in
(Fig. 11.2). Most bioremediation technologies are intended to remove pollutants
after they have been produced or released into the environment. Studies of the
microbial population, activities, and enzymes in the soil can provide a mirror image
of the soil’s functional status. Bioaugmentation (adding an organism or enzyme to a
contaminant) and biostimulation are two examples (Tyagi et al. 2011).

Bioventing

In situ biodegradation
Biostimulation
Biosparging
Bioaugmentation
Natural Attenuation
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Fig. 11.2 Various bioremediation approaches for pesticides
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11.4 Nano-Based Approaches for Pesticide Bioremediation

A series of technologies have been studied to identify systemic procedures to
remove harmful pesticides from environmental matrices, including nanotechnology-
based bioremediation. Understanding the interplay between the pollutant, nanoma-
terials (NMs), and microorganism is crucial because negative and positive impacts
can occur. For instance, some nanomaterials are microorganism stimulants, whereas
others are toxic. Therefore, it is crucial to select properly. For complete and effec-
tive pesticide bioremediation, detection, degradation, and removal of pesticide are
three most important parameters. In physical and chemical processes, nanotechnol-
ogy has remarkable advantages. Nanotechnology has a potential impact in above
mentioned three categories: detection, degradation, and removal (Fig. 11.3).

Applications of various metal nanoparticles can effectively remove many haz-
ardous substances from the environment in a shorter duration (Kalyani et al. 2021).
Nowadays various nanomaterials are popularly used for bioremediation (Fig. 11.4).
Metal nanomaterials are largely utilized for the detection of pesticides along with its
elimination and degradation . These nanomaterials have been broadly categorized
into the nanotubes, nanoparticles, and nanocomposites. Various forms of nanopar-
ticles such as metal nanoparticles, bimetal nanoparticles, and nanoparticles metal
oxide have been used in the detection and degradation of pesticide and are shown in
(Fig. 11.4).
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Fig. 11.3 A diagram depicting the use of nanomaterials for pesticide detection, degradation, and
removal. (Reproduced with permission from Rawtani et al. 2018)
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Fig. 11.4 Various types of nanomaterials used in bioremediation technique. (Reproduced with
permission from Singh et al. 2020)

11.5 Role of Different Metal Nanomaterials in Detection
of Pesticide Levels

Detection of pesticide levels before and after remediation is very important factor
for deciding need and efficiency of any remediation technique. Pesticide identifica-
tion is of great concern because of their toxicity, extensive use, and proclivity for
bioaccumulation. Commercial pesticides already include over 800 active ingredi-
ents in over 100 separate substance groups. Carbamates, triazines, organophospho-
rus (OP), and neonicotinoids are the most common groups, and they have been the
focus of nano-enabled pesticide detection till date (Kalyani et al. 2021). High insec-
ticide level is a common source of pesticides (fungicides, herbicides, insecticides)
in industry and agriculture. Not only is the trace content being measured, but also
the section of high efficiency and low environmental pesticides present in food
safety attractive (Das et al. 2015). Today’s methods of detection are difficult and
costly, limiting their uses. Applications of enzymes immobilized on various carriers
such as mesoporous magnetic nanoparticles, nanoparticles, metal oxide and metal
nanoparticles, and many other forms of nanomaterials are emerging in order to sim-
plify the detection procedure. Experimentally successful in pesticide detection, the
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new biosensor based on the electrochemical method (Du et al. 2008) was demon-
strated. Silicon nanoparticles (SiNPs), also used in biosensor fields, are widely used
nanomaterials (Kalyani et al. 2021). Many of them are sensitive and can be used as
a sensor care point in different sensors based on different physical principles and
with rapid progress in instruments (Xu et al. 2016).

11.5.1 Nanosensor

The development of nanosensors in contaminant environments is growing rapidly
and nanomaterials and identification agents are continually united in latest and
innovative ways. Latest developments in sensor design have been designed to
address the limitations of sensors of first generation like unspecific binding, nano
parts aggregation, variation in particle size, and stabilization of nanoparticles. There
remain issues of test sensitivity and selectivity in multifaceted environmental matri-
ces, but rising numbers of reports indicate the stability and selectivity of their sen-
sors using representative matrices. Robust sensors are a must when individuals are
deployed (Kaushal and Wani 2017).

Main focus of researchers is to improve the specificity, sensitivity, and selectiv-
ity, of environmental monitoring sensors, either by focusing on the contaminant-
recognition factor binding or by revamping the transduction and electronic interface
to the sensing layer. Nano-based technique is helping to solve these problems in
many ways. First, the nanoparticles’ capacity to be immobilized with a broad vari-
ety of chemical and biological ligands aids in the sensor’s specificity. Several
researchers have documented coating nanoparticles with variety of ligands such as
enzymes, DNA, proteins, and many more (Nune et al. 2009). The interaction of
these ligands with the analyte is highly precise. Finally, the ability to make nanopar-
ticles out of various metals improves conductivity and thus sensitivity. To detect
organic contaminants, scientists have proposed employing porous silicon semicon-
ductor nanostructures (Stefano et al. 2005). Photoluminescence is produced in
porous silicone and in the presence of inorganic or organic molecules, this lumines-
cence is quenched. This technology allows the detection of very low pesticide con-
centrations such as 1 ppm (Stefano et al. 2005). Nanosensors and nanoscale coatings
are on the verge of marketing to replace more resistant and thicker polymer coating,
nanosensors for the decommissioning of aquatic toxins, nanoscale biopolymers
that improve the recycling and decontamination of heavy metals and nanosized
metals that break down toxic organic matter at room temperature (Homaeigohar
2020). Furthermore, nanotechnology-based methods are less expensive and more
efficient.
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11.6 Green Synthesis of Metal Nanomaterial
for Pesticide Bioremediation

Metal nanoparticles prepared by green synthesis methods are excellent for bioreme-
diation of pesticide as it already has capping of biological material utilized for bio-
remediation. Microorganisms have potential to reduce the metal ions to form
nanomaterials. Extracellular enzymes secreted by microorganism have tendency to
synthesize pure nanoparticles (Kalishwaralal et al. 2010; Durédn et al. 2011; Kumar
et al. 2011; Alani et al. 2012; Tripathi et al. 2015). These metal nanomaterials are
very effective in accelerating conventional bioremediation in which only microbes
or plants are used. Figure 11.5 showing a schematic representation of the green
synthesis process for the preparation of metal nanoparticles.

Specifically bacterial species have unique property of metal binding which
makes them valuable for synthesizing metal nanoparticles having potential for bio-
remediation. Due to characteristics of having high volume of protein, fungi gener-
ally used when large amount of nanomaterials is needed to be synthesized.
Comparatively for the synthesis of nanomaterials microbial method is slower than
techniques using plants extract (Saravanan and Nanda 2010; Mishra et al. 2011).
Zingiber officinale, Abelmoschus esculentus, Eucalyptus, Mentha, Angelica, hyper-
icum, etc. were used for synthesizing the gold nanoparticles (Mishra et al. 2010;
Pasca et al. 2014; Subbaiya et al. 2014; Suman et al. 2014; Sinha et al. 2015). For
the extraction of iron nanomaterial through green synthesis by phytoextract species

5 ShD @

y.x_ i
' kol =li
Plant materials Microorganism
L]
~

P\
Factors affecting bio- synthesis rate

1. pH

2. Temperature

3. Incubation time

4. Salt concentration

5. Centrifugation process

5%%

Different types of
nanoparticles

Fig. 11.5 Green synthesis process for the preparation of metal nanoparticles
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of Dodonaea viscose, Aloe vera, green tea, Rosmarinus officinalis, etc. (Kumar
etal. 2012; Phumying et al. 2013; Mahdavi et al. 2013; Pattanayak and Nayak 2013;
Latha and Gowri 2014). Table 11.1 represents different plant species and microbes
used for extracting various nanoparticles.

11.7 Metal Nanomaterials in Bioremediation of Pesticides

Metal Nps like gold, silver, iron, palladium, and platinum are highly used in differ-
ent environmental concerns. Nanoparticles have unique chemistry and morphology
which makes them suitable candidate to be used in pesticides removal through
nano-bioremediation. The reaction that occurs over the surface of the nanomaterials
plays a vital role in degrading pesticides and converts the hazardous material to
simpler or less toxic compounds (Street et al. 2014). Nowadays, nanotechnological
enabled approach is popularly used to remove the pesticides from contaminated soil
or water. Researchers investigated the combination of metal nanoparticles with
microbial cells for the degradation of pesticides (Wang and Tseng 2009). Figure 11.6
shows different type of metal nanomaterials used for nano-bioremediation of
pesticides.

11.7.1 Metal Nanoparticles
11.7.1.1 Iron Nanoparticles

Nanoscale iron particles and their derivatives provide a number of remediation tech-
nologies with more alternatives. Commonly iron found under two valence states in
nature, one is water soluble, i.e., ferrous iron Fe(II) and another is ferric iron Fe(III)
which is water soluble below pH 3.5 and become insoluble above this pH. Under
neutral to alkaline pH, it become stable with oxygen rich environment and precipi-
tate as yellow/orange compound. Due to its retained magnetic properties, iron
nanoparticles possess increased binding site during the removal of pollutant
(Andrew et al. 2008). Researchers observed the potential of magnetic iron nanopar-
ticles (MNPs) using laccase enzyme to degrade the chlorpyrifos an organophos-
phate pesticide. For this magnetic iron nanoparticles are developed by using
co-precipitation method and nanoparticles size was about in between 10 and 15 nm.
Results revealed that magnetic iron nanoparticle immobilized with laccase enzyme
effectively degraded about 99% pesticides over 12 h at 60 °C and 7.0 pH. It has been
also reported that 2,4-bis (1,1 dimethylethyl) phenol is the by-product obtained after
the degradation process (Das et al. 2017).
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Table 11.1 Different biotic components used in green synthesis of nanoparticles
Morphology
Sources used for extracting metal Nanoparticles Size
nanoparticles synthesized (nm) | Structure References
Bacterial Pseudomonas AgNP 20— Spherical Hossain et al.
strains rhodesiae 100 (2019a, b)
Bacillus siamensis 25-50 Ibrahim et al.
(2019)
Bacillus cereus 18-39 Ahmed et al.
(2020)
Pseudomonas poae 20-45 Ibrahim et al.
(2020)
Bacillus sp. 7-21 Gopinath and
Velusamy
(2013)
Serratia sp. 10-20 Mishra et al.
(2014)
Pseudomonas sp., 20-50 Kaur et al.
and Achromobacter (2018)
sp.
Aeromonas ZnO 57-72 | Crystalline | Jayaseelan et al.
hydrophila (2012)
Streptomyces spp. CuO 78-80 | Spherical Hassan et al.
(2019)
Streptomyces Cu 4-59 Hassan et al.
capillispiralis (2018)
Plants Citrus limon Zn0O and TiO, | 20— Polymorphic | Hossain et al.
200 (2019a, b)
Phyllanthus emblica | Ag 20-93 | Spherical Masum et al.
(2019)
Rosmarinus MgO <20 Flower Abdallah et al.
officinalis (2019)
Matricaria MgO and MnO, | 9-112 | Disc shaped | Ogunyemi et al.
chamomilla (2019a, b)
Matricaria ZnO 50— Crystalline | Ogunyemi et al.
chamomilla 190 (2019a, b)
Lycopersicon 66— Ogunyemi et al.
esculentum 133 (2019a, b)
Piper nigrum Ag 9-30 Paulkumar
etal. (2014)
Artemisia absinthium 5-100 | Spherical Ali et al. (2015)
Abelmoschus Au 45-75 Jayaseelan et al.
esculentus (2013)
Syzygium aromaticum | Cu 15 Rajesh et al.
(2018)
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Fig. 11.6 Difterent types of metal nanomaterials used for nano-bioremediation of pesticides

Some study showed that iron nanoparticles are also used as catalyst for the
removal of environment pollutant. Researchers evaluated the prospective of the iron
nanoparticles synthesized using extract of Euphorbia cochinchinensis leaves for the
degradation of 2,4-dichlorophenol pesticides. It was determined that the removal
efficiency gets improved by 52% when iron-based nanoparticle was used as catalyst
in the presence of hydrogen peroxide (H,0,) (Guo et al. 2017).

Zero-Valent Iron (ZVI)

Presently zero-valent iron (ZVI) is widely utilized for the management of pollutants
due to its ease of use, effective pollutant degradation, low waste production, and
secondary pollutants (Joo and Cheng 2006; Thompson et al. 2010). ZVI are classi-
fied into two types of ZVI (nZVI) nanoscale and iron reactive nanoscale (RNIP).
nZVI particulates are 100-200 nm in diameter and consist of iron (Fe) with zero
valence, whereas 50/50 wt% of RNIP particles consist of Fe and Fe;0, (Yunus et al.
2012). Research has demonstrated that numerous pesticides are susceptible to ZVI
degradation.

Many scientists used zero-valent iron nanoparticles for the elimination of lindane
in which benzene, chlorobenzene, and dichlorobenzene are the by-product obtained
(San Romén et al. 2013). Zero-valent iron nanoparticles were utilized for the
removal of nitrogen heteroatom compounds such as atrazine, olinate, picloram,
chlorpyrifos, diazinon, and diuron (Joo and Cheng 2006; Kim et al. 2007; Jiang
et al. 2018) to a limited extent. As the major reduction products, nitroaromatic pes-
ticides with zero-valent iron were rapidly reduced to the corresponding amines.
Only very small concentrations of intermediate products were found in certain reac-
tions. Furthermore, analysis indicated a significant lower aromatic dechlorination
than a reduction in nitrogen (Keum and Li 2004).
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11.7.1.2 Gold Nanoparticles

Gold nanoparticles (AuNPs) due to different states of agglomeration show variation
in color according to their size which makes it ideal for used in detecting various
contamination level in the environment (Tsai et al. 2005). Due to ability of develop-
ing different coloration, the AuNPs were used in dipstick immunoassay for the
detection of DDT (Dichlorodiphenyltrichloroethane). In this study, AuNPs were
conjugated with anti-DDT antibodies to check its potentiality for decreasing the
DDT concentration in the sample. The result was analyzed calorimetrically and
intensity of the developed red color (due to AuNPs) was observed. Results demon-
strated that the intensity of the developed color was increased with decrease in DDT
concentration and reported with maximum intensity in absence of zero DDT con-
centration. Overall results showed that this kind of techniques may be used for rapid
on-site testing to detect toxicity level of the pesticides (Lisa et al. 2009). Other
researchers also used same techniques for detecting the organophosphorus pesti-
cides (kitazine) in various samples like tomato, cucumber, grapes, etc. Here the
detection of targeted pesticides was done on the basis of purple color development
over the strips which were further confirmed by using ELISA (Enzyme Linked
Immunoassay). Results showed that grape juice has highest color intensity during
detection of pesticides (kitazine) (Malarkodi et al. 2017). Abd El-Aziz et al. (2018)
prepared AuNPs with henna (Lawsonia inermis) extract. In this study also the deg-
radation of DDT was monitored by evaluating the initial concentration taken, i.e.,
10 or 20 mg/L. Result showed that after 72 h maximum degradation was found in
the sample with starting concentration of 20 mg/L, i.e., 77% than 10 mg/L, i.e.,
64%. The GC/MS spectra also confirm the presence of DDT by-product during
degradation, i.e., (DDE), dichlorodiphenyldichloroethane (DDD), dichlorodiphe-
nylmethane (DDM), and dichlorophenylethane (DCE). Researchers concluded that
AuNPs have high potential for the cleanup of environmental toxic elements.

11.7.1.3 Silver Nanoparticles

Silver nanoparticles (AgNPs) showed versatile and fascinating properties among
various metallic nanoparticles that involve in the bioremediation of the pesticides.
The working efficiency of the AgNPs generally depends on the properties like sur-
face properties, morphology, particles distribution, shape, composition, caping, etc.
(Carlson et al. 2008). Various plant and microorganisms such as Artemisia nilagir-
ica, Sinapis arvensis, Nerium oleander, Trigonella foenum-graecum, Lantana
camara, Pithophora oedogonia were utilized to synthesize silver NPs (Kavitha
et al. 2013; Vijayakumar et al. 2013; Rasheed et al. 2017; Lam et al. 2018). Some
researchers used citrate for capping AgNPs for the prompt detection of dipterex,
type of an organophosphorus pesticides found in different waste sample. Pink color
masses were observed over citrate-capped AgNPs immobilized with acetylcholines-
terase due to formation of thiocholine from acetylthiocholine through the enzymatic
action of acetylcholinesterase. Study revealed that if the samples contain some
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concentration of pesticides, then the enzymatic based action of acetylcholine ester-
ase was suppressed due to which thiocholine was not formed. Results confirmed
that due to the presence of dipterex in the samples, there is no any color variation
observed, which confirmed the presence of pesticides contamination in the water
sample (Lia et al. 2014; Luo et al. 2017).

Siangproh et al. (2017) prepared a simple, rapid, economical detecting tool for
detecting the concentration of herbicides contamination in canal water and ground-
water samples. In this study AgNPs are coated with citrate to form colorimetry
probe. Silica gel was used to adsorbed pesticides contamination. The presence of
contamination was detected by color change mechanism from yellowish green to
pale yellow. Other studies also showed that AgNPs were also used in combination
with SERS (Surface Enhanced Raman Scattering) technique which helps in detect-
ing the pesticides contamination at a very low level, this type of combined tech-
niques is used to detect paraoxon and thiram type of pesticides (Wang et al. 2014).
Same method was done in which cellulose nanofibers coated with AgNPs in combi-
nation with SERS used to detect thiabendazole in the samples (Liou et al. 2017).

11.7.2 Metal Oxide Nanomaterials

Crystalline metal oxides nanoparticles such as ferric oxide (Fe,O;), manganese
oxides (MnO,), aluminum oxide (Al,03), titanium oxide (TiO,), magnesium oxides
(MgO), and ceric oxides (CeO,) are very efficacious adsorbents used for the wide
range of pesticides. Due to versatile properties of metal oxides nanoparticles such
as fast kinetics due to nano size, high adsorption rate, less intraparticle diffusion
distance, etc. (Cheng 2013; Bardajee and Hooshyar 2013; Tavakkoli and
Yazdanbakhsh 2013; Dehaghi et al. 2014), nanocrystalline metal oxides also have
tendency to abrade the hazardous pesticides contamination into the less toxic com-
pounds (Fryxell and Cao 2012).

11.7.2.1 Titanium Oxide Nanoparticles

Titanium oxide (TiO,, nanoparticles are used for the removal of different types of
pesticides found in the various samples. TiO, was used as photocatalyst for the
removal of monocrotophos and chlorpyrifos pesticides from the water sample.
During degradation process of the pesticides, various parameters such as pesticides
concentration, pH of the examined solution, photocatalysts, etc. are also observed.
Results showed that on increasing the illumination time, the photodegradation
activity of TiO, also enhanced (Amalraj and Pius 2015; Selvakumar et al. 2018). Liu
et al. (2015) prepared mesoporous TiO, NPs for the extraction of some organochlo-
rine pesticides such as trans and cis chlordane, hexachlorobenzene (HCB), p,p-
DDT, o0,p-DDT, and mirex in the water samples. Prepared mesoporous TiO, NPs
were used to prepare solid phase microextraction fiber and it was analyzed that
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prepared fiber shows greater efficiency in comparison to commercial based fibers
towards the degradation of pesticides. Doping method is also with different metal
ions (iron and silica) in combination with TiO, NPs for analyzing the degradation
potentiality for carbendazim, type of fungicide. Due to adopting doping method, the
photocatalytic behavior was boosted very high and removed about 98% of the fun-
gicides under solar light (Kaur et al. 2016). Same technique of doping was used to
prepare Cobal doped TiO, NPs used as photocatalyst to enhance the reaction rate of
degradation for dichlorophenols in visible light (Hoseini et al. 2017). Schematic
illustration of pesticide degradation mechanism of TiO, is shown in (Fig. 11.7).
Photocatalytic oxidation is a process that is eco sustainable for removing a broad
variety of chemical toxins. It is a pre-treatment method which is appropriate to
improve biodegradability of harmful and non-biodegradable contaminants. The
treatment of the recalcitrant organic compounds can also be done using photoca-
talysis as a polishing step (Lasa and Rosales 2009). During photocatalysis, solid
surfaces are photo-excited by radiation either near solar light or UV. Mobile elec-
trons are therefore generated and positive surface charges. These electrons excited
sites are essential steps for accelerating the oxidation and reduction reactions to
degradation of pollutants (Reddy et al. 2013; Coronado et al. 2013). The advance-
ment of nanotechnology has altered the reactivity and the detection limit of semi-
conductor photocatalysts. Based on this principle, photocatalytic degradation has
treated a wide range of pesticides. The semi-manufacturing materials are different,
such as ZnO, TiO,, Fe,0;, CdS, and WO;. Among all of these chemical stability,
low toxicity, low cost, and high abundance of raw materials are main features that
have made titanium dioxide most used. Many scientists reported photodecomposi-
tion of pesticides with TiO,. The photodegradation of organochlorine pesticides on
TiO, coated films exposed to airborne UV irradiation was investigated. Yu et al.
(2007) investigated the photocatalytic activity of TiO, coated film for the degrada-
tion of organochlorine pesticides in air when exposed to UV irradiation. In a short
period, all pesticides can be degraded. Under high power UV lamp, the degradation
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Fig. 11.7 Schematic illustration of pesticide degradation by TiO, (a) photocatalytic oxidation and
(b) photo-Fenton degradation. (Reproduced with permission from Aragay et al. 2012)
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rate was greatly increased. Another dicofol degradation photocatalytic study of TiO,
UV-light-irradiation nanoparticles showed that dicofol could react with dicofol to
produce chloride ions and lower chlorine-containing toxic compounds and could be
completely damaged by active hydroxy radicals. By optimizing particle shape and
dimension, maximizing reactive facets, reducing e /h* recombination through noble
metal doping, and surface treatment to develop adsorption capacity, the photoactiv-
ity of nano-TiO, may be improved (Fujishima et al. 2008). The prepared catalysts
are nanosized particles and anatase type according to the consequences. The cata-
lysts had a redshift in the adsorption edge and showed greater absorption in the
visible light field. In comparison to nonmetal doped titania, metal doping tends to
be more effective in moving the absorbance spectrum to a visible area. Under UV
and solar light illumination, the degradation behavior of Th-doped photocatalytic
TiO, was investigated. These findings suggest that Th-doped photocatalytic TiO,
with altered electronic properties is an adequate photocatalyst for oryzalin degrada-
tion in contaminated water when exposed to sunlight. Under UV irradiation, how-
ever, these modifications display only small variations in photocatalytic rates.
First-order kinetics govern all photodegradation reactions. Many other photocata-
lysts such as WO;, ZnO, etc. have been utilized to degrade pesticides in addition to
titania (Mohagheghian et al. 2015). Eight pesticides were degraded to pilot plant
size by the use of tandem ZnO/Na,S,0s, as a photo-sensitive/poisoning sensitive
and parabolic collector compound in natural sunlight (Navarro et al. 2009), in leach-
ing water having pesticides and other solubilized chemicals as they penetrate
through the ground. The results revealed that ZnO as a photosensitizer is a success-
ful solution when using solar photocatalysis.

11.7.2.2 Zinc Oxide Nanoparticles

Nanoparticles of zinc oxide (ZnO) exhibit distinctive chemical and physical behav-
ior. Due to surface modification, it shows enhanced sensing and catalytic behavior
to effectively remove different contaminants present in the soil and water. Sharma
et al. (2016) studied the degradation rate of methyl parathion and parathion, types
of organophosphorus pesticides by the comparative effect of direct photolysis and
by UV-ZnO nanocrystal. Recorded results showed that photocatalytic crystals were
found to be more effective in degrading the pesticides.

Kaur et al. (2017) evaluated the effect of surface functionalization on ZnO
nanoparticles for adsorbing the pesticides from the aqueous solution. ZnO nanopar-
ticles were modified by 1-butyl-3-methylimidazolium tetrafluoroborate (BMTF-IL),
CTAB functionalized and bare ZnO nanoparticles. It was observed that
1-butyl-3-methylimidazolium tetrafluoroborate modified ZnO showed high adsorp-
tion (148.3 mg/g) followed by CTAB functionalized (90 mg/g) and bare ZnO
nanoparticles (76 mg/g). Dehaghi et al. (2014) prepared chitosan/ZnO-based com-
posite beads to analyze its potential towards removal of permethrin, vastly used
neurotoxic pesticides in agricultural fields. Adsorption method was adopted to
detect the change in initial concentration of the targeted pesticides. It was observed
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that only 0.5 g of bio-nanocomposite used up at pH 7 and normal room temperature
which showed about 99% removal rate of pesticides from the sample. After three
cleaning cycles it showed 56% regeneration capacity proved to be a new potential
candidate for the removal of pesticides. Salam and Das (2015) developed a bionano
hybrid system using Candida VITJzNO4 and nanosized ZnO for lindane degrada-
tion. They studied the lindane degradation efficacy of Candida VITIzNO4 along
with ZnO nanoparticle and found more effective degradation of lindane by hybrid
compared to native yeast alone. The lindane was completely removed within 3 days
from the sample.

11.7.2.3 Silica Oxide Nanoparticles

For bioremediation of pesticides, use of microbes and enzymes as biotic component
is more powerful as they are very much effective under normal atmospheric condi-
tions. After immobilizing microbes and/or enzymes on some inert supports such as
metal nanomaterials, they can be used repeatedly. Silica nanoparticles possess
desirable properties to be used as support to immobilize different enzymes. Microbes
expressing recombinant proteins and various enzymes such as carboxyesterases,
organophosphate hydrolases, laccases, etc. have been successfully immobilized on
silica nanomaterials for bioremediation of pesticides. Figure 11.8 depicts use of
silica nanomaterials as immobilization matrices for enzymes and whole cell to
enhance bioremediation. Basically, chemical and biological methods are adopted to
synthesize spherical silica nanoparticles (SiO,) which are porous in nature (Rao
et al. 2005). The porous behavior of the SiO, nanoparticles majorly depends upon

SiNPs as immobilization matrices for pesticide degradation
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Fig. 11.8 Use of SiNPs as immobilization matrices for enzymes or recombinant whole cells for
pesticide degradation. (Reproduced with permission from Bapat et al. 2016)
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the surface functionality. The rage of porosity in SiO, particle ranges from micropo-
rous, mesoporous, and hollow porous (Bapat et al. 2016). Due to nanostructure and
highly porous behavior, these nanoparticles are highly used for the remediation of
various pollutant (Khung and Narducci 2015).

Boubbou et al. (2012) immobilized organophosphate hydrolases (OPH) derived
from Flavibacterium species. They studied degradation of organophosphate pesti-
cide paraoxon by using this immobilized enzyme and found excellent highest
hydrolysis rate of paraoxon with immobilized enzyme on mesoporous silica with
6 nm diameter (Boubbou et al. 2012). Lerma-Garcia et al. (2013) observed the
enhance effect of SiO, nanoparticle modified by N-methylimidazole to detect the
sulfonylurea in the water sample. It was observed that due to change in surface
chemistry the rate of degradation was increased up to the mark. Other scientist also
modified the surface of SiO, nanoparticles with polar and non-polar compound to
check the efficiency towards removal of organophosphate pesticides (Ibrahim et al.
2013). In some studies mesoporous silica nano particles were used for the immobi-
lization of enzymes such as organophosphorus hydrolase (OPH) to check the hydro-
lysis rate of paraoxon (diethyl-4-nitrophenyl phosphate). Results showed that OPH
with silica nanoparticle shows higher tendency to hydrolyze the paraoxon compara-
tive to the plain one (Boubbou et al. 2012). Wang et al. (2013) prepared silica col-
loidal crystals beads depend on photonic suspension array for the detection of
chlorpyrifos-methyl and fenitrothion. During detecting the pesticides residual con-
centration, the binding capacity and the stability of the surface increased due to
nanostructured silica particles. The prepared suspension array able to detect the
pesticides in the ranges of 0.40-735.37 ng/mL and 0.25-1024 ng/mL, respectively.
Observed results showed that this technique proved to be possible detecting tool for
the pesticides residual present in the samples.

11.7.2.4 TIron Oxide Nanoparticles

Generally, different oxides of iron were largely exploited in the preparation of
nanoparticles with unique features which are further incorporated into different
matrices to removal of pollutant from the samples. Iron oxide (Fe;O4 and Fe,0;)
based NPs are vastly applicable to remediate different kinds of contaminants pres-
ent in various samples. Different matrices are used to immobilize the iron oxides-
based NPs for eradicating the pollutants. Quali et al. (2015) used a type of clay
mineral, i.e., palygorskite and modified it with the magnetic iron oxide nanoparticle
for the removal of fenarimol fungicides. In this study, three composition was used,
i.e., sifted palygorskite, purified palygorskite, and palygorskite modified with mag-
netic iron nanoparticles. The observed adsorption rate for the removal of fungicides
was 11%, 50%, and 70% respectively. The clay mineral modified with magnetic
iron oxide nanoparticles showed highest removal percentage and also showed
2-week stability.

Iron oxide nanoparticle embedded in mesoporous silica also has tendency to
remove glyphosate from the water sample. Modification on the surface of the iron
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oxide nanoparticles positively increased the porosity and surface area and of the
prepared adsorbent (Fiorilli et al. 2017). Fan et al. (2017) proposed quick and sim-
ple process to detect the presence of pyrethroid pesticides in various samples of
contaminated water. In this method ultrasmall iron nanoparticles in combination
with ionic liquid were used to detect pesticides in the water samples. The limit of
detection was determined to be between 0.16 and 0.21 g/L.

11.7.3 Bimetallic Nanoparticles

As the term suggests bi means more than one, so it is basically the combination of
two distinct metals within a one nanoparticle. These bimetallic nanoparticles have
attracted highly due to remarkable properties which can be developing due to com-
bining two metals. The enhanced characteristics of the bimetallic nanomaterial are
generally due to the synergistic effects on conjoining (Zaleska-Medynska et al.
2016). Bimetallic nanoparticles consisting of iron and nickel (Fe/Ni) were used for
the dechlorination purpose of the sulfentrazone, kind of herbicides. Various factors
were also analyzed during the conversion activity such as pH, dosage, initial con-
centration of herbicides, etc. Recorded results showed that in 30 min about 100%
conversion rate was achieved at acidic pH about 4.0 and 1.0 g/L of bimetallic NPs.
It was also concluded that the dechlorination rate depends upon the temperature,
dosage, and nickel content present in NPs. After dechlorination the formed by-
product was less toxic and it was confirmed by mass spectrometry and toxicity
assay done over the Daphnia similis fish species (Nascimento et al. 2016).

Shen et al. (2017) studied bimetallic nanoparticle consisting of zero-valent iron
and nickel for the degradation of 4-chlorophenol. They evaluated the efficiency of
the bimetallic nanoparticles towards the removal of 4-chlorophenol in the sample.
Observed results confirmed that hydroxyl radicals were the most active class during
the degradation process in case of iron nickel bimetallic nanoparticles. Singh et al.
(2013) prepared composite of Pd/Fe bimetallic nanoparticles and carboxymethyl
cellulose with Sphingomonas spp. (strain NMO0S) as biological component and used
for bioremediation of lindane present in soil. They found this integrated technique
very effective for bioremediation of lindane. They suggested that this integrated bio-
nanocomposite system can also be used for wastewaters. Rosbero and Camacho
(2017) prepared bimetallic nanoparticles of silver and copper (Ag/Cu NPs) by green
synthesis method using Carica papaya leaf extract. The bimetallic NPs have been
used as nanocatalyst to degrade chlorpyrifos in waste sample. To synthesize Ag/Cu
NPs Carica papaya leaf extract was used by adopting co-reduction method.
Observed results confirmed that bimetallic NPs have efficient potential to enhance
the degradation rate of pesticides contamination from the water samples (Fig. 11.9).
Some metal nanomaterials with biotic component and the removal rate of different
form of pesticides by these nanomaterials are presented in (Table 11.2).
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Fig. 11.9 Ag/Cu based bimetallic nanocatalyst degrading chlorpyrifos in contaminated water.
(Reproduced with permission from Rosbero and Camacho 2017)

Table 11.2 Removal rate of different pesticides with different metallic nanomaterials with biotic
components

Type of nanomaterial with Removal

S. No. | biotic components Pollutant degraded rate (%) References

1 Zero-valent iron with Polybrominated diphenyl 67 Kim et al.
Sphingomonas sp. ethers (2012)

2 Iron oxide nanoparticles with | Chlorophenols 80 Hou et al.
Rhodococcus rhodochrous (2016)
strain

3 nZVI and nZVI combination | Polychlorinated biphenyls |99 Jing et al.
with microorganisms (2018)

4 Bimetallic iron-based NPs and | Hexabromocyclododecane |27 Leetal.
tobacco plants (2019)

5 Arthrobacter globiformis D47 | Herbicides 90 Liu et al.
immobilized nanoparticles (2018)

11.8 Conclusions and Future Prospects

Metal nanoparticles play a very important role to ameliorate conventional bioreme-
diation techniques. Due to excellent architecture and physicochemical properties,
different types of metal nanomaterials are used as support material to immobilize
active microbes or enzymes. Such types of bionanocatalysts showed enhanced
removal of pesticides from contaminated soil and water. Various metallic nanopar-
ticles, bimetallic nanoparticles, metal oxide nanoparticles, and polymer metal nano-
composites are popularly used for bioremediation of pesticides. Many researchers
found that rate of degradation of pesticides greatly enhanced when metal nanoma-
terials were used along with pesticide degrading bacteria. Metal nanomaterials also
play a very important role in sensing presence of pesticide residue in environment.
Iron, silver, and gold nanoparticles are most common metal nanomaterials which
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are utilized in bioremediation of pesticides. Due to porous nature of crystalline
metal oxides based nanomaterials are very effective adsorbents used for the wide
range of pesticides. Also, photocatalytic active metal oxide such as TiO, also pro-
vides added advantage of photodegradation which results in faster degradation of
pesticide. Nowadays, bimetallic nanoparticles have attracted researchers focus for
its application in bioremediation because of enhanced characteristics due to the syn-
ergistic effects on conjoining two metals in one nanoparticle. In the past decades,
many metal nanomaterials and metal nanocomposites have been studied for the
bioremediation of pesticide but still it is required to develop some new and greener
methods for the preparation of these metal nanomaterials. Green synthesis utilizing
pesticide degrading microbe or enzyme provides a single step synthesis for getting
bioactive material capped metal nanoparticles.
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Abstract Pesticides are used to control pests that can destroy or reduce food pro-
duction. Therefore, they are an important management tool to increase agricultural
crop yield and reduce post-harvest losses, especially in a world facing hunger and
famine. Although pesticides are useful in food production, they may have harmful
effects such as being permanent in the environment and accumulating in living
organisms, since they cannot be biodegradable. As pesticides have been widely used
in agriculture for decades, concerns have been raised due to their known toxicity to
human health. Thus, the determination of pesticides is of great importance due to
both their increasing toxic effects on human health and the control of their use.
Analytical technology methods developed using sensors are a wide-ranging field
that affects industrial sectors such as medicine, health, food, agriculture, environ-
ment, and water. This chapter covers sensors and biosensors that have been devel-
oped in recent years to identify analytes sensitive to water pollution, especially used
in food safety. Also, the basic principles of sensor systems used in the analysis of
pollutants are mentioned.
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12.1 Introduction

Pesticides are widely used in the agro-food industry to control, prevent, and elimi-
nate pests. However, such compounds with high toxicity are classified as carcino-
genic, neurotoxic, or teratogenic according to the World Health Organization
(WHO) (WHO 2019; EPA 2019). This requires strict control of them in soil, waste-
water, food, humans, and animals. In the European Union, the legal max limit
(MRL) for each pesticide residue is 0.1 pg/L, while it is 0.5 pg/L for total pesticides
(Caso and Plaguicidas 2012; EFSA 2013). The United Nations (UN) estimates that
200,000 deaths occur each year from acute poisoning by pesticides, 99% of which
are in developing countries (OHCHR 2019). Different disease and neurological dis-
orders can occur due to sustained exposure to these compounds.

The environmental protection agency (EPA) names substances used to prevent,
destroy, spray, or mitigate any pests as pesticides (WHO 2019). Insects, mice, and
other animals, as well as unwanted plants such as weeds, and also microorganisms
like bacteria and viruses, are considered the target of pesticides classified as insec-
ticides, herbicides, fungicides, acaricides, algae, and others (biopesticides, antimi-
crobial, and pest control devices). Among others, commercially important
organophosphates, carbamates, organochlorine, and pyrethroid derivatives are
widely used. Pesticides with high insecticidal activity are widely used in agriculture
and industry (Du et al. 2008; Sun et al. 2013). Pesticides consisting of inorganic,
synthetic, or biological compounds are classified according to their target organism,
origin, and chemical structures (Obare et al. 2010). Pesticides produced by the use
of synthetic chemicals are used to control pests in order to increase agricultural
production by preventing crop losses and increase agricultural production, other-
wise, crop yields will be reduced by a third (Pinto et al. 2010).

Quite a large number of pesticides that are routinely used in agricultural applica-
tions pollute large geographical areas by creating permanent toxic residues in the
air, soil, and water (Ivanov et al. 2010). These residues cause many health problems
such as sterility, allergies, acute poisoning, and even cause death due to its highly
toxic effect on the acetylcholinesterase (AChE) enzyme necessary for the function-
ing of the central nervous system (Nicolopoulou-Stamati et al. 2016). More than
100,000 chemicals registered today (e.g., pesticides) inevitably get into freshwater,
which is less than 3% of all water in the world (Schwarzenbach et al. 2010) and
more than half of the total chemical production is environmentally hazardous
(Gavrilescu et al. 2015).

Monitoring of freshwater quality is a priority for water quality control and eco-
logical studies (Nikhil et al. 2018). Monitoring water quality is essential to provide
clean drinking water and protect the water ecosystem (Storey et al. 2011). The most
common classical methods used for pesticide determination in water samples are
gas chromatography (GC) (Carneiro et al. 2013) and liquid chromatography (LC)
(Sharma et al. 2010).

Instruments with highly detect and selective properties such as LC-mass spec-
trometry (LC-MS/MS), gas GC-mass spectrometry (GC-MS), and
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ultra-high-performance liquid chromatography-tandem mass spectrometry
(UHPLC-MS) (Corazza et al. 2019) are required to detect pesticides in matrices
(Tuzimski and Sherma 2018). There has been a major increase in the number of
works conducted for the determination of pesticide in fruits/vegetables in recent
years (Ferrer et al. 2017). In monitoring pesticide contamination, as a new strategy,
the development of sensor and biosensor devices with several advantages over tra-
ditional methods such as simplicity, sensitivity, selectivity, and field application
capabilities (Dutta and Puzari 2014) is important. Numerous sensors have been
developed to detect water quality, including chemical, bio- and electronic sensors
(Kruse 2018). The use of nanomaterials in sensors and biosensors to detect pesti-
cides and other analytes is emerging as a highly efficient analytical tool (Saylan
et al. 2017).

The environmentally persistent pesticides’ detection used in the agricultural
industry is made by traditional analysis methods such as capillary electrophoresis,
high-performance liquid chromatography, and mass spectrometry (Zamora-Sequeira
etal. 2019). However, although these methods have some limitations including high
time-consuming, the need for highly skilled personnel, complexity, and expensive
instrumentation, there are other alternative methods which allow measurements
with reasonable accuracy and in a shorter time (Songa and Okonkwo 2016).
Biosensor contains two different elements that include biological recognition ele-
ments such as enzymes, antibodies, lectins, receptors, and microbial cells and signal
transduction elements (e.g., optical, amperometric, acoustic, or electrochemical).
The signal generated by using the biological element is converted into a measurable
signal (Patel 2002).

In this section, recent developments and new trends in electrochemical, optical,
and piezoelectric-based biosensors used in pesticide detection are reported based on
detection methods. In addition, enzyme-based biosensors will be described for pes-
ticide detection performed by measuring enzyme inhibition or direct measurement
of compounds involved in the enzymatic reaction. Biorecognition elements used in
biosensors including enzymes, cells, antibodies, and DNA were evaluated. Aptamers
and molecularly imprinted polymers which are used in the pesticide analysis were
also presented in this chapter. Nanomaterials used in highly sensitive sensing
devices allow efficient pesticides detection and merit special mention. Optical
detection methods including chemiluminescence (Kochmann et al. 2012), fluores-
cence (Cheng et al. 2018), Surface Plasmon Resonance (SPR) (Bakhshpour and
Denizli 2020), surface-enhanced Raman scattering (Nie et al. 2018), and colorime-
try (Chawla et al. 2018) are used for determination of pesticide.

Chemiluminescence occurs at electrode surfaces where electron transfer reac-
tions generate excited light emission states. The emission of any light from a sub-
stance is defined as luminescence and plasmonic nanostructures are used to control
the photoluminescent properties of various emitting materials. It is well known that
metal particles affect the emission of the nearby fluorophore by enhanced excita-
tion, increasing the radiative decay rates, and quenching. The fluorescent method
based on increasing and/or decreasing emissions of the fluorescent material depends
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on changing of the chemical environment and an analyte concentration (Zhang
et al. 2007).

SPR nanosensors have been widely used in triazine pesticides detection due to
their simplicity, low cost, high specificity and sensitivity, real-time measurements,
no need for labeling, and ease of miniaturization (Cakir et al. 2019). The SPR as an
optical technique measures the refractive index changes on the gold surface of the
sensor when the target molecule is bound or absorbed to the ligand-coated sensor
surface. The level of SPR curve change and the obtained response units from the
shift angles are related to the analyte quantity and can be monitored in real-time
(Scarano et al. 2010). SPR biosensors have been used to investigate interactions
between protein—protein, nucleotides, and drug—albumin. They are also used in cell
surface marker-antibody probes to examine cellular morphological changes caused
by various factors (Fathi et al. 2019). SPR occurs when a portion of the light energy
couples with electrons in the metal surface layer at a certain incidence angle. The
plasmon resulting from the electron movements which propagates parallel to the
metal surface generates an electric field around 300 nm from the boundary between
the metal surface and sample solution (Sipovd and Homola 2013; Nguyen
et al. 2015).

Localized surface plasmon resonance (LSPR) is the collective oscillation of elec-
trons in the conduction band of noble metal nanoparticles. This oscillation is induced
by a time-dependent electric field of an electromagnetic wave. Factors such as par-
ticle size, shape, surrounding dielectric environment, proximity to other nanoparti-
cles strongly affect LSPR (Rycenga et al. 2011). Research on technological
applications such as biological sensing, imaging, and photocatalysis has increased
in the last decade. Plasmonic metal nanoparticles have both synthetically tunable
plasmon wavelengths and extremely wide absorption/scattering cross-sections and
also enable high local electromagnetic field enhancements (Neumann et al. 2012;
Linic et al. 2015). LSPR wavelengths show high sensitivity to small changes in the
dielectric medium. This sensitivity makes LSPR attractive for chemical and biologi-
cal sensing applications (Dondapati et al. 2010; Wu et al. 2012).

In Raman spectroscopy, chemical molecules are identified with distinctive
molecular vibration modes. Surface-enhanced Raman spectroscopy (SERS) uses
this capability to allow ultra-low concentration detections (Willets and Van Duyne
2007). SERS has been applied in various devices such as nanohole array and quasi-
3D. However, since the Raman enhancements of these devices are moderate
(10°~109), they are insufficient for detecting lower analyte concentrations (Wang
et al. 2012).

Colorimetric techniques are low cost and require inexpensive less signal trans-
mission equipment. It provides a useful approach in sensing applications as the
results are easy to understand. Rapid and in situ contaminant detection by observing
color changes with the naked eye would be the most appropriate mechanism. LSPRs
of gold and silver colloids fall into the visible spectrum so changes in aggregation
states resulting in the color changes are widely used for colorimetric sensor
fabrication.
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Sensor designs based on aggregation-induced detections have been applied for a
range of biomolecules, heavy metal ions, and pathogens (Liu et al. 2012). Plasmonic
nanoparticles are widely used in biocatalysis and biosensing applications as they
exhibit adjustable optical properties due to their localized surface plasmon reso-
nances. Dark field microscopy (DFM) as one of the optical techniques monitors the
scattering spectra of single plasmonic nanoparticles. Their high signal-to-noise ratio
and spatial resolution properties allow them to be used extensively in the construc-
tion of various nanosensors (Xie et al. 2017).

Piezoelectric quartz crystal-based detection is quite simple. Detection of the ana-
lyte often leads to a mass change that can be identified by a corresponding change
in the quartz crystal as a result of selective binding of the adsorbate. Label-free
pesticides (chlorpyrifos and phoxim OPs) detection in the vegetable samples by
piezoelectric biosensor were performed by Shang and coworkers. AChE enzyme
was used to immobilize macromolecular structure of polymer carbon nanotubes
(MWCNTSs-COOR) to the crystal surfaces coated with Ag (Shang et al. 2011).

Enzymes provide an important amplification system for sensitive substrate deter-
mination depending on the turnover number. Both the catalytic conversion of the
substrate and the dose-dependent inhibition of an enzymatic reaction are important
parameters in contaminant concentration analysis in foods. Enzyme-based biosen-
sors utilize specific enzymes for the catalytic generation of the product which is
directly determined by electrochemical, optical, photothermal, amperometric, and
acoustic transducers and they have been widely used in contaminant analyses of
organophosphorus and carbamate pesticide and herbicides. In the case of pesticides,
it is the enzymatic activity that is decisive in determining pesticide concentrations
in samples, especially the inhibition of enzymes such as acetylcholine esterase
(AChE) and butyrylcholine esterase (BChE). However, other enzymes such as
tyrosinase and alkaline phosphatase have also been used. The use of the parathion
hydrolase activity to determine the parathion concentration is a recent exception.
Pesticides reaction with the immobilized enzymes causes inhibition depending on
the type and concentration of pesticides. Transduction mechanisms such as pH
change and temperature affect the resultant product formed (Patel 2002).

12.2 Pesticide Impact on Food and Water

World population growth leads to higher food demand and a reduction in land for
farming. Therefore, in order to meet the increasing demand, foods are adulterated to
get more quantity in a short time. Moreover, the use of pesticides in crops above the
legal maximum residue limit by farmers is to gain more profits in a shorter time.
Pesticides, which are very effective on pests, can reside in the environment for a
long time. So, the development of rapid tools to be used for in situ and real-time
monitoring of pesticide discharge toxicity effect on ecosystems is important (Gupta
et al. 2016). Almost a third of global crop production is secured by the use of pesti-
cides. However, even a small amount of pesticide residue causes serious food
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contamination, thus the disrupted ecosystem poses a great danger to human life. As
a result, growing concerns over increased pesticide contamination have prompted
governments to set many policies to guide pesticide use, regulating maximum resi-
due levels on food and agricultural products. Bioaccumulation and continued expo-
sure can pose safety risks to human health, even if the concentrations of most
pesticides used remain within recommended limits. Pesticides are any compound or
mixture of compounds used to prevent, destroy, push, or lighten any substance.
Mice, insects, unwanted plants, microorganisms, and/or fungi are considered as a
target for pesticides classified as insecticides, herbicides, fungicides, acaricides,
algaecides, and others (biopesticides, antimicrobial, and pest control devices).
Natural resources from which biopesticides are derived are animals, plants, bacte-
ria, and some minerals. Table 12.1 shows major pesticide classes according to the
chemical structures (Aragay et al. 2012). The transfer of the pesticide residues in
food enhances the potential area of their effect among the population and hence
directly affects human health (Food and Agriculture Organization FAO 2010).

Agricultural pesticides and chemicals, which are widely applied in the agricul-
tural sector, cause serious problems in terms of public health in the world by causing
pollution in water, food, and environmental ecosystems. The mean lethal dose
(LD50) is calculated by the acute toxicity tests. Table 12.2 shows acute toxicity
levels of the pesticides estimated by WHO (Food and Agriculture Organization
FAO 2010).

Water bodies adjacent to agricultural lands are often the ultimate recipient of
pesticide residues (Pereira et al. 2009; Christos et al. 2011; Ba Hashwan et al. 2020).
The urgent need for sensors capable of detecting pesticides with high sensitivity has
increased in order to control food safety, protect ecosystem, and prevent diseases .
Biosensors are defined as a device that captures reactions between the sensitive

Table 12.1 Major classes of pesticides in accordance with their chemical structure

Pesticide
Chemical class Code | Pesticide group Chemical class Code | group
Arsenic compounds AS | Fungicides, Organotin OT | Fungicides,
insecticides, compounds herbicides
herbicides
Bipyridine derivatives | BP | Herbicides Phenoxyacetic acid | PZ | Insecticides
derivatives
Carbamates C Acaricides, Pyrazole derivatives | PZ Insecticides
fungicides
Coumarin CO | Rodenticides Pyrethroids PY | Acaricides,
insecticides
Copper compounds CU | Algaecides, Triazine derivatives | T Herbicides
fungicides,
insecticides
Inorganic and organic | HG | Fungicides, Thiocarbamates TC | Herbicides
mercury compounds rodenticides
Organochlorine OC | Fungicides,
compounds insecticides
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Table 12.2 Acute toxicity of pesticides according to WHO classification

LD50 for the rat (mg/kg b.w.)

Oral Dermal
Class | Classification Solids Liquids Solids Liquids
Ia Extremely hazardous <5 <20 <10 <40
Ib Highly hazardous 5-50 20-200 10-100 40-400
I Moderately hazardous 50-500 |200-2000 | 100-1000 | 400-4000
1T Slightly hazardous >501 >2001 >1001 >4001
6] Unlike to present acute hazard | >2000 >3000 - -

element and target objects after combining biorecognition elements with a physical
transducer and then converting them into continuous or discrete electrical or optical
signals that can become useful information. In general, immunosensors differ from
immunoassays in which the transducer is not an integral part of the analytical sys-
tem. While the biorecognition element determines the degree of selectivity or speci-
ficity of the biosensor, the transducer greatly affects the sensitivity of the biosensor.
Typically, biosensors are classified in some ways. Depending on the different types
of biorecognition element, biosensor can be classified as enzyme sensor, microbial
sensor, organelle sensor, tissue sensor, and immunosensor. According to the trans-
duction mechanism, biosensors can also be classified as electrochemical, optical,
piezoelectric, and nanomechanical immunosensors (Valera et al. 2010).
Electrochemical transducers classified as amperometric, potentiometric, conducto-
metric, capacitive, and impedimetric measure changes in current, potential (volt-
age), conductivity, capacitance, and impedance, respectively (Sun et al. 2013).
Based on different biorecognition elements, biosensors will be described in the fol-
lowing sections.

12.3 Typical Sensors for Pesticide Detection

Environmental monitoring has become one of the priorities due to the close rela-
tionship between environmental pollution and human health. Pesticide residue lev-
els in food are determined by regulatory agencies in most countries. International
Maximum Residue Limits-Codex Alimentarius is used by some countries to deter-
mine residue limits (Bergesen et al. 2019). To guarantee food safety and quality and
to meet consumer requirements, it is necessary to ensure that the food industry has
effective analytical methodologies (Novellino et al. 2013). The classical analytical
methods called “wet chemistry” used at the beginning of the twentieth century have
evolved into powerful instrumental techniques used in food laboratories. Broadening
the scope of practical applications in food analysis, this development has led to
significant improvements in analytical accuracy, sensitivity, limits of detection, and
sample throughput (Cifuentes 2012).
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Traditional techniques are accurate and reliable, they require time-consuming
steps including solid-phase extraction, field sample collection, analyzes of the sam-
ple, and compartment of the spectral peaks to references for identification of pesti-
cide residues (Lesueur et al. 2008). Therefore, researchers have been looking for
alternative detection and screening methods that are cheaper and more user-friendly.
In recent years, interest in biosensor technology has increased to determine pesti-
cides quickly using easy and fast procedures. Biosensors simplify or eliminate sam-
ple preparation and provide a significant reduction in cost per analysis. Also,
traditional analytical methods with the potential to complement or replace make
field testing easier and faster.

Electroanalysis, which offers a high potential in the field of food analysis, espe-
cially in common laboratories where there is no sophisticated analytical instrumen-
tation, is going through a real renaissance process because of the appearance of
advanced approaches such as screenprinting technology, biosensors, microchips,
and nanotechnology. There are more arguments for the application of electroanaly-
sis in the analytical chemistry of foods. Firstly, many analytes in foods are electro-
active and electrochemical detection offers both good selectivity (especially after
electrode modification with different (bio)/(nano) materials) and sensitivity for
direct detection without the need for derivatization step. Relatively low-cost electro-
analytical instrumentation can be easily miniaturized without loss of analytical per-
formance and can be used for examining samples with low turbidity. Furthermore,
electrochemical sensing can operate both in batch and in continuous regimes, cou-
pled as detectors in advanced separation methods and as a transduction system of
biosensors (Escarpa 2012). The pesticide sensor is based on the process of convert-
ing chemical information such as pesticide concentration into an analytical, read-
able, and useful signal. The chemical reaction takes place between the target
molecule pesticide and the biorecognition element such as an aptamer, antibody, or
polymer.

Extensive efforts have been made in recent years to develop pesticide biosensors
for use in monitoring pesticide residue in drinking water and food. Pesticides are
commonly used chemicals to increase crop yields by removing various agricultural
pests. Only 1% of pesticides applied by direct spraying to plants successfully reach
pests or insects and other amounts of pesticides remain adhered to vegetables and
fruits. The pesticide amount remaining in food has become one of the most worry-
ing challenges because of its harmful consequences for human health (Ba Hashwan
et al. 2020). Non-agricultural applications using pesticides are pest control, weed
management, pet care in shelters, and industrial vegetation control. Detection of
pesticide residues is important (Kumar et al. 2015) and is considered a challenge.
There are several sensors for detection of pesticide, so in this section, we will over-
view the latest developments in the determination of pesticides using electrochemi-
cal, optical, colorimetric, single plasmonic particles, piezoelectric and enzyme-based
Sensors.

Electrochemical sensor variants include potentiometric and amperometric sen-
sors. Potentiometric sensors rely on a change in potential. Electrochemical sensors
are one of the useful tools used in pesticide residue detection (Abdel-Fatah 2018).
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Electrochemical techniques preferred over other analytical techniques have remark-
able features such as low cost, easy to use, portable, and fast response time.
Electrochemical biosensors are classified according to signals measured in imped-
ance, current, and potential, so sensors are characterized as impedimetric, ampero-
metric, and potentiometric sensors (Facure et al. 2017). Recently, electrochemical
impedance spectroscopy (EIS) technique for residue detection of pesticides has
been widely used due to its unique properties such as fast response time, easy prepa-
ration, high sensitivity, and specificity. EIS is classified into two main techniques as
Faradic EIS and non-Faradic EIS (Liu et al. 2019). An amperometric biosensor
based on Nafion/AChE-cSWCNT/MWCNT/Au was developed for the determina-
tion of organophosphorus compounds by Dhull (2020). Goud et al., developed the
first example of a disposable electrochemical biosensor chip for the detection of
diisopropyl fluorophosphate (DFP), as the stimulant compound of G-type nerve
agents (e.g., Sarin and Soman), based on the integration of an all-solid-state fluoride
potentiometric transducer with the enzyme organophosphorus acid anhydrolase
(OPAA) (Goud et al. 2020). While photoactive materials are firmly fixed on the
photoelectrode of photoelectrochemical (PEC) sensors to produce the perfect pho-
tocurrent response, obvious and constant background currents will also occur, pre-
venting ultrasensitive detection of target molecules. Ultrasensitive organophosphorus
pesticides (OPs) detection is successfully performed using a dissociable photoelec-
trode based on CdS nanocrystal-functionalized MnO, nanosheets (Qin et al. 2020).
Acetylthiocholine (ATCh) is hydrolyzed to thiocholine (TCh) with the help of ace-
tylcholinesterase (AChE). TCh can effectively etch ultrathin MnO, nanosheets
resulting in the dissociation of MnO,-CdS from the photoelectrode.

Optical biosensors are extensively applied to monitor pesticide contamination in
the environment due to excellent advantages such as lower cost, and easy prepara-
tion, and real-time showing the result (Yan et al. 2018). However, the quantification
of pesticides requires sophisticated equipment and professional workers (Citartan
and Tang 2019). Optical sensors used to identify chemical and microbiological con-
taminants including luminescence (Yan et al. 2018), fluorescence (Cheng et al.
2018), SPR (Zhang and Fang 2010), LSPR (Bakar et al. 2012), SERS (Nie et al.
2018), single plasmonic particles (Dissanayake et al. 2019), and colorimetric meth-
ods (Chawla et al. 2018). So, the basis of optical sensors used for pesticide detection
is based on wavelength changes using surface plasmon resonance technology,
reflection changes using surface plasmon resonance technology, fluorescence, and
SERS technology using intensity change. Single particle-based plasmonic particles
and colorimetric-based sensors are also used in optical sensor technology. Also, in
optical biosensor applications, researchers have always used some metal nanopar-
ticles and also some types of polymers. For the determination of organophosphorus
pesticides, coreactant-free electrochemiluminescence biosensor without any extra-
neous species or dissolved O~ was prepared by (He et al. 2020a).

Specific dithiocarbamates detection by CTAB-encapsulated fluorescent copper
nanoclusters was examined as a facile, rapid, inexpensive method (Chen et al.
2020). Li et al. (2019b) reported a direct surface plasmon resonance biosensor for
chlorpyrifos residue detection in agricultural samples based on an oriented
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assembly of antibody. A portable LSPR-based instrument for rapid biomolecular
detection of pesticides in situ was developed by Rampazzi et al. (2016). Xu et al.
performed SERS-based determination of 2,4-dichlorophenoxyacetic acid in food
matrices using molecularly imprinted magnetic polymers (Xu et al. 2020a).
Analytical techniques that locally enhance the intensity of the electromagnetic field
induced by plasmons, which cause an increase in the efficiency of some optical
processes in the proximity to the plasmonic nanoparticles, were detailed by Kolataj
and coworkers (2020). Sensitive label-free colorimetric detection of chlorpyrifos
pesticide was performed with a silk fibroin-gold nanocomposite (Mane et al. 2020)
based sensor.

Offering advantages such as high sensitivity, real-time output, cost-effectiveness,
and ease of use, piezoelectric sensors have attracted the attention of researchers as
an alternative to traditional immunoassay tools for detecting pesticides. A piezo-
electric sensor device can be designed with materials such as quartz crystals that
resonate with an external alternating electric field application without needing
expensive or hazardous labels (Bakhshpour et al. 2017, 2019). Frequency change
occurs as a function of the crystal mass and is measured after the interaction of an
analyte in the sample with the corresponding molecule immobilized to a quartz
crystal. Therefore, the increase in mass will cause a decrease in resonance fre-
quency, which is a function of the analyte concentration (Kuchmenko and Lvova
2019). Piezoelectric immunosensors are devices containing quartz crystals immobi-
lized with bioreceptor on their surface and resonate in the application of an external
alternating electric field. Pan et al. performed the metolcarb pesticide detection in
spiked apple and orange juice samples by a hybrid material including multi-wall
carbon nanotube/poly (amidoamine) dendrimer (Pan et al. 2013). Pesticides pollut-
ing the environment are intentionally released into the environment through various
processes. Although they pose a health hazard, pesticide pollutants are not effec-
tively monitored.

Biosensors using acetylcholinesterase (AChE) inhibition have emerged as sim-
ple, fast, and ultrasensitive tools for the analysis of pesticides which are important
in environmental monitoring, food safety, and quality control. By eliminating or
simplifying sample preparation, these biosensors have provided a significant reduc-
tion in cost per analysis. There are excellent studies and reviews described in the
literature involving different food and environmental applications (Arduini et al.
2010). Hu et al. (2020) proposed new and stable acetylcholinesterase (AChE) sen-
sor with a patterned structure based on a titanium dioxide sol-gel carrier to detect
organophosphorus pesticides (OPs). Yang et al. integrated 1-naphthol-linked bi-
enzymatic reaction (sensor core) into the LIS (sensor device) to fabricate enzyme
inhibition-based lab-in-a-syringe (EI-LIS) device for monitoring pesticide residues.
In pesticide capture, esterase enzyme originated from plant mediates the hydrolysis
process forming 1-naphthol (Yang et al. 2020b). In the presence of acetylthiocho-
line iodide (ATCh) real-time and label-free methyl parathion pesticide (MPT)
detection via non-adiabatic tapered fiber-optic biosensor was presented by Arjmand
et al. (2020). The limit of detection for MPT was found to be as low as 23 x 10° M
(S/N = 3). Acetylcholinesterase biosensors prepared with the use of carbon



12 Sensor Applications for Detection in Agricultural Products, Foods, and Water 321

nanotubes functionalized with ionic fluid and horseradish peroxidase were used for
the determination of monocrotophos (Jiaojiao et al. 2020). This chapter reviews the
latest developments about the AChE enzyme inhibition-based biosensors. Therefore,
sensitive and simple methodologies developed for fabricating sensors to detect and
monitor pesticides without the need for extensive sample pretreatment are summa-
rized in (Table 12.3).

12.3.1 Electrochemical Detection

The electrochemical technique has been demonstrated to be a feasible approach for
pesticides and other template detection due to its high throughput capability, high
sensitivity, great miniaturizing possibility, cost-effectiveness, specificity, and sim-
ple operation. Electroanalytical methods measure changes in current when potential
is applied. Current is the change in charge as a function of time.

According to Faraday’s law (the equation is given below), the charge is proportional
to the amount of analyte that gains or loses electrons.

Q=nke (12.2)
where Q stand for total charge in coulombs unit, n is the number of moles of an
analyte, F is Faraday’s constant (96.487 C/mol), and e refer to the number of elec-
trons gained or lost. Hence, the current response gives information about changes in
the analyte concentration (Bakirhan et al. 2018).

Electrochemical biosensors are classified according to the signal being measured
impedance, current, and potential. Therefore, they are characterized as impedimet-
ric, amperometric, and potentiometric sensors. In recent years, capacitive-based
sensors are used as an alternative way for the detection of the pesticide (Facure et al.
2017; Beloglazova et al. 2018). Electrochemical impedance spectroscopy (EIS)
based biosensors in which capacitance changes are measured are called “Capacitive
biosensors” (Li et al. 2017).

Besides, Field Effect Transistor (FET) (Qiu et al. 2020) and the screen-printed
electrodes (Pérez-Fernandez et al. 2020; Soulis et al. 2020) are other electrochemi-
cal pesticide detection methods. Nanomaterial-based molecularly imprinted poly-
mers (Mahmoudpour et al. 2020), 2D transition metal carbides-modified support
materials (Shahzad et al. 2020), boron-doped diamond material (Sarakhman and
Svore 2020), and immunosensors (Fang et al. 2020) can be used for rapid electro-
chemical detection of pesticide residues in food samples.

Acetylcholinesterase (AChE) enzyme is frequently used to determine the organo-
phosphorus pesticides (OP). Dou et al. (2012) used screen-printed carbon electrodes
(SPCEs) to develop a biosensor based on the inhibition of AChE. The enzyme was
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Sensing
Biosensor type | Recognition element | material Limit of detection | Reference
Electrochemical | PtNPs/CS GCE 7 and 20 pg/L de De Matos et al.
(2020)
Electrochemical | MWCNT/zirconia CPE 9.0 x 10 mol/L. | Caetano et al.
(2020)
Electrochemical | CuNPs GCE modified | 0.33 nmol/L Roushani et al.
with MWCNT (2020)
Electrochemical | WO;-0.33H,0 CPE 233 nM Ilager et al. (2020)
nanorod modified
carbon-based
electrode
Electrochemical | Enzyme Indium tin 1.7 ng/mL Li et al. (2020b)
oxide (ITO)
electrode with
ZIF-8/MB
composites
Electrochemical | p-phenylenediamine | PGE 2.75 pg/mL Sensoy et al.
(2020)
Electrochemical | Hb Reduced 79.77 nM Kaur et al. (2020)
graphene
oxide-chitosan
(ERGO-CS/
Hb/FTO)
Electrochemical | NiCo,S, Graphitized 20 nM He et al. (2020b)
CNF
Electrochemical | CNT-H-IMZ GCE 120 nM~! de Oliveira et al.
(2020)
Electrochemical | NiO nanoparticles GCE 0.5 pM Baksh et al.
(2020)
Electrochemical | Au-ZrO, GECT 0.1 ng/mL Tao et al. (2020)
nanocomposites
Electrochemical | MXene/ Graphene 1.0 nM Tu et al. (2020)
CNHs/B-CD-MOFs
Electrochemical | Stearic acid/ GCE 0.1 nM Kumaravel et al.
nanosilver composite (2020)
Electrochemical | Enzyme ITO electrode | 8.8 ng/L Nagabooshanam
et al. (2020)
Electrochemical | SiO,NP-CNT-pPs GCE 0.092 pM Yao et al. (2020a)
Electrochemical | Aptamer Au-TAN 0.077 pM Yao et al. (2020b)
Electrochemical | NiAl-LDH CPE 1x107°M Tcheumi et al.
(2020)
Electrochemical | Poly-L-cysteine-gold | PGE 1.83x 107°M Amouzad and
nanoparticles Zarei (2020)
(PLC-AuNPs/PGE)
Electrochemical | SnS,/NS-RGO GCE 0.17 nM Shanmugam et al.

(2020)

(continued)
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Sensing
Biosensor type | Recognition element | material Limit of detection | Reference
Electrochemical | Enzyme MnO,-Thi 3x10°°M Sun et al. (2020)
based
electrode
Electrochemical | Anti-fipronil GCE 112 ag/mL Kumar et al.
(2020a)
Electrochemical | The Au probe 027 x 107'*M Kumar et al.
Ag-ZnO/s-SWCNT (2020b)
Electrochemical | PtNPs-MoS,-rGO GCE 0.07 pM Zuo et al. (2020)
Electrochemical | Silver (Ag)-doped GCE 0.34 nM/L Wang et al. (2020)
ZnO nanorods
Electrochemical | ZnO Ni-foam 1.2x 107" M Kamyabi and
electrode Moharramnezhad
(2020)
Electrochemical | Nylon 6,6 PGE 0.94 x 10* M Thanalechumi
et al. (2020)
Electrochemical | Nitride (g-C;N,)/ GCE 8.3 nM Xiao et al. (2020)
graphene
oxide(GO)-(Fc-TED)
Electrochemical | (L-Cit)-(beta-CD) GCE 10 nM Li et al. (2020a)
Electrochemical | BSA/AChE-Glu-s- GCE 3.75x 107" M Kumar and
SWCNTs/GCE Sundramoorthy
(2019)
Electrochemical | SWCNTSs GCE 1 ng/mL Gao et al. (2019)
Au-ZrO, GNs
Electrochemical | ACC-HNFs SPCE 6 fg/mL Jin et al. (2019)
Electrochemical | GO TRGOPE 0.015 pmol/L Brycht et al.
(2018)
Electrochemical | N-methyl-2- GCE 0.78 nM Wei et al. (2018a)
pyrrolidone
Electrochemical | Aptamer GCE 0.35 fM Roushani et al.
(2018)
Electrochemical | Au NPs (3DG-Au) GCE 0.0012 pM Rahmani et al.
(2018)
Electrochemical | Enzyme GCE and Au | 0.7 nM Lang et al. (2016)
nanorods
Electrochemical | Enzyme SPE with 5 pg/L Arduini et al.
Carbon black (2014)
nanoparticles
Electrochemical | Enzyme SPE with 0.1 ng/mL Bahadir and
Fe;0, and Au Sezgintiirk (2015)
nanoparticles
Electrochemical | Enzyme CPE and 0.42 pg/mL Peng et al. (2017)
NiCo,S,

(continued)
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Sensing
Biosensor type | Recognition element | material Limit of detection | Refe