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Abstract The work is devoted to the approximate methods for solution direct and
inverse problems of gravity exploration on bodies with a fractal structure. It is known
that in order to construct mathematical models adequate to the geological reality, it
is necessary to take into account the orderliness inherent in geological environments.
One of the manifestations of orderliness is self-similarity, which remains during the
transition from the microlevel to the macrolevel. Scaling of geological media can be
traced in petrophysical data and in anomalous fields. It should be noted that in real
structures there is no infinite self-similarity and scalingmust be considered in a certain
range. The work investigates analytical and numerical methods for solving inverse
contact problems of the logarithmic and Newtonian potential in the generalized
setting. In the case of a Newtonian potential, the problem is formulated as follows.
It is required, having three independent functionals of the gravity field above the
Earth’s surface and additional information on the self-similarity of the disturbing
body, to determine the depth, the density and the surface of the perturbing body.
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1 Introduction

For the effective solution of direct and inverse problems of gravity prospecting, the
methods of modeling bodies that perturb the potential and gravitational fields of the
Earth (perturbing bodies) are of great importance. In most works, disturbing bodies
are modeled by a set of the simplest geometric bodies (bar, parallelepiped, ball)
[1]. In the works [2, 3], modeling is carried out with spheroids. In recent years, a
large number of studies have been carried out on the fractality of individual minerals
and the entire Earth as a whole [4–7]. Scaling of geological media can be traced in
petrophysical data and in anomalous fields [8], etc. On the basis of the apparatus of
fractional measure and fractional dimension, the processing of disturbances of the
Earth’s gravitational field is investigated [9].

Mostminerals are porous. There are two types of porosity: the porosity ofminerals
and the porosity of liquids. Numerous studies have shown that in both mention cases,
the porosity has a fractal structure.

In particular, the group of authors argues that sandstones have a fractal structure
[4, 5, 10]. Hansen and Skjeltorp [6] investigated the fractal dimension D of a flat
sandstone sample and obtained D = 1, 73. Brakenseik [11] determined the fractal
dimension of a two-dimensional oil cut. It is equal to D = 1, 8. In [12], the fractal
dimension of the surfaces of porous ceramic materials is investigated.

In themonograph [7] theMenger’s sponge is proposed as amathematicalmodel of
porosity, which is constructed somewhat differently from the standard construction.

In this work, when constructing fractal models of geological environments, the
authors proceed not from fractals, but, following [13], from additions to fractals,
since areas (volumes) of additions tend to areas (volumes) of the original body.

Taking into account the fractal components of gravitational fieldsmakes it possible
to clarify the structure of the disturbing bodies.

Methods for solving contact inverse problems of logarithmic and Newtonian
potentials in a generalized setting are analyzed [14]. The problem is formulated
as follows. It is required, having three independent functionals of the gravity field
over the Earth’s surface z = 0 and additional information about the self-similarity
of the disturbing body, determine the depth H , the density σ(x, y) and the surface
H−ϕ(x, y) of the disturbing body occupying the region H ≤ z(x, y) ≤ H−ϕ(x, y).

Taking into account the fractal components of the gravitational and magnetic
fields makes it possible to clarify the structure of the disturbing bodies.

The work is devoted to the approximate solution of direct and inverse problems
of gravity prospecting on bodies with a fractal structure.

When solving inverse problems, a continuous method for solving nonlinear
operator equations is used, which is presented in the next section.
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2 Continuous Operator Method

Let B be aBanach space,a, z ∈ B, K be a linear operatormapping from B to B,�(K )

be the logarithmic norm [15] of the operator K , and I be the identity operator. We
shall use the following notation: B(a, r) = {z ∈ B : ‖z − a‖ ≤ r}, S(a, r) = {z ∈
B : ‖z − a‖ = r}, ReK = KR = (K +K ∗)/2,�(K ) = limh↓0(‖I + hK‖−1)/h.

Let a complex matrix A = {ai j },i, j = 1, 2, . . . , n, be given in n− dimensional

space Rn of vectors x with the norms ‖x‖1 = ∑n
k=1 |xk |, ‖x‖2 = [∑n

k=1 |xk |2
]1/2

,

and ‖x‖3 = max1≤k≤n|xk |.
The corresponding logarithmic norms of the matrix A then read [16]:

�1(A) = max
j

(Re(a j j ) +
n∑

i=1,i �= j

∣
∣ai j

∣
∣),

�2(A) = λmax
(
(A + AT )/2

)
,

�3(A) = max
i

(Re(aii ) +
n∑

j=1, j �=i

∣
∣ai j

∣
∣).

Here λmax(A) means the largest real part of eigenvalues of the matrix A.
Consider an equation

A(x) − f = 0, (2.1)

where A(x) is a nonlinear operator mapping from Banach space B to B.
Let x∗ be a solution of the (2.1). In [17] the connection between stability of

solutions of operator differential equations in Banach spaces and resolving operator
equations of the form (2.1) has been established. Here we shall summarize the results
on the method.

Let us associate the (2.1) with the following Cauchy problem

dx(t)

dt
= A(x(t)) − f, (2.2)

x(0) = x0. (2.3)

Theorem 2.1 [17]. Let the (2.1) has a solution x∗ and on any differentiable curve
g(t) in Banach space B the inequality is valid

lim
t→∞

1

t

t∫

0

�(A′(g(τ ))dτ ≤ −αg, αg > 0 . (2.4)
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Then the solution of the Cauchy problem (2.2), (2.3) converges to the solution x∗
of the (2.1) for any initial approximation.

Theorem 2.2 [17]. Let the (2.1) has a solution x∗ and for any differentiable curve
g(t) in a ball B(x∗, r) the following conditions are satisfied:

(1) for any t (t > 0)

t∫

0

�(A′(g(τ ))dτ ≤ 0; (2.5)

(2) the inequality (2.4) is valid.

Then the solution of the Cauchy problem (2.2), (2.3) converges to a solution of
the (2.1).

Note 1. In the inequality (2.4) it is assumed that the constants αg > 0 can differ
for different curves g(t).

Note 2. From inequalities (2.4), (2.5) it follows that the logarithmic norm
�(A′(g(τ )) can be positive for some values of τ ; i.e. the Frechet derivative A′(g(τ ))

can degenerate into an identically zero operator along the curve.
Note 3. An example in [18] (an approximate solution of a hypersingular integral

equation) has demonstrated convergence of an iterative process based on a continuous
operator method when the Frechet derivative vanishes at the initial approximation.

Note 4. Logarithmic norm has the property which is very useful for numer-
ical analysis. Let A, B be square matrices of order n with complex elements and
x = (x1, . . . , xn), y = (y1, . . . , yn), ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) are
n-dimensional vectors with complex components. Let us consider the following
systems of algebraic equations: Ax = ξ and By = η. The norm of a vector and
its subordinate operator norm of the matrix are fixed; the logarithmic norm �(A)

corresponds to the operator norm.

Theorem 2.3 [19]. If �(A) < 0, the matrix A is non-singular and
∥
∥A−1

∥
∥ ≤

1/|�(A)|.
Theorem 2.4 [19]. Let Ax = ξ , By = η and �(A) < 0, �(B) < 0. Then

‖x − y‖ ≤ ‖ξ − η‖
|�(B)| + ‖A − B‖

|�(A)�(B)| .

Main properties of the logarithmic norm are given in [15].
The logarithmic norm of the operator K can have different (positive or negative)

values in different spaces.
The continuous method for solving nonlinear operator equations admits the

following generalization. Let us return to (2.1). Denote by A′(x0) the Gateaux
(Frechet) derivative on the element x0. We introduce the equation
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(A′(x0))∗A(x) − (A′(x0))∗ f = 0. (2.6)

Equation (2.6) is associated with the Cauchy problem

dx

dt
= −(A′(x0))∗A(x) − (A′(x0))∗ f ), (2.7)

x(0) = x0. (2.8)

If �2(A′(x0))∗A′(x0)) > 0, then in some neighborhood B(x0, r) of the element
x0 the Euclidean logarithmic norm of the operator—A′(x0))∗A(x) will be negative
and ‖x(t)‖ < ‖x(0)‖ for some interval t ∈ (t0, t1], t0 = 0.

Let the inequality �2(A′(x0))∗A′(x)) > 0 be satisfied on the segment t ∈
[t0, t1], t0 = 0. (Here x(t) is the solution to the Cauchy problem (2.7), (2.8)).

For t ≥ t1, consider the Cauchy problem

dx1(t)

dt
= −(A′(x1)∗A(x) − (A′(x1))∗ f ), (2.9)

x1(t1) = x(t1)(3.10) (2.10)

and define the segment [t1, t2], in which the inequality �2(A′(x1))∗A′(x1)) > 0
occur.

Taking x2(t2) = x1(t2) as an initial value when solving the Cauchy problem

dx2(t)

dt
= −(A′(x2))∗A(x) − (A′(x2))∗ f ), (2.11)

x2(t2) = x1(t2), (2.12)

we have limt→∞
∥
∥
∥ dx(t)

dt

∥
∥
∥ = 0 and therefore limt→∞ x(t) = x∗.

Assertions follow from this remark.

Theorem 2.5. Suppose that (2.6) has a solution x∗ and for any differentiable curve
in the Banach space B the inequality

lim
t→∞

1

t

t∫

0

�((A′(g(τ )))∗A′(g(τ )))dτ ≤ −αg, αg > 0 (2.13)

occur. Then the solution to the sequence of Cauchy problems ((2.7), (2.8)), ((2.9),
(2.10)), ((2.11), (2.12)), etc. converges to the solution x∗ of (2.6).

Theorem 2.6. Suppose that (2.6) has a solution x∗ and for any differentiable curve
in the sphere B(x∗, r) the inequalities



102 I. V. Boykov et al.

t∫

0

�((A′(g(τ )))∗A′(g(τ )))dτ < 0 (2.14)

and (2.13) occur. Then the solution of the sequence of Cauchy problems ((2.7), (2.8)),
((2.9), (2.10)), ((2.11), (2.12)), etc. converges to the solution x∗ of (2.6).

If the conditions of Theorems 2.5 and 2.6 are not satisfied, the regularization

dx

dt
= −αx(t) − ((A′(x0))∗A(x) − (A′(x0))∗ f ), α > 0,

is carried out.

3 Direct Tasks

Let us consider a geological deposit represented by the uniform body D of arbitrary
form. Assuming that the body has fractal dimension DH < 3, we will approximate
it with its complement of the Menger sponge [7]. Let the body D be situated in the
cube 
 = [−a, a]3. Let us construct the n-th order prefractal (n-th iteration of the
fractal) for the Menger sponge in the cube 
. During the construction of the first
iteration the cube 
 is divided into 27 equal cubes with sides r1 = 2a/3, and 7
central cubes are dropped.

During the construction of the second iteration every cube from the remaining
20 cubes is divided into 27 equal cubes with the sides 2a/9. As the result we have
729 cubes including 400 central cubes (for every initial cube with the side 2a/3)
that are dropped. Repeating the described operations n times we get the n-th Menger
prefractal. As noted in the work [13], not classical fractals but their complements
with respect to the initial domain should be used as the model for geological bodies.
Consequently geological deposits are modeled with the set of cubes with different
lengths of edges (and with different sizes).

When modeling granular and liquid media it seems that it is more efficient to
model them with reduced copies of the first iteration of the Menger sponge. In that
case we can construct the model using not only classical fractal but also complement
to it.

Let us introduce the Cartesian three-dimensional rectangular coordinate system
with down-directed z-axis and with the origin of coordinates placed at the Earth
surface. Assume that the body D occurs at sufficiently great depth z = H under the
Earth surface.

As the parameterH we fix the distance from the Earth surface to the average point
(in vertical direction) of gravitating body.

In the introduced coordinate system the domain 
, which the body D belongs to,
rewrites as:
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 = {(x, y, z) : −a ≤ x ≤ a,−a ≤ y ≤ a, H − a ≤ z ≤ H + a}.

Let
�i, j,k = [

xi , xi+1; y j , y j+1; zk, zk+1
]
, xi = −a + ai/n, i = 0, 1, . . . , 2n,

y j = −a + aj/n, j = 0, 1, . . . , 2n,

zk = H − a + ak/n, k = 0, 1, . . . , 2n.

We refer to as marked the cubes �i jk that have nonempty intersection with the
domain D. In the marked cubes we locate the first iteration of the Menger sponge
fractalwith the edge lengtha/n.Suppose that the body ismodeledby thefirst iteration
of the fractal. Denote the constructed model of the body by Dn. For computation of
the perturbed field it is sufficient to compute the vertical component of the gravity
field generated by the cell �i jk at the point (x, y, 0).

The cell�i jk consists of 20 cubes with edges having the length a/3n.Assuming n
andH being sufficiently bigwemay treat cos

(
�

(
x ′, y′, z′)), where

(
x ′, y′, z′) ∈ �i jk

as constant within the limits of the cell. Here �
(
x ′, y′, z′) is the angle between the

radius-vector M ′P (M ′ = (
x ′, y′, z′),P(x, y, 0)) and the z-axis.

Let us denote by oi jk the center of the cell �i jk . Obviously,

oi jk = (−a + a(i + 1
/
2)/n,−a + a( j + 1

/
2)/n, H − a + a(k + 1

/
2)/n

)
.

Let us also denote by θi jk the angle between the vector oi jk P and the z-axis.
Thus the vertical component of the gravity force generated by the cell �i jk at the

point P(x, y, 0) equals to dVz(i, j, k) = 20γρ(a/3n)3 cos
(
θi jk

)
/
(
r(oi jk, P)

)2 =
20γρa3

27n3 · zk+zk+1

2 /
(
r(oi jk, P)

)3
.

Here γ is the gravitational constant, ρ is a density of body. There-
fore the vertical component of the gravity force generated by the
disturbing body D at the point (x, y, 0) equals to Vz(x, y, 0) =
∑2n−1

i, j,k=0 20γρi jka3(
zk+zk+1

2 )/27n3
(
r
(
oi jk, P

))3
,ρi jk .is a density of cell. Consider

the example.
Let us se t the following parameter values: H = 5, a = 1/4, n = 10.
We perform calculations using the formula dVz(i, j, k) = 20γρa3

27n3 ·
zk+zk+1

2 /
(
r(oi jk, P)

)3
.

Let us fix i = j = k = n, that corresponds to the central cell �i jk in the domain

 For illustrative purposes the product of the constants γ and ρ we set to 106.

Thefield dV (i, j, k) of the vertical component of anomalous gravity force generated
by the described cell at the Earth surface is shown in the figure (Picture 1).

For comparison we also introduce the plot of the vertical component of the
anomalous gravity field generated by the continuous body occupying the domain.

The computed field is depicted in the following figure (Picture 2).
From the comparison of the computed fields it is obvious that the solution of the

direct problem is essentially dependent on the chosen model for representation of
the elementary cell.
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Picture 1 The vertical component of anomalous gravity force generated by the cell of the Menger
sponge first order prefractal

Picture 2 The vertical component of anomalous gravity force generated by the elementary cell
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4 Inverce Tasks

This section examines the influence of the chosen model on the accuracy of the
interpretation of the results.

Let in the domain D{D : −l ≤ x ≤ l,−l ≤ y ≤ l1, H ≤ z ≤ H − ϕ(x, y)} are
distributed with density σ(x, y, z) sources disturbing gravitational field of the Earth.
The gravity field above the Earth’s surface is determined by the equation

G

∞∫

−∞

∞∫

−∞

H∫

H−ϕ(ζ,η)

σ (ζ, η, ξ)(ξ − z)dζ dηdξ

((x − ζ )2 + (y − η)2 + (ξ − z)2)3/2
= f (x, y, z), (4.1)

where f (x, y, z) is the experimentally determined value, G− gravitational constant,
which for the convenience of further calculations will be set equal to G = 1/2π.

To describe the force of gravity on the Earth’s surface in (4.1), one should set
z = 0.

Having calculated the integral on the left-hand side of (4.1) by parts and assuming
that the density does not depend on ξ , we have

1

2π

∞∫

−∞

∞∫

−∞
σ(ζ, η)

[
((x − ζ )2 + (y − η)2 + (H − z − ϕ(ζ, η))2)−1/2

−((x − ζ )2 + (y − η)2 + (H − z)2)−1/2
]
dζ dη = f (x, y, z).

(4.2)

We represent (4.2) in the form

1

2π

∞∫

−∞

∞∫

−∞
σ(ζ, η)

[
((x − ζ )2 + (y − η)2 + (H − z)2)−1/2(1 + u)−1/2

−((x − ζ )2 + (y − η)2 + (H − z)2)−1/2
]
dζ dη = f (x, y, z),

(4.3)

where u = ϕ2(ζ,η)−2(H−z)ϕ(ζ,η)

(x−ζ )2+(y−η)2+(H−z)2 . Under the assumption that |u| < 1, the function
1

(1+u)1/2
is expanded in the series

1

(1 + u)1/2
= 1 +

∞∑

n=1

(−1)n
(2n − 1)!!

2nn! un. (4.4)

Substituting (4.4) into (4.3) and using the uniform convergence of series (4.4),
we have
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1

2π

∞∑

n=1

(−1)n
(2n − 1)!!

2nn!
∞∫

−∞

∞∫

−∞
σ(ζ, η)

(ϕ2(ζ, η) − 2(H − z)ϕ(ζ, η))n dζ dη

((x − ζ )2 + (y − η)2 + (H − z)2)n+1/2

= f (x, y, z).
(4.5)

Let us approximate (4.5), limiting ourselves to one term on the left-hand side. As
a result, we obtain the equation [14]

− 1

4π

∞∫

−∞

∞∫

−∞
σ(ζ, η)

(ϕ2(ζ, η) − 2(H − z)ϕ(ζ, η))dζ dη

((x − ζ )2 + (y − η)2 + (H − z)2)3/2
= f (x, y, z). (4.6)

Equation (4.6) contains three unknowns: the depth of the gravitating body H , the
density of the body σ(x, y) and the shape of the surface H − ϕ(x, y). To find these
unknowns, it is necessary, in addition to values of the gravity field on some surface,
to have two more linearly independent sources of information. As these functionals,
one can use values of the gravity field at three different levels, a combination of the
values of the gravity field and its derivatives in different directions, etc.

Note. Having values of the gravity field at the same level, it is possible to restore
values of the gravity field at several levels using the Poisson formula.

In the work [14], analytical and numerical methods are proposed for the simulta-
neous determination of the depth of the disturbing body, its density and the surface
equation in contact problems of the logarithmic and Newtonian potential. In [14],
the disturbing body was assumed to be solid.

Compared with iterative methods for solving (4.6), studied in [14], the preferable
is the continuous operator method described in Sect. 3. In both cases, the density is
interpreted as a constant function within the unit cell, which simulates the gravitating
body. In the case of modeling a gravitating body with fractals, the density in elemen-
tary cells is not constant. It is of interest to study the influence of fractals chosen for
modeling disturbing bodies on the accuracy of determining their densities.

In [14] the following example was analytically solved.
Let in the domain 
 = {5 ≤ z(x, y) ≤ 5 − ϕ(x, y), −∞ < x, y < ∞}, there

is a perturbing body with density σ(x, y). Let the gravity force and its first two
derivatives be known on the surface z = 0:

f0(x, y, 0) = 24π
(x2+y2+36)3/2 − 7π

5(x2+y2+49)3/2 ,

f1(x, y, 0) = ∂ f (x,y,z)
∂z

∣
∣
∣
z=0

= 432π
(x2+y2+36)5/2 − 4π

(x2+y2+36)3/2 − 147π/5
(x2+y2+49)5/2 − 2π/25

(x2+y2+49)3/2 ,

f2(x, y, 0) = ∂2 f (x,y,z)
∂z2

∣
∣
∣
z=0

= 12960π
(x2+y2+36)7/2 − 1029π

(x2+y2+49)7/2 −
− 216π

(x2+y2+36)5/2 + 21π/25
(x2+y2+49)5/2 − 4π/125

(x2+y2+49)3/2 .

It is necessary to find a depth of the gravitating body H , a density of the body
σ(x, y) and a shape of the surface H − ϕ(x, y). To solve this problem, in addition
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to (4.6), two more equations are added

∞∫

−∞

∞∫

−∞

2Hw1(ξ, η) − w2(ξ, η)

((x − ξ)2 + (y − η)2 + H 2)3/2
dξ dη = f0(x, y),

∞∫

−∞

∞∫

−∞

{
6H 2w1(ξ, η) − 3Hw2(ζ, η)

((x − ξ)2 + (y − η)2 + H 2)5/2
− 2w1(ξ, η)

((x − ξ)2 + (y − η)2 + H 2)3/2

}

dξdη

= f1(x, y),
∞∫

−∞

∞∫

−∞

{
3w2(ζ, η) − 18Hw1(ξ, η)

((x − ξ)2 + (y − η)2 + H 2)5/2
+ 30H 3w1(ξ, η) − 15H 2w2(ξ, η)

((x − ξ)2 + (y − η)2 + H 2)7/2

}

dξ dη

= f2(x, y). (4.7)

When obtaining system (4.7), the following formulas were used w1(x, y) =
σ(x, y)ϕ(x, y),w2(x, y) = σ(x, y)ϕ2(x, y).

Its exact solution was obtained: H = 5, ϕ(x, y) =
(
x2+y2+1
x2+y2+4

)3/2
, σ(x, y) =

(x2+y2+4)3/2

(x2+y2+1)3 .
When solving the systemof (4.7) by the spline-collocationmethodwith zero-order

splines, an error is equal to O(N−1), where h = N−1 is a step of the computational
scheme by coordinates x, y. Hence it follows that the results of the approximate
solution can be interpreted as follows. In area (x, y) : { (x2+y2+4)3/2

(x2+y2+1)3 ≤ 1/N } let us put
σ(x, y) = 0. DomainG defined by the inequality { (x2+y2+4)3/2

(x2+y2+1)3 ≥ 1/N }wewill cover
with elementary cells (cubes) with edges of length d/N , where d is area diameter G.
Place the first-order prefractal of the Mergel sponge in the elementary cells. Then,
depending on the mineral filling the addition of the Margel sponge to the unit cell,
the density of the body varies from σ(x, y) to 27σ(x, y)/20. Thus, when solving
inverse problems on fractals, an additional problem arises of choosing an appropriate
model (fractal, multifractal) for a gravitating body.

5 Conclusions

In this work by the example of the Menger sponge approximate methods for solution
of direct and inverse problems of gravity exploration using fractals are investigated.
As far as inverse geophysical problems belong to the class of ill-posed problems
for their solution in this work we propose the generalization of continuous operator
method for solution of nonlinear equations. The proposed method allows to obtain
stable solution for inverse problems which are modeled with nonlinear convolutional
equations. At the core of the method there are criteria for asymptotic stability of
solutions of systems of ordinary differential equations. The method can be used
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for solution of numerous equations of mathematical physics. In solving direct and
inverse problems using fractals we show the problem of dependency of interpretation
of computational results on the chosen model.
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