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Abstract Chaos theory is considered as a tool for studying the systems that show
divergence and disorder. After having used discrete mathematics to deduce non-
convergence situations, these theories are modeled in the form of a dynamic system
and are applied in several domains such as electronic, mechanic, network security,
etc. In network security domain, the development of new cryptosystems based on
chaos is a relatively new area of research and is increasingly relevant. The essence
of the theoretical and practical efforts in this field derive from the fact that these
cryptosystems are faster than conventional methods, while ensuring performance of
security, at least similar. In this paper, we discuss several proposals about chaos-based
cryptosystem and pseudo-random number generator (PRNG). Moreover, topology
and architecture of the proposed chaos systems are detailed. Finally, in order to show
the more suitable system for encryption and secure communication, a synthesis
comparison is presented and considered.
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1 Introduction

Nowadays, network communication is vulnerable to many threats and cyber-attacks
and it becomes more important for network experts to safeguard the network access
[1]. Among the available security mechanisms, chaos-based cryptosystems are con-
sideredoneof themost effective solution that provides the integrity, the authentication
and the confidentiality. Recently, the development of new cryptosystems based on
chaos is a relatively new area of research and is increasingly relevant.
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In [2], an Field-Programmable-Gate-Array (FPGA) implementation of image
encryption purpose using two chaotic discrete time systems. The proposed twophases
algorithm is executed by using the well known Arnold Cat map and the generalized
logistic map, respectively. Authors in [3] initiate a systematicmethodology for secur-
ing real-time video communication. The proposed chaos-based cryptosystem have
been implemented on an FPGA hardware platform via VerilogHardware Description
Language (Verilog HDL). Sreenath and Narayanan [4] presents a Hardware imple-
mentation of a Pseudo chaos signal generator using three reconfigurable discrete time
systems with a linear feedback shift registers (RLFSR). The proposed technique was
implemented usingVerilogHDL codes, then analyzed usingXilinx PlanAhead com-
piler andModel-sim software. In terms of network security protocols, [5] proposed a
novel chaos-based mechanism that includes Pseudo-Random Key-Generator which
can be used to secure a socket-based communication. The proposed key-generator,
created by solving the Lorenz chaos-system, has the main task of delivering at each
opened channel a new32-bit key that is used for encrypting/decryption the exchanged
data.

In this paper, we discuss several proposals about chaos-based cryptosystem and
pseudo-random number generator (PRNG). Moreover, topology and architecture of
the proposed chaos systems are detailed. Finally, in order to show the more suit-
able system for encryption and secure communication, a synthesis comparison is
presented and considered.

The remainder of this paper is structured as follows. Section2 describes the clas-
sification of the most used chaotic systems. Section3 shows the hardware implemen-
tations of these chaotic systems as well as their purposes. Section4 concludes this
paper.

2 Background and Description of Chaotic Systems

Due to the sensitivity and periodicity properties, chaotic systems have been involved
mainly in key generation of the recently proposed cryptography schemes. Regarding
their topology and mathematical model, we can classify all existing and newly pro-
posed chaos systems in two main categories: continuous-time systems and discrete-
time systems.

2.1 Continuous Time Systems

The continuous-time systems are described by a set of linear differential equation.
Moreover, in order to ensure that the dynamical systems to be chaotic, the dimensions
of the system’s phase space must be at least equal to three (3). In the literature, there
are several well known continuous-time systems such as Lorenz [6], Chen [7], Lu
[8], etc.
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Fig. 1 Trajectory graph of the Lorenz system

Lorenz System The basic form of the Lorenz 3-D system is described by the fol-
lowing set of equation:

ẋ = a(y − x)

ẏ = y + bx − xz

ż = xy − cz

where x, y and z are the state variables. a, b and c are the system parameters. The
chaotic behaviour (see Fig. 1) appears for a = 10, b = 28 and c = 8/3 with the initial
conditions x0 = 0, y0 = 5 and z0 = 25 [8].

Van-der-Pol System The Van-der-Pol oscillator as given in [9], is described in two
dimensions as follows:

ẋ = a(x − (1/3)x3 − y)

ẏ = (1/a)x

where x, y are the state variables, and a is the system controller. The phase portrait
of the 2-D system is illustrated in Fig. 2.

Chen System Based on the 3-D Lorenz system, Chen 3-D system is proposed and
described by the following set of equations:
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Fig. 2 Phase plan projection of the Van-der-Pol system

ẋ = a(y − x)

ẏ = (b − a)x + by − xz

ż = xy − cz

where x, y and z are the state variables. a, b and c are the system parameters. The
chaotic behaviour appears for a = 35, b = 28 and c = 8/3 [10], while the phase plan
projection is shown in Fig. 3.

Lu System The Lu system is known as the bridge between Lorenz system and Chen
system [8]. Thereby, the mathematical model is given as follows:

ẋ = a(y − x)

ẏ = by − xz

ż = xy − cz

where x, y and z are the state variables. a, b and c are the system parameters. The
trajectory graph of the proposed system is given in Fig. 4.

Linz-Sprott System Trying to simplify the formula of a chaotic system, Linz and
Sprott [10] have proposed a new system which is defined as follows:
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Fig. 3 Phase plan X−Y
projection of the 3-D Chen
system

Fig. 4 Trajectory X−Y−Z
of the 3-D Lu system

ẋ = y

ẏ = z

ż = −az − y − 1 + |x |

where x, y and z are the state variables and a is the system’s parameter. As shown in
Fig. 5, the chaotic behaviour of the proposed system is achieved for a = 0.6.

Four-Wing memristive hyperchaotic System Looking for higher dimensional
chaotic system, authors in [11] have proposed a novel 4-D systemwhich is described
as follows:
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Fig. 5 Trajectory X−Y−Z of the Linz-Sprott system

ẋ = ax + byz

ẏ = cy + dxz − pyW (w) − Q

ż = ez + f xy + gxw

ẇ = −y

W (w) = m + 3nw2

where x, y, z, w are the state variables. a, b, c, d, e, f, g, m, n, p, Q are the controllers
of the proposed system. In order to ensure the chaotic behaviour, the controllers
parameters are defined as follows: a = 0.35, b = −10, c = −0.6, d = 0.3, e = −1.6, f =
2, g = 0.1,m= 0.1, n = 0.01, p = 0.2 andQ=0.01. The trajectory graphs corresponding
to the proposed system with the associated parameters, are shown in Fig. 6.

New 3-D Continuous Time System Getting inspired from the Lorenz system [12],
with only two (02) controllers, a novel 3-D system is proposed and defined as follows:

ẋ = y − x − az

ẏ = xz − x

ż = −xy − y + b

where x, y and z are the state variables. a and b are the system parameters. The
chaotic behaviour of the proposed system is observed for the values a = 0.5 and b =
1 while the initial conditions are x0 = y0 = z0 = 0 (see Fig. 7).

New 4-D Continuous Time System In [13], another new 4-D chaotic system is
proposed based on the Rossler system, and defined by the following set of equations:
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Fig. 6 Trajectory graphs of the proposed 4-Wing system

Fig. 7 Phase plan projections of the proposed 3-D system

ẋ = −y − z + dw

ẏ = x + ay

ż = b + z(x − c) − a(y − w)

ẇ = az − w

where x, y, z and w are the state variables. a, b, c and d are the system parameters.
By choosing a = 0.4, b = 0.6, c = 3 and d = 0.8, the chaotic behaviour of the proposed
system is showed by phase plan projection (see Fig. 8).
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Fig. 8 Phase plan projection of the proposed system

2.2 Discrete Time Systems

The discrete time chaos system is a dynamic system which works in increments and
takes the conditions at a given time t to change these conditions at a later time t + �t .
Hence, unlike the mathematical model of the continuous time systems, discrete time
maps are described mathematically by an iterated function. Moreover, the dimension
of the system’s phase space could be only equal to one (01) to show chaos behaviour.

Logistic Map In the literature, many proposals have used the well known logistic
map such as in [14] for PRNG, [2] for image encryption,[15] for chaotic signal
generating, etc. The mathematical description of this map is given as follows:

xi+1 = axi (1 − xi )

where xi is the state variable and a is the system controller.
To ensure the chaotic behaviour (see Figs. 9 and 10) of this system, a should be

in the interval [3.57 − 4].
Hénon Map A simple 2-D with quadratic non-linearity, Hénon system was the
first map to show strange attractor with a fractal structure [16]. The mathematical
description of this map is given as follows:

xi+1 = a + yi − x2i
yi+1 = bxi

where xi and yi are the state variables and a, b are the system controllers.
The obtained strange attractor of thismap, is shown in Fig. 11while the controllers

are a = 1.4 and b = 0.3.

Rene-LoziMapBy introducing the absolute value in the Hénon map, the Rene-Lozi
map used in [17] for stream cipher purpose, is described as follows:
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Fig. 9 Trajectory graph of
the logistic map

Fig. 10 Signal graph of the
logistic map

xi+1 = 1 + yi − a|xi |
yi+1 = bxi

where xi and yi are the state variables and a, b are the system controllers.
Similarly to the Hénon map, it has been shown that for a = 1.4 and b = 0.3, chaotic

behaviour of this map can appear (see Fig. 12).

Bernoulli MapUnlike all the discrete time maps, Bernoulli map is composed of two
piece-wise linear parts which are separated by a discontinue space of points [11] (see
Fig. 13).
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Fig. 11 Trajectory graph of the Hénon map

Fig. 12 Trajectory graph of the Rene-Lozi map
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Fig. 13 Trajectory graph of the Bernoulli map

Fig. 14 Signal graph of the Bernoulli map

Mathematically, the Bernoulli map is defined as follows:

xi+1 =
{
axi + 0.5 if x < 0

axi − 0.5 if x ≥ 0,

where xi is the state variable and a is the control parameter.
The chaotic status of this map is ensure for all the values of the parameter a inside
the interval ]1.4 − 2] (see Fig. 14).
SineMapThe sinemap is qualitatively similar to the logisticmap, and the superficial
similarity has resulted in a much deeper connection.

As indicated by its name, the sine map is defined by a sine function as follows:

xi+1 = a sin(πxi ), 0 ≤ xi ≤ 1, a > 0

where xi is the state variable and a is the system parameter. The projection graph
which proves the behaviour of this map is shown in Fig. 15.

Tent Map Regarding the slope of its mathematical function, tent map with only
one state variable, is considered as a slope of two (02) model. Without any control
parameter, the tent map is defined as follows:
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Fig. 15 Trajectory graph of
the sine map

Fig. 16 Trajectory graph of
the tent map

xi+1 =
{
2xi if 0 ≤ xi < 1/2

2(1 − xi ) if 1/2 ≤ xi ≤ 1

where xi is the state variable. Moreover, the trajectory graph of the tent map is shown
in Fig. 16.

All these systems have been used mainly for either generating random numbers,
cipher keys or chaotic signals. They differ from each other in terms of dimension,
control parameters and the purpose of use. In Table1 we summarize all these differ-
ences obtained regarding our study.
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Table 1 Summary of the chaotic systems: description and purpose of application

System References Type Dimension Controllers Purpose

Lorenz [8] Continuous 3-D 3 Image encryption

Van-der-Pol [9] Continuous 2-D 1 Random number generator

Chen [10] Continuous 3-D 3 Chaos signal generator

Lu [8] Continuous 3-D 3 Image encryption

Linz-Sprott [10] Continuous 3-D 1 Chaos signal generator

4-Wing [11] Continuous 4-D 11 Random number generator

New 3-D [12] Continuous 3-D 2 Random number generator

New 4-D [13] Continuous 4-D 4 Image processing

Logistic [14] Discrete 1-D 1 Random bit Generator

Hénon [16] Discrete 2-D 2 Encryption

Rene-Lozi [17] Discrete 2-D 2 Stream cipher

Bernoulli [11] Discrete 1-D 1 Random number generator

Sine [15] Discrete 1-D 1 Chaos signal generator

Tent [18] Discrete 1-D 0 Chaos signal generator

3 Hardware Implementations and Applications

FPGA-based prototyping is specifically geared toward meeting the design and verifi-
cation demands created by the complexities of low and constrained resources devices.
Moreover, FPGA-based prototyping allows designers to develop and test their sys-
tems and provides software developers early access to a fully functioning hardware
platform long before silicon is available. In order to be implemented on FPGA, the
continuous time systems need to be discredited numerically using some popular
methods such as Euler and Runge-Kutta (RK) methods. Euler’s method is a straight-
forwardmethod that estimates the next point based on the rate of change at the current
point and it is easy to code [19]. It is called also a single step method. While RK
methods are actually a family of schemes derived in a specific style. Higher order
accurate RKmethods are multi-stage because they involve slope calculations at mul-
tiple steps at or between the current and next discrete time values [20]. The next
value of the dependent variable is calculated by taking a weighted average of these
multiple stages based on a Taylor series approximation of the solution. The weights
in this weighted average are derived by solving non-linear algebraic equations which
are formed by requiring cancellation of error terms in the Taylor series. Developing
higher order RK methods is tedious and difficult without using symbolic tools for
computation. The most popular RK method is RK4 since it offers a good balance
between order of accuracy and cost of computation. RK4 is the highest order explicit
Runge-Kutta method that requires the same number of steps as the order of accuracy
(i.e. RK1 = 1 stage, RK2 = 2 stages, RK3 = 3 stages, RK4 = 4 stages, RK5 = 6
stages, . . .). Beyond fourth order the RK methods become relatively more expensive
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Table 2 Summary of the FPGA implementations

References FPGA technology Resources Chaos system Discretization

[12] Virtex-6 LUTs = 1070 Regs = 1196 New 3-D Euler

[9] Virtex-6 LUTs = 22674 Regs = 21,797 Van-der-Pol RK4

[14] Virtex-7 LUTs = 510 Regs = 120 Logistic No need

[17] Spartan-6 LUTs = 562 Regs = 386 Rene-Lozi No Need

[11] ZYNQ-XC7Z020 LUTs = 22,556 Regs = 264,26 Four-wing RK4

[16] Virtex-5 LUTs = 1496 Regs = 432 Hénon No Need

[8] Virtex-II LUTs = 2490 Regs = 1316 Lorenz/Lu RK-4

[22] Virtex-5 LUTs = 2799 Regs = 1722 Logistic No Need

[23] Zynq-7000 LUTs = 856 Regs = 521 Hénon No Need

[24] Stratix-IV LUTs = 49,005 Regs = 611 New 3-D Euler

to compute. Among all the studied proposals, we have synthesised a brief comparison
that includes mainly the used FPGA technology and the consumed resources. Table2
summarizes the difference between different proposals regarding the chosen system
as well as the resource consumption. However, we found that in the single-precision
and the double-precision operations, there aremore than 10−6 differences in less than
100 iterations, and the difference reaches more than one digit after 1000 iterations
[21]. This is because the binary has a round-off error, so the binary cannot strictly
obey the commutative law or the distribution law in floating-point operations.

4 Conclusion

In this paper, we discuss several proposals about chaos-based cryptosystem and
pseudo-random number generator (PRNG). Moreover, topology and architecture of
the proposed chaos systems are detailed. Finally, in order to show the more suit-
able system for encryption and secure communication, a synthesis comparison is
presented and considered.
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