
Dynamic Localized Autonomous Chaotic
Orbital Patterns
from Rotation-Translation Sequences

Bernd Binder

Abstract Consider an ordered sequence of repeated operations given by a distance-
dependent rotation followed by a translation. Operating this sequence with special
parameters and initial conditions provides for characteristic spatial density patterns
in the plane. In this work we introduce an additional orbital rotation and find local
chaotic orbital patterns and attractors in the plane. There are two ways to form a local
density from discrete long-range jumps: either a jump-back boundary condition or
rotating the jump direction. We focus on real time simulations, where the chaotic
evolution and vivid dynamics (the live cycles of orbitals) with characteristic numbers
or stability conditions is manifest. Ring bifurcations, stable and unstable chaotic
orbital patterns or solitons emerge dynamically with start conditions and without any
“hard” additional boundary or radial back-jump-condition. We show some typical
orbital patterns and suggest a method of categorization.
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1 Introduction

Repeating a discrete sequence of rotation—translation—reflection operations can
provide for a wide range of interesting and very complex pattern emerging from
chaotic jumps, see Skiadas [1–3]. Counterintuitively, discrete long-range jumps often
follow a continuous type of flow pattern, e.g. in [3] very similar to v. Kármán Streets,
see Fig. 1.

To get a special pattern requires adjusting the rotation strength parameter and
eventually a boundary distance condition parallel to the jump direction. We found
that the correspondent pattern building process can be assigned to small nonlinear
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Fig. 1 Skiadas type v. Kármán Streets with rotation parameter c1 = π , power exponent p1 = −2,
reflection m = 2, and long jump back (red arrow)

geometric (phase) shifts arising in the rotation-translation sequence on every loop
Binder [4, 5]. Applying this nonlinear concept it is possible to generate a broad
range of patterns, including periodic structures like waves, circles, saw-tooth or
point-like discrete geometries by desktop computer simulations. The model can be
generalized to multiple rotation-translation sequences on orthogonal rotation axes in
higher dimensions Binder [5].

In this work we add to the basic rotation-translation-reflection model an extra
orbital rotation orthogonal to the jump direction and wonder, if we can generate in
these ways structures on closed orbits. This means, we add another rotation around
the existing singularity (at the origin) and look for orbital structures. As a result,
we find chaotic periodic structures emerging on the orbit without any additional
constraint like a jump-back condition limit. These dynamical structures are more or
less stable and show an internal dynamics sometimes like a vivid entity. In this paper
we point to some interesting patterns/simulations and try to make a categorization
according to boundary conditions and characteristic parameter.

2 The Basic Operation Sequence

In the plane the chaotic model is based on a discrete iteration sequence of the polar
vector

�r =
(
x
y

)
. (1)

Its polar coordinates are given by the radius r = |�r | and polar angle/direction ϕ,
where

x = r sin ϕ; r2 = x2 + y2; ϕ = arctan 2(x, y). (2)

The iteration will be given by an ordered sequence composed by the two or three
operations given by a polar rotation R and non-radial translation T and eventually
a radial inversion I. The vector coordinate evolves in successive operations within
one iteration sequence with numbering t → t + 1 according to

�rt → �rR → �rT → �rI = �rt+1



Dynamic Localized Autonomous Chaotic Orbital … 47

by the following relations:

I. A radius dependent polar/central rotation including reflection

�rR = R(�r ,�φ). (3)

with rotation angle�φ in (3) composed by the following rotation and reflection
components

�φ = �φ1 + �φ2 (4)

given by:

1. �φ1 in (4) is the Skiadas type rotation angle that has a power-law radial
distance dependence with exponent p1 < 0

�φ1 = c1r
p1 , (5)

2. �φ2 in (4) generalizes the reflection given by the difference σ − ϕ

multiplied by a reflection mode m

�φ2 = m(σ − ϕ), (6)

where m = 2 is a reflection to the opposite side with respect to the initial
polar angle ϕ in the co-rotating frame. In our special case, the global
direction σ in (6) sums up with a constant orbital rotation c0 eventually
driven by a radial power-law c2r p2

σ = σt = σt−1 + c0 + c2r
p2 . (7)

The total rotation is with in (4)–(7) given by

�φ = c1r
p1 + m(σ − ϕ), (8)

and the rotation in (3) provides for the new orientation angle

ϕR = ϕ + �φ. (9)

II. The non-radial translation �rT = T(�rR, ϕ,�r)=T
(
�rR,

−→
�r

)
of the rotated �rR

by a translation shift
−→
�r

�rT = T
(
�rR,

−→
�r

)
= �rR + −→

�r (10)
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in the initial ϕ—direction (and not in the actual ϕR—direction of (9)) where
the polar component of the translation in (10) are given by

−→
�r = ±

(
�x
�y

)
= ±

∣∣∣−→�r
∣∣∣
(
cos
sin

)
= c3r

p3

(
cosϕ

sin ϕ

)
, (11)

Equation (11) generalizes the usual “jump” in x—direction [1–3], where

the unit jump has
∣∣∣−→�r

∣∣∣ = 1 or always c3 = ±1 with p3 = 0. In this paper

we will consider for simplicity only unit jumps and in Chap. 7 negative jumps
with c3 = −1.

III. Finally there could be an additional inversion operation with respect to the
origin

�rI = I(�rT ) = �rT /|�rT |2, (12)

with invariant direction angle but inverse length to get a rotation-translation-
inversion sequence. This inversion could also be used as a method to jump
back near to the rotation singularity.

3 Categories of Jumping Patterns

Without orbital rotation the jumps would only go in one direction (usually the x-
direction) and disappear to infinity. There are two ways to form a local density: either
a jump-back boundary condition or rotating the jump direction. The v. Kármán Street
pattern in Figs. 1 and 2 and the typical 2d wave pattern on the plane in Fig. 3 have
a jump-back distance condition in the x-direction, which means, if the distance to
the origin in jump direction exceeds a limit, a jump back near to the origin follows
(Figs. 4 and 5).

With a new extra orbital rotation orthogonal to the jump direction we get local
chaotic patterns without any orbital conditions (no jump condition) similar to the
orbital solutions we know from quantum mechanics. We will call them “Localized
Autonomous Chaotic Orbital Patterns” or LACOP, where we get many interesting
orbital structures for integral p1, p2,m. It makes sense to group the jumping patterns
according to the boundary conditions, where we have identified five categories given
by:

1. random starts condition: long jump back (red arrow) randomly near to center,
if distance or number of jumps exceeds a limit (see examples in Figs. 1, 2, 6
and 7).

2. periodic boundary condition: a defined long jump back to the back side, if
distance exceeds a limit Rmax, see Fig. 3.

3. inversion condition: inversion operation �r ′ = �r/r2 if distance r exceeds a limit
Rmax, see (12).
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Fig. 2 Long jump back with 6 arm-symmetric v. Kármán Street pattern, c2 = 2π/6, with m = 2,
c1 = π, p1 = −2, and p2 = 0

Fig. 3 Periodic boundary
jump back conditions
producing waves, where
p1 < 0, p2 = 0, m = 2

Fig. 4 p1 = p2 −1 with p2 = 2, left: LACOP withm = 1, right: random starts withm = 2 dipole
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Fig. 5 LACOP with regular orbital structure, examples of patterns with m = 0, p1 = 0, p2 = −1,
p3 = 0.

Fig. 6 Radial rays intersecting spirals according to (13) and (14), left: m = 1, c3 = −1, p1 = 0,
p2 = 1, M > 100, J = 0.5, right: m = 1, c3 = 1, p1 = −2, p2 = 0, M = 5, J = 0.5

Fig. 7 Linear rays for m = 1, c3 = −1, p1 = 0, p2 = 1 left and mid M = 3, right M = 13, g =
0.001



Dynamic Localized Autonomous Chaotic Orbital … 51

4. no boundary condition: rotated jumps around the center according to orbital
quantum numbers and symmetries producing LACOP.

5. parameter conditions: relating the two parameter c1, c2 can define a family
of patterns, e.g., if we define a small isotropic geometric phase shift gap
g = 1/N � 1 and relating the coefficients via the geometric jumping gap
g geometrically to the rotation-translation parameter according to

c1 = arccos(1 − g), c2 = 2π Jg. (13)

In this case we get with = 1, 2, 3 . . . = 1/g, c3 = −1, p1 = 0, p2 = 1 special
radial conditions like spirals intersected radial rays, see Figs. 6 and 7 with random
starts near to the center (condition 1).

4 Physics Relevance

It is interesting comparing these structures to Quantum Electrodynamic and spin
symmetries. The parameter conditions categories 5 and 6 of Chap. 3 can be combined
with condition categories 1, 2, 3, 4, where p2 = −1 with m—pole provides for
multipole type orbital ring clouds and field structures:

5 Simple m = 0 LACOP

Both regular and highly non-linear or chaotic are the m = 0 patterns in a wide
parameter range, see Fig. 5.

6 Monopole m = 1 Negative Jumps c3 = −1 with Random
Start Near to Center

Both, highly chaotic and regular are them = 1, c3 = −1 patterns in awide parameter
range, see Figs. 6 and 7, where the geometric gap condition in (13) produces radial
rays intersecting spirals with random starts. It is not surprising to get Fresnel Charge
structures in Fig. 6 for p2 = 1, since a Fresnel spiral has an inherent spiraling angular
structure with ϕ ∝ ∑

σ ∝ r p2+1 = r2.
With a second constraint between the two parameters c1, c2 in addition to (13)

given by the linear relation

Mc1 = 2π J − c2, (14)
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we get fixed points for the parameters recovering the magic angle condition Mc1 =
±Jcos(c1) Binder [5] with charge J and discrete points solutions, where spirals
intersect for m = 1 rays with center offset, see Figs. 6 and 7.

7 More Complex Vivid m = 2 LACOP

Very interesting and exciting is the chaotic dynamics of the m = 2 LACOP orbitals,
see Fig. 8 and some mixed examples in Fig. 9. There is in most cases no static or
stationary solution, since the orbitals often show a chaotic variation in the orientation
or orbital shape. Therefore, a stable LACOP should be properly initialized; usually
by an high enough orbital rotation parameter c2 (spin, energy) while increasing the
m-parameter from 1 to 2. In simulations the solutions (recorded as videos) appear to
be like vivid orbitals with inherent chaotic dynamics especially in the substructure
of orbital rings:

Fig. 8 Vivid pulsating LACOP with different orbital structure expanding and contracting (the
two examples are snapshots from the same LACOP) with m = 2, p1 = −2, p2 = 0, p3 = 0,
c1 ≈ −0.02035π , c2 ≈ 1.0021π

Fig. 9 Typical chaotic LACOPs with a core and a hole in the center p1 < p2, m > 0
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Fig. 10 Radial ring orbit bifurcation p1 = −1, m = 1, left: 4th bifurcation with 16 orbits where
c1 ∼= 1.657π , right: chaos starting at c1 ∼= 1.65π

8 Orbital Bifurcations for m = 1 LACOP

Under special conditions, the radial distribution of orbits shows a bifurcation tree,
see Fig. 10.

9 Conclusion

The resulting patterns often show a localized ring shape with several mixed orbits in
a kind of hydrodynamic-type orbital shelf flow and an empty region or hole at the
center.m—poles or reflection modes with higherm showmore complex and instable
pattern. A stable form must be initialized; otherwise the pattern collapses or expands
to infinity. The emerging LACOP solitons or fixed point solutions are having always
characteristic.

• special parameter m, ci , pi , where usually p1 ≤ 0, p2 and p3 ≥ 0, see Table 1.
• nonlinear structure, chaotic dynamics, bifurcations, and fluctuations
• radial and orbital wave numbers
• radial and orbital symmetries
• geometric phase conditions
• fixed point sets (i.e., two magic conditions (13) and (14) with numbers J, M)

Finally, we propose that this computer experiments show some relevance to
quantum physical systems since we have

• a wave attractor showing quantization effects in terms of rotational units,
• a quantization of monopole and multipole charges,
• a basic non-zero quantum spin in the two main operators (rotation-translation,

non-commutative) with characteristic geometric phase shifts,
• point-like local events with emerging global wave-like probabilistic patterns.
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Table 1 Small LACOP exponent combinations

“Jump back” needed? p1 p2 p3 m c3

Yes −2 0 0 >0 1

No −2 0 0 >0 1

No −1 1 0 >−1 1

No −1 2 0 >1 1

No −1 2 1 >0 1

No 0 1 0 1 −1

No 0 1 0 >1 1

No 0 2 0 >1 1

There will be videos of simulations available on the internet with title “Dynamic
Autonomous Chaotic Orbital Patterns” or tag “#DACOPSimulation”.
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