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Abstract This paper is devoted to the analysis of calculation methods for solv-
ing fractional chaotic systems and the impact of these different approaches on
the behavior of the fractional chaotic system. Two widely used time domain frac-
tional differential equations solving approaches are discussed, the fractional ABM
corrector-predictor method based on Caputo fractional derivative definition, and the
long memory calculation approach based on Grunwald fractional derivative. These
numerical solutions calculation methods are employed to depict the phase portrait
of a class of commensurate fractional chaotic systems. The Lyapunov exponent and
bifurcation diagrams of the systems over various fractional orders and parameters
are illustrated to detect the impact on the dynamics of the chaotic system applying
different calculation approaches.

Keywords Fractional calculus · Numerical solution · Fractional Chaotic system ·
Non linear dynamics

1 Introduction

Chaos is a random-like behavior exhibited by many nonlinear dynamic systems.
The very first proponent of this topic can be dated back to 1880 while the three
body problem was studied [1]. Eighty years later, when Edward Lorenz worked on
weather prediction, the so-called ’Lorenz attractor’ was found [2]. By giving it a
description and a poetic name of ’butterfly effect’, the gate of the mathematical and
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scientific world in Chaos was opened. Since then, many researchers have tried to
uncover the deterministic laws behind the apparently random states of disorder of
different chaotic systems.

One of the characteristics of the chaotic system is that it is very sensitive to the
initial conditions as described by the butterfly effect. This sensitivity can bemeasured
by Lyapunov Exponent(LE) which calculates the rate of exponential divergence
of trajectories starting from two close initial conditions. This characteristic also
contributes to the application of chaotic systems in many domains of science and
engineering, such as biology [3], economics [4], finance [5], cryptography [6, 7] and
etc.

In themeantime, fractional calculus is considered as the generalization of classical
integer-order integration and differentiation operators to real, or complex orders [8].
Many mathematicians have discussed the fractional calculus since 1695 by introduc-
ing differentmathematical characterisations (definitions) for fractional derivative and
integration. In many cases, these characterisations are equivalent if the initial con-
ditions are ad hoc [9], and the most well known three are Rienmann-Liouville(RL),
Grunwald-Letnikov(GL), and Caputo characterisations.

The analysis and discussion of fractional calculus remained purely in the domain
of mathematics for centuries. It was not until the 1980s that the application of frac-
tional calculus in the domain of science and engineering has started to be studied and
explored. Due to the memory effect possessed by fractional calculus, it is considered
to be suitable to model many real-life systems. After years of research, the fractional
differential equations have now been used in diverse disciplines like physics, biology,
economics, etc. [10, 11].

The fractional chaotic system also attracts a lot of attention. The difficulties for
this research owes to the intricate geometric interpretation of fractional derivatives
[12] and the fact that there exist, as mentioned above, different definitions for frac-
tional derivatives. One basically considers continuous systems, and uses numerical
methods to approximate the solution. In the case of a fractional system, the discrete
approximating system may inherit the chaotic behaviour of the initial continuous
system, but this relationship is somehow complex. What adds to the intricacy is that
the chaotic behavior of the approximating can be different for different numerical
methods employed to solve the fractional differential equations [13]. Therefore, the
understanding of the impact on the chaoticity of the system applying one or another
numerical calculation approaches is of great importance, in order to choose the most
appropriate one for a given application.

In the following, two numerical calculation methods under GL and Caputo char-
acterisation for fractional differential equations are recalled. Then, we employ both
methods to obtain the states of two fractional chaotic systems extended from classical
integer order chaotic system. The impact on the chaoticity of the systems applying the
two approaches has been analyzed in terms of LE and from the aspect of bifurcation
diagram and time responses.
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2 Preliminaries on Fractional Calculus and Fractional
Systems

In this section, some preliminaries on fractional calculus and fractional systems are
introduced to give a rough idea on the topic. The widely-accepted stability criteria
for a commensurate fractional system is also illustrated.

2.1 Fractional Calculus

As mentioned before, the fractional calculus studies the fractional derivative and
integral which can be considered as the extension of classical integer order differen-
tiation and integration to real or complex orders. In the long history of the study of
fractional calculus, many mathematicians have contributed and introduced different
characterisations(referred as ‘definitions’ in many papers) towards the topic. Here
after, we give two well-known definitions Grünwald-Letnikov (GL) and Caputo def-
initions [14, 15].

The fractional derivatives under GL characterisation can be writen as

aD
α
t f (t) = lim

h→0

1

hα
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h ]∑
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The Caputo type fractional derivative holds the form as following,

c
a D

α
t f (t) = 1

Γ (n − α)

t∫

a

f (n)(τ )

(t − τ)α−n+1
dτ, for n − 1 < α < n (4)

where α denotes the fractional derivative order; a and t are the bounds for the oper-
ation; n is the smallest integer greater than α; Γ (.) is the Euler Gamma function in
(3); and f (n)(t) is the n-th derivative of f (t).
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The Caputo type fractional derivative is often used for engineering application
since the fractional differential equations with this type of derivative can provide the
applied problem with an interpretable initial condition.

2.2 Fractional System

A fractional system is a dynamic system which can be modeled by fractional differ-
ential equations [16]. A general form of fractional system is as follows,

0D
αi
t xi (t) = fi (x1 (t) , x2 (t) , ..., xn (t) , t)

xi (0) = ci , i = 1, 2, ..., n.
(5)

In (5), xi (0)(i = 1, 2, ...n) denotes the initial conditions for each component con-
stituting the state vectors; αi (i = 1, 2, ...n) is the fractional derivative order for i-th
differential equations consisting the system, and fi is a linear or non-linear function.

The equilibrium points of system (5) can be obtained by solving the equation
fi (x) = 0(i = 1, 2, ..., n). If a commensurate system with αi = α, i = 1, 2, ..., n is
considered, then, according to the stability theorem defined in [17], the equilibrium
points are locally asymptotically stable if the eigenvalue of the Jacobian matrix of
system (5) satisfies the following equation evaluated at equilibria.

|arg (eig (J))| = |arg (λi )| > α
π

2
, i = 1, 2, ..., n (6)

where J denotes the Jacobian matrix of (5), λi (i = 1, 2, ...n) are its eigenvalues.

3 Numerical Calculation Methods for Fractional
Differential Equations

In this section, two numerical solutions calculationmethods for fractional differential
equations are introduced. The methods are based on Grünwald-Letnikov and Caputo
fractional derivative characterisations.

3.1 Grünwald-Letnikov Calculation Method

The explicit numerical approximation of q-th derivative under GL characterisation
at the points kh, (h = 1, 2, ...) is expressed as follows [14]
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(k−Lm )/h D
α
tk f (t) ≈ h−α

k∑

j=0

(−1) j
(

α

j

)
f (tk− j ). (7)

In expression (7), Lm is the memory length; tk = kh, where h is the calculation time
step; the binomial coefficient (−1) j

(
α

j

)
can be denoted as c(α)

j ( j = 0, 1, ...) which is
expressed using the following expression [18],

c(α)
0 = 1, c(α)

j =
(
1 − 1 + α

j

)
c(α)
j−1. (8)

Thus, the general numerical solution of the fractional differential equation described
by (9) can be expressed as given in (10).

aD
α
t y(t) = f (y(t), t) (9)

y(tk) = f (y(tk), tk)h
α −

k∑

j=ν

c(α)
j y(tk− j )) (10)

The sum in (10) stands for the memory term. If a ’long memory effect’ is considered,
then the lower index ν = 1 for all k, otherwiseν = 1 for k < (Lm/h) andν = k − Lm

for k > (Lm/h).

3.2 Fractional ABM Corrector-Predictor Method

The fractional ABM corrector-predictor method is another widely used time domain
numerical calculation method in the domain of engineering. It is a generalization of
the classical Adams-Bashforth-Moulton integrator which is used for the numerical
calculation of classical first order problem.

From the analytical point of view, the fractional differential equations underCaputo
characterization with initial conditions yk(0) = yk0 , k = 0, 1, 2...m − 1 where m :=
�α�, is equivalent to Volterra integral equation expressed as follows,

y(x) =
�α�−1∑

k=0

y(k)
0

xk

k! + 1

Γ (α)

x∫

0

(x − t)α−1 f (t, y(t))dt (11)

The algorithm is developed on a uniform grid {tn = nh : n = 0, 1, ...N }. The basic
idea of the algorithm is to obtain the approximation of the latter point on the grid
from the former point. Detailed formula derivation for the algorithm can be found
in [19]. Here, we only give out the derived equations for the next states values in
(12)–(15).
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b j,n+1 f (t j , yh(t j )). (13)

a j,n+1 =

⎧
⎪⎨

⎪⎩

nα+1 − (n − α)(n + 1)α, if j = 0,

(n − j + 2)α+1 + (n − j)α+1 − 2(n − j + 1)α+1, if 1 ≤ j ≤ n,

1, if j = n + 1.
(14)

b j,n+1 = hα

α
((n + 1 − j)α − (n − j)α) (15)

In the above equations, yh(tn+1) stands for the next state, yPh (tn+1) denotes the pre-
dictor value for the next state, a and b are coefficients.

4 Fractional Chaotic Chen and Lu Systems

4.1 Fractional Chaotic Chen Systems

The system equation for fractional Chen system can be expressed as following[20],

fc (x) =
⎧
⎨

⎩

Dαc x1 (t) = ac (x2 (t) − x1 (t))
Dαc x2 (t) = (cc − ac) x1 (t) − x1 (t) x3 (t) + ccx2 (t)
Dαc x3 (t) = x1 (t) x2 (t) − bcx3 (t)

(16)

In the equation, Dαc denotes the fractional derivative with order αc, (ac, bc, cc) are
the parameters of the system. The system is an extension from integer order chaotic
Chen system studied in [21].

The equilibria of the system can be obtained through the same way as its original
integer order system, by setting the right-hand side system equation equal to zero
fc (x∗) = 0 as given below,

⎧
⎨

⎩

ac (x2 (t) − x1 (t)) = 0
(cc − ac) x1 (t) − x1 (t) x3 (t) + ccx2 (t) = 0
x1 (t) x2 (t) − bcx3 (t) = 0

(17)
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The singularity of the equilibrium points can also be acquired through the classical
method as given below, by evaluating the eigenvalue of the jacobian matrix of the
system at equilibrium points.

det (λcI−Jc) =
⎡

⎣
λc + ac −ac 0

−cl + al + x∗
3 λc − cc x∗

1−x∗
2 −x∗

1 λc + bc

⎤

⎦ = 0 (18)

Jc in (18) represents the Jacobian matrix of the system equation, I is the identity
matrix, λc denotes the eigenvalue, and (x∗

1 , x
∗
2 , x

∗
3 ) stands for the equilibrium point.

The singularity of the three equilibrium points of fractional Chen system for sys-
tem parameters (ac, bc, cc) = (35, 3, 28) can be obtained through above analytical
expressions and are given in Table 1.

4.2 Fractional Chaotic Lu System

The system equation for fractional chaotic Lu system extended from integer order
Lu system can be described as follows [22],

fl (x) =
⎧
⎨

⎩

Dαl x1 (t) = al (x2 (t) − x1 (t))
Dαl x2 (t) = −x1 (t) x3 (t) + cl x2 (t)
Dαl x3 (t) = x1 (t) x2 (t) − bl x3 (t)

(19)

where Dαl denotes the fractional derivative with order αl , al , bl , and cl are the
parameters of the system. The equilibrium points of the system can be acquired
calculating the solutions of the following system of equations,

⎧
⎨

⎩

al (x2 (t) − x1 (t)) = 0
−x1 (t) x3 (t) x1 (t) + cl x2 (t) = 0
x1 (t) x2 (t) − bl x3 (t) = 0

(20)

The singularity of the equilibria can be obtained the sameway as discussed previously
for the fractional Chen system through the following identities,

det (λlI−Jl) =
⎡

⎣
λl + al −al 0
x∗
3 λl − cc x∗

1−x∗
2 −x∗

1 λl + bl

⎤

⎦ = 0 (21)

where Jl in (21) represents the Jacobian matrix of the fractional Lu system, λl

denotes the eigenvalue, and (x∗
1 , x

∗
2 , x

∗
3 ) stands for the equilibrium point. When

the parameters of the system is set to (ac, bc, cc) = (36, 3, 20), three equilibrium
points E∗

1 = (0, 0, 0), E∗
2 = (7.460, 7.460, 20) and E∗

3 = (−7.460,−7.460, 20) can
be obtained applying (20). The singularity of the equilibria is also given in Table 1.
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Table 1 Fractional Chen and Lu systems’ equilibria and their singularity

System Equilibrium Eigenvalue Singularity

λ1 λ2, λ3

Fractional
Chen system

(0, 0, 0) – 30.8359 23.8359, – 3 Saddle

(−7.9379, −7.9379, 21) – 18.4280 4.2140±14.8846i Saddle focus

(7.9379, 7.9379, 21) – 18.4280 4.2140±14.8846i Saddle focus

Fractional
Lü system

(0, 0, 0) −36 20, −3 Saddle

(−7.460, −7.460, 20) −22.6516 1.8258 ±
13.6887i

Saddle focus

(7.460, 7.460, 20) −18.4280 1.8258 ±
13.6887i

Saddle focus

5 Solutions for the Chaotic Systems Applying Different
Approaches

In this section, the solutions for fractional Chen and Lu solutions are obtained apply-
ing both GL method and fractional ABM corrector-predictor method discussed in
Sect. 3. The impact of the two approaches on the chaotic behavior of the systems are
also discussed.

5.1 Chaotic System Applying GL Method

With the numerical solution of fractional differential equation calculated under GL
method derived as in (10), the calculation for the states of fractional Chen system and
fractional Lu system (expression (16) and (19)) can be expressed by the following
identities (22) and (23), respectively.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1(n) = (ac(x2(n) − x1(n − 1)))hαc −
n∑
j=ν

c(αc)j x1(n − j)

x2(n) = ((cc − ac)x1(n) − x1(n)x3(n − 1) + ccx3(n − 1))hαc −
n∑
j=ν

c(αc)j x2(n − j)

x3(n) = (x1(n)x2(n) − bcx3(n − 1))hαc −
n∑
j=ν

c(αc)j x3(n − j)

(22)
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1(n) = (al(x2(n − 1) − x1(n − 1)))hαl −
n∑
j=ν

c(αl )
j x1(n − j)

x2(n) = (−x1(n)x3(n − 1) + cl x2(n − 1))hαl −
n∑
j=ν

c(αl )
j x2(n − j)

x3(n) = (x1(n)x2(n) − bl x3(n − 1))hαl −
n∑
j=ν

c(αl )
j x3(n − j)

(23)

To be mentioned is that in our work, the ’long memory effect’ is adopted applying
GL method which means that the number ν in (22) and (23) is equal to 1. The time
step h in the above equations is set to a fixed value 0.001.

We plotted the phase portraits of the two systems with fractional orders αc = 0.9
and αl = 0.95 in Fig. 1a and b, respectively. The parameters and initial conditions
for Chen system are (35, 3, 28) and (−9,−5, 14). Those of Lu system are chosen to
be (36, 3, 20) and (0.2, 0.5, 0.3).

(a) GL method Chen system (αc = 0.9) (b) GL method Lu system (αl = 0.95)

(c) GL method Chen system (αc = 0.9 (d) ABM method Lu system (αl = 0.95

Fig. 1 Phase portrait of fractional Chen and Lu systems characterized by GL and ABM method
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5.2 Chaotic Systems Applying ABM Corrector-Predictor
Approach

Based on the fractional ABM corrector-predictor numerical calculation approach
for the solution of fractional differential equations given in (12)–(15), the states of
fractional Chen system applyingABMpredictor corrector approach can be expressed
as follows,

Xc(n + 1) = Xc(0) + hαc

Γ (αc+2) fc(X
P
c (n + 1))

+ hαc

Γ (αc+2)

n∑
j=0

a j,n+1 fc (Xc ( j))
(24)

XP
c (n + 1) = Xc (0) + 1

Γ (αc)

n∑

j=0

b1j,n+1 fc (Xc ( j))

a j,n+1 =
⎧
⎨

⎩

nαc+1 − (n − αc)(n + 1)αc , if j = 0,
(n − j + 2)αc+1 + (n − j)αc+1 − 2(n − j + 1)αc+1, if1 ≤ j ≤ n,

1, if j = n + 1.

b j,l+1 = hαc

αc
((n + 1 − j)αc − (n − j)αc)

(25)
In the above expressions, Xc(n + 1), Xc(n) and XP

c (n + 1) are state vectors com-
posed of all the state components x1, x2, and x3; αc is the fractional order between
(0, 1); fc stands for the Chen system equations.

The formula for the calculationof the states of fractionalLu systemcanbeobtained
by substituting the state vectors, fractional order and system equations in (24)–(25)
with Xl , αl and fl where 0 < αl < 1. The phase portraits of the two systems acquired
employing the corrector-predictor approach are given in Fig. 1c and d, respectively.
The fractional orders, parameters and initial conditions are the same as those for the
GL method.

5.3 Impact on System Chaoticity with Chosen Methods

For thework in this section,we used the same parameters and initial conditions for the
two systems as adopted in the previous section, which are (ac, bc, cc) = (35, 3, 28),
Xc(0) = (−9,−5, 14); (al , bl , cl) = (36, 3, 20), Xl(0) = (0.2, 0.5, 0.3),
respectively. The time step h is set to 0.005. The MATLAB code [23] for ABM
corrector-predictor method and [24] is employed for the following simulation and
the calculation of LE.

According to the stability criteria introduced by the inequality (6) , the reference
[17] states that for a fractional system Dαx = f (x) to remain chaotic, a necessary
condition is keeping the eigenvalues λ in the unstable region, which gives the fol-
lowing equation for the fractional derivative order α.
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(a) Chen system with order 0.82 (b) Time response with order 0.9

(c) Chen system with order 0.83 (d) Time response with order 0.83

Fig. 2 Phase portrait and time response of Chen system at boundary fractional order values

α >
2

π
tan−1

( |Im(λ)|
Re(λ)

)
(26)

where λ denotes the eigenvalues of the Jacobian matrix of the system, α is the com-
mensurate fractional order. Therefore, for the given parameter values, the fractional
chaotic Chen system should have a fractional order αc greater than or equal to 0.8244.

In Fig. 2, we plot the phase portrait of fractional Chen system at boundary frac-
tional values 0.82 and 0.83 applying both GL and ABM corrector-predictor methods.
The time response of the last 2000 states obtained through both methods are also
given. The states calculated by GL method is in red and ABM corrector-predictor in
blue. It is not difficult to observe from Fig. 2a and c that with order 0.82 there are
only one red point in the figure, which indicates that the states stay at the same fixed
point applying GL method. Whereas for the applied ABM method(blue dots), they
appear to have the shape of the attractors. When the system order is equal to 0.83,
both methods display the shapes with attractors. This indicates that when applying
GL calculation method with long memory effect, the system’s dynamic behavior is
in accordance with the stability criteria given by equation (26). While the ABM cal-
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(a) Chen system GL method (b) Chen system ABM method

(c) Lu system GL method (d) Lu system ABM method

Fig. 3 LE and bifurcation results for Chen and Lu systems over different fractional derivatives
employing different methods (ac, bc, cc) = (35, 3, 28), (al , bl , cl ) = (36, 3, 20)

culation method applied in this paper provides the system with a smaller derivative
order for the system to be

The time response figures given by Fig. 2b and d confirm the founding. The blue
curve stands for the states obtain through ABM method and red for GL. It is clear
that for derivative order 0.82, the red attractors stays at the same value for the three
state vector components x1, x2 and x3, while the blue curves appear to be oscillating.

We also give the Lyapunov exponent and bifurcation diagrams over different
fractional orders of fractional Chen and Lu systems in Fig. 3. For each fractional
derivative orders, 104 states were generated and the LEs were calculated throughout
the iterations. The LE spectrum curves in 3a and 3b are obtained by combining
LE values of the last iteration for every evaluated order. The plots show that only
x1 component possesses LE value greater than 0 applying both methods. It can be
observed that applying ABM corrector-predictor approach, for the fractional Chen
system, the LE of x1 greater than 0 appears before order 0.53, whereas for GL
method, the LE exceeds 0 after fractional order of 0.8. The LEs for fractional Lu
system calculated using both methods show the similar results, with ABM method
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(a) Lu system GL method al LE results (b) Lu system ABM method al LE results

(c) Lu system GL method bl LE results (d) Lu system ABM method bl LE results

(e) Lu system GL method cl LE results (f) Lu system ABM method cl LE results

Fig. 4 LE and bifurcation results for Chen and Lu systems over different fractional parameters
employing different methods
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having a smaller chaotic fractional derivative value. This is in accordance with our
previous findings concerning the phase portrait and time response which draws to the
conclusion that GLmethod give amore accurate approximation of original fractional
system. Apart from this, from the y-coordinates of the bifurcation diagram where
the system is non-chaotic, it can be observed that the solution obtained using ABM
method stays at the equilibrium point as obtained through analytical analysis.

TheLEs results and bifurcation diagramover different parameters of the fractional
Lu system are also given in Fig. 4 to illustrate the dynamics possessed by the system.
We set the system fractional order fixed to 0.9. It can be observed that applying
different numerical calculation methods, the system dynamics is quite different. It is
worth mentioning that the results for different parameters are conducted by changing
one parameter at a time and fixing the other two unchanged.

6 Conclusion

In this paper, we recalled two numerical solutions calculation methods for fractional
differential equations adopting Grünward-Leinikov and Caputo characterization of
fractional derivative, respectively. Two fractional chaotic systems, fractional Chen
system and fractional Lu system are discussed and their discretized states were cal-
culated employing both methods. The results show that compared to the adopted
ABM corrector-predictor method, the GL approach with long memory effect pro-
vide the original fractional system with a better approximation in coherence with
the analytical studies. On the contrary, employing ABM method, the approximation
accuracy appears to be deteriorated. However, in terms of chaoticity, it has a greater
chaotic range for fractional derivatives.

References

1. H. Poincaré. Sur le problème des trois corps et les équations de la dynamique. Divergence des
séries de M. Lindstedt. Acta Mathematica 13(1–2): 1–270 (1890)

2. E.N. Lorenz, The predictability of hydrodynamic flow. Trans. New York Acad. Sci. 25(4),
409–432 (1963)

3. E. Liz, A. Ruiz-Herrera, Chaos in discrete structured population models. SIAM J. Appl. Dyn.
Syst. 11(4), 1200–1214 (2012)

4. C. Kyrtsou, W. Labys, Evidence for chaotic dependence between US inflation and commodity
prices. J. Macroecon. 28(1), 256–266 (2006)

5. J. Fernando, Applying the theory of chaos and a complex model of health to establish relations
among financial indicators. Procedia Computer Sci. 3, 982–986 (2011)

6. Z. Qiao, I. Taralova, S. El Assad, Efficient pseudo-chaotic number generator for cryptographic
applications. Int. J. Intell. Computing Res. 11, 1041–1048 (2020)

7. M. Babaei, A novel text and image encryption method based on chaos theory and DNA com-
puting. Nat. Comput. 12(1), 101–107 (2013)

8. I. Petráš, Fractional-Order Nonlinear Systems (Springer, Berlin, Heidelberg, 2011)



Fractional Chaotic System Solutions and Their Impact on Chaotic ... 535

9. K. Diethelm, The Analysis of Fractional Differential Equations (Springer, Berlin, Heidelberg,
2010)

10. F. Mainardi, Fractional Calculus and Waves Linear Viscoelasticity: An Introduction to Math-
ematical Models (Imperial College Press, London, UK, 2010)

11. V.E. Tarasov, V.V. Tarasova, Macroeconomic models with long dynamic memory: Fractional
calculus approach. Appl. Math. Comput. 338, 466–486 (2018)

12. T. Li and M. Yang et al., A novel image encryption algorithm based on a fractional-order
hyperchaotic system and DNA computing. Complexity 2017 (Special issue, 2017)

13. C. Yang, I. Taralova et al., Design of a fractional pseudo-chaotic random number generator.
Int. J. Chaotic Comput. 7(1), 166–178 (2021)

14. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)
15. M.Caputo, Linearmodels of dissipationwhoseQ is almost frequency independent-II. Geophys.

J. Int. 13(5), 529–539 (1967)
16. B.J. West, M. Bologna, P. Grigolini. Physics of Fractal Operators (Springer, New York, 2003),

pp. 235–270
17. M.S. Tavazoei, M. Haeri, A necessary condition for double scroll attractor existence in

fractional-order systems. Phys. Lett. A. 367, 102–113 (2007)
18. L. Dorcak. Numerical models for the simulation of the fractional-order control systems, in

UEF-04-94, The Academy of Sciences, Inst. of Experimental Phsic, Kosice, Slovakia (1994)
19. K. Diethelm, N.J. Ford, A. Freed, A predictor-corrector approach for the numerical solution of

fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)
20. J. Lu, G. Chen, A note on the fractional-order Chen system. Chaos, Solitons and Fractals. 27,

685–688 (2006)
21. J. Lu, G. Chen, A new chaotic attractor coined. Int. J. Bifurcat. Chaos 12, 659–661 (2002)
22. W.H. Deng, C.P. Li, Chaos synchronization of the fractional Lü system. Physica A. 353, 61–72
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