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Abstract In this work there is considered the method of producing the sequences of
pseudorandom numbers basing on solutions of congruences of two variables modulo
the power of prime number. The estimates of discrepant function of constructed
sequences of pseudorandom numbers have been obtained.

Keywords Pseudorandom numbers · Elliptic curve and Exponential sum ·
Discrepancy

1 Introduction

Following the revelation of public-key cryptography that arose at the last quarter
of twentieth century, in 1985 Nil Koblitz and Victor Miller have found that the
elements over the group of points from elliptic curve over finite field are able to
store the secrete information due to of complexity on addition operation. And it
would serve as motive to study the cryptography on elliptic curves. The sequences
of pseudorandom number at every time was being intrinsic part of cryptography,
and therefore for the last 20 years the theory of elliptic curves has application in
problem of generating of sequences of pseudorandom numbers. The useful survey
in this direction belongs to Shparlinskii [4].

In our paper we consider the algorithm of producing the sequences of pseudoran-
dom numbers from algebraic curves over the ring Zpm of residue classes of prime
power modulus. The according elements of such sequences accept the polynomial
representation over Zpm . We demonstrate this concept to construct the sequences of
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pseudorandom numbers of algebraic curves

y2 ≡ x3 + ax + b (mod pm)

and
ax3 + y3 ≡ 1 (mod pm).

The constructed sequences have the fixed period τ = pm−1 that can be grown as
for the growth of prime number p or factor m.

Notations. The letter p denotes a prime number, p ≥ 3. For n ∈ N the nota-
tions Zpm (accordingly, Z∗

pm ) denote the complete (accordingly, reduced) system of
residues modulo pm . We write (a, b) for notation a great common divisor of a and
b. For z ∈ Z, (z, p) = 1 let z′ or z−1 be the multiplicative inverse of a modulo
pm . We write νp(A) if pνp(A)|A, pνp(A)+1

� A. Landau symbol "O" is equivalent to
Vinogradov symbol "�". The notation f (x) � g(x) means that for x → ∞ the
inequality | f (x)| ≤ C · g(x) holds with arbitrary constant C . Through [x] we will
denote the integral part of real number x .

2 Auxiliary Results

Let E(Fp) be an elliptic curve defined overFp given by an affineWeierstraβ equation
of the form

Y 2 + (a1X + a3)Y = X3 + a2X
2 + a4X + a6,

where a1, a2, a3, a4, a6 ∈ Fp such that the partial derivations ∂F
∂X and ∂F

∂Y for the
function

F(X,Y ) = Y 2 + (a1X + a3)Y − X3 − a2X
2 − a4X − a6

do not become zero simultaneously at the points of the curve (x, y) ∈ E(Fp) over
the algebraic closure Fp of Fp.

For the case p > 3 the previous equation can be deduce to form

Y 2 = X3 + ax + b (1)

for some a, b ∈ Fp with 4a3 + 27b2 �= 0.
We recall that the set of points of curve E(Fp) together with point at infinity

O, relatively to a special operation ⊕, forms the abelian group Ep of order N (Ep)

which satisfies inequality

∣
∣N (Ep) − p − 1

∣
∣ ≤ 2p

1
2 .
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For a point Q ∈ E(Fp) we use x(Q), y(Q) to denote its coordinates, that is,
(x(Q), y(Q)).

For m > 1 we denote Ep(m) as the set of solutions (x, y) satisfying to the con-
gruence

y2 ≡ x3 + ax + b (mod pm) (2)

The set Ep(m) we will call the elliptic curve over the ring Zpm and N (Ep(m)) be a
number of solutions of (2) with condition (y, p) = 1.

Lemma 1 Let (x0, y0) be a solution of (2) with (y0, p) = 1 and m = 1. Then for
any integer t the congruence

y2(t) ≡ (x0 + pt)3 + a(x0 + pt) + b (mod pm) (3)

has just two incongruent solutions modulo pm for every positive m.

The assertion of this lemma follows from the fact that any solution (x0, y0) of
congruence (3)withm = 1we can grow to the solutions y1(t) = y(t), y2(t) = −y(t).

Denote by yi (t), i = 1, 2 the solution of congruence (3).

Lemma 2 Let p > 2 be a prime, m ≥ 3 be an integer, s =
[
p−1
p−2m

]

. There exist the

polynomial ϕ(t) ∈ Zpm [t] of degree s

ϕ(t) = φ0(x0) + pλ1φ1(x0)t + · · · + pλsφs(x0) · t s,

where (φi (x0), p) = 1, i = 0, 1, . . . , s, and λ1, λ2, . . . , λs ∈ N, moreover

λ j ≥ j
p − 2

p − 1
, j = 1, . . . , s.

such that
yi (t) = yi (0)ϕ(t) (mod pm), i = 1, 2,

and the points (x0 + pt, yi (t)), i = 1, 2, belong to the elliptic curves (2).

Proof Let (x0, y0) is the solution of (2) form = 1, (y0, p) = 1. For every t , 0 ≤ t ≤
pm−1 − 1, we denote y1(t), y2(t) as two different solutions of the congruence

y2(t) ≡ (x0 + pt)3 + a(x0 + pt) + b (mod pm).

Denote by x ′
0 the multiplicative inverse of x30 + ax0 + b, i.e.

x ′
0(x

3
0 + ax0 + b) ≡ 1 (mod pm).

Such solution exists since (y0, p) = 1.
Hence, we find that (3) is equivalent to
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y2(t) ≡ (x30 + ax0 + b)(1 + (3ptx20 + 3p2t2x0 + p3t3)x ′
0).

Let U 2(ω) = (1 + (3ωx20 + 3ω2x0 + ω3)x ′
0).

Expanding the function U (ω) to series in powers of ω

U (ω) =
∞

∑

i=0

Xi (x0, x
′
0)ω

i

and its logarithmic derivation

d logU (ω)

dω
= U ′(ω)

U (ω)
=

∑∞
i=1 i Xi (x0, x ′

0)ω
i−1

∑∞
i=0 Xi (x0, x ′

0)ω
i

gives the following recursion formulas for j = 2, 3, . . . :

X j+1 = − 2 j + 1

2( j + 1)
(3x20 x

′
0 + ax0)X j

− 3( j − 2)

j + 1
x0x

′
0X j−1

− 2 j − 7

2( j + 1)
x ′
0X j−2,

X0 = 1,

X1 = 1

2
(3x20 x

′
0 + ax0),

X2 = 1

2
3x0x

′
0 − 1

8
(3x20 x

′
0 + ax ′

0)
2.

(4)

Let show that the formal p-adic series for U (pt) converges in p-adic metric and
modulo pm the congruence

U (pt) ≡ ϕ(t) (mod pm),

where
ϕ(t) = φ0(x0) + pλ1φ1(x0)t + · · · + pλsφs(x0) · t s, (5)

and ϕ j (x0) ∈ Z, λ j ∈ N and λ j ≥ m for j > s. holds.
In our reasoning we will use p-adic analysis by schema of Postnikova [3].
Let us introduce the variables Y j , Z j , j = 1, 2, . . . , s defined by the conditions
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Y1 = 0, Y2 = 1, Y3 = 1

2
(3x20 x

′
0 + ax ′

0),

Z1 = 0, Z2 = 0, Z3 = 1

and for j ≥ 4 Y j , Z j be determined by recursion formulas of type (4).
Let us consider determinants

Δ j =
∣
∣
∣
∣
∣
∣

X j−2 X j−1 X j

Y j−2 Y j−1 Y j

Z j−2 Z j−1 Z j

∣
∣
∣
∣
∣
∣

, j = 3, 4, . . . , s.

In particular, we have modulo pm

Δ3 = 1

2
(3x0x

′
0 + ax ′

0).

From this moment on, we suppose that −3a is the non-quadratic residue modulo
p. Therefore, we have

(x ′
0, p) = 1, (3x20 + a, p) = 1.

(since otherwise the congruence x2 ≡ −3a (mod p) has the solution).
But then νp(Δ3) = 0.
Also for j ≥ 4 we easily obtain

Δ j = −2 j − 9

2 j
x ′
0Δ j−1

· · · = (−x ′
0)

j−s (2 j − 9)(2 j − 11) · · · 3 · 1 · (−1)

2 j−s j ( j − 1) · · · 4 Δ3

= (−x ′
0)

j−3 (2 j − 9)! · 6
22 j−7 j !( j − 4)!Δ3.

Let νp(X j p j ) = λ j , νp(Y j p j ) = μ j , νp(Z j p j ) = τ j .
Now let take out a common factor pmin (λ j−1,λ j ,λ j−2) from the first row of determi-

nant Δ j . From the second and third rows let do the same with pmin (μ j−1,μ j ,μ j−2) and
pmin (τ j−1,τ j ,τ j−2), respectively.

It easy prove that

λ j ≥ j
p − 2

p − 1
, μ j ≥ j

p − 2

p − 1
, τ j ≥ j

p − 2

p − 1
.

Now, taking into account the relation between Δ j and Δ3 we easily find



512 S. Varbanets and Y. Vorobyov

min (λ j , λ j−1, λ j−2) ≤ 3 j − 3 − 2( j − 2) p−2
p−1

+
∞∑

k=1

[
2 j−9
pk

]

−
∞∑

k=1

[
j
pk

]

−
∞∑

k=1

[
j−4
pk

]

.

Also take into account that [2x] ≤ 2[x] + 1 for x ≥ 0, and the quantity of nonzero

summand in sum
∑∞

k=1

[
2 j−9
pk

]

be at most 2 j−9
p <

2 j
p−1 .

Then we have

min (λ j , λ j−1, λ j−2) ≤ j + 1 + 4( j − 1)

p − 1
.

Bringing up the definition for ϕ(t) (5) we at once obtain the proof of Lemma 2. �

Corollary 1 In the conditions of Lemma 2 we obtain p-adic description of the solu-
tions of the congruence

y2 ≡ x3 + ax + b (mod pm)

in the form

x = x0 + pt, yi (t) = yi (0)(1 + A1 pt + A2 p
2t2 + A3 p

λ3 t3 + · · · ) ( (mod pm)),

where

λ1 = 1, λ2 = 2, λ3 ≥ 3, j = 3, 4, . . . ;
A0 = 1, A1 = 2−1(3x20 x

′
0 + ax ′

0), A2 = 3 · 2−1x0x
′
0 − 2−3(3x20 x

′
0 + ax ′

0)
2;

(Ai , p) = 1, i = 1, 2, 3, . . . .

(here 2−1 be the multiplicative inverse for 2 modulo pm).

Corollary 2 For the fixed x0, y0 ∈ Ep and yi (0), i = 1, 2 we have

yi (t1) ≡ yi (t2) (mod pm)

if and only if t1 ≡ t2 (mod pm−1). And hence, the sequences yi (t), t = 0, 1, . . . ,
pm−1 − 1 have the least period τ = pm−1 (here i = 1 or 2, y2(t) = −y1(t)). Thus
we obtain the family of different sequences {y(t)}, which define by selection of initial
point (x0, y0) on the curve Ep and by selection of index i ∈ {1, 2}.

Bellow we will show that the sequence of real numbers { y(t)pm }, t = 0, 1, . . .,

pm−1 − 1 be the sequence of real numbers from [0, 1) that may be considered as
the sequence of pseudorandom numbers passes the serial test on pseudorandomness.

Note that the same point (x0, y0) of elliptic curve Ep generate two sequences
yi (t) defined by Lemma 2, the selection of which defines by the values of yi (0) as
the solution of congruence
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y2 ≡ x3 + ax + b (mod pm).

If 0 < y(0) <
p
2 then yi (t) denotes by y1(t), otherwise we have y2(t).

Over constructed set of sequences {y(t)} we can define operation “*” by the
following way:

y′(t) ∗ y′′(t) = y′′′(t),

where y′′′(t) defines by sum of two points (x ′
0, y

′
0) and (x ′′

0 , y
′′
0 ) of elliptic curve Ep

(x ′
0, y

′
0) ⊕ (x ′′

0 , y
′′
0 )

and by Lemma 2, where 0 < y′′′(0) <
p
2 if y′(0) and y′′(0) simultaneously belong

to
[

0, p
2

]

or
[ p
2 , p

]

. Otherwise, y′′′(0) is selected from interval
[ p
2 , p

]

.
Similarly, we can construct the sequence {y(t)} same to the sequence fromLemma

2 produced by the congruence

y
 ≡ f (x) (mod pm),

where f (x) be the polynomial with integer coefficients of degree ≥ 3.
In particular, let see the congruence

ax3 + y3 ≡ 1 (mod pm). (6)

We will assume that p be the prime number of form 6k − 1.
Define by y(t) the solution of congruence

y3 ≡ 1 − a(x0 + pt)3 (mod pm). (7)

where (x0, y0) be the anyone solution of congruence

y3 ≡ 1 − ax3 (mod p).

with 1 − ax30 �≡ 0 (mod p). Every of such x0 uniquely define the respective y0. So,
the solution y(t) of congruence (7) defines uniquely.

Lemma 3 Let s =
[
p−1
p−2m

]

. There exists the polynomial of degree s

ϕ(t) = Φ0(x0) + pλ1Φ1(x0)t + · · · + pλsΦs(x0)t
s,

where (Φi (x0), p) = 1, i = 0, 1, . . . , s; λ1, . . . , λs are the natural numbers satisfy
the inequalities λ j ≥ j p−2

p−1 , such that

y(t) ≡ y(0)ϕ(t) (mod pm).
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The proof of this lemma passes simultaneously to proof of Lemma 2 and the respec-
tive coefficients Φ j (x0) define by recurrent relation

Φ j+1 = 3 j − 1

j + 1
ax20 x

′
0Φ j + 3 j − 5

j + 1
ax0x

′
0Φ j−1 + j − 3

j + 1
ax ′

0Φ j−2,

moreover,
Φ0 = 1, Φ1 = −ax20 x

′
0, Φ2 = −ax0x

′
0 − a2x40 x

′2
0 .

Here, x ′
0 is the multiplicative inverse modulo pm for 1 − ax30 .

3 Discrepancy

Let {xn} be the sequence of points from [0, 1). As characteristic property of equidis-
tribution of such sequences the following discrepant function DN is used

DN (x0, x2, . . . , xN−1) = DN := sup
Δ⊂[0,1)

∣
∣
∣
∣

AN (Δ)

N
− |Δ|

∣
∣
∣
∣
,

where AN (Δ) is the number of points among x0, x2, . . . , xN−1 falling into Δ, and
|Δ| denotes the length of Δ.

In the sameway there is defined the discrepancy for the sequence of s-dimensional
points Xn ⊂ [0, 1)s .

From definition of equidistribution of sequences of s-dimensional points we can
conclude that for D(s)

N → 0 with N → ∞we can obtain better uniformly distributed
sequences {X (s)

n }.
Every sequence {xn}, xn ∈ [0, 1) defines the sequence of s-dimensional points

X (s)
n , where X (s)

n = (xn, xn+1, . . . , xn+s−1).
It is clear that for every equidistributed sequence {xn}, which elements are statis-

tically independent (unpredictable) for every integer s ∈ N, the according sequence
{X (s)

n } = {xn, xn+1, . . . , xn+s−1} be the equidistributed sequence.
We say that the sequence {xn}, xn ∈ [0, 1) passes s-dimensional test on pseu-

dorandomness if every sequence {X (s)
n }, s = 1, 2, . . . , s be the equidistributed on

s-dimensional unit interval [0, 1)s .
To estimate the s-dimensional discrepant function of sequence {X (s)

n } the follow-
ing lemmas is used.

For integers s ≥ 1 and q ≥ 2, let Cs(q) be the set of all nonzero lattice points
h = (h1, . . . , hs) ∈ Zs with − q

2 < h j ≤ q
2 for 1 ≤ j ≤ s. Define for h ∈ Cs(q)
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r(h, q) =
{
1 i f h = 0,
q sin (π

|h|
q ) i f h �= 0,

r(h, q) =
s∏

j=1
r(h j , q)

(8)

Lemma 4 Let N ≥ 1 and q ≥ 2 be integers. Suppose that y0, y1, . . . , yN−1 ∈ Zs
q .

Then the discrepancy of the points tk = yk
q ∈ [0, 1)s , k = 0, 1, . . . , N − 1, satisfies

DN (t0, t1, . . . , tN−1) ≤ s

q
+ 1

N

∑

h∈Cs (q)

1

r(h, q)

∣
∣
∣
∣
∣

N−1
∑

k=0

e(h · tk)
∣
∣
∣
∣
∣

(9)

(Proof of this lemma see in [1],[2]).

From the last statement it follows the classical statement of Turan-Erdös-Koksma
inequality.

Lemma 5 Let T ≥ N ≥ 1 and q ≥ 2 be integers, yk ∈ {0, 1, . . . , q − 1}s for k =
0, 1, . . . , N − 1; tk = yk

q ∈ [0, 1)s . Then

DN (t0, t1, . . . , tN−1) ≤ s

q
+ 1

N

∑

h∈Cs (q)

∑

h0∈(− T
2 , T2 ]

1

r(h, q)r(h0, T )

×
∣
∣
∣
∣
∣

T
∑

k=0

e(h · tk + kh0
T

)

∣
∣
∣
∣
∣

(10)

This assertion follows fromLemma4 and froman estimate of incomplete exponential
sum through complete exponential sum.

Lemma 6 (Niederreiter, [1]). Let q ≥ 2, T > 1 be integers. Then

∑

h∈Cs (q)
h≡0 ( (mod ) v)

r(h, q) <
1

v

(
2

π
log q + 7

5

)s

for any divisor v of q with 1 ≤ v < q, and

∑

h0∈(− T
2 , T2 ]

1

r(h0, T )
≤ 2

π
log T + 7

5
(11)

Lemma 7 The discrepancy of N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)2 satisfies
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DN (t0, t1, . . . , tN−1) ≥ 1

2(π + 2)|h1h2|N

∣
∣
∣
∣
∣

N−1
∑

k=0

e(h · tk)
∣
∣
∣
∣
∣

(12)

for any lattice point h = (h1, h2) ∈ Z2 with h1h2 �= 0.

(It is the special version of Niederreiter result in [1]).

From these lemmaswe can to see that the character of equidistribution of sequence
{xn}, xn ∈ [0, 1) completely defines by estimate of exponential sum

SN :=
N

∑

n=1

e2π ihxn , h ∈ N.

In Sect. 2 we constructed two sequences {xt }, xt = y(t)
pm that were being produced

by the algebraic curves over the ring Zpm defined by the congruences (2) and (6).
From Lemmas 2 and 3 it is clear to see that y(t) are defining by special polynomials
from the ring Zpm [t]. These polynomials have the form

y(t) = A0 + A1 pt + A2 p
2t2 + A3 p

λ3 t3 + · · · ,

moreover, λ j ≥ 3, (A j , p) = 1 for j ≥ 3.
The according sums SN can be estimated by use of the generalized Gauss sums

and the last can be estimated using the following lemma.

Lemma 8 (see, [5], Lemma 3). Let p > 2 be a prime number, m ≥ 2 be a positive
integer, m0 = [

m
2

]

, f (x), g(x), h(x) be polynomials over Z

f (x) = A1x + A2x
2 + · · · ,

g(x) = B1x + B2x
2 + · · · ,

h(x) = C
x + C
+1x

+1 + · · · , 
 ≥ 1,

ν p(A j ) = λ j , ν p(B j ) = μ j , ν p(C j ) = ν j ,

and, moreover,

k = λ2 < λ3 ≤ · · · , 0 = μ1 < μ2 < μ3 ≤ · · · ,

ν p(C
) = 0, ν p(C j ) > 0, j ≥ 
 + 1.

Then the following bounds occur
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∣
∣
∣
∣
∣
∣

∑

x∈Zpm

em( f (x))

∣
∣
∣
∣
∣
∣

≤
{

2p
m+k
2 i f ν p(A1) ≥ k,

0 i f ν p(A1) < k;

∣
∣
∣
∣
∣
∣

∑

x∈Z∗
pm

em( f (x) + g(x−1))

∣
∣
∣
∣
∣
∣

≤ I (pm−m0)p
m
2

∣
∣
∣
∣
∣
∣

∑

x∈Z∗
pm

em(h(x))

∣
∣
∣
∣
∣
∣

≤
{

1 i f 
 = 1,
0 i f 
 > 1,

where I (pm−m0) is a number of solutions of the congruence

y · f ′(y) ≡ g′(y−1) · y−1 (mod pm−m0), y ∈ Z∗
pm−m0 .

This lemma is the estimation of complete generalized Gauss sum. The incomplete
generalized Gauss sum

N
∑

t=1

e2π i
f (t)
pm , 1 ≤ N ≤ pm

we can estimate by using the inequality

∣
∣
∣
∣
∣

N
∑

t=1

e2π i
f (t)
pm

∣
∣
∣
∣
∣
≤

pm
∑

k=1

1

max (k, pm − k)

∣
∣
∣
∣
∣

pm
∑

t=1

e2π i
f (t)+kt
pm

∣
∣
∣
∣
∣
=

= max
1≤k≤pm

∣
∣
∣
∣
∣

pm
∑

t=1

e2π i
f (t)+kt
pm

∣
∣
∣
∣
∣
log pm � p

m
2 log pm .

Now we can obtain the estimate of discrepancy for sequences generated in Lem-
mas 2 and 3.

Indeed, the function y(t) for the sequence generated by elliptic curve (2) as the
function y(t) for the sequence generated by (6) both satisfy for all conditions of

Lemma 8 and so the sum
∑pm

t=1 e
2π i y(t)pm can be estimated as O(p

m+1
2 log pm). And

now using Lemmas 4 and 5 we obtain the estimate of discrepancy for the sequence
{xt }, where xt = y(t)

pm , t = 1, 2, . . . , N , N ≤ pm−1

D(1)
N ≤ 3p

m+1
2

N
log N
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This proves the equidistribution of the sequence {xt }.Moreover, h1y(t) + h2y(t +
1) + · · · + hsy(t + s − 1) be the polynomial which for the nontrivial set of coeffi-
cients h1, . . . , hs generates the polynomial Y (t) that satisfies to condition of Lemma
8 and so the discrepancy of s-dimensional sequence {X (s)

n } has an estimate

s

N
+ p

m+1
2

N
(3 log N )s .

Therefore, the sequences produced by congruences (2) and (6) pass serial test for
s ≤ p − 2.

To obtain the lower bounds for discrepancy of sequences generated from elliptic
curve we apply Lemma 7.

From Corollary 1 we can write

y(t) = y(0)(1 + A1 pt + A2 p
2t2 + A3 p

λ3 t3 + · · · ) (modpm)

Therefore, we have

y(t + k) = y(0)(1 + A1 p + 2A2 p
2 + 3A3 p

λ3 + · · · )t
+ (A2t

2 + 3A3 p
λ3 + · · · )t2

+ (A3 p
λ3 + 2pλ4 A4 + · · · )t3 + · · ·

And hence,

h1y(t) + h2y(t + 1) =free term + (A1h1 + A1h2 + 2A2h2 p)pt

+ (A2h1 + A2h2 + 3A3h2 p)p
2t2

+ pλ3 t3ψ(t)

where ψ(t) is a polynomial with coefficients from Zpm .
By form of coefficients for A1 and A2 it is clear that we can find x0 such that the

coefficient at t in the last equality is divided at least by p2 but the coefficient at t2

exactly divided by p2. Let define this conditions as (*).
Now Lemma 8 gives

∣
∣
∣
∣
∣
∣

pm−1−1
∑

t=0

e
2π i h1y(t)+h2y(t+1)

pm−1

∣
∣
∣
∣
∣
∣

=
{

p
m+ν
2 i f conditions (*) hold,

0 otherwise.

Theorem 1 Let {xt } be the sequence of PRN’s produced by elliptic curve y2 ≡
x3 + ax + b (mod pm). There exists the point (x0, y0), y0 �= 0,∞ on the curve
y2 ≡ x3 + ax + b (mod p) such that the sequence of two-dimensional points {Xt },
Xt = (xt , xt+1) has discrepancy D(2)

τ , τ = pm−1 for which the following inequalities
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1

4(π + 2)h∗ p
− m−1

2 ≤ D(2)
τ ≤ 3p− m−1

2 log2 pm,

hold, where h∗ = min (h1, h2), (h1, h2) is a point from (Z∗
pm−1)

2 with conditions (*).

This theorem together with Lemma 8 shows that the obtained upper bound is, in
general, the best possible up to the logarithmic factor for any inversive congruential
sequence {(xt , xt+1)}, t ≥ 0 (defined by the congruence (2)).

Hence, on the average, the discrepancy D(2)
τ has an order of magnitude between

p−( m−1
2 −ν) and p−( m−1

2 −ν) log2 pm . In the certain sense, inversive congruential pseu-
dorandom numbers model the random numbers very closely.

4 Conclusion

In conclusion let introduce the step by step algorithm of constructing the sequences
of PRN’s with a period τ = pm−1, associated with elliptic curve over finite ringZpm ,
p > 3 be a prime, m ≥ 3 ∈ N, that can be described by the following way.

First of all for (x0, y0) ∈ Ep, (y0, p) = 1, i.e. for the point of elliptic curve y2 ≡
x3 + ax + b (mod p) over Zp with non-quadratic residue −3a we construct the
points (x(t), y(t)), 0 ≤ t ≤ pm−1 − 1 which belongs to elliptic curve over Zpm .
Then

(1) we select (x0, y0), where y0 �= 0 and y0 �= ∞;
(2) calculate x(t) ≡ x0 + pt (mod pm);
(3) calculate yi (0), i = 1, 2 as the solutions of congruence

y2 ≡ x30 + ax0 + b (mod pm);

(4) we will use the Taylor series for the function of ω at the point ω = 0 in form

√

1 + (3ωx20 + 3ω2x0 + ω3)x ′
0 = X0 + X1ω + X2ω

2 + · · · . (13)

(here x ′
0 is the multiplicative inverse modulo pm for x30 + ax20 + b).

(5) In (13) we put ω = pt and then modulo pm we construct the following polyno-
mial:

ϕ(t) ≡ 1 + X1 pt + X2 p
2t2 + · · · + Xs p

st s

≡ �0(x0) + pλ1�1(x0)t + · · · + pλs�s(x0)t
s (mod pm),

where Φ j (x0) ∈ Z, (Φ j (x0), p) = 1, λ j ∈ N, λ j ≥ j p−2
p−1 , j = 1, 2, . . . , s.

(6) This polynomials and the solutions yi (0), i = 0, 1 we use to construct the fol-
lowing representations modulo pm :
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yi (t) ≡ yi (0)(�0(x0) + �1(x0)pλ1t + · · · + �s(x0)pλs t s)

≡ yi (0)(1 + A1 pt + A2 p2t2 + A3 pλ3 t3 + · · · + As pλs t s)

for each i = 1, 2, which produce two sequences of PRN’s

{
yi (t)

pm

}

, t = 0, 1, . . .

with the period τ = pm−1.

Using the results obtained in previous sections we can say that the constructed
sequence of PRN’s, associated with elliptic curve y2 ≡ x3 + ax + b (mod pm),
passes the serial test on pseudorandomness, and therefore may be used in cryp-
tographic applications.
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