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Abstract Some nonideal hydrodynamic systems of the type “tankwith fluid - source
of excitation of oscillation” are considered. New types of limit sets of such systems,
so called maximal attractors, have been discovered and described. It was found that
the maximal attractors can be both regular and chaotic. Main characteristics of the
described maximal attractors are analyzed in details. Transitions to deterministic
chaos in such systems are considered. Despite the fact that maximal attractors are
not attractors in the traditional sense of this term, it is shown that the transition from
regular maximal attractors to chaotic maximal attractors can occur by known before
scenarios transition to chaos for “usual” attractors.

Keywords Nonideal hydrodynamic systems ·Maximal attractors · Scenarios of
transition to chaos

1 Introduction

Many modern machines, mechanisms and technical devices as structural elements
contain cylindrical tanks partially filledwith fluid. Therefore, the study of oscillations
free surface of fluid in cylindrical tanks over the past decades has been attracting close
attention [1–4].

Since the end of 70s years of the last century, there have been the so-called
“low-dimensional” mathematical models describing such oscillations [5–8]. These
models allow us to describe oscillations of the free surface of the liquid in the tank
using nonlinear systems of ordinary differential equations instead of partial differ-
ential equations that arise when describing the problem in the general setting. “Low-
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dimensional” models allow you to get a fairly adequate description of the problem
in cases where the power produced by of the source of excitation of oscillations
significantly exceeds the power consumed by the oscillating load (cylindrical tank
with fluid). These cases are called ideal by Sommerfeld–Kononenko. However, in
practice, most often there are cases in which the power source of excitation of oscil-
lations is comparable to the power consumed by the oscillatory load. Such cases are
called nonideal. In these cases, it is imperative to take into account the interaction
between the source of excitation of oscillations and the oscillatory load, which leads
to essential refinement of the mathematical models used in ideal cases. The neglect
of the interaction between the excitation source and the oscillatory load leads to gross
errors in the description of the dynamics of the studied systems [9–17].

2 Evolution Equation

Consider dynamic system, the layout of which is shown in Fig. 1. The electric motor
shaft is connected to the platform through the crank mechanism, on which a rigid
cylindrical tank of radius R is fixed, partially filled with liquid.

When the crank a rotates through an angle Ψ , the platform makes a vertical
movement of the form v(t) = a cosΨ (t). To describe the vibrations of the free
surface of a liquid, we introduce a cylindrical coordinate system Oxrθ with origin
in the tank axis, on the undisturbed fluid surface. The relief equation of free surface
of the fluid we write down in the form x = η(r, θ, t). Suppose liquid inviscid and
incompressible with density ρ and fills a cylindrical tank of cross-section S section
to the depth x = −d.

We will find function of the relief of surface of liquid in the form of an eigenmode
expansion:

Fig. 1 Scheme of system
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η(r, θ, t) =
∑

i, j

[qc
i j (t)ki j (r) cos iθ + qs

i j (t)ki j (r) sin iθ ]. (1)

Then we write the kinetic energy of the total system in the form [15, 16]:

T = 1

2
I Ψ̇ 2 + 1

2
m0v̇

2 + 1

2
ρS

∑

i, j,m,n

ai jmnq̇
c,s
i j q̇

c,s
mn . (2)

Here I is the moment of inertia of the motor shaft; m0—mass of the liquid tank;
ai jmn—nonlinear functions of qc,s

i j (t), qc,s
mn(t).

In turn, the potential energy of movements of the free surface of the liquid is
Shvets [15, 16]

V = ρ

∫ ∫

S

dS

η∫

0

(g + v̈)xdx = 1

2
ρS(g + v̈)

∑

i, j

qc,s
i j q

c,s
i j , (3)

where g is the acceleration of gravity.
Therefore, the Lagrangian of the system takes the form

L = 1

2
I Ψ̇ 2 + 1

2
m0a

2Ψ̇ 2 sin2 Ψ + 1

2
ρS

∑

i, j,m,n

ai jmnq̇
c,s
i j q̇

c,s
mn

+ 1

2
ρSa(Ψ̇ 2 cosΨ + Ψ̈ sinΨ )

∑

i, j

qc,s
i j q

c,s
i j − 1

2
ρSg

∑

i, j

qc,s
i j q

c,s
i j .

(4)

As a result, for Ψ (t) we obtain the following evolution equation

I Ψ̈ = −2m0a
2Ψ̇ 2 sinΨ cosΨ − m0a

2Ψ̈ sin2 Ψ + aρS(Ψ̇ 2 sinΨ

− Ψ̈ cosΨ )
∑

i, j

qc,s
i j q

c,s
i j − 2aρSΨ̇ cosΨ

∑

i, j

qc,s
i j q̇

c,s
i j + Φ(Ψ ) − H(Ψ ).

(5)
The last two terms on the right side of (5) are the driving moment and the moment

internal forces of resistance of the electric motor.
Suppose that the speed of rotation of the shaft Ψ̇ (t) in steady state conditions

of the engine is close to 2ω1, where ω1 is natural frequency of main tone of oscil-
lations of the free surface, which corresponds to the modes qc

11(t)k11(r) cos θ and
qs
11(t)k11(r) sin θ .
Let us introduce into consideration a small positive parameter

ε = ω1

√
a

g
. (6)
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Also assume that
Ψ̇ − 2ω1 = ε2ω1β. (7)

The oscillations of the free surface of the liquid are approximated by oscillations in
the main and secondary modes, whose amplitudes are defined as [15, 16]

qc
11(t) = ευ

[
p1(τ ) cos

Ψ

2
+ q1(τ ) sin

Ψ

2

]
;

qs
11(t) = ευ

[
p2(τ ) cos

Ψ

2
+ q2(τ ) sin

Ψ

2

]
;

q01(t) = ε2υ

[
A01(τ ) cosΨ + B01(τ ) sinΨ + C01(τ )

]
;

qc,s
21 (t) = ε2υ

[
Ac,s
21 (τ ) cosΨ + Bc,s

21 (τ ) sinΨ + Cc,s
21 (τ )

]
.

(8)

Here τ is slow time, τ = 1

4
ε2Ψ , υ = R

1.8412
tanh

(
1.8412

R
d

)
. Having determined

the dimensionless amplitudes Ac,s
i j (τ ), Bc,s

i j (τ ),Cc,s
i j (τ ) secondary modes by Miles

method [5, 6, 8] through the amplitudes p1(τ ), q1(τ ), p2(τ ), q2(τ ) and applying the
procedure of averaging the Lagrangian over the explicitly entering fast time Ψ (t),
for the amplitudes of dominant modes, we obtain the following system of equations
[15, 16]:

dp1
dτ

= αp1 −
[
β + A

2
(p21 + q2

1 + p22 + q2
2 )

]
q1 + B(p1q2 − p2q1)p2 + 2q1;

dq1
dτ

= αq1 +
[
β + A

2
(p21 + q2

1 + p22 + q2
2 )

]
p1 + B(p1q2 − p2q1)q2 + 2p1;

dβ

dτ
= N3 + N1β + μ1(p1q1 + p2q2);

dp2
dτ

= αp2 −
[
β + A

2
(p21 + q2

1 + p22 + q2
2 )

]
q2 − B(p1q2 − p2q1)p1 + 2q2;

dq2
dτ

= αq2 +
[
β + A

2
(p21 + q2

1 + p22 + q2
2 )

]
p2 − B(p1q2 − p2q1)q1 + 2p2.

(9)

In the system of (9), we have the following designations: α = − δ

ω1
− reduced factor

of damping, N0, N1 − constants of linear static characteristic of the electric motor,

N3 = 1

ω1

(
N0 + 2N1ω1

)
;μ1 = ρSυR2

(1.8412)2(2I + m0a2)ω2
1

; A and B − constants

ranging from the diameter of the tank and filling it with liquid. The system of evolu-
tionary equations (9) is used as the main mathematical model for study the dynamics
of oscillations of a tank with a liquid, excited by an electric motor of limited power.
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The main aim of the research is to study the possible types of limit sets of the
system (9). Since this system is a rather complex nonlinear system of equations of
the fifth order, then for constructing its limit sets, a whole complex of numerical
methods and algorithms were used. The technique for carrying out such numerical
calculations for system with limited excitation is described in detail in Shvets [18]
and Krasnopolskaya and Shvets [16].

3 Numerical Studies of Steady-State Regimes
of Oscillations

Initially, we define the conditions under which the system is dissipative. Let us
denote by F the vector field generated by the system of equations (9). Accordingly,
by F1, F2, F3, F4, F5 we denote the components of this vector field, that is, the right-
hand sides of the system of equations (9). Then the divergence of this vector field
can be found by the formula

divF = ∂F1

∂p1
+ ∂F2

∂q1
+ ∂F3

∂β
+ ∂F4

∂p2
+ ∂F5

∂q2
= α − Ap1q1 + Bp2q2 + α

+Ap1q1 − Bp2q2 + N1 + α − Ap2q2 + Bp1q1 + α + Ap2q2 − Bp1q1
= 4α + N1.

(10)

So the divergence of the vector field F is constant. The dissipativity condition for the
system of equations has the form,

4α + N1 < 0. (11)

The quantities included formula (11), α (coefficient of damping) and N1 (angle of
inclination of the static characteristic of electricmotor) are always negative. There-
fore, the divergence of the vector field generated by the system of equations (9) will
always be negative. Thus, this system will always be dissipative.

Wewill begin the study of the dynamics of the system (9) byfinding its equilibrium
positions. Obviously, that

p1 = 0, q1 = 0, β = −N3

N1
, p2 = 0, q2 = 0 (12)

is one of those equilibrium position. This equilibrium position is isolated one. The
conditions of the asymptotic stability of this equilibrium position may be obtained
by using Liénard-Chipart theorem [19]).

In addition to the isolated equilibrium position (12), there is an infinite number
of non-isolated equilibrium positions. These equilibrium positions form a family
of non-isolated equilibrium positions, which exists in a form of some closed line.
These equilibriumpositions canbe foundonly usingnumericalmethods, for example,
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Fig. 2 Family of equilibrium positions

Newton’s method. In Fig. 2, an example of such family of equilibrium positions for
one concrete values of parameters of the system (9) is shown. Conditions for the
stability of such family can be obtained using the Liénard-Chipart theorem. True,
these conditions are extremely cumbersome. Their analysis can be carried out in
reality only by using computers. Note that all equilibrium positions shown in Fig. 2
may be stable, but can not be asymptotically stable. In the case of stability of these
non-isolated equilibriumpositions, each of thembelongs to the limit set of system (9),
but is not an attractor in the traditional sense of this term. We will give a description
of the attractive properties of this family below.

There are sufficiently large regions in space of parameters of the system (9), in
which all equilibrium positions are unstable. In these areas, extremely interesting
limit sets of this system arise, which can be as regular, and as chaotic.

Limit sets of the first type may be periodic. In this case they form family of an
infinite number of closed trajectories (cycles), all of which exists simultaneously.
Any cycle neighbourhood contains other cycles of the family, that is, they are not
isolated. However, such cycles do not have tangency or intersection points. Each
such closed trajectory is itself a limit set. This is due to fact that almost any trajectory
that starts in some large area of phase space tends to one of the cycles of the family.
But none of cycles is an attractor in the traditional sense of this term. So, each of
these cycles is not limit cycle. Moreover, every single cycle has same period, same
Lyapunov’s characteristic exponents and similar Poincare sections. It is worth noting
that the cardinality of this family is equal to continuum.
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Fig. 3 Four representatives
of maximal regular attractor.

In Fig. 3 regular periodic limit sets of system (9) are constructed atα = −0.8, A =
1.12, B = −1.531, N1 = −1.25, N3 = 2, μ1 = −5.15. Each cycle is plotted in dif-
ferent color. There are four cycles in total, each of which is a representative of the
infinite family of cycles. We emphasize once again that each of the cycles forming
the family is not an attractor in the traditional sense of this concept. In our opinion,
the most suitable term for describing such family is the concept of maximal attractor.

A clear definition of the concept of maximal attractor is given by Milnor [20], by
Anischenko and Vadivasova [21], as well as by Sharkovsky [22]. Thus, two different
families that are shown in Figs. 2 and 3, are essentially two different types of regular
maximal attractors.

With an increase in the value of the parameter μ1, family of chaotic trajectories
arises in the system. The arising family includes an infinite number of chaotic tra-
jectories. It is known that the "traditional" chaotic attractor consists of an infinite
number of unstable trajectories. The resulting family, at first glance, is a union of an
infinite number of chaotic attractors. However, each member of this family is not an
attractor in the "traditional" sense. Here, as before, to define such union, the concept
of maximal attractor can be proposed. All trajectories of the chaotic maximal attrac-
tor have same spectrum of Lyapunov’s characteristic exponents, including positive
one. The Poincare sections of each of the trajectories of the family are structurally
similar chaotic sets consisted of an infinite number of points.

In Fig. 4 for the values α = −0.8, A = 1.12, B = −1.531, N1 = −1.25, N3 =
2, μ1 = −4.6463 limit sets of second type of the system (9) is constructed. Each
represenative of the chaotic maximal attractor is plotted in its own color. In total,
there are three chaotic trajectories of the family are presented in Fig. 4.

In Fig. 5 three representatives of another kind of chaotic maximal attractor, con-
structed at μ1 = −4.6462, are shown. On the whole, the chaotic maximal attractor
of the second kind are characterized by a much denser filling of the localization
region with trajectories. This two kinds of chaotic maximal attractor are typical for
system (9).

We note one more feature of the constructed maximal attractors, both regular and
chaotic. Some trajectories of those families are localized in the three-dimensional
subspace of the five-dimensional phase space of system (9). So the trajectories shown



440 A. Shvets and S. Donetskyi

Fig. 4 Three representatives
of maximal chaotic attractor
of first kind

Fig. 5 Three representatives
of maximal chaotic attractor
of second kind

in red in Figs. 3, 4 and 5 are localized in three-dimensional space. This means that
the coordinates p2 and q2 of the "red" trajectories are equal to zero. That is, there are
no oscillations in the second dominant mode.

Shortly we underscore one more interesting feature of the maximal attractors of
the system (9). Although these attractors are not attractors in the traditional sense, the
transition from regular to chaotic regimes and the "chaos-chaos" transitions follow
the scenarios inherent in such transitions for traditional attractors. Thus transitions
according to the Feigenbaum scenario [23, 24], Manneville−Pomeau scenario were
found [25, 26] along with various scenarios of generalized intermittency [16, 17,
27, 28].

Let us briefly consider the features of the transition to chaos according to the
Feigenbaum and Manneville-Pomeau scenarios for maximal attractors. One of the
possible scenarios is the transition from regular regime to a chaotic one is a cascade
of bifurcations of period doubling of the cycles. At the same value of the bifurcation
parameter the period of all cycles, that form the maximal attractor, is doubled. Then,
at the next bifurcation point, the period of all cycles of the maximal attractor is again
doubled, and so on. This endless process of period doubling bifurcations ends with
the emergence of a chaotic maximal attractor. That is, the transition from a periodic
limit set to a chaotic limit set is realized according to the classical Feigenbaum’s
scenario.
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a b

Fig. 6 Distribution of invariant measure over projections of maximal attractors

The transition to chaos through intermittency (the Manneville-Pomeau scenario)
for the maximal attractors occurs as follows. The system has a maximal attractor
consisting of an infinite set of simultaneously existing cycles. Moreover, all the
trajectories of the family have the same period.When passing through the bifurcation
point, all cycles of the family disappear and a chaotic maximal attractor arises in the
system. The movement along the trajectories of all representatives of this maximum
attractor consists of two phases - laminar and turbulent. That is, for all representatives
of the family of cycles, there is a simultaneous transition to chaos, through one rigid
bifurcation.

In conclusion, let us illustrate the transition from the maximal chaotic attractor
of one type to the maximal chaotic attractor of another type through generalized
intermittency. In Fig. 6a the distribution of the invariant measure over the phase por-
trait projection of the representative of the chaotic maximal attractors of the system
(9) constructed at α = −0.8, A = 1.12, B = −1.531, N1 = −1.25, N3 = 2, μ1 =
−4.6463 is shown. Atμ1 = −4.6462 (other parameters unchanged) maximal attrac-
tor disappears and chaotic maximal attractor of new type is born in the system. The
distribution of the invariant measure over the projection of the phase portrait of the
representative of the new chaotic maximal attractor is shown in Fig. 6b. The transi-
tion from one type of chaotic maximal attractor to the chaotic maximal attractor of
another type occurs according to the scenario of generalized intermittency, which
was described for attractors in the traditional sense of this term. At such transition,
the scenario of generalized intermittency is simultaneously fulfilled for all represen-
tatives of chaotic maximal attractor that presented in Fig. 4. For each representative
of the new chaotic maximal attractor, the motion along the trajectory consists of two
alternating phases, namely rough-laminar phase and turbulent phase. In the rough-
laminar phase, the trajectory makes chaotic movements in the neighborhood of the
trajectories of the representative of the disappeared chaotic maximal attractor. Then,
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at an unpredictable moment of time, the trajectory leaves the localization region of
the representative of the disappeared maximal attractor and moves to distant regions
of the phase space. Rough-laminar phase corresponds to the much blacker areas in
fig in Fig. 6. These areas in Fig. 6a are nearly the same as the distribution of the
invariant measure from in Fig. 6b. In turn, turbulent phase corresponds to much less
darkened areas in Fig. 6b. After some time, the movement of the trajectory returns
to the rough-laminar phase again. Then, trajectories switch to turbulent phase again.
Such transitions are repeated an infinite number of times. Note that the duration of
both rough-laminar and turbulent phases is unpredictable as are themoments of times
of transition from one phase to another.
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