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Abstract This chapter is devoted to discussion of the behavior of one-disk dynamo
under the action of harmonic and random signals. Evaluations of separated effects of
harmonic and random external voltages in the framework of the linearized Bullard
equations have been presented. As random signals with zero average the Gaussian
delta-correlated noise and the Langevin stochastic process have been considered.
In particular, as physical values characterizing these influences both autocorrelation
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functions of observables and their spectral densities have been calculated. This infor-
mation is important for design and testing of homopolar dynamo layout to perform
analog research of stochastic resonance in this device in nonlinear regime.

Keywords Elecromechanical system · Phase plane · Equilibrium states ·
Amplitude responses · The Wiener-Khinchin theorem · The Jordan’s lemma ·
Design and testing · The Fourier transform

Abbreviations

GSSP The Gaussian stationary stochastic process
ACF The autocorrelation function
SD The spectral density

1 Introduction

Stochastic resonance is known to be a cooperative effect in nonlinear systems mani-
festing itself in increasing of the output signal-to-noise ratio under addition of the
optimal portion of noise [1].

At present great attention is paid to studying of stochastic resonance in multidi-
mensional systems arising from physics through chemistry to biology and neuro-
science [2–5]. However, in our opinion, the most correct path in investigation
of stochastic resonance leading to a real understanding of the essence of this
phenomenon is choosing of a fairly simple dynamic system with a relatively small
dimension and a detailed study of this one. As a rule there are no analytical solu-
tions both the nonstationary Fokker-Plank-Kolmogorov equation for such system and
stochastic differential equations describing its behaviour. Numerical solution of these
problems is quite hard too [6, 7]. Therefore this system ought to allow experimental
investigation.

On the one hand, from the point of view of clarity, preference should be given to
mechanical systems. Such systems are easily perceived and interpreted due to our
daily experience.On the other hand, electrical systems are characterizedby the ease of
controlling of external influences. Hence it is convenient to take an electromechanical
system as a model system for experimental and theoretical research of stochastic
resonance.

In the framework of this approach we study one-disk dynamo (the so-called
Bullard dynamo). At first this electromechanical system was suggested in article [8]
in order to illustrate a number of astrophysical and geophysical effects concerning
motion of electrically conducting fluid in a magnetic field (see [9] and references
therein). Contrary to original article [8]we take into consideration both electrical load
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in parallel with the field coil and friction at the axis of the dynamo. But we restrict
ourselves by investigation of the linear response of the Bullard dynamo because of
our final aim is design of functioning homopolar dynamo for analog modeling of
stochastic resonance in this system. We stress that in our research there is no any
magnetohydrodynamic background—compare for instance with work [10].

The rest of the chapter is organized as follows: in Sect. 2, we discuss equations of
motion for the Bullard dynamo and their linearization. Section 3 is devoted to calcu-
lations of influence of harmonic external voltage on the linearized Bullard system.
Section 4 deals with linear responses of the system on random signals with zero
average, namely, on the Gaussian delta-correlated noise and the Langevin stochastic
process. Final section is devoted to discussion of results elaborated and conclusions.

2 Main Equations

Mathematical model of the homopolar dynamo is given by the following system of
stochastic ordinary differential equations:

{
L · dJ

dt + R · J = M · J · � +U (t)
I · d�

dt = K − M · J 2 − 2 · γ · �
, (1)

where

J (t) is electric current via the inductance L on Fig. 1;
�(t) is angular speed of rotation of the disk of dynamo;
R is value of resistance in the electrical circuit on Fig. 1;
M is coefficient of mutual inductance:
U (t) is an external voltage;
I is moment of inertia for the dynamo;
K is constant mechanical torque on the axis of the dynamo;
2 · γ is coefficient of mechanical friction on the dynamo axis.

To study stochastic resonance in the system on Fig. 1 one ought to choose external
voltage in (1) as follows:

U (t) = U0 · cos(ν · t) + V (t), (2)

where

U0 is amplitude of harmonic signal;
ν is circular frequency of harmonic signal;
V (t) is the Gaussian stationary stochastic process (GSSP) with zero average:

〈V (t)〉 = 0, (3)
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Fig. 1 Structural scheme of
the homopolar dynamo

and fixed autocorrelation function (ACF):

〈
V (t) · V (t ′)

〉 = B(t ′ − t). (4)

We underline that our approach in (1) differs sharply from one in paper [11]
because of authors of this paper apply separation of the magnetic flux on magnetic
flux across disk of the dynamo and magnetic flux across the loops of inductance.
This separation of magnetic flux on two parts leads to increasing of dimension of
phase space of the system.

For further analysis of system (1) it is convenient to introduce the next
dimensionless variables and parameters:

x1 =
√

M

K
· J, x2 =

√
M · I
L · K · �, ν0 =

√
M · K
L · I ,

μ = R ·
√

I

M · L · K , δ = γ ·
√

L

I · K · M ,Um = K ·
√

L

I
. (5)

After that one can rewrite system (1) in the following form:

{
ẋ1 = −μ · x1 + x1 · x2 + u(τ )

ẋ2 = 1 − x21 − 2 · δ · x2 , (6)

where

u(τ ) = U (t)
/
Um is dimensionless external voltage;

ẋ1,2 are derivatives of dimensionless variables x1,2 with respect to
dimensionless time τ = ν0 · t .

The system (6) in the absence of external voltage is defined as:
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Fig. 2 Phase plane of the homopolar dynamo in the absence of external load

{
ẋ1 = −μ · x1 + x1 · x2
ẋ2 = 1 − x21 − 2 · δ · x2 . (7)

It is easy to see that if 0 < δ < 1
/
2μ then system (7) possesses by three

equilibrium states: Os( 0, 1
/
(2 · δ) ) and O±(±√

1 − 2 · δ · μ, μ ). It is not difficult

to check that if 0 < δ <
√
2 + 4μ2 − 2μ then points O± are stable focuses and if√

2 + 4μ2 − 2μ < δ < 1
/
2μ then points O± are stable nodes. Point Os is saddle

point in both cases.
We shall suppose that dimensionless damping factor δ is quite small therefore we

shall deal with situation when points O± are stable focuses. Phase plane of system
(7) at μ = 1.0 and δ = 0.1 corresponding to the case under consideration is shown
on Fig. 2.

It is obvious that system (7) is invariant under transformation of variables
(x1, x2) → (−x1, x2) therefore to calculate linear response of the system (6) it
is enough to take into account only vicinity of the point O+.

Introducing for system (6) new variables y1,2 as follows:

x1 = +√
1 − 2 · δ · μ + y1, x2 = μ + y2, (8)

and rejecting terms with powers of y1,2 greater than one we find that system (6) is
reduced to this one:

{
ẏ1 = √

1 − 2 · δ · μ · y2 + u(τ )

ẏ2 = −2 · √
1 − 2 · δ · μ · y1 − 2 · δ · y2 . (9)

From system (9) it is easy to observe that variable y2 obeys to the equation of
motion for harmonic oscillator with damping factor δ and fundamental frequency
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ω0 = √
2 · (1 − 2 · δ · μ) under the action of external force:

ÿ2 + 2 · δ · ẏ2 + ω2
0 · y2 = −√

2 · ω0 · u(τ ), (10)

and that the behaviour of variable y1 is governed by the behaviour of variable y2 as
follows:

y1 = − ẏ2 + 2 · δ · y2√
2 · ω0

. (11)

At last for self-consistency of above presented linearization external dimension-
less voltage ought to be weak: |u(τ )| � 1.

3 Action of Harmonic Signal on the Linearized Bullard
Dynamo

At first let us consider behaviour of the system (9) under the influence of external
voltage:

u(τ ) = A0 cos(ωτ), (12)

where in accordance with formulae (5) A0 = U0
Um

; ω = ν/ν0.

Looking at (10) with right hand side (12) one can see that in this case it describes
harmonically excited linear oscillator with damping therefore we may solve it in the
framework of the well-known complex amplitude method.

Seeking solution of (10) in the following form:

y2(τ ) = Re[A2(ω) · exp(iωτ)], (13)

one can easily find that complex amplitude A2(ω) is equal to:

A2(ω) = −
√
2 · ω0

ω2
0 − ω2 + 2iδω

· A0. (14)

Further substituting expression (13) into (11) and using formula (14) it is not
difficult to establish that

y1(τ ) = Re[A1(ω) · exp(iωτ)], (15)

complex amplitude A1(ω) in formula (15) being equal to:
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Fig. 3 Amplitude responses of the homopolar dynamo

A1(ω) = iω + 2δ

ω2
0 − ω2 + 2iδω

· A0. (16)

Thus from formulas (14) and (16) it is easy to obtain that amplitude responses of
dynamical variables of system (9) on voltage (12) are equal to:

|A1(ω)|
A0

=
√

ω2+4·δ2
(ω2−ω2

0)
2+4·δ2ω2

|A2(ω)|
A0

=
√
2·ω0√

(ω2−ω2
0)

2+4·δ2ω2

. (17)

Graphs of dependences (17) on dimensionless frequency ω for μ = 1.0 and δ =
0.1 are presented on Fig. 3. On this Figure continuous line corresponds to function
A1(ω) and dashed line corresponds to function A2(ω). Both of them demonstrate
typical resonance behavior.

4 Action of the Gaussian Delta-Correlated Noise
and the Langevin Stochastic Process on the Linearized
Bullard Dynamo

Let us now suppose that external voltage is GSSP purely.
In this case it is interesting to determine the following ACF:

BJ (t, t
′) =< (J (t) − Ja)(J (t ′) − Ja) >, (18)
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where

Ja = 〈J (t)〉 (19)

is average value of electric current in the circuit on Fig. 1.
Reducing in accordance with formulas (5) input GSSP voltage to dimensionless

form:

u(τ ) = V (t)

Um
(20)

and substituting expression (20) into formula (3) we establish that:

〈u(τ )〉 = 0, (21)

therefore from formulas (10) and (11) one can immediately obtain that:

〈y1(τ )〉 = 〈y2(τ )〉 = 0. (22)

Thus combining formulas (5), (8) and (22) it is easy to find that:

Ja =
√

K

M
·
√
1 − 2γ · R

K · M , (23)

hence

BJ (t, t
′) = K

M
· B1(τ, τ

′), (24)

where

B1(τ, τ
′) =< y1(τ )y1(τ

′) > . (25)

On the other side in correspondence with formula (11) behavior of value y1(τ ) is
controlled by value y2(τ ) therefore ACF (25) is expressed via the next ACF:

B2(τ, τ
′) = 〈

y2(τ )y2(τ
′)
〉
. (26)

Inserting expression (11) into definition (25) and using the simplest properties of
ACF [12] it is not hard to prove that:
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B1(τ, τ
′) = 1

2ω2
0

[
∂2B2(τ, τ

′)
∂τ∂τ ′ + 2δ

(
∂B2(τ, τ

′)
∂τ

+ ∂B2(τ, τ
′)

∂τ ′

)
+ 4δ2B2(τ, τ

′)
]
.

(27)

Further after looking at formula (4) and comparing it with formula (20) it is
obvious that:

< u(τ ) · u(τ ′) >= bu(τ
′ − τ), (28)

where

bu(τ
′ − τ) = 1

U 2
m

B(t ′ − t). (29)

It is clear that formulas (28) and (29) demonstrates stationary state of dimension-
less input voltage therefore value y2(τ ) is GSSP too because of it obeys to linear
differential equation with constant coefficients (10) [12]. It means that ACF (26) in
fact depends only on variable θ = τ ′ − τ :

B2(τ, τ
′) ≡ B2(θ). (30)

Substituting representation (30) into formula (27) one can easily derive that:

B1(θ) = 1

2ω2
0

[
−d2B2(θ)

dθ2
+ 4δ2B2(θ)

]
, (31)

hence y1(τ ) is also GSSP.
For further advance it is convenient in accordance with the Wiener-Khinchin

theorem [12] to introduce spectral densities (SD) of ACF (30) and (31) as follows:

S1,2(ω) =
+∞∫

−∞
B1,2(θ) · exp(−i · ω · θ) · dθ. (32)

After the Fourier transform relation (31) is reduced to the next one between SD
S1(ω) and S2(ω):

S1(ω) = ω2 + 4δ2

2ω2
0

· S2(ω). (33)

At last it is well-known that for linear homogeneous system (10) connection
between input and output SD is expressed via its amplitude response (17) [12]
namely:
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S2(ω) =
∣∣∣∣ A2(ω)

A0

∣∣∣∣
2

· Su(ω), (34)

where

Su(ω) =
+∞∫

−∞
bu(θ) · exp(−i · ω · θ) · dθ (35)

is SD for ACF (28).
Thus combining formulas (17), (33) and (34) one can obtain that:

S1(ω) = ω2 + 4 · δ2

(ω2 − ω2
0)

2 + 4 · δ2 · ω2
· Su(ω). (36)

Inverse Fourier transform of expression (36) is known to represent ACF (25):

B1(θ) =
+∞∫

−∞

ω2 + 4 · δ2

(ω2 − ω2
0)

2 + 4 · δ2ω2
· Su(ω) · exp(i · ω · θ) · dω

2π
. (37)

If input voltage is the Gaussian delta-correlated noise (the white noise) then ACF
(4) is equal to:

B(t ′ − t) = 2 · DV · δ(t ′ − t), (38)

therefore

bu(τ
′ − τ) = 2 · D · δ(τ − τ ′), (39)

where intensity of stochastic process is renormalized in accordance with formula
(29) as D = DV · ν0

/
U 2

m .
Further expression (35) gives us that SD of GSSP with ACF (39) is equal to

Su(ω) = 2 · D. Thus integrand in formula (37) possesses by four simple poles

±
√

ω2
0 − δ2 ± i · δ hence using the well-known Jordan’s lemma one can calculate

explicit representation of ACF (25) in this case:

B1(θ) = D · exp(−δ|θ |)
2δ

√
ω2
0 − δ2

· Re
[
ω2∗ + 4δ2

ω∗
· exp(

√
ω2
0 − δ2|θ |)

]
, (40)

where ω∗ =
√

ω2
0 − δ2 + i · δ.
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Fig. 4 Reaction of the homopolar dynamo on the Gaussian delta-correlated noise

Graph of the ACF (40) for μ = 1.0, δ = 0.1 and D = 0.002 is shown on Fig. 4.
If input voltage is the Langevin sochasic process then dimensionless ACF (29)

may be chosen in the following form [13]:

bu(τ
′ − τ) = σ 2 · exp(−γ |τ ′ − τ |), γ > 0. (41)

where σ 2 is dispersion of input GSSP u(τ ).
SD corresponding to ACF (41) is equal to [13]:

Su(ω) = 2 · γ · σ 2

ω2 + γ 2
. (42)

It means that in this case two additional simple poles ±i · γ arise in integrand in
formula (37).

In the same manner one can derive that for SD (42) ACF (25) is equal to the next
sum:

B1(θ) = B1
1 (θ) + B2

1 (θ), (43)

where

B1
1 (θ) = γ · σ 2 · exp(−δ|θ |)

2 · δ ·
√

ω2
0 − δ2

· Re
[

ω2∗ + 4δ2

ω∗ · (ω2∗ + γ 2)
· exp(

√
ω2
0 − δ2|θ |)

]
(44)

and
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Fig. 5 Reaction of the homopolar dynamo on the Langevin stochastic process

B2
1 (θ) = σ 2 · 4 · δ2 − γ 2

(ω2
0 + γ 2)2 − 4 · δ2 · γ 2

· exp(−γ |θ |). (45)

Graph of the ACF (43) for μ = 1.0, δ = 0.1, γ = 0.02 and σ = 0.2 is presented
on Fig. 5. Comparing Fig. 5 with Fig. 4 one can observe that this graph also has
oscillatory character stipulated by function (44). But moreover this graph possesses
by variable vertical shift caused by contribution of function (45) into expression (43).

5 Conclusion

In the chapter linear responses of the homopolar dynamo both on weak harmonic
input voltage and weak GSSP input voltage have been calculated. This preliminary
research gives one a possibility of investigation of stochastic resonance in the Bullard
dynamo by means of analog modeling.

To realize this research program one ought to evaluate physical parameters of the
system on Fig. 1 and then use them to make its layout. After that one can perform a
number of tests of the operation of the layout.

The first test is an action of weak (U0 � Um) harmonic signal with very
slowly varying circular frequency on the homopolar dynamo layout. If dimensionless
circular frequency ω of this input signal gets closer to ω0 then a sharp increase in
amplitude of electric current in the circuit should be observed in accordance with
formula (16) (see also Fig. 3).
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The second test is an application to the layout of the weak Gaussian delta-
correlated noise as an input voltage. In this case measured ACF (18) must correspond
to the calculated dependence (40) (see also Fig. 4).

Moreover nonlinearity of a system is known to transformGSSP into non-Gaussian
stochastic process [12], therefore, in order to control the role of nonlinearity of system
(1) one should measure the following triple ACF [14]:

T (t1, t2) = 〈(J (t) − Ja)(J (t + t1) − Ja)(J (t + t2) − Ja)〉 (46)

and calculate its bispectrum [14]:

Q(ω1, ω2) =
+∞∫

−∞

+∞∫
−∞

T (t1, t2) · exp(−iω1t1 − iω2t2) · dt1dt2. (47)

If the influence of nonlinearity is small then both value (46) and value (47) must
be close to zero due to the Gaussian nature of the input signal.

The third test is an action of the weak Langevin stochastic process as an input
voltage. This kind of input voltage can be obtained by means of transferring of
the Gaussian delta-correlated noise via four-terminal network with resistance and
capacitance [12]. In this case measured ACF (18) must correspond to the calculated
dependence (43) (see also Fig. 5). And it is necessary to oversee closeness to zero of
values (46) and (47) too.

At last if the layout overcomes these checks successfully then one can proceed to
the experimental study of stochastic resonance in the homopolar dynamo under the
action of input voltage (2) in nonlinear regime.
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