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Abstract The contribution presents a bifurcation theory point of view to synchro-
nization of a forced van der Pol oscillator, which is coupled to a master oscillator as
a system with a stable limit cycle corresponding to harmonic oscillation. We present
bifurcation manifolds, 3D sections of the phase space and its Poincaré sections for
parameters close to these manifolds providing a clear visualization of the dynamics
of the 4D system. Among other things, we present the coexistence of a stable torus
and a stable cycle arising from q-fold bifurcation on an Arnold tongue.
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1 Introduction

Synchronization of coupled systems of oscillators is an important phenomenon that
touches a large class of nonlinear dynamical systems. Synchronization is ubiqui-
tous and methods of applied nonlinear dynamics can thus help to solve problems
and create new technologies in neuroscience [1, 5, 14], chemistry [6], biology [12],
superconducting electronics [3, 10], spintronics [9], computing [8], or even parti-
cle physics [2]. Since these nonlinear systems exhibit complex and sometimes even
counterintuitive dynamics, the most commonly used methods to study synchroniza-
tions are simulations.

Although the theory of bifurcations offers a suitable apparatus for the analysis of
the systems mentioned above, it is usually not used. The highly abstract thinking and
mathematically generalized view of dynamics needed for such an analysis are not
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61137 Brno, Czech Republic
e-mail: 460534@mail.muni.cz

L. Přibylová
e-mail: pribylova@math.muni.cz

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. H. Skiadas and Y. Dimotikalis (eds.), 14th Chaotic Modeling and Simulation
International Conference, Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-96964-6_29

411

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96964-6_29&domain=pdf
https://orcid.org/0000-0002-7073-1584
https://orcid.org/0000-0002-9027-4333
mailto:460534@mail.muni.cz
mailto:pribylova@math.muni.cz
https://doi.org/10.1007/978-3-030-96964-6_29
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the only obstacles to using bifurcation analysis methods. Another problem occurs
because the phase variables present in such models usually enter as harmonic terms.
Due to that, the systems are typically stiff, and standard numerical continuation
techniques fail.

Our contribution brings a suitable method for analyzing dynamics of forced oscil-
lators concerning synchronization. We present this method on the forced van der Pol
oscillator example. In addition, it also allows excellent visualization of the state space
in the neighborhood of bifurcationmanifolds that belong to the onset of synchroniza-
tion. All nonlinear phenomena that are closely related to it, as torus birth, resonances,
or complex dynamics near double Hopf bifurcation, can be visualized in 3D space
which greatly simplifies their explanation. This approach can be used for much more
complex systems of coupled oscillators as you can see in Záthurecký and Přibylová
[13].

2 Forced van der Pol Oscillator Representation

Consider the widely known van der Pol oscillator driven by an external harmonic
force represented by the equation

ẍ − μ
(
1 − x2

)
ẋ + ω2

0x + A sinωt = 0, (1)

where x ∈ R is a time-dependent position coordinate, μ > 0 denotes a parameter
indicating the nonlinearity (the strength of the damping), and ω0 ∈ R is the natural
frequency. The last term represents the external driving force with amplitude A > 0
and frequency ω ∈ R.

This second-order differential equation can be expressed in the following form of
two-dimensional non-autonomous system

ẋ = y + ε cosωt, (2a)

ẏ = μ
(
1 − x2

)
y − ω2

0x, (2b)

where ε = A
ω
. To obtain an autonomous system, it is usually convenient to rewrite

the time-dependent term ε cosωt in (2a) using a pair of new variables, specifically

ẋ = y + εu, (3a)

ẏ = μ
(
1 − x2

)
y − ω2

0x, (3b)

u̇ = −ωv, (3c)

v̇ = ωu. (3d)

Unfortunately, this system is stiff, and the continuation is impossible since the peri-
odic solution of (3c), (3d) is not asymptotically stable. Therefore, we replace this
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subsystem with a normal form of supercritical Hopf bifurcation

u̇ = ru − ωv − u
(
u2 + v2) ,

v̇ = ωu + rv − v
(
u2 + v2

)

with an exponentially stable driving cycle allowing a stable continuation of limit
cycles and their bifurcations. Note that the added parameter r provides a possibility
to investigate bifurcations connected to the birth of an invariant torus.

Hence, one can examine the forced van der Pol oscillator (1) as two interacting
master-slave oscillators in the form

ẋ = y + εu, (4a)

ẏ = μ
(
1 − x2

)
y − ω2

0x, (4b)

u̇ = ru − ωv − u
(
u2 + v2

)
, (4c)

v̇ = ωu + rv − v
(
u2 + v2

)
. (4d)

This step also provides an opportunity to clearly visualize synchronization phenom-
ena of the famous van der Pol oscillator since variables u and v are complementary,
and one of them can be omitted in the state space description.

3 Basic Bifurcation Analysis

The studied system (4) is evidently uncoupled for zero coupling, i.e., ε = 0. In this
case, one can investigate both subsystems separately. Assuming μ = 0, there is no
damping in the van der Pol system, and thus the system exhibits simple conservative
harmonic oscillations with frequency ω0. It is known that the unforced van der Pol
oscillator undergoes a supercritical Hopf bifurcation that gives rise to a stable limit
cycle while crossing μ = 0 as well as the forcing, master system while crossing
r = 0. It follows that a double Hopf bifurcation manifold (i.e., parameter subspace
μ = 0, r = 0, ε = 0) can be detected as a transversal intersection of these two Hopf
hyperplanes.

4 Torus Birth and Synchronization

Double Hopf bifurcation leads to complex dynamics that is related to other bifurca-
tions for nearby parameters. Generically, two branches of Neimark–Sacker bifurca-
tion of a cycle, resulting in a torus birth, emanate from the double Hopf point.

The system (4) gives birth to the stable invariant torus for positiveμ and r near zero
obviously since supercritical bifurcations appear atμ = 0 and r = 0, respectively.An
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Fig. 1 A segment of a quasiperiodic orbit on a stable invariant torus of system (4) for μ = 0.1,
r = 0.1, ε = 2.5, ω0 = 1 and ω = √

5

example of a quasiperiodic trajectory densely covering the torus is presented in Fig. 1.
The trajectories of the system (4) on the invariant torus can become periodic since the
torus is described by a pair of frequencies that can be in amutually rational proportion.
In that moment, the synchronization appears in terms of phase- or frequency-locking.
For given external harmonic forcing with nonzero amplitude r and natural frequency
ω0, zero damping μ and zero coupling ε, it is exactly for ratios ω0

ω
that are rational.

These points are resonances (two-parametric cusp bifurcations of cycles or q-fold
bifurcation points in the notation of the bifurcation theory) that correspond to cusp
Arnold tongues emanating from Neimark–Sacker bifurcation manifold ε = 0. The
Arnold tongues’ borders are fold bifurcation manifolds of a stable cycle and a saddle
cycle that coincide with each other. The stable cycle persists inside the Arnold tongue
and corresponds to the synchronization. Notice that Neimark–Sacker bifurcation, the
torus, and fold bifurcation of a cycle manifold continue to positive ε. Since the cusp
bifurcation has a typical V-shape, more coupling strength makes the synchronization
easier.

From now on, we will consider fixed values μ = 0.1, r = 0.1 and ω0 = 1. The
following results are independent of the choice in the sense that we can choose any
small μ and r to start with quasiperiodic orbit on a torus. The natural frequency
ω0 is taken as normalized, but it can be easily reparametrized. Let us study the
effect of parameters ω and ε on the synchronization in system (4). Using numerical
continuation methods in MATCONT toolbox by Dhooge et al. [4], one can compute
bifurcation curves of (4) in the parameter space (ω, ε).

Since the natural frequency of the van der Pol oscillator is chosen as ω0 = 1,
the Arnold tongues emanate from all rational numbers on the ω-axis, i.e., points

(ω, ε) =
(

p
q , 0

)
for coprime p, q ∈ N. Figure 2 shows several Arnold tonguesAp:q

in space (ω, ε) representing parameter values, for which the synchronization p : q
takes place in the studied system (4) (p : q is a ratio between the two frequencies
on the torus, q : p is the period ratio). As usual, most of the Arnold tongues are
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Fig. 2 Bifurcation diagram of system (4) in the parameter space (ω, ε) for μ = 0.1, r = 1 and
ω0 = 1

relatively narrow and hence difficult to be manually detected. Notice that we found a
non-trivial branch of Neimark–Sacker bifurcation that is different fromμ = 0, r > 0
or r = 0, μ > 0, respectively, in this parameter space. Dynamics near this branch
for 1 : 3 resonance is shortly mentioned in Sect. 6.

5 Visualizations of the Torus Birth

In addition to the analysis itself, we focused on visualization of dynamics near bifur-
cation manifolds. One dimension of the 4D state space of the system (4) can be
omitted easily as a complement due to harmonic forcing. The 3D invariant torus that
appears in the state space for positive r andμ is projected to a two-dimensional torus.
Its natural section in a given phase is a Poincaré 2D plane section of a trajectory on
the torus. This situation makes it possible to explicitly show qualitative changes in
the neighborhood of bifurcation manifolds in the plane and 3D space.

At first, let’s look at the transition between regions 1 and 2 (see Fig. 3). The

system possesses a stable limit cycle in the region 1 (see Fig. 4). When crossing

the non-trivial Neimark–Sacker curve into region 2 , the corresponding Neimark–
Sacker bifurcation of a cycle causes a loss of the cycle’s stability. It gives rise to
a stable invariant torus in its neighborhood (see Figs. 5 and 6). As these figures
show, using Poincaré section determined by zero u-coordinate, for example, one
can visualize bifurcations of limit cycles via specific orbit topological change of the
discrete dynamical system (see Neimark–Sacker bifurcation of maps in Kuznetsov
[7]) on the corresponding Poincaré section.
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Fig. 3 Considered transitions between regions 1 , 2 and 3 in the parameter space (ω, ε) for
μ = 0.1, r = 1 and ω0 = 1

Fig. 4 Poincaré section {u = 0} of system (4) for (ω, ε) = (2.6, 3.4), region 1

6 Bistability of the Forced van der Pol Oscillator

Finally, let’s look closely to qualitative changes of dynamics near 1 : 3 resonance
point R3 on the non-trivial Neimark–Sacker branch depicted in Figs. 2 or 3 (for the
positive r , μ, ε and ω). Figure 7 shows a typical symmetric dynamic structure near
1 : 3 resonance (see Kuznetsov [7]). It visualizes the transition between regions 2

and 3 . As we have just seen, in the region 2 (outside the Arnold tongue), the



Synchronization from the Bifurcation Theory Point of View 417

Fig. 5 Poincaré section {u = 0} of system (4) (ω, ε) = (2.766, 3.4), near N–S manifold

Fig. 6 Poincaré section {u = 0} of system (4) for (ω, ε) = (2.85, 3.4), region 2
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Fig. 7 The onset of synchronization 1 : 3 in system (4) visualized using Poincaré section {u =
0, v = −1} in the state space for parameters (ω, ε) from regions 2 and 3 , i.e., for the crossing
of the LPC1:3 curve corresponding to fold bifurcation of limit cycles (see Fig. 3)
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system possesses a stable quasiperiodic invariant torus. When crossing the LPC
curve (entering the Arnold tongue, 3 ), the fold bifurcation gives rise to a pair
of limit cycles—stable and saddle, respectively. The forced van der Pol oscillator
evince bistable behavior for these parameters inside and close to the Arnold tongue
border since there are two stable attractors—an outside stable limit cycle and a stable
invariant torus. The torus may be destructed via a heteroclinic bifurcation. In the
Poincaré section depicted red in Fig. 7b, c, you can see a symmetric triplet of saddles
approaching the invariant loop that belongs to the inside torus. The coincidence of
the saddle cycle with the loop destroys the stable torus.

7 Discussion and Conclusions

To summarize and outline the possible research connected to synchronizations of
forced oscillators, we mention the topics we would like to focus on.

There is much more to study since Arnold tongues interfere with each other, and
symmetries near resonances give birth to various types of synchronizations. Also,
there is usually a period-doubling cascade inside the Arnold tongues, and this route
to a chaotic attractor is possible and likely. Study of all these phenomena is allowed
only using a suitable representation (4) of forced van der Pol oscillator (1). The proper
transformation of the original system and using Poincaré sections give possibility to
use continuation methods of bifurcation theory, and also visualize in 3D the hidden
phenomena behind synchronizations of limit cycles.

We plan to continue with an analysis of bifurcation manifolds near the mentioned
double Hopf bifurcation, as well as near resonances. Very interesting dynamics could
be foundnear the torus breakon the heteroclinic orbit for parameters inside theArnold
tongues. We would like to focus also on bistability in the case of coupled oscillators.
We are convinced that this phenomenon is closely related to chimera-like dynamics,
as well as to routes to complexity and chaos.

Acknowledgements The work has received financial support from Mathematical and Statistical
modelling project MUNI/A/1615/2020.

References

1. H. Alinejad, D. Yang, P.A. Robinson, Mode-locking dynamics of corticothalamic system
response to periodic external stimuli. Physica D 402 (2020)

2. C. Beck, Possible resonance effect of axionic dark matter in Josephson junctions. Phys. Rev.
Lett. 111, 23 (2013)

3. A.I. Braginski, Superconductor electronics: status and outlook. J. Supercond. Novel Magn. 32,
23–44 (2019)

4. A. Dhooge, W. Govaerts, Y.A. Kuznetsov, MATCONT: a MATLAB package for numerical
bifurcation analysis of ODEs. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164 (2003)
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