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Abstract We perform numerical simulation of the dynamics of a multiplex network
consisting of two unidirectionally coupled rings of FitzHugh-Nagumo neurons with
nonlocal interaction. When uncoupled, one ring demonstrates solitary state regimes
and the other one exhibits chimera states. We explore in detail how the synchro-
nization degree between the layers depends on the type of unidirectional interlayer
coupling (via fast or slow variables) and on the structures in the driver layer. It is
shown that the structure in the response layer can be suppressed and is replaced by
the driver layer structure. However, the degree of external synchronization is higher
in the case when the driver layer demonstrates solitary states and when the unidirec-
tional coupling is executed via the fast variables. In the case of coupling via the slow
variables, external synchronization of neither solitary states nor chimeras cannot be
achieved in the considered network.

Keywords Synchronization · FitzHugh-Nagumo neuron · Multiplex network ·
Chimera state · Solitary state

1 Introduction

Exploring various properties of cooperative dynamics of multicomponent systems,
as well as the effects observing in such systems and synchronization between their
elements is one of the main part of nonlinear dynamics [1–6]. This is inextricably
linked to the fact that most systems in the world are complex networks with various
individual elements and types of coupling between them. There is a plenty of works
devoted to synchronization phenomena in systems of completely different nature,
such as physics [7–10], chemistry [11, 12], neuroscience [13–18], sociologybreak
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[19–21], etc., as well as in real-world systems, for instance, communication systems
[22], power grids [23, 24], transportation networks [25].

Dynamics of ensembles of nonlocally coupled elements, when each node is cou-
pledwith a finite number of its nearest neighbors, has recently attractedmuch interest
due to the discovery of a new spatiotemporal structure, later called “chimera state”
[26, 27]. This structure is a striking example of cluster synchronization when a
network dynamics spontaneously splits into coherent (synchronous behavior) and
incoherent (desynchronized dynamics) clusters with well-defined boundaries in the
network space. Although these structures have been found in networks with differ-
ent individual elements [26–32], with different types of coupling between them [28,
33–37], as well as in real experiments [7–11, 38, 39], greater interest in these struc-
tures was caused by their connection with natural and man-made dynamics [14, 17,
22–25].

Solitary states are another example of partial synchronization [40]. With this type
of synchronization, solitary nodes appear on the coherent profile of the system and are
evenly distributed over the entire ensemble. Oscillators in the solitary state regime
fundamentally differ in their dynamics from the other oscillators of the network.
This kind of pattern has been observed in networks of the Kuramoto models [40–
42], the discrete-time systems [43], the FitzHugh-Nagumo systems [44–46], and
others. They have also been detected in experiments with mechanical pendulums
[39]. Later, solitary state chimeras were revealed when an incoherent cluster includes
several solitary states and coexists with coherent clusters [46, 47].

Studying interaction between different spatiotemporal structures is an important
task in the numerical simulation of collective dynamics of complex systems. It was
shown in [30] that chimera states can be observed in a ring of nonlocally coupled
FitzHugh-Nagumo oscillators. Later, these studies were expanded in [46] and it was
found out that this network can also demonstrate solitary states. The interaction
between chimeras and solitary states was explored for the first time in [48] where
two rings of nonlocally coupled FitzHugh-Nagumo oscillators were bidirectionally
coupled either via fast or slow variables. The objective of the present paper is to
study the peculiarities of external synchronization of chimeras and solitary states in
a two-layer network of unidirectionally coupled rings of FitzHugh-Nagumo oscilla-
tors depending on the type of interlayer coupling (via activators or inhibitors) and of
the spatiotemporal structures in a driver and a response layer. The identity of syn-
chronous structures in the considered network is quantified using a global interlayer
synchronization error.

2 Model Under Study

The model under study represents a multiplex network consisting of two unidirec-
tionally coupled layers. Each layer is given by a ring of nonlocally coupled FitzHugh-
Nagumo oscillators [49, 50]. The network is governed by the following system of
equations:
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ε
du1i
dt

= u1i − u31i
3

− v1i + σ

2P

i+P∑

j=i−P

[buu(u1 j − u1i ) + buv(v1 j − v1i )] + cu(u2i − u1i ),

(1)

dv1i

dt
= u1i + a + σ

2P

i+P∑

j=i−P

[bvu(u1 j − u1i ) + bvv(v1 j − v1i )] + cv(v2i − v1i ),

ε
du2i
dt

= u2i − u32i
3

− v2i + σ

2P

i+P∑

j=i−P

[buu(u2 j − u2i ) + buv(v2 j − v2i )] + su(u1i − u2i ),

dv2i

dt
= u2i + a + σ

2P

i+P∑

j=i−P

[bvu(u2 j − u2i ) + bvv(v2 j − v2i )] + sv(v1i − v2i ).

Dynamical variables uli correspond to the activators or the fast variables, and vli
are the inhibitors or the slow variables in each ring, where l = 1, 2 is the layer
number, and i = 1, 2, . . . , N = 300 is the node number in each ring (all indices
are modulo N ). Individual FitzHugh-Nagumo oscillators can demonstrate either
excitable (|a| > 1) or oscillatory (|a| < 1) regimes, which depend on the excitability
threshold parameter a. In the present study, all the FitzHugh-Nagumo oscillators
in the network (1) operate in the oscillatory regime at a = 0.5 and the time-scale
separation parameter is also fixed ε = 0.05 for all the network nodes.

The nonlocal intralayer coupling in each layer is given by the coupling strength
σ and the coupling range P which denotes the number of nearest neighbors of
the i th node from both sides in each layer. In our numerical simulation we choose
σ = 0.3 and P = 105 in both rings. The intralayer interaction of the FitzHugh-
Nagumo neurons in the system (1) has not only direct couplings between activator
(u) and inhibitor (v) variables but also cross ones which are executed according to a
rotational coupling matrix:

B =
(
buu buv

bvu bvv

)
=

(
cosφ sin φ

− sin φ cosφ

)
, (2)

where φ ∈ [−π;π). In the work [30] this type of coupling was used for the first time
and it has been shown that chimera states can be observed in the ring of nonlocally
coupled FitzHugh-Nagumo neurons at φ = π/2 − 0.1. This research was expanded
in the paper [46] where the effect of parameter φ on the regimes observed in the
FitzHugh-Nagumo ring was explored in detail. It was particularly shown that this
ensemble can demonstrate not only chimera states but also solitary states. In the
present research the parameter φl (l = 1, 2) values are set in such a way to observe
a solitary state regime in the first ring and chimera states in the second one.

The interlayer coupling in the network (1) is organized to be unidirectional with
coefficients cu , cv , su , and sv . Therefore, when the first layer affects the second one
(solitary states affect chimeras) we have cu = 0, cv = 0, su �= 0, sv �= 0, where the
superscripts correspond to the coupling via the fast (u) or the slow (v) variables.
Vice versa, when the first layer is subjected to the second one (chimeras affect
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solitary states), the interlayer coupling is defined by cu �= 0, cv �= 0, su = 0, sv = 0.
In our simulations, initial conditions are chosen to be randomly distributed on circle
u2 + v2 � 22. The layers are coupled from the initial time t = 0, and the equations
(1) are integrated using the Runge-Kutta-Fehlberg method with step h = 0.02.

Figure1 shows typical spatiotemporal structures which can be observed in uncou-
pled FitzHugh-Nagumo rings for the chosen intralayer coupling parameter values.
The first layer demonstrates the solitary states (Fig. 1a–c), and the second layer
exhibits the chimera state (Fig. 1d–f). As can be seen from Fig. 1a, the solitary nodes
are evenly distributed along the coherent profile, while the mean phase velocity pro-
file is rather flat (Fig. 1b) (this parameter is calculated with the formula ωli = 2πMi

�T ,
where Mi is the number of complete rotations around the origin performed by the
i th oscillator during the time interval �T [30], l = 1, 2 is the layer number). Dif-
ferences in the dynamics of the solitary nodes and the oscillators from the coherent
part can be observed in the (u1, v1) phase plane (Fig. 1c), where the attracting set
with a large radius (black dots) corresponds to the oscillators from the coherent
region, and the small cycle (red dots) to the solitary nodes. In the case of chimera
states, the snapshot of the second ring dynamics splits into two clusters (Fig. 1d):
one includes elements 150 � i � 250 with coherent dynamics, and the other one
consists of nodes 1 � i � 149 and 251 � i � 300 which behave incoherently. In
the mean phase velocity profile (Fig. 1e), the coherent domain is characterized by
a smooth distribution, while an arc-like dependence is characteristic for the nodes
from the incoherent cluster. There are also two intersecting sets in the (u2, v2) phase
plane (Fig. 1f): the green attractor reflects the dynamics of the elements from the
incoherent cluster of the chimera state and the black set refers to the nodes from the
coherent domain. As can be seen from the phase portraits, the green attracting set
is essentially thick if compared with a limit cycle for a single FitzHugh-Nagumo
system [49, 50], and unlike the solitary states, these sets are overlapping.

To analyze the degree of synchronous behavior (or identity of synchronous struc-
tures) of the coupled layers we apply a global interlayer synchronization error:

δ = 1

N

N∑

i=1

⎛

⎝ 1

t2 − t1

t2∫

t1

(u1i − u2i )
2dt

⎞

⎠ , (3)

where N = 300. Since the coupled FitzHugh-Nagumo rings (1) are not identical,
the external interlayer synchronization can be considered in its effective sense. In
our numerical studies, imposing certain quantitative conditions for the global inter-
layer synchronization error we can distinguish effective external synchronization if
0.001 < δ < 0.01 and full (complete) external synchronization when δ < 0.001.
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Fig. 1 Dynamics of uncoupled rings (cu = 0, cv = 0, su = 0, sv = 0): the solitary states in the first
ring (a–c) and the chimera state in the second ring (d–f). Snapshots of variables u1i and u2i (upper
row), mean phase velocity profiles (middle row, ω1i , ω2i ) and phase portraits for all elements of the
rings (lower row, (u1, v1) and (u2, v2)). Black lines on the phase portraits correspond to elements
in the coherent mode, red curves to the solitary nodes, and green ones to the incoherent cluster of
the chimera state. Parameters: σ = 0.3, P = 105, φ1 = π/2 − 0.2, φ2 = π/2 − 0.04, ε = 0.05,
a = 0.5, and N = 300



376 E. Rybalova et al.

3 Unidirectional Interlayer Coupling via Fast Variables

We study numerically the case when the FitzHugh-Nagumo rings (1) are unidirec-
tionally coupled via the fast variables, i.e., cu �= 0, su �= 0 and cv = 0, sv = 0. It was
shown in [48] that in the presence of this type of the interlayer coupling in a system of
two symmetrically coupled rings, first chimera states are formed in both rings, then
with an increase in the coupling strength, the rings are completely synchronized and
their dynamics correspond to coherent spatial profiles. However, at certain values of
the interlayer coupling strength, the regime of solitary states can also be observed in
both rings.

3.1 Impact of Solitary States on Chimera

Let us first consider the possibility of suppressing the chimera structure in the second
ring and the establishment of solitary states under the unidirectional influence of
the first ring which demonstrates the solitary states. In this case the first FitzHugh-
Nagumo ring is a driver (cu = 0, cv = 0), while the second one is a response (su �= 0,
sv = 0). Figure2 illustrates the dependence of the global interlayer synchronization
error and the evolution of the second ring dynamics when the interlayer coupling
strength su grows. As can see from Fig. 2b, already for a sufficiently weak coupling,
the chimera state in the second ring completely disappears and is replaced by the
regime of solitary states. However, the observed structure is not synchronous with
that one in the driver (see Figs. 1a and 2b): the frequency of the solitary nodes is
not equal to that of the elements from the coherent part of the ring (Fig. 2c), and the
corresponding attracting set (red points) in the phase plane (inset in Fig. 2c) is wider
than that shown in Fig. 1c. As follows from Fig. 2a, when the interlayer coupling
is sufficiently weak (su < 0.15), the synchronization error δ does not satisfy the
effective synchronization condition.

Even when su slightly increases, the observed solitary state regime in the second
ring is still not synchronous to the mode in the first ring (Fig. 2d and e). However, as
can be seen from the phase portrait in Fig. 2e, the set corresponding to the solitary
nodes (red points) is separated from the oscillators from the coherent profile (black
line). Starting from the region where the dependence δ(su) becomes smooth (su >

0.33 in Fig. 2a), the solitary nodes in the second ring begin to correspond to the
solitary nodes in the first ring (Fig. 1c). In this case we have a smooth frequency
profile and two phase portraits clearly separated in the phase space (Fig. 2f and g).
On the other hand, already starting from su > [0.15; 0.28] (the exact value depends
on the initial conditions) the global interlayer synchronization error becomes less
than 0.01 and we can talk about effective synchronization. Only when su > 0.67
(Fig. 2a), complete external synchronization (δ < 0.001) occurs in the network (1).



External Synchronization of Solitary States … 377

Fig. 2 Unidirectional impact of the first ring (solitary states) on the second one (chimera) via the
fast variables: su �= 0, sv = 0, cu = 0, cv = 0 in the network (1). a Dependence of δ (3) on the
interlayer coupling strength su plotted for 5 different sets of random initial conditions in each ring
(marked by different colors). b–g Dynamics of the second ring for increasing su : 0.035 (b, c), 0.13
(d, e), 0.35 (f, g). b, d, f Snapshots of variables u2i , c, e, g mean phase velocity profiles w2i and
phase portraits for all ring elements (insets (u2, v2)): black lines indicate the coherent dynamics,
red curves correspond to the solitary nodes. Other parameters: σ = 0.3, P = 105, φ1 = π/2 − 0.2,
φ2 = π/2 − 0.04, ε = 0.05, a = 0.5, and N = 300

3.2 Impact of Chimera on Solitary States

When the second ring exhibiting the chimera state is the driver, the global syn-
chronization error δ demonstrates a smooth dependence on the interlayer coupling
strength cu over the entire interval of its variation (Fig. 3a). This can be explained
by the fact that there is no need to synchronize individual elements (solitary nodes)
which introduce deviations into dependence δ(cu). In this case, the solitary states in
the first ring also quickly disappear, and the snapshot splits into coherent and inco-
herent clusters (Fig. 3c). However, the arc-like dependence does not immediately
appear on the frequency profile (Fig. 3c). Increasing cu leads to the appearance of
the arc in the frequency profile, which at first looks a bit noisy (Fig. 3e). Only when
cu grows (cu > 0.1), the frequency profile becomes smooth (Fig. 3g). As follows
from the snapshots (Fig. 3d and f) and the phase portraits (insets in Fig. 3e and g),
already at a very weak interlayer coupling cu , the first ring (response) starts behaving
similarly to the second ring (driver) (see Figs. 1d, f and 3d, e).
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Fig. 3 Unidirectional impact of the second ring (chimera) on the first ring (solitary states) via the
fast variables: cu �= 0, su = 0, sv = 0, cv = 0 in the network (1). a Dependence of δ (3) on the
interlayer coupling strength cu plotted for 5 different sets of random initial conditions in each ring
(marked by different colors). b–g Dynamics of the first ring in (1) for increasing cu : 0.014 (b, c),
0.06 (d, c), 0.235 (f, g). b, d, f Snapshots of variables u1i , c, e, g mean phase velocity profiles w1i
and phase portraits for all ring elements (insets (u1, v1)): black lines indicate the coherent dynamics,
red curves correspond to the solitary nodes. Other parameters are as in Fig. 2

In contrast to the previously considered case, in this situation the global interlayer
synchronization error does not fall below the 0.001 level even for a rather strong
unidirectional interlayer coupling (Fig. 3a). This means that only effective external
synchronization of the chimera state takes place.

4 Unidirectional Interlayer Coupling via Slow Variables

We now turn to the case when the two rings (1) are unidirectionally coupled via the
slow variables, i.e., cv �= 0, sv �= 0, while there is no coupling via the fast variables,
cu = 0, su = 0. Our previous studies [48] showed that with this type of coupling in
a system of two bidirectionally coupled rings, firstly the chimera states in the second
ring disappear and are replaced by uniformly distributed solitary nodes, but they
are not synchronous with the solitary nodes in the first ring. At the same time, the
solitary nodes in the first ring gradually disappear. A further increase of the coupling
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strength between the layers leads to a coherent regime in the first ring and the solitary
state chimera in the second ring. By increasing the coupling strength, we can observe
the classical chimera states in both rings, which behave quite synchronously. With
a further increase in the coupling strength the dynamics of the two-layer network is
similar to the dynamics of the rings which are coupled through the fast variables.
The rings are completely synchronized and their behavior corresponds to coherent
spatial profiles. Moreover, at certain values of the interlayer coupling strength (more
than 1.0), the solitary state mode can be observed in both rings.

4.1 Impact of Solitary States on Chimera

Consider the case when the second ring in the chimera state is driven via the slow
variables by the first ring in the solitary state regime. In this case the chimera state
also quickly disappears and is replaced by the solitary nodes (Fig. 4b–e). However,
the solitary nodes are distributed throughout the whole ring and their location does
not coincide with that in the driver layer (see Figs. 1a and 4d). It is also evident that
the frequencies of several solitary nodes are not equal to the frequency of the other
oscillators, as it should be (Fig. 4e). Moreover, in the phase portrait, the trajectories
of some solitary nodes do not lie separately from the phase portrait of the oscillators
from the coherent domain, i.e., there is an intersection of the red and black sets (inset
in Fig. 4e).When the interlayer coupling increases, themost part of the solitary nodes
disappears but the remaining nodes are not synchronized with those in the first ring
(Fig. 4f and g). A further increase in sv does not lead to the observation of a more
synchronous mode of oscillations of the second ring with the first one, but, on the
contrary, leads to the fact that the phase portraits of the elements change greatly and
the rings are never synchronized (for example, Fig. 5).

Let us pay attention to the change in the global interlayer synchronization error δ

as sv increases (Fig. 4a).Within the interval sv ∈ [0; 0.2], the dependence has several
minima and maxima and does not smoothly decrease when sv grows. This is due to
the fact that initially, under the influence of the first ring, the chimera state in the
second ring is gradually destroyed (the first minimum is at sv ≈ 0.04). Then a lot of
solitary nodes appear in the second ring,which do not correspond to the solitary nodes
in the first ring and are not synchronized with them (maximum is at sv ≈ 0.055) (see
Figs. 1a and 4d). Afterwards, the solitary nodes gradually disappear with increasing
coupling strength (minimum is at sv ≈ 0.11). Finally, the solitary nodes in the second
ring correspond to the same oscillators as in the first ring (maximum is at sv ≈ 0.2)
(see Figs. 1a and 4f), and the rings are partially synchronized with a further increase
of the coupling strength sv . However, even for a rather strong coupling strength
sv , even effective external synchronization is not observed in the network (1) since
δ > 0.01.
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Fig. 4 Numerical results for the case when the first ring (solitary states) is unidirectionally coupled
with the second one (chimera state) via the slow variables: sv �= 0, su = 0, cu = 0, cv = 0. a
Dependence of δ (3) on the interlayer coupling strength sv plotted for 5 different sets of random
initial conditions in each ring (marked by different colors). b–g Dynamics of the second ring for
increasing sv : 0.025 (b, c), 0.062 (d, c), 0.5 (f, g). b, d, f Snapshots of variables u2i , c, e, g mean
phase velocity profiles w2i and phase portraits for all ring elements (insets (u2, v2)): black lines
indicate the coherent dynamics, red curves correspond to the solitary nodes. Other parameters:
σ = 0.3, P = 105, φ1 = π/2 − 0.2, φ2 = π/2 − 0.04, ε = 0.05, a = 0.5, and N = 300

Fig. 5 Dynamics of the second ring under the unidirectional impact from the first ring at sv = 1.446
(su = 0, cu = 0, cv = 0). a Snapshots of variables u2i , bmean phase velocity profilesw2i and phase
portraits for all ring elements (insets (u2, v2)): black lines indicate the coherent dynamics, red curves
correspond to the solitary nodes. Other parameters are as in Fig. 4
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4.2 Impact of Chimera on Solitary States

Finally, we explore the network (1) dynamics when the driver layer (the second
ring) exhibits the chimera state. In this case, the network dynamics is similar to that
which is observed when the unidirectional coupling is executed via the fast variables.
The solitary nodes in the first ring gradually disappear as the coupling strength cv

increases (Fig. 6b and c), and the snapshots of the first ring dynamics (Fig. 6d and e)
consist of incoherent and coherent parts, that is related to the chimera state. However,
even with a strong coupling, in the presence of a well-developed chimera state in
the first layer, the frequency profile demonstrates only a barely noticeable arc-like
structure (Fig. 6f and g). Synchronization between the rings is not achieved even for
a very strong interlayer coupling: the global interlayer synchronization error never
goes below 0.1 (see Fig. 6a). However, for certain sets of random initial conditions
in each ring, the values of δ can be lower than for the other sets (see the blue line in
Fig. 6a).

Fig. 6 Numerical results for the case when the first ring (solitary states) in the network (1) is driven
by the second ring (chimera) via the slow variables: cv �= 0, sv = 0, su = 0, cu = 0. a Dependence
of δ (3) on the interlayer coupling strength cu plotted for 5 different sets of random initial conditions
in each ring (marked by different colors). b–g Dynamics of the first ring in (1) for increasing cv :
0.025 (b, c), 0.223 (d, c), 1.6 (f, g). b, d, f Snapshots of variables u1i , c, e, g mean phase velocity
profiles w1i and phase portraits for all ring elements (insets (u1, v1)): black lines indicate the
coherent dynamics, red curves correspond to the solitary nodes. Other parameters are as in Fig. 4
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5 Conclusion

In this paper we have presented results of numerical simulation of a two-layer mul-
tiplex network of unidirectionally coupled rings of FitzHugh-Nagumo oscillators.
Our studies have shown that in the case of unidirectional coupling via the fast vari-
ables (activators), it is possible to suppress both chimera states and solitary states and
establish a different spatiotemporal regime. However, with external synchronization
of solitary states, the global interlayer synchronization error shows a stronger simi-
larity between the rings than in the case of synchronization of chimera states. This
fact is easily explained by the structure of these states. Since the oscillators in the
coherent cluster are synchronized more easily, it is natural to assume that the solitary
states will demonstrate a higher degree of synchronization.

In the case of unidirectional coupling between the FitzHugh-Nagumo rings via
the slow variables (inhibitors), although the initial structure of the ring is rapidly
destroyed under external influence, the structure of the driver layer can be only par-
tially reproduced in the response layer. This fact is confirmed by the global interlayer
synchronization error which does not fall below 0.01.

Thus, our studies have shown that both solitary states and chimera states can be
suppressed when the two layers are unidirectionally coupled via both the fast and
the slow variables. The response layer reproduces the structure of the driver layer
instead of its own. However, the effect of external synchronization (both effective
and complete) is observed only when the layers are coupled via the activators. These
studies can be useful in practical applications when it is needed to suppress one
of the structures and establish another one. Thus, one can control the dynamics of
multilayer networks.
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