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Abstract The main goal of the work is to clarify the consequences arising from the
disregard of the law of the angular momentum as an independent law. As a result,
some of the collective effects in mechanics are not taken into account but they are
essential. The main laws in physics and mechanics are the laws of conservation of
mass, momentum, energy, angularmomentum, charge, and some others. In the article
it is shown that the sum of the forces is insufficient for a complete description of the
interacting particles. Any redistribution of particles is accompanied by the emergence
of collective effects, which is associated with the action of the angular momentum
and, consequently, with the action of an additional force. The effect always manifests
itself, regardless of the branch of science: the formation of fluctuations, structures,
quantummechanics and some others. When constructing a theory, it is impossible to
restrict oneself to potential forces that depend only on the distance between particles,
since when the particles move, the center of inertia shifts, forming a moment. In
continuum mechanics, for example, the stress tensor loses its symmetry for this
reason.
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1 Introduction

Classical mechanics deals with material points and, as a rule, with closed systems.
The definition of material points in mathematics and physics is different. The main
equation in theoretical mechanics is the Liouville equation, which describes the
motion of a system of material points of a closed system. Collective interactions
occur through an external force, but the main interaction is the binary interaction
of particles. The initial and boundary conditions are not considered, although the
impossibility of considering them is stipulated due to the huge number of particles.
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However, Hamilton’s formalism is legitimate to use in the case of a no dissipative
system, when there is no dependence on the velocity, which is not observed in the
presence of disturbing surfaces or under conditions of large gradients of velocities,
temperatures, densities, or other characteristics. Using the formalism of Bogolyubov
[1], for certain conditions the Boltzmann equation is derived. When deriving the
Boltzmann equation and other kinetic equations, the assumption is made that the
process is “Markov”, that is, there is no dependence on the “past”. In reality, however,
it is partially manifested through flows at the border. The effect of the boundary is
essentially visible in the calculations by the molecular dynamics method and in the
numerical solution of the Boltzmann equation [2].

The solutions coincide if a large number of particles are taken and there are no
flows across the border. Thus, the Boltzmann equation takes into account the change
in state only within the elementary volume. Therefore, it is only suitable for small
gradients. In addition, the Boltzmann equation does not fulfill the law of conservation
of angular momentum. In the same work, the validity of Hilbert’s hypothesis is
proved about the dependence of the distribution function on time only through the
dependence on macroparameters. The Navier-Stokes (Barnett, etc.) equations are
derived from the Boltzmann equation by the Chapman-Enskiy method or by some
other method, and the continuity equation is determined, which coincides in form
with the Liouville equation. Thus, the consistency of the whole theory is proved. The
concepts of “closed” and “open” systems are introduced on the example of systems
of “particles”, themotion of which is described by the reversible Hamilton equations.
These include, for example, the “Boltzmann” gas—a system of “structureless atoms”
[3]. However, the “mathematical” and “physical” points are very different. While
we are considering a “mathematical point” we are not very interested in whether
it rotates or not. For a physical “point”, both its rotation and the structure of the
“point” under consideration are important. It is known that the moment of force
(angular momentum) is responsible for rotation. The role of the angular momentum
is manifested in all processes associated with the uneven distribution of particles or
their physical parameters. Themagnitude of the additional force is determined by the
value of the gradient of physical quantities (density, speed,momentum, temperature).
The action of the angular momentum, i.e. moment of forces essentially depends on
the position of the axis of inertia (center of inertia). The angularmomentum is a vector
quantity. Additive schemes for calculating intermolecular interactions, in which non-
additivity is included in the parameters of atom-atomic potentials, does not take into
account the entire variety of conditions.

Analysis of the parameters included in the description of the rarefied gas flow
showed that for the equilibrium distribution function the ratio of the gas mean free
path l to the characteristic macro length d [4]:

for 37% of trajectories l/d > 1.0,
for 90% of trajectories l/d > 0.1,
for 99% of trajectories l/d > 0.01, etc.

The commonly used criterion l/d > 1.0, indicated above, takes the form Kn > 1;
Kn= 1.0 means that l/d > 1.0 for only 37% of the trajectories, which does not satisfy



The Role of the Angular Momentum in Shaping Collective Effects 349

the condition l/d > 1.0, while Kn = 10 satisfies the condition l/d > 1.0 for 90% of the
trajectories, and Kn = 100—for 99%.

The theory originally proposed for the solution of relaxation problems is extrapo-
lated to the solution of problems associated with gas dynamics, including for solving
problems of gas flow near the surface. Limitations of the scheme N. N. Bogolyubov
stipulated by the author himself and is associated with the fulfillment of the condi-
tions for theweakening of correlations, the existence of four characteristic time scales
(respectively, spatial scales), a particular class of solutions for the s-particle distribu-
tion function as a function that depends on time through a single-particle distribution
function fs(t) = fs( f ), binary central interactions providing the law preserving the
angular momentum in collision integral, the potentialU rapidly falling with distance,
the dominance of volume effects and neglect borders.

Potential of interaction of molecules � = �|r − r0|. An additional implicit
assumption is the weak deviation of the distribution function from the equilibrium
state. For relaxation problems and elastic collisions, all assumptions are satisfied.
The case is excluded when the characteristic relaxation times of the single-particle
F1 and the two-particle F2 are commensurable. It should be noted that for molecules
with amore complex interaction potential depending on the angle, averaging over the
angle is performedbefore calculating the collision cross section (potential averaging).
There are no studies concerning the influence of the permutation of the operations
of averaging the collision cross section and the potential. Here f is the distribution
function in the phase γ-space.When deriving themodified equation, the designations
will remain generally accepted, that is, r is the radius vector; x—point coordinate; ξ is
the velocity of the point, m is themolecular weight, and, according to the definition of
the distribution function fN , the probability of finding the system at the points (xi , ξi )
in the intervals dxidξi is fN (t, x1, . . . , xN , ξ1, . . . , ξN )dx1, . . . , dξ1, . . . , dξN ).

When calculating macroparameters through the distribution function and
projecting values on the coordinate axis, the symmetry of some quantities may be
violated. This can happen when calculating the pressure and the pressure tensor:

Pi j = m ∫ cic j f (t, x, ξ)dξ. The symmetry of the stress tensor is postulated on the
basis of this form.

In aeromechanics, the projections of the calculated values are used, and not the
indices of the velocities included in the formula. Therefore, there is no way to speak
unambiguously about symmetry. Symmetry will be observed provided that the rota-
tion of the elementary volume is canceled. The Navier-Stokes equations are obtained
under the indicated condition.

An important difference between the interaction of gas and plasma molecules is
the long-range nature of the interaction of plasma molecules. A distinctive feature
of plasma is a combination of properties characteristic of both a continuous medium
(long-range nature of the Coulomb interaction) and systems of individual particles.
Therefore, the kinetic theory of plasma differs from the kinetic theory for gas. As
we have already noted, there are significant differences in the definitions of math-
ematical and physical points. Hence, it became necessary to develop a generalized
kinetic theory. The need for general definitions of physically infinitesimal scales has
matured and is currently given, for example, in [3]. Fluctuations of particles in a liquid
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play a separate and important role. Their behavior is also determined by collective
interactions. The nature of the interaction differs from the interaction of molecules
in a gas and from the interaction in a plasma. It should be noted that the generally
accepted kinetic equations, by virtue of considering only the translational motion of
themedium, without taking into account rotation and fluxes through the boundary, do
not take into account the action of the moment of force and diffusion fluxes through
the boundaries. The need to take into account certain effects depends on the specific
task. For example, when considering waves in a “cold” isotropic plasma, it is not
necessary to take into account the angular momentum and diffusion. In any case, the
absence of motion of heavy particles also does not require taking into account the
moment and diffusion. The movement of electrons alone does not create a change
in the position of the center of inertia (due to the difference in masses) if there is no
movement of the ions. When considering the Landau collision integral (the kinetic
equation for a weakly interacting gas, including a Coulomb plasma), it is necessary
to take into account the influence of the moment. The question of Landau damping,
which consists in the damping of a perturbation in a plasma as it propagates from
the point of origin, despite the collisionless (without binary collisions) nature of the
interaction of molecules, requires additional research. This work is devoted to the
study of the influence of the angular momentum in collective interactions.

2 Kinetic Equations

The classical derivation of the Boltzmann equation is to write the particle balance in
terms of the relation for the one-particle distribution function

f (t + dt, r + ξ idt, ξ i + Fidt)d rdξ i = f
(
t, r, ξ i

)
drdξ i +

(
∂ f
∂ t

)

col l
dt

The latter is often written in the form

f (t + dt, r + ξ i d t, ξ i + Fi dt) = f
(
t, r, ξ i

) +
˜

(
∂ f
∂ t

)

col l
d t.

where (
∂ f
∂t )coll , (

∂ f̃
∂t )coll—are the collision integrals written in different phase spaces.

Outwardly, these equalities are identical, however, the second relation is fulfilled
at the times of interaction of molecules and all interactions are correlated. For gas-
dynamic problems, the characteristic length of the elementary volume, for which
equality (2) is written, equal to cm is small and the requirement for a large number
of particles in the elementary volume is not fulfilled for altitudes of 120–300 km
in the earth’s atmosphere. Indeed, the required minimum size is 10−3 cm. Since,
N = πR2 · ξ · τ · n, here R is the radius of the cylinder of the elementary volume; τ
is themean time of free path, then for statistical independence the number of particles
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N must be at least 100. Then, i.e. see. In addition, the possibility of reducing the
characteristic size is limited not only by the limited computer memory, but also by the
limits of applicability of the model [5, 6], as well as by the growth of computational
errors. In this equation, it is assumed that the elementary volume does not rotate and
there are no incoming particles through the side surfaces.

When working with a physical elementary volume, it is necessary to take into
account the action of the angular momentum responsible for rotation, and due to the
finite value of the radius, it is necessary to take into account the arrival of molecules
with a selected speed due to diffusion.We consider the hydrodynamic approximation,
assuming the definition of a point in terms of the mean free path.

The usual transition to the Boltzmann equation involves expanding the function
in a series and obtaining the following equation

(
∂

∂ t
+ ξ i∇r + Fi∇i

)
f
(
t, r, ξ i

) =
(

∂ f
∂ t

)

col l
d t = I

Taking into account rotation and diffusion, the equation () has the form

f (t + dt, r + ξ idt + r × ω, ξ i + Fidt + ∂M

∂r
dt)d rdξ i

+ G2

(
t + dt, r + ξ idt + r × ω, ξ i + Fidt + ∂M

∂r
dt

)

= f
(
t, r, ξ i

)
drdξ i + G1

(
t, r, ξ i

) +
(

∂ f
∂ t

)

col l
dt.

M is the moment associated with the collective action of all particles on each other as
a result of the displacement of the center of inertia,which is the result of themovement
of particles with different speeds. G1 and G2—flows through the boundaries of the
considered elementary volume. Let’s calculate these values.

G1 = mξ i
∂ f
∂r .

Accounting for flows across the border (G1,G2) leads to the equations of
Vallander [7, 8]

Here E is the internal energy, E = cvT , where cv is the heat capacity coefficient

Qx = D1
∂ρ

∂x
+ D2

dT

dx
, Qy = D1

dρ

dy
+ D2

dT

dy
, Qz = D1

dρ

dz
+ D2

dT

dz
,

tx = k1
dρ

dx
+ k2

dT

dx
, ty = k1

dρ

dy
+ k2

dT

dy
, tz = k1

dρ

dz
+ k2

dT

dz

D1 = μ

ρ
α1, D2 = μ

T
α2, k1 = μcvT

ρ
, k2 = μcvβ2, λ = αμ,

where α1, α2, k1, k2 are numerical constants depending on the type of gas.
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Qx , Qy, Qz are the mass fluxes across the face perpendicular to the coordinate
axes of the moving gas with the velocity V , ρ-density, D1, D2 are the coefficients of
self-diffusion and thermal diffusion,k1, k2 are the thermal conductivity coefficients,
and R is the gas constant.

Here I consider it necessary to add to these equations a term related to the velocity
gradient (bulk viscosity D3), so that Qx = D1

∂ρ

∂x + D2
dT
dx + D3

∂u
∂x . The rest of the

values change in the same way. Let us recall the difference between the values
obtained through the distribution function and by the molecular dynamics method
[9–12].

The general formula for the distribution function (dependence on r).

f = f (t, r(t), ξ(t))

∂ f

∂t
|r=const == ∂

∂t

∑n
i=1 δ(r i−r)

∑N
i=1 δ(r i−r)

.

By construction δ(r i−r)− depends on t only through the r i (t)−r(t). Here n is
number molecules in elementary volume, N− in full volume.

A more complex option when there are time-dependent flows across the border

1. Without flow across the border

F1

F3
− F2

F4
=

∑n
i=1 δ(r i−r) + ∑n

i t ∂δ(r i−r)
∂t + . . .

∑N
i=1 δ(r i−r) + ∑N

i t ∂δ(r i−r)
∂t + . . .

−
∑n

i=1 δ(r i−r)
∑N

i=1 δ(r i−r)

≈
∑n

i=1 δ(r i−r) + ∑n
i t ∂δ(r i−r)

∂t + . . .
∑N

i=1 δ(ri−r)

(

1 −
∑N

i t ∂δ(r i−r)
∂t + . . .

∑N
i=1 δ(r i−r)

)

−
∑n

i=1 δ(r i−r)
∑N

i=1 δ(ri−r)

≈
∑n

i t ∂δ(r i−r)
∂t + O((t)2

∑N
i=1 δ(r i−r)

∂δ(r i−r)
∂t − thus, when solving the Boltzmann equation, the time derivative of distri-

bution function will indeed be determined by the dependence through the macro
parameters. This approximation, which is made in the theory of rarefied gas in the
construction of the Enskog-Chapman solution

2. If there is a flow across the border, depending only on time. The force is not.

F1
F3

− F2
F4

=
∑n

i=1 δ(r i−r) + ∑n
i t ∂δ(r i−r)

∂t + ∑
j
p jt
m δ

(
r j−r

) + ∑
j
p j
m t2

∂δ(r j−r)
∂t + . . .

∑N
i=1 δ(r i−r) + ∑N

i t ∂δ(r i−r)
∂t + ∑

j
p j
m δ

(
r j−r

) + ∑
j
p j
m t

∂δ(r j−r)
∂t + . . .

−
∑n

i=1 δ(r i−r)
∑N

i=1 δ(ri−r)
.
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∑
j
p j

m δ
(
r j−r

) = J2 − J1—is a flow of fast molecules from neighboring cells.
The first two terms correspond to the number of molecules in the volume and their
motion. Thus, for large gradients the role of flows across the border is increasing.
The distribution function can no give a correct contribution to the distribution of
molecules. We need in large number particles in elementary volume. There remains
the method of molecular dynamics with a very small time step.

Most often, the kinetic Boltzmann equation is taken as the initial one, and one
of the variants of the perturbation theory in a small parameter is used to pass to the
aeromechanical equations. As we can see, the Boltzmann equation, depending on the
problem, requires modifications, since it does not fulfill one of the laws of theoretical
mechanics, the conservation law of angular momentum. For the obtained equations,
for example, for Navier-Stokes, additional assumptions are made: discarding the
rotational velocity component and using Pascal’s law obtained for the equilibrium
case to nonequilibrium flows. As a result, the pressure becomes a scalar. Using the
Boltzmann equation, we obtain an equation for the internal stress tensor. Here, the
gas-dynamic functions ρ, u, T are the moments of the velocity v or the deviation of
the velocity from its mean value: δv = v − u.

Pi j (r, t) = mn ∫ δviδv j f (r, p, t)dp,

(
∂p

∂t
+ uk

∂p

∂rk
+ 5

3

∂uk
∂rk

)
δi j + p

(
∂ui
∂r j

+ ∂u j

∂ri
− 2

3
δi j

∂uk
∂rk

)

= mn ∫ δviδv j IB(r, p, t)dp,

Pi j (r, t) = δi j p(r, t) + πi j

Pascal’s formula does not follow from the formula and pressure is not defined as
1/3 of the sum of the pressures on the coordinate pads. An interesting feature of the
all research is the emphasis on the openness of the considered elementary volumes
and, despite the “openness”, the use of conservation laws for closed volumes. For
example, the law of conservation of energy. We have already shown that the distribu-
tion function gives an idea of a probabilistic state in an elementary volumewithout the
influence of boundaries and, therefore, information about flows across the boundary
is lost. In addition, information about the “rearrangement” of the arrangement of
molecules due to the influence of the motion of the center of inertia is lost. These
collective effects should be taken into account whenwriting kinetic equations and for
equations of a continuous medium. “A unified description of kinetic and hydrody-
namic processes” [3] requires the same correction. In this case, there is no contradic-
tion between the kinetic equations, the equations for fluctuations, the Fokker-Planck
equation, and the Landau damping in plasma. It is essential that these terms are not
included in the collision integral. Formally, the equation is without dissipation and
is reversible, but in fact the diffusion flows have dissipative properties. It should be
recalled that to satisfy Hilbert’s hypothesis, one should take the macroparameters
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of the modified Navier-Stokes equation in the solution for the locally equilibrium
function, but not Euler to match the orders of approximation in the Chapman-Enskiy
solution. In addition, the definition of pressuremust be changed and a torque gradient
must be entered. Then the nonequilibrium.

Chapman-Enskiy solution implies the existence of a vector distribution function,
which is observed in numerical calculations when solving the Boltzmann equation
[10], the proof of this is the different temperature values along the coordinate axes.

Recall that the stress tensor is not symmetric and the symmetry condition for the
stress tensor is one of the conditions for closing the problem; to fulfill the condition,
it is required to discard the rotation of the elementary volume. For numerical calcu-
lation, the latter simplifies programming only slightly. The classic Chapman-Ensky
solution is given below.

n f (r, p, t) = ρ/m

(2πmkbT )3/2
exp

[
− (p − mu)2

2πmkbT

]
×

[
1 + πi j

2p

mδvi δv j

3kbT
+ m(δvi q)

pkbT

(
m(δv)2

3kbT
− 1

)]
.

Changes in the values will be in the macroparameters of the local equilibrium
distribution function, the collision integral will not change. In kinetic theory, when
considering the role of delay for rarefied gas, one must understand the question
of what is measured in the experiment: instantaneous values or averages. If the
experiment deals with average values, then it is important to choose the time and
scale of averaging. At the agreed times, in this case, it is not necessary to take into
account the delay, except for the cases of commensurability of the relaxation and
retardation times.

3 Damping of Longitudinal Oscillations of an Electron
Plasma (Landau Damping), Kinetic Equations
of Langevin and Fokker-Planck

Let us consider oscillations in a plasmawithout collisions, that is, let us proceed to the
study of waves propagating in a plasma, the frequency of which is high in comparison
with the frequency of pair collisions of electrons and ions. In this case, there are
several options to consider. Landau collisional damping for large Knudsen numbers;
for small Knudsen numbers in unbounded plasma; for small Knudsen numbers in a
confined plasma. They differ from each other. When studying oscillations, we will
consider small deviations from equilibrium [3, 13–18].

Since we are interested in wave attenuation, we need to consider the plasma
dielectric constant ε, which is determined by the attenuation coefficient γ. First,
let’s trace the waves in the “cold” isotropic plasma. The variant corresponds to the
“collisionless” wave approximation. In this case, the Maxwell distribution functions

f (0)
e = 1

(2πmekbT )3/2
exp

(
− p2

2mekbT

)
, fi (p) = δ(p).

rD
l

� λ

l
� 1,
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the damping is determinedbydiffusion, but not by theLandaudamping.The influence
of the thermal motion of plasma particles on such oscillations is always small [3].

Here f (0)
e is the equilibrium distribution function, l is the mean free path rD is

the Debye radius, λ is the wavelength, the rest of the notation is generally accepted.
Consider an unbounded plasma for small Knudsen numbers l � λ. Diffusion works
here as well. Let us consider the dispersion and damping of longitudinal oscillations
of an electron plasma under the influence of the thermal motion of plasma particles.
Let us investigate a variant of a limited plasma, a free-molecular flow with a region
of wavelengths (values of wave numbers) for which the contribution corresponding
to Landau damping is the main one.

l → L(l � L), rD � γ � √
rDL (rD � L � l)

We must use the Vlasov kinetic equations [18] with a self-consistent field. Since
we are interested in high-frequency oscillations, for which ωτ � 1, where τ is
the average time between pair collisions of particles, we can ignore the integrals
of particle collisions in the kinetic equations. Longitudinal oscillations of an elec-
tron plasma in the classical case are described by the following two equations
(collisionless case, Vlasov equation)

∂δ f

∂t
+ v

∂δ f

∂r
+ eδE

∂ f0
∂p

= 0,

divδE = 4π ∫ dpδ f.

εl(ω, k)e ∫ dpδ f (p, k, ω) = i ∫ dre−ikr e ∫ dp
δ f (p, r, t0)

ω − kv
.

Suggested variant is

∂δ f

∂t
+ v

∂δ f

∂r
+ eδE

∂ f0
∂p

+ ∂δM

∂r

∂ f0
∂p

+ ∂

∂r
D

∂δ f

∂r
= 0,

divδE = 4π ∫ dpδ f.

εl(ω, k)e ∫ dpδ f (p, k, ω) = i ∫ dre−ikr e ∫ dp
δ f (p, r, t0)

ω − kv

+ i ∫ dre−ikr ∫ dp
δM(p, r, t)

ω − kv

∂ f0
∂p

.

Qualitatively, we can say that for this case, diffusion plays a small role and, since
part of the energy is converted into rotational motions (the action of the moment), the
reversible operator will act as a dissipative one. Note that at the initial moment, the
distributed moment of force also exists and concentrates a certain amount of energy.
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Formonochromaticwaves of large amplitude, the action can lead to the formation of a
vertical velocity component, forming complex plane flows. Despite the collisionless
nature of the movement binary collisions exist, as follows from the table of mean
free paths presented in the introduction. They create additional dissipation. It should
be noted that the generalized equation for a unified description of kinetic and gas-
dynamic processes is suitable for “weak” interactions. As before, the contribution of
the angular momentums in the motion of molecules is not taken into account. Most
likely, the difference between the most probable and average values is due precisely
to the lack of taking into account the rotational movements for which the moment
is responsible. Similar effects will be essential for Brownian motion. The theory
of Brownian motion is one of the main branches of the statistical theory of open
systems. Fluctuation (from Latin fluctuation—fluctuation)—any random deviation
of any value. In mechanics, a deviation from the mean value of a random variable
characterizing a system of a large number of chaotically interacting particles. In the
theory of Brownian motion elementary objects are small particles, while in kinetic
theory, themain objects aremolecules. Bothmodels aremacromodels, but the level of
description of the structure of the environment is different. Fluctuations exist both in
nonequilibriumstates and inunsteadyprocesses; in their absence, relaxationwouldbe
a “smooth” process and they could be described by single-valued functions of time.
The presence of thermal fluctuations causes random deviations of real processes
from such a “smooth” flow. The kinetic equation corresponds to a more detailed
description. We believe that the environment is in equilibrium. We will consider
two approaches to solving problems: the equation for a single particle and for an
ensemble of particles (the Fokker-Planck equation) To take into account the atomic
structure of a liquid, Langevin introduced an additional force into the equations of
motion

FL = My(t), F = −Mγ v, γ = 6πa

M
η, η = ρν.

Equations
dr
dt = v,

dp
dt + γ p = F0 + My(t), F0 = −gradU. F0− external force.

〈yi (t)〉,
〈
yi (t), yi

(
t ′
)〉 = 2Dδi j

(
t − t ′

)
, the coefficient D was determined by

Einstein.
First, about a single particle. Let us repeat the reasoning performed in [3, 19],

but replace y (t) with the moment of force Mi calculated for a given period of time.
It can be calculated using the operation algorithm. As before, we assume that the
characteristic correlation time of the values of the Langevin force is τ L

cor � τrel = 1
γ
.

As a result, we arrive at an expression for two time moments:

〈Mi (t)〉 = 0,
〈
Mi (t)Mj

(
t ′
)〉 = 2Dδi j

(
t − t ′

)
.

D = γ kbT
m —Einstein’s coefficient, parenthesis means a function from a function

(functional).
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When using the kinetic description of Brownian motion, it is necessary to intro-
duce an ensemble of noninteracting Brownian particles—he corresponding Gibbs
ensemble. In this case, we represent the ensemble of Brownian particles as a contin-
uousmedium.However, the difference lies in the use of the “Hamiltonian” formalism
for moving particles; for a continuous medium, in this case, the Langevin equation
is used. The kinetic classical Fokker-Planck equation has the form [18, 19]

∂ f

∂t
+ v

∂ f

∂r
− 1

M

∂U

∂r

∂ f

∂v
= D

∂2y

∂v2
+ ∂

∂v
(γ v f ).

The equation of A. Vlasova

{
∂ f

∂t
+ v

∂ f

∂r
+ e

(
E + 1

c
[vB]

)
∂

∂p

}
F(r, p, t) = 0.

Here E, B are the total electric and magnetic fields, which are composed
of external and self-consistent fields generated by plasma particles. They satisfy
Maxwell’s equations.

In the classical case, equilibrium is possible between Brownian particles and the
medium; the particles can be distributed evenly [20]. However, such an assumption
can be considered unlikely due to the distribution of particles over velocities and the
formation of new moments for individual particles due to the motion of the center
of inertia. The fact is that in this case the action of the moment creates a force that
distributes the particles not only in terms of velocities, but also in coordinates. The
proposed modified Fokker-Planck equation has the form:

∂ f

∂t
+ v

∂ f

∂r
− 1

M

∂U

∂r

∂ f

∂v
+ 1

M

∂M

∂r

∂ f

∂v
= D

∂2y

∂v2
+ ∂

∂v
(γ v f ).

Thus, in the kinetic theory for a gas, for the Landau damping and the motion of
Brownian particles, the nonuniform distribution of particles in velocities and coor-
dinates is supported by the angular momentum and creates fluctuations in physical
quantities that must be taken into account. Consider the consequences associated
with taking into account the moment in the mechanics of a continuous medium.

4 The Influence of the Angular Momentum
in the Equations of Continuum Mechanics

Conservation laws were obtained experimentally and therefore were originally
written in integral form. Differential laws are obtained in two ways: using the finite
volumemethod for an elementary volume and using theOstrogradskyGauss theorem
by replacing the surface integral to the volume integral, that is, taking the integral
by parts with further use of the theorems on the conditions Integral turning in zero.
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Usually the derivation of conservation laws is analyzed using the Ostrogradsky-
Gauss theorem for a fixed volume without moving. The theorem is a consequence of
the application of the integration in parts at the spatial case. In reality, in mechanics
and physics gas and liquid move and not only progressively, but also rotate. Let us
consider the consequences that arise from the generally accepted conservation laws
in the mechanics of a continuous medium and which do not correspond to classical
theoretical mechanics and mathematics. The speeds of various processes at the time
of writing the equations were relatively small compared to modern ones. In further
studies, the scope of the theory developed for potential flows to flows with significant
gradients of physical parameters was expanded. It was based on the laws of balance
of forces, the law of conservation of moment was considered as a consequence of
the fulfillment of the law of balance of forces. Allocating the rotational velocity
component and ignoring it leads to a symmetric stress tensor. The symmetric tensor
is obtained only if the rotational velocity component is neglected. However, this
variant of closing the problem is one of the possible variants of solving the system
of three equations in the plane case for four unknowns [9–11]. A similar conclusion
can be made for the three-dimensional case. For modern computer technology, it is
possible to solve the complete equations of fluid mechanics, rather than truncated
ones (like Navier-Stokes). From the definition of pressure, both from the classical
Boltzmann equation and the modified one, it does not follow that the hydrostatic
pressure is one third of the sum of the pressures on the coordinate areas. Using
Pascal’s law for equilibrium, the pressure is chosen equal to one third of the pressure
on the coordinate pads. However, the theory remains the same when determining
the different pressure on each of the sites, i.e.px, py, pz. The use of one pressure is
possible under equilibrium conditions (Pascal’s law), but for nonequilibrium condi-
tions the fact is not obvious. Neglecting outside the integral term when taking inte-
grals by parts (the Ostrogradsky-Gauss theorem) is possible only for slow laminar
flows. Writing out separately the law of equilibrium for forces and separately for
moments of forces without taking into account the mutual influence, although the
moment creates an additional force, we come to the conclusion about the symmetry
of the stress tensor. If we consider different pressures in different directions, we
lose a moment of force, but the pressure gradient is a force. The proposed modified
equations of continuum mechanics include the action of the moment and are given
in [9–11] and new equations:

ρ(
∂u

∂t
+ u

∂u

∂x
+ ν

∂u

∂y
+ w

∂u

∂z
) = ρ f1 + ∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
+ ρ fMx

ρ(
∂ν

∂t
+ u

∂ν

∂x
+ ν

∂ν

∂y
+ w

∂ν

∂z
) = ρ f2 + ∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
+ ρ fMy ,

ρ(
∂w

∂t
+ u

∂w

∂x
+ ν

∂w

∂y
+ w

∂w

∂z
) = ρ f3 + ∂σ

∂x
+ ∂Pσyz

∂y
+ ∂σzz

∂z
+ ρ fMz ,

y(
∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
+ ρ f3) − z(

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
+ ρ f2)



The Role of the Angular Momentum in Shaping Collective Effects 359

+ σzy − σzy + +Mx = 0,

x(
∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
+ ρ f2) − y

(
∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
+ ρ f1

)

+ σyx − σxy + +My = 0,

x(
∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
+ ρ f1) − z(

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
+ ρ f2)

+ σzx − σxz + +Mz = 0.

Here all designations are standard, fMx , fMy , fMz forces created by the
moment,Mx , My, Mz are external moments.

5 Conclusion

The paper proposes to take into account the influence of the angular momentum
(force) in kinetic equations and in stochastic processes. The definitions of a material
point in mathematics and physics are different. As a result, some of the collec-
tive effects in mechanics are not taken into account. The main laws in physics
and mechanics are the laws of conservation of mass, momentum, energy, angular
momentum, charge, and some others. In the article it is shown that not all of the
forces are enter for a complete description of the interacting particles. Any redis-
tribution of particles is accompanied by the emergence of collective effects, which
is associated with the action of the angular momentum and, consequently, with the
action of an additional force. The effect always manifests itself, regardless of the
branch of science: the formation of fluctuations, structures, quantum mechanics and
some others. When constructing a theory, it is impossible to restrict oneself to poten-
tial forces that depend only on the distance between particles, since when the parti-
cles move, the center of inertia shifts, forming an angular momentum. In continuum
mechanics, for example, the stress tensor loses its symmetry for this reason. Some
modification of the theory is suggested.
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