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The Higgs Boson and the Higgs Field )
in Fractal Models of the Universe: oo
Supermassive Black Holes, Relativistic

Jets, Solar Coronal Holes, Active

Microobjects

Valeriy S. Abramov

Abstract To describe the masses of black holes, their relationships with the param-
eters of the Higgs boson, models based on the distribution density functions of the
number of quanta in the ground and excited states for relic photons, and on the
basis of the density distribution functions of the radiation intensity are proposed.
It is proposed to represent the central region of a supermassive black hole near the
upper mass boundary as a Bose condensate from black holes. Various states for a
black hole with an intermediate mass are introduced. The following estimates have
been made: masses for light black holes, binary and supermassive black holes; the
speeds of motion of relativistic jets (emissions of matter); widths of active regions
of coronal holes on the Sun; a number of parameters of active microobjects. These
estimates are consistent with experimental data.

Keywords Supermassive black holes - Bose condensate from black holes - Higgs
boson - Relic photons + Relativistic jets - Coronal holes on the Sun - Active
microobjects

1 Introduction

Roger Penrose, Reinhard Henzel, Andrea Ghez are the laureates of the 2020 Nobel
Prize in Physics. Using the general theory of relativity, Penrose theoretically predicted
the gravitational collapse of massive stars, space—time singularities, and the birth of
black holes [1, 2]. Genzel and Ghez discovered and described a supermassive black
hole in the center of our Milky Way galaxy [3, 4]. Earlier Thorne [5] showed that a
star can collapse under the influence of its own gravity: the space around it becomes
curved, the star disappears and a black hole appears. It has been experimentally
established, that the merger of two black holes [6], two neutron stars [7] is accompa-
nied by the emission of gravitational waves. In [8, 9], a description of the parameters
of gravitational waves, relict photons and their relations with the parameters of the

V. S. Abramov (<)
Donetsk Institute for Physics and Engineering Named After A.A. Galkin, Donetsk, Ukraine
e-mail: vsabramov2018 @gmail.com
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Higgs boson was carried out in the framework of the Dicke superradiance model.
In this case, supernonradiative states of gravitational fields are possible [10, 11].
However, the mechanisms of transitions from black holes with light masses (of the
order of 29 — 32 M, [6, 7], where M, is the mass of the Sun) to supermassive (of
the order of 4 — 5 x 10° M, [3, 4]) and relativistic (of the order 10'! M,) black
holes have not yet been described. The creation of such theoretical models requires
taking into account stochastic processes, the mass distribution functions of black
holes in the Universe, the effect of ordering operators and the presence of qubit
states [12, 13] for binary black holes and neutron stars. It also becomes necessary
to describe the ejections of matter (relativistic jets) from a supermassive black hole
[14]. The use of experimental methods with high angular resolution [15] makes it
possible to study the nature of the Higgs field by the example of the behavior of solar
active regions (coronal holes). The parameters of active objects are determined by
the connections with the Higgs boson and with the different nature of the Higgs field.
In [16], experimental evidence was obtained for the decay of the Higgs boson into a
lepton pair and a photon, which indicates to the presence of an asymmetry of matter
and antimatter [16, 17]. Experimentally in [18] the processes of formation and decay
of tetraquarks were investigated. The authors believe that the structure of the new
tetraquark contains charmed diquark and antidiquark, which are coupled by gluon
interaction. In [19], a target made of gaseous deuterium was irradiated with a proton
beam and the cross section for reactions with the formation of a helium isotope was
measured. The authors estimated the baryon density for the early Universe during
the process of primordial nucleosynthesis. However, the contributions of nonzero
rest mass antineutrinos to Higgs fields have not been described.

The aim of this work is to describe the parameters of black holes, relativistic jets,
active microobjects, their connections with the Higgs boson and the Higgs field of
various nature (taking into account antineutrinos with nonzero rest mass) within the
framework of a number of fractal cosmology models.

2 Models for Describing Black Hole Masses

In [8, 9] the Dicke superradiance model was used to describe gravitational waves
and relict photons from binary black holes and neutron stars. For the ratio of the
radiation intensities (maximum /,, to initial / (0)) was obtained

Ly/1(0) = (ao + am)(ao — am + 1);  aj = ay, +2,(z), +2)/4;

ar =7 Nea=2yp+7),. (1)
Here 7/, = 1034.109294 and z;, = 7.18418108 are the usual and cosmological

redshifts; the number of relic photons N,, = 1041.293475; intensity ratio [, /1 (0) =

81.06580421. Supernonradiative states (of which the radiation intensity is equal to

zero) were considered within the framework of the models Ay, A; [8, 9]. In the
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model Ay, the characteristic value of the number of bosons in the equilibrium state
Noa = 3.557716045 x 103 was obtained. This made it possible to determine the
characteristic energy Egn = NoaE¢ = 4.311073329 eV, where the rest energy of
the graviton Eg = 12.11753067 peV. In the model A, a characteristic distribution
density function n/zg = 0.114317037 is obtained, where n/zg + |nze| = 1 for Fermi-
type particles. This function allows us to determine the characteristic frequencies

’ *
Vzgs Vigr VDO

ro_ . * ./ .
Ve = NVG0; Vi = vzg/lpm,

Yo1 = €01/ Eno; V6o = Noa - Vpo. )

Here Epg = 125.03238GeV and ¢y = 126.9414849 GeV are Higgs boson
energies obtained without and taking into account the Higgs field; frequency
vgo = 2.9304515 GHz, g = 1.015268884 [8, 9]. Based on (2), we find the
numerical values vgg = 335.0005326 MHz, v}, = 329.9623754 MHz, vpy =
8.236889799 kHz. Our calculated frequency vZ, practically coincides with the
frequency of 330 MHz, at which dark matter dominates from observations of radio
filaments [20].

Model By. Black holes with light masses M}, are described on the basis of spectra
for occupation numbers n, = 1408y, and n’, = naoSw (x = 1,2, 3, 4; spec-
tral parameters S, and Sy, are determined in [8, 9]) within the framework of the
anisotropic model, where the main parameter n,9 = 58.04663887 is determined
based on the expressions

nao = (2,) — 1=, +3/D, —1/2); 2, =2, +1/2

/2, =sing;: nly= ;)% nhy—na =1

‘P,/m =@, 0n2; (Mp1 +np2) —2np4 =ng. 3)

Using the example of binary black holes in [8, 9] and expressions (3), the quanta
number of the second black hole n,, = Mjy/M; = na/2 = 29.02331944,
the first black hole n,; = My /M, = 35.98093926 before their merger was
obtained. After the merger, a black hole is formed with a number of quanta
2np4 = Mpp/M; = 62.0042587 and a number of quanta ng = 1/Qpy = 3 are
carried away by gravitational waves. In the general case, the number of quanta 7 4,
ng and the cosmological redshift z,, determine the number of quanta of the gluon
fieldn, = 2nG/[z;L(z;L +1) —naol. Atng = 3, constant parameters Z;l, from (1), n 49
from (3) we obtain n, = 8. If ng, Z;“ n 40 are variables, then the number of quanta
of the gluon field n, becomes a function of these three arguments, that is typical for
bulk fractal structures of the Universe.

Model B;. To estimate the masses of supermassive black holes, we write down the
basic relations for the energies
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Eno/Ec = Vi9/veo = Nug; Eg/veo = Eno/vye = 27k,
Eno/Eoa = Now;  Eno/eon = Ng,;  Nj, = (1 + nlzg)NOH- €]

Here 7 is Planck’s constant. Taking into account (4), we find the parameters
Nuc = 1.031830522 x 106, Ny, = 2.900261036 x 10'°, N3 = 3.231810284 x
10'°, energy &9, = 3.86880321¢€V. The parameter N, is a function of the main
parameters N4, Noa, Non

Ny = NrgNey = NoaNoy = Npuiyg = NegNoanya;
ch = NOAnra; NOn = Nranra; NDu = NraNOAv (5)

where parameters n,, = 2.785248449 x 107, Np, = 3.704626502 x 108, N, =
9.909123093 x 10'2 are additional. For bulk fractal structures of the Universe, the
main and additional parameters from (5) can be operators. In the general case, these
operators do not commute; when describing light and supermassive black holes, the
appearance of stochastic properties is possible. We introduce the distribution density
functions in the ground f;, and excited f,, states for relic photons

fra=Fra=1 g =(Cra &) = Nya/(Nya = 2,,);
fru = <é;t, éra) = Z;L/(Nra - Z;L) (6)
where éfa, Crq are creation and annihilation operators of relic photons; (... ) is aver-
aging symbol. Based on (6), (1), we find the numerical values f,, = 0.006947216,
' = 1.006947216. Expressions (1)—(6) make it possible to estimate the masses
Mog, Myy, M}, black holes by the formulas

Mop = flMpo;  Mpo/Ms = ng(1+n )n.q/nao;
M,y = Mog — Mypo = fraMpo. @)

The numerical values are equal: Myg/M; = 4.307173111 x 100, Myo/M; =
4.277456693 x 10°, M /M, = 0.029716418 x 10°. Our estimate of the mass
My /M, practically coincides with the mass of the central body 4.31 x 10° of a
supermassive black hole in the center of the Milky Way galaxy [3, 4]. The value
2M,’,0/Ms = 0.059432836 x 10° determines the error 0.06 x 10°, associated with
the error in measuring the parameters of the orbit of the S2 star, rotating around the
central body [3, 4].

Model B,. The fractal structure of the Universe is characterized by the distribution
of masses of black holes, which are found in the center of various galaxies. So for a
supermassive black hole in the core of the galaxy M87, using the Event Horizon Tele-
scope [21, 22], a shadow image in the radio range was obtained. Using four Chandra
X-ray observations [14] for the MAXI J1820 4 070 binary black hole relativistic jets
were detected. To estimate the upper mass limit M ;o = Nos Myo, we will represent
the central body of a supermassive black hole as a Bose condensate of black holes
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with masses M. In this case, for the parameter Nogy = Y14 N, representation is
acceptable, where 1//12A =14, Nip = Mg/Mg = Rgs/Rge. Here Mg is mass of
the Earth; R and R g are Schwarzschild gravitational radii of the Sun and Earth;
NZ ;= 3.32958 x 10°. In this model, the density of matter near supermassive black
holes €2 = 0.141730642 is close to our calculated value €2,, = 0.141145722 from
[23, 24] and the value of 0.141 obtained by the Planck observatory, based on the
new Hubble constant H for the attenuation of y-rays against the intergalactic back-
ground. As a result, we find Mo/ M, = 15.21797631 x 10'!. For experimentally
search of supermassive black holes near the upper mass boundary, brightness distri-
butions, changes in stellar radiation intensity when photographing galaxies with high
resolution, adaptive optical spectroscopy to compensate for fluctuations in the atmo-
sphere, and speckle spectroscopy are used [4]. For the maximum radiation intensity
I, from (1) near the upper mass boundary, the representation is acceptable

Ly=1+1; I} =nll,= V2 L, sin®(63);

Iy = ngly = (i, + vi,c05>05) In;

Vi, =ki; =051 —1(0)/1,); v, =(&,;)*=0.5(1+I1(0)/I,);

u, Vi =1 L = kst aws ki) = nlys o L/ Ly = Ao’ (s ki) = ng
®)

Here k4, k| ; and u;w are modulli and effective displacement for elliptic functions
sn(uyw; kiy), en(uiw; kiy), dn(uyw; kiy); the angle 65, acts as the effective Cabibo
angle for supermassive black holes; parameters u;;, v;; depend on the initial and
maximum radiation intensity and are analogous to the N. N. Bogolyubov’s transfor-
mation parameters in the theory of superconductivity. Numerical values are equal:
k%, = 0.493832171, (k},)* = 0.506167829, sinz(Q;fV) = 0.231489651, cos*(6;,) =
0.768510349, intensity distribution density functions f;; = I{'/1; = 0.129072187,
fi = Ln/I; = 1.129072187. Expressions (8) allow us to estimate the masses of
black holes M, M, near the upper mass boundary by the formulas

My —Mypy =My, M) = f My, Mpj=fnMp, fr,—fn=1 (9

Based on (9), we obtain a numerical value M;;/M; = 1.964217483 x 10,
that is close to the experimental value 1.96 x 10'' M, for the supermassive black
hole SDSS J140821.67 + 025,733.2. For intermediate masses of black holes, the
maximum radiation intensity 7 can change over a segment [ (0) < I,* < I,,. These
changes are described by a variable number of quanta n, and an inversion parameter
BJm

2 2 ) 2 2 20k Y.
My = Ly /ln =1, +Vi;Bym;  Bi = Byn(n,) = —uy, /vy, +sin"(0y);

. * __ _ 20%\. 2 ’o.

-1 =< Bjm =< 1, Bz - Bjm(nzg) = COs (QW)v nyy =vyy +nzg’
r 2 /. r_

Ny =uy; —ng nytn, =1 (10)
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From (10) it follows, that a black hole with an intermediate mass can be in different
states, which are determined by a pair of parameters n}, and Bj,,. Let’s introduce
these states: ground J1 (n), = 1, By, = 1), supernonradiative J2 (n}, = u% 7
By, = 0), fully inverse state J3(n¥, = u?, —v3,, B;,, = —1), partially inverse state
J4(n), = n/zg, B, = BY), deviated from the ground J5 (n, = n_,, By, = B}).The
parameters Bf = —0.793489803, 1+ B = 0.206510197, B3, n;; = 0.391850792,
ny, = 0.608149208 carry information about the characteristic parameters (veloci-
ties, energies) of a relativistic jet (ejection of matter from a supermassive black hole)

[14].

3 Relativistic Jets

To describe the parameters of a relativistic jet, we will use the basic model equations
QmrRas/2Ran = nfp +0.5; Qo = 0p)% QurEwo = QG Ezo. (1D

Here the parameter Qp, = 1/3 is determined by the expression from (3)
and is related to the angles ‘P;/m @, = 22.43261135°, cosmological redshift
z,, from our anisotropic model [8] of the expanding Universe; the number of
quanta n%, = 0.054219932 determines the Fermi level and the neutrino density
Qo, = 0.002939801; the lepton quantum number 2., = 0.002402187 is related
to the quantum number Q%, = 0.002116741 through the rest energies Ewo =
80.35235464 GeV and Ezy = 91.188 GeV for W0 and Z0 bosons, respectively;
Hubble radius R4y = 13.75 x 10° - L. From (11) we find the characteristic radius
(horizon of matter particles) Ryp = 45.72314437 x 10° - L. Note, that parameters
are: L.y = light year = ¢yt.0 = NoLgs = 0.306597989 pc; limiting speed of
light in vacuum ¢y = 2.99792458 x 10° km s!, N = 6.324043414 x 10*, 1,90 =
365.2503353 day = 3.155762897 x 107 s, Lys = lau = 1.495995288 x 10% km.
Based on (11), we introduce the refractive index 7 4 g of the medium of matter particles

nap = 0ip; Qap = Rap/Rany =2(n% +0.5)/0no. (12)

Numerical values are n,p = 11.05775038; Q 4 = 3.325319591. Next, we find
the particle velocities Uag, Vog, vaw and velocities ratios £ p, o7, Eaw

2 2 ) 2 2 ) )
Uag = Co/NaB; VarSiy, = VoeSy, = Vaw; &am = Vam co; &0y = Loe/co.
(13)

Values are: uay = 9.015447983 x 10* km s~!, vp; = 1.803089597 x 10°km s~ !,
vaw = 196.9672387 km s~'; £,y = 0.300722975, &, = 0.60144595, £,y =
vaw /co = 657.0119876 x 107°.
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From our model B, it follows, that the density of matter near supermassive black
holes 2% > €,,. This leads to a change in the refractive index of the medium 4 5, the
radius R4 p from (12), the neutrino density €2y, from (11), and the particle velocities
from (13). Accounting for these changes near supermassive black holes is described

by new parameters

_ —2 = — _
nap = Qap; Qap = Rap/Ran =2@o, +0.5)/Qnr;
Qov = (ow)*; 20w = 2, — Sous Van = o/ Qaps

VanSt, = VoeSs, = Uaw. (14)

Numerical values are equal: medium refractive index nap = 11.06252927,
radius Ry = 45.73302352 x 10° - L., parameters Q.5 = 3.326038074,
1o, = 0.054339679, density of the relativistic neutrino §0v = 0.002952801; veloc-
ities oy = 9.013500487 x 10* km s~!, vo: = 1.802700097 x 10° km s~!,
Taw = 196.9246903 km s~!; velocities ratios £ ,,; = 1/Q,p = 0.300658013,
Eq) =28 45 = 0.601316027, & sy = Daw/co = 656.8700603 x 107°.

Further, taking into account (1), (2), (8), we find the energies of the jet particles
Ey; and E,;, E,; in the absence and presence of the Higgs field, respectively, by
the formulas

Eoj/Eno = In/1(0) = I7/1(0) + 1, /1(0); Ei; = Yo1Eos; Exy = Yoo Eoy.
(15)

Numerical values of energies are equal Ep; = 10.13585044TeV, E;; =
10.29061357 TeV, E,; = 9.978687329 TeV, where g, = 0.984494334.

The effective Cabibo angle 6}, allows us to estimate the angular width ¢}, of the
jet based on the angular parameters ¢,0, ©£,, o by the formulas

@l = 00/ SINZ(03);  @uo = 206G QEn/Ng;  PEn = My @po/mp(1 + S1,), (16)

where the parameters ng, n, are determined in the model By by expressions
B)sm,/m, = 1.008985047 is the ratio of the neutron mass (m,) to the proton
mass (mp). Based on (16), we find estimates of the angular parameters ¢y, =
2.592779092", ¢,0 = 0.600201527", g, = 0.800268702", where the parameter
wro = 0.830215001” describes the behavior of photons near supermassive bodies in
Einstein’s theory [5]. The obtained estimates of the parameters &y;, Eo;, ¢}, do not
contradict the experimental data [14] for a velocity ratio of 0.6, an energy of 10TeV,
and an angular width 2.5928" of jet particles. Based on the effective radii R4 p from
(12), Rap from (14), we obtain estimates of the distance R, from the Sun to the
supermassive black hole in the center of our Milky Way galaxy and the errors § Ry
by the formulas

Ro=384p/nro; SRy =384a8/Nro; Sap = (1+80)8as;
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8ap = Rap — Rap; Ngo=ng(Nrg +0.51,/1(0));
nro = Qur(Nra +nao —ng — &qy)- (17

The numerical values of the parameters are equal: Ngy = 8654.611017, ngy =
363.5795993, 845 = 9.87915 x 10° - L., 8453 = 9.879150543 x 10° - L. Based
on (17), we find estimates of the distance Ry = 8.330851608 kpc and error § Ry =
0.349978489 kpc.

Based on the distribution density function f;, from (9), the number of quanta 729,
from (14), we find the radius r; g of the central body by the formulas

Noorig =85 +1ap; 8,5 =08an f11; lap = Sapsin(do,);

NGo = Nu/Nug; NcoEno = N,.Eg; sin(8oy) = Tigy (1 — igw) = igw — Q00
(18)

Values of the parameters are equal: Ngo = 5.839561703 x 107, 6y, =
2.945548561°, sin(6y,) = 0.051386878, 45 = 5.076587037 x 10° - Lo, &g =
11.15427411 x 10° - L.y. From (18) we obtain r;3 = 0.199705618 - L,y =
1.262947001 x 10*au.

Next, we find estimates for the semi-axes xgg, Yos the elliptical orbit of the star
S2, rotating around the central body by the formulas

yos = ryp/ag(1+ Q1) x3s/vds = S7, sin(@og)/S3,;
sin®(gog) = (a0 — ng)(Ee + Een)/Eog;  Eog = ngEno. (19)

Here the rest energies of the gluon Eo, = 1.00025904 TeV, electron E, and elec-
tron hole E,, are assumed to be equal E, = E.;, = 0.51099907 MeV; sin(ggg) =
0.007150827, the angle of polarization of the radiation gg, = 0.409715696°; semi-
axes ypos = 999.9241011 au, xos = 119.5804463 au. Our estimates of the param-
eters Ro, 6Ro, 7y, Xos, Yos agree with the experimental data [3, 4] for the distance
8.33 kpc from the Sun to the supermassive black hole in the center of the Milky Way
galaxy, the error 0.35 kpc, the radius of the central body 0.2 - L, for the semi-axes
120 au, 1000 au the elliptical orbit of the S2 star, rotating around the central body,
respectively.

4 Asymmetry of Matter, Antimatter and the Higgs Field

The presence of a Higgs field of various nature (gluon, lepton, neutrino, hadronic
based on the parameter Q¥, from (11), gravitational, etc.) leads to changes in the rest
energy of the Higgs boson E o in (18); energies of holes (antiparticles) E,j, in (19),
En, Evp for e, , t-leptons, respectively; the appearance of asymmetry of matter
and antimatter. We introduce the energy Ej; based on the total energy &¢;, of paired
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leptons, the number of quanta of gluons n,
Ey = ng€oL; €L = (Ee + Eeh) + (Eu, + E,uh) + (E‘[ + E‘L’/‘L)' (20)

Here £, = E,;, = 105.658389 MeV, E;. = E;;, = 1777.00 MeV are rest
energies for u, t-leptons, respectively. From (20) we find the energies gy, =
3.766338776 GeV, Eg; = 30.13071021 GeV (close to the data from [16]).

Next, we introduce the distribution density functions of the Bose type f;4 (ground
state), f, éf 4 (excited state) based on the number of quanta of black holes (7 49), gluons
(ng). Based on Epq we find the energy E, 4, E;A

fg:A _ng = 1; ng =ng/(nA0_ng); féA =nA0/(nA0_ng);

Ega = Eno feal%: Eyy = Enofin)% Ejy — Ega = Eno/2. (21

The numerical values are equal: f,4 = 0.159850895, E,4 = 9.993268924 GeV,
Eg, 4 = 72.50945893 GeV. Taking into account the energy E,, from (21), the
expressions for the rest energies of leptons have the form

E, = Egasin®(geg); Eu = Egasin®(¢u);  Er = Egasin®(¢qg). (22)

Here angles are equal: ¢, = @o,, ¢, = 5.901862921°, ¢, = 24.94112323°.
To describe the interaction of u and e-leptons, we find the energies E/,, E; from the
expressions

E;L = EgA Sin2((pug + (peg) = (Ei + 4A,21)1/2; 2Ap. = nAOEex;
E,=E,+ E;l; E: = EgA Sinz((pug - (peg) = (Ei - 4(AZ)2)1/2;
ZAZ =nak); E) =E.+E;; E./E, =0.5+sin(g.);

ex’

E}/Eey =05 —sin(gey);  Eo/E*, = 0.5+ sin(g?,). (23)

For variant I (sum of angles), the parameter values are:@,, + @, =
6.311578617°, E; = 120.7760733MeV, E, — E;, = 15.11768432MeV, energy
gap A, = 29.25390878 MeV, energy E., = 1.007944968 MeV, hole energy
E;, = 0.496945898 MeV, sin(g.;) = 0.0069712, characteristic angle ¢, =
0.399423573°. For variant II (angle difference), the parameter values are: ¢, — e =
5.492147225°, E;, = 91.54109182 MeV, energy gap A}, = 26.38145028 MeV,
energy E; = 0.908974259 MeV, hole energy E;; = 0.397975189 MeV, sin(¢},) =
0.062171112, characteristic angle ¢}, = 3.564441086°, E;/E} = 0.5 — sin(¢}).
Note, that the values of the angle differences (¢, — ¢.r)/2 = 18.52582072",
(Peg — Pex)/4 = 9.26291036" are characteristic of the angular widths of coronal
holes on the Sun [15]. From (23) we find expressions easy for analyzing the asym-
metry of individual contributions from E,, E,,, different angles, in energy E ;,t EZ in
the form
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(E,+E;)/2=E, c08?(9ug) + E, O8> (9eg);
E[/l. — E}, = Egasin(2gyg) sin(2¢c,)- (24)

Based on the energy Ey; from (20) we found characteristic energies €41., €40, sc’iz
and the Higgs boson energies Exq, Eyy ;. Eng. E}ig Eur, Ey;

. _ . / - / .
Eop = ngéo =ngéars €a0 =Naokar; &4, =2,(z, + Déar;

/ . 2 _ 2 2. N2 2 2.
€4, = €a0 +2601; Epy=Epo+ess (Eyg)” = Epg— &1

2 2 2. 2 2 2.
EHg = Epo + EgA’ (E/Hg) = Epo — EgA’

E%iL = E%—IO + E(Z)L; (E}-IL)Z = E%{o - E(Z)L' (25)

Characteristic energies are g5, = 10.04357007 GeV (close to the energy for
dark matter from [20]), eq0 = 582.9954848 GeV, ¢, = 590.5281624 GeV.
Energies &41, Ega, g0 describe the different nature of the Higgs field. The pres-
ence of the Higgs field leads to the appearance of active particles with energies
Epq = 125.4351201 GeV, E},, = 124.6283385 GeV, Ey, = 125.4311025 GeV,
E},g = 124.6323819 GeV, Ey; = 125.0890937 GeV (corresponds to the peak for
the Higgs boson decay process from [16]), E};; = 124.9756406 GeV. Energy differ-
ences 8Eyg = Epa — Eng = 4.0176 MeV, §Eyy, = Eyy, — Eyy, = 4.04343MeV
describe the line width in the energy spectrum for the Higgs boson [16].

5 Active Microobjects

Based on the energies €41, Eqa, €or from (25) we find the radii Rz, Rga, Ror of
active microobjects associated with the different nature of the Higgs field

Rip = Agear; Rga = AgEqa; R =ngRur =ngRor;
R), =2,(z,, + DRsr; Rao =naoRar; Ry, — Rao =2Ror. (26)

Here Ag = 0.960836162 fm(eV)~! is the constant from [23, 24]. The
gravitational radii are: Ry, = 9.6502253 um, Roy = 9.6018942 um, Roy =
3.6188345 pum. For characteristic radii we obtain: Rjo = 560.1631441 um (coupled
to the number of quanta of the black hole 7 4¢); Rf’iz = 567.4008131 um (coupled
to cosmological redshift z;); Rgr = 28.95067596 um (coupled with the number of
quanta of the gravitational field in an excited state ns, or with the number of quanta
of the gluon field n,). Next, we find the characteristic lengths /40, l;z, oz of active
objects

lao/Rao =1,/ Ry, = lor /2Ror = Eou/Eno = Siau;
SlZu = Slu - S2u; Eom - EaS = Ec;
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Eys = So12Eno = &§gsEog; Soiz = S — Sips €gs = So1z/ng. (27)

Here the parameters are: Sip, = 0.013690291, Sp1» = 0.005451282, &, =
0.00068141; the rest energy E, = 1.030142904 GeV, c-quark gravitational radius
R, = AGE, = 0.989798554 um; energy E,s = 0.681586763 GeV is determined
either through the rest energy of the Higgs boson, or through the energy of the
gluon, energy E,, = 1.711729667 GeV,; gravitational radii Rys = AgEss =
654.8932091 nm, R,, = AgE,, = 1.644691763 pum. From (27) we obtain
values of characteristic lengths [, = 7.6687965 um, l;z = 7.7678822 um, ly, =
99.085795 nm. From (27) it follows that it is possible to describe particles and antipar-
ticles, compound particles (hadrons), which are experimentally observed at the LHC
[16], on the basis of energies Eq,, Eqs, Ec. As an example, consider the possibility
of describing the energies E7¢, E /TQ of a tetraquark, a hadron by

ETQ =2E. + 2Ec; Ec =E.+ Eos + A;i =E .+ EgSEOg + AZ = Euu + A;7
ETQ_E;"Q :Z(EM—i-E;), ETl :ETQ_2E;//._AU«;
Ery = Erg —2E, + A}, (28)

Here E. = 1.738111117 GeV, E, + E|, = 226.4344623 MeV are the c-
antiquark, muon pair energies, respectively. Energies Er; = 6628.875515 MeV,
Er, = 6742980837 MeV determine the features of the type of local maximum,
minimum on the experimental dependence of the number of events on the state
of the tetraquark [18]. The base narrow peak corresponds to the tetraquark energy
Erp = 6899.681571 MeV, and the broadened peak corresponds to the hadron
energy E/TQ = 6446.812646 MeV. Note, that the energy difference E. — E; =
938.6018122 MeV (for the c-quark and antimuon) is close to the sum of the energies
E, + E, = 938.7833217 MeV (for the proton and the electron). This indicates us
to the need and possibility of describing additional contributions from the neutrinos,
hadron Higgs fields to the energies of active objects.

The classical decay of a neutron into a pair of proton-electron and antineutrino is
described by the expressions

En = (Ep + Ee) + g Evny Evn = (5%-1(; + Ain)l/z; Alz)n = Z\;n(Zun + 2)8,2110;

Eon = EHG + Zon €HG = Vun €0G:  Ywn = 1+ Zun. (29)

Here the rest energies are for neutrino ey = 280.0460475 MeV [23, 24], neutron
E, = 946.7027435MeV, proton E, = 938.2723226 MeV. From (29) we find the
antineutrino energy ¢,, = 284.3344848 meV, energy gap A,, = 49.1966514 meV,
parameters of the neutrino field z,,, = 0.015313329, v,,, = 1.015313329.

We take into account the contribution from the hadronic Higgs field by replacing
the energy of the pair (E, + E,) in (29) with the energy of the difference E. — Ej,
for the c-quark and antimuon. In this case, the antineutrino energy ¢,, is replaced by
the renormalized antineutrino energy €,, and is determined from the expressions
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— — -2 —2 —
En = (EC - E;) + npa€ony Evn = (8%-1(}' + AVn)l/z; AW, = Zvn(zvn + 2)8%1(}

= = o - = * .
Evn = EHG t Zvn EHG = wyn EHGS wvn =1 + Zvn = lﬁm +0.5 Nyns

2 * = * _ .
n,, = QTL Evn = Epy + Ens € = 0~5nvn EHG,

&b, = (ehe + (AL =Y ene. (30)

Here, the parameter n,, = 0.046008054 from (11) describes the contribution
from the hadron Higgs field to the energy ¢;,, = 6.442186838 meV. Based on (30),
we find the renormalized antineutrino energy €,,, = 290.8512992 meV, energy gap
A,, = 78.54100538 meV, parameters z,, = 0.038583839, v, = 1.038583839.
The energy e}, = 284.4091123 meV, energy gap A}, = 49.62614656 meV, field
parameters 2, = Z,, — 0.5n,, = 0.015579812, ¥ = 1 + 2}, describe a different
state of the antineutrino, compared to the state from (29).

Taking into account (29), we find the baryon densities of the Universe £2;; (ground
state of matter), £2,, (hole state of matter) from the expressions

Qp = (05 — Zun) Mons p2 = (05 + Zo)uns Lp1 + Qi = 1y, (31)

Numerical values are equal: 2,7 = 0.022299491, Q5 = 0.023708563. At the
same time $2;; < $2p;, that confirms the presence of two states of baryonic matter
due to the presence of the Higgs antineutrino field z,,. Replacing in (31) z,, by z},
from (30) leads to other values of the baryon density j, = 0.02228723, Qf, =
0.023720824. Hence it follows, that the baryon density of the Universe depends
on the states of the antineutrino field. On the other hand, within the framework of
our anisotropic model (taking into account the polarization of the CMB), the base
parameter n,, can be independently determined from

Ny, = |Xef| Sin((p()g) + 1/frc + 2S2OG;
Qp1 = 0.5n,, — 21,1 sin(gog); N2 = Qep. (32)

Here | x.r| = 0.2504252, 4., = 0.04420725, Qo = 4.99501253 x 107° from
[23,24]. The values €2, from (32) and (31) coincide and agree with the baryon density
of the Universe 0.0223 from the experimental data [19]. Note, that expressions (31)
allow us to describe the inverse (at z,, < 0) states, states with shifts €, €;, or

Qu1, Qy of the baryon density of the Universe

Q= Q1 — Qs Ry = Q2 + Qs
Q1= Q1 + Q5 Qo = Q. — QF (33)

due to the presence of a contribution from %, while preserving the quantum number
ny,. Numerical values are equal: €2, = 0.02018275, Qp1 = 0.024416232. Expres-
sions (31)—(33) can be used to describe the effective susceptibilities y,, of active
regions (x = A, B, C, D, E) of coronal holes on the Sun. In [15] the parameters
Ny, N1, for these regions were measured. Based on the formulas
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Xox = Noo/Nixi Xox = Xox + Q13 e =+ 3202 = 1=1— (1 =30

Xna = Dxar - xl +2Q06: &4 = (e + Aj)"% T = (46 + AbA)l/2
(34)

estimates for each of the regions can be obtained: x,4 = 0.1721131, x,p =
0.1689743, x,c = 0.1744639, x,p = 0.1789925, x,g = 0.1608336. From (34)
independently (based on the susceptibility components x»2i, xi2, constants ar, a;
from our anisotropic model [23, 24]), we find yya exactly coinciding with x, 4.
For the susceptibility with a shift, we find: x,4 = 0.1922958, z;,4 = 0.0183210,
Xpa = 0.1905423. These susceptibilities determine the gaps Apa = Xpalnc =
53.851680 meV, Ay, = Xpa € = 53.360611 meV (Wthh correspond to
the effective temperatures T,y = arAps = 39.489369 °C, Tpa = arhps =
36.6398 °C), energies g,4 = 285.17677 meV, €,4 = 285.08445 meV (which corre-
spond to the wavelengths A4 = a5 /2ep4 = 2.1734659 um, Apa = a;/2eps =
2.1741698 pum) in the spectra of neutrinos with nonzero rest mass.

These active microobjects can be part of the solar and intergalactic winds and
affect to various physical, chemical, biological processes on Earth and in Universe.

6 Conclusions

The relationships between the base parameters of the Higgs boson and the parameters
of black holes are established. Based on the distribution density functions of the
number of quanta in the ground and excited states for relic photons, a lower mass
estimate for a supermassive black hole is obtained. Based on the density distribution
functions of the radiation intensity, an estimate of the mass near the upper boundary is
obtained. The description of the central region of a supermassive black hole is made
in terms of Bose condensate from black holes. Various states for a black hole with
intermediate mass are introduced. Estimates for the mass and radius of the central
body, the distance from the Sun to the supermassive black hole in the center of the
Milky Way galaxy, the semi-axes of the elliptical orbit of S2 (rotating around the
central body) are obtained.

The model equations are used to describe the base parameters of a relativistic jet:
velocities, energy, angular width of jet particles.

Itis shown, that the presence of a Higgs field of different nature leads to changes in
the rest energy of the Higgs boson and the energies of holes (antiparticles) for paired
leptons; the appearance of active microobjects with different energies and sizes; the
appearance of asymmetry of matter and antimatter. A model for the classical decay
of a neutron into a proton-electron pair and an antineutrino with a nonzero rest mass
is proposed. The possibility of using this model to describe tetraquarks, the baryon
density of the Universe, which depends on the states of antineutrinos, is shown.

Parameter estimates are consistent with experimental data.
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Memory Cell Based on Qubit States m
and Its Control in a Model Fractal oo
Coupled Structure

Olga P. Abramova and Andrii V. Abramov

Abstract Model fractal coupled structures are considered, for which a characteristic
feature of the behavior of the deformation field is the presence of such superposi-
tion qubit states where there is no damping. Such states can be memory cell. The
possibility of internal and external control of the structure of the memory cell, the
possibility of performing the operations of write and delete information has been
established. It is shown, that changes in deformation fields in a memory cell are
anisotropic. External control of a memory cell in a coupled structure is performed
using different fractal indices of separate structures. In this case, fractal indices do
not depend on iterative processes. It is shown, that there is a critical value of the
fractal index of separate structures, when passing through which effective damping
occurs. This effect can be used to control the storage of information in a memory
cell. When fractal indices depend on an iterative process, self-organization (internal
control) occurs. By the example of the sinusoidal law of change in the fractal index
of separate structures, it is shown, that structures of the following type arise: vertical,
horizontal, inclined stripes; lattice structures of various orientations.

Keywords Coupled fractal structures + Memory cell + Superposition of qubit
states + Deformation field - Control of memory cell structure

1 Introduction

In [1], the description of the complex deformation field of model fractal coupled
structures was carried out on the basis of different qubit states of separate structures
such as circular and elliptical cylinders. A distinctive feature of the behavior of the
deformation field of such coupled structures is the presence of qubit states, for which
there is no damping (the imaginary part of the deformation field is zero). Such states
can be memory cells.
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The relevance of the work is associated with the problem of creating quantum
computers [2, 3], that encode information in qubits; with quantum cryptography,
where information is recorded in a memory cell below the noise level. Physical
systems, that realize qubits, can be any objects, that have two quantum states. Modern
nanotechnology makes it possible to create such active objects. Various nanostruc-
tures, metamaterials [4—6], superconductors [7] can act as active objects. These active
objects can be in superposition qubit states, exhibit stochastic properties, quantum
entanglement, which is the basis for the creation of quantum computers. Control,
storage of quantum information, the possibility of its extraction are important steps
for quantum communication. Modern nanotechnologies use various periodic struc-
tures and metamaterials [4], where the amplitude and phase of the deformation field is
carried out by external control. In the presence of an iterative process, quantum chaos
and the phenomenon of self-organization (internal control) appear in a memory cell.
Therefore, the question of preserving a memory cell for fractal coupled structures
requires additional research. Random matrices are used to describe quantum chaos
[8]. Elements of random matrices are formed as a result of an iterative process. In this
case, it becomes necessary to describe and take into account the effect of ordering of
separate operators of deformation fields in a coupled structure [9, 10], which based
on various qubit states.

The aim of this work is to describe the deformation field of a memory cell in
a fractal coupled structure with elements of cylindrical type, internal and external
control of its structure.

2 Memory Cell of a Model Fractal Coupled Structure

To describe the deformation field of memory cells, let us consider a model coupled
structure, which consists of two fractal cylinders of elliptic type (i = 1, 2), located
in a bulk discrete lattice N x N, x N3, whose nodes are given by integers n, m, j.
Nonlinear equations for the dimensionless displacement function u of the lattice
node are [1, 9, 10]

2
w=Y upi ug = Riky;(1 = 2sn*(u —ugi, k,))); i =12 (1)
i=1

K= (1—a)/Qi; k,; =1 -k
Poi = poi + p1in + pam + psij; @)
Qi = poi — bii(n = not)? /nky = bai(m — mo))* /m2, — b3 (G — jo)* [iG. (3)

Here «; are the fractal dimensions of the deformation field u along the axis Oz;
ug; are the constant (critical) displacements; variable modules k,;, k/,; are functions of
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indices n, m, j nodes of the bulk discrete lattice. Different structures are characterized
by parameters: po;i, p1i> P2i> P3i» b1is bais b3, nois Reis Mois Meis jois Jei» Ri- In our
model, the choice of different states of qubits in the plane n Om is determined by the
nonzero coefficients of the linear terms in the functions pg;, Q; from (2), (3). The
initial state (0,0) of an separate structure is determined by zero coefficients pj; = 0,
p2i = 0. Various basic and superposition states of qubits were considered in [1].
In this work, we will focus only on the superposition state (—1, —1), in which the
parameters py;, pa; have the form p;; = — 0.00423, py; = — 0.00572.

Consider a superposition state (—1, —1) of two fractal coupled structures (A), (B).
In structure (A), the operation of scalar multiplication of the complex deformation
fields of separate structures (I) and (II) is realized, while the deformation field of
this structure is described by a function u4 = ug; fa(ug2) with a corresponding
matrix M 4. The elements of the matrix M4 are obtained by solving (1)—(3) by the
method of iteration over the index n. This procedure simulates coupled (dependent)
stochastic processes of the original independent stochastic processes for structures
(D and (IT), which are described by the functions u = ug; and u = ug,. Structure
(D) is a circular cylinder with constant semi-axes n.; = m,, and structure (II) is an
elliptical cylinder with variable semi-axes n. , mg.

To take into account the ordering of separate operators of deformation fields
in a coupled structure, structure (B) is considered, where the operation of scalar
multiplication of complex deformation fields of separate structures (II) and (I) is
realized. The deformation field of this structure is described by a function ug =
ugy fp(ugy) with a corresponding matrix Mp. In the numerical modeling, it was
assumed that Ny = 240, N, = 240, uy = 29.537, po = 1.0423, by; = by; = 1,
no; = 121.1471, mo; = 120.3267, jo; = 31.5279, j.; = 11.8247, bs; = 0. Values of
the semi-axes of a circular cylinder (I) are n,; = m,; = 57.4327 with R; = 1. For
elliptical cylinder (I) with R, = 1, we have the following dimensions of the semi-
axes: variant 1 are n., = 43.0746, m., = 19.1443; variant 2 are n., = 55.2537,
me = 14.9245; variant 3 are n., = 119.9327, m., = 6.8758. Further consider
only coupled structures (A), (B), in which separate structures (I) and (II), (IT) and
(D have the same fractal dimensions ¢; and the same superposition qubit states
(—1,—1), but differ in the order of the deformation field operators u 4 = ug; fa(ug2),
up = upr2 fpUgr).

As an example, Fig. 1 shows the behavior of the deformation field u4 = Reu 4 of
the structure (A) with the same fractal dimension o; = 0.5 of separate structures (I)
and (I). The variable semi-axes of the elliptical cylinder of structure (II) correspond
to variants 1, 2, 3. A change in the semi-axes of an elliptical cylinder of structure (II)
(internal control of the structure parameters) does not lead to the appearance of an
imaginary part of the displacement function, which is a characteristic feature of the
behavior of the deformation field. For u4 = Reu4 the presence of a stochastic peak
is characterized, for which the structure and region of localization in the plane nOm
changes with depending on the semi-axes of the elliptical cylinder (II) (Fig. 1a—c).
to a decrease in the semi-axis m; of the elliptical cylinder (II) (Fig. 1g—i). The cross
sections Reu 4 (Fig. 1g, k, 1) confirm the anisotropic nature of the alteration of the
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Fig. 1 Dependences of the deformation field of the structure (A) at o; = 0.5 on the variable semi-
axes of the structure (II): u = u 4 (a—c)—general view; projections on the planes n Ou (d—f), mOu
(g-1); (j-1)—cross sections (top view)
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structure of the inner region of the stochastic peak: there is a change in the shape and
structure of separate elliptical rings, the effect of mixing of separate trajectories.

These changes are anisotropic. In this case, along the axis On, the peak broadens
due to an increase in the semi-axis n., of the elliptical cylinder (I), the amplitudes
of the peaks are of the order of 10 (Fig. 1d), 12 (Fig. le), 11 (Fig. 1f) dimensionless
units. A narrowing of the peak occurs along the axis Om due to a decrease in the
semi-axis m, of the elliptical cylinder (II) (Fig. 1g—i).

The cross sections Reu, (Fig. 1g, k, 1) confirm the anisotropic nature of the
alteration of the structure of the inner region of the stochastic peak: there is a change
in the shape and structure of separate elliptical rings, the effect of mixing of separate
trajectories.

For both the structure (A) and the coupled structure (B) with the same superposition
states (—1,—1) of separate structures feature of the behavior of the deformation field
is the absence of effective damping in all over region (Imup = 0). For Reugp it is
also characterized by the presence of a expanded stochastic peak with a structure
close to the peak Reu 4 (Fig. 1), but Reuy — Reu s # 0. In this case, the conditions
are carried out

up —up = ury fp(ur1) — up1 fa(ugz) #0,Mp — My # 0, 4

which is related to the dependence of the considered stochastic processes. This indi-
cates that the operators of the displacement fields of separate structures (II), (I) and
(D, (IT) do not commute in coupled structures (B) and (A). The results of numerical
modeling for structure (B) are not presented in this work.

3 External Control of a Memory Cell

External control of the structure of a memory cell will be carried out due to a different
choice of constant fractal dimensions «; of separate structures (I), (II). In this case,
fractal indices «; do not depend on iterative processes. On Fig. 2 shows the behavior of
the deformation fields u 4, = Reu 4 of the structure (A) for the same fractal dimensions
of structures (I), (I): oy = a» = 0.0 (Fig. 2a, d), «; = o, = 0.9 (Fig. 2b, e),
a; = ap = 0.99 (Fig. 2c, f); the semi-axes of structure (II) correspond to variant 1.
When fractal dimensions of structures (I), (II) increase, then a change in the shape and
structure of stochastic peaks is observed, which is accompanied by a sharp decrease
in amplitudes from 46 (Fig. 2a), 0.33 (Fig. 2b) to 0.0036 (Fig. 2c) of dimensionless
units. The cross sections (Fig. 2d—f) confirm a significant alteration of the structure
of the inner region from a wave-like state (Fig. 2d) to an almost regular behavior
(Fig. 2f). When «; = ap = 1.0 the deformation field becomes zero u4 = Reu,y = 0.
This makes it possible to interpret such a change in fractal dimensions as an operation
of delete information in a memory cell. Next, consider the structure (A), where the
fractal dimensions «; of separate structures (I) and (II) are chosen to be different.
In this case, for an elliptical cylinder (I) with R, = 1, we have the parameters of
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Fig. 2 Dependences of the deformation field of the structure (A) on the same fractal dimensions
of the structures (I), (I1): ¥ = ug = Reuy (a—c)—projections on the plane nOu, (d—f)—cross
sections (top view); 0 < «o; < 1

variant 1. Figure 3 shows the dependences of the deformation field of the structure
(A) on various joint changes in the fractal dimensions 0 < «; < 1 of structures
(I), (I): an increase «; for structure (I) and a decrease «; for structure (II) in the
segment [0; 0.99]. For projections on the plane n Ou (Fig. 3a, d, g, j), m Ou (Fig. 3b,
e, h, k), the following characteristic features of the behavior of the deformation field
are observed. The amplitudes and shapes of stochastic peaks change. Cross sections
(Fig. 3¢, f,1,1) u € [-107*; 107*] allow more detailed information to be extracted.

The circular cylinder of structure (I) with oy = 0 defines the external regular
wave-like behavior of the deformation field, and the elliptical cylinder of structure
(I1) with ap = 0.99 defines the internal stochastic behavior of the deformation field
(core) (Fig. 3c). With a further joint change in fractal dimensions, a significant change
in the structure of both the core and the outer region occurs: there is an intersection
(Fig. 3f), breaks (Fig. 3i) of regular and stochastic rings; the appearance of rings with
superposition (Fig. 31) of regular and stochastic behavior.

When o1 = a; = 1.0 the deformation field becomes zero u 4 = Reu, = 0, which
follows from the basic Eqgs. (1)—(3). This allows for the possibility of interpretation
as an operation of delete information in a memory cell. With a further increase in
the values of fractal dimensions «; > 1 of separate structures (I), (I) (Figs. 4 and
5), one should expect a significant alteration of the deformation field in the coupled
structure (A).
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K); (c, £, i, D—u € [—107%; 10~*] cross sections (top view); 0 < o; < 1
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sections u € [—10~%; 107%] (top view); 1 <oy < 1.1

As an example, Fig. 4 shows the dependences of the deformation field of the
structure (A) on the same fractal dimensions of structures (I), (II) for «; = ap = 1.01
and a; = ay = 1.1. Wherein, the amplitudes of the peaks increase from 4 - 1073
(Fig. 4a, b) to 0.4 (Fig. 4d, e), there are features like an inflow near the stochastic
core of the peaks. The cross section (Fig. 4c) confirms the formation of an almost
regular convex region (inflow) around the stochastic core. With an increase in fractal
dimension, the cross section (Fig. 4f) is characterized by the formation of broadened
rings of complex shape (in contrast to circular and elliptical rings from Fig. 3).
Stochastic rings are present within the core (Fig. 4f).

Note, that the imaginary part of the displacement function is as before equal to
Zero.

A further increase in the fractal dimension leads to the appearance of the imaginary
part of the displacement function Imu 4 # 0 (Fig. 5d—f). The amplitude of the peaks
Reu, (Fig. 5a—c) increases compared to (Fig. 4d—f), and the shape of the peaks
becomes asymmetric. Wherein, the area of the stochastic core expands with the
formation of intersecting circular and elliptical rings (Fig. 5c). The appearance of
the imaginary part Imu, # O can be interpreted as a possible mechanism for the
loss of a part of information from a memory cell. Comparison of the behavior of
the deformation fields of the structure (A) shows, that there is a critical value of the
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Fig. 5 Dependences of the deformation field of the structure (A) on the same fractal dimensions
of the structures (I), (II): projection Reu 4 and Imu 4 on the planes nOu (a, d), mOu (b, e); cross
sections (¢, f) (top view); «] = ap = 1.2

fractal dimension ¢ = o, = 1.12 (where 1.1 < a < 1.2), when passing through
which, damping occurs.

4 Internal Control of a Memory Cell

Modern nanotechnology uses various periodic structures and metamaterials [4],
where the amplitude and phase of the deformation field is performed by external
control. The question about preservation the memory cell at the presence of an iter-
ative process for fractal coupled periodic structures requires additional research. In
this work, using examples of various sinusoidal laws of change in the fractal dimen-
sions of separate structures (I), (II) of the coupled structure (A), we investigate the
behavior of the deformation field, the change in the structure of the memory cell
depending on the iterative process. In this case, self-organization (internal control)
occurs. We realize various sinusoidal laws of change in fractal dimensions «; and
a, separate structures (I) and (II) of the coupled structure (A) in expressions (2) as
different functions of lattice indices n, m (Figs. 6 and 7). Note, that for Fig. 6, Fig. 7
the imaginary part of the deformation field are equal Imu 4 = 0.
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plane nOu (a), m Ou (b); (c—f)—cross sections u € [—0.1; 0.1] (top view)

Figure 6 shows the dependences of the deformation field of the structure (A) for
the same sinusoidal laws of change in the fractal dimensions of separate structures
(D, (IT) on the lattice indices n, m: oy = o, = sin¢gy, ¢; = 6w (n—1)/39 (Fig. 6a—c);
o] = op = singy, ¢ = 6m(m — 1)/39 (Fig. 6d); o1 = ap = sings, 93 = @1 + ¢
(Fig. 6e); a; = ap = sin g4, @4 = ¢ — ¢ (Fig. 6f). Deformation field dependence
u = uy = Reuy for projection on the plane nOu (Fig. 6a) is a zug (a sequence
of peaks of different amplitude along the axis On). This is due to the presence of a
sinusoidal law sin(67r (n — 1) /39) for the fractal dimensions of separate structures (1),
(II) from the lattice index n, according to which the iterative process is performed.

There is no iterative process along the axis Om, therefore a broadened stochastic
peak for projection u = u4 = Reu, on the plane m Ou is observed (Fig. 6b). The
cross section (Fig. 6¢) shows, that the core of the coupled structure (A) is a sequence
of broadened stochastic stripes parallel to the axis Om. Stochastic elliptical rings
with internal periodicity (outer region of the coupled structure (A)) around the core
are observed.

Note, that when choosing an iterative process along the axis Om, a zug will be
observed for projection on the plane m Ou, and a broadened stochastic peak will
be observed for projection on the plane nOu. In this case, the core of the coupled
structure (A) will be a sequence of broadened stochastic stripes parallel to the axis
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Fig. 7 Dependences of the deformation field of the structure (A) for various sinusoidal laws of
change in the fractal dimensions of separate structures (I), (I): projections u = u4 = Reu 4 on the
plane nOu (a, d), mOu (b, e); (c, f)—cross sections u € [—0.1; 0.1] (top view)

On. Thus, the choice of the iterative process makes it possible to additionally control
the deformation field of the coupled structure (A).

When the same fractal dimensions of separate structures (I), (II) ¢ = ay = sin ¢,
@y = 6m(m — 1)/39 depend on the lattice index m (Fig. 6d), then the core of the
coupled structure (A) is a sequence of broadened stochastic stripes parallel to the
axis On. Other stochastic elliptic rings with internal periodicity and discontinuous
trajectories around the core are observed.

When choosing fractal dimensions of separate structures (I), (II), depending on
the superposition of lattice indices n, m (¢; = ap = sin @3, 3 = @1 + @, (Fig. 6e);
o) = ap = singy, o1 = @ — ¢, (Fig. 6f)) inclined periodic structures appear in
the core of the coupled structure (A). Note, that the angle of rotation for inclined
structures of the core is anticlockwise (Fig. 6e) and clockwise (Fig. 6f). In this
case, a significant difference for the deformation field of the coupled structure (A) is
observed.

Figure 7 shows the dependences of the deformation field of the structure (A) for
various (o] # o) sinusoidal laws of change in the fractal dimensions of separate
structures (I), (I) on the lattice indices n, m: oy = sing;, oy = sin gy, 1 = 67w (N —
1)/39, @2 = 6 (m — 1)/39 (Fig. 7Ta—); a1 = sings, ay = singy, 93 = @1 + @2,
®4 = @1 — @2 (Fig. 7d-f).
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Compared to Fig. 6a, b here the dependences of the deformation field u = us =
Reu 4 for projections on the plane nOu (Fig. 7a) and (Fig. 7b) are zugs (sequences
of peaks of different amplitudes) both along the axis On and along the axis Om,
respectively. This is due to the fact that the fractal dimension «; is a function of the
lattice index n, and the fractal dimension o is a function of the lattice index m. The
section (Fig. 7c) shows, that the core of the coupled structure (A) is a lattice of square-
shaped sub-elements. For the variant, when fractal dimensions o, «, are functions
of two lattice indices n, m, instead of pronounced zugs (Fig. 7a, b), stochastic peaks
with a thin structure are observed (Fig. 7d, e). The cross section (Fig. 7 f) shows,
that the core of the coupled structure (A) is now a lattice of rhombic-shaped sub-
elements. This behavior of the deformation field (the appearance of rhombic-shaped
sub-elements) is associated with the presence of joint rotations of inclined structures
both anticlockwise and clockwise, in comparison with Fig. 6e and f (where rotations
are done separately).

Choosing other functions for fractal dimensions ¢, o, one can expect, that the
core of the coupled structure (A) will be an irregular lattice of sub-elements of various
shapes (such as quantum dots, curved stripes, hexagonal cells).

Modern nanotechnology makes it possible to create such structures, for example,
on the surface of thin membrane.

The operators of the displacement fields of separate structures (II), (I) and (I), (IT)
do not commute in the coupled structures (B) and (A) in an iterative process.

Taking into account the ordering of separate operators of deformation fields in a
coupled structure (B) leads to a different behavior of the deformation field depending
on the functions of fractal dimensions «;, o] separate structures (II), (I). The results
of numerical modeling for structure (B) are not presented in this work.

5 Conclusions

It is shown, that a pronounced feature of the behavior of the deformation field of
coupled structures (A), (B) with the same superposition qubit states (-1,-1) of separate
structures is the absence of the imaginary part of the displacement function in the all
region Imuy, =Imup =0)at0 < oy < 1.12,0 < o < 1.12, which indicates to
the absence effective damping. This makes it possible to interpret coupled structures
(A), (B) with the same superposition states (-1,-1) of separate structures (I), (II)
as memory cells. It is shown, that there is a critical value of the fractal dimension
o = o = 1.12, when passing through which, damping occurs.

The possibility of internal and external control of the parameters of the structure of
the memory cell by changing the semi-axes of the elliptical cylinder of the structure
(I) and the fractal dimensions «; of separate structures (I), (IT) has been established.
The possibility performing operations of write, delete information in a memory cell
has been established. Changes in the deformation fields of coupled structures are
anisotropic.
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The behavior of the deformation field of the structure (A) from constant (same
and different) fractal dimensions of separate structures (I), (I) (external control of
the memory cell) is investigated. It is shown, that a change in the fractal dimensions
leads to alteration of the shape and structure of stochastic peaks, the core of the
coupled structure (A).

Internal control of the memory cell is performed by realization various sinusoidal
laws of change in fractal dimensions o and «; separate structures (I) and (II) of the
coupled structure (A), as different functions of lattice indices n, m. It is shown, that
substructures of the type of vertical, horizontal, inclined strips, lattice structures with
sub-elements of various shapes appear in the core of a coupled structure (A).
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Agalar M.-Z. Agalarov, Elena S. Alekseeva, Alexander A. Potapov,
and Alexander E. Rassadin

Abstract This chapter is devoted to discussion of the behavior of one-disk dynamo
under the action of harmonic and random signals. Evaluations of separated effects of
harmonic and random external voltages in the framework of the linearized Bullard
equations have been presented. As random signals with zero average the Gaussian
delta-correlated noise and the Langevin stochastic process have been considered.
In particular, as physical values characterizing these influences both autocorrelation
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functions of observables and their spectral densities have been calculated. This infor-
mation is important for design and testing of homopolar dynamo layout to perform
analog research of stochastic resonance in this device in nonlinear regime.

Keywords Elecromechanical system - Phase plane - Equilibrium states *
Amplitude responses * The Wiener-Khinchin theorem * The Jordan’s lemma -
Design and testing + The Fourier transform

Abbreviations

GSSP  The Gaussian stationary stochastic process
ACF  The autocorrelation function
SD The spectral density

1 Introduction

Stochastic resonance is known to be a cooperative effect in nonlinear systems mani-
festing itself in increasing of the output signal-to-noise ratio under addition of the
optimal portion of noise [1].

At present great attention is paid to studying of stochastic resonance in multidi-
mensional systems arising from physics through chemistry to biology and neuro-
science [2-5]. However, in our opinion, the most correct path in investigation
of stochastic resonance leading to a real understanding of the essence of this
phenomenon is choosing of a fairly simple dynamic system with a relatively small
dimension and a detailed study of this one. As a rule there are no analytical solu-
tions both the nonstationary Fokker-Plank-Kolmogorov equation for such system and
stochastic differential equations describing its behaviour. Numerical solution of these
problems is quite hard too [6, 7]. Therefore this system ought to allow experimental
investigation.

On the one hand, from the point of view of clarity, preference should be given to
mechanical systems. Such systems are easily perceived and interpreted due to our
daily experience. On the other hand, electrical systems are characterized by the ease of
controlling of external influences. Hence it is convenient to take an electromechanical
system as a model system for experimental and theoretical research of stochastic
resonance.

In the framework of this approach we study one-disk dynamo (the so-called
Bullard dynamo). At first this electromechanical system was suggested in article [8]
in order to illustrate a number of astrophysical and geophysical effects concerning
motion of electrically conducting fluid in a magnetic field (see [9] and references
therein). Contrary to original article [8] we take into consideration both electrical load
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in parallel with the field coil and friction at the axis of the dynamo. But we restrict
ourselves by investigation of the linear response of the Bullard dynamo because of
our final aim is design of functioning homopolar dynamo for analog modeling of
stochastic resonance in this system. We stress that in our research there is no any
magnetohydrodynamic background—compare for instance with work [10].

The rest of the chapter is organized as follows: in Sect. 2, we discuss equations of
motion for the Bullard dynamo and their linearization. Section 3 is devoted to calcu-
lations of influence of harmonic external voltage on the linearized Bullard system.
Section 4 deals with linear responses of the system on random signals with zero
average, namely, on the Gaussian delta-correlated noise and the Langevin stochastic
process. Final section is devoted to discussion of results elaborated and conclusions.

2 Main Equations

Mathematical model of the homopolar dynamo is given by the following system of
stochastic ordinary differential equations:
. df J=M-J-
{L L+R-J=M-J-Q+U@) )

dQ 2 ’
-9 -k _M-J2-2.y-Q

J(t) 1iselectric current via the inductance L on Fig. 1;
Q(t) is angular speed of rotation of the disk of dynamo;

R is value of resistance in the electrical circuit on Fig. 1;
M is coefficient of mutual inductance:

U(t) 1is an external voltage;

1 is moment of inertia for the dynamo;

K is constant mechanical torque on the axis of the dynamo;

2.y is coefficient of mechanical friction on the dynamo axis.

To study stochastic resonance in the system on Fig. 1 one ought to choose external
voltage in (1) as follows:

Ui)=Uy-cos(v-t)+V(), 2)
where
Uy is amplitude of harmonic signal;
v is circular frequency of harmonic signal;

V(¢t) 1isthe Gaussian stationary stochastic process (GSSP) with zero average:

(V) =0, 3)
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Fig. 1 Structural scheme of A

the homopolar dynamo § J }

and fixed autocorrelation function (ACF):
(Viy-v))= B —1). 4)

We underline that our approach in (1) differs sharply from one in paper [11]
because of authors of this paper apply separation of the magnetic flux on magnetic
flux across disk of the dynamo and magnetic flux across the loops of inductance.
This separation of magnetic flux on two parts leads to increasing of dimension of
phase space of the system.

For further analysis of system (1) it is convenient to introduce the next
dimensionless variables and parameters:

\/7 M1 M- K
x| = =37 0=\
= RVMLK VIKM '"_K[' ®)

After that one can rewrite system (1) in the following form:

{xlz—M-X1+X]'X2+M(T) (6)

)'C2=1—x12—2~8-X2
where

u(t) =U(@) / U, is dimensionless external voltage;
X12 are derivatives of dimensionless variables x; » with respect to
dimensionless time T = vy - £.

The system (6) in the absence of external voltage is defined as:
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Fig. 2 Phase plane of the homopolar dynamo in the absence of external load
X1 =—-x1+ XX
. 2 . (N
Xo=1—=-x7—2-8-x

It is easy to see that if 0 < 6 < 1 / 2 then system (7) possesses by three
equilibrium states: 0°(0, 1/(2-8)) and OF(£/T—=2-8 -, w).Itis not difficult
to check that if 0 < § < /2 + 4u? — 2u then points OF are stable focuses and if
V2+4u? —2u <8 < 1/2u then points O are stable nodes. Point O* is saddle
point in both cases.

We shall suppose that dimensionless damping factor § is quite small therefore we
shall deal with situation when points O are stable focuses. Phase plane of system
(7) at w = 1.0 and § = 0.1 corresponding to the case under consideration is shown
on Fig. 2.

It is obvious that system (7) is invariant under transformation of variables
(x1,x2) — (—x1, xp) therefore to calculate linear response of the system (6) it
is enough to take into account only vicinity of the point O .

Introducing for system (6) new variables y; » as follows:

=41 —28 4y, x=p+m. ®)

and rejecting terms with powers of y; , greater than one we find that system (6) is
reduced to this one:

yi=v1-2-6-p-yr+u(r)

. . 9)
{y2=—z-m-yl—z-a-yz

From system (9) it is easy to observe that variable y, obeys to the equation of
motion for harmonic oscillator with damping factor § and fundamental frequency
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wy = +/2- (1 —2-6§- 1) under the action of external force:
Fo42:8- Yo+ ajya=—V2 w0 u), (10)

and that the behaviour of variable y; is governed by the behaviour of variable y, as
follows:

n+2-8-y

= «/z-a)o

At last for self-consistency of above presented linearization external dimension-
less voltage ought to be weak: |u(7)| < 1.

(1)

3 Action of Harmonic Signal on the Linearized Bullard
Dynamo

At first let us consider behaviour of the system (9) under the influence of external
voltage:

u(t) = Agcos(wr), (12)
where in accordance with formulae (5) Ag = %; w="v/vy.

Looking at (10) with right hand side (12) one can see that in this case it describes
harmonically excited linear oscillator with damping therefore we may solve it in the
framework of the well-known complex amplitude method.

Seeking solution of (10) in the following form:

y2(7) = Re[Az(w) - expiwT)], 13)

one can easily find that complex amplitude A;(w) is equal to:

V2w

A [ S
2(@) a)(z, —w? +2idw

(14)

Further substituting expression (13) into (11) and using formula (14) it is not
difficult to establish that

y1(7) = Re[A () - exp(iwT)], 15)

complex amplitude A;(w) in formula (15) being equal to:
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normed amplitude

frequéncy

Fig. 3 Amplitude responses of the homopolar dynamo

iw—+26
A = ———— Ao. 16
1(@) Wl — o+ 2ibw 0 (16)

Thus from formulas (14) and (16) it is easy to obtain that amplitude responses of
dynamical variables of system (9) on voltage (12) are equal to:

[A(@| _ @?+4-52
Ay T (w27w§)2+4~52w2

Ar@)| _ N : a7
Ay \/(wz—w3)2+4-62w2

Graphs of dependences (17) on dimensionless frequency w for u = 1.0 and § =
0.1 are presented on Fig. 3. On this Figure continuous line corresponds to function

Aj(w) and dashed line corresponds to function A;(w). Both of them demonstrate
typical resonance behavior.

4 Action of the Gaussian Delta-Correlated Noise

and the Langevin Stochastic Process on the Linearized
Bullard Dynamo

Let us now suppose that external voltage is GSSP purely.
In this case it is interesting to determine the following ACF:

By(t, 1) =< (J() = J)J () = o) >, (18)



38 A. M.-Z. Agalarov et al.
where

Jo = (J(©)) (19)
is average value of electric current in the circuit on Fig. 1.

Reducing in accordance with formulas (5) input GSSP voltage to dimensionless
form:

u(r) = # (20)

m

and substituting expression (20) into formula (3) we establish that:

(u(r)) =0, 2y

therefore from formulas (10) and (11) one can immediately obtain that:

yi(m)) = (y2(7)) =0. (22)

Thus combining formulas (5), (8) and (22) it is easy to find that:

K 2y - R
Jo=1 71— T, (23)
M K-M

hence

/ K /
By(t,1) = o+ Bi(x, ), (24)

where

Bi(r, ) =< yi(mn () >. (25)

On the other side in correspondence with formula (11) behavior of value y;(7) is
controlled by value y,(7) therefore ACF (25) is expressed via the next ACF:

By(z, T') = (0(0)y2(2). (26)

Inserting expression (11) into definition (25) and using the simplest properties of
ACEF [12] it is not hard to prove that:
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Bl (T’ T’) =

L [2Ba(. ) 28<aBz(r,r’> L By, T)
2wj dtat’ ot at’

) +48° B, (7, r’)].
27

Further after looking at formula (4) and comparing it with formula (20) it is
obvious that:

<u(r) u(®) >=b,(t' — 1), (28)

where

: B(t' —1). (29)

U2

b, (v —1) =

It is clear that formulas (28) and (29) demonstrates stationary state of dimension-
less input voltage therefore value y,(t) is GSSP too because of it obeys to linear
differential equation with constant coefficients (10) [12]. It means that ACF (26) in
fact depends only on variable = v/ — t:

Bz(l’, ‘L'/) = 32(9) (30)

Substituting representation (30) into formula (27) one can easily derive that:

B(0) =

1 [ d&?By®) 5
2_w3[_ T 4 32(9)}, 31)

hence y;(7) is also GSSP.
For further advance it is convenient in accordance with the Wiener-Khinchin
theorem [12] to introduce spectral densities (SD) of ACF (30) and (31) as follows:

+00

Sio2(w) = / B12(0) -exp(—i-w-0)-db. (32)

—00

After the Fourier transform relation (31) is reduced to the next one between SD
S1(w) and S (w):

w? + 482
Si(w) = BTy E $2(w). (33)
0

At last it is well-known that for linear homogeneous system (10) connection
between input and output SD is expressed via its amplitude response (17) [12]
namely:
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2
Sy () = ‘Ai‘(“’)‘ - Su(@), (34)
0
where
+00
S, () = /bu(9)~exp(—i-w-9)~d0 (35)
is SD for ACF (28).

Thus combining formulas (17), (33) and (34) one can obtain that:

w*+4 -8

S1(w) =
1(w) @ — )2 +4-8-w

5 - Su(). (36)

Inverse Fourier transform of expression (36) is known to represent ACF (25):

+00

w*+4- 8 o

B{(0) = .S, . w0 22 37

1(6) / (@ — )2 + 4 - 822 (w) -exp(i - w-6) - 37)
—0oQ

If input voltage is the Gaussian delta-correlated noise (the white noise) then ACF
(4) is equal to:

B({t' —t)=2-Dy -8 —1), (33)
therefore
by(t'—t)=2-D-8(t — 1), (39)

where intensity of stochastic process is renormalized in accordance with formula
(29)as D = Dy - v JU2.

Further expression (35) gives us that SD of GSSP with ACF (39) is equal to
Su(w) = 2 - D. Thus integrand in formula (37) possesses by four simple poles
+,/®f — 82 1 - § hence using the well-known Jordan’s lemma one can calculate
explicit representation of ACF (25) in this case:

B(0) =

Wy

D - exp(—610|) |:a)i + 452
—  — .Re| =————

26 Jw? — 82
where @, = /@i — 8% +1i - 3.

-exp(y/ W} — SZIQI)], (40)
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Fig. 4 Reaction of the homopolar dynamo on the Gaussian delta-correlated noise

Graph of the ACF (40) for u = 1.0, § = 0.1 and D = 0.002 is shown on Fig. 4.
If input voltage is the Langevin sochasic process then dimensionless ACF (29)
may be chosen in the following form [13]:

by(t' — 1) =0 -exp(—y|t' — 1), y >0. 41)

where o2 is dispersion of input GSSP u ().
SD corresponding to ACF (41) is equal to [13]:

2.),.02

_— 42
w? + y? “2)

\ (0)) =

It means that in this case two additional simple poles i - y arise in integrand in

formula (37).
In the same manner one can derive that for SD (42) ACF (25) is equal to the next

sum:

Bi(0) = B} (9) + B} (H), (43)
where
Bl(g) = L0 PCOIOD o [ it dd” (Jw2 — 8200 |  (@44)
e oo @iy TPV

2.8 Ja} -8

and
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Fig. 5 Reaction of the homopolar dynamo on the Langevin stochastic process

4.52_)/2
@+ 722 =48y

Bi(®) =0’ -exp(—y16)). 43)

Graph of the ACF (43) for u = 1.0,§ = 0.1, y = 0.02 and 0 = 0.2 is presented
on Fig. 5. Comparing Fig. 5 with Fig. 4 one can observe that this graph also has
oscillatory character stipulated by function (44). But moreover this graph possesses
by variable vertical shift caused by contribution of function (45) into expression (43).

5 Conclusion

In the chapter linear responses of the homopolar dynamo both on weak harmonic
input voltage and weak GSSP input voltage have been calculated. This preliminary
research gives one a possibility of investigation of stochastic resonance in the Bullard
dynamo by means of analog modeling.

To realize this research program one ought to evaluate physical parameters of the
system on Fig. 1 and then use them to make its layout. After that one can perform a
number of tests of the operation of the layout.

The first test is an action of weak (Uy < U,) harmonic signal with very
slowly varying circular frequency on the homopolar dynamo layout. If dimensionless
circular frequency w of this input signal gets closer to wy then a sharp increase in
amplitude of electric current in the circuit should be observed in accordance with
formula (16) (see also Fig. 3).
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The second test is an application to the layout of the weak Gaussian delta-
correlated noise as an input voltage. In this case measured ACF (18) must correspond
to the calculated dependence (40) (see also Fig. 4).

Moreover nonlinearity of a system is known to transform GSSP into non-Gaussian
stochastic process [12], therefore, in order to control the role of nonlinearity of system
(1) one should measure the following triple ACF [14]:

T(t,n)=(J0O) - JoUE+1n)—J)U@+1)—J)) (46)

and calculate its bispectrum [14]:

+00 +00

Q(a)l, wy) = / / T, 1) - CXp(—iw1l1 —ilwyh) - dtdt,. (C))]

—00 —O0

If the influence of nonlinearity is small then both value (46) and value (47) must
be close to zero due to the Gaussian nature of the input signal.

The third test is an action of the weak Langevin stochastic process as an input
voltage. This kind of input voltage can be obtained by means of transferring of
the Gaussian delta-correlated noise via four-terminal network with resistance and
capacitance [12]. In this case measured ACF (18) must correspond to the calculated
dependence (43) (see also Fig. 5). And it is necessary to oversee closeness to zero of
values (46) and (47) too.

At last if the layout overcomes these checks successfully then one can proceed to
the experimental study of stochastic resonance in the homopolar dynamo under the
action of input voltage (2) in nonlinear regime.

References

1. C. Nicolis, G. Nicolis, Coupling-enhanced stochastic resonance. Phys. Rev. E. 96(4), 042214-
1-10 (2017)

2. M.A. Zaks, A. Pikovsky, Synchrony breakdown and noise-induced oscillation death in
ensembles of serially connected spin-torque oscillators. Eur. Phys. J. B. 92, 160-1-12 (2019)

3. M.IL Bolotov, L.A. Smirnov, G.V. Osipov, A. Pikovsky, Locking and regularization of chimeras
by periodic forcing. Phys. Rev. E. 2020. 102(4), 042218-1-11

4. V. Basios, Strong perturbations in nonlinear systems: the case of stochastic-like resonance and
its biological relevance from a complex system’s perspective. Eur. Phys. J. Spec. Top. 225,
1219-1229 (2016)

5. E.V. Pankratova, V.N. Belykh, Consequential noise-induced synchronization of indirectly
coupled self-sustained oscillators. Eur. Phys. J. Spec. Top. 222, 2509-2515 (2013)

6. C. Floris, Numeric solution of the Fokker-Plank-Kolmogorov equation. Engineering 5(12),
975-988

7. D. Higham, P. Kloeden, An introduction to the numerical simulation of stochastic differential
equations, in STAM (2021)



44

11.

12.

13.

14.

A.M.-Z. Agalarov et al.

E.C. Bullard, The stability of a homopolar dynamo. Math. Proc. Cambridge Philos. Soc. 51(4),
744-760 (1955)

H.K. Moftat, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge, 1978)
M. Bourgoin, R. Volk, N. Plihon, P. Augier, P. Odier, J.-F. Pinton, An experimental Bullard-von
Karman dynamo. New J. Phys. 8, 329-1-14 (2006)

N. Leprovost, B. Dubrulle, F. Plunian, Instability of the homopolar disk-dynamo in presence
of white noise. arXiv:nlin/0506050v1

S.M. Rytov, Yu.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics, vol. 1-4
(Berlin, 1987-1989)

A.A. Potapov, Yu.V. Gulyaev, S.A. Nikitov, A.A. Pakhomov, V.A. German, The modern
methods of image processing, in FIZMATLIT, ed. by A.A. Potapov (2008) (in Russian)

A.N. Malakhov, Cumulant Analysis of Random Non-Gaussian Processes and Their Transfor-
mations. Sovetskoe Radio (1978) (in Russian)


http://arxiv.org/abs/nlin/0506050v1

Dynamic Localized Autonomous Chaotic m
Orbital Patterns oo
from Rotation-Translation Sequences

Bernd Binder

Abstract Consider an ordered sequence of repeated operations given by a distance-
dependent rotation followed by a translation. Operating this sequence with special
parameters and initial conditions provides for characteristic spatial density patterns
in the plane. In this work we introduce an additional orbital rotation and find local
chaotic orbital patterns and attractors in the plane. There are two ways to form a local
density from discrete long-range jumps: either a jump-back boundary condition or
rotating the jump direction. We focus on real time simulations, where the chaotic
evolution and vivid dynamics (the live cycles of orbitals) with characteristic numbers
or stability conditions is manifest. Ring bifurcations, stable and unstable chaotic
orbital patterns or solitons emerge dynamically with start conditions and without any
“hard” additional boundary or radial back-jump-condition. We show some typical
orbital patterns and suggest a method of categorization.

Keywords Chaos - Rotation - Bifurcation - Discrete - Translation - Reflection -
Closed loop - Orbit + Soliton - Wavelet - Quantum - Attractor * Pattern -
Sequence - Simulation + Commutation + Operator + Geometric phase + Magic
angle - Spiral - Ray

1 Introduction

Repeating a discrete sequence of rotation—translation—reflection operations can
provide for a wide range of interesting and very complex pattern emerging from
chaotic jumps, see Skiadas [1-3]. Counterintuitively, discrete long-range jumps often
follow a continuous type of flow pattern, e.g. in [3] very similar to v. Kdrman Streets,
see Fig. 1.

To get a special pattern requires adjusting the rotation strength parameter and
eventually a boundary distance condition parallel to the jump direction. We found
that the correspondent pattern building process can be assigned to small nonlinear
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46 B. Binder

Fig. 1 Skiadas type v. Kdrman Streets with rotation parameter c; = 7, power exponent p; = —2,
reflection m = 2, and long jump back (red arrow)

geometric (phase) shifts arising in the rotation-translation sequence on every loop
Binder [4, 5]. Applying this nonlinear concept it is possible to generate a broad
range of patterns, including periodic structures like waves, circles, saw-tooth or
point-like discrete geometries by desktop computer simulations. The model can be
generalized to multiple rotation-translation sequences on orthogonal rotation axes in
higher dimensions Binder [5].

In this work we add to the basic rotation-translation-reflection model an extra
orbital rotation orthogonal to the jump direction and wonder, if we can generate in
these ways structures on closed orbits. This means, we add another rotation around
the existing singularity (at the origin) and look for orbital structures. As a result,
we find chaotic periodic structures emerging on the orbit without any additional
constraint like a jump-back condition limit. These dynamical structures are more or
less stable and show an internal dynamics sometimes like a vivid entity. In this paper
we point to some interesting patterns/simulations and try to make a categorization
according to boundary conditions and characteristic parameter.

2 The Basic Operation Sequence

In the plane the chaotic model is based on a discrete iteration sequence of the polar

vector
~()
y

Its polar coordinates are given by the radius r = |#| and polar angle/direction ¢,
where

x=rsing; r’=x>+y% ¢ =arctan2(x, y). 2)

The iteration will be given by an ordered sequence composed by the two or three
operations given by a polar rotation R and non-radial translation T and eventually
a radial inversion I. The vector coordinate evolves in successive operations within
one iteration sequence with numbering t — ¢ + 1 according to

7t_)?R_);:T_>FI:?t+1



Dynamic Localized Autonomous Chaotic Orbital ... 47

by the following relations:

I. A radius dependent polar/central rotation including reflection

g =R, A¢g). 3)
with rotation angle A¢ in (3) composed by the following rotation and reflection
components

Adp = Ap; + A, 4)
given by:

1. A¢; in (4) is the Skiadas type rotation angle that has a power-law radial
distance dependence with exponent p; < 0

Agp = cirP!, (5)

2. A¢; in (4) generalizes the reflection given by the difference o — ¢
multiplied by a reflection mode m

Apy =m(o —¢), (6)
where m = 2 is a reflection to the opposite side with respect to the initial
polar angle ¢ in the co-rotating frame. In our special case, the global
direction o in (6) sums up with a constant orbital rotation ¢y eventually
driven by a radial power-law c,r 72

o =0,=0,_1+co+ cor’. @)
The total rotation is with in (4)—(7) given by
Ap=cir’ +m(o — @), (®)
and the rotation in (3) provides for the new orientation angle

or = ¢+ Ad. 9

II.  The non-radial translation 77 = T(¥g, ¢, Ar):T(?R, Z;) of the rotated 7

by a translation shift Ar

Fr =T (k. A7) =Fg + Ar (10)
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in the initial ¢—direction (and not in the actual pgr—direction of (9)) where
the polar component of the translation in (10) are given by

Eﬁ:i(Ax)::I:‘K;“(Cf)s>263rm(cf)sw>y (11)
Ay sin sin @

Equation (11) generalizes the usual “jump” in x—direction [1-3], where
the unit jump has ‘K)r‘ = 1 or always c3 = £1 with p3 = 0. In this paper
we will consider for simplicity only unit jumps and in Chap. 7 negative jumps

with ¢z = —1.
III.  Finally there could be an additional inversion operation with respect to the
origin

i = 1GFr) = ir/IFrl, (12)

with invariant direction angle but inverse length to get a rotation-translation-
inversion sequence. This inversion could also be used as a method to jump
back near to the rotation singularity.

3 Categories of Jumping Patterns

Without orbital rotation the jumps would only go in one direction (usually the x-
direction) and disappear to infinity. There are two ways to form a local density: either
a jump-back boundary condition or rotating the jump direction. The v. Kdrman Street
pattern in Figs. 1 and 2 and the typical 2d wave pattern on the plane in Fig. 3 have
a jump-back distance condition in the x-direction, which means, if the distance to
the origin in jump direction exceeds a limit, a jump back near to the origin follows
(Figs. 4 and 5).

With a new extra orbital rotation orthogonal to the jump direction we get local
chaotic patterns without any orbital conditions (no jump condition) similar to the
orbital solutions we know from quantum mechanics. We will call them “Localized
Autonomous Chaotic Orbital Patterns” or LACOP, where we get many interesting
orbital structures for integral p;, p,, m. It makes sense to group the jumping patterns
according to the boundary conditions, where we have identified five categories given
by:

1. random starts condition: long jump back (red arrow) randomly near to center,
if distance or number of jumps exceeds a limit (see examples in Figs. 1, 2, 6
and 7).

2. periodic boundary condition: a defined long jump back to the back side, if
distance exceeds a limit Ry, see Fig. 3.

3. inversion condition: inversion operation 7 = 7/r? if distance r exceeds a limit
Rumax, see (12).
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Fig. 2 Long jump back with 6 arm-symmetric v. Kdrman Street pattern, c; = 27/6, with m = 2,
ci=m,pr=—2,and pp =0

Fig. 3 Periodic boundary
jump back conditions
producing waves, where

p1 <0, pp=0, m=2

Fig.4 p; = p» — 1 with p» =2, left: LACOP with m = 1, right: random starts with m = 2 dipole
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Fig. 5 LACOP with regular orbital structure, examples of patterns withm =0, p;y =0, p» = —1,
p3 =0.

Fig. 6 Radial rays intersecting spirals according to (13) and (14), left: m = 1,¢c3 = —1, p; =0,
p2=1,M>100,J =05, rightt m=1,c3=1,p1=-2,pp=0,M=5,J=0.5

L vt e
. q S )
y .
L
_' ‘
g .
o \
A y A

Fig.7 Linearrays form =1,c3 =—1,p; =0, pp = 1leftand mid M = 3, right M = 13, g =
0.001
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4. no boundary condition: rotated jumps around the center according to orbital
quantum numbers and symmetries producing LACOP.

5. parameter conditions: relating the two parameter ¢y, ¢, can define a family
of patterns, e.g., if we define a small isotropic geometric phase shift gap
g = I/N « 1 and relating the coefficients via the geometric jumping gap
g geometrically to the rotation-translation parameter according to

c; = arccos(l — g), c=2mJg. (13)

In this case we get with=1,2,3... = 1/g,¢c3 = —1, p; = 0, p, = 1 special
radial conditions like spirals intersected radial rays, see Figs. 6 and 7 with random
starts near to the center (condition 1).

4 Physics Relevance

It is interesting comparing these structures to Quantum Electrodynamic and spin
symmetries. The parameter conditions categories 5 and 6 of Chap. 3 can be combined
with condition categories 1, 2, 3, 4, where p, = —1 with m—pole provides for
multipole type orbital ring clouds and field structures:

5 Simple m = 0 LACOP

Both regular and highly non-linear or chaotic are the m = 0 patterns in a wide
parameter range, see Fig. 5.

6 Monopole m = 1 Negative Jumps c3 = —1 with Random
Start Near to Center

Both, highly chaotic and regular are the m = 1, c3 = —1 patterns in a wide parameter
range, see Figs. 6 and 7, where the geometric gap condition in (13) produces radial
rays intersecting spirals with random starts. It is not surprising to get Fresnel Charge
structures in Fig. 6 for p, = 1, since a Fresnel spiral has an inherent spiraling angular
structure with ¢ oc Y o oc r72F! =2,

With a second constraint between the two parameters cj, ¢, in addition to (13)

given by the linear relation

Mc, =2nJ — ¢, (14)
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we get fixed points for the parameters recovering the magic angle condition Mc¢; =
+Jcos(c;) Binder [5] with charge J and discrete points solutions, where spirals
intersect for m = 1 rays with center offset, see Figs. 6 and 7.

7 More Complex Vivid m = 2 LACOP

Very interesting and exciting is the chaotic dynamics of the m = 2 LACOP orbitals,
see Fig. 8 and some mixed examples in Fig. 9. There is in most cases no static or
stationary solution, since the orbitals often show a chaotic variation in the orientation
or orbital shape. Therefore, a stable LACOP should be properly initialized; usually
by an high enough orbital rotation parameter ¢, (spin, energy) while increasing the
m-parameter from 1 to 2. In simulations the solutions (recorded as videos) appear to
be like vivid orbitals with inherent chaotic dynamics especially in the substructure
of orbital rings:

2

Sl e

Fig. 8 Vivid pulsating LACOP with different orbital structure expanding and contracting (the
two examples are snapshots from the same LACOP) with m = 2, p; = =2, p» =0, p3 =0,
c1 &~ —0.020357, c2 = 1.00217

Fig. 9 Typical chaotic LACOPs with a core and a hole in the center p; < pp,m > 0
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Fig. 10 Radial ring orbit bifurcation p; = —1, m = 1, left: 4th bifurcation with 16 orbits where
c] = 1.657m, right: chaos starting at c; = 1.657

8 Orbital Bifurcations for m = 1 LACOP

Under special conditions, the radial distribution of orbits shows a bifurcation tree,
see Fig. 10.

9 Conclusion

The resulting patterns often show a localized ring shape with several mixed orbits in
a kind of hydrodynamic-type orbital shelf flow and an empty region or hole at the
center. m—poles or reflection modes with higher m show more complex and instable
pattern. A stable form must be initialized; otherwise the pattern collapses or expands
to infinity. The emerging LACOP solitons or fixed point solutions are having always
characteristic.

special parameter m, c;, p;, where usually p; <0, p, and p3 > 0, see Table 1.
nonlinear structure, chaotic dynamics, bifurcations, and fluctuations

radial and orbital wave numbers

radial and orbital symmetries

geometric phase conditions

fixed point sets (i.e., two magic conditions (13) and (14) with numbers J, M)

Finally, we propose that this computer experiments show some relevance to
quantum physical systems since we have

a wave attractor showing quantization effects in terms of rotational units,
a quantization of monopole and multipole charges,
a basic non-zero quantum spin in the two main operators (rotation-translation,
non-commutative) with characteristic geometric phase shifts,
e point-like local events with emerging global wave-like probabilistic patterns.
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Table 1 Small LACOP exponent combinations

“Jump back” needed? Pl P2 p3 m c3
Yes -2 0 0 >0 1
No -2 0 0 >0 1
No -1 1 0 >—1 1
No -1 2 0 >1 1
No —1 2 1 >0 1
No 1 0 1 -1
No 1 0 >1 1
No 2 0 >1 1

There will be videos of simulations available on the internet with title “Dynamic
Autonomous Chaotic Orbital Patterns” or tag “#DACOPSimulation”.
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New Discrete Chaotic Cipher Key )
Generation for Digital Embedded L
Crypto-systems

Belqassim Bouteghrine, Camel Tanougast, and Said Sadoudi

Abstract To benefit of embedded systems which are highly customized providing
architectures to suit real-time computing, optimized unit size and low power con-
sumption require highest levels of data communication security which are very useful
advantage for telecommunications and networks and Internet of Things (IoT) com-
munication applications that handle sensitive information. This paper presents an
extracted new 5-dimensional (5-D) discrete time chaos system to generate a robust
chaotic cipher data stream to ensure encryption application for secure communica-
tion. Dynamical behaviors and security analysis are investigated and compared to
current discrete chaotic maps proving its suitability for embedded data encryption
systems. Field-Programmable Gate Array (FPGA) implementation design shows bet-
ter performance and good security robustness compared with previous works while
proving the performance improvement of the proposed cipher block in terms of
throughput, used hardware logic resources, and resistance against most cryptanaly-
sis attacks.

Keywords Chaotic generator - Secure communication - Key space - Encryption -
FPGA implementation

1 Introduction

Due to advancement in technology, thousands of devices in home, industry and health
care systems are connected to each other. With advent of IoT, this number is increasing
exponentially [20]. With the provision of too many features, these devices still need
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more protection from cyber-attacks [9]. Due to the existing low security protocols,
these devices are always on high threat, which makes the communication vulnerable
and prone to foreign intrusion. In the literature, many schemes and protocols have
been proposed to address the network security issue. In [21] authors have proposed
an unclonable-based functions for authentication the protocol, for IoT devices. How-
ever, the proposed protocol lack some related computations [ 14]. In [16] authors have
presented a simplified protocol to reduce the computations through the authentica-
tion phase But the complexity of the proposed scheme is not appropriate for the IoT
devices [13]. Moreover, Random numbers are used in many cryptographic protocols,
key management, identity authentication, image encryption, and so on [23]. As soft-
ware generated random sequences are not truly random, fast entropy sources such as
quantum systems or classically chaotic systems can be viable alternatives provided
they generate high-quality random sequences sufficiently fast [3]. In [2], authors have
introduced a new hardware chaos-based pseudo-random number generator, which
is mainly based on the deletion of an Hamilton cycle within the N-cube plus one
single permutation. Chen et al. [7] initiates a systematic methodology for real-time
chaos-based video encryption and decryption communications. Based on the fun-
damental anti-control principles of dynamical systems, a novel 6-dimensional real
domain chaotic system is designed, and then the corresponding algorithm is devel-
oped. The proposed algorithm is utilized to design a real-time chaos-based secure
video communication system, with a generalized design principle derived, which
is implemented on an FPGA hardware. Additionally, some other research works
have been proposed which include, applications of chaotic systems for speech signal
encryption [18], e-mail and database encryption [19] and image encryption [6, 8,
10, 12, 15].Unfortunately due to different technical reasons, all these schemes are
not useful for different IoT applications. Because the discovery of simple chaotic
systems with complex dynamics has always been an interesting research work [11],
we propose through this paper an extracted low resource consumption 5-D Chaotic
System for secure IoT communication. The proposed chaos-based cryptosystem
is implemented by using Xilinx ZYNQ-XC7Z020 FPGA board. The rest of this
paper is organised as follows. Section 2 describes the proposed 5-D map. Hardware
implementation and performance analysis are presented in Sect.3. Finally, Sect.4
concludes this paper.

2 The Proposed 5-D Map

In [5] authors proposed a multidimensional chaotic map within good chaotic prop-
erties. From the proposed system, the extracted 5-D discrete time chaos system with
nine nonlinear terms and five control parameters is described as follows:
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Fig. 1 The bifurcation graphs of the proposed 5-D map with parameters b, d

Xn+1)=1—a=x X(n)2 + (Y(n) x Z(n) x W(n) * P(n))
Y(n4+1)=1—-bxYm)*+ (X(n) * Z(n) * W(n) = P(n))

Zn+ 1) =1—cxZn)?*+ (X)) Y (n)* W(n) * P(n)) (D
Wn+1)=1—dxWn)?>+ (Xn) xY®n) *Zn) x Pn))
Phn+1)=exXn)xYn)xZn)xWn)

whereas a, b, ¢, d and e € R are the controllers and X, Y, Z, W, P are the state
variables respectively.

2.1 Bifurcation Analysis

To investigate behaviours of the proposed system defined by the proposed 5-D map,
we analyze the bifurcation diagrams related to parameters a, b, ¢, d and e. According
to the bifurcation study, chaotic behaviour of the proposed system appears for a €
[0.8,1.8],b €[0.1,1.4],c €[0.7,1.9] ,d € [0.3,1.6] and e € [0.05,1.1] as shown in
Fig. 1 (the bifurcation study of the parameters b, d).

2.2 Signals Analysis

To study the dynamical behaviours of the proposed model, the signal graph and the
phase space trajectories defined by the state variables (X, Y, Z, W, P) can be used
as an indicator to determine that the motion of that system is chaotic. In the proposed
work, the technique is based on the signal output and the projection of the trajectories
onto the plane, which reflects the chaotic behaviour result of the proposed system as
shown in Figs.2 and 3, respectively.
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Fig. 2 Signals graphs of the proposed 5-D map
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Fig. 3 Trajectory graph of the proposed 5-D map

2.3 Sensitivity Analysis

To evaluate the sensitivity to initial conditions of the proposed map, we consider a
changing by 107'9 of the initial values X (0), Y (0), Z(0), W(0) and P(0), then for
the parameters a, b,c,d and e. The results shown in Figs.4, 5, 6, 7 and 8 prove that
after a few number of iteration all the signals are different from the initial ones.

3 FPGA Implementation of Secure Peer-to-Peer
Communication

3.1 The Proposed Platform Test Bench

Because of flexibility, reliability, low cost, fast time-to-market, and long term main-
tenance, FPGA environment is considered more useful for the validation of the



New Discrete Chaotic Cipher Key Generation for Digital ... 59

1.2

R Q}W M{Wh Ji it
l Il
- |

08 L 1 1 1 1 1 1 L 1
0 10 20 30 40 50 60 70 80 90 100

Fig. 4 Sensitivity analysis of the signal X (n + 1)

1.5

1l
i

a4 =l e I

Fig. 5 Sensitivity analysis of the signal Y (n 4 1)

proposed scheme. Initially the hardware description language (VHDL) is used to
implement the proposed 5-D system as a chaos-based cryptosystem (called Chaos
5-D Generator). After that, the designed is integrated as a new core or module with
the other components of the Xilinx ZYNQ-XC7Z020 FPGA board as given in Fig. 9
[5].

To establish the final platform of Peer-To-Peer secure communication, we connect
all the programmed FPGA boards through an Ethernet network (Fig. 10).

The proposed bench test runs as follows:

e The peers establish a new connection;
e Ifit is the first connection (i = 1), then key-Generator modules are reset;
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e The key-Generator of both peers load the key corresponding to the sequence i of

the implemented 5-D map;

e The generated keys are used to encrypt and send the data;

e The generated keys are used to decrypt and read the received data;

Lastly, the peers terminate the communication by closing the channel, and the key-
Generator module saves the samples (i + 1) for the next communication.
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Fig. 9 FPGA block design

3.2 Performance Analysis

In such kind of cryptosystems, without any robust experimental solution to the chaotic
synchronization issue [17], we introduce the control option for the chaos 5-D gener-
ator. Hence for each established connection i, the proposed cryptosystem generates
the same encryption key which corresponds to the sample i of the proposed 5-D
chaotic map.
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Fig. 10 The proposed bench test platform
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Fig. 11 Exchanged messages between the peers

Ensuring that both generators implemented on two different boards generate the
same keys, thereby, the connected peers can encrypt/decrypt exchanged messages
easily as shown in Fig. 11.

To show the performance of our system, the proposed model is compared with
some of the state of the art works. Table 1 gives the details of the comparison. The
comparison is made on the basis of LUTs, FF, DSP, maximum frequency and Slices.
From table 1, it is evident that the proposed scheme has the best results with 2570
(4.83% from available) lookup tables (LUTs), 872 Slices (6.55%), 2570 flip-flops
(FF), 111 DSP multipliers (50,45%) and no block RAMs, all at maximum frequency
of 553.09 MHz. These results are never achieved before, which confirms the novelty
and suitability of the proposed scheme.
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Table 1 FPGA resource utilization comparison

Proposals Resources LUTs FF DSP Slices Fmax(MHz)
avilable 53200 106400 | 220 13300

[1] - 2986 NM NM 26893 147.863

[24] - 23173 1598 220 5111 125.50

[4] - 17322 1598 220 5111 125.50

[22] - 24836 NM NM 27371 135.04

Proposed 5-D |- 2570 918 111 872 553.09

system

4 Conclusion

With the development of chaotic theory and its applications in different domains,
proposals of constructing new and higher dimensional chaotic systems become one
rising trend.

In this paper, we proposed an extracted 5-D discrete chaotic map for key stream
cipher generation. The chaotic behaviour of the proposed map is investigated using
the bifurcation and the trajectory analysis.

Compared to some well know chaotic systems, the proposed 5-D map presents bet-
ter properties in terms of resource consumption and achieved frequency. Moreover,
the proposed 5-D chaotic map provides an attractive trade-off between key space,
resource utilization and memory consumption proving its suitability for securing
communications of resource-constrained devices such as [oTs.
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Abstract Chaos theory is considered as a tool for studying the systems that show
divergence and disorder. After having used discrete mathematics to deduce non-
convergence situations, these theories are modeled in the form of a dynamic system
and are applied in several domains such as electronic, mechanic, network security,
etc. In network security domain, the development of new cryptosystems based on
chaos is a relatively new area of research and is increasingly relevant. The essence
of the theoretical and practical efforts in this field derive from the fact that these
cryptosystems are faster than conventional methods, while ensuring performance of
security, at least similar. In this paper, we discuss several proposals about chaos-based
cryptosystem and pseudo-random number generator (PRNG). Moreover, topology
and architecture of the proposed chaos systems are detailed. Finally, in order to show
the more suitable system for encryption and secure communication, a synthesis
comparison is presented and considered.

Keywords Chaos + Network security + Crypto-systems + Communication + PRNG

1 Introduction

Nowadays, network communication is vulnerable to many threats and cyber-attacks
and it becomes more important for network experts to safeguard the network access
[1]. Among the available security mechanisms, chaos-based cryptosystems are con-
sidered one of the most effective solution that provides the integrity, the authentication
and the confidentiality. Recently, the development of new cryptosystems based on
chaos is a relatively new area of research and is increasingly relevant.
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In [2], an Field-Programmable-Gate-Array (FPGA) implementation of image
encryption purpose using two chaotic discrete time systems. The proposed two phases
algorithm is executed by using the well known Arnold Cat map and the generalized
logistic map, respectively. Authors in [3] initiate a systematic methodology for secur-
ing real-time video communication. The proposed chaos-based cryptosystem have
been implemented on an FPGA hardware platform via Verilog Hardware Description
Language (Verilog HDL). Sreenath and Narayanan [4] presents a Hardware imple-
mentation of a Pseudo chaos signal generator using three reconfigurable discrete time
systems with a linear feedback shift registers (RLFSR). The proposed technique was
implemented using Verilog HDL codes, then analyzed using Xilinx Plan Ahead com-
piler and Model-sim software. In terms of network security protocols, [5] proposed a
novel chaos-based mechanism that includes Pseudo-Random Key-Generator which
can be used to secure a socket-based communication. The proposed key-generator,
created by solving the Lorenz chaos-system, has the main task of delivering at each
opened channel a new 32-bit key that is used for encrypting/decryption the exchanged
data.

In this paper, we discuss several proposals about chaos-based cryptosystem and
pseudo-random number generator (PRNG). Moreover, topology and architecture of
the proposed chaos systems are detailed. Finally, in order to show the more suit-
able system for encryption and secure communication, a synthesis comparison is
presented and considered.

The remainder of this paper is structured as follows. Section2 describes the clas-
sification of the most used chaotic systems. Section 3 shows the hardware implemen-
tations of these chaotic systems as well as their purposes. Section4 concludes this

paper.

2 Background and Description of Chaotic Systems

Due to the sensitivity and periodicity properties, chaotic systems have been involved
mainly in key generation of the recently proposed cryptography schemes. Regarding
their topology and mathematical model, we can classify all existing and newly pro-
posed chaos systems in two main categories: continuous-time systems and discrete-
time systems.

2.1 Continuous Time Systems

The continuous-time systems are described by a set of linear differential equation.
Moreover, in order to ensure that the dynamical systems to be chaotic, the dimensions
of the system’s phase space must be at least equal to three (3). In the literature, there
are several well known continuous-time systems such as Lorenz [6], Chen [7], Lu
[8], etc.
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Fig. 1 Trajectory graph of the Lorenz system

Lorenz System The basic form of the Lorenz 3-D system is described by the fol-
lowing set of equation:

x=a(y —x)
y=y+bx —xz
I=xy—cz

where X, y and z are the state variables. a, b and c are the system parameters. The
chaotic behaviour (see Fig. 1) appears for a = 10, b = 28 and ¢ = 8/3 with the initial
conditions xo = 0, yo = 5 and zo = 25 [8].

Van-der-Pol System The Van-der-Pol oscillator as given in [9], is described in two
dimensions as follows:

x=ax—(1/3)x"—y)

v = (1/a)x
where X, y are the state variables, and a is the system controller. The phase portrait
of the 2-D system is illustrated in Fig. 2.

Chen System Based on the 3-D Lorenz system, Chen 3-D system is proposed and
described by the following set of equations:
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Fig. 2 Phase plan projection of the Van-der-Pol system

X =a(y—x)
y=(0b—a)x+by—xz
Z=xy—cz

where x, y and z are the state variables. a, b and c are the system parameters. The
chaotic behaviour appears for a = 35, b = 28 and ¢ = 8/3 [10], while the phase plan
projection is shown in Fig. 3.

Lu System The Lu system is known as the bridge between Lorenz system and Chen
system [8]. Thereby, the mathematical model is given as follows:

X =a(y —x)
y=by —xz
Z=xy—cz

where x, y and z are the state variables. a, b and c are the system parameters. The
trajectory graph of the proposed system is given in Fig. 4.

Linz-Sprott System Trying to simplify the formula of a chaotic system, Linz and
Sprott [10] have proposed a new system which is defined as follows:
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Fig. 3 Phase plan X—Y
projection of the 3-D Chen
system

Fig. 4 Trajectory X—Y—-Z
of the 3-D Lu system

=y
y=z

t=—az—y— 1+l

where x, y and z are the state variables and a is the system’s parameter. As shown in
Fig.5, the chaotic behaviour of the proposed system is achieved for a = 0.6.

Four-Wing memristive hyperchaotic System Looking for higher dimensional
chaotic system, authors in [11] have proposed a novel 4-D system which is described
as follows:
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Fig. 5 Trajectory X—Y—Z of the Linz-Sprott system

X =ax + byz
y=cy+dxz—pyWw)—Q
z=ez+ fxy+gxw
w=—y

W(w) = m + 3nw?

where X, y, z, w are the state variables. a, b, ¢, d, e, f, g, m, n, p, Q are the controllers
of the proposed system. In order to ensure the chaotic behaviour, the controllers
parameters are defined as follows: a=0.35,b=—10,c=—-0.6,d=0.3,e=—1.6,f=
2,2=0.1,m=0.1,n=0.01,p=0.2and Q=0.01. The trajectory graphs corresponding
to the proposed system with the associated parameters, are shown in Fig. 6.

New 3-D Continuous Time System Getting inspired from the Lorenz system [12],
with only two (02) controllers, anovel 3-D system is proposed and defined as follows:

X=y—x—az
y=xz—x
z=-—xy—y+b

where x, y and z are the state variables. a and b are the system parameters. The
chaotic behaviour of the proposed system is observed for the values a =0.5 and b =
1 while the initial conditions are xo = yy = z9 = 0 (see Fig.7).

New 4-D Continuous Time System In [13], another new 4-D chaotic system is
proposed based on the Rossler system, and defined by the following set of equations:
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Fig. 7 Phase plan projections of the proposed 3-D system

X=-y—z+dw
§=x+ay
z=b+z(x —c)—aly —w)

w=az—w

where X, y, z and w are the state variables. a, b, ¢ and d are the system parameters.
By choosing a=0.4, b= 0.6, c =3 and d = 0.8, the chaotic behaviour of the proposed
system is showed by phase plan projection (see Fig. 8).
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Fig. 8 Phase plan projection of the proposed system

2.2 Discrete Time Systems

The discrete time chaos system is a dynamic system which works in increments and
takes the conditions at a given time ¢ to change these conditions at a later time t + Af.
Hence, unlike the mathematical model of the continuous time systems, discrete time
maps are described mathematically by an iterated function. Moreover, the dimension
of the system’s phase space could be only equal to one (01) to show chaos behaviour.

Logistic Map In the literature, many proposals have used the well known logistic
map such as in [14] for PRNG, [2] for image encryption,[15] for chaotic signal
generating, etc. The mathematical description of this map is given as follows:

Xip1 = ax;(1 —x;)

where x; is the state variable and a is the system controller.
To ensure the chaotic behaviour (see Figs.9 and 10) of this system, a should be
in the interval [3.57 — 4].

Hénon Map A simple 2-D with quadratic non-linearity, Hénon system was the
first map to show strange attractor with a fractal structure [16]. The mathematical
description of this map is given as follows:

_ 2

Xit1 =a—+ Yy —X;

Vi1 = bx;

where x; and y; are the state variables and a, b are the system controllers.
The obtained strange attractor of this map, is shown in Fig. 11 while the controllers
area=1.4andb=0.3.

Rene-Lozi Map By introducing the absolute value in the Hénon map, the Rene-Lozi
map used in [17] for stream cipher purpose, is described as follows:
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Fig. 9 Trajectory graph of Xn+l
the logistic map =

Fig. 10 Signal graph of the 1 T T
logistic map : '

0 10 20

Xip1 =1+ y —alx|

Yit1 = bx;

where x; and y; are the state variables and a, b are the system controllers.
Similarly to the Hénon map, it has been shown that for a=1.4 and b = 0.3, chaotic
behaviour of this map can appear (see Fig. 12).

Bernoulli Map Unlike all the discrete time maps, Bernoulli map is composed of two
piece-wise linear parts which are separated by a discontinue space of points [11] (see
Fig. 13).
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03

025}

0.2F

0 15}

01F

005}

-0 05

-0 15F

.053 068 .04 -02 0 02 04 06 08 1 12

Fig. 12 Trajectory graph of the Rene-Lozi map
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Fig. 14 Signal graph of the Bernoulli map

Mathematically, the Bernoulli map is defined as follows:

ax; +0.5 ifx <0
Xi+l = .
ax; — 0.5 ifx >0,
where x; is the state variable and a is the control parameter.
The chaotic status of this map is ensure for all the values of the parameter a inside
the interval ]1.4 — 2] (see Fig. 14).

Sine Map The sine map is qualitatively similar to the logistic map, and the superficial
similarity has resulted in a much deeper connection.
As indicated by its name, the sine map is defined by a sine function as follows:

Xirp =asin(mryx;), 0<x;<1l,a>0
where x; is the state variable and a is the system parameter. The projection graph

which proves the behaviour of this map is shown in Fig. 15.

Tent Map Regarding the slope of its mathematical function, tent map with only
one state variable, is considered as a slope of two (02) model. Without any control
parameter, the tent map is defined as follows:
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Fig. 15 Trajectory graph of IF
the sine map o5
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Fig. 16 Trajectory graph of
the tent map
xn-|-1
.
1
2 2
xn
2x; if0 <x; <1/2

Xitl = .
2(1 —x;) ifl1/2<x;, <1

where x; is the state variable. Moreover, the trajectory graph of the tent map is shown
in Fig. 16.

All these systems have been used mainly for either generating random numbers,
cipher keys or chaotic signals. They differ from each other in terms of dimension,
control parameters and the purpose of use. In Table 1 we summarize all these differ-
ences obtained regarding our study.
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Table 1 Summary of the chaotic systems: description and purpose of application

System References | Type Dimension | Controllers | Purpose

Lorenz [8] Continuous | 3-D 3 Image encryption
Van-der-Pol | [9] Continuous | 2-D 1 Random number generator
Chen [10] Continuous | 3-D 3 Chaos signal generator

Lu [8] Continuous | 3-D 3 Image encryption
Linz-Sprott | [10] Continuous | 3-D 1 Chaos signal generator
4-Wing [11] Continuous | 4-D 11 Random number generator
New 3-D [12] Continuous | 3-D 2 Random number generator
New 4-D [13] Continuous | 4-D 4 Image processing

Logistic [14] Discrete 1-D 1 Random bit Generator
Hénon [16] Discrete 2-D 2 Encryption

Rene-Lozi | [17] Discrete 2-D 2 Stream cipher

Bernoulli [11] Discrete 1-D 1 Random number generator
Sine [15] Discrete 1-D 1 Chaos signal generator
Tent [18] Discrete 1-D 0 Chaos signal generator

3 Hardware Implementations and Applications

FPGA-based prototyping is specifically geared toward meeting the design and verifi-
cation demands created by the complexities of low and constrained resources devices.
Moreover, FPGA-based prototyping allows designers to develop and test their sys-
tems and provides software developers early access to a fully functioning hardware
platform long before silicon is available. In order to be implemented on FPGA, the
continuous time systems need to be discredited numerically using some popular
methods such as Euler and Runge-Kutta (RK) methods. Euler’s method is a straight-
forward method that estimates the next point based on the rate of change at the current
point and it is easy to code [19]. It is called also a single step method. While RK
methods are actually a family of schemes derived in a specific style. Higher order
accurate RK methods are multi-stage because they involve slope calculations at mul-
tiple steps at or between the current and next discrete time values [20]. The next
value of the dependent variable is calculated by taking a weighted average of these
multiple stages based on a Taylor series approximation of the solution. The weights
in this weighted average are derived by solving non-linear algebraic equations which
are formed by requiring cancellation of error terms in the Taylor series. Developing
higher order RK methods is tedious and difficult without using symbolic tools for
computation. The most popular RK method is RK4 since it offers a good balance
between order of accuracy and cost of computation. RK4 is the highest order explicit
Runge-Kutta method that requires the same number of steps as the order of accuracy
(i.e. RK1 =1 stage, RK2 = 2 stages, RK3 = 3 stages, RK4 = 4 stages, RK5 = 6
stages, . . .). Beyond fourth order the RK methods become relatively more expensive
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Table 2 Summary of the FPGA implementations

B. Bouteghrine et al.

References | FPGA technology | Resources Chaos system | Discretization
[12] Virtex-6 LUTs = 1070 Regs = 1196 New 3-D Euler

[9] Virtex-6 LUTs = 22674 Regs = 21,797 | Van-der-Pol | RK4
[14] Virtex-7 LUTs =510 Regs = 120 Logistic No need
[17] Spartan-6 LUTs = 562 Regs = 386 Rene-Lozi No Need
[11] ZYNQ-XC7Z020 | LUTs =22,556 Regs = 264,26 | Four-wing RK4
[16] Virtex-5 LUTs = 1496 Regs = 432 Hénon No Need
[8] Virtex-11 LUTSs = 2490 Regs = 1316 Lorenz/Lu RK-4
[22] Virtex-5 LUTs = 2799 Regs = 1722 Logistic No Need
[23] Zyng-7000 LUTs = 856 Regs = 521 Hénon No Need
[24] Stratix-IV LUTs = 49,005 Regs = 611 New 3-D Euler

to compute. Among all the studied proposals, we have synthesised a brief comparison
that includes mainly the used FPGA technology and the consumed resources. Table 2
summarizes the difference between different proposals regarding the chosen system
as well as the resource consumption. However, we found that in the single-precision
and the double-precision operations, there are more than 10~ differences in less than
100 iterations, and the difference reaches more than one digit after 1000 iterations
[21]. This is because the binary has a round-off error, so the binary cannot strictly
obey the commutative law or the distribution law in floating-point operations.

4 Conclusion

In this paper, we discuss several proposals about chaos-based cryptosystem and
pseudo-random number generator (PRNG). Moreover, topology and architecture of
the proposed chaos systems are detailed. Finally, in order to show the more suit-
able system for encryption and secure communication, a synthesis comparison is
presented and considered.
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Abbreviations

HI  Hypersingular integral

HIE Hypersingular integral equation
SI Singular integral

SIE  Singular integral equation

1 Introduction

1.1 Review of Approximate Methods for Calculating
Hypersingular Integrals and Solving Hypersingular
Integral Equations

Starting the middle of the last century, the methods of singular and then hypersingular
integral equations have been increasingly used in the study and modeling of various
problems in physics, natural science and technology: in aerodynamics, electrody-
namics, elasticity theory, nuclear and atomic physics, geophysics, and mathematical
physics. Analytical methods for solving singular and hypersingular integral equa-
tions are known only for very special cases. Thus numerical methods are widely
employed for solving singular and hypersingular integral equations [1-7].

The development of approximate methods for solving singular integral equations
(SIE) started in the 50 s of the last century. The number of publications devoted to
approximate methods for solving SIE and their generalizations and related Riemann
and Hilbert boundary problems has not decreased up-to-date. Main approximate
methods for solving SIE are presented in [1, 2], which contain extensive bibliography.

It is interesting to note that hypersingular integrals (HI) were introduced to math-
ematical world around the same time as singular integrals (SI). However the devel-
opment of approximate methods for solving hypersingular integral equations (HIE)
started later than the development of similar methods for solving SIE. Today HIE is
the fast growing field in mathematics.

An intense development of approximate method for solving SIE and HIE is caused
by their numerous applications. In particular, SIE and HIE are main mathematical
engine in antenna theory, composite materials theory, metamaterials.

Main approximate methods for solving HIE can be found in the publications
[3-7].

Effective approximate methods for evaluating SI and HI are required to imple-
ment numerical methods for solving SIE and HIE. Analytically singular and hyper-
singular integrals can be evaluated pretty rare. Lack of analytical methods require
the development of numerical methods for evaluating SI and HI.

There are numerous publications devoted to evaluate SI and HI over smooth curves
issues. The bibliography is presented in [1, 5, 8—10]. The authors do not know about
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works devoted to numerical methods forcalculation SI and HI and solution SIE and
HIE over fractals.

Recently the need for study of physical and technical processes on fractals has
appeared. First, it should be noted synthesis and analysis of the fractal antenna
problems [11], and the microwave theory and technique. It is important to know,
different antenna types are modeled by SIE and HIE. Obviously, the development
of approximate methods to solve SIE and HIE on non-rectifiable curves and fractals
for modeling electrodynamic processes in fractal antennas will be required.

The chapter is devoted to approximate methods for calculating singular and hyper-
singular integrals and solving singular and hypersingular integral equations over
non-rectifiable curves and fractals.

1.2 Definitions

Let L be a contour on the complex plane. Let A = [a,b]or A = L.

Definition 1.1. Class of Holder functions H,(M; A)(0 < a < 1) consists of func-
tions f(x) given on A and satisfying at all points x” and x” of this set the inequality

Lf &) = fGMD = MIx" —x"|".

Definition 2.2. The class W” (M ; A) consists of functions defined on A, continuous
and having continuous derivatives up to (r — 1)-th order inclusive and piecewise
continuous derivative r-th order satisfying on this set the inequality | ) (x)] < M.

Definition 1.3. The class W H,(M; A) consists of functions f (x) belonging to the
class W’ (M; A) and satisfying the additional condition f)(x) € H,(M).

Definition 1.4 [12]. Let ¢(1) € W?~'H, (M, A). The Integral [* ﬂ‘”dt a<c<

c)P?
b,p = 2,3,..., in the sense of Cauchy—Hadamard principal Value is called the
limit: fb ‘”(T)dr = lim, [fL ! ‘ft(f)f;f, + fcﬂ ‘(”T(T)L”)I,f + S(“)] here & (v) is a function

satisfied the condmons. (1) the limit exists; (2) £(v) has a continuous p — 1 degree
derivative at a neighborhood of zero.

Let us give the definitions of SI and HI on a closed non-rectifiable curves and
fractals.

Let y be a simple closed curve in the complex plane forming the boundary of
D, and D" and D~ be interior and exterior domains respectively. If u(z) is contin-
uous in D and has intagrable partial derivatives in 8 D, Stokes’ formular occurs
fy w(@dz = — [ [,. 3£9zdz, whereZ = x — iy, 3% =3(Z + a"\

This formula allows you to enter the definition of the integral over non-rectifiable

curves and fractals:
si
/u(z)dz _ _f/ Q@ gz, (L1
¥4
Y D+
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here #(z) is a continuation of u(z) to the region D™

The [13] notes that this definition belongs to Whitney.

There are many methods of continuation. Here Whitney’s continuation has been
used [14], p.205.

The Whitney operator has the following properties:

(1) ifthe functionu(z) € H,(y), z € y, thenits extension i (z) satisfies the Holder
condition in D™;

(2) in C\y, the continuation of u(z) satisfies the estimate |gradu(z)] <
C(dist(z,y))* 1.

Stein [14] shows that Definition (1.1) does not depend on Whitney’s operator
selection. Thus for any i (z) and #,(z) Whitney’s continuation appears

/ / @ e / / CLEICO
07 07
Dt D+

Ttis known [15] the integral | [,,, 22

is the cell dimension of the curve y.

dzdz exists for A > a(y)—1, where a(y)

Definition 1.5. If a closed curve y has a cell dimension a(y), f € H,(y) and
A > a(y)—1occurs, then fy f@dz=—[ [y E’{;#dzdz, where f(z) is a Whitney
continuation for f.

In case of singularity of f, f = fyv, here fy € H,(y), fo(t) =0, and |v(z)| <
clz — 117", 18v/97] < c|z — t|~', z € D \t, then it occurs.

Definition 1.6 [16]. If a closed curve y has a cell dimension «(y), the inequalities
v(z)| < clz—t|7", [0v/07] <clz— = 5+\t and A > (a(y))/2 are satisfied
then fy f@dz=—[ [y Wdzdz, where f,(z) is any Whitney continuation
for f.

Consider the singular integral S, f = % y %, tey.

If y is a smooth curve, S,, f is regularized by

1 (1) — d 1 —f
Sy H@®) = ;fij(?itfmdr+m L= ;/7f(?7tf(t)dr+f(z).
14 14

i T—t
14

It yields us to the following statement.

Definition 1.7 [16]. A singular integral S, f over a closed non-rectifiable curve is

defined by (S, )(1) = f(t) — & [ [,,. 2L L gzq7, where f(2) is a Whitney
continuation for f.

Consider the hypersingular integral % fy (-Tf_(:;p

dt,tey,p=2,3,...
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In case of a smooth closed curve y a hypersingular integral on the complex plane
C is defined by

f) 1 ) 1 d
(T Z)Pdr — 7 f dt + f(t)_l (rftt)l’—i_
y

Y
f(t) 1 SP00 1 pdr _ ) (p=1)
+9 1! i (t— t)l’ 2 +o.t (p—D! mi T—t f dr + (p— 1)|f (t)
Y 14 14

4 (p=1
where g(v,1) = (f(©) = f() = L (e =) — .. = L e — )P~ /(e — )P~
Using the last formula the definition follows.

Definition 1.8. A hypersingular integral over a non-rectifiable curve y is defined
1 () V@) 1 92 1 3 ; ;

by EIV '(Tf_;)pdr = f(,;_l)l! — = | [pe 2557 5 dzdZ, where g(z)— is a Whitney

continuation for g(z, t).

On a smooth closed curve y, the hypersingular integral is also defined by the

£(1) _ ar-! 1 S
expression —- fy Hodt = A= % J, T

Using thls formula, we arrlve at the followmg definition.

Definition 1.9. The hypersingular integral over the non-rectifiable contour

. (p—1)
or fractal y is defined by the formula l v Tf (:;p dt = f(; lgt,) -
] N
11),5!:,, o BJ;S) —dzdz, where f(z)— any continuation of a Whitney type

functlon f@.

It is easy to see that Definitions 1.8 and 1.9 are equivalent.

2 Approximate Calculation of Integrals on Fractals

2.1 Riemann Integrals

Let f(z) € Hy(y),y be closed non-rectifiable curve.
There are two possibilities:

(1)  f(z) is defined in domain D with an intagrable partial derivative with respect
to Z;
(2)  f(2)is defined only on y.

In the first case, the Stokes formula is used directly to calculate the integral
[, f(2)dz. One canput [ f(2)dz = — [ [}, % dzd7 and the problem is reduced
to constructing a cubature formula for calculating the integral on the right.

In the second case, it is necessary to continue the function f(z),z € y, to the
domain D*. If f(z) € H,(y),0 < A < 1, then as the continuation operator we can
take the zero Whitney operator [14], p. 204, associating the function f(z) with the

function f(z) = &(f),z € DT, by formula [, f(2)dz = — [ [,,. 242 dzdz.
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The specific function depends on the choice of the basic infinitely differentiable
function ¢*, defined on a unit square. It is known [14] that the formula is valid for
any basis functions.

Constructing the function u(z), z € DT given in [14] is rather complex. Below it
is presented a numerical method for evaluating the integral fy f(@dz.

Let G = |a,b;c,d], Dt € G. Let h be a grid of a cubature formula. For
simplicity assume (b — a)/h = my,(d — c)/h = m,— are integer. Let x;, =
a+hk,k=0,1,....my; yy=c+hl, 1 =0,1, ..., m be nodes. By z;; denote the
node zy; = x; +iy;,k=0,1,...,m,l =0,1, ..., mj.

Let Ay =[xk, Xkw15 Vi, Viv1), k=0,1,...,m; — 1,L1 =0,1,...,mp — 1.

Fix ¢(0 < ¢ << h). Assign each point z;; a point py; € y attains the distance
from z;; to y. Since it is rather difficult to find an accurate location of py, it is
sufficient to select any point p;;, € y in B(pu, €). Assume u(zy) = f(p), k =
0,1,....m —1,1=0,1,....,mpy — 1.

Fix an arbitrary [ = 0, 1, ..., m, and assume a sequence u(zx), k =0, 1, ..., my.
Using it we will calculate the derivative %h{,z. There are various methods for
derivatives calculating. The method based on hypersingular integrals is used below
[17].

Consider the quadrature formula [17]

mi—1 Xk+1 X+1
8 u(t, y) r! drt dt
) _ NS I —
st i = (T—(t+i8)+ (t—(t—i8)+
= Xk Xk
+ Rm] (Lt)

This formula allows you to calculate the derivatives of any finite order and has a
sufficiently high accuracy and stability. The regularization parameter is 8.

Similarly using the sequence u(zy), k = 0, 1, ..., my derivatives %;'mk,, are
calculated.

Each node z;; is assigned in the complex number 3‘%’;” limxey=y, =
(B o+ i%;’%:y,)/z, k=0,1,...m —1,1=0,1,....m» — 1.

By Aj; denote rectangles A, having no intersection with y. Let Q. = [, ; Ay

Define the function

du(x, y) Ou(x, y) «
wk,l(z) = {(Tlxk,yl + lT'Xk,y[ /27 Z € Akl’

0,2€ G\A} ,k=0,1,....,m —1,1=0,1,...,my— 1.

Let w(z) = D ; ; wri(2).
To evaluate the integral fy f(2)dz the following formula is used
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mi— lmv 1*

/f(Z)dZ = Z Z wkl/ / dZdZ + Rm] m2(f)

where > Z* means summation over the rectangles Ay ;, included in €2,.

2.2 Singulal and Hypersingular Integrals. Consider
the Integral

1 f() f(;)__//afEZ) dr

i 0z z—t.

where f(z) is a Whitney’s continuation for f(t) — (7).

Similarly above, construct a function w(z) approximating 3f (Z) . Then a cubature
formular for calculating singular integral should be constructed using results in [8].
The calculation of the HI is carried out according to the formula

Y (ONPY S __//a§<z> dt

7] Gt T o1 0z z—1
Y

where g(z) is a Whitney’s continuation for g (z, 7). The function is given in Definition
1.8.

Then we construct a function w(z), approximating
for calculating the singular integral.

08(2)

5> and a cubature formula

3 Approximate Solution of Hypersingular Integrals Over
Prefractals

Let C,, be n th prefractal of the Cantor set (in other words n th Cantor set iteration).
Consider hypersingular integral equation

a(t)x(t)—f—b(t)/ +/h(t,t)x(t)dr = (1), t € C,. 3.1)

Ca

(T — 1)

Remark. The problem might be discussed for ¢ € [0, 1].

Two approximation schemes for solution of the (3.1) have been introduced and
justified in [18].

Let’s imagine one of them. For simplicity of notation, put A(t, 7) = 0.
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Let p =2.
An approximate solution of the (3.1) is sought in the form of a spline

2
X =D iy @rir.niy (1,1 € Co, 32)
I=1 i,eesin
inenin ), 1 € Ng i
Giriy(®) = Bttty O£ € Bittys
O7t€[071]\A11 ..... in’lzl’zv lj=0’27]=17"'9n7

where functions g; ;, ... ;, (¢) are similar to basic functions

.....

t<
oo =4 el Loy < L
0,3 — 5 <1 =<3,
0,0<t=< s,
82,0,...0(t) = 3;:’__21, # <1< 3 — 3,
Ly—m Sty

;, are found from the system of equations:

.....

x,(t)dt

I N2 Y Ve, in
~ i)

44444

------------

1 2 . . .
w1 =0,2,j=12,...,n

Under hypothesis [b(t)| > y > 0,¢ € [0, 1] aunique solvability and convergence
of the solution of the system of (3.3) to the solution of (3.1) has been proved.

A numerical method for solution hypersingular integral equation on Hilbert’s
curve has been constructed and justified in [18].

In the work cited above, a spline-collocation method for solving the
following equation is constructed and substantiated a(t, t)x(f, ) +
b(t1, 1) [fg, % = f(f,h),(t1, ) € Q,, where Q, is the n-th
prefractal of the Sierpinski carpet.

4 Solution of Singular Integral Equations

Consider an SIE with a Hilbert integral kernel and constant coefficients ¢ and d
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2
d - o—s
cx(s) + 3 x(o)ctg do = f(s). 4.1)
s
0
We denote by W, ﬂ(s) and W ﬁ(s) cosinosoidal and sinusoidal Weierstrass

functions Wy 4(s) = Yoo cos(,Bks) Wy 5(s) = Zk L af sin(Brs).

Hardy showed that the functions W ﬁ(s) and W ﬁ(s) for0 <o < 1,8 >
1,aB > 1 are continuous, nowhere non- dlfferentlable functlons

In the (4.1) we put f(s) = W;" ﬂ(s). Since the right-hand side of the (4.1) is a
periodic function, we put B = 2. Under the assumption that the parameters o and
B satisfy the conditions 1/2 < o < 1,af > 1, the function f(s) is continuous
nowhere non-differentiable function.

Its fractal dimensionis D = 2 + 1““ [19] and varies depending on the values of
the parameters « and 8 from 1 to 2.

We will seek an approximate solution of the (4.1) in the form of a series

x(t) = Z ay cos kt + Z by sin kt. 4.2)

k=0 k=1

Substituting series (4.2) into the (4.1) and using the formulas [20]

2w 2
1 — 1 —
—/sinkactga Sda = cos ks, —/coskactga Sda = —sinks,
21 21
0 0
4.3)

we get

oo oo oo oo o0
c Z aj cosks + ¢ Z by sinks —d Z ay sinks +d Z by cosks = Z ok cos(ﬁks). “4.4)
k=0 k=1 k=1 k=1 k=1

From the (4.4) we have

a=0,

ay = O(kC/(dz + cz),

by =do*/(d*+ ), k=1,2,3,...,
ax=by=0k={1,2,.\2",1=1,2, ...

(4.5)

Thus, the solution of the SIE (4.1) has the form

x*(s) = Z e d2 cos(2ks)+z s d2 sin(2%s) = — WL ()
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d s
+ oL W, 2(8). (4.6)

Let us prove the validity of formula (4.6) under the assumption that the coefficients
ay and by are defined by formulas (4.5). For this, we investigate the smoothness of
the function x*(z). We denote by Sy (x*) the sum

n k

afc akd
Szn(x*)zz<ﬁcos(2ks)+ >
= \c +d c+d

> sin(2ks)).

Then Ex(x) = | X7, (#55 cos@s) + £ sin@s))|= Ca”. So,
E,(x") < £,y =|log, al.

Here E,(x*) is the best uniform approximation of the function x*(s) by
trigonometric polynomials of order 7.

The right-hand side in the (4.1) is the Weierstrass function with exponent 2. So,
one can put % < a < 1. Hence, 0 < y < 1. From Bernstein’s converse theorems of
the constructive function theory [21] implies that x € H,,.

Let us put Ry (s) = x*(s) — Sp»(x*) and estimate the inequality

2 2
1 o—3s 1 -y
— [ Rau(o)ctg do| < |z= | IRy (o) — Ran(s)| 7V |Ra(0)
2 2

0 0

o

— Ry ()| |etg

— S -y 1—-y R
5 ldo < C(|Rx (o)™ + |Ron(s)| 77) < 2ny(1=y)

% fOZ” Ry (0)ctg %5~ da‘ = 0. Consequently, the permutation of the

operators of summation and integration is justified.
The following statement is true.

and lim,,_, o

Theorem 5.1. Let ¢? + d> # 0. Equation (4.1) has a unique solution x*(s), which
is nowhere non-differentiable function.

Let us consider the singular integral equation

2w 2w
% /x(a)ctga ——do + h(s)/k(o)x(a)da =Wo(s). @)
0 0

We will seek an approximate solution to (4.7) in the form of series (4.2).
Substituting (4.2) into (4.7), we have
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oo oo oo oo
d(Z by cosks — Z ay sin ks) + (Z vp cosks + Z wy sin ks)
k=1 k=0 k=0 k=1

(4.8)
oo oo
x (Z agyk + Zbké;k) = Wé,z(s)>,
k=0 k=1
where yp = 5= fozn k(o)do,
| 2 | 2
Ve = —/k(a) coskodo, 8 = —/k(a) sinkodo,k =0,1, ....
b4 b4
0 0
From (4.8) we obtain the following groups of equations
(o] o0
Vo (Z ayr + Zb181> =0;
1=0 k=1
[e ] oo
dby + vy (Za,y, + Zb[5[> =0,k=1,2,...;
1=0 k=1
o o 4.9)
—day, + wy (Za;y, + Zb/51> = O[j, k= 2j, j=12, .
1=0 k=1
o0 [e¢]
—dag + wy (Z ay + Zb,81> =0k=1{1,2,.0\2,1=1,2,...).
1=0 I=1
If vy # 0O, then
o0 o0
Za;y; =+ Zb;S =0;
1=0 1=0
—qy=alJd, k=2 j=1,2,..; (4.10)
a=0,{k=12 Nk=2/,j=1,2,..}
by =0,k=1,2,....

From (4.8) we find ag :ag = _VTld S, ol
It follows from equalities (4.10) that (4.7) has a unique solution if yp =

% 027r k(c)do # 0 and vy = % Oznh(o)do # 0. In other cases has a
parameter-dependent solution.
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5 Solution of Hypersingular Integral Equations

Consider the hypersingular integral equation

2r

1
—/ 29 4o = f(5).0 =5 <2, (5.1)
4m ] sin” 2

which simulates a number of aerodynamic problems. In these cases, f(s) simulates
a gas flow and, therefore, is a fractal.

Let us investigate the solvability of condition (5.1) under the assumption that the
right-hand side is the Weierstrass function W, ,(s).

Equation (5.1) can be represented as

2
o

d 1 - c
Sx = EE/X(G)CIg 5 do = Wayz(sl (5.2)
0

The solution of (5.2) (and, hence, (5.1)) will be sought in the form of the series
x*(t) = Y e o(ax cos 28s + by sin 2%s).
Acting formally, we arrive at the following equation

(o] (o]
— Z(ak2k cos 2ks + b2 sin 2%s) = Z of cos(2¥s). (5.3)
k=1 k=1

It follows from formulas (4.3) that % fozﬂ apctg5>do = 0.

Thus, the coefficient ¢ turns out to be undefined and additional condition is
required to determine it. As such condition, we can take fozﬂ x(s)ds = 0. Then
ag = 0. From we have gy = ($)X, by =0,k = 1,2, .... So, x*(t) € W' H,,.

Consider the hypersingular integral equation
2
1 x(o)

4 sin? 2=
0 2

2
do + h(s)/k(a)x(o)da = Wof,z(s) 5.4
0

We will seek an approximate solution in the form of a series x*(s) =
Yorooakcosks + > 27 by sinks.
Substituting the series x*(s) into the (5.4) we have

o0
- Z(akk cos ks + byk sin ks)
k=1
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+ (Z(vk cos ks -+ wy sin ks)) (Z v + Zbk8k> =Wo,(s). (5.9
k=0 k=1

k=0

From equality (5.5) we obtain the following groups of equations. At first we
introduce the notation A = 2 ax ¥k + 2_pe bidk.
We have
U()A = 0,
—bik+wA=0,k=1,2,..
—ak+uA=d k=21=1,2,.
—ak + i A=0k={1,2,. . ]\{(2", 1 =1,2}.

(5.6)

If vg # 0, then A = 0 and

by=0,k=1,2,..;
a, = —al/k,k =21=1,2,..;
ar=0k=1{1,2, . ]N\{2,1=1,2,..;}.

From the condition A = 0, we have ay = (Z[’il %fyy) %
Thus, for v % 0 and y # 0, (5.4) has a unique solution

> ol 1 2 ol
o= ) - > > €os 2ls. (5.7)

=1 o4

Repeating the reasoning given above in n°5, we see that the series and the differ-
entiated series on the right-hand side of (5.7) converge uniformly and x*(s) €
W'H,, g = |log, |.

If vo = 0 we have a family of solutions depending on the parameter.

6 Conclusion

The approximate method for evaluating Riemann integrals, singular and hypersin-
gular integrals on closed non-rectifiable curves and fractals has been proposed. For
integrand continuation from fractal to the interior region the approximate computa-
tional scheme based on Whitney’s continuation has been constructed. The approx-
imate calculation of derivatives is based on using hypersingular integrals. It leads
to two-dimensional integrals (for Riemann integrals) and to singular integrals (for
singular and hypersingular integrals). Cubature formulas have been employed for
evaluation of constructed integrals. The proposed method can be used to evaluate
integrals over open curves.
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The approximate method for solving hypersingular integral equations on the n-
th prefractal of Cantor perfect setis presented. The spline-collocation method with
first-order splines has been used. Justification of this method is based on theory of
stability of ordinary differential equations systems. One of the main advantages of this
method turns out to be its resistance to coefficients and right-hand side of equation
disturbance. This method can be used for construction approximate solutions of
singular and hypersingular integral equations on fractals of various types.

The solvability of singular and hypersingular integral equations with Weierstrass
function in the right-hand side has been investigated.
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Abstract The work is devoted to the approximate methods for solution direct and
inverse problems of gravity exploration on bodies with a fractal structure. It is known
that in order to construct mathematical models adequate to the geological reality, it
is necessary to take into account the orderliness inherent in geological environments.
One of the manifestations of orderliness is self-similarity, which remains during the
transition from the microlevel to the macrolevel. Scaling of geological media can be
traced in petrophysical data and in anomalous fields. It should be noted that in real
structures there is no infinite self-similarity and scaling must be considered in a certain
range. The work investigates analytical and numerical methods for solving inverse
contact problems of the logarithmic and Newtonian potential in the generalized
setting. In the case of a Newtonian potential, the problem is formulated as follows.
It is required, having three independent functionals of the gravity field above the
Earth’s surface and additional information on the self-similarity of the disturbing
body, to determine the depth, the density and the surface of the perturbing body.
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1 Introduction

For the effective solution of direct and inverse problems of gravity prospecting, the
methods of modeling bodies that perturb the potential and gravitational fields of the
Earth (perturbing bodies) are of great importance. In most works, disturbing bodies
are modeled by a set of the simplest geometric bodies (bar, parallelepiped, ball)
[1]. In the works [2, 3], modeling is carried out with spheroids. In recent years, a
large number of studies have been carried out on the fractality of individual minerals
and the entire Earth as a whole [4—7]. Scaling of geological media can be traced in
petrophysical data and in anomalous fields [8], etc. On the basis of the apparatus of
fractional measure and fractional dimension, the processing of disturbances of the
Earth’s gravitational field is investigated [9].

Most minerals are porous. There are two types of porosity: the porosity of minerals
and the porosity of liquids. Numerous studies have shown that in both mention cases,
the porosity has a fractal structure.

In particular, the group of authors argues that sandstones have a fractal structure
[4, 5, 10]. Hansen and Skjeltorp [6] investigated the fractal dimension D of a flat
sandstone sample and obtained D = 1, 73. Brakenseik [11] determined the fractal
dimension of a two-dimensional oil cut. It is equal to D = 1, 8. In [12], the fractal
dimension of the surfaces of porous ceramic materials is investigated.

In the monograph [7] the Menger’s sponge is proposed as a mathematical model of
porosity, which is constructed somewhat differently from the standard construction.

In this work, when constructing fractal models of geological environments, the
authors proceed not from fractals, but, following [13], from additions to fractals,
since areas (volumes) of additions tend to areas (volumes) of the original body.

Taking into account the fractal components of gravitational fields makes it possible
to clarify the structure of the disturbing bodies.

Methods for solving contact inverse problems of logarithmic and Newtonian
potentials in a generalized setting are analyzed [14]. The problem is formulated
as follows. It is required, having three independent functionals of the gravity field
over the Earth’s surface z = 0 and additional information about the self-similarity
of the disturbing body, determine the depth H, the density o (x, y) and the surface
H —¢(x, y) of the disturbing body occupying the region H < z(x, y) < H—p(x, y).

Taking into account the fractal components of the gravitational and magnetic
fields makes it possible to clarify the structure of the disturbing bodies.

The work is devoted to the approximate solution of direct and inverse problems
of gravity prospecting on bodies with a fractal structure.

When solving inverse problems, a continuous method for solving nonlinear
operator equations is used, which is presented in the next section.
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2 Continuous Operator Method

Let B beaBanachspace,a, z € B, K be alinear operator mapping from B to B, A(K)
be the logarithmic norm [15] of the operator K, and I be the identity operator. We
shall use the following notation: B(a,r) ={z € B : ||z —al <r}, S(a,r) ={z €
B:llz—all =r}, ReK =Kr=(K+K*)/2, A(K) =limy,o(|] + K| —-1)/h.

Let a complex matrix A = {a;;},i, j = 1,2, ..., n, be given in n— dimensional
space R" of vectors x with the norms [lx|l; = >_p_; lxl, llxll, = [Dp, |xk|2]l/2,
and ||x|l3 = max; <x<p |xk|.

The corresponding logarithmic norms of the matrix A then read [16]:

A1(4) = max(Re(a;;) + > ais
i=1,i#j
Ar(A) = hmax ((A + AT)/2),

A3(A) = max(Re(a;;) + Z |aij‘)-
' j=Lj#

),

Here Am.x (A) means the largest real part of eigenvalues of the matrix A.
Consider an equation

A(x) — f =0, @.1)

where A(x) is a nonlinear operator mapping from Banach space B to B.

Let x* be a solution of the (2.1). In [17] the connection between stability of
solutions of operator differential equations in Banach spaces and resolving operator
equations of the form (2.1) has been established. Here we shall summarize the results
on the method.

Let us associate the (2.1) with the following Cauchy problem

dx(t)
dt

=A(x(@) — f, 2.2)

x(0) = xo. (2.3)

Theorem 2.1 [17]. Let the (2.1) has a solution x* and on any differentiable curve
g(¢) in Banach space B the inequality is valid

t
1
llim - / A(A'(g(1))dt < —ay, ag > 0. 2.4)
—00
0
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Then the solution of the Cauchy problem (2.2), (2.3) converges to the solution x*
of the (2.1) for any initial approximation.

Theorem 2.2 [17]. Let the (2.1) has a solution x* and for any differentiable curve
g(t) in aball B(x*, r) the following conditions are satisfied:

(1) foranyt(r > 0)

1

/ A(A(g(z))dr < 0; 2.5)

0
(2) the inequality (2.4) is valid.

Then the solution of the Cauchy problem (2.2), (2.3) converges to a solution of
the (2.1).

Note 1. In the inequality (2.4) it is assumed that the constants o, > 0 can differ
for different curves g(t).

Note 2. From inequalities (2.4), (2.5) it follows that the logarithmic norm
A(A’(g(t)) can be positive for some values of 7; i.e. the Frechet derivative A'(g (7))
can degenerate into an identically zero operator along the curve.

Note 3. An example in [18] (an approximate solution of a hypersingular integral
equation) has demonstrated convergence of an iterative process based on a continuous
operator method when the Frechet derivative vanishes at the initial approximation.

Note 4. Logarithmic norm has the property which is very useful for numer-
ical analysis. Let A, B be square matrices of order n with complex elements and
X = (X)), Yy = 01,2590, & = (§1,-..,8), n = (n1,...,m,) are
n-dimensional vectors with complex components. Let us consider the following
systems of algebraic equations: Ax = & and By = 7. The norm of a vector and
its subordinate operator norm of the matrix are fixed; the logarithmic norm A(A)
corresponds to the operator norm.

Theorem 2.3 [19]. If A(A) < O, the matrix A is non-singular and ||A’1|| <
1/1A(A)].

Theorem 2.4 [19]. Let Ax = &, By = nand A(A) < 0, A(B) < 0. Then

yl < 5§ —nll A — B
T IAB) AAAB)

llx —

Main properties of the logarithmic norm are given in [15].

The logarithmic norm of the operator K can have different (positive or negative)
values in different spaces.

The continuous method for solving nonlinear operator equations admits the
following generalization. Let us return to (2.1). Denote by A’(xg) the Gateaux
(Frechet) derivative on the element x. We introduce the equation
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(A"(x0))"A(x) — (A (x0)" f = 0. (2.6)
Equation (2.6) is associated with the Cauchy problem

d
d_)t‘ = —(A'(x0))*A(x) — (A" (x0))* ), 2.7)

x(0) = xo. (2.8)

If Ap(A’(x))*A’(x9)) > 0, then in some neighborhood B(x, r) of the element
xo the Euclidean logarithmic norm of the operator—A’(x())*A(x) will be negative
and ||x(@)|| < ||x(0)|| for some interval ¢ € (9, t;], to = O.

Let the inequality A,(A’(xg))*A’(x)) > 0 be satisfied on the segment ¢ €
[to0, t1], to = 0. (Here x(¢) is the solution to the Cauchy problem (2.7), (2.8)).

For t > t;, consider the Cauchy problem

d
x;t(t) = —(A'(x)"A) — (A" ), (2.9)

x1(t1) = x(2;)(3.10) (2.10)

and define the segment [f1, £,], in which the inequality A,(A’(x1))*A’(x1)) > 0
occur.
Taking x;(#;) = x1(#,) as an initial value when solving the Cauchy problem

dxs(t)
dt

= —(A'(x2))"A(x) — (A" (x2))" ), 2.11)

X2(t2) = x1(12), (2.12)

dx(t)
dt

Assertions follow from this remark.

we have lim,_, o,

” = 0 and therefore lim,_, o, x(f) = x*.

Theorem 2.5. Suppose that (2.6) has a solution x* and for any differentiable curve
in the Banach space B the inequality

t
1
tlim A / A(A (g(0)*A'(g(1)))dt < —ag, 0 > 0 (2.13)
—00
0
occur. Then the solution to the sequence of Cauchy problems ((2.7), (2.8)), ((2.9),

(2.10)), ((2.11), (2.12)), etc. converges to the solution x* of (2.6).

Theorem 2.6. Suppose that (2.6) has a solution x* and for any differentiable curve
in the sphere B(x*, r) the inequalities
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/A((A’(g(f)))*A'(g(f)))dT <0 (2.14)
0

and (2.13) occur. Then the solution of the sequence of Cauchy problems ((2.7), (2.8)),
((2.9), (2.10)), ((2.11), (2.12)), etc. converges to the solution x™* of (2.6).
If the conditions of Theorems 2.5 and 2.6 are not satisfied, the regularization

d
d—j = —ax(t) — ((A'(x0)"A(x) — (A" (x))" f), & > 0,

is carried out.

3 Direct Tasks

Let us consider a geological deposit represented by the uniform body D of arbitrary
form. Assuming that the body has fractal dimension Dy < 3, we will approximate
it with its complement of the Menger sponge [7]. Let the body D be situated in the
cube Q = [—a, a]’. Let us construct the n-th order prefractal (n-th iteration of the
fractal) for the Menger sponge in the cube 2. During the construction of the first
iteration the cube 2 is divided into 27 equal cubes with sides r; = 2a/3, and 7
central cubes are dropped.

During the construction of the second iteration every cube from the remaining
20 cubes is divided into 27 equal cubes with the sides 2a/9. As the result we have
729 cubes including 400 central cubes (for every initial cube with the side 2a/3)
that are dropped. Repeating the described operations n times we get the n-th Menger
prefractal. As noted in the work [13], not classical fractals but their complements
with respect to the initial domain should be used as the model for geological bodies.
Consequently geological deposits are modeled with the set of cubes with different
lengths of edges (and with different sizes).

When modeling granular and liquid media it seems that it is more efficient to
model them with reduced copies of the first iteration of the Menger sponge. In that
case we can construct the model using not only classical fractal but also complement
to it.

Let us introduce the Cartesian three-dimensional rectangular coordinate system
with down-directed z-axis and with the origin of coordinates placed at the Earth
surface. Assume that the body D occurs at sufficiently great depth z = H under the
Earth surface.

As the parameter H we fix the distance from the Earth surface to the average point
(in vertical direction) of gravitating body.

In the introduced coordinate system the domain €2, which the body D belongs to,
rewrites as:
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Q={(x,y,2):—a<x<a,-a<y=<a H-a=<z=<H-+a}

Let Ajjr= [xi,x,-H; Vi Yj+1s zk,zk+1], xi=—a+ai/n, i=0,1,...,2n,
yij=-a+aj/n, j=0,1,...,2n,
zw=H—a+ak/n, k=0,1,...,2n.

We refer to as marked the cubes A;j; that have nonempty intersection with the
domain D. In the marked cubes we locate the first iteration of the Menger sponge
fractal with the edge length a /n. Suppose that the body is modeled by the firstiteration
of the fractal. Denote the constructed model of the body by D,,. For computation of
the perturbed field it is sufficient to compute the vertical component of the gravity
field generated by the cell A, j; at the point (x, y, 0).

The cell A; jx consists of 20 cubes with edges having the length a/3n. Assuming n
and H being sufficiently big we may treatcos(®(x’, y', 2')), where (x', y', 2') € Ayj
as constant within the limits of the cell. Here @(x’, v, z’) is the angle between the
radius-vector M'P (M’ = (x’, v, z’),P(x, v, 0)) and the z-axis.

Let us denote by o;; the center of the cell A;j;. Obviously,

0jjk = (—a +a(i + 1/2)/n, —a—+a(j+ 1/2)/n, H—-—a+ak+ 1/2)/n).

Let us also denote by 6;; the angle between the vector 0;;x P and the z-axis.

Thus the vertical component of the gravity force generated by the cell A;j; at the
point P(x, y,0) equals to dV,(i, j, k) = 20yp(a/3n)® cos(6:jx)/ (r (0, P))2 =
S5 (1o P))’.

Here y is the gravitational constant, p is a density of body. There-
fore the vertical component of the gravity force generated by the
disturbing body D at the point (x,y,0) equals to V,(x,y,0) =
S 020y pija® (E25) 12703 (r (o, P))’ . pijieis a density of cell. Consider
the example.

Let us se t the following parameter values: H =5, a =1/4, n = 10.

We perform calculations using the formula dV,(i, j, k) = 23’;%3
L/ (r (01 P))3.

Letus fix i = j = k = n, that corresponds to the central cell A;;; in the domain
Q For illustrative purposes the product of the constants y and p we set to 10°.

The field dV (i, ], k) of the vertical component of anomalous gravity force generated
by the described cell at the Earth surface is shown in the figure (Picture 1).

For comparison we also introduce the plot of the vertical component of the
anomalous gravity field generated by the continuous body occupying the domain.

The computed field is depicted in the following figure (Picture 2).

From the comparison of the computed fields it is obvious that the solution of the
direct problem is essentially dependent on the chosen model for representation of
the elementary cell.
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Picture 1 The vertical component of anomalous gravity force generated by the cell of the Menger

sponge first order prefractal
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Picture 2 The vertical component of anomalous gravity force generated by the elementary cell
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4 Inverce Tasks

This section examines the influence of the chosen model on the accuracy of the
interpretation of the results.

Let in the domain D{D : —l <x <, -l <y <lj,H <z < H — ¢(x, y)} are
distributed with density o (x, y, z) sources disturbing gravitational field of the Earth.
The gravity field above the Earth’s surface is determined by the equation

oo o0 H
o[ | | @ toomrr o era @D
00 =00 H—¢(¢,n)

where f(x, y, z) is the experimentally determined value, G — gravitational constant,
which for the convenience of further calculations will be set equal to G = 1/27.
To describe the force of gravity on the Earth’s surface in (4.1), one should set
z=0.
Having calculated the integral on the left-hand side of (4.1) by parts and assuming
that the density does not depend on &, we have

1 oo o0
—/ /0(5, D=+ -7+ H—z—e@. ) '?

2m ) 4.2)
—((x =+ (=’ + H -2 ldedn = f(x,y,2).

We represent (4.2) in the form
% / f o=+ -+ H -0 +u) @3
—((x =0+ (=)’ +H—-2)"ldedn = f(x,y.2),

(¢, —2(H—2)¢(¢.n)

(=02 +(y—m)?+(H—2)*
is expanded in the series

where u =

. Under the assumption that |#| < 1, the function
1
(T+u)'7?

-1 u
+Z( yr2n = DU (4.4)

1+ )1/2 B 21

Substituting (4.4) into (4.3) and using the uniform convergence of series (4.4),
we have
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—Z< 2= ’"7/000@ (@) ~2(H ~ (. n) dedn
2! =T o+ (H =y

—00 —00

= f(x,y,2).
4.5)

Let us approximate (4.5), limiting ourselves to one term on the left-hand side. As
a result, we obtain the equation [14]

_if/wa(g | 1) =201 — 9. m)dz dn
4 T =02+ (y =)+ (H = )P

—00 —00

= f(x,y,2). (4.6)

Equation (4.6) contains three unknowns: the depth of the gravitating body H, the
density of the body o (x, y) and the shape of the surface H — ¢(x, y). To find these
unknowns, it is necessary, in addition to values of the gravity field on some surface,
to have two more linearly independent sources of information. As these functionals,
one can use values of the gravity field at three different levels, a combination of the
values of the gravity field and its derivatives in different directions, etc.

Note. Having values of the gravity field at the same level, it is possible to restore
values of the gravity field at several levels using the Poisson formula.

In the work [14], analytical and numerical methods are proposed for the simulta-
neous determination of the depth of the disturbing body, its density and the surface
equation in contact problems of the logarithmic and Newtonian potential. In [14],
the disturbing body was assumed to be solid.

Compared with iterative methods for solving (4.6), studied in [14], the preferable
is the continuous operator method described in Sect. 3. In both cases, the density is
interpreted as a constant function within the unit cell, which simulates the gravitating
body. In the case of modeling a gravitating body with fractals, the density in elemen-
tary cells is not constant. It is of interest to study the influence of fractals chosen for
modeling disturbing bodies on the accuracy of determining their densities.

In [14] the following example was analytically solved.

Let in the domain Q = {5 < z(x,y) <5 —¢(x,y), —00 < x,y < oo}, there
is a perturbing body with density o (x, y). Let the gravity force and its first two
derivatives be known on the surface z = 0:

— 247 T
fO(x, Y, O) - (x2+y2+36)3/2 - 5(x2+y2+49)3/2 )

filx,y,0) = Y x.y,2) (x ) 2) _ 4327 _ 4 _ s 27/25
1 s im0 PR3 T (P36 T Py A0 T A
_ Pfy2) __ 12960m 1029w
f2(x, Y, 0) = 92 0 = G 36)7 (21y2449)7?

216m + _ 21w/25  _ _ 4m/125
T (2+y+36)32 (x2+y2+49)3/2 (x2+y2+49)3/2

It is necessary to find a depth of the gravitating body H, a density of the body
o (x, y) and a shape of the surface H — ¢(x, y). To solve this problem, in addition
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to (4.6), two more equations are added

[ [ 2HwiE ) —wE )

//((x—$)2+(y—n)2+H2)3/2 dsdn = Jox. y).

7/&{ 6H w (&, m) —3Hwa (G, ) 2w (. 1) }dgd
S lG=rro-m+ o7 -2+ o -nr+ R [T

= fl(-x» y)v

/°°/°°{ 3us(on) — I8Hwi (6. ) 30H wy (&, 1)) — 151L12u)2<s,n>}dé
. (=2 + -+ HYZ " (=82 + (v — 2+ HYI2

= fa(x, y). 4.7)

When obtaining system (4.7), the following formulas were used w;(x, y) =
o (x, Y)e(x, y).wa(x, y) = o (x, y)g*(x, y).

2L N\3/2
Its exact solution was obtained: H = 5, ¢(x,y) = (ﬁiizﬂ) ,o(x,y) =

P4y +4)%?
24yI+D3 " ) ) )
When solving the system of (4.7) by the spline-collocation method with zero-order

splines, an error is equal to O(N~"), where h = N~! is a step of the computational
scheme by coordinates x, y. Hence it follows that the results of the approximate

. . 2y )2
solution can be interpreted as follows. In area (x, y) : {W < 1/N}letus put

o (x,y) = 0. Domain G defined by the inequality {m—;fl))iz > 1/N} we will cover
with elementary cells (cubes) with edges of length d /N, where d is area diameter G.
Place the first-order prefractal of the Mergel sponge in the elementary cells. Then,
depending on the mineral filling the addition of the Margel sponge to the unit cell,
the density of the body varies from o (x, y) to 270 (x, y)/20. Thus, when solving
inverse problems on fractals, an additional problem arises of choosing an appropriate
model (fractal, multifractal) for a gravitating body.

5 Conclusions

In this work by the example of the Menger sponge approximate methods for solution
of direct and inverse problems of gravity exploration using fractals are investigated.
As far as inverse geophysical problems belong to the class of ill-posed problems
for their solution in this work we propose the generalization of continuous operator
method for solution of nonlinear equations. The proposed method allows to obtain
stable solution for inverse problems which are modeled with nonlinear convolutional
equations. At the core of the method there are criteria for asymptotic stability of
solutions of systems of ordinary differential equations. The method can be used
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for solution of numerous equations of mathematical physics. In solving direct and
inverse problems using fractals we show the problem of dependency of interpretation
of computational results on the chosen model.
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Exploring the Chaotic Nature )
of COVID-19 Pandemic: Limit Cycles ek
and Time-Lag Around the World

Yiannis Dimotikalis and Christos H. Skiadas

Abstract Inthis work the Chaotic Nature of the Covid-19 Pandemic data is explored.
The Total Deaths (/million) to Total Cases (% population) of Covid-19 data from
https://ourworldindata.org/coronavirus website are studied. Large 28 day-delays lead
to characteristic Limit Cycles while the lag between applied and adopted measures
tend to form characteristic limit cycle forms. A 28-day Moving Average was tested.
The data period is from January 2020 to 23 November 2021. The time period is
divided to Parts based on chart data curve. Similarities but also differences are present
leading to group countries accordingly. An important issue is to explore the Covid-19
spread due to variations of the virus while the vaccine measures expand considerably.

Keywords Covid-19 pandemic - Limit cycles - Chaos + Data sets + Moving
average - Health state - Nonlinear analysis

1 Theory and Applications

Covid-19 pandemic and several variations of the virus passed in a new era after the
introduction of several vaccines adopted. Socioeconomic, political and demographic
issues influence the spread of the virus and the vaccine adoption in all countries of the
World. It was clear from the beginning that the thread was very serious and radical
actions should apply. The spread of the disease followed an Exponential like growth.
Without adopting immediate measures the health systems would collapse. In the first
period radical actions were adopted at least to reduce the speed of epidemics while
waiting for the appropriate vaccine invention and perhaps new drugs or treatment
methodologies.
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For the first time in human history our national and international systems to
collect, store and analyze datasets are so-advanced. However, the analysis of so-many
datasets came to be a puzzle difficult to solve. The task was to reduce the growth
speed of epidemics; but how fast and what measures where the most appropriate.
At least to save the socioeconomic and political system while improving the health
systems as well. Now, after almost 22 months after covid-19 invasion, we have
enough experience from fighting the pandemic. However, the lessons learned in the
first Covid-19 period before the vaccine introduction are not enough to handle the
new situation.

Some lessons of the analysis from non-linear systems theory and the related
chaotic behavior may be useful (see [1-3]). Chaos or chaotic attractors appear when
“Time Delays” are present. It means that as long as a delay between treatment and
cure appear chaos is present. Even more longer delays appear from local Authorities
measures and interventions.

Governments tend to propose measures and correct again and again after collecting
appropriate data. This could act like to try to correct the Stock Exchange fluctua-
tions by many repeated actions. The best, in this case, is to carefully study the
selected actions to be effective and designed for a large time horizon. The exam-
ples presented here for several countries while the same methodology for the other
countries included by introducing data from https://ourworldindata.org/coronavirus.

2 The Data and the Limit Cycles

The data are collected and stored daily for almost all World countries. Of particular
interest for our study are the new death data per day. The first step of the data handling
was done from the website people by smoothing to reduce the particular differences
from the daily data collection. The provided Covid-19 daily data for Greece are
illustrated with yellow line in the next figure. However, this smoothing is not relatively
adequate to keep the important part of the virus spread by excluding parts that form
local changes. Radical smoothing is done with a 28-day transformation by taking
into account 14 days before and 14 days after a particular date that a =14 days or
28 days smoothing. This is presented by the thick blue curve in the next figure. By
this transformation smoothness is clear. Of course small details are missing but the
appropriate data for providing the main limit cycles remain. The +14-day smoothing
is in accordance with the 14-day quarantine suggested for Covid-19 infected people.
For a detailed Moving Average theory and applications see [4]. The method we select
is also termed as Central Two-Sided Moving Average around a day x with a & k-day
summation around the point x. Accordingly the total space is S = 2 k 4 1 that is
equal to 29 for the k = 14 case (Fig. 1).

Limit cycles are formed from the First difference (first derivative) of new deaths
versus the new deaths per day. Of course the first derivative data is provided after
a 28-day smoothing (£14) as was done for the daily data. See next figure where
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New Deaths Smoothed and Further 28 Days Smoothingin Greece
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Fig. 1 Greece Covid19 data, new deaths smoothed

the data without smoothing are provided with orange whereas the blue curve is the
28-day smoothed one (Fig. 2).

First Difference of Deaths and 28 Days Smoothingin Greece
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Fig. 2 Greece Covid19 data, first difference of deaths smoothed
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GREECE Covid-19 Data: New Deaths to First Difference of Deaths

~Part 1
——Part 2
o—~Part 3

~—Part 4
——Part 5

26-Nowv-21
1 21-Oct-20

* 1 17-Jul-21

N % 2=
\ . 11-Feb-21
7-Jul-20 "

L"

| 7-Dec-20

e, et

First Difference of New Deaths Smoothed

V] 10 20 30 40 0 70 80 90 100

50 60
New Deaths Smoothed (28)

Fig. 3 Greece Covid19 data, new deaths to first difference of deaths

The chaotic like behavior is presented in the next figure for GREECE. X-Axis
is for new deaths and Y-Axis represents the first difference of deaths. The st Part
(yellow) is followed by the 2nd Part (red) and the 3rd Part (green). The final Part
(cyan) is like a continuation of the 1st Part curve. The graph includes chaotic like
forms with delay.

Note that a lager limit circle is followed by a smaller one (see Fig. 3). A 28-days
moving average form is selected. It looks like the main delays are coming from
a one-month response of the system. This is the time period that should be taken
under consideration when important actions are needed. No immediate response is
possible. The reaction time of a large system as a country is critical.

From the graph 3 a center of the large cycles is located at 50 deaths per day
whereas the center of aa smaller cycle is at 35 deaths per day. However, after 8th
October 2021 the cycle is moving outside the small period expanded to a large cycle
form with a center larger to 50 deaths per day.

Following the analysis above it is clear that the chaotic circles formation need
much time to appear. It could that explained the very few papers appearing in the liter-
ature. A chaotic attractor is presented for the World covid-19 data without China in
the paper by e Fernandes [1] while Debbouche et al. [5] study “Chaotic dynamics in a
novel COVID-19 pandemic model described by commensurate and incommensurate
fractional-order derivatives.”

In the following the case of Greece is presented for total deaths/million population
vs total cases (pop%) with comments (Fig. 4).!
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Greece Covid-19 data: Total Deaths to Total Cases (pop%)
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Fig. 4 Greece Covid19 data, total deaths to total cases

The slope of deaths vs cases curve declines rapidly in most countries due to:
protection measures in vulnerable groups and improvement of medical treatment of
cases (practically visible in the data curve of mortality from the disease).

3 Greece

The Part 4 completes the cycle on 10-Oct-21 and starts the Part 5 (5th cycle) which
continues until the end of the available data (4 Nov-21) [because with Moving
Average 28 days we have 4 nov + 28/2 days = 4 + 14 = 18 November. Each
time we can form the circle 14 days before the end of the data].

For the initial wave propagation where part 1 at the beginning of the axes forms
a small circle not clearly visible due to the graph analysis, we can see the following
enlarged map forming the circle 14 days before the end of the data set (Fig. 5).

We observe that there is a cycle starting on March 4, 2020 (two weeks earlier
due to MA = 28) culminating on 13 April (where the first differences = 0 ie the
1st derivative = 0 > max). The cycle completes on July 8, 2020 where the first
differences are zero again and part 2 begins.

! The authors invite readers feedback in YouTube® channel: COVID-19 Data Analysis: https://
www.youtube.com/channel/UCa553hVolLqn4CJsThiWW3w.
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GREECE Covid-19 Data: New Deaths to First Difference of Deaths
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Fig. 5 Greece Covid19 data, new deaths to first difference of deaths (zoom)

We observe a small “transitional” period (from July 8, 2020 to October 21, 2020)
when the cycle of part 2 (red) actually starts with the maximum reached on December
9, 2020. The cycle ends on February 11, 2021.

Then the Part 3 cycle (green) starts with a maximum on April 20, 2021 and
completion on July 17, 2021. Immediately after, the part 4 cycle begins (blue) which
reaches a maximum on September 12, 2021 and ends on October 10, 2021. This cycle
must be due to the well-known Delta mutation that appeared in Greece in August
2021 and because it was more “contagious” it created a small cycle in the summer
and with the vaccinated population of Greece over 50% (after July 2021).

The 5th cycle appear at October 10, 2021 and continues until today presenting a
strong tendency to exceed the cycle of part 3 (Spring 2021).

A Greek characteristic is that the cycles move to the right in the X axis where
more new deaths appear.

4 Brazil

Brazil is not known to have taken radical action against the pandemic. 28-day cycles
have several periods of complex form. Furthermore, a central point of the epidemics
cycles is far from the original point. Instead the point as at 1000 deaths per day (see
Fig. 7). A further extended cycle has center at 1800 deaths per day (see Fig. 6). The
enlargement of the graph for Brazil shows that the transition from the 2nd cycle to the



Exploring the Chaotic Nature of COVID-19 Pandemic: Limit ...

115

3rd cycle (at the end of Jan 21) took place immediately without a period of recession

of the pandemic (semicircle in the negative region).

BRAZIL Covid-19 Data: New Deaths to First Difference of Deaths
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Fig. 6 Brazil Covid19 data, new deaths to first difference of deaths
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Fig. 7 Brazil Covid19 data, New Deaths to First Difference of Deaths (zoom)

3000




116 Y. Dimotikalis and C. H. Skiadas

AUSTRALIA Covid-19 Data: New Deaths to First Difference of Deaths
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Fig. 8 Australia Covid19 data, new deaths to first difference of deaths

5 Australia

See Fig. 8.

For Australia only 3 circles are shown (the green is essentially “negligible” while
the last one (blue) continuous.

Australia is the only country that managed for some time to eliminate deaths...
(27-5 to 22-6/2020) and (28-10-20 to 9-7/2021). This is why we have only 3 visible
circles in the graph.

6 Japan

See Fig. 9.

Japan is characterized by 5 limit cycles. The smaller 1st and 2nd (yellow and
orange) appear in the first steps of the pandemic whereas the 3rd and 4th cycle
periods are the larger. The 5th period shows a stabilization of cycle to a medium
level with center at 30 deaths per day. Instead the 3rd and 4th cycle show a center at
60 deaths per day.

In Japan the 5 circles are visible and they are all complete. A characteristic is that
the 1st and 2nd are extremely small!

The 1st, 2nd and 5th are completed with almost zero deaths in their completion.
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Fig. 9 Japan Covid19 data, new deaths to first difference of deaths

7 USA

See Fig. 10.

In USA the 1st, 2nd and 3rd cycles (yellow—-red-green) start with a higher number
of deaths than the next 4th cycle (part 4) (blue). However, the second cycle is smaller.
The center for the first and second cycle are at 800 deaths per day that was expanded
to 2000 deaths per day for the 3rd cycle and returned to 1000 deaths per day for the
center of the 4th cycle.

8 UK

See Fig. 11.

UK is characterized by the simplicity of the cycles. The first two start and end at
the origin whereas only the fourth starts after the origin and continuous as a small
one until now. The center for the first cycle is at 400 death per day and at 600 deaths
per day for the 2nd cycle.

The third cycle in the summer of 2021 is small and the 4th in the autumn of 2021
until today very small!

In the second cycle there is a “discontinuity” (13-Dec-20) that coincides with the
period when the UK first adopted the vaccine and started mass vaccinations, while
relaxing the measures.



118 Y. Dimotikalis and C. H. Skiadas

USA Covid-19 Data: New Deaths to First Difference of Deaths
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Fig. 10 USA Covid19 data, new deaths to first difference of deaths

U.K. Covid-19 Data: New Deaths to First Difference of Deaths
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9 Conclusions

The proposed methodology succeeds to simplify a relative complicated chaotic-like
form of the Covid-19 death data set for various countries studied. Limit cycles result
after a 28-day central moving average applied. The +14-day two sided moving
average methodology accepted, compatible with usual preferred quarantine period,
seems to exclude small cycles and recycles that the applied state interventions
produce.

Referring to the strategies adopted from the various countries studied as can be
observed by the limit cycles formed, UK provides a simple and clear strategy leading
to a low number of deaths per day after the first periods with a high number of deaths
per day.

Greece follows a rather complicated covid-19 spread keeping the center of the
cycles relatively far from the origin. The ongoing 5th cycle covers a region with
high number of deaths per day as it was for the 2nd period of the pandemic. For this
and for other countries is not clear what the best strategy is. Vaccine and keeping
appropriate measures are proposed while the health system waits for new medicines.

Australia and Japan cope with small numbers of deaths per day. However, they
provide limit cycles indicating a systematic state intervention keeping the spread
under control.

USA cycle centers are relatively far from the origin whereas these centers are very
far from the origin for Brazil.
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Detection of Early Warning Signals
for Self-organized Criticality in Cellular L
Automata

Andrey Dmitriev, Anastasiia Kazmina, Victor Dmitriev, Yuriy Sanochkin,
and Evgenii Gradusov

Abstract Detection the precursors of critical transitions in complex systems is one
of the most difficult and still unsolved problems. This problem has not received
a final solution, not only for real complex systems, but also for model systems
capable to self-organize into the critical state. The presented paper is devoted to early
detection of time moments of self-organized critical transitions in cellular automata
as aresult of the analysis of the time series they generate for a number of grains falling
from the grid. It was found that cumulative moments of probability distribution and
cumulative scaling exponents are quite informative indicators for early detection of
critical transitions. General features of the behavior of indicators when approaching
a critical point are established for the time series generated by cellular automata with
different rules.

Keywords Cellular automata - Sandpile model - Self-organized criticality + Time
series + Probability moments + Multifractality

1 Introduction

More than thirty years development of the theory of self-organized criticality (SOC),
explaining the emergence of power law for probability density function, 1/f-noise and
long-range spatial and temporal correlation in nonlinear systems far from equilib-
rium, has led to the emergence of the number of basic models, which have nontrivial
scale-invariant dynamics under very simple local rules [1, 2]. The basic models of
SOC theory are sandpile models [3]. These models have become the most important
tool for studying the mechanisms of the appearance of scale-invariant properties and
power statistics.
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The sandpile model is a conical pile of sand, on the center of which grains of
sand are placed one by one. We will assume that the cohesion between grains of
sand is large enough and only superficial movement of sand is possible. Then the
state of the system is determined by the local slope of the surface of the sand pile
(8). If S is small, then the sand is motionless. If S exceeds a certain value S, then
there is a spontaneous flow of sand 7 over the surface, which increases continuously
with increasing of §. This process corresponds to a second-order phase transition,
in which the control parameter is S, the order parameter is 1. The value S, separates
subcritical (SubC) phase and supercritical (SupC) phase. A pile of sand in these
phases is resistant to small disturbances. On the contrary, the SOC state is highly
volatile. Adding just one grain of sand to a pile in this state can lead to avalanches
of sand of any size theoretically.

A fundamentally important property of systems, which are characterized by
avalanche-like behavior, is their ability to self-organize into the critical state. In
this case, it is not required to fine-tune the parameter S to the value S.. Such systems
are capable to transit to the SOC state spontaneously, which is typical for most real
and model complex systems, the behavior of which is determined by the nonlinear
local rules.

Scale-invariant properties and power statistics are characteristics not only for the
level of the structure of the complex system and its local microscopic interactions,
but also for the level of time series generated by such systems [4]. For the sandpile
model, such time series are the time series (7;), which demonstrate the stochastic
dynamics of sand grains falling on the surface of the pile. When describing a pile
of sand using cellular automata models, 7, is the number of grains falling from the
grid. The approach to the study of self-organized critical states of complex systems
based on the analysis of generated time series has, at least, one significant advantage.
The approach does not require the study of detailed interactions between elements of
the real systems. Information about detailed interactions is usually inaccessible for
research, for example, for social networks, or inaccessible, for example, for financial
networks.

Detection of early warning signals for critical transitions is a challenging task not
only for the real complex systems, but also for the model systems. The overwhelming
majority of the papers known to us are devoted either to detection of early warning
signals associated with the critical slowing down phenomenon [5-8], or to the solu-
tion of particular problems of the early warning [9, 10]. In these studies, precursors
of the critical transitions in real systems were established, which are associated with
the change in the autocorrelation function, variance, skewness, and power spectral
density of the observed time series when the system parameters approach their critical
value.

To our knowledge, however, there is no study that investigates the search for
precursors of the SOC transitions not only in real complex systems, but also in
model systems, for example, in the self-organized criticality cellular automata. The
detection of such precursors as a result of the analysis of the time series for the
number of grains falling from the grid is the purpose of our study.
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2 Methods

2.1 Time Series Generated by the Cellular Automata

It is easy to study the stochastic dynamics of the order parameter (7,) of the sandpile
models using models of cellular automata in grids of size L x L. The parameter
1, is the number of sand grains falling from the grid at time . Random integers
z;,j are generated in the grid cells to represent the local slope of the sand pile. The
cells for which z; ; > z., where z. is the critical value, are unstable and fall off
according to the rules defined for each cellular automata. For the pile of sand, several
different variants of the rules for shedding an unstable cell have been proposed. This
paper considers six sandpile models, each of which belongs to one of two classes
of self-organized critical models: conservative and dissipative models. Models with
conservative rules are characterized by the fact that when unstable cells fall, the
grains of sand removed from them are redistributed without loss and leave the grid
only after reaching its edges. The boundary conditions of such systems are open. In
dissipative models, after the shedding of the unstable cell, the number of grains of
sand in it is zero. In the case of the supercritical number of sand grains, they are able
to leave the grid also within its boundaries.

2.1.1 Conservative Systems

Let us consider in more detail the historically very first model, called the BTW-
model [11]. Consideration of other models, including dissipative models, is limited
to consideration of only the rules for shedding cells.

BTW-model is a cellular automaton on a square grid of size L x L. A grain of
sand is randomly added to a randomly selected cell (7, j), increasing the number of
grains of sand (z; ;) in the cell by one: z; ;+ = 1. As aresult, z; ; — z;; + 1. If
zi,j = 4, then one grain of sand moves to the four nearest cells: z;+;,j+;+ = 1. In
this case, the number of grains of sand in the cell (i, j) decreases by the value z, = 4:
zi,j— = 4. The considered movement of sand grains can lead to loss of stability of
neighboring cells, and, consequently, lead to the appearance of the avalanche with
loss of stability. The introduction of the condition z; j— = 4 leads to the saving of
the number of sand grains.

Thus, the rules of the model are as follows:

ze =4 zij— =4, Zix1,jx1+ =1 (D

In Fig. 1 the time series for the number of grains falling from the grid for a 40 x
40 grid of the BTW-model are presented. The rest of the time series looks the same
except for the iteration number (or point in time ¢.) corresponding to the SOC state.
t. depends on the grid’s size: f, = 1656 for 20 x 20 grid, t, = 2171 for 30 x 30
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Fig. 1 Time series of the number of grains falling from the grid for the BTW-model

grid, 7. = 3736 for 40 x 40 grid, 7. = 5491 for 50 x 50 grid, and 7, = 8234 for 60
x 60 grid.

Manna model [12] is the stochastic analogue of the BTW-model. The cell (i, j)
crumbles as a result of the stability loss, transferring a random number of grains of
sand (8; > 0) to four neighboring cells.

Formally, the rules of the model are as follows:

ze =4, zij— =4, Zix1jr1+ =, & =0, Z(Sk =4 2
k

In Fig. 2 the time series for the number of grains falling from the grid for a 40 x
40 grid of the Manna model are presented. The rest of the time series looks the same
except for the iteration number corresponding to the SOC state. 7, depends on the
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Fig. 2 Time series of the number of grains falling from the grid for the Manna model
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grid’s size: t, = 892 for 20 x 20 grid, z, = 2510 for 30 x 30 grid, #, = 3335 for 40
x 40 grid, t, = 5671 for 50 x 50 grid, and ¢, = 7625 for 60 x 60 grid.

DR-model [13] is the cellular automaton, the rules of which are formulated on
a two-dimensional hexagonal lattice. It is a cellular automaton with open boundary
conditions on the lower side and periodic boundary conditions on the left and right
sides. A grain of sand is randomly added to a randomly selected cell (i, j) of the
top layer, increasing the number of grains of sand (z; ;) in the cell by one: z; ;+ =
1. When the value in any cell exceeds one, this cell loses stability and crumbles,
transferring one grain of sand to the two cells lying below. It is important that the
DR-model rules are anisotropic, i.e. the avalanche of sand grains, spreading from the
top to the bottom, never affects the same area twice.

Formally, the rules of the model are as follows:

Ze =2, Zi,j— = 2, Zi:tl,j:t%‘i' =1 (3)

In Fig. 3 the time series for the number of grains falling from the grid for a 40 x
40 grid of the DR-model are presented. The rest of the time series looks the same
except for the iteration number corresponding to the SOC state. 7. depends on the
grid’s size: 1, = 1491 for 20 x 20 grid, . = 1821 for 30 x 30 grid, 7, = 3241 for
40 x 40 grid, t, = 5200 for 50 x 50 grid, and ¢, = 7476 for 60 x 60 grid.

PSV-model [14] is the stochastic analogue of DR-model. The cell (i, j) crumbles
as aresult of the stability loss, transferring the random number of sand grains (61 > 0)
to the two cells lying below.

Formally, the rules of the model are as follows:

ZC=2a Zi,j_=21 Zi:l:lyjj:%—i_:(sﬂ:’ 8:&207 8++87:2 (4)

In Fig. 4 the time series for the number of grains falling from the grid for a 40 x
40 grid of the PSV-model are presented. The rest of the time series looks the same
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Fig. 3 Time series of the number of grains falling from the grid for the DR-model
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Fig. 4 Time series of the number of grains falling from the grid for the PSV-model

except for the iteration number corresponding to the SOC state. 7. depends on the
grid’s size: . = 1 for 20 x 20 grid, 7. = 1 for 30 x 30 grid, 7. = 1 for 40 x 40 grid,
t. = 1 for 50 x 50 grid, and ¢, = 1 for 60 x 60 grid.

2.1.2 Dissipative Systems

The rules of the models considered above are conservative, i.e. when cells are shat-
tered, the grains of sand removed from them are redistributed to neighboring cells
without loss. The grains of sand leave the grid only when they reach its edges.
DFF-model [15] is a deterministic cellular automaton with a two-dimensional
orthogonal grid of size L x L. The integers in the cells z; ; can be interpreted as the
number of grains of sand that can participate in the pouring processes. There is no
designated slope direction. If z; ; > 4, then the cell (7, j) is unstable and overturns.
Overturn is zeroing of the number of sand grains in the cell with a simultaneous
increase by 1 in the values in four cells that have a common side with this cell.
Formally, the rules of the model are as follows:

Ze =4 2ij—=0, zZiz1,ju1t =1 (5)

In Fig. 5 the time series for the number of grains falling from the grid for a 40 x
40 grid of the DFF-model are presented. The rest of the time series looks the same
except for the iteration number corresponding to the SOC state. ¢, depends on the
grid’s size: 1. = 1 for 20 x 20 grid, 7. = 1 for 30 x 30 grid, 7. = 1 for 40 x 40 grid,
t. = 1 for 50 x 50 grid, and 7. = 1 for 60 x 60 grid.

The stochastic DFF-model with a random number of sand grains (&) in four
neighboring cells that have a common side with the cell is characterized by the
following rules:
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Fig. 5 Time series of the number of grains falling from the grid for the DFF-model

2e =4, 2ij— =0, Zix1 j21+ =&, & =0, ZfSk =4
X

127

(6)

In Fig. 6 the time series for the number of grains falling from the grid for a 40 x
40 grid of the stochastic DFF-model are presented. The rest of the time series looks
the same except for the iteration number corresponding to the SOC state. 7. depends
on the grid’s size: #. = 1 for 20 x 20 grid, 7. = 1 for 30 x 30 grid, 7. = 1 for 40 x

40 grid, r. = 1 for 50 x 50 grid, and ¢, = 1 for 60 x 60 grid.
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Fig. 6 Time series of the number of grains falling from the grid for the stochastic DFF-model
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2.2 Moments of Probability Density Function for the Time
Series

Earlier, we proposed the algorithm for detecting the self-organized critical state of
the system. The algorithm is based on the analysis of scaling exponents of power
laws for probability density function (c¢), power spectral density (8), and autocorre-
lation function (y) for time series generated by SOC systems. The algorithm make
it possible to identify the SubC phase and the SupC phase by belonging of «, § and
y to certain intervals. The disadvantage of the algorithm is its applicability only to
the analysis of scale-invariant probability density function and the impossibility of
its application to the analysis of other heavy-tailed distributions. The heavy-tailed
distributions are characteristic for the time intervals of the system evolution, corre-
sponding to its SupC phase. A famous example of a scale-invariant heavy-tailed
distribution is the Pareto distribution.

Therefore, in order to go beyond the limitations of the algorithm associated only
with the use of « as the only identifier of the SOC state, the SubC phase and the
SupC phase, we used the main moments of probability density function as cumulative
indicators.

For detection of early warning signals for self-organized criticality we used the
following moments:

first raw moment (or mean) u,

second central moment (or variance) 2,
standardized third moment (or skewness) y,
standardized fourth moment (or kurtosis) «.

2.3 Scaling Exponents for the Time Series

Even the description of model time series using the moments of their probability
density function is exhaustive only for a very limited number of random processes.
For example, realizations of Gaussian processes are fully described by second-order
moments. Therefore, apart from the moments, other quantities should be used to
describe the time series. These quantities include the scaling exponents for the time
series, which determine the fractal dimensions of time series as geometric objects.
The most general approach to the study of scaling exponents of heterogeneous
time series is their multifractal analysis. It is sufficient to calculate a single scaling
exponent to describe the scale invariance of homogeneous model time series, since
such time series demonstrate only one type of singular behavior constant in time. On
the contrary, the nature of the singularity of inhomogeneous time series at different
points in time may differ; therefore, the description of such time series cannot be
performed using only scaling constant. Therefore, multifractal analysis, which allows
to provide local analysis of heterogeneous time series, is a more informative approach.
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We used multifractal detrended fluctuation analysis (MF-DFA) [16] for making
of multifractal analysis of time series generated by self-organized critical cellular
automata. The application of this method makes it possible to obtain estimates of the
spectrum of scaling constant time series: {h(q)}.

In short, the algorithm of MF-DFA method is reduced to revealing the power law

F(q.s) ocs"® (7
for the fluctuation function
AR T
F(q.s) = {Z—M;[M(‘% s)]z} ®)

To calculate function (8) from a discrete time series 7;, a fluctuation profile is
formed X; = ZZ:] (nx — 1), which is divided into Ny non-intersecting intervals v
containing the equal number of points s. Further, for each of the intervals, the local
trend x,; and the deviation of the fluctuation profile from the local trend AY,; =
X, — x,,; are determined. The value (v, s) = max AY,; — min AY,; for each
split interval.

A detailed description of the algorithm of the MF-DFA method, as well as its
capabilities and limitations, are presented in the paper [16]. Therefore, we will restrict
ourselves by considering the main features of the time series for which the power
law is satisfied (7). For multifractal time series at ¢ > 0, the main contribution to
function (8) is given by the partition intervals v characterized by large values (v, s);
at g < 0, the main contribution to function (8) comes from the partition intervals
v characterized by small values (v, s). For monofractal time series /(q) does not
depend on ¢. This is due to the fact that the behavior of function (8) when changing
the scale s is the same for all intervals v.

3 Results and Their Discussion

Cumulative mean and variance, as well as their corresponding time series, are
presented in Figs. 7 and 8. These figures show moments and time series for the
Manna model. The dimensions of cellular automata are 40 x 40. For other cellular
automata and their other grid sizes, the mean and variance behavior are similar.

Cumulative mean and variance are not informative indicators characterizing the
transition of cellular automata in the SOC state. Indeed, these moments are increasing
functions of time and there are no significant changes in them when passing through
the SOC state.

Cumulative kurtosis and skewness are quite informative precursors for the transi-
tion of cellular automata into the SOC state. The cumulative kurtosis and skewness,
as well as their corresponding time series, are presented in Figs. 9 and 10. These



A. Dmitriev et al.

|I IH r|

Critical point

90
80
70
60
5
4

0
0

100

130

= 9956 | 9556 = 9556
—1 1016 3 1016 = 1016
= 9v98 9v98 = 9v98
! 1618 1618 1618
§ ocLL 9gLL 9L
= |97/ = 162L 182
9289 = 0289 9289
1269 8 |69 1269
N ——== 9165 9165 916
e . { 19vS _ 2 19%
..... = 9005 8 9005 £ 9005
§ LSSy = i 1SSY 3 - 157
— %0F 3 = = 960y 2 S —= 960
= R S = A 5 199
9%le g L 9g1e 5 98LE
ez 5 el = 1812
uw = o £ 9z
I8l = [r4: e 128l
Tooer & 9%l 8 99€}
e g We £ 116
oy E oy = 9¥
L2 b2 F
882° £ 888R88%8R82° I 288R88e8Re°
S S
= ®
e &
= =

Fig. 9 Cumulative kurtosis for the Manna model
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Fig. 10 Cumulative skewness for the Manna model

figures show the moments and time series for the Manna model. The dimensions of
cellular automata are 50 x 50. For other cellular automata and their other grid sizes,
the behavior of kurtosis and skewness is similar.

As the cellular automata approach to the SOC state, a noticeable decrease in
kurtosis and skewness is observed up to the critical point. At the same time, a sharp
increase in these cumulative moments is observed at the critical point.

The change in the cumulative moments when approaching the critical point has
a simple explanation. Mean and variance increase as a result of the increase in the
number of grains falling from the grid in the certain time interval At € (¢, t.) from
the SubC phase, preceding the transition of the cellular automaton to the critical
state. The decrease in the skewness in the interval Az, is also a consequence of the
increase in the number of the grains. In this interval, a right-sided asymmetry of
the distribution is still observed, characterized by an elongated right “tail,” which
decreases as the critical point is approached. In other words, the shortening of the
right “tail” of the distribution occurs in the interval Az.. At the critical point, a sharp
lengthening of the right “tail” of the distribution occurs as a result of the accumulation
of the number of the grains from the SupC phase. An increase in the number of the
grains in the interval At also leads to a decrease in kurtosis in this interval. The peak
of the distribution near the mathematical expectation is sharp for the entire SubC
phase, but as the critical point is approached, the peak of the distribution is smoothed
out. At the critical point, there is severe increase in the sharpness of the distribution.

In Fig. 11 the cumulative scaling exponents #(g) at ¢ = 1, 3, 5 are shown. The
behavior of scaling exponents is similar for all cellular automata and their sizes; there-
fore, we restrict ourselves by considering only two automata. The scaling exponents
h(1) are shown in blue, in orange—#h (3) and in gray—~h(5).

The time series generated by cellular automata are multifractal time series. More-
over, scale invariance in the form (7)) is characteristic only for ¢ > 0, forg < 0
scale invariance is not observed. Therefore, there are only the scaling exponents
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Fig. 11 Cumulative scaling exponents for the Manna model (50 x 50)

describing the intervals of time series partitioning v with large fluctuations. Intervals
v with small fluctuations are not typical for the studied time series.

As approaching to the critical point, the distance between the points h(g;) =
[h(1) — h(3)| + |A(3) — h(5)| decreases and is the smallest at the critical point.
In the SupC phase, the distance between the points is almost independent of the
iteration. All this is demonstrated in Fig. 11. Recall that for the Manna model (50 x
50) t. = 5671.

Thus, the moments of probability density function, primarily y and «, as well as
the scaling exponents /(g), can be used as indicators of early warning for the SOC
state in cellular automata.

4 Conclusions

Analysis of the behavior in time of moments and scaling exponents made it possible
to provide early detection of the self-organized critical state in cellular automata. For
such the early detection, it is sufficient to carry out the statistical and multifractal
detrended fluctuation analysis of time series for the number of grains falling from
the grid generated by cellular automata.

The results obtained allow us to make the following conclusions:

(1)  Self-organized critical cellular automata generate multifractal time series, in
which subcritical and supercritical phase, and self-organized criticality state
can be distinguished.

(2) The most informative indicators of early detection of self-organized criticality
state are cumulative skewness and kurtosis.

(3) Multifractality of time series for number of grains falling from the grid makes
it possible to use cumulative scaling exponents as indicators of early detection
of self-organized criticality state.
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In conclusion, we briefly consider the possible practical applications of the use of
the proposed indicators for early detection of critical states. If real systems are able
to self-organize into the critical state, then the cumulative moments of probability
distribution and the cumulative scaling exponents can be used as early warning
indicators for critical states. Self-organized criticality is characteristic of phenomena
and processes of a very different nature: solar flares, earthquakes, floods, forest
fires, the emergence and extinction of species, demographic, ecological, economic,
social, informational processes. Early detection of the critical state means predicting
the critical moment in time after which the system behaves in an unpredictable
manner. In this case, the system is in the supercritical phase, which is characterized
by avalanche-like dynamics.
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Double Symmetry and Generalized m
Intermittency in Transitions to Chaos L
in Electroelastic Systems

Serhii Donetskyi and Aleksandr Shvets

Abstract Mathematical models of a deterministic system of the type “analog
generator-piezoelectric transducer” are considered. A double symmetry, atypical for
dynamical systems, is found in the alternation of scenarios of transitions from regular
attractors to chaotic ones. For the considered system, the symmetry inside symme-
try: the described above chains of scenarios is located at the “median” point of other
wider symmetric chains of transition to chaos was found. Also, for the first time for
the considered system, a transition ‘“chaotic attractor of one type-chaotic attractor of
another type” through generalized intermittency was discovered. One of the distinc-
tive features of such a transition is the appearance of coarse-grained (rough) laminar
phase instead of laminar phase of usual intermittency.

Keywords Nonideal electro-elastic systems - Scenarios of transition to chaos *
Generalized intermittency.

1 Introduction

Consider a cylindrical piezoceramic transducer placed in an acoustic medium. Let
us assume that the oscillations of a piezoceramic transducer are excited by an ana-
log generator. Let’s also assume that the power of the generator is comparable to
the power consumed by the transducer. Under these assumptions, the “generator—
piezoceramic transducer” system is a typical nonideal dynamic system according
to Sommerfeld-Kononenko (Sommerfeld [1, 2], Kononenko [3]). The mathematical
model of such a system was described using a normal system of ordinary differential
equations in Krasnopolskaya and Shvets [4].

The mathematical model of the “generator-transducer” system was derived for a
real physical system based on the strict principles of the general theory of electroe-
lastic systems in acoustic media. Subsequently, it was revealed that the “generator-
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transducer” system has a very wide variety of dynamic behavior. So in such a system,
all the main types of regular attractors were discovered, such as equilibrium posi-
tions, limit cycles and invariant tori (Krasnopolskaya and Shvets [4], Balthazar et al.
[5], Shvets and Donetskyi [6]). Chaotic attractors, including hyperchaotic ones, were
also found in the “generator-transducer” system (Shvets and Krasnopolskaya [7]).
Transitions to chaos (hyperchaos) through a cascade of period doubling bifurcations
(Feigenbaum [8, 9] and through intermittency (Manneville and Pomeau [10]) were
identified. And finally, in paper Shvets and Donetskyi [6], self-excited, hidden and
rare attractors were discovered in the “generator-transducer” system.

The above allows us to assert that the “generator-converter” system has greater
variety of dynamic behavior than the classical Lorentz ([11]) and Rossler ([12, 13])
systems. Such system is the “library” of regular and chaotic dynamics and can be
used as a basic one in the study of the general theory of dynamical systems.

2 Mathematical Model

Using papers Krasnopolskaya and Shvets [4], Shvets and Donetskyi [6], we write
the mathematical model of the “generator-converter” system in the form of a normal
system of differential equations:

a _
gzg i ;E +(¥]§ +a2§2 _a3§3 _a4ﬂ’ (1)

&= —aB + ast +asl —ary.

Here phase variables &, ¢ describe the dynamics of piezoceramic transducer. Accord-
ingly, phase variables B, y describe the dynamics of analog generator. The physi-
cal meaning of these variables and parameters «, o1, ..., @7 of the system (1) are
described in detail in paper Krasnopolskaya and Shvets [4].

Since the system of Eq. (1) is a nonlinear system of differential equations, the study
of its dynamic behavior, in the general case, can be carried out only by numerical
methods. The methodology for conducting such research is described in the papers
Shvets [14], Shvets and Krasnopolskaya [7].

3 Symmetry and Double Symmetry

Typical behavior for dynamical system is when, with increase(decrease) in the value
of a bifurcation parameter, the following chain of transitions to chaos is observed: a
cascade of bifurcations of period doubling of limit cycles, then chaos, then so called
periodicity window, after which this chain repeats: cascade of period doubling —
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chaos — periodicity window — cascade of period doubling — ... This behavior is
also known as Feigenbaum scenario. Accordingly, with a decrease(increase) in the
value of a bifurcation parameter, different chain of transactions to chaos is observed.
Namely limit cycle, then intermittency in chaos, then periodicity window, after which
this chain repeats: limits cycle — intermittency in chaos — periodicity window —
limit cycle — ... This behaviour is known as Pomeau-Manneville scenario. In this
system, however, there are regions of parameters for which violation of strict chain
of transactions for either scenarios is observed.

Letvalues of parametersbe g = 0.995, o) = 0.0535, a3 = 9.95, ay = —0.103,
as = —0.0604, ag = —0.12, a7 = 0.01. And leave parameter o, as bifurcation
one. In Fig. 1, for these values of parameters, the phase-parametric characteristic of
the system (1), the so-called bifurcation tree, is constructed. Steady-state periodic
regimes correspond to individual branches of this tree, and chaotic ones correspond
to densely black areas. A careful study of the phase-parametric characteristics allows
us to understand the bifurcations occurring in the system. As one may notice, there is
some symmetry value of bifurcation parameter (oy & 9.6455), relative to which any
chain of transitions to chaos is reflected. This means that with increase in the value
of the bifurcation parameter both Feigenbaum scenario and Pomeau-Manneville one
occur, which is violation of strict chain of transitions to chaos. Same behavior is also
true for the case of decrease in the value of the bifurcation parameter. We notice
that such situation appears to be natural for this specific system, since it is not the
first time when such symmetry in transition to chaos was established (Shvets and
Donetskyi[6]). And as we will see further, not the last.
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Consider couple more intervals of bifurcation parameter for which symmetric
transition to chaos is observed along with some other interesting features.

Let us start with interval 9.075 < o, < 9.3. As we can see from Fig. 2, there is
a double symmetry in the alternation of scenarios of transitions to chaos. One of
the symmetries is clearly seen over the entire range of variation of the bifurcation
parameter. Inside this symmetry, in a much smaller interval, one more symmetry is
visible. Such double symmetries (symmetries within symmetries) are quite atypical
for dynamical systems. Just like before, we can see violation of strict chain of tran-
sitions to chaos both with increase and with decrease in the value of the bifurcation
parameter.

In the Fig. 3 you can see couple of bifurcations of Feigenbaum scenario for the
Phase-parametric characteristic presented in the Fig. 2. Namely, there are three first
period doubling plotted in the Fig. 3a —c. And the chaos presented in the Fig. 3d.

Another type of symmetry is realized on the interval of variation of the bifur-
cation parameter 9.646 < oy < 9.64625. The phase-parametric characteristic of the
system for this interval is shown in Fig. 4. Here, the transition to chaos occurs, in
one bifurcation, through the intermittency both on the left and on the right of the
considered interval. Moreover, there are no periodicity windows inside the chaos.
Accordingly, no other transitions to chaos are observed according to the Feigenbaum
scenario.

Fig. 2 Phase-parametric -0.052
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Fig. 3 Phase portrait projections: at oo = 9.1 (a); at g = 9.13 (b); atap = 9.14 (¢); atx = 9.15
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4 Generalized Intermittency and Symmetry

Finally, consider the bifurcations that occur in the system on the interval 9.64624 <
oy < 9.64665. As the parameter «; increases, a cascade of bifurcations of doubling
the period of limit cycles begins in the system, which leads to the appearance of
a chaotic attractor. Further, as «, increases, the chaotic attractor is replaced with
periodicity window. Then this chain of transitions is observed again: a cascade of
period doubling bifurcations — chaos — a periodicity window, and so on. However,
the sequence of such transitions is interrupted at oy ~ 9.64631. Further, an extremely
interesting transition occurs from a chaotic attractor of one type to a chaotic attractor
of another type according to the scenario of generalized intermittency. This scenario
is described in detail in the papers Krasnopolskaya and Shvets [15], Shvets and
Sirenko [16]. One of distinctive features of such a transition is the appearance of
coarse-grained (rough) laminar phase instead of laminar phase of usual intermittency
Fig. 5.

We notice that all described above behavior is symmetric, i.e. exists some
“median” value of bifurcation parameter «,, such that any transition to chaos is
reflected. But there is more than that, since the very first chain of transitions to chaos
that happend prior the generalized intermittency is reflected too. It is worth empha-
sizing due to fact that regularly generalized intermittency is not a part of any other
chain of transitions to chaos.

Let us illustrate the scenario of generalized intermittency using phase portraits
and distributions of the invariant measure of the corresponding attractors presented
in Fig. 6. In the Fig. 6a and c, the phase portrait projection and distribution of invari-
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Fig. 6 Phase portrait projections: atay = 9.6463 (a); atap = 9.64631 (b). Distribution of invariant
measure: at oy = 9.6463 (¢); at oy = 9.64631 (d).

ant measure are presented respectively, prior the generalized intermittency. After the
bifurcation, chaotic attractor of one type disappears, and chaotic attractor of other
type borns. Phase portrait projection, as well as distribution of invarian measure
for this new attractor are presented in the Fig. 6b and d respectively. Behavior of
newborn chaotic attractor consists of two main phases: the rough-laminar phase and
turbulent one. In the rough-laminar phase, trajectory of the caotic attractor makes
chaotic movements near localization of disappeared attractor. During these move-
ments, trajectory of newborn attractor almost coincide with trajectory of disappeared
one. These correspond to the much darkened areas in Fig. 6d. Then, at the unpre-
dictable moment of time, turbulent phase begins. During this phase, trajectory leaves
localization region and moves to distant regions of the phase space. After some
time, trajectory returns to rough-laminar phase. This process of switching phases is
repeated infinitely many times.
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5 Conclusions

Thus, the paper explored a number of symmetries in the alternation of scenarios of
transitions to chaos in a nonideal dynamic system “piezoelectric converter-analog
generator”. The existence of double symmetry is established for such alternations of
scenarios.

The possibility of transitions “chaotic attractor of one type—chaotic attractor of
another type” according to the scenario of generalized intermittency was revealed
for the first time.
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Nonlinear Control Problems oo
Under Uncertainty

Tatiana F. Filippova and Oxana G. Matviychuk

Abstract The problem of estimating the reachable sets of the nonlinear dynamic
control systems is investigated under the assumption of the uncertainty of the param-
eters of the system and its initial states. It is assumed that only bounding sets are
available for some system parameters including unknown initial states, and no addi-
tional statistical information is provided on these values. Based on the previously
established results of the theory control systems under uncertainty, new approaches
are being developed that allow finding solutions to the problems under study and
investigating the properties of the proposed solutions. Algorithms for constructing
ellipsoidal estimates for trajectory tubes and their cross sections in time (reachable
sets of systems) are discussed and tested. Applications to the problems of popula-
tion growth models, the behavior of competing firms, environmental changes in the
world, the development of some competing industries, etc. are discussed.

Keywords Control system + Nonlinearity - Set-membership uncertainty -
Estimation problem - Ellipsoidal calculus -+ Maximum principle -+ HIB equation

1 Introduction

Nonlinear dynamical control systems with a special type of uncertainty related to the
case of its set-membership description have attracted the attention of researchers for
many years. It may be explained by several reasons, e.g. by interesting mathematical
formulations of related theoretical problems and also by a close connection with the
important studies of real models of various nature, where elements of nonlinearity
and uncertainty are presented in their statistical and dynamical description. In this
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regard, it is important to specially highlight fundamental and important research that
gave rise to further branches of development in this direction and in related areas,
namely Kurzhanski and Varaiya [19], Kurzhanski and Valyi [18], Chernousko [5],
Polyak et al. [21], Schweppe [22] and a number of other interesting publications in
this area.

It should also be emphasized that the study of nonlinear problems of control
theory is very important not only for theoretical specialists. Such developments are
in demand because of the practical formulations of real control problems, for a more
accurate account of the characteristics of dynamic models, which in reality can be
very complex, contain nonlinearity and uncertainty of an unexplained nature, when
it is possible to determine only the boundaries of any unpredictable effects on the
object under study.

The important issue in these studies is to develop related techniques, which may
help to construct external or internal estimates for unknown system characteristics.
In this context, it is possible to point out not only the theoretical academic interest
in such a study, but also the possibility of practical application which may be based
on the theoretical results and may be used as a basis for algorithmic support for a
number of applied control problems with both uncertainty and nonlinearity. It would
be worth mentioning in this context, for example, researches by Allgower and Zheng
[1], August et al. [2], Boscain et al. [3], Ceccarelli et al. [4].

In this paper we use the modified state estimation approaches and investigate
control systems having the nonlinearity of a special kind. In the general analytical
schemes we use also the advantages of ellipsoidal calculus. Namely, we deal here with
dynamical control systems with a special structure of nonlinearity in the description
of their dynamics, when unknown inaccuracies are present simultaneously in the
initial data and in the matrix of linear components of the phase velocities of the
system. The presented modified approaches to solving problems of estimating the
unknown states of the system take into account the specifics of the problem under
study and present a new modified approach to solve it.

The techniques presented here relate to the theory of trajectory tubes of differential
control systems with uncertainty and are based on the following basic principles:

e set-membership estimation approach to deal with system uncertainty,

e optimality principles to analyze properties of reachable sets of control problems,

e Hamilton-Jacobi-Bellman (HJB) approach applied for finding the external set-
valued estimates of uncertain solutions of dynamical systems.

The studies presented in this paper are based on the previous results of the authors
(in particular, Filippova [7-9] and Filippova and Matviychuk [12, 13]) and develop
them for new classes of estimation problems in the control theory for dynamical
systems under conditions of uncertainty.
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2 Statement of the Problem and Basic Notation

Introduce first a number of standard, but necessary notations. Here we denote as
R" the Euclidean space of dimension n, also let comp R” be the set of all compact
subsets of R" and R"*™ be the set of all real n x m-matrices.

We use further the standard notation x"y = (x, y) = >_;_, x;y; for the inner prod-
uct of x, y € R", two specific norms of x € R" are denoted as

1/2
Ixll = llxll2 = '0)"?, |lx]loo = max |x;].
1<i<n

We use also symbols I € R"*” for the identity matrix and tr (A) for the trace of
n x n-matrix A (the sum of its diagonal elements), |A| means the determinant of a
square matrix A.
Denote as
Ba,r)={xeR":||x—al| <r}

a ball in R" with a center a € R" and with a radius r > 0. Also let

E@ Q)={xeR": (Q7'(x—a),x—a) < 1}

be an ellipsoid in R" with a center @ € R" and with a symmetric positive definite
n X n-matrix Q.

We study further the nonlinear control system described by the system of differ-
ential equations with uncertain terms

X =A@)x+ f(x)d +u(t), xo€ Xo, u(t)eU, teltT], (1)

where x, d € R". Here f (x) is the nonlinear function, which assumed to be quadratic
in x, that is f (x) = x’Bx and B is a given symmetric and positive definite n x n-
matrix.

In the general setting of the problem, we only assume that both sets X, and U in
(1) are convex and compact in R". Further, the structure of the sets X, U will be
refined: namely, the main results obtained here will refer to the case when both these
sets are ellipsoids with given parameters.

We assume here that the matrix A(-) in (1) contains uncertain elements, namely
we have

A)=A"+A'c A=A+ A, 1€t Tl )

Here A® is a given n x n-matrix, but the second matrix term A' in (2) is assumed to
be unknown and we know only that A! is containing in the set A!, where

Al = {{a;;} € RV 1q;; =0 ifi # j, and
(3)

a;=a;,i=1,...,n, a=(a,...,a,), with (a, Da) < 1},
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here D is a given symmetric and positive definite n X n-matrix.

The assumption in (1) that the initial state x, of the dynamical system (1) belongs
to a compact set X corresponds to the case when we do not know a true value of x,
we know it only with some inaccuracy of the above mentioned type.

Let the absolutely continuous function x (1) = x(#; u(-), A(-), x) be a solution
to the nonlinear dynamical system (1) and (2) with initial state xy € Xy, control u(-)
and with a matrix A(-) satisfying (2) and (3). We assume here that the solutions {x(¢)}
are extendable up to the instant 7 and are bounded || x(¢)|| < K (with some K > 0)
(in this regard, it is useful to read, for example, the discussion and results presented
in Filippova and Berezina [10]).

We define the reachable set X (¢) at time ¢ (fp <t < T) of system (1)-(3) as
follows

X(1) = {x € R" : IxpeXo, Ju()eU, FA(M€EA, x = x(t; u(), A(), x)). (@)

Recently in Filippova [6-8] and Filippova and Matviychuk [11-13] several
approaches have been proposed for solving problems of estimating unknown states
of dynamical systems of this kind.

Here we propose a modified approach and describe new techniques which allow
us to find the external ellipsoidal estimate E(a* (), Q% (1)) of the reachable set X (¢)
(to <t < T)in more complicated case of dynamical systems when unknown values
are present simultaneously both in the initial data and in the state velocities of the
control system. Moreover, in the general initial formulation of the problem, it is
not assumed here that the initial set of the studied system should be necessarily an
ellipsoid.

In general, the main problem studied here is related to the questions how to
determine the reachable sets of nonlinear dynamical systems of the class specified
above. It is well known that it is very difficult to construct the exact reachable set of
the control system with nonlinearities and uncertainty and it takes a very long time
to construct it even using computer simulations and numerical approximations, so
this research and presented results may well turn out to be useful, especially in cases
when approximate solutions of optimization problems are sufficient.

3 Hamilton-Jacobi-Bellman Inequalities in State
Estimation for Uncertain Systems

We develop here in some features the notion of generalized solutions of Hamilton-
Jacobi-Bellman inequalities which allows to find the external set-valued estimates of
reachable sets as level sets of a related cost functional. In this regard, it is worth high-
lighting recent and important studies in this direction, namely Kurzhanski [17], Gur-
man [14], Gusev and Kurzhanski [16], Gusev [15] and also results Filippova [6, 8].
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The problems of state estimation and also related problems of control synthesis
for systems described by ordinary differential equations or differential inclusions
with unknown but bounded disturbances can be transformed into the studies of first
order PDEs of the Hamilton-Jacobi-Bellman (HJB) type and related modifications.

To investigate this possibility for uncertain systems studied here, let us consider
the following control system

x=ft,x,u(), te€ln,T] ®)
u(:-) e U ={u() : u(t) € Uy € compR™, t € [ty, T1}, (6)
x(ty) = x0 € Xo @)

with a solution x (¢)=x (¢, u(-), to, xo) and with the reachable set X () = X (¢; ty, Xp)
generated by the trajectory tube

X() = X(a tOs XO) = U {'x() = -x('v M(), IO’XO) |
X0 € Xo, u() eU }

®)

We need further the important auxiliary result formulated first in Kurzhanski [17].

Lemma 1 (Kurzhanski [17]) Suppose that there exists a function p(t) which is
integrable on [ty, T'| and such that we have

Vilt, x) +max (Vy, f(t, x,u)) < (1), o <t <T. €))

Then the external estimate of the reachable set X (t) = X (¢; to, Xo) is valid

X)) C{x:V(t,x) < /u(s)ds +ma)1(x V(tg,x)}, to <t <T. (10)

o

Remark 1 The inequality of a more general type (Gurman [14], Gusev [15])

Vit, x) +max (Vy, f(t,x,u)) < g(t, V7, x)) (1)

is true also with a function g(¢, V') which is integrablein ¢ € [y, T] and continuously
differentiable in V.
Consider the following ordinary differential equation

U@t) =g(t,U), Ult) = U, (12)

which is called a comparison equation for (5)—(7).
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Theorem 1 (Kurzhanski [17], Gusev [15]) Assume that (11) and (12) are fulfilled.
Assume also that
max V(ty,x) < Up. (13)

xeXo

Then the following upper estimate is valid

X S{x:Ve,x)=UD} o=t =T. (14)

4 Main Results

4.1 Ellipsoidal Estimates Through HJB Inequalities

Consider the dynamical control system
() =Ax() + f(x®))d +u(t), xeR", ty<t<T, (15)

where we have

f(x)=x'Bx, x € R",

with a n x n-matrix B being positive definite and with a vector d € R" fixed and
known. We assume that the following constraints are valid now and

x(to) = xo € Xo, (16)

and the set X is compact and convex, but not necessarily it is an ellipsoid. Bearing
this fact in mind, we can nevertheless find its outer (upper) ellipsoidal estimate.
Moreover, there can be found several such external ellipsoidal estimates, including
those with different centers @} and different ellipsoid matrices Q). Some of these
estimates can provide the mathematical accuracy of the estimation for a number of
direction vectors, while the other part can be caused by the empirically found or
expected accuracy of approximations of the applied models under study.

So we may assume that the following upper estimate is given for the unknown
initial state x( of the system, namely we have the inclusion

k
Xo < | J E(a), Q) (17)
i=1

where centers ajy of constructed new ellipsoids and their matrices Q}) are fixed now.
The control constraint on variable u is still the same as before, that is

u(t) € U = E(a, 0).



Optimality Principles for Solving Nonlinear Control ... 149

Here Qf), Q, B are symmetric positive definite matrices. Let us denote kaf ;a
positive number such that the inclusion

E(ag, Q) € E(ao, (k§)*B™"), i=1....r,

is true. The parameters similar to k;; were used also for state estimation schemes in
Filippova [7, 8]. It is important to underline that because of a special type of con-
straints (17) on initial states we have to apply here more complicated approximation
constructions.

Define also two types of functions a; (t) and r;* (1) (i = 1, ..., r) to be the solu-
tions of the following differential equations,

at () = A% (1) + (@ (1)) Ba () + rF(1))d +a, (18)

i (1) = max [r@rrwB 2 + 2 1)y BY B2

+q7 0 B0 B )1} + g (), "
qi(r)) = () "' TH(BOI)'?, t9 <1 =T, (20)
where a positive definite matrix Q* is such that
Alag+ E(0, Q) + kD'*B'?B(0,1) C E(0, %), (21)
and where also related initial values are defined as
ai(ty) =ap;, ri(t)=k,i=1...,r (22)

Now we may formulate a new result which provides the upper estimate for reach-
able sets of the considered nonlinear control system with uncertainty.

Theorem 2 Let
Vit,x) = (x —a;" () ;7 () ' B(x —a;f (1)) — 1 (23)

with ai‘" (t) and rl.+ (t) defined in Egs. (18)—(20). Then V (¢t, x) = V;(t, x) satisfies the
HJB inequality Eq.(9) with the boundary condition

V(to, x) = (x —ap) (k§) > B (x —ap) = 1 < 0. (24)
Moreover, the related upper estimate

x| Jx:ve,x) <0y, =<t <T (25)
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is true.

Proof The proof of the theorem is carried out by direct calculations, taking into
account relations (18)—(22) and a rather complicated structure of constraints on initial
data and parameters.

We observe that Theorem 2 allows us to find the solution of HJB inequality
explicitly and to use it in the estimation problem for a class of nonlinear dynamical
control systems.

We would like to underline that the analysis of appropriate numerical schemes
and approximations including presented here gives the way to establish a useful
connection between the techniques of ellipsoidal calculus [5, 18, 21, 22] for dynamic
control systems with uncertainties and results based on the theory of Hamilton-
Jacobi-Bellman equations and related inequalities.

4.2 Example

Consider an example which show that in nonlinear case the reachable sets of the
dynamical system of the studied type (with simultaneously presenting nonlinearity
and uncertainty) may lose the convexity property with increasing time ¢ > f,. Never-
theless the related external estimates calculated on the basis of above ideas and results
are ellipsoids (and therefore convex) and these ellipsoids contain the true reachable
sets of the studied nonlinear system. The ellipsoidal estimates in some directions are
tight that is, they cannot be further reduced, otherwise they will stop evaluating the
reachable set and to give the guaranteed upper estimate. In this sense, the proposed
estimates are accurate.

Example. Consider the following control system in the space R?

X = —a1x; +xl2 +x§ +x§ + uy,
Xo = axxs + ua, (26)
X3 = azx3 + us.

Here we take xg € Xg = B(0,1), 0 <t <0.4and U = B(0, 0.1). System coef-
ficients {ay, ay, a3} are unknown but bounded,

2, 24 2
ay +a;+a; <1.

Applying above constructions and using the numerical algorithm similar to those
described in Filippova and Matviychuk [12, 13] we can construct the upper ellipsoidal
tube E*(¢) (it is shown in blue colour in Fig. 1) which estimate the real set-valued
solution of the system X (#) (shown in black in Fig. 1).

Figures 2, 3 and 4 show the dynamics in time of projections of reachable sets onto
the spaces of pairs of state coordinates, respectively.
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Fig. 1 The reachable set .
(black colour) and its upper EX(n) X()
estimate (blue colour)

Fig. 2 The projections of

reachable set (black colour) . Proj, ,X(?)
and of its upper estimate Proj,,E()

(blue colour) to the space \

{x1, x2,1}
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This example confirms that the upper ellipsoidal estimates in some directions
are tight, so they cannot be further reduced, otherwise they will stop evaluating the
reachable set and will not give the guaranteed upper estimate. In this sense, the
proposed estimates are accurate. In solving the problems of numerical modeling,
carried out in this example, previously developed and officially registered computer
programs Filippova and Matviychuk [11] and Matviychuk and Matviychuk [20]
were used. Further discussions and other numerical examples may be found also in

Filippova and Matviychuk [12, 13].
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Fig. 3 The projections of
reachable set (black colour)
and its upper estimate (blue
colour) to the space

{x1, x3, 1}

Fig. 4 The projections of
reachable set (black colour)
and its upper estimate (blue
colour) to the space

{x2, x3,1}
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Proj, ;. X(1)

25

The problems of state estimation for nonlinear dynamical control systems with

unknown but bounded initial state were considered.

The solution was studied through the techniques of trajectory tubes with their
cross-sections X () being the reachable sets at instant ¢ to control system.
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We presented the modified state estimation approach which uses the special struc-
ture of the control system and the techniques of generalized solutions of Hamilton-
Jacobi-Bellman equations and inequalities and is based on the comparison method
for analogies to related Lyapunov functions.
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Piezo Spintronic Effect in DNA )
Molecular Chains i

Masumeh Garagozi, Samira Fathizadeh, and Fatemeh Nemati

Abstract Recent efforts have been focused on producing nanoscale spintronic
systems based on molecular materials. Molecular spintronics is an exciting concept
for spin-based quantum computing. Spintronics combines the electronic with elec-
tron spin, which is an attractive field for processing and transferring the information.
On the other hand, creating the pure spin currents in response to strain can be studied
in the content of the piezo spintronic effect. In this regard, we have tried to design
a DNA-based piezo spintronic device. We have proposed a theoretical model for
controlling the spin current in DNA based on coupling between mechanical distor-
tions and spin degrees of freedom. We have used the chaos theory tools to study the
spin transport properties in the system. The obtained results determine that different
DNA sequences show distinct behavior with respect to the mechanical tension. Also,
the regions in the parameter values in which the maximum spin current flows through
the system can be investigated. The mechanical tension can adjust the spin current
flowing through the system. Therefore, one can design and control a novel piezo
spintronic nanodevice based on DNA sequences.

Keywords Piezo spintronic + Mechanical tension + DNA chain * Spin current -
Chaos theory tools

1 Introduction

The spintronic field can detect, inject and manipulate electron spins into solid-state
systems [1]. Researchers have recently shown, using experiments and theoretical
work, that they can perform similar and even better functions in making spinning
devices than inorganic metals and semiconductors [2]. This phenomenon, known as
molecular spintronics, has grown exponentially over the past few decades for prac-
tical applications [3]. The molecular spintronic field uses the spin state of organic
molecules to produce electromagnetic devices widely used in sensors, memory, and
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quantum computing [4]. Molecular spintronic devices can produce future spin valves
and quantum computing devices [5]. In these devices, polar spin currents are trans-
mitted through molecules [1]. In 2011, scientists discovered that the transfer of
electrons through chiral molecules depends on the direction of the electron spin. It
has recently been shown that the transmission of charge in these molecules is spin
polarized [6].

In this work, we use a new effect, called piezo spintronic (piezo in Greek means
stress), to generate spin current in DNA nanowires, which is based on mechanical
connection and the degree of spin release [7]. This effect, unlike the effects of piezo
magnetism and piezoelectricity, is a phenomenon limited to the simultaneous pres-
ence of systems with time-reversal (T), inversion (I), and symmetry failure [8]. This
mechanism opens the way to obtain and measure net spin currents. In essence, a
crystal may exhibit piezoelectric, piezomagnetic, and piezo spintronic effects simul-
taneously. The piezo voltage is one of the most effective methods for controlling
magnetic switching, in which the deformation of the crystal structure of the magnetic
material changes the crystal magnetic anisotropy, which is directly related to a spin—
orbit interaction in the crystal [9]. On the other hand, the DNA molecule is widely
used as a complex nanostructure with high flexibility in nanotechnology [10]. The
double-stranded DNA molecule is a piezoelectric material. Piezoelectric materials
are a class of dielectrics that can be polarized by an electric field and mechanical
stress [11]. This particular property of piezoelectric materials is due to the crystal
structure of the material [12]. Piezoelectric materials are used in converters and
devices that convert electrical energy into mechanical energy or vice versa. Piezo-
electric materials have many applications in diodes, switches, memories, transistors,
sensors, energy storage devices, etc. [13—15]. DNA molecule is a chiral molecule due
to its asymmetric crystal structure (mirror asymmetry) that can exhibit conductivity,
insulation, semiconductor, and superconductivity. On the other hand, chiral organic
molecules are a good candidate for transmitting information encoded in spin and
spin-polarized current sources [16]. The piezo spintronic effect is very similar to the
polarization of charge currents caused by pressure-induced spin—orbit interactions.
In this work, we show that many polar spin currents can be produced by applying
external mechanical stress to the molecular junctions of the DNA chain. We also
show that spin-dependent charge transport can be observed in DNA nanowires by
applying the mechanical stress and in the presence of an external magnetic field.
For this purpose, we designed a piezo spintronic nanostructure based on the DNA
sequence according Fig. 1.

2 Model and Methods

In the current work, we have studied the spin currents along DNA nanowires through
the piezo spintronic effect using the Peyrard—Bishop—Holstein (PBH) model modified
for the spin degree of freedom. PBH model considers the pairing of bases in the
direction of hydrogen bonding and plots the DNA molecule as a one-dimensional



Piezo Spintronic Effect in DNA Molecular Chains 157

DNA Sequence

Fig. 1 A schematic illustration that shows the DNA nanowires immersed in a thermal bath and
connected at both ends to the metal leads in the presence of an external mechanical stress

network [17]. The Hamiltonian of the system can be presented as follows:

H = Hpna + Hgo + Hiead + HpNa—tead + Hpam + Hpna—Bah + Hpielass (1)

where, the first term is Hamiltonian related to DNA molecule written as follows:

_ . . ato o . . to o +o .o
Hpya = § : § : [gwci,j ¢+ Vz,z+l,10i+1,jci,j] + § :)‘ C1,i Coi

ij=120=1)
+ + +

+Z[21tsocose(c ! lT-‘rl] ci!chlT_l’] c”i iH]

ij

+¢ i + *l T
+C Ci 11+D”+1C l+1]_Dtl+ ljl+l]

D eivel =Dyt H. 2
+ l—llljllj _1,C llj)]+ C. ()

where, t,, is a spin—orbit coupling constant, 6 is the helix angle, and , j indicate the
number of sites and strings, respectively. Also, ¢ is electron energy and cj j» Ciyj are
the electron creation and annihilation operators at the site (i, j), respectively. A; is the

interaction coupling between the DNA chains and

Dy i1 = itsosin@{sin[nAg] + sin[(n + 1) A¢] + i cos[nAgp] 4 i cos[(n 4+ 1) Ap]}
(3)

where ¢ = nAg is the angle in the cylindrical coordinate and A is defines the twist
angle. To maintain inverse symmetry, we have

Dn,n—l =D

n—1,n
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Also, V;;1,; shows the mutation between the nearest neighbors, which is written
as follows:

Vit = Voe Pi0imi—v)

where V,, is the constant of the hopping integral and the 8; indicates the intensity of
the coupling.
Hy, is a spin—orbit coupling Hamiltonian written as follows:

Hgo = Z[Zztﬂ, cosO(c el —cllel | —cltel  + el
n
| Tl Tl T
+ Di,i+lcmci+1 - Dl Li+16i Cl+1 + Dt—l iCi Ci
— Dj_y ¢! C, 1 “4)

Hie,q is the Hamiltonian related to the electrodes expressed as follows:

Hlead - Z Z(Sl‘l" )aL kaL,L + Z Z(SR,/( - _)a;UkaR,k (5)

j=12 k,o j=12 k,o

where V), is the bias voltage applied to the system and a;ﬁk, ag,,, are the operators of
electron creation and annihilation in the electrode § = R, L, respectively. HpyA—icad
is the Hamiltonian relating to the interaction of the DNA molecule with the electrodes
written as follows:

HDNAflead = Z Z (tLaerk 71 +tRaR " ]N + HC) (6)
J=1,2k,o=1

Hpg,;p, is the Hamiltonian of thermal bath defined as follows [18]:

N—-1

Hpan = an,lﬁb +2) hQ(bf b1 +b,b) + Hee. (7)
i=1 i=1

where b;r and b; are the oscillator creation and annihilation operators at the i site,
respectively. §2 is the reciprocal coupling constant and w is the oscillator frequency
at the site. The Hamiltonian of the interaction of the thermal bath with the DNA
molecule is written as follows:

+ +
Hpya-teas = Z Z (tLaLfkcil + tRaR;.’ka;{N + H'C'> ®)
j=1.2ko=1
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here, #; is related to the elements of the tunneling matrix. In recent equations, the
phrase H.c. is entered for the effect of a Hermitian conjugate.

Finally, H f;cq; is related to the external electric and magnetic field Hamiltonian
written as follows:

Hfelgs = Hg + Hp 9

The Hamiltonian of an electric and a magnetic field is written as follows:

Hg=—e Y Edcos[(i — )Aglc] ¢ (10)
io=1,1
HB_Z( MBBC,j,j‘i‘M Bcllj lij) (11)
ij
where d is the radius of DNA and pg = —C =5/78838 1+ x 1073 is the constant of

magneton Bohr.

In the current study, to apply a mechanical stress to the system, we corrected the
electron onsite and electron hopping constants at site n through the stress parameter
as follows [19]:

er(l —o 2L 2
&y = 52 + w tan o Vg cos( i + (po> (12)
(1 + 100) 10
Vit = Vopre (i) (13)

where r = 10 is the radius of DNA, « is the angle of DNA rotation, V y is the source
voltage, o = 0.5 is the Poisson rate, and S| is the longitudinal stress applied to DNA
[20].

Here, the evolution equations of our dynamical system can be derived through

the Heisenberg equation ¢ = —L[c;‘l, H ] for up spin and down spin operators,

7
respectively [21]. On the other hand, the spin current corresponding to up and down

spins can be extracted via the continuity equation as follows:

¥

]ﬁ(l‘) — i Wi, n+lcn n+1 + W, 1Ln nT¢IC’Ij_ (14)
h " Dn,nJrlcn n+l anl,ncn_ Cn
T il l

I‘L(l‘) — _le nn+lC”T‘n+1 + Wn 1.nCy H*] N (15)
h n D::n-HC” n+1 +Dn lncn lC”

Therefore, the net charge current /¢ and the net spin current /; can be defined as
follows:
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IL.=I1"+1"
L =1"—1' (16)

3 Results and Discussion

In this study, we have tried to investigate the spin transfer and generation of pure spin
currents in different sequences of DNA in the presence and absence of mechanical
stress and magnetic field. The system shows high sensitivity to the initial conditions
since the dynamics behavior is nonlinear.

3.1 Mechanical Stress Effect

To investigate the effect of mechanical stress on the system in the absence of a
magnetic field, we have applied micro-positive and negative mechanical stress to the
system (negative stress means DNA compression and positive stress means DNA
elongation). According to Fig. 2, in §; = 3, the maximum spin current and in
S| = —3, the minimum spin current flow through the system.

| (nA)

1.5

Fig. 2 The spin current with respect to the mechanical stress parameter (B = 0)
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Fig. 3 The time-series of spin currents for CH22, AT-rich and CG-rich sequences in the presence
of tension S| = 3 and B = 4.5 (mT)

3.2 Effect of Different Sequences on the Spin Current

The conductivity dependence of the DNA molecule on the type and length of its
sequence are studied, previously [22]. One of the effective parameters on the elec-
trical properties of DNA molecule is the variation the sequence type since different
arrangement of adjacent pairs in the molecule changes the coupling and the energy
of the pair [23].

In this study, we have chosen three types of sequences: CH22, AT-rich, and CG-
rich, with a length of 60 bp. Therefore, we have studied the spin transport yn system
by applying stress S; = 3 and in the presence of a magnetic field B = 4.5 (mT).
According to Fig. 3, at + = 500 (ps), the maximum spin current flows in CH22
sequence. A moderate spin current value flows in the CG-rich sequence, and a
minimum spin current flows in the AT-rich sequence. The result indicates the effect
of type the sequence in the spin current flows through the molecule chain.

3.3 Voltage Effect

The external electric field, or in other words the gate voltage, is an influential factor
on the spin current flowing through the DNA molecule. DNA molecule behaves
distinctly against variable voltage [24]. According to Fig. 4, the spin current in terms
of voltage shows an increase in spin current with increasing voltage in some regions
can be called quasi-ohmic regions. In some regions, a decreasing spin current is
observed by increasing the voltage which can be expressed as spin-polarized negative
differential resistance (SPNDR) regions. In the interval 7-8 (mV), system shows the
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Fig. 4 The I-V characteristic diagram for the spin current in the presence of a stress S| = 3 (B =
0)

quasi-ohmic behavior while in the interval 11-12 (mV), the SPNDR behavior is
observed.

3.4 Spin Current in the Presence of Simultaneous Variation
of Mechanical Stress and DNA Twist Angle

We have tried to examine the simultaneous effect of mechanical stress and DNA twist
angle as the most effective parameters in piezo spintronic effect on the spin current
flowing through the CH22 sequence (Fig. 5). Figure 5 shows the creation of island-
like areas in different parameter values. The simultaneous effect of the mechanical

I (nA)
=

s . W -
- P B -

L]

-10

5 A . a s a i
0 0.05 0.1 0.15 0.2 0.25 0.3
ex(rad)

Fig. 5 The simultaneous effect of mechanical stress and DNA twist angle on spin current
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Fig. 6 The simultaneous effect of voltage and DNA twist angle on spin current

stress parameter and twist angle leads to the maximum and the minimum spin current
flowing regions. Itis clear in Fig. 5 that no significant current flows through the system
as long as the mechanical tension have the zero or negative value, but by increasing
the twist angle and applying mechanical stress S; = 3 and higher, an increase in net
spin current is observed, so that at S| = 5 and o = 0.27 (rad), the maximum spin
current flows through the system.

3.5 Spin Current in the Presence of Simultaneous Variation
of the External Electrical Field and DNA Twist Angle

Figure 6 shows the simultaneous effect of DNA twist angle and applied voltage on
the spin current flowing through the CH22 sequence. We have observed island-like
regions in which the simultaneous effect of the molecule’s twist angle and voltage
creates areas with a maximum and minimum spin current. Itis clear that by increasing
the applied voltage to the system in the presence of mechanical tension, the islands
with maximum spin current increases. The result indicates the positive effect of
simultaneous application of voltage and stress on the spin current in the system.

4 Conclusions

In this study, we have studied the piezo spintronic effect led to creating the net
spin current in response to stress. We discussed the piezo spintronic response of
DNA nanowires to create net spin currents. By studying the spin current in terms of
voltage, we have observed quasi-ohmic and SPNDR regions. Finally, by examining
the simultaneous variation of the DNA twist angle and the applied voltage to the
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system, we have observed the islands that represented the maximum and minimum
spin current.

The results expand the field for spin mechanical systems since it provides a direct
coupling between the spin current and the tension. In this work, we used a simplified
model that considers the structure of DNA as a ladder. To continue the work, it is
suggested that the natural structure of DNA, which is considered as a double helix
with degrees of freedom of angle be considered.
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The Atom, from a Mathematical-Physical | m)
Perspective L

Alina Gavrilut and Maricel Agop

Abstract In this paper, an exhaustive study on the problem of atomicity with respect
to set functions is provided. Different types of atoms are discussed, the relationships
among them are studied and several examples and physical possible implications and
applications are obtained.

Keywords Atom - Pseudo-atom + Minimal atom - Set function - Self-similarity

1 Introduction

Using different notions, concepts and results, in this paper we shall try to answer the
question “What is the atom?” from a mathematical-physical perspective, offering at
the same time a series of possible interpretations and meanings that exceed its strict
limits. We shall see that the mathematical perspective preserves the intimate, defining
property of the atom, in its various forms and mathematical meanings of being, in a
sense, the essential indestructible, indivisible, irreducible, minimal and self-similar
unity. We emphasize that an atom is a mathematical object (an entity) that, in essence,
has no other subobjects (subentities) than the object itself or the null subobject. The
idea is also found in computer science, for example. In partially ordered sets, atoms
are generalizations of the singletons (that is, sets containing only one element) of
the sets theory. Moreover, in this sense, atomicity (the property of a mathematical
object of being atomic), provides a generalization in an algebraic context of the
possibility of selecting an element from a nonempty set. In mathematical logic, an
atomic formula is a formula without a deep propositional structure, that is, a formula
that does not contain logical connections, or, equivalently, a formula that does not
have strict subformulas. Atoms are thus the simplest well-formed formulas of logic,
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the compound formulas being formed by combining atomic formulas using logical
connections. Also, also in logic, an atomic sentence is a type of declarative sentence
that is either true or false and that cannot be broken down into other simpler sentences.
In some models of set theory, an atom is an entity (a mathematical object) that can be
an element of a set but does not itself contain elements with similar properties (hence
the “ultimate” character of an atom). In mathematical analysis, a set’s property of
being an atom is defined in relation to another mathematical object, namely, with
respect to a set (multi)function.

2 The Mathematical-Physical Perspective

2.1 Set Functions

Let C be a ring of subsets of a non-empty abstract set 7 and m : C — R, be a set
function which satisfies the condition m () = 0. The following notions generalize
the notion of a measure in its classic sense (as a foundation of measure theory). In
mathematical analysis, a measure (in classic sense) is a function which “measures”,
assigning to certain sets of a class (family) of sets, a positive real number or +o0. In
this sense, a measure is a generalization of the concepts of length, area or volume.
One particularly important example is the Lebesgue measure on a Euclidean space,
which assigns the conventional length, area and volume of Euclidean geometry to
appropriate subsets of the Euclidean space R". For instance, the Lebesgue measure
of the interval [0, 1] is its length in the ordinary sense of the word, namely, 1 [1, 9].
A measure must be additive, which means that the measure of a set representing the
union of a finite (or countable) number of smaller sets that are pairwise disjoint is
equal to the sum of the measures of these smaller subsets.

The notions that we shall introduce next have contributed to the development
in recent years of the theory of non-additive measures, sometimes known as the
fuzzy measures theory [7, 8]. These notions prove their utility due to the necessity
to model phenomena from the real world, in circumstances in which the condition
of additivity (either finite or countable), as an immediate property of a measure, is
much too restrictive.

The set function m is called:

(1)  null-additive it m(A U B) = m(A), for every sets A, B € C, satisfying the
condition m(B) = 0;

(i)  null-null-additive if m(A U B) = 0, for every sets A, B € C, satisfying the
condition m(A) = m(B) = 0;

(iii)  diffused if m({t}) = 0, whenever {t} € C;

(iv)  monotone if m(A) < m(B), for every sets A, B € C, sothat A C B;

(v)  null-monotone if forevery twosets A, B € C, having the property that A C B,
if m(B) = 0 holds, then one necessarily has also m(A) = 0;
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(vi)  finitely additive ift m(A U B) = m(A) + v(B), for every disjoint sets A, B €
C;
(vii)  subbaditiveifm(A U B) < m(A)+v(B),forevery (disjointornot) A, B € C.

Example. (i) Let us suppose that T = {t1,1,,...,1,}, where for every i €
{1,2,...,n},t; represents a particle, and m : P(T) — R, is a set function repre-
senting the mass of the particle. In the macrosopic world, m is a finitely additive
set function. At quantum scale, however, this statement no longer remains valid
due to the phenomena of annihilation. For instance, if #; and 7, represents an elec-
tron and a positron, respectively, then m({t;}) = m({t;}) = 9, 11 x 107! kg, but
m({t1, }) = m({n} U {n}) =0;

(ii) Entropy in Shannon’s sense is a subadditive set function, taking real values
[2, 3].

2.2 Types of Atoms

In the following, we shall present several types of atoms in their mathematical
meaning, we shall establish some relationships among these types of atoms and we
shall also highlight several possible interpretations. Unless stated otherwise, C will
represent aring of subsets of an arbitrary nonvoid set 7 and m : C — R, an arbitrary
set function satisfying the condition m () = 0. This abstract set function represents
the generalization of the classic notion of a measure used in measure theory and it
is the mathematical object through which the process of so-called “measurement” is
performed.

Atoms and pseudo-atoms
These are the main types of atoms from the mathematical perspective:

I.  AsetA € Cis called an atom of m if m(A) > 0 and for every B € C, with
B C A, it holds either m(B) = 0 or m(A\B) = 0.

We observe that, in a certain sense, an atom is a special set, of strictly
positive “measure”, having additionally the property that any of its subsets
either has zero “measure”, or the difference set between the initial set and its
subset we refer to has zero “measure”. An atom can be interpreted, from a
physics viewpoint, as the correspondent of a black hole.

II.  The set function m is said to be non-atomic if it has no atoms, that is, for
every set A € C with m(A) > 0, there exists a subset B € C(B C A) so that
m(B) > 0and m(A\B) > 0.

III. Aset A € Cis called a pseudo-atom of m if m(A) > 0 and for every subset
B € C (B C A) one has either m(B) = 0 or m(B) = m(A).

In other words, a pseudo-atom is a special set, of strictly positive “mea-
sure”, for which any of its subsets either has null “measure”, or has the
same “measure” as the set itself. Thus, it can be stated that a pseudo-atom
possesses the property that any of its subsets either has null “measure” (that
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is, it is negligible during the “measurement” process), or it entirely “covers”
the set (during the same “measurement” process). In other words, assuming
that the set function m is monotone, then a pseudo-atom is a set of strictly
positive “measure” and which does not contain any proper subset of strictly
smaller and strictly positive “measure”.

IV.  The set function m is said to be non-pseudo-atomic if it does not have pseudo-
atoms, that is, for any set A € C with m(A) > 0, there exists a subset B €
C(B C A) sothat m(B) > 0 and m(B) # m(A).

For instance, the Lebesgue measure on the real line is a measure (in
the classic sense) which is non-pseudo-atomic [9], and therefore it does not
have any pseudo-atom. The non-pseudo-atomic measures satisfy the following
remarkable property, which we owe to Sierpinski, a property which states that
if m is a non-pseudo-atomic measure (in classic sense), defined on a o -algebra
A (of subsets of an abstract space T'), and A € A is an arbitrary set so that
m(A) > 0, then for every element b € [0, m(A)], there exists a set B € A,
so that B € A and m(B) = b (in other words, the set function m takes a
continuum of values, and thus it does not omit any intermediate value).

V. A set function m is called purely-atomic if the space T can be represented as
a finite or countable union of atoms of m.

Examples. (i) Letbetheset T = {1, 2, ..., 9}. We define the set functionm : P(T) —
R, as follows: VA C T, m(A) = cardA. Then Vi € {1, 2, ..., 9}, the singleton {i}
is an atom of m: Vi € {1,2,...,9},m({i}) =1 > 0 and VB C {i}, we have either
B = @, in which case m(B) = 0, or B = {i}, in which case m({i}\ B) = m(¥) = 0.
So, in this case, any singleton is an atom.

(ii) Generally, there is no relationship between the notion of an atom and that of
a pseudo-atom: Let us consider an abstract set T = {#1, t,} and let also be the set
function m : P(T) — R, defined for every A C T by

2,if A=T

m(A) =11, if A = {#}

0, ifA={rn}orA=40.

Then T is an atom and it is not a pseudo-atom for m. Indeed, m(T) = 2 > 0.
Let be an arbitrary subset B of 7. If B = (4, then m(B) = 0;

If B = {1}, then, by the definition, m(T\B) = m({t;}) = 0;

If B = {1,}, then, by the definition, m(B) = 0;

If B={t;,b}(=T), then m(T\B) = m(¢) = 0.

Therefore, T is indeed an atom of m. On the other hand, let us note that there
exists the singleton {#;} for which m({t;}) =1 #0and m({t;}) = 1 # 2 = m(T).
Consequently, T is not a pseudo-atom of m.

However, we note that, if the set function m is null-additive, then any atom of m
is a pseudo-atom (*). Indeed, let us assume that m : C — R, is a null-additive set
function, and that the set A € C is an atom of m. We shall prove that A is also a
pseudo-atom of m: Obviously, since A is an atom, then m(A) > 0. If we consider
an arbitrary set B € C, with B C A, from the fact that A is an atom it follows that
either m(B) = 0 or m(A\B) = 0. In the latter case, since m is null-additive, it
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follows that m(A) = m((A\B) U B) = m(B). Consequently, A is a pseudo-atom of
m. Conversely, if the set function m : C — R is, moreover, finitely additive, then
any pseudo-atom A € C of m is an atom, too, and this immediately yields based on
the equality m(A) = m((A\B) U B) = m(A\B) + m(B) = m(B), which implies
m(A\B) = 0.

That is why, in the framework of the classic measure theory (a measure always
possesses the null-additive property), the notions of an atom and that of a pseudo-
atom coincide. The converse of the above statement (*) does not generally hold since
there exist pseudo-atoms which are not atoms:

(ii) Let T = {1, ,} be an abstract set, containing two arbitrary elements, and
let us consider the set function m : P(T) — R, defined for every set A C T, by

1LLifA#0
m(4) = {o, ifA = .

Then m is null-additive and T = {#1, t,} is a pseudo-atom of m, but it is not an
atom of m.Let A, B C T be so that m(B) = 0. By the definition of m we note that
we must necessarily have B = (J, whence m(A U B) = m(A), and this proves that
the set function m is null-additive.

We prove now that T = {11, t,} is a pseudo-atom of m. Indeed, we have m(T) =
1 > 0 and let B € T an arbitrary subset. If B = @, then m(B) = 0. If B # {,
then the set B either is a singleton, or is the set T, itself consisting of two elements.
In both situations, one has m(T) = 1 = m(B), which proves that T = {t|, ,} is a
pseudo-atom of m.

Let us prove now that T = {t, t,} is not an atom of m. Indeed, m(T) = 1 > O and
there exists the singleton {¢,} for which we have m({t;}) = 1 # 0 and m(T\{#;}) =
m({t;}) = 1 # 0. Therefore, T = {t, 1,} is not an atom of m.

(iii) The Dirac measure (or, the unit mass measure) (or, the §-measure) §, concen-
trated in an arbitrary fixed point ¢ of an abstract set 7, is an example of a measure
(in the classical sense) which is purely-atomic [5]. The Dirac measure is defined as

follows: If A is a o -algebra of subsets of T, then §,(A) = { (1)’ ; ; 2 , VA e A.

Obviously, T is an atom of §, (because &,(T) = 1 > 0 and YA € A, it holds
either 6,(A) =0ord;,(cA) =0,ast ¢ Aort € A, thatis, t ¢ cA).

Let us recall now the following:

If C is aring of subsets of an abstract space T and if m : C — R, is a set function
satisfying the condition m(¥J) = 0, two sets Ay, A, are said to be equivalent if

We note that if the set function m is additionally null-monotone and null-
additive, then m(A;) = m(A,) (which justifies the terminology, since the equiva-
lence of the sets takes place in the sense of the “measurement” process). Indeed,
since m(A1AA;) = m((A1\A2) U(A2\A1)) = 0 and m is null-monotone, it
follows that m(A;\A;) = 0 and m(A;\A;) = 0, whence, because m is null-
additive and m(A;) = m((A|\A2)) U(A1NAy) = m(ANAy), m(Ay) =
m((Ax\A1) U (A1 N Ay)) = m(A; N Ay) it follows that m (A1) = m(A,). We note
that, with respect to the Dirac measure §;, the atom T (the space itself, unreduced
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to a single point) is equivalent to the singleton {t},t € T [5]. Indeed, we have
m (T A{t}) = 0 (so, with respect to the Dirac measure, the space “collapses” into a
single point).

We shall prove in the following that, with respect to a monotone and null-additive
set function, any set which is equivalent to an atom is itself an atom: Let us assume
that the set A; is an atom and we prove that the set A,, which is equivalent to the
set Ay, possesses the same property. Indeed, according to the above statements, we
have m(A;) = m(A;) > 0 andlet B € C,B C A, be arbitrary. If m(B) = 0, then
the proof ends. If m(A;\B) = 0, then, since m is monotone and m(A;AA;) =0, it
follows that m(A;\Ay) = 0.

On the other hand, again from the monotonicity of m we have m(A;\B) <
m((Ax\A1) U (A1\B)) = m(A;\B) = 0, based also on the fact that m is null-
additive and m(A;\A;) = 0. Consequently, m(A,\B) = 0, and this finally proves
that A, is an atom of m, too.

Let us also note that, with respect to a monotone and null-additive set function,
any set which is equivalent to a pseudo-atom is, itself, a pseudo-atom:

We assume that A is a pseudo-atom and we prove that the set A, which is equiv-
alent to the set Aj, possesses the same property. Indeed, from the above statements,
we have m(A;) = m(A;) > Oandlet B € C,B C A, be arbitrary. If m(B) = 0, then
the proof ends. If m(A|) = m(B), then, since m(A;) = m(A;) = m(B), it follows
that A; is also a pseudo-atom of m.

Atoms and fractality

Next, we shall underline the fact that both the notion of atom and that of pseudo-
atom (in the mathematical sense) possess a remarkable property, namely that of
self-similarity (every part reflects the whole), a property which is a characteristic to
fractals, both from a mathematical point of view and from the perspective of modern
physics. This finding, among others, justifies the extension we illustrate in the last
section, in which we address the necessity to introduce the notion of a fractal atom
[3,4].
The self-similarity property of the atoms (pseudo-atoms, respectively).

(i) Ifm :C — R, is a null-monotone set function, with m(@) = 0, A € C is an
atom of m and B € C is a subset of A having the property m(B) > 0, then
B is also an atom of m and, moreover, m(A\B) = 0. (which means that the
“measure” of what remains when the set B is removed from the set A is null).
Indeed, one has m(B) > 0 and if we consider an arbitrary set C € C, with
C C B, then, since B C A, it follows that C € A. If m(C) = 0, the proof
ends. Let us assume now that m(C) # 0. Because A € C is an atom of m, it
follows that m(A\C) = 0. Since B\C € A\C and m is null-monotone it gets
that m(B\C) = 0 and, therefore, B is an atom of m. Moreover, since A € C
is an atom of m and B € C is a subset satisfying the property m(B) > 0, then
we must necessarily have m(A\B) = 0.

(i) If A € C is a pseudo-atom of m and the set B € C satisfies B € A and
m(B) > 0, then B is also a pseudo-atom of m and, moreover, m(B) = m(A)
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(the sets A are B are “identical” with respect to the “measure” m). Indeed,
we have m(B) > 0 and, if we consider an arbitrary set C € C, with C C B,
then, since B C A, it follows that C C A. If m(C) = 0, the proof ends. Let us
assume now thatm(C) # 0. Since A € C is a pseudo-atom of m, it follows that
m(A) = m(C). On the other hand, since A € C is a pseudo-atom of m, the set
B € C satisfies B € A and m(B) > 0, then m(B) = m(A). In consequence,
m(B) = m(C), and this finally proves that B is also a pseudo-atom of m.

Let us make, at the end of this section, the following observation: Assuming that
a set function m : C — R, is monotone, null-additive and regular (meaning that,
roughly speaking, we can, through it, approximate sets about which we have little
information, with sets about which we have more information), one can prove that
for each atom A of m (if it exists), there exists a unique element ¢ € A so that
m(A) = m({a}) [7, 8] (this means that the “measure” of the atom is equal to the
measure of each “point” it contains, and this reflects the holographic perspective,
according to which the information is concentrated in a single point.

Minimal atoms

We shall now introduce a very special category of atoms, which we show to reflect the
property of indivisibility (non-decomposability). Let C be an arbitrary ring of subsets
of an abstract space T and let m : C — R, be a set function so that m(f) = 0. A
set A € C is called a minimal atom of m if m(A) > 0 and for every subset B € C
(B C A) it holds either m(B) = 0, or B = A [6].

In other words, a minimal atom is a special set, of strictly positive “measure”, so
that any of its subsets has either zero “measure”, or identifies with the set itself. Thus,
aminimal atom has the property that any of its subsets has either zero “measure” (that
is, it is negligible during the “measurement” process), or identifies with the initial set
(without the need of a “measurement” process). The terminology is justified. Indeed,
if A € C is a minimal atom of m, then for m there cannot exist other minimal atom
A; € C, which is different from A and satisfies A; C A. Indeed, if we assume, on
the contrary, that there exists another minimal atom A; € C which is different from
A and satisfies A C A, then, since A; is a minimal atom, we get that m(A;) > 0.
Because A;CA, then A| = A, and this is false due to our assumption.

Example. LetT = {a, b, c, d} be an abstract set, constituted of four distinct elements
and let also be the set functionm : P(T) — R, definedforevery A € T by m(A) =

5 ifA=T

2, fA#T

0, ifA=4.

We note that any singleton (i.e., a set containing only one element) is a minimal
atom of m. Indeed, the “measure” m of any singleton is, according to the definition,
2, so it is strictly positive and any subset is either void and hence has zero measure,
or is the set itself.

In general, any minimal atom is, particularly, an atom and also a pseudo-atom.
Indeed, if A € C is a minimal atom of m, then m(A) > 0 and for any of its subset
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B € C (B C A) it holds either m(B) = 0, or B = A. The latter possibility yields
m(A\B) = 0 and m(B) = m(A), so A is both an atom and a pseudo-atom of m.

The following examples show that there is generally no relationship between the
notions of atom/pseudo-atom and that of minimal atom:

Examples. (i) Let T = {a, b} be an abstract set constituted of two distinct elements
and let also be the set function m : P(T) — R defined as follows:

VAgT,m(A)z{l’ ifA:'{a}orA:T
0, otherwise.

Then T is an atom of m: Obviously, m(T) =1 > 0. Let B C T be an arbitrary
set. If B = @, then m(B) = 0. If B = {a}, then m(T\B) = m({b}) = 0.If B = {b},
thenm(B) =0.1f B =T = {a, b}, then m(T\B) = m(¥) = 0.

But T is not a minimal atom of m : Obviously, one has m(7T) = 1 > 0 and let
B C T bean arbitrary set. We observe that there exists the set B = {a} # T for which
m(B) = 1 # 0. We also note that the set {a} is an atom (we have m({a}) =1 > 0
and any subset B C {a} either is void, so m(B) = 0, or is the set {a} itself, so
m({a}\{a}) = 0). The set {a} is also a minimal atom of m since m({a}) =1 > 0
and any subset B C {a} either is void, so m(B) = 0, or is {a} itself.

(i) Let T = {a, b, c, d} be an abstract set and let also be the set function m :
P(T) — R,, defined as follows: VA C T,

ifA=T

if A={a,b,c}or A={a,b,d}or A={a,c,d}
if A={a,b} or A={a,c}

, otherwise.

m(A) =

S N W W

Then {a, b} and {a, c} are minimal atoms of m. We shall prove the statement, for
instance, for the set {a, b} : Indeed, we have m({a, b}) = 2 > 0 and let B be an
arbitrary subset. If B = {a, b}, the statement is verified. If B = {a} or B = {b},
then, according to the definition, we have m({a}) = m({b}) = 0, so the statement is
again verified. If B = (4, then m(B) = 0.

In the following, we note that if m : C — R, is a null-null-additive set function
and A, B € C are two different minimal atoms of m, then they must be necessarily
disjoint, that is, A N B = . Indeed, let us assume that, on the contrary, A N B # @.
Since A, B € C are two minimal atoms of m, AA\(AN B) = AA\BC Aand ANB C
B, it follows that [m(A\B) = 0or A\B = A]and [m(AN B) =00or AN B = B].

(i) If A\B = A, then AN B = @, which is false since, according to our
assumption, we have A N B # .

@) Ifm(A\B) = 0and m(A N B) = 0, then, since m is null-null-additive, one
gets that m(A) = m((A\B) U (A N B)) = 0, which is false, since m(A) > 0,
the set A being a minimal atom of m.
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(iii)) Ifm(A\B) =0and AN B = B, then B C A, so, since A is a minimal atom
of m, one gets from the above observation that B = A, which is false.

Consequently, AN B = {.

The property we shall demonstrate next reflects the non-decomposability (non-
partitionability) of the minimal atoms: A minimal atom A € C of a null-null-additive
set function m cannot be partitioned in sets that are elements of C. Indeed, if we
suppose, on the contrary, that there exists a partition of a lui A, this means that there
exists a family {A;}ic(1,2,..., 5y of nonvoid sets of C so that Uip=1 A; = A and the sets
A; are pairwise disjoint.

Referring to the first set A, since A € C is a minimal atom, it follows that we
cannot have the situation A; = A. Therefore, m(A;) = 0. Analogously, for the
second set,A,, we get that m(A;) = 0. Recurrently, it gets that m(A3) = --- =
m(A,,) = 0. Since m is null-null-additive, it follows that m(A) = m(Uf’=1 Ai) =0,
which is obviously false.

Consequently, any minimal atom is non- decomposable.

In the following, we shall prove that the converse of this statement also holds,
namely, we shall demonstrate that any non-decomposable atom A € C is necessarily
a minimal atom. Indeed, since the set A is an atom, then m(A) > 0. Since the set
A is not partitionable, there cannot exist two nonvoid disjoint subsets Ay, A, € C of
A sothat A = A; U Aj,. Let be an arbitrary set B € C, with B € A. If m(B) = 0,
then the proof ends. If m(B) > 0, since B C A, one gets that B = A (otherwise, the
family {A\ B, B} is a partition of A: A\B, B € C, (A\B)NB =0, (A\B)UB = A,
which is false). Consequently, A is a minimal atom. From the two statements above,
one arrives at the following conclusion: an atom is minimal if and only if it is not
partitionable (it is non-decomposable).

In the following, we shall highlight that, in the case when the abstract set T is
finite, then any set A € C, satisfying the condition m(A) > 0 possesses at least
one set B € C,B C A, which is a minimal atom minimal of m. Moreover, in the
particular case when A is an atom of m and the set function m is null-additive, one
gets that m(A) = m(B) and the set B is unique. Indeed, let us consider the family of
sets M ={M € C,M C A, m(M) > 0}. Obviously, since A € C, then M # (. We
note that any minimal element M € M of M is a minimal atom of m. Indeed, since
M is a minimal element, there cannot exist another set D € M so that DM ().

Since M € M, this means that M € C,M C A and m(M) > 0.

We shall prove that M is a minimal atom of m. Indeed, for any set S € M, S € C,
we have either m(S) = 0 or m(S) > 0. In the latter case, we have either § = M
(which is suitable) or S # M, which contradicts the statement ().

Let us assume, moreover, that the set A is an atom of m and m is null-additive.
According to the considerations proved above, there exists at least one set B €
C,B C A, which is a minimal atom of m. This means that m(B) > 0 and, because
A is an atom, we must necessarily have m(A\ B) = 0. Since m is null-additive, this
yields m(A) = m((A\B) U B) = m(B).

It only remains to prove that the set B is unique. Indeed, if we suppose, on the
contrary, that there exist two different minimal atoms B; and B, of m, this would
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imply, as before, that m(A\B;) = m(A\B;) = 0.If m(B; N B) =0, then m(A) =
m(A\(B1 N By) U (B1 N By)) = m(A\(B1 N By)) = m((A\B1) U (A\By)), which
is false. If m(B; N B,) > 0, since B; and B, are minimal atoms of m, it results that
By = By N B, = By, which is again false. Finally, we shall prove that, if the set
T is finite, the set function m is null-additive, and {A;};¢(1,2...., py is the family of all
different minimal atoms which are contained inaset A € C, satisfyingm(A) > 0 (we
proved in the above considerations that such atoms exist), thenm(A) = m( le A i).

(This means that the set A identifies itself, from the “measure” m viewpoint, with
the union of all different minimal atoms which it contains, therefore the minimal
atoms are the only ones that matter from the “measurement” point of view.)

Let us note that m(A\U/_; A;) = O (if, on the contrary, one has
m(A\ U, A,-) > 0, from the statement proved above it would follow that there
exists at least one set B € C,B C A\ Ule A; C A, which is a minimal atom
of m, and this is false since Ay, ..., A, are the only different minimal atoms
contained in A). Since m(A\ U!_, A;) = 0 and m is null-additive, it follows that
m(A) = m((A\UL; Ai) U (UL, A)) = m(UL, Ai).-

We finally note the following:

1. Any minimal atom is also an atom and a pseudo-atom (which justifies the
terminology);

2. If the set function is null-additive, then any of its atoms is a pseudo-atom, too;

3. If, moreover, the set function is finitely additive, then the converse of the above
statement is also valid, therefore any pseudo-atom is particularly an atom.

Consequently, for a finitely additive set function (which is automatically null-
additive), the notion of atom and that of pseudo-atom coincide.

2.3 Extensions of the Notions of Atom

Generalizations of the mathematical notion of an atom have been made, so far, in two
major directions. A first direction is given by the fact that, instead of set functions,
which are indispensable to the process of the so-called “measurement”, one could
generally operate with set multifunctions (that is, functions that associate a set to
another set). Thus, results with a higher degree of generalization and abstraction can
be obtained. The second direction is given by the correlation that can be made by
placing the notion of (minimal) atom within the fractal sets theory, thus resulting in
the notion of fractal (minimal) atom [2—4].

The first direction: Set-valued approach

Let be an abstract nonvoid set 7', C a ring of subsets of T, X a real linear normed
space with the origin 6 and Py(X), the family of all nonvoid subsets of X. By a set
multifunction we mean a function (or, application) which associates a set to another
set, in contrast with the notion of a function, which associates a point to another
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point. So, in what follows, let i : C — Py(X) be an arbitrary set multifunction, with
u@) =0.

The notions of atom, pseudo-atom, minimal atom introduced with respect to a set
function m can be generalized in this context, with respect to the set multifunction
W, as follows. We say that a set A € C is:

(i)  an atom of p if w(A)2{0} and for every set B € C, with B € A, we have
either w(B) = {6} or u(A\B) = {6};

(i)  apseudo-atom of w if (A)2{0} and for every set B € C, with B C A, itholds
either u(B) = {0}, or u(A) = w(B);

(iii))  aminimal atom of p if w(A)2{0} and for every set B € C, with B C A, one
has either u(B) = {0} or A = B.

Detailed considerations on atomicity with respect to set multifunctions can be
found in Gavrilut and Agop [2] and also in Gavrilut et al. [3, 4].

The second direction: Towards a fractal theory of atomicity

The main idea in the quantum theory of measure and in generalized quantum
mechanics is to provide a description of the world in terms of histories. A history is
a classical description of the system considered for a certain period of time, which
may be finite or infinite.

If one tries to describe a particle system, then a history will be given by classical
trajectories. If one deals with a field theory, then a history corresponds to the spatial
configuration of the field as a function of time. In both cases, the quantum theory
of measure tries to provide a way to describe the world through classical histories,
extending the notion of probability theory, which is obviously not enough to shape
our universe.

On the other hand, ordinary structures, self-similar structures etc. of nature
can be assimilated to complex systems, if one considers both their structure and
functionality. The models used to study the complex systems dynamics are built
on the assumption that the physical quantities that describe it (such as density,
momentum, and energy) are differentiable. Unfortunately, differentiable methods
fail when reporting to physical reality, due to instabilities in the case of complex
systems dynamics, instabilities that can generate both chaos and patterns.

In order to describe such dynamics of the complex systems, one should introduce
the scale resolution in the expressions of the physical variables describing such
dynamics, as well as in the fundamental equations of the evolution (density, kinetic
moment and equations of the energy). This way, any dynamic variable which is
dependent, in a classical sense, both on the space and time coordinates, becomes,
in this new context, dependent on scale resolution as well. Therefore, instead of
working with a dynamic variable, we can deal with different approximations of a
mathematical function that is strictly non-differentiable. Consequently, any dynamic
variable acts as the limit of a family of functions. Any function is non-differentiable
at a zero resolution scale and it is differentiable at a non-zero resolution scale. This
approach, well adapted for applications in the field of complex systems dynamics,
in which any real determination is made at a finite resolution scale, clearly involves
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the development of both a new geometric structure and a physical theory (applied
to the complex systems dynamics) for which the motion laws, that are invariant to
the transformations of spatial and temporal coordinates, are integrated with scale
laws, which are invariant to transformations of scale. Such a theory that includes the
geometric structure based on the assumptions presented above was developed in the
scale relativity theory and, more recently, in the scale relativity theory with constant
arbitrary fractal dimension. Both theories define the class of fractal physics models.
In this model, it is assumed that, in the complex systems dynamics, the complexity
of interactions is replaced by non-differentiability. Also, the motions forced to take
place on continuous, differentiable curves in a Euclidean space are replaced by free
motions, without constraints, that take place on continuous, non-differentiable curves
(fractal curves) in a fractal space. In other words, for a time resolution scale that seems
large when compared to the inverse of the largest Lyapunov exponent, deterministic
trajectories can be replaced by a set of potential trajectories, so that the notion of
“defined positions” is replaced by the concept of a set of positions that have a definite
probability density. In such a conjecture, quantum mechanics becomes a particular
case of fractal mechanics (for the structural units motions of a complex system
on Peano curves at Compton scale resolution). Therefore, the quantum theory of
the measure could become a particular case of a fractal measure theory. One of the
concepts that needs to be defined is that of a fractal minimal atom, as a generalization
of the concept of a minimal atom [3, 4].

3 Conclusions

An exhaustive study on the problem of atomicity with respect to set functions is
provided. Different types of atoms are discussed, the relationships among them are
studied and several examples and physical possible implications and applications are
obtained.
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Nonlinear Phenomena in the Dynamics )
of a Class of Rolling Pendulums: L
A Trigger of Coupled Singularities

Plenary Review Lecture

Katica R. (Stevanovi¢) Hedrih

Abstract In the introductory part of the plenary lecture, an overview of nonlinear
differential equations of heavy ball and heavy thin dick rolling along curvilinear
paths and surfaces of different shapes were presented. This is reason that this content
is omitted from present review paper. In the introductory part of this article, we will
present nonlinear phenomena of motion of a heavy material point moving along
a rotating, smooth circle around a vertical, central or eccentric axis, as well as
around an eccentric oblique axis relative to the vertical, at a constant angular velocity.
Using linear and nonlinear approximations of the nonlinear differential equation in
the vicinity of singular points of the observed dynamics, the analysis of the local
dynamics of the heavy material point system along the rotating circle around the
oblique axis is given. A mathematical analogy between this model and the model of
the dynamics of a thin heavy disk rolling in a rotating circle around an eccentric-
centric oblique axis is pointed out. Using linear and nonlinear approximations of the
nonlinear differential equation in the vicinity of the singular points of the observed
dynamics, the analysis of the local dynamics of the heavy material point system along
the rotating circle around the oblique axisat a constant angular velocity is given. A
mathematical analogy between this model and the dynamics model of a thin heavy
disk rolling in a rotating circle around an eccentric-centric vertical-oblique axis is
pointed out. The central and main subject of the paper is the identification and
presentation of nonlinear phenomena in the nonlinear dynamics of a class of gener-
alized rolling pendulums, whose heavy bodies roll along curvilinear paths, lying in
a vertical plane, rotating around a vertical axis, at a constant angular velocity. The
bifurcation parameter of coupled rotations is identified. The bifurcation of the posi-
tion of stable equilibrium of the generalized rolling pendulum and the corresponding
representative singular points of the type of the stable center is described, as well
as the stratification and transformation of phase trajectories in the phase portrait of
nonlinear dynamics of the generalized rolling pendulum in the Earth’s gravitational
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field, and along curvilinear route in rotate vertical plane around vertical axis at a
constant angular velocity. Additionally a theorem of trigger of coupled singularities
and a homoclinic orbit in the form of the number “eight” is graphically proofed. A
series of graphs of characteristic equation oh nonlinear dynamics as well as series of
phase portraits for different coefficients of curvilinear paths described by parabola,
bi-quadratic parabola or polynomials of the eighth degree is presented and sets of
transformed phase trajectories and homoclinic orbits in the form of the number
“eight” are presented, which include one or more triggers of coupled singular points
in nonlinear dynamics of relative rolling thin heavy disk along these curvilinear trace
in rotate vertical plane around vertical axis at a constant angular velocity.

Keywords Generalized rolling pendulum - Bifurcation + Trigger of coupled
singularities + Curvilinear rolling path - Phase trajectory portrait -+ Homoclinic
orbit + Theorem - Mathematical analogy

1 Introduction

This review paper presents the main content of the Plenary Lecture, which Author
held at the international conference “CHAOS 2021 Conference”, traditionally orga-
nized by Professor Christos H Skiadas, CHAOS Conference Chair. He is the “spiritus
movens” of the high scientific level program of the series of these good conferences
and the accompanying series of publications of papers presented at them.

In the introductory part of the Plenary lecture, an overview of nonlinear differential
equations of heavy ball [1-3] and heavy thin dick rolling along curvilinear paths [4—7]
and surfaces of different shapes [3] were presented.

Also, an overview of nonlinear differential equations and nonlinear equations of
phase trajectories were given for a number of special rolling points on spherical
surfaces, on a cone and on a torus (see [7]).

For a number of nonlinear dynamics of ball and thin disk rolling along curvilinear
paths, phase portraits were presented with the definition of the term generalized
rolling pendulum (see [5]).

This review paper of mine contains my author’s original scientific results, one
part of which has already been presented or published, and some of which have now
been shown for the first time and have not been published before. The presenta-
tion begins with an introduction to the nonlinear dynamics of rheonomic discrete
systems with coupled rotations, both with two degrees of mobility and one degree
of freedom of movement. Such systems are described by one rheonomic coordinate
and one independent generalized coordinate. The rheonomic coordinate introduces
a kinematic constrain, i.e. kinematic excitation, into the system, and with the help
of an independent generalized coordinate, which describes a degree of freedom of
movement of the rheonomic system, a nonlinear differential equation of nonlinear
dynamics of the rheonomic system is formed.
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1.1 Models of Fascinating Nonlinear Dynamics
of Abstraction of Real Systems and Phenomenological
Mapping of Local Dynamics Around Stationary States

We first present several models of abstraction of nonlinear dynamics of real rheo-
nomic mechanical systems, which simultaneously represent models of motion of a
heavy meterail point in a circle, which rotates with a constant angular velocity around
the centric/eccentric vertical or oblique axis (see [8§—16]), but in terms of mathemat-
ical analogy and models of abstraction of real systems of rigid bodies (rolling without
sliding a thin heavy disk), which perform dynamics with coupled rotations around
two or three passing (no intersecting) axes [17, 18]. In the conditions of rotation
around the hair, in relation to the vertical, the axis, there is another member that
explicitly depends on both the generalized coordinate and the time.

In this part, we focus on determining the linearization and the linear and nonlinear
approximation of the nonlinear differential equation around stationary singular
points. The stability as well as the instability of the system dynamics around
stationary singular points-positions of relative rest (equilibrium) of the material point
on the rotating circle were, also, analyzed.

The appearance of triggers of coupled singularities [13, 19-25] is especially
pointed out, as well as the fact that the sources of chaos dynamics in such systems are.
It is indicated how the character of local properties of linear and nonlinear dynamics
around stationary singular points is examined.

Figure 1 shows three models of structurally the same system, with one axis around
which the circle rotates at a constant angular velocity and along which a heavy metal
point moves.

The difference between these three models is in the different position of the fixed
axis, around which the circular line rotates, in relation to the horizon, as well as
the position of the axis in relation to the center of the circular line. Depending on
the position of the axis around which the circular line rotates at a constant angular
velocity, the nonlinear dynamics of the relative motion of a material point along
a circular, ideally smooth line is described by the following nonlinear differential
equations [8, 16]:

¢+ Q*(h — cos @) sing = Q2Actga cos ¢ cos Q2 (1)

(Model in Fig. 1a.1*,3a ¢ = 0)
$+ Q*(h—cosg)sing =0 )

(Model in Fig. 1a.2*,3a ¢ = 0)
@ + Q% (L — cos @) sin gy — Q%ecos gy =0 3)

(Model in Fig. 1a.3*%, 3a ¢ # 0).
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Fig.1 Models of a heavy material point moving in a rotating circle, at a constant angular velocity,
around an eccentric axis obliquely positioned with respect to the horizon (a.1*), or a vertical centric
(a.2¥) or vertical eccentric axis (a.3%); b* Phase portrait of the nonlinear dynamics of a difficult

material point, moving in a rotating circle, at a constant angular velocity, around a centric (b.2*) or
eccentric vertical axis (b.3%)



Nonlinear Phenomena in the Dynamics of a Class ... 185

These differential equations (1)-(3) in Petrovi¢’s terminology would be
phenomenological differential equations (see [8, 16]).

Figure 1 shows models of a heavy material point moving in a rotating circle, at a
constant angular velocity, around an eccentric axis obliquely positioned relative to the
horizon (a.1%*), or a vertical centric (a.2*) or vertical eccentric axis (a.3*); Fig. 1b.2*
shows the phase portraits of the nonlinear dynamics of a heavy material point moving
along a rotating circle, at a constant angular velocity, around a centric (b.2*) or
eccentric vertical axis (b.3*). Both phase portraits are in the case of the appearance
of triggers of coupled singularities. Each of the triggers of coupled singularities
contains a homoclinic phase trajectory in the shape of the number “eight” which
intersects at a singular point of the unstable saddle type, and surrounds a stable
center-type singular point on the left and on the right side of the unstable saddle type
singular point. The trigger of coupled singularities in the phase portraitin Fig. 1(b.2%),
i.e. (b.3%), was created by bifurcation of a singular point of the stable center type.
At certain values of the bifurcation parameter of the system, this singular point of
the stable center type was transformed into a singular point of the unstable saddle
type, and two new singular points of the stable center type appeared around it and a
new separatrix-homoclinic phase trajectory appeared in the form of number “eight”
with self-intersection at a singular point of the unstable saddle type and surround
singular points of stable centre types. At certain values of the bifurcation parameter
of the system, in the phase portrait of the material point nonlinear dynamics along
the rotating circle there is no trigger structure of coupled singularities and there is no
transformation of the singular point of the stable center type into the singular point
of the unstable saddle type. These cases of phase portraits, which do not contain in
their structure a substructure of triggers of coupled singularities, were not considered
to be presented here.

1.2 Linearization of a Nonlinear Differential Equation
Around Singular Points and Local Properties of System
Dynamics

We start with the linearization of the nonlinear differential equations (1) around the
singular points, obtained for the differential equations (2) obtained from the previous
one for o = % In particular, we will consider cases of linearizations [8, 16] around
singularity: 1 * for, A > 1 around singularity ¢ = 0 and 2 * for A < 1, around
singularity ¢ = = arccos A.

1* In the case that A > 1, and we examine small forced oscillations around
a singular point ¢ = 0 of the center type, by linearization around it we obtain a

linearized differential in the following form

¢+ Q*(r — Do = Q%Actga cos Qt 4)
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in which we performed linearization by the following approximations sin ¢ ~ ¢+- - -
and cos ¢ ~ 1+ - - -, and measured the coordinate from the singularity, around when
we performed linearization, and introduced the assumption that the coordinate is
small.

From the linearized differential equations (4) we can conclude that for the case
A > 1, around a singular point ¢ = 0 for small force amplitudes Q?Actga and
small values of initial angle coordinate ¢y = ¢(0) and small initial angular velocity
@0 = ¢(0), that the circular frequency of natural oscillations is v ~ QA — 1,
around that singular point, while the frequency €2 of forced oscillations corresponds
to angular velocity of a rotating circle in a rheonomic system.

We can also conclude that when Q = €2,., and A = 2 when there is a resonant state
for small oscillations around the singular point ¢ = 0 for A = 1, so the linearization
of the differential equation can be accepted only in a very short time interval, while
the amplitude of forced oscillation, which increases with time in which the system is
exposed coercion, does not go beyond the assumed limits, which allow linearization.

In the resonant case, the linearization around a singular point ¢ = 0, when Q?,ez
and A = 2, for given initial conditions, the solution of the linearized differential
equation is of the form:

@(1) ~ @o cos

wotv2 2@ . wotN2 |:a)0t\/§ _ wptN/2
+ sin + sin

t 5
2 @ 2 2 2 }ga ©®)

Sto

where Q2 = £30% = % 2 = £ 5 — 4 3 =2,
2* For the case when A < 1, we will report the linearization around the singular
points ¢; = =% arccos A, so instead of the coordinate ¢ in the nonlinear differential

equations (1), we enter ¢; + ¢ by writing:

N

P+ Q2 [A — cos(ps + @)]sin(gs + @) = Qrctga cos(ps + @) cosQr (6)

now the coordinate ¢ is measured from these singular points ¢; = = arccos A, as
the beginnings in which that coordinate is zero. After linearization of the nonlinear
differential equations (6) around singular points ¢; = = arccos A, the linearized
differential equation takes the form:

rctga
1 =22

Obtained by linearization, nonlinear differential equations around singular points
@s = £ arccos A, the previous differential equation is rheolinear and Mathieu-Hill

type:

G+ Q20 —21% [1 + cos Qt]ga ~ Q*Actga cos Qt (7)

¢ -
_+()\+ycosr)(p=hCOS‘L' (8)
dt?
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whose shape coefficients are:

0=/ =22, i=1-22 and 7 = A1 —22ciga = hV3, ©= Q.

A general solution to the Mathieu-Hill differential equation can be found in Refer-
ences to Mathieu’s differential equation [26, 27, 28] or Floquet, Annales de 1’Ecole
Normale, 1883.

@(t) = Ae"' pi(t) + Be "' pa(1) €))

in which A and B there are also integration constants; w is a characteristic exponent,
and p;(¢),i = 1,2 are periodic functions of the period 27, which depend on the
parameters A and 7.

The main problem in studying the stability around these singular points, which
in the basic autonomous nonlinear system described by the autonomous nonlinear
differential equations (2) represent stable centers (stable relative positions of the
relative equilibrium of the rheonomic system, when the axis of rotation is vertical),
and in the nonautonomous system described by nonlinear differential equations (1)
and approximation (7) and (8), respectively, open more complex questions of motion
stability testing around these same singular points. References to the solution of the
solution of the Mathieu-Hill differential equation of the form (8) can be found in
[29, 26]. Using the Ince-Strutt stability map, we can determine the parameter areas
by A and 7, in which the solutions are stable or unstable, and then conclude about
the character of the stability of the system motion around the relative equilibrium
position or singular points of the nonlinear differential equations (1).

1.3 Phenomenological Approximate Mapping of Nonlinear
Dynamics

In this previously presented example, linearization of nonlinear differential equa-
tions, we have shown that the analysis of nonlinear dynamics of a nonlinear system
can be performed by decomposing the analysis to the analysis of local dynamics
in the vicinity of singular points by linear mappings of dynamic phenomena into
approximate local dynamics or linear or rheolinear and in depending on the initial
conditions to study the properties of these dynamics. Knowing the properties of local
dynamics or stable singular or unstable singular points, we can assemble-compose a
whole of global motion and rare nonlinear phenomena of nonlinear system dynamics.

This is a phenomenological mapping [29-31] of partial, linear and rheolinear
phenomena from local dynamics to global nonlinear system dynamics by analyzing
the phenomenon of dynamics in local domains and synthesizing the results of these
analyzes into global ones.
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We see that by approximations around some singularities, harmonic natural or
forced oscillations occur with the possibility of the occurrence of the basic resonant
state of local dynamics, i.e. in rheolinary natural or forced dynamics, with the possi-
bility of the appearance of the parametric resonant state. Both the basic resonant state
and the parametric resonant state, depending on the initial conditions, as well as the
length of the time interval in which the nonlinear dynamical system is subjected to
that local state of dynamics, come out of that state of dynamics, when the descriptions
do not applicable, and study must to continue in global.

The ideas of Mihailo Petrovi¢ and his mathematical or qualitative phenomenology
[29-31] can also be recognized in these approaches. And if we take into account
that these models of nonlinear dynamics of a heavy material point have the same
mathematical description as the motion of a rolling rigid body (homogeneous heavy
thin disk), which performs coupled rotations around the passing (no intersecting)
axes, then Mathematical phenomenology and phenomenological mapping become
the right tool for searching for models of abstraction of nonlinear dynamics of
real mechanical systems, which are described by one or more nonlinear differential
equations.

2 Bifurcation and Trigger of Coupled Singularities
in the Dynamics of Generalized Rolling Pendulums
Along Curvilinear Route in a Rotating Vertical Plane
at a Constant Angular Velocity About a Vertical Axis

In a series of [4, 5, 6, 7] of the author of this paper, the results of research of
nonlinear dynamics of special cases of generalized rolling pendulums on curvilinear
line in a rotating vertical plane, at a constant angular velocity €2 around the vertical
axis are presented, and a given series of phase trajectory portraits in phase planes.
Each of these phase portraits contains at least one trigger of coupled singularities,
consisting of a singular point of the unstable saddle type, and two singular points
of the stable center type, surrounded by a single-separator phase trajectory in the
form of number “eight”, which intersects at a singular point of the unstable saddle
type. The angular velocity €2 of rotation of the vertical plane around the vertical axis
appears as a bifurcation parameter, whose change can achieve the disappearance of
the trigger of coupled singularities, or the appearance of that trigger in the phase
portrait, or the appearance of bifurcation of a stable type singular position, and two
new singular points of the stable center type appear around it, and in the phase portrait
a separatrix phase trajectory in the form of a number of “eight” that surrounds them
and self-intersect at singular point which has lost stability and bifurcated into unstable
saddle-type singular point.

In such a system, there is now a phenomenon of a bifurcation [8, 19, 32, 33],
because the trigger of coupled singularities is now in results caused by the property
of nonlinearity in the form of bifurcation and nonlinear dynamics of such a system.
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And with the existence of a bifurcation parameter with the change of which the
trigger of coupled singularities appears or disappears.

In such a system, there is at least one parameter with the change of which such
a trigger of coupled singularities would disappear or appear, which is caused by the
properties of both, the curvilinear path and the existence of extremums in a set of
one maximum and two minimums of the curvilinear trajectory in the rotate vertical
plane at constant angular velocity €2 around vertical axis. Bifurcation and trigger of
coupled singularities are nonlinear properties of nonlinear dynamics of generalized
rolling pendulum.

For example, the ordinary nonlinear differential equation of non-linear rolling
dynamics, non-slip, heavy homogeneous thin disk, radius r, in a circle, radius R, in
a rotating vertical plane at a constant angular velocity €2 about the vertical central
axis, is [6]:

92
¢+ —( —cosg)sing =0 (10)
K

which ¢ is generalized independent coordinate, xk = 1+ 'ri‘; is the coefficient of disk
rolling and A = m is the bifurcation parameter (see [12, 23] for details).

In Fig. 2, a* and b*, shown graphic representation of the transformations, by
changing the bifurcation parameter A = m, of the separatrix phase trajectories
of the phase portrait of the non-linear rolling dynamics of a heavy homogeneous
thin disk, radius r, in a circle, radius R, in a rotating vertical plane at a constant
angular velocity 2 around the vertical central axis. These graphs are also presentation
continuous process of bifurcations followed by change of bifurcation parameter A =
m depending of angular velocity €2 of vertical plane rotation around vertical
axis, and also of difference between radiuses of rolling disk r and circle trace R.

The nonlinear differential equation of rolling dynamics of a heavy homogeneous
disk in a circle in a rotating vertical plane of the central vertical axis at a constant
angular velocity is thematically analogous to the nonlinear differential equation of
motion of a heavy material point along a smooth circular line in a rotating vertical
plane around a vertical axis at a constant angular velocity. We have shown a phase
portrait in Fig. 1b.2*, for the case when a tiger of conjugate singularities is visible.

Figure 2 shows the transformation of a singular point of the stable center type into
an unstable singular point of the unstable saddle type by bifurcation into a trigger
of coupled singularities with a homoclinic phase orbit in the shape of the number
“eight”. Figure 2a* shows the bifurcation of the singular point of the stable center
type into the trigger of coupled singularities, and Fig. 2b* shows the stratification of
phase trajectories by changing the bifurcation parameter (see also [19, 32, 33]).



190 K. R. (Stevanovi¢) Hedrih

alx)

b x)

el x)

d(x)

el x)

k(x)

nix)

pix)

- 2 % 0

Fig. 2 Transformation of a singular point of the stable center type into an unstable singular point
of the unstable saddle type by bifurcation into a trigger of coupled singularities with a homoclinic
phase orbit in the form of the number “eight”; a* bifurcation of a stable center-type singular point
into a trigger of coupled singularities and b* stratification of phase trajectories by changing the
bifurcation parameter
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3 Nonlinear Differential Equations and Phase Trajectory
Equation of Nonlinear Dynamics of a Class of Rolling
Pendulums

Reference [5] by Hedrih (Stevanovi¢) K. R., titled by “Generalized rolling pendulum
along curvilinear trace: Phase portrait, singular points and total mechanical energy
surface”, is the full paper of Plenary Lecture given in Mini-symposium on Compu-
tational Aspects of Classical and Celestial Mechanics, Stability and Motion Control
at CASTR (Computer Algebra Systems in Teaching and Research—CASTR’2017.
Thus paper contains description of a generalized rolling pendulum along curvilinear
trace consisting by three circle arches in vertical plane. Sets of three non-linear
differential equations of dynamics of described generalized rolling pendulum along
each of three circle arches, is presented. Three integrals of previous three nonlinear
differential equations present a set of three equations of each of three phase trajectory
branches which correspond to dynamics of described generalized rolling pendulum
along each of three circle arches. Phase portrait, set of singular points and total
mechanical energy surface are graphically presented for particular case of geomet-
rical parameters of the system. Paper contains basic elements of the methodology
for investigation of the vibro-impact dynamics of the system with two rolling bodies
along defined curvilinear trace in successive collisions.

Reference [6] by Hedrih (Stevanovi¢) K. P. titled by “Rolling heavy disk along
rotating circle with constant angular velocity” is a paper of Plenary lecture in section
of Mini-symposium on Computational Aspects of Classical and Celestial Mechanics,
Stability and Motion Control included in the Conference Program Computer Algebra
Systems in Teaching and Research CASTR’2015. In Abstract of this reference we
read following: “Non-linear differential equation of non-linear dynamics of a rolling
heavy disk along rotating circle trace, with constant angular velocity, about central
axis in vertical direction is derived. For this case, corresponding equation of phase
trajectory portraits depending on kinetic parameters of the system are obtained. Exis-
tence of trigger (see [5, 6]) of coupled three singular points and homoclinic orbit in
the form of number “eight” depending on system kinetic parameters and appear-
ance of the bifurcation of relative equilibrium positions are investigated. Functional
dependence between angle of disk relative arbitrary position on rotating circle trace
and time of motion duration is derived. For obtaining this solution, an elliptic integral
is derived. For solving elliptic integral, series of transformations are introduced and
functions under the elliptic integral are expanded in three series along angle of disk
relative arbitrary position on rotate circle trace. By use obtained functional depen-
dence between time of disk rolling and angle of disk relative position, discussion of
different period duration of rolling disk oscillations along rotating circle trace about
vertical central axis is done depending of initial conditions and constant angular
velocity of the circle rotation”.

Next [7] titled by “Vibro-impact dynamics of two rolling heavy thin disks along
rotate curvilinear line and energy analysis” written by Hedrih (Stevanovi¢) K. P. is
published as original article in Journal Nonlinear Dynamics, Springer Nature.
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Fig. 3 Geometric parameters of a rolling, without slipping, of heavy thin rigid discs on a rotating
curvilinear trace in a vertical plane around a vertical axis with constant angular velocity

Reference [34] by Hedrih (Stevanovi¢) K. P. titled by “Dynamics of a rolling
heavy thin disk along rotate curvilinear trace on vertical plane about vertical axis”
is an extended abstract of first presentation lecture in session of General Mechanics
at Congress of Serbian Society of Mechanics helped in Sremski Karlovci 2019. In
the lecture Nonlinear differential equation of dynamics of a rolling, without slipping,
heavy thin disk along rotate general curvilinear trace, in vertical plane, around vertical
axis with constant angular velocity, is presented. First integral of this nonlinear
differential equation is presented. First integral present the nonlinear equation of the
phase trajectory in phase plane of a rolling, without slipping, heavy thin disk along
rotate general curvilinear trace, in vertical plane, around vertical axis with constant
angular velocity.

Based on the new author’s authentic research and new results, which represent
new contributions by generalizing previous results, without the article being clear
and we think that there is no need to historically present the results of other authors,
which are mostly in the field of mathematics.

We observe an axially symmetric heavy rigid body with one central plane of
symmetry, which is in the case of a thin disk of radius r, mass M, the axial mass
inertia moment J¢ for the central axis parallel to the rolling axis. See Fig. 3.

Suppose there is a curvilinear trace, determined by y = f(x), such that the radius
of curvature of each of its concave arch is larger than the radius of the contour of the
disc circle in the plane of symmetry, by which the disk rolls, without slipping, along
the curvilinear trace, rotating, around the vertical axis with constant angular velocity
2, in the rotating vertical plane.

If we introduce the coefficient of disk rolling, without slipping, in the form « =

- o
L =% =% +1 =« [26,27, 35, 28], which for thin disk is ¥ = 3, then the
nonlinear ordinary differential equation of rolling, without sliding, a heavy rigid thin
disk along a curvilinear line route in rotate vertical plane around vertical axis at a

constant angular velocity i = 2, is in the following form:

P pdie M)

. 1.5, _ 8 iy
XF(x,r)+ Ex F(x,r) 2 I, + Kfc(x) =0 (11
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where ¥ = Qt is theonomic coordinate, as a kinematic excitation, x independent
generalized coordinate, correspond to one degree of freedom of this rheonomic
system with two degrees of mobility. Next, fc(x) and F(x,r) are expressed by
following expressions (for details see [8] by Hedrih (Stevanovi¢) K. R.):

2
Flx.r) = <1 n [f/(x)]2> 1— & (12)
[1+ 1P
1
fe@) =y+r——mm—— (13)
I+ [f(x)]

2
2 i
J.(x. M, r) = Jeo + Mlxc]P = M= + M[x - FL} (14)

4 VI+fo0P

Expression (14) presents axial mass inertia moment of thin disk for vertical axis
of vertical plane rotation in which curvilinear trace of disk rolling lies.

Then, previous integral of nonlinear differential equations (11) finally take the
following form:

[x(0)] =

2
. 2 2r [Jz(xvar)_Jz(xo’M’r)] . 2g .
:F\/[X(Xo)] + Q T FG ) KF(x,r)[fC(x’r) Je(xo, )]
(15)

where fc(x) is expressed by (13) and F'(x, r) is expressed by (12) and J,(x, M, r)
is expressed by (14).

We can now write an expression for the relative angular velocity wp (x, x) of thin
rigid disk relative rolling, without slipping, along a curved line route y = f(x) in
rotate vertical plane around vertical axis with constant angular velocity €2, based on
a expression: [wp (x, )'c)]2 = rlz)'czF (x, r) and previous obtained integral (15) in the
following form: [wp (x, X)] = 1x+/F(x, r), and finally in the form:

[wp(x)] =

2 JZ 7M, _Jz 1M’ 2
r [ (x r)JlD (xo0 V)] _ f[fc(xor)_fC(x’r)]

(16)

+ }\/[ng(xo, r]+ Q2

where fc(x) is expressed by (13) and F'(x, r) is expressed by (12) and J.(x, M, r)
is expressed by (14).
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4 Characteristic Equations of Nonlinear Dynamics
of a Class of Rolling Pendulums and Bifurcation
of Relative Stable Equilibrium Positions

In this paper, main attention is paid to a more detailed analysis of the characteristic
equation K (x) of dynamics of the generalized rolling pendulum, along trajectory in
rotate vertical plane at a constant angular velocity €2 about vertical axis, which was
performed in [7] in the form:

f(x)

Kx)=f'(x)y1—r :
[1+ 7]

I

% Qz<x i ><1 ~ rf"(x) > o
3 VI @P [1+ 1PV + 10

7)

and in which: y = f(x) in general, or in particular cases y = f(x) = kx> or
y= fx) = k)cz()c2 - a2)2 ory = f(x) = kxz(x2 - az)z(x2 — bz) or f(x) =
—kx*(x? — a?)[¢* — (x* — b?)?] is equation of the curvilinear path, where a, b, ¢
and k are known constants, and with the following relation a < b.

For various changes of values of the angular velocity €2 of rotation of the vertical
plane, in which the curvilinear path along which the generalized rolling pendulum
rolls is located, the numerical analysis shows the obtaining of the zero (roots) of
characteristic equation (17), or singular points and triggers, each of coupled three
singular points.

5 Nonlinear Phenomena in the Dynamics of a Class
of Rolling Pendulums: Bifurcations and Trigger
of Coupled Singular Points

In this part of our paper, using the equation of a curvilinear trajectory in a rotating
vertical plane, around a vertical axis at a constant angular velocity Q: y = f(x) in
general, for in particular cases y = f(x) = kx> ory = f(x) = kxz(x2 — a2)2 or
y=fx)= kxz()c2 — az)z(x2 - b2) or f(x) = —kxz(x2 - az) [c4 — (x2 — bz)z],
where a, b, ¢ and k are known constants, and with the following relation a < b, we
will analyze the zeros of the graph of the characteristic equation K (x) = 0, defined
by expression (17).

Figures 4, 5, 6,7, 8, 9 and 10 show, in pairs, the characteristic curves of the shape
of the curvilinear trajectory, y = f(x) = kx?ory = f(x) = kx*(x? — a2)2 or
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Fig. 4 Graphs of the curvilinear route, defined by parabola in the form y = f(x) = kx? as well
as the frequency function K (x) of the nonlinear rolling dynamics of a rigid heavy thin disk, in a
rotating vertical plane with a constant angular velocity 2 around the vertical axis defined by (17):
case with a trigger of coupled three singular points

y=fx)= kxz(x2 — (12)2(x2 — bz) or f(x) = —k)cz(x2 — a2) [64 — (x2 — bz)z],
with the corresponding extreme points, the minimum and maximum, and the graphs
of the corresponding characteristic equations K (x) = 0 with the corresponding
zeros, for the cases of the indicated curvilinear paths the chosen angular velocity 2
of rotation of the system around the vertical axis.

Im Figs. 4 and 5, graphs of the curvilinear route, defined by parabola in the form
y = f(x) = kx? as well as the frequency function K (x) of the nonlinear rolling
dynamics of a rigid heavy thin disk, in a rotating vertical plane with a constant
angular velocity 2 around the vertical axis defined by (17) are presented for different
geometrical and kinetic parameters. We can see different cases of characteristic
function graphs depending of the value of angular velocity €2, which appears as
a bifurcation parameter. In Fig. 4 a graph of characteristic equation poses thee zero
points around minima of curvilinear trace of disk rolling and dynamics system is
with a trigger of coupled three singular points. Analogous graph of characteristic
equation K (x) is presented in Fig. 5b* for different values of angular velocity €2,
also a trigger of coupled three singular points exists. The graph of characteristic
equation K (x) presented in Fig. 5a* for zero values of angular velocity 2 = 0, is
without any trigger of coupled three singular points and in minima of curvilinear
parabolic trace of disk rolling no bifurcation.

InFigs. 6 and 8, graphs of the curvilinear route, defined by be-quadratic parabolain
the form y = f(x) = kx*(x*> — a*) as well as the characteristic frequency function
K (x) of the nonlinear rolling dynamics of arigid heavy thin disk, in a rotating vertical
plane with a constant angular velocity €2 around the vertical axis defined by (17) are
presented for different geometrical and kinetic parameters. We can see different cases



196 K. R. (Stevanovi¢) Hedrih

K(x) K x) S/ ( )
02 characteristic function
\\ Q C’ /
0.15 \ 4 /
0.1 \\\ // //
2
00 =X N // //
th|of rolli X
o routh|of rolling \\ CO //
X7 ° Y
~0.05 ///
0.1 //
=0.15 /
=02
045 “04 =035 /’03 =025 =02 =0.15 =0.1 =0.05 0.05 0.1 0.15 0.2 025 03 035 0.4 045
a% y=k<*  routh of rolling

x)=f"(x —VL(X) 2Ky x— rf'(x) _ rf”(x) _
e %1 [1+[f'(x)]2]%} 3gQ< NWER ><1 [1+[f'(x)]2]\/1+[f'(x)]z> ’

\ v=kx Q C'fx)

routh of rolling \ K(x) \
I

LA LN ~
at \ /

—
S,

7

X109

xii / b
SENR) |
\\ / L:dfzt eristic function )i

Nl

015 '
1 \ Trigger of coupled singular points
~02 NG \
~0.9 =08 =07 =06 =05 —04 =03 =02 =0.1 0 0.1 02 03 04 05 0.6 0.7 08 0.9

y=kx*  routh of rolling

W Sk ) N M) _
b: e {1 [1+[f’(x)]2]§; 3gg< D+l GF ><1 [1+U'(x)]2]¢1+[f'(x)12> '

Fig. 5 Graphs of the curvilinear route, defined by parabola in the form y = f(x) = kx? as well
as the frequency function K (x) of the nonlinear rolling dynamics of a rigid heavy thin disk, in a
rotating vertical plane with a constant angular velocity €2 around the vertical axis defined by (17):
a* case without a trigger of couple three singular points and b* case with a trigger of coupled three
singular points



Nonlinear Phenomena in the Dynamics of a Class ... 197

y= Jox? (xz —az) trace of rolling Qty K(x)

Trigger of coupled singular points Trigger of coupled singular point:

. m\ ) :

iirgular poin

K(x)
characteristic function

=50

05 1 L5 2 25 3 35 4 45 s

0= L6 {2 of'(x) if"(x) _
K=rt) i+ [P 3gQ< I+ ><1 b+l )]2]\/1+[f’(X)]2>

Flg 6 Graphs of the curvilinear route, defined by be-quadratic parabola in the form y = f(x) =
kx? (x — a2) as well as the frequency functions K (x) of the nonlinear rolling dynamics of a rigid
heavy thin disk, in a rotating vertical plane with a constant angular velocity €2 around the vertical
axis defined by (17 ): case with a trigger of coupled three singular points

20
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Fig. 7 Detail of the graph of the frequency functtion K (x) of nonlinear rolling dynamics of a rigid
heavy thin disk, along a curvilinear path in a rotating vertical plane with constant angular velocity
2 around the vertical axis, defined by the equation y = f(x) = kx (x —a ): detail shows the
phenomenon of bifurcation of a stable singular point centre type into unstable saddle-type brush
and basket of two new stable singular points center type around—appearance of a trigger of coupled
three singular points

of characteristic function graphs depending of the value of angular velocity €2, in
which appears two bifurcation in each of two minima of curvilinear trace of disk
rolling.

In Fig. 6, graphs of the curvilinear route, defined by equation y = f(x) =
kx? (x2 — az), as well as the frequency function expressed by expression h(x) =
K (x) of the nonlinear rolling dynamics of a rigid heavy thin disk, in a rotating
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Flg 8 Graphs of the curvilinear route, defined by be-quadratic parabola in the form y = f(x) =
kx (x — az) as well as the frequency functions K (x) of the nonlinear rolling dynamics of a rigid
heavy thin disk, in a rotating vertical plane with a constant angular velocity €2 around the vertical
axis defined by (17): case with a trigger of coupled three singular points

vertical plane with a constant angular velocity around the vertical axis defined by
(17) are presented. In Fig. 6 graph of characteristic equation poses thee zero points
around each of two minima of curvilinear trace of disk rolling and dynamics system
is with two triggers, each of coupled three singular points. Analogous graph of
characteristic equation K (x) is presented in Fig. 7 for different values of angular
velocity €2, also two triggers, each of coupled three singular points. The graph of
characteristic equation K (x), for zero values of angular velocity 2 = 0, is without
any trigger of coupled three singular points and in each of two minima of curvilinear
be-parabolic trace of disk rolling no bifurcation.

In Fig. 7, detail of the graph of the frequency functtion i (x) = K (x), from Fig. 6,
of nonlinear rolling dynamics of a rigid heavy thin disk, along a curvilinear path in
a rotating vertical plane with constant angular velocity €2 around the vertical axis,
defined by the equation y = f(x) = kxz(x2 - az): detail shows the phenomenon
of bifurcation of a stable singular point centre type into unstable saddle-type brush
and basket of two new stable singular points center type around—appearance of a
trigger of coupled singularities, are visible around a of two minima in trace of rolling
in the form of be-quadratic parabola.

In Fig. 9, two graphs of the curvilinear route, defined by polynomial expression

= f(x) = kx?(x? — az)z(x2 — b?), as well as the frequency function h(x) =
K (x), defined by (17), of the nonlinear rolling dynamics of a rigid heavy thin disk,
in a rotating vertical plane with a constant angular velocity €2 around the vertical
axis are presented. Series of triggers each of three coupled singular points are visible
around each of four minimum Cy, s = 1, 2, 3, 4 of curvilinear route of disk rolling.
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Fig. 9 Two graphs of the curvilinear route, defined by polynomial equation y = f(x) =

k)cz(x2 - czz)z(x2 — bz), as well as the frequency function i (x) = K (x) of the nonlinear rolling
dynamics of a rigid heavy thin disk, in a rotating vertical plane with a constant angular velocity
2 around the vertical axis defined by (17): case with a series of the four triggers, each of coupled
three singular points

There are four minima Cy,s = 1,2, 3,4 in which and around which appear in
total four bifurcations and four triggers of coupled singularities, and three maxima
S5, s = 1,2, 3 around which no appearing bifurcations. Four bifurcations and four
triggers of coupled singularities occur C; — T5, s = 1, 2, 3, 4 in each point of the
four minimums Cy, s = 1, 2, 3, 4 are visible in Fig. 9.

In Fig. 10, detail, of Fig. 9, of the graph of the frequency functtion #(x) = K (x)
of nonlinear rolling dynamics of a rigid heavy thin disk, along a curvilinear path
in a rotating vertical plane with constant angular velocity around the vertical axis,
defined by the equation y = f(x) = k)c2()c2 — (12)2(152 - bz) is presented. Detail
shows the phenomenon of bifurcation of two stable singular points each of a stable
centre type into unstable saddle-type brush and basket of two new stable singular
points center type around each - appearance of two triggers each of coupled three
singular points.
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Fig. 10 Detail, of Fig. 9, of the graph of the frequency functtion #(x) = K(x) of nonlinear
rolling dynamics of a rigid heavy thin disk, along a curvilinear path in a rotating vertical plane
with constant angular velocity €2 around the vertical axis, defined by the equation y = f(x) =

kx? (x2 - a2)2 (x2 - bz): detail shows the phenomenon of bifurcation of two stable singular points
each of a stable centre type into unstable saddle-type brush and basket of two new stable singular
points center type around each—appearance of two triggers each of coupled three singular points

6 Phase Trajectory Portraits in the Nonlinear Dynamics
of a Class of Rolling Pendulums and Structural Analysis:
Bifurcations, Layering of Phase Trajectories, Trigger
of Coupled Singularities

In this part of our paper, using the equation of a curvilinear trajectory in a rotating
vertical plane, around a vertical axis at a constant angular velocity 2: y = f(x) in

general, for in particular cases y = f(x) = kx? ory = f(x) = kx?(x* — a2)2 or
y=fx)= kxz(x2 - az)z(x2 — bz) or f(x) = —kxz(x2 — a2) [c4 — (x2 - b2)2],
where a, b, ¢ and k are known constants, and with the following relation a < b, we
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will analyze the structure of phase portraits using the equation of phase trajectories
in the form (16), in the phase plan—the relative angular velocity wp (x, x) of thin
rigid disk relative rolling, without slipping, along a curved line route y = f(x) and
independent generalized coordinate x, i.e. in the form (15), in the phase plane a
derivative x = x(x) of the independent generalized coordinate and the independent
generalized coordinate x.

Figures 11, 12, 13, 14 and 15 show the characteristic phase portraits of the
nonlinear rolling dynamics of a heavy thin, rigid disk along curvilinear paths of
curvilinear path shape, y = f(x) = kx> or y = f(x) = kx*(x* — a2)2 or
y=fx)= kxz(x2 — az)z(x2 — bz) or f(x) = —k)cz(x2 — a2) [04 — (x2 — bz)z],
with corresponding extreme points, minimum and maximum. We use the findings
from the analysis of the number of zeros and the existence of triggers of coupled
singular points, which we conducted in the previous chapter of this paper, by
analyzing the number of zeros of the characteristic equation i#(x) = K(x) for a
certain shape of the curvilinear trajectory, and for the corresponding value of the
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Fig. 11 A phase portrait of the dynamics of a generalized rolling pendulum, which rolls, without
slipping, along a curvilinear path defined by a parabola in the form y = f(x) = kx?2, where , is
a known constant, in a stationary vertical plane, 2 = 0, and in Earth’s field of gravity, in phase
coordinates wp (x), x and a phase trajectory in phase plane X = x(x), x
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Fig. 12 A phase portrait of the dynamics of a generalized rolling pendulum, which rolls, without
slipping, along a curvilinear path defined by a polynomial of the four degree in the formy = f(x) =
kxz(x2 — az), where a and k, are known constants, in a rotate vertical plane around the vertical
axis at a constant angular velocity €2, and in Earth’s field of gravity, in phase coordinates wp (x),x

bifurcation parameter—the angular velocity €2 of rotation of the vertical plane around
the vertical axis.

In order to obtain one of the phase portraits, it is necessary to draw a series of
phase trajectories for different values of the initial conditions, using the equation of
phase trajectories in the form (16), in the phase plane- the relative angular velocity
wp (x, x) of thin rigid disk relative rolling, without slipping, along a curved line route
y = f(x) and independent generalized coordinates x, i.e. in the form (15), in the
phase plane a derivative x = x(x) of the independent generalized coordinate x and
the independent generalized coordinate x. From an infinite set of phase trajectories,
we choose characteristic series, as well as separatrix phase trajectories-homoclinic
phase trajectories, which separated individual series of phase trajectories, which
describe similar properties of the dynamics of the studied nonlinear dynamics.

In Fig. 11 a phase portrait of the dynamics of a generalized rolling pendulum,
which rolls, without slipping, along a curvilinear path defined by a parabola in the
form y = f(x) = kx?, where k, is a known constant, in a stationary vertical plane,
2 = 0, and in Earth’s field of gravity, in phase coordinates wp(x), x and a phase
trajectory in phase plane x = x(x), x are presented.
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Fig. 13 A phase portrait of the dynamics of a generalized rolling pendulum, which rolls, without
slipping, along a curvilinear path defined by a polynomial of the four degree in the formy = f(x) =
kx? (x2 — a2), be-quadratic parabola, where a and k, are known constants, in a rotate vertical plane
around the vertical axis at a constant angular velocity €2, and in Earth’s field of gravity, in phase
coordinates wp (x), x and a phase trajectory in phase plane x = x(x), x

In Fig. 12 a phase portrait of the nonlinear dynamics of a generalized rolling
pendulum, which rolls, without slipping, along a curvilinear path defined by a poly-
nomial of the four degree in the form y = f(x) = kx*(x* — a?), as a be-quadratic
parabola, where a and k, are known constants, in a rotate vertical plane around the
vertical axis at a constant angular velocity €2, and in Earth’s field of gravity, in phase
coordinates wp (x), x is presented.

The same Fig. 12, also, shows the curvilinear path of the shape of the square
parabola of the equation y = f (x) = kx?(x? — a*) along which the disk rolls. This
path has two minimums and one maximum. At the selected value of the angular
velocity €2 of rotation around the vertical axis of the vertical plane in which the
curvilinear trajectory is, bifurcation and trigger of coupled singular points occur
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Fig. 14 A phase portrait of the dynamics of a generalized rolling pendulum, which rolls, without
slipping, along a curvilinear path defined by a polynomial of the eighth degree in the form y =

2 . .
fx) = k)cz(x2 — a2) (x2 — bz), where a, b and k, are known constants, in a rotate vertical plane
around the vertical axis at a constant angular velocity €2, and in Earth’s field of gravity, in phase
coordinates wp (x), x

around each minimum trajectory, as we determined by analyzing the zeros of the
characteristic equation i (x) = K (x).

From the structure of the phase portrait from Fig. 12, we see that it contains two
types of separatrix trajectories - homoclinic orbits in the shape of the number “eight”.
One of these homoclinic orbits self-intersects at a singular point of the unstable saddle
type, which corresponds to the maximum of the curvilinear trajectory and exists in
the phase portrait and when the disk rolls along a stationary path and then surrounds
two singular points of stable center type on each side of the singular point of stabile
center corresponding to minima of trace of rolling.

When the curvilinear trajectory is in a rotating vertical plane, around the vertical
axis at a constant angular velocity, and when bifurcation of each of the singular points
of the stable center type occurs at the minimum of the curvilinear trajectory, then this
phase trajectory surrounds on each side of the self-intersection unstable saddle type
point. Each of these triggers was created by bifurcation and contains two singular
points of the stable center type and one singular point between them of the unstable
saddle type.

The other two separatrix phase trajectories in the shape of the number “eight”
intersect at singular points of the unstable saddle type of each of the formed triggers
of coupled singularities, about two minimum curvilinear paths along which a thin
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Fig. 15 A phase portrait of the dynamics of a generalized rolling pendulum, which rolls, without
slipping, along a curvilinear path defined by a polynomial of the eighth degree in the form y =

fx)= kxz()c2 — 612)2()62 — bz), where a, b and k, are known constants, in a rotate vertical plane
around the vertical axis at a constant angular velocity €2, and in Earth’s field of gravity, in phase
coordinates wp (x), x

disk rolls. They mean that in the observed phase portrait, two types of triggers of
conjugated singularities appeared with bifurcation.

One homoclinic orbit in the form of number “eight” contains two coupled triggers
of coupled singular points, and two homoclinic orbits in the form of number “eight”
contains each one trigger of coupled singular points.

The term trigger of coupled singular points contains three singular points, one type
of unstable saddle and two types of stable centers, and was created by bifurcation of
a singular point of the stable center type. The term trigger of coupled singularities
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includes a trigger of three singular points and a trajectory separatrix-homoclinic orbit
in the form of number “eight” with a self-intersect at a no stable saddle type singular
point and sound to singular points stable centre types.

We can conclude that this phase portrait contains two triggers of coupled singular-
ities and one trigger of coupled triggers of coupled singularities, because it surrounds
two triggers of coupled singularities.

In Fig. 13 a phase portrait of the dynamics of a generalized rolling pendulum,
which rolls, without slipping, along a curvilinear path defined by a polynomial of the
four degree in the form y = f(x) = k)cz()c2 — az), be-quadratic parabola, where
a and k, are known constants, in a rotate vertical plane around the vertical axis at
a constant angular velocity €2, and in Earth’s field of gravity, in phase coordinates
wp(x), x and a phase trajectory in phase plane X = X (x), x are presented.

In Fig. 14 a phase portrait of the dynamics of a generalized rolling pendulum,
which rolls, without slipping, along a curvilinear path defined by a polynomial of the
eighth degree in the form y = f(x) = kx?(x? — az)z(x2 — b?), where a,b and k,
are known constants, in a rotate vertical plane around the vertical axis at a constant
angular velocity €2, and in Earth’s field of gravity, in phase coordinates wp (x), x is
presented.

We can conclude that, in the observed case, in the phase trajectory portrait, from
Fig. 14, three types of separatist phase trajectories—homoclinic orbits in the shape
of the number “eight” are observed:

The first type of separatrix phase trajectories surrounds only three coupled singular
points, two types of stable center and one type of unstable saddle, which is intersect,
and all these elements represent a trigger of first order coupled singularities. There
are as four triggers of coupled singularities as there are four minimum of the rolling
paths and in this case.

The second type of separatrix phase trajectories surrounds two triggers of coupled
singularities and only intersects at one singular point of the unstable saddle type
between them. There are two such separatrix phase trajectories in the studied phase
portrait.

The third type of third-order homoclinic orbits surrounds one second-order homo-
clinic orbit, as well as two first-order homoclinic orbits. Here, in the observed case, in
the phase trajectory portrait, in Fig. 14, there is only one such homoclinic orbit—the
separatrix phase trajectory, and it surrounds all four triggers of coupled singularities,
each of which is about one of the four minimum positions on the generalized rolling
pendulum rolling path.

Between these separatrix phase trajectories in phase trajectory portrait, are regular
closed phase trajectories corresponding to periodic rolls of the generalized rolling
pendulum with corresponding periods of oscillatory rolling which depend on the
initial conditions and the value of total mechanical energy which achieves conserva-
tive nonlinear dynamics, and the number of equilibrium positions on the path through
which the body passes for a period of one rolling oscillation.

In Fig. 15 a phase portrait of the dynamics of a generalized rolling pendulum,
which rolls, without slipping, along a curvilinear path defined by a polynomial of the
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eighth degree in the form y = f(x) = kx2(x2 — az)z(x2 - bz), where a, b and k,
are known constants, in a rotate vertical plane around the vertical axis at a constant
angular velocity €2, and in Earth’s field of gravity, in phase coordinates wp (x), x is
presented.

By analyzing the shape of the paths along which the body of the generalized
rolling pendulum rolls, without slipping, as well as by analyzing a series of phase
portraits and the structure of sangular points in them, as well as structural stability
and sensitivity to changes in the system’s bifurcation parameters, bused on series
published author’s [11, 12, 23, 31], as well as a large number of numerical experi-
ments and obtained different graphs of nonlinear phenomena in nonlinear dynamics
of generalized rolling pendulum, a new theorem of bifurcation and of trigger of
coupled singularities can be defined in the following formulation:

Theorem on bifurcation and on the trigger of coupled singularities in the
dynamics of generalized rolling pendulums along curvilinear routes in a rotating
vertical plane around a vertical axis at a constant angular velocity on bifurcation
and on the trigger of coupled singularities in the dynamics of generalized rolling
pendulums along curvilinear routes in a rotating vertical plane around a vertical
axis at a constant angular velocity: Let the curved line, given with y = f(x),
for which it is valid f(x) = f(—x), and which has at the points for extreme
values EX;(xg, ys = f(xy)) for f'(xs) = 0, the minimums Cy(xg, ys = f(xy)) for
f'xg) =0, f"(x,) > 0, and the maxima S;(x,, y; = f(x,)) for f'(x;) =0,
f"(x5) < O, the curvilinear route, along which rolls, without slipping, a heavy
homogeneous thin disk, of radius r > 0, and let it located in the Earth’s gravita-
tional field, and in the vertical plane, which rotates around the vertical axis, at a
constant angular velocity Q > 0. The characteristic equation for determining the
singular points, as well as the position of the relative equilibrium of the disk on the
curvilinear path, in the vertical rotating plane around the vertical axis at a constant
angular velocity Q2 > 0, is of the form:

f"(x)

h(x) =Kx) = f'(0)1 —r————
[1+ [ r]?

B 2—K92<x B rf(x) ><1 B rf’(x) > —0
3g V1I+ (0P [+ OPVI+ 0P

(18)

inwhichitisk = 1&’;2 = 'rl’; = %—}—1 =K, thatisk = % the rolling coefficient of the
disk, because is Jc, = a%n = Mé andJp = Je+Mr? = %Mrz, and g the accel-
eration of the Earth is heavier. Around each extremum of the curvilinear trajectory,
which is the minimum defined by Cy(xy, ys = f(xy)) for f'(x;) =0, f"(x5) > 0,
in the dynamics of thin dick rolling, triggers of conjoined singularities appear
and around each extremum, which is maximum defined with Ss(xs, ys = f(x5)) for
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f'(x5) =0, f/(x5) < O, there is no trigger of coupled singularities (see Figs. 11,
12, 13, and 14).

7 Concluding Remarks

The paper presents an analogy [29-31, 36] of the nonlinear dynamics of a heavy
material point along curvilinear paths in a rotating vertical plane, at a constant angular
velocity, around a vertical axis and the nonlinear dynamics of a generalized rolling
thin heavy disk pendulum along the same curvilinear paths in both these cases. One
theorem are presented and additionally graphically proofed. The theorem describes
the process of bifurcation and occurrence and disappearance of triggers of coupled
three singular points in the local area of the minimum of curvilinear paths in rotating
vertical planes, at a constant angular velocity around the vertical axis, caused by the
angular velocity of rotation as a bifurcation parameter.

Based on a numerical experiment with various curvilinear rolling routes, a large
number of graphs of the characteristic function of nonlinear dynamics of generalized
rolling thin heavy disk pendulum, were obtained, such as phase trajectory portraits
of nonlinear dynamics of a generalized rolling thin heavy disk pendulum along
curvilinear paths in a rotating vertical plane at different values of constant angular
velocity about a vertical axis, also are presented.

From a large number of obtained graphics, the most characteristic examples were
selected and presented in the paper. The results of previous published author’s refer-
ences for particular examples of the shape of curvilinear paths along which the thin
heavy disk of a generalized rolling pendulum rolls were also used as initial ideas for
research continuations.

The observed bifurcation and triggers of coupled singularities is a property of the
nonlinear dynamics of generalized rolling thin heavy disk pendulums along rotating
curvilinear route about vertical axis at a constant angular velocity. Identification of
the triggers of coupled singularities in the coupled rotations in system dynamics is
very important for explanation of numerous phenomena in real engineering system
dynamics.
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A Quantum Dynamical Map )
in the Creation of Optimized L
Chaotic S-Boxes

Nafiseh Hematpour, Sodeif Ahadpour, and Sohrab Behnia

Abstract The substitution boxes are an open challenge due to not meeting the
theoretical criteria of a good S-box. Recently, the use of chaos in the design of
efficient S-boxes was proposed. In this article, after introducing a new quantum
system, we examine its effect on the formation of chaotic S-boxes. We compare the
proposed quantum chaotic map with previous results. Also, in the previous work,
the PSO algorithm was improved with the help of the classical map and then used in
the optimization of chaotic S-boxes. We are using and improving the performance
of PSO in generating the S-box, by the introduced quantum chaotic map. Then, by
changing the type of optimization, we examine its effects. For the first time, the
harmony search algorithm is improved by the said quantum map, and then we use it
to optimize the produced chaotic S-box. By examining the performance of generated
S-boxes by common attacks such as nonlinearity, BIC, SAC, LP, and DP. The results
for the improved harmony search algorithm is better.

Keywords Quantum dynamical map - Substitution box (S-box) - Harmony search
algorithm - Particle swarm optimization (PSO) - Nonlinearity

1 Introduction

Many researchers in recent decades, to achieve higher security, have combined the
two fields of chaos and cryptography under the heading of chaotic-based cryptog-
raphy [1-4]. Due to their many applications, quantum dots are one of the favorite
topics of researchers. So far, quantum dots have been used in solar cells [5], diodes
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[6], medical imaging [7], and quantum computing [8]. When quantum dots are paired
with other quantum dots or external fields, They have a long periodicity, making them
suitable for use in cryptography. The National Institute of Standards and Technology
(NIST) proposed the Data Encryption Standard (DES) for the encryption and decryp-
tion process in 1977 [9], which was replaced by the AES symmetric-key algorithm in
2001 [10]. S-box, which performs confusion, has been widely employed in traditional
cryptographic standards such as DES and AES. Making efficient boxes is a major
issue for security experts. Recently, some S-box algorithms based on the chaotic map
have been proposed [11-14]. Then optimization algorithms are used to improve the
performance of chaotic S-boxes [11, 15, 16]. All optimizers require a fitness func-
tion, which [11] shown to use nonlinearity fitness for better results. In this reference,
classical maps are proposed to improve the performance of the PSO algorithm. Con-
sidering the theoretical criteria of a good S-box, there is a need to form new S-boxes.

In this work, a quantum map is replaced by a classical map. Also, the harmony
search algorithm is replaced with the PSO algorithm to investigate the effect of the
type of optimization.

The paper continues as follows: In Sect. 2, preliminary is proposed that includes
the introduction of quantum dots and the study of their behavior. In Sect. 3, S-box cri-
teria are presented. Sections 4 includes the algorithm for creating improved PSO and
optimized S-box. Improved HS and optimized S-box is offered in Sect.5. Section 6
provides an analysis of the performance of the S-boxes. Finally, a conclusion is
proposed.

2 Preliminary

We introduce a generalized Dicke model presenting a new quantum chaotic map. It
also investigates the chaos of this created system.

2.1 The Maps of Generalized Dicke Model

The dynamical system governed by a generalized Dicke Hamiltonian form is con-
structed as follows:

H=d"a+wsl. + %(aT YayJ_+ 1)+ %vu_, 1)
2,6(t —nT). (1)

In fact, we consider delta function added to Dicke Hamiltonian. where, a and a'
are respectively bosonic annihilation and creation operators. The parameter i 4
denotes the energy separation of N two-level atoms [17]. We assume that i = 1, w4 =
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wa/@f > 0, and @y is the field of frequency. y = y /@  is the coupling parameter.
Furthermore, J, and J,. are the atomic relative population operator and the atomic
transition operator, respectively [18]. In [12], we introduced a chaotic mapping based
on this Hamiltonian.

< J+(n+1) >=u (< J+(n) > —< J—(n)J+(n) >) . (2)

According to previous studies for quantum systems [19], here in the same way
map with quantum corrections for a system of coupled quantum dots is extracted.
To appear the effect of the quantum correlations using Jy =< Jy > +8J; and
J_ =< J_ > +46J_, wehave:

< J+(,,+1) > =7r (< J+(n) > =< J_(n) >< J+(,1) >)
—r <é8J_6Jy >. 3)

Taking time derivation of (§J,8J_) implies
d . .
E((SLF(SL) =38J.86J_+68J.8J_. 4)

Next, by applying < 6J.(nT)6J_(nT) >=y, , < 8J48Jy >=z, , < J1(nT) >=x,,
we obtain (see Appendix 1):

Xn+1 = r(xn - X,%) —TIYn
Yn+1 =—yn+ re_ﬁ((l — Xy + e — xnezﬁ)yn — ZnXn — ezﬂznxn) . @)
Zn-H = _Znezﬁ + reﬁ(zzn - 2ann — XnYn — ynxn)

Equation (5) gives the lowest-order quantum corrections. For convenience, we con-
sider that 8 = iw4 T [20]. The sensitivity of the map to its initial values are shown
in Fig. 1. We plotted Fig. 1 for constant parameter r =9, b = 0.5, yp = 0.435 and
zo = 0.777 as well as variable initial condition xy = 0.423 and xo = 0.424. Lya-
punov exponent curve are seen in Fig. 2.

3 S-Box Criteria

Ann % m S-box is a nonlinear mapping S : V, — V,,, where V,, and V,, represent the
vector spaces of n, m elements from G F (2). Important tests to check the performance
of S-box are nonlinearity (NL), strict avalanche criterion (SAC), bit independence
criterion (BIC), linear approximation probability (LP), and differential approxima-
tion probability (DP).
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Fig. 1 a The sensitivity of the chaotic map to initial values the maps of generalized Dicke model
for xo = 0.423 and x¢ = 0.424 where the control parameter r =9, b = 0.5, yop = 0.435 and z9 =
0.777. b The variation of the Lyapunov exponent the maps of generalized Dicke model in term of
parameters r
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Fig. 2 The variation of the cost function (sphere) for a PSO algorithm with unifrnd and rand
functions b improved PSO algorithm with quantum maps ¢ improved PSO algorithm with quantum
maps and hierarchy of rational-order chaotic maps
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3.1 Nonlinearity

The nonlinearity value is calculated from the following equation:

Z (_ 1)f(x)+a-x

xeB"

N=2"1_ lmax
2 aeB”

where B = {0, 1}, f : B" — B,a € B" and a - x is the dot product between a and x
(see [21] for example). Since the affine functions are weak in terms of cryptography,
the similarity of the Boolean function variable of S-box is measured with the affine
variable.

3.2 Strict Avalanche Criterion (SAC)

Webster and Tavares introduced SAC. If one bit in the input of Boolean function
changed, half of the output bits should be changed [22]. The value of SAC = 0.5 is
necessary for passing this test.

3.3 Bit Independence Criterion (BIC)

BIC, which calculate the independence of the avalanche vectors sets, is a desirable
feature for any encryption transformation for S-box analysis (Webster and Tavares
defined this test in [22]). If one changes the inverse of input single bits, these sets
are created [23].

3.4 Linear Approximation Probability (LP)

LP [24] is:
LP = max flalxa = f0) - 0} —

0.5
a,b#0 n

where a, b are the input and output masks, and the set x contains all the possible
inputs, and 2" is the number of its elements. The maximum value of imbalance in the
event between input and output bits is called LP. Low LP is necessary for resistance
against linear attacks.
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3.5 Differential Approximation Probability (DP)

I)I[ fn%?( y( X € 3 x@f( X) }/ )

where X shows the set of all possible input values, and 2" is the number of its
elements. DP which calculate XOR the distribution between input and output bits of
S-Box is introduced by Biham and Shamir [25]. The closer distribution between the
input and output bits is necessary for resistance against differential attacks.

4 Improved PSO and Optimized S-Box

In PSO, the swarm consists of particles, each one representing a potential solution
in the optimization problem. These particles have position and velocity. The PSO
algorithm uses the unified function for the initial population and the rand function
to update the speed and position. In this paper, we use a quantum map for the initial
population. Instead of the rand function, once we use the quantum map and for the
second time, the classical hierarchy of rational-order chaotic maps (the best result
of [11]) (see Fig. 1). As can be seen, the best results are obtained for improved PSO
with quantum maps and the hierarchy of rational-order chaotic maps (see Fig.2).
Now we use this optimization algorithm to get the best S-box based on the highest
nonlinear value (see Appendix 2). The best S-box is seen in Table2 (Table 1). The
highest obtained nonlinearity value is 106.

S Improved HS and Optimized S-Box

Zong Woo Geem et al. in 2001 developed Harmony search which is a music-based
metaheuristic algorithm [26]. It used to solve many optimization problems such as
function optimization, engineering optimization [27], water distribution networks
[28]. To enhance the global convergence and to prevent to stick on a local solution,
different HS methods based on chaotic maps have been proposed [29]. The improved
HS (see Fig.3) steps and its application for optimizing the designed chaotic S-box
are discussed. The steps of the algorithm are as follows:

Step1  Enter improved HS parameters (number of decision variables, decision
variables matrix size, Maximum number of iterations, Harmony Memory
size, number of new Harmonies, Harmony Memory consideration rate,
Pitch Adjustment rate, Fret width(Band width), Fret width Damp ratio)
and r = 5.5, 8 = 0.5 for (5).
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Table 1 New S-box for the map of (5)
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Table 2 New optimized S-box for the map of (5) with improved PSO algorithm
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Fig. 3 The variation of the cost function (sphere) for a HS algorithm with unifrnd b improved HS
algorithm with quantum maps

Step2  Initialize Harmony Memory using liana function(liana function produce
random number between 100 and 120 by using (5)).
Step3  Creation of S-box based on quantum map (5):

Enter r = 5.5, B = 0.5 for (5) (consider Fig. 1).
Pass the transition state by repeating the map (5).
We create empty 16 * 16 box.

Repeat the map (5) and select x(f).

The S-box numbers are obtained:

NS

S(@i) = x(f) * 10°mod 256

6. The process continues from 4 and select different S(i).

Step4  Calculation of nonlinearity for all Harmony Memory positions.

Step5  Sort Harmony Memory from MAX to MIN.

Step 6  Update Best solution ever found.

Step7  Create new Harmony position using liana function.

Step 8  Pitch Adjustment using nafis function(nafis function produce random
number between —1 and 1 by using (5)).

Step9  If Nonlinearity(new position) > best solution save S-box.

Step 10 Merge Harmony memory and new Harmonies.

Step 11  Sort Harmony Memory from MAX to MIN.

Step 12 Update Best solution ever found.

Step 13  Save Best Nonlinearity.

Step 14  If iteration finished, print Best Nonlinearity.

Optimized S-box creation algorithm using improved HS algorithm with quantum
maps is presented in Fig.4. The created S-box are seen in Table 3. Figure 5 shows
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Fig. 4 Optimized S-box creation algorithm using improved HS algorithm with quantum maps

best nonlinearity of optimized S-box with nonlinearity fitness function for improved
PSO algorithm with quantum maps and hierarchy of rational-order chaotic maps and
improved HS algorithm with quantum maps.

6 Security Analysis

The security of any encryption is measured by its key(the keyspace size more than
2190130, 31]). We prob the keyspace of a quantum map to create the S-box. The
order of complexity for decoding is:

T(r, B, x0, y0,20) =0 X B X X9 X Yo X Z0)

If the computer’s analysis power is 10'® decimal, the accuracy for each variable is
107!, The number of these parameters for the quantum map in (5), is 5. So the
keyspace for each is 10%°(2%6%). These spaces could resist all types of brute-force
attacks.

Table 4 represent nonlinearity, SAC, BIC, LP and DP results for new S-boxes and
compares with the other results.
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Table 3 New optimized S-box for the map of (5) with improved HS algorithm

206 |4 51 |105 |57 |121 |73 |247 |36 |152 |101 | 109 |18 |134 |119 |173
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Fig. 5 Best nonlinearity of optimized S-box for a improved PSO algorithm with quantum maps
and hierarchy of rational-order chaotic maps b improved HS algorithm with quantum maps

7 Conclusion

We are using the introduced quantum map based on quantum dots to generate chaotic
S-boxes. The proposed map results, improving in performance of introduced PSO and
HS optimization algorithms. In comparing the with classic ones, it is effectively acting
on generation the S-box. The obtained results show the importance of optimization
algorithms in generating the S-box. The Harmony search algorithm for the known
sphere function has a weaker answer than the PSO algorithm. In optimizing chaotic S-
boxes, the use of Harmony search algorithms produces better results. The introduced
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Table 4 Nonlinearity, SAC, BIC, LP, and DP results for new S-boxes and compare with the other
results

Nonlinearity | SAC BIC- BIC- LP DP
nonlinearity | SAC

New S-box 105.5 0.512939 | 103.714 0.140625 | 10
New optimized | 106 0.499512 | 103.5 0.500837 | 0.132813 | 10
S-box with PSO
New optimized | 106.5 0.501465 | 104.071 0.498047 | 0.132813 | 10
S-box with HS
[11] 106.5 0.503662 | 102.857 0.499512 | 0.140625 | 10
[12] 105.25 0.495605 | 104.571 0.504325 | 0.140625 | 12
[13] 104.2 0.4931 103.3 0.4988 | 0.1563 12
[14] 106 0.52881 100 - - 10
[10] 112 0.5048 112 - - 4

S-boxes can be used in all image encryption, steganography, watermarking, and
quantum digital signatures to increase security.

Appendix 1

In this appendix we derive Eq. (5). By inserting expressions J, =< J; > +8§J; and
J_ =< J_ > +4J_ into force equation ([12]) we get

f(J+, Jf) = —< J+ > _8J+

+e Tl (< Jy > 48— < J_>< J. > —8J_8J4

— < J_>8Jy —8J_ < Jp >). (6)

By considering J, = 8J,, J_ = 8J_, and due to

§J_ =87, 7

we use [12] for obtaining:

d . .Y i
E(51+51_) = liwa(< Jy > +8J4) — zﬁaT(O)e 18J,

e
VN
F—<Jy> 8T+ r(<J > 480 —<J_><J, >
—8J_0J— < J_ >8]y —6J- < Jy >)] Z,8(t —nT)]8J-

ST —8J_8Jy) —i——a(0)e " (8J.8J_ — 8J_8J,)
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. .Y —it
+ 8, (—iwp(< J_ > +8J) +i——a(0)e "[8J_8J
o IN .

I 8T+ i——at(0)e (8T 8T, — 8T 8T 1+ [— < J_ >

VN
—8J_ el (< > 48] — < Jp><J_ >8],
8J_— < Jy>38J_ =80y < J_>)] 2,8t —nT)]. (8)

By integrating Eq. (8), from nT to (n 4+ 1)T, and take the expectation value, by
taking into account < §J_(nT) >=< 8§J,.(nT) >=0, <a'(0) >=<a(0) >=0
we obtain:

<81 (n+DT)sJ_((n+ 1DT) >= — < 8J.(nT)8J_(nT)

> 4re Ul < 51, (nT)8J_(nT) > —re "7 < J_ >

< 8J.(nT)8J_(nT) > —re Ty < 8J_(nT)8J_(nT) >

< Jy > 4re" T <81, (nT)8J_(nT) > —re'sT

< 8J.(nT)8J_(nT) >< Jp > —re'sT < §J,.(nT)

§J(nT) >< J_ > . 9

The calculation of < §J,.8J, > goes as follows:

d . .
G180 = 81,80 +81,8). (10)

We end up with:

d v
S ($J80) =i Ty > +8J) —i——a'(0)e''[8J
dt( +6J4) = liwa(< J4 > +8J3) lﬁa()e[ +

.Y —it
6J_ —8J_8J ] —i—=a0)e ""[6J:6J- —6J_6J4]
TN § *

t—<Jp> b8 +e (< Iy > 48T — < J_>< J, >
—8J 8Jy— < J_ >8]y —8J_ < Jp >)] x T,8(t —nT)]

Y
VN
a(0)e "[8J, 80 —8J 8T )+ [— < Jy >

8Ty + 8T liwa(< Jy > +8Jy) —i—=a' (0)e'[8J.8J_

na
VN

—8Jy+e (< > 48— < J_>< Jp > —8J_8J,

—8J 8T i

—<J_>68Jy —6J- < Jy >)]E,6( —nT)]. an

By integrating form Eq. (11), from nT to (n+ 1)T, and by assuming
<8J_(nT) >=<8J,.(nT) >=0, < a’(0) >=< a(0) >= 0 we obtain:
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<8J ((n+DT)8J((n+ DT) > e 2ieat+DT _ 51 (nT)
§J.(nT) > e 2ioanT — p=2i0anT (_ 57 (nT)8J(nT) >
+e T (< 8J,(nT)8J,.(nT) > — < J_(nT) >
<8J,(nT)oJ,(nT) > — < J,(nT) >< 8J_(nT)38J,.(nT) >))
+ eHoanT (_ < 8], (nT)8J,(nT) > +e 4 Tp(
<8J.(nT)oJ,(nT) > — < J_(nT) >< 6J.(nT)8J+(nT) >
—8J.(nT)8J_(nT) >< J(nT) >)). (12)

Appendix 2

This appendix describes the improved PSO steps and its application for optimizing
the designed chaotic S-box. The steps of the algorithm are as follows:

Step 1 Enter improved PSO parameters (number of decision variables, size of deci-
sion variables matrix, Maximum number of iterations, population size, iner-
tia weight, inertia weight damping ratio, personal learning coefficient, global
learning coefficient) and a; = 2.61, a, = 3.168 for the Hierarchy of rational
order chaotic maps [11].

Step 2 Initial population production using chaotic map (5).

Step 3 Creation of S-box based on quantum map (5):

. Enterr = 5.5, 8 = 0.5 for (5) (consider Fig. 1).

. Pass the transition state by repeating the map (5).
. We create empty 16 % 16 box.

. Repeat the map (5) and select x(f).

. The S-box numbers are obtained:

DN AW =

S(@i) = x(f) * 10°’mod 256

6. The process continues from 4 and select different S(i).

Step 4 Calculate nonlinearity of all primary particles and search personal and global
best for this population.

Step 5 Update the speed and position (consider jth dimension at iteration t of each
particle i):

Vi@ + 1) =wV, ;@) + () 1)(BestX; ;(t) — X; (1))
+ (c2)(r2)(Global Best (t) — X; j (1)) (13)

Xij¢+D)=X; ;()+V; jt+1) (14)



226

N. Hematpour et al.

where V; ;(t) is a velocity of particle i at iteration t; X; ;(¢) it is a position
of i particle at iteration t; r1 and r2 are two random number between (0, 1)
provided by the Hierarchy of rational order chaotic maps [11]; BestX; ;(t)
is the local best particle i in all swarm and Global Best(t) is the leader of
the swarm or global best position of all population.

Step 6 Local and global search and save the best nonlinearity and related S-box.
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The Interaction of Memristor in Cellular | m)
Nonlinear Network for Image and Signal | @@
Processing

Aliyu Isah, A. S. Tchakoutio Nguetcho, Stéphane Binczak,
and Jean-Marie Bilbault

Abstract Inthis paper, we describe the application of memristor in the neighborhood
connections of 2D cellular nonlinear networks (CNN) essentially for image and
signal processing. We focused particularly on the interaction of memristors between
two cells allowing us to study the contribution of the memristor qualitatively and
quantitatively. The dynamics and the steady state response of each cell is described.
The resistance of a memristor is not fixed, hence the study takes into account the
initial state of the memristance characterized by the previous amount of charge
passed through the memristor. We show that the system transition and the steady
state response depend strongly on the history of the memristor.

Keywords Memristor « 2D cellular nonlinear networks - System of two cells *
System dynamic -+ Steady state response

1 Introduction

Memristor is a nanoscale two terminals solid state device whose conductivity is
controlled by the time-integral of the current flowing through it or the time-integral
of the voltage across its terminals [1, 2]. The dynamic conductance modulation and

A. Isah (<) - S. Binczak - J.-M. Bilbault
ImViA, Université de Bourgogne, BP 47870-21078, Dijon Cedex, France
e-mail: aliyuisahbabanta@gmail.com

S. Binczak
e-mail: stbinc@u-bourgogne.fr

J.-M. Bilbault
e-mail: Jean-Marie.Bilbault@u-bourgogne.fr

A. Isah
ELE-FAENG, Kano University of Science and Technology, BP 3244, Kano, Nigeria

A. S. Tchakoutio Nguetcho
LISSAS, Faculté des Sciences, Université de Maroua, BP 814, Maroua, Cameroun

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 229
C. H. Skiadas and Y. Dimotikalis (eds.), /4th Chaotic Modeling and Simulation

International Conference, Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-96964-6_17


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96964-6_17&domain=pdf
mailto:aliyuisahbabanta@gmail.com
mailto:stbinc@u-bourgogne.fr
mailto:Jean-Marie.Bilbault@u-bourgogne.fr
https://doi.org/10.1007/978-3-030-96964-6_17

230 A. Isah et al.

connection compatibility with complementary metal-oxide semiconductor neurons,
are essential features of memristor affirming its potentiality as synaptic function and
memristive gird network [3-5].

This paper describes a memristor based 2D cellular nonlinear network using mem-
ristor in the coupling mode. The network is essentially for signal and image process-
ing applications. Figure 1 shows the conventional 2D cellular nonlinear network with
each cell constituting one linear capacitor in parallel with one nonlinear resistance,
and a series resistance coupling [6]. Figure 2 shows the equivalent network using
memristors in the coupling mode.

For any cell at a node n and voltage V,,, the nonlinear current function through
the nonlinear resistance is given by:

I _ Vn(Vn - Va)(vn - Vb)
N = R,V

, (D

and the nonlinear resistance, Ry, :

R, V.,V
RNL,Z = .
Vn(Vn - Va)(vn - Vb)

The characteristic roots of the cubic resistance are 0, V, and V},, meanwhile R, is its
linear approximation. The corresponding potential energy W (V,,) is obtained from

(1) as:
1 Vo +Vp

V.,V
W)=V~ ab

V) + Vi 4k,

3 " 2

Fig.1 2D CNN using series
resistance coupling [6]
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Fig. 2 2D CNN using memristors in the coupling mode

where « is a constant. Figure 3 shows the response of the cubic resistance and the
corresponding potential energy showing the possible equilibrium state. The lower
potential energy state are at 0 and V, marked by numbers 1 and 2 respectively,
meanwhile V, is the unstable state.

We focus on the study of memristor response based on the interaction of one
cell with its neighbouring cells. Therefore, using the system of two cells coupled
by a memristor, allows us to observe the quantitative and qualitative interaction of
memristors in the network.

2 System of Two Cells

Figure 4 shows the network of two cells coupled by a memristor, thus the cells
communicate together bidirectionally. One of the cells acts as the master while the
other one as slave so that the direction of the flowing charge through the memristor
becomes specific. The switchs s; and s, are closed simultaneously and the network
gives the following set of bidirectional coupled equations:
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0.5

Ing, (mA)
W (Va)

-0.2

Fig.3 Response of the nonlinear resistance in the cells. V, = 0.7V, V, = 1.2V and R, = 1023 Q.
a [-V characteristic and b the corresponding potential energy. Labels 1 and 2 show the two possible
equilibrium states corresponding to V,, =0and V,, =V},

i) M
>—s
V; V.
N (Vi () — Vs(t)) R
w1 1 i
Cm RNL;, Ry, Cs

Fig. 4 System of two cells coupled by a memristor. The master and slave cells with their elements
given by the subscripts letters m and s respectively
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dg _ oAV V(= VOV = Vo) -
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d
where: 1(t) = i is the flowing current through the memristor and M (q) is the
memristance function that has a desirable continuity for all the flowing charge [7]:

Ros, ifg(n) <0
M(@) =\ Ropr = 2 2£ ¢+ 23 %, 10 < q(0) < g 3)
Rons lfQ(f) > qd

D2

qq = is a charge scaling factor depending on the technology parameters

[2, 8] alr)1d OSnR = R,rr — R,y is the difference between the two limiting resistance
values of the memristor, that is, the ON and OFF states, represented here by R,,
and R,y respectively. Charge flows from the master cell to the slave one through the
memristor until V,, (#) = V,(¢) and that is when the network is stabilized. Equation (2)
is reformulated as:

de _ Vm - Vx Vm(Vm - Va)(vm - Vh)

= , (4a)
dt C.M(q) R,V,V,C
st _ Vm - V.\' V&(Vr - Va)(vs - Vb) (4b)
dt — C.M(q) R,V,V,C ’

d Vin — Vs

4 _ Im = Vs (4¢)
dt M(q)

As illustrated in Fig. 3b, 0 and V}, are the only two possible equilibrium states. The
stability of the cells at 0 or V}, is determined by V,. It can be seen thatif V, — 2V, > 0
the cell stabilizes at V}, and if V, — 2V,, < 0 the cell stabilizes at 0.

The initial conditions of V,,, V; and g are V,,,, V, and qo respectively. Figure 5
shows the time evolution of the 2 cells network for V,,, =2V, V,, =0V, V, = 1.5V,
V.=0.7V, R, =10k and C,, = C; = 1 uF, hence V, — 2V, > 0. Initially, the
voltage V,, () and Vi (t) evolve in the differential mode and thereafter the common
mode when V,,(¢) = V,(¢) which continues to evolve until the steady state V},. The
charge g () flows through the memristor until V,, () = V(¢). When V,,(¢) = V,(¢),
the voltage across the memristor is 0 (i.e V;(t) = 0V).

3 Discussion

Variation of the system parameters, such as V,, R, and g, affects the steady state
response of the system. The results of Fig. 6 show the variation of V, with respect to
Vy, for example V, = YT V},. The results are obtained for Ry = 283322, V, = 1.5V,
Ve =2V, Vo =0V and C,, = C; = 1 uF. Hence, V, varies according to Y =
[0.25, 0.45, 0.49, 0.5, 0.51, 0.55, 0.75, 0.9] with the corresponding results given
by Fig. 6a—h, respectively. Furthermore, the difference V,, — 2V, is calculated and
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2 T T T T 1.2

q(t) t:rﬁ\]

V() [V]

Fig. 5 The evolution of V,,,(¢), Vi(t), Va(t) = V,,, (1) — Vs(t) and q(2), for V,,y =2V, Vyy =0V,
V=15V, V,=0.7V, R, =10k and C,, = C; = 1 pF. The charge ¢(¢) flows through the
memristor until V;(z) = 0 and at this time, the combined evolution of V,,(¢) and Vi (t) is the
common mode which evolves further to stabilizes at the steady state V},

tabulated in Table 1. The results show two noticeable effects on the evolution of
Vi (t) and Vi (¢) based on the variation of V,. The results show different timing at
which V,,(t) = Vi(¢) and the change in the steady state at V}, or 0 for V, < % or
Vi > % respectively.

The initial charge go characterizes the initial memristance of a memristor. The
initial condition of a memristor has strong effect on its circuit functionality [9]. Figure
7 shows the effect of changing initial condition of the memristor on the system
evolution and stability. It also takes into account the variations of Ry. The initial
memristance of the memristor is given by the initial charge go. Four different initial
charges are considered as: gg, = 20 nC, go, = 40 pC, go, = 60 pnCand go, = 80 nC,
as indicated respectively, by the subscripts numbers 1-4 in Fig. 7a, b. Notice that only
one parameter is varied at a time. Figure 7a: Ry = 28332 while g, varied and Fig. 7b:
Ro = 10kS2 while g varied. Ineachcase, V, =0.7V,V, =13V, V,, = 1.5V and
Vs, = 0V. Even though V, is the main parameter that plays significant role on the
system steady state, the results show that other parameters (e.g. R, and gg) affect the
dynamics and steady state of the system.
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Fig. 6 Evolution of V,,(t) and V(t) showing the variations of V, € [0, V},]: Rop = 2833 Q,
Vio =0V, Viuy =2V, V, =1.5Vand T =[0.25,0.45,0.49, 0.5, 0.51, 0.55, 0.75, 0.9] as shown
respectively by figures (a—h). Variation of V, affects the time at which V,,,(t) = V;(¢) and the steady
state at Vj, or 0 depending on whether V,, < % orV, > % respectively

Table 1 Table of V;, — 2V, forFig. 6. Vsy =0V, V, =TV, V, =1.5Vand V,,, =2V

Fig. 6 a b c d e f g h

T 0.25 0.45 0.49 0.5 0.51 0.55 0.75 0.9

Vi, — 0.75 0.15 0.03 0 —0.03 —0.15 —0.75 —1.20
2Va (V)

4 Conclusion

Memristor based 2D cellular nonlinear network is introduced using memristors in
the coupling mode. The cells correspond to pixels in image processing applications.
Each elemental cell consists of one linear capacitor in parallel with one nonlinear
resistance such as Fitzhugh Nagumo. Using the system of two cells coupled by a
memristor, the dynamics and the steady state of each cell are observed, with mainly
a competition between the role of cubic resistance on one hand, and the role of
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Fig. 7 Results showing the variation effect of gp and R, on the system evolution and the steady
state. Four different initial charges are considered as: gg, = 20 nC, g9, = 40 n.C, go; = 60 nC and
qo, = 80 1C, as indicated respectively by the subscripts numbers 1-4 in figures (a and b). In each
case, V, =07V, V, =13V, V,, =15V, V,, =0Vand C,, = C; = 1 pF. a Ry = 2833 Q and
b Ry = 10kS2. It shows that values of gg and R( have an effect on the evolution and steady state of
the system
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memristor on the other hand. The parameter V, predominantly decides the system
steady state, however other parameters (e.g R,, go etc...) affect the system steady
state. The results show that the network can be used to realize a binarization circuit,
for example, to generate different gray scaling. The ongoing study focuses on the
implementation of the generalized 2D network for processing any number cells.
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The Turing Model and Discrete Limit )
Cycles with Eddy and Convection er

Shunji Kawamoto

Abstract The Turing model and discrete limit cycles are considered, from the
viewpoint of chaos functions. Firstly, the Turing model is explained as a reac-
tion—diffusion system of chemical substances, and a three-dimensional (3-D) time-
dependent solvable chaos map corresponding to the model is derived on a basis of
chaos function solutions. Secondly, a 2-D chaos map for the 2-D Turing model is
proposed for simplicity to present chaotic dynamics, and the 2-D map is shown to
have symmetric bifurcation diagrams, a ring of cells and limit cycles with different
patterns, depending on the system parameter. In particular, the limit cycles appear
in pairs, and are discussed on left-handed and right-handed eddies, which generate
convections, as nonlinear dynamics of non-equilibrium open systems.

Keywords Turing model - Turing pattern - Chaos function - Bifurcation diagram *
Symmetry - Fixed point + Limit cycle « Eddy - Convection - Non-equilibrium open
system

1 Introduction

For the study of nonlinear phenomena, nonlinear dynamics such as soliton, chaos
and fractals, have been considered in the field of physics, chemistry, biology and
engineering, as nonlinear science [1-4]. It is well known that one-dimensional (1-D)
nonlinear difference equations possess a rich spectrum of dynamical behavior as
chaos, and the chaotic modeling and simulation have been extended to medicine,
optics, living systems, neuro- science and life science, as interdisciplinary fields of
science [5-8]. At the same time, large scale systems, such as atmosphere, climate,
human brain, power grid, information system and communication network have been
studied as non-equilibrium open systems and/or complex systems [9—14].

On the other hand, the Fisher equation has been proposed as a model for the
propagation of gene [15]. After that, travelling wave solutions to reaction—diffusion
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systems are discussed widely, and the effect of boundaries on convection in a shallow
layer of fluid heated from below has been considered in the field of fluid mechanics
[16, 17]. Then, the propagation of waves observed in a chemical reaction system has
been reported and considered as a non-equilibrium open system [18, 19]. Later, the
data obtained in the experiment on the Belousov—Zhabotinsky (BZ) reaction have
been analyzed [20, 21]. Moreover, a 2-D model of nonlinear differential equations is
derived for the interaction between local reaction and diffusion as chaotic dynamics
[22, 23]. In the meantime, a reaction—diffusion system called the Turing model has
been presented as a chemical basis of morphogenesis [24]. The chemical pattern is
considered as the Turing pattern, and stripe patterns on the skin of marine angelfish
have been discussed for understanding biological pattern formation [25-27].

Recently, 1-D, 2-D and 3-D time-dependent solvable chaos maps and a nonlinear
time series expansion method have been proposed [28, 29]. Then, the 2-D maps
corresponding to the FitzHugh-Nagumo (FHN) model, the BZ reaction and reac-
tion—diffusion systems are derived, and the bifurcation diagrams and the discrete
limit cycles have been studied for population growth, neural cell and chemical cell,
respectively [30-33]. In addition, a limit cycle analysis and the interaction of limit
cycles are presented for the 2-D logistic maps, as non-equilibrium open systems
[34-36].

In this paper, firstly the Turing model is explained in Sect. 2 as a reaction—diffusion
system of chemical substances, and a 3-D time-dependent solvable chaos map, which
corresponds to the model, is derived on a basis of chaos function solutions. Then, in
Sect. 3, a 2-D solvable chaos map for the 2-D Turing model is proposed for simplicity
to find chaotic properties. The 2-D map is shown numerically to possess symmetric
bifurcation diagrams, a ring of cells and discrete limit cycles with different patterns,
depending on the system parameter. In particular, the limit cycles appear in pairs, and
are discussed on left-handed and right-handed eddies of cells, which generate convec-
tions, as nonlinear dynamics of non-equilibrium open systems. Finally, Conclusions
are summarized in the last section.

2 The Turing Model and 3-D Chaotic Maps

As is known, a reaction—diffusion system called the Turing model has been presented
as a chemical basis of morphogenesis [24], in where a mathematical model of the
growing embryo in biology is described, and the chemical reaction and diffusion are
explained, under the assumption of reaction rates. In addition, the spherical symmetry
of embryo is introduced, and the system is assumed to be far from homogeneous, in
left-handed and right-handed organisms. Finally, from the mathematics of the ring,
a set of nonlinear differential equations are formulated as the model equations:

dz
d—to = pozo + A2 + BZZ, (1)
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dz

d_tl = p1z1 + Cz122 + Dzoz1, 2)
dz
d_t2 = pr2o + Ez} + Fz022 3

with system parameters {pg, p1, p2, A, B, C, D, E, F}, where zo(¢), z;(¢) and z,(¢)
are dimensionless variables [24]. Then, the model equations can be rewritten into
the following nonlinear difference equations by the difference method for numerical
calculation as

2041 = (14 po(AD)zo.n + (A1) (AzZ], + Bz3,), (4)
2,n+1 = (1 + pl(At))Zl,n + (At)(CZ],nZZ_n + DZO,nZl,n)s (5)
221 = (L4 p2(AD) 220 + (A (EZT, + FZonzan) (6)

where the passage from a point (29, = 20, (%), 210 = 21.. (%), 2.0 = 22.(8)) tO
the next one (2ont1 = 20,041 Eix1)s Zin41 = 211 Eig1)s 2041 = 22,041 Ei41)) 18
considered as a 3-D mapping with the discrete time #; and the time step At = #;; —t;
[30].

On the other hand, we introduce time-dependent chaos functions

X, () = ay COS(Z"Z‘,‘) + by, 7
Ya(ti) = az sin(2"1;), )]
Za(t;) = a3 sin(2"t;) )

with real parameters {a;, a;, as, b}, and find a 3-D solvable chaos map with system
parameters {f1, B2, B3} [28], corresponding to the 3-D map (4)—(6), as

1 1\?
Xngl = (—)(x,% —2b1x,) —a (1 — ,31)(—> Yy
ay a
1\, by
—ai B @ Z, + 1+E by,

bl as 1
Ynt1 = =2 — |y +2 Boxnzn +2 (1 = B2)xnYns (11)
ai ajas ay

(10)
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by as 1
in+l = =2 — Zn + 2 — ﬁ?)xnyn +2( — (1 - ﬂ3)xnzna (12)
aj aap a

where x, = x,(;), vy, = y,(t;) and z, = z,(#;). It is notable that the time step
At, 0 < At <« 1.0is not included in the coefficients of the 3-D map (10)—(12) [31].

3 2-D Chaotic Maps and Discrete Limit Cycles

In this Section, we find a 2-D Turing map for simplicity, by setting z, , = 0 in the
3-D Turing map (4)—(6), as

201 = (14 po(AD)zo.0 + (ADAZ (13)
Zint+1 = (L 4+ p1(AD))z1, + (A1) Dzo.n21 s (14)

and then, from the chaos function solutions (7), (8) and the condition given by

1\2 1\?
(—) (X, —b1)” + (—) =1 (15)
a) ay

we have a 2-D chaotic map:
1\2
Xpg1 = (a1 + b1) — 2ay (-) v2, (16)
a
1
Ynt1 = & a_ (X0 — b1)yn (17)
1

with a system parameter o, 0 < o < 2.0, where the 2-D chaotic map (16) and (17)
has chaos function solutions at @ = 2.0. Here, it is important to note that the time step
At,0 < At < 1.0 is not included in the 2-D map (16) and (17), and the solutions
X, (t;) and y,(#;) are restricted by the condition (15) for the generation of discrete
limit cycles [34].

Bifurcation diagrams for the 2-D map (16) and (17) are firstly illustrated in Fig. la
and b, where we carry out 200 iterations of the 2-D map at each value of @, Ao = 0.01
with an initial point (xo, yo) = (0.2,0.1) for Fig. la and (x¢, o) = (0.2, —0.1)
for Fig. 1b, respectively. Here, the bifurcation diagram depends on the initial point
(x0, yo) for iterations at each value of «. Then, bifurcation diagrams of Fig. la and b
are presented in Fig. lc, and it is found that the diagrams y,; and y,, are symmetric
with respect to the o-axis on the @ —x,,, y,1, Yu2 plane. Thus, the bifurcation diagrams
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(a) The « -xn, yn1, yn2 plane (b) The « -xn, yn1, yn2 plane
with an initial point (xo, yo) = (0.2, 0.1) with an initial point (xo, yo) = (0.2, -0.1)
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(c) The a -xn, yni, yn2 plane with (d) Zoomed on the o -xn, yn1, yn2 plane
initial points (xo, yo) = (0.2, 0.1) with initial points (xo, yo) = (0.2, 0.1)
and (0.2, -0.1) and (0.2, -0.1)
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Fig. 1 Bifurcation diagrams: a An initial point (xo, yo) = (0.2, 0.1), b (xo, yo) = (0.2, — 0.1) and
Ao = 0.01, ¢ Initial points (xg, yo) = (0.2, 0.1) and (0.2, —0.1), and d A zooming diagram of ¢ and
Aa = 0.005, at a; = 1.0, a, = 1.0 and by = 0.0 for the 2-D map (16) and (17)

are enlarged for the interval 1.4 < o < 1.6 with Ae = 0.005, and are illustrated
in Fig. 1d to show the pitchfork bifurcation [37]. In addition, the 2-D map (16) and
(17) has fixed points, which are defined by x;; = F(x;, yr) and yi = G(x)\, y;; o),
and are given as

(a, +51,0),0 <a <20,

XLy = -1 18
(- ) ﬂ+b],ia2,/a2 1.0 <a <20, (18)
o o
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where the 2-D map is found to have pitchfork bifurcations with three fixed points in
the interval 1.0 < o < 2.0. Thus, the numerical result at a; = 1.0, a, = 1.0 and
by = 0.0 of the 2-D map (16) and (17) is presented in Fig. la—d. The MATLAB
program for Fig. 1c is shown in Appendix 1.

On the other hand, the 2-D chaotic map (16) and (17) corresponding to the 2-D
Turing map (13) and (14) is derived from the chaos function solutions (7) and (8),
and as the numerical result, the chaotic solutions x,(#;) and y,(#;), orbit solutions
on the x, — y, plane and a ring of sequential points are illustrated in Fig. 2a—d, on
the basis of the solutions (7) and (8), at a; = 1.0, a4, = 1.0 and b; = 0.0 with an

(a) Chaotic solution xa(#)

\
Y

xrti

ti=0-200

(c) Orbit solutions (xa(#), yn(t)) (d) A ring of sequential points
on the xn - yn plane on the xn - yn plane

08 o .
o8 3 AN
04 K

0zp

yniti;
a

02 f
04
08 . »

08 g i

Fig. 2 Chaotic time series: a Chaotic solution xp(#;) (7), b Chaotic solution y,(#;) (8), ¢ Orbit
solutions (x,(#;), yn(#i)) on the x,—y, plane, d A ring of sequential points on the x,—y, plane, at
a; = 1.0,a> = 1.0 and b; = 0.0 with an initial point (xg, yo) = (1.0, 0.0)
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initial point (xo, yo) = (1.0, 0.0). The chaotic time series shown in Fig. 2a—d are
calculated without the accumulation of round-off error caused by numerical iterations
of nonlinear equations [30]. Then, the numerical result of the 2-D map (16) and (17)
is presented in Fig. 3a—d: (a) Symmetric orbit solutions on the x, — y, plane, (b) A
ring of sequential points at « = 2.0 with initial points (xo, yo) = (1.0, £0.000001),
(c) Symmetric orbit solutions and (d) Symmetric limit cycles in pairs at « = 1.69
with inside initial points (xg, yp) = (0.5, £0.5), as a numerical example of ‘dappled’
pattern shown for the Turing model in [24].

Moreover, we find symmetric limit cycles in pairs with inside initial points
(x0, y0) = (0.5, £0.5) for the 2-D map (16) and (17) as shown in Fig. 4a—d. Then,

(a) Symmetric orbit solutions at o= 2.0 (b) Sequential points at a=2.0
with (xo, y0) = (1.0, £0.000001) with (xo, yo) = (1.0, £0.000001)
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(c) Orbit solutions at a=1.69 (d) Limit cycles at o= 1.69
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Fig. 3 Symmetric orbits and limit cycles of the 2-D map (16) and (17): a Symmetric orbit solutions
and b Sequential points at a = 2.0 with (xg, yp) = (1.0, £0.000001), ¢ Symmetric orbit solutions
and d Symmetric limit cycles at a = 1.69 with (xg, yp) = (0.5, £0.5), at a; = 1.0, ap = 1.0 and
by =0.0
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(a) Orbit solutions at &= 1.60 (b) Sequential points « = 1.60
with initial points with initial points
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Fig. 4 Limit cycles in pairs of the 2-D map (16) and (17): a Orbit solutions with left-handed and
right-handed eddies and convections, b Sequential points at a = 1.60, ¢ Orbit solutions with eddies
and convections, d Sequential points at o = 1.55, with inside (blue) and outside (red) initial points

it is found that inside initial points (blue) converge to the limit cycles and form
left-handed and right-handed eddies of cells, and one of outside initial points (red)
converges to the opposite limit cycle, that is, the red initial points generate convec-
tions, as shown for « = 1.60 and ¢ = 1.55 in Fig. 4a and c, respectively. The
MATLAB program for Fig. 4a and b is presented in Appendix 2.

Here, it is interesting to emphasize that the 2-D logistic maps derived from chaos
function solutions x,(f;) = sin®(2"#;) and ya(t;) = cos(2"t;) have discrete limit
cycles, corresponding to the FHN model, the F-KPP equation, the BZ reaction and
the reaction—diffusion systems, as presented in [30-33], and the 2-D chaotic map
(16) and (17) derived as a 2-D Turing map (13) and (14) has chaos function solutions
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X, (t;) = cos(2"t;) and y,(#;) = sin(2"t;), which corresponds to the Lorenz system
for atmospheric convection [28], the reaction—diffusion systems for fluid convections
[16, 17] and the equation of motion derived from the Hénon-Heiles Hamiltonian for
the third integral with chaotic properties [38].

4 Conclusions

The 3-D solvable chaos map corresponding to the Turing model was firstly derived
in Sect. 2, and it is explained that the Turing model has nonlinear dynamics, such
as spherical symmetry, ring of cells and numerical patterns on the x—y plane. In
Sect. 3, the 2-D chaotic map for the 2-D Turing model is proposed in order to show
the nonlinear dynamics, and the 2-D map (16) and (17) is shown to have symmetric
bifurcation diagrams, the ring of cells and limit cycles in pairs with different patterns.
From the numerical result, the limit cycles are presented to generate discrete eddies
and convections, as chaotic dynamics of non-equilibrium open systems. Therefore,
nonlinear dynamics of the Turing model may correspond essentially to fluid dynamics
with chaotic properties of the Lorenz system for atmospheric convection and the
reaction—diffusion systems for convection cells.

Appendix 1

% MATLAB program for Fig. 1c by S. Kawamoto.
% initial conditions.
ALFA = zeros(1, 400);
X1 = zeros(1, 200);
Y1 = zeros(1, 200);
XX1 = zeros(1, 200);
YY1 = zeros(1, 200);
X2 = zeros(1, 200);
Y2 = zeros(1, 200);
XX2 = zeros(1, 200);
YY2 = zeros(1, 200);

X10=10.2;
Y10 =0.1;
X20=0.2;
Y20 =-0.1;
Al =1.0;
A2 =1.0;
B1 =0.0;

% system parameter ALFA and bifurcation diagrams.
figure(‘Position’, [100 100 350 200]).



248 S. Kawamoto

for I=1:400
ALFA()=0.005*T;
for J=1
X1(1, )=(A1+B1)-2*A1*((Y10)"2)/A2"2;
Y1(I, H)=ALFA(D*(X10-B1)*Y10/A1;
X2(I, D=(A1+B1)-2*A1*((Y20)"2)/A2"2;
Y2(I, ))=ALFA(I)*(X20-B1)*Y20/A1;
end
for J=2:200
X1(I, H=(A1+B1)-2*A1*((Y1(, J-1))"2)/A272;
YI(I, H)=ALFA(D)*(X1(, J-1)-B1)*Y1(1, J-1)/A1,
X2(I, D=(A1+B1)-2*A1*((Y2(, J-1))"2)/A2"2;
Y2(I, H)=ALFA(D*(X2(1, J-1)-B1)*Y2(1, J-1)/A1,
end
for J=150:200
XX1()=X1(, J);
YY1()=Y1(, J);
XX2()=X2(1, J);
YY2(0)=Y2(1, J);

plot(ALFA(I), XX1(J), ‘k.”,’MarkerFaceColor’,’k’,’MakerSize’,4); hold on
plot(ALFA(I), YY1(J), ‘b.’,"MarkerFaceColor’,’b’,’MakerSize’ ,4); hold on
plot(ALFA(I), YY2(J), ‘r.’,’MarkerFaceColor’,’r’,"MakerSize’,4); hold on
end
end
xlabel(‘Alfa’); ylabel(‘Xn, Ynl, Yn2’)
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Appendix 2

% MATLAB program for Fig. 4a-b by S. Kawamoto.

% initial conditions.

T = zeros(1, 200);

TT = zeros(1, 200);
X1 = zeros(200, 200);
Y1 = zeros(200, 200);
XX1 = zeros(1, 200);
YY1 = zeros(1, 200);
X2 = zeros(200, 200);
Y2 = zeros(200, 200);
XX2 = zeros(1, 200);
YY2 = zeros(1, 200);
X3 = zeros(200, 200);
Y3 = zeros(200, 200);
XX3 = zeros(1, 200);
YY3 = zeros(1, 200);
X4 = zeros(200, 200);
Y4 = zeros(200, 200);
XX4 = zeros(1, 200);
YY4 = zeros(1, 200);

LO=1;

PR =431,
TO = 0.0;
X01 =0.5;
Y01 =0.5;
X02 =0.8;
Y02 = 0.65;
X03 =0.8;
Y03 = 0.55;
X04 =0.5;
Y04 = -0.5;
ALFA = 1.6;
Al =1.0;
A2 =1.0;
B1 =0.0;

% limit cycles in pairs with initial points.
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for I=1:200, T(1)=TO+I*L0*pi/PR; end
for I=1:200
for N=1
X1(I, N)=(A1+B1)-2*A1*(Y01/2)/(A2"2);
Y1(I, N)=ALFA*(X01-B1)*Y01/Al;
X2(I, N)=(A1+B1)-2*A1*(Y02/2)/(A2"2);
Y2(I, N)=ALFA*(X02-B1)*Y02/A1;
X3, N)=(A1+B1)-2*A1*(Y03"2)/(A2"2);
Y3(I, N)=ALFA*(X03-B1)*Y03/Al;
X4(I, N)=(A1+B1)-2*A1*(Y04"2)/(A2"2);
Y4(I, N)=ALFA*(X04-B1)*Y04/A1,
end
for N=2:1
XI(I, N)=(A1+B1)-2*A1*(Y1(I, N-1)"2)/(A2"2);
Y1(I, N)=ALFA*(X1(I, N-1)-B1)*Y1(I, N-1)/Al;
X2(I, N)=(A1+B1)-2*A1*(Y2(I, N-1)"2)/(A2"2);
Y2(I, N)=ALFA*(X2(I, N-1)-B1)*Y2(I, N-1)/Al,
X3(I, N)=(A1+B1)-2*A1*(Y3(I, N-1)"2)/(A2"2);
Y3(I, N)=ALFA*(X3(I, N-1)-B1)*Y3(I, N-1)/Al,
X4(1, N)=(A1+B1)-2*A1*(Y4(I, N-1)"2)/(A2"2);
Y4(I, N)=ALFA*(X4(I, N-1)-B1)*Y4(I, N-1)/A1;
end
end
for I=1
TT(I)=TO;
end
for [=2:200
TT()=T-1);
end
for I=1
XX1(I)=X01;
YY1(I)=Y01;
XX2(1)=X02;
YY2(1)=Y02;
XX3(D)=X03;
YY3(I)=Y03;
XX4(I)=X04,
YY4(I)=Y04;
end
for I=2:200
XX1(D)=X1(I-1, I-1);
YY1(D)=Y1(-1, I-1);
XX2(D)=X2(I-1, I-1);
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YY2(D)=Y2(I-1, I-1);

XX3()=X3(I-1, I-1);

YY3(D)=Y3(-1, I-1);

XX4(1)=X4(1-1, I-1);

YY4(1)=Y4(-1, I-1);
end
% figures (a)-(b)
figure(‘Position’, [100 100 350 3501])
plot(XX4, YY4, ‘-b.’,’MarkerFaceColor’,’b’,’"MarkerSize’, 7); hold on
plot(XX3, YY3, ‘-r.’,’MarkerFaceColor’,’r’,’MarkerSize’, 7); hold on
plot(XX2, YY2, ‘-r.”,’MarkerFaceColor’,’r’,’MarkerSize’, 7); hold on
plot(XX1, YY1, ‘-b.”,’MarkerFaceColor’,’b’,"MarkerSize’, 7); hold off
xlabel(“xn(ti)’); ylabel(‘yn(ti)’)

figure(‘Position’, [100 100 350 350])

plot(XX4, YY4, ‘b.”,’MarkerFaceColor’,’b’,’MarkerSize’, 7); hold on
plot(XX3, YY3, ‘r.”,’MarkerFaceColor’,’r’,”MarkerSize’, 7); hold on
plot(XX2, YY2, ‘r.”,’MarkerFaceColor’,’r’,”MarkerSize’, 7); hold on
plot(XX1, YY1, ‘b.”,’MarkerFaceColor’,’b’,’MarkerSize’, 7); hold off
xlabel(“xn(ti)’); ylabel(‘yn(ti)’)
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Cloud Electrification as a Source )
of Ignition for Hydrogen Lift-Gas L
Airships Disasters

V. J. Law and D. P. Dowling

Abstract The first half of the twentieth century became the Golden Age of the diri-
gible airship. After the Hindenburg disaster, (1937), the dirigible use fell into rapid
decline leaving the non-rigid airships to serve in maritime roles until the mid 1960s.
Throughout dirigible and non-rigid use, violent storm systems have been associated
with in-flight airship disasters. In particular, the popular press at time instilled into the
public perception that lightning strikes were the guilty ignition source of the disas-
ters. Over the past 25 years, Saint Elmo’s Fire has come forward as an alternative
ignition source for in-flight airship disasters. Understanding the role of low energy
discharges events is important for the emerging hydrogen economy that is intended
to reduce the world’s energy consumption and greenhouse emissions. This paper
reviews 2H, ; O, = 2H,0 combustion chemistry, the role of heterogeneous graupel
chemistry within electrification of Cumulonimbus, and how the empirical mathemat-
ical construct of Peek’s Law which attempts to identify the visual inception voltage
in terms of the minimum electrical field stress required for the generation of Saint
Elmo’s Fire. Using this electrochemical knowledge, in-flight airship disasters asso-
ciated with nearby cloud electrification, or violent storms systems, are correlated and
reviewed. This study is supported by firsthand accounts (from survivors), including
radio messages prior to an airship disaster, ground eyewitness accounts, along with
the structural design of the airship. The hydrogen lift-gas airships reviewed here
are four dirigibles (LZ-4 (L-10), SL-9, Dixmude and Hindenburg) and one non-
rigid airship (NS.11). As a comparative control, this paper reviews the worst airship
disaster, that of the helium lift-gas flying aircraft carrier, USS Akron (ZRS-4), which
led to the loss of 73 lives. In addition to that of the sister airship, USS Macon (ZRS-5)
disaster where two lives were also lost.
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1 Introduction

In 2020, the authors of this paper presented two talks at the 13th virtual CHAOS2020
conference Florence-Italy on how Peek’s formula [1] may be used to estimate the
visual inception voltage stress point on natural and artificial structures [2] and
microwave oven plasma processing of nanomaterials [3]. In the former paper, the diri-
gible airship was one of the artificial structures examined. In the follow-up question
and answer section, the main question was ‘if not lightning, how does Saint Elmo Fire
(SEF, also sometimes-called brush discharge, corona, or partial discharge) become a
lethal threat to a hydrogen (H,) lift-gas airship. The answer to this question involves
a complexity of factors, including a detailed knowledge of the airship construction,
the prevailing metrological conditions at the time of the disaster and if the airship’s
captain was ‘Extraordinary Good’, or ‘Lucky’.

This paper consolidates published information regarding five Hj lift-gas airships
(four dirigibles and one non-rigid airship) disasters that are associated with cloud
electrification surrounding or near-by the airships. In these disasters, the airships
are in-flight (not tied to a mooring-mast or their ground handling ropes secured to
the ground, i.e. the airships obtain a quasi-equilibration to the local weather elec-
trical field conditions. In this context amongst the factors and accounts considered
are the prevailing metrological electrical and chemical environment, radio messages
prior to the airship disaster, firsthand accounts (from survivors) and ground eyewit-
ness accounts, along with the structural design of the airship. References from the
‘first rough draft of history’ (newspapers and movie-reels) are used along with board
of inquiries, contemporary and current aeronautical journals, metrological, phys-
ical chemistry and electrical engineering journals. The chronology of these articles
reveals the complex processes (physical, commercial and political) were not inter-
linked, but evolved overtime. To clarify these complex issues, the paper is organized
as follows: Sect. 2 gives a historical view of SEF. Section 3 describes the process of
airship disasters selection and classification of the selected dirigible and non-rigid
airships (Sect. 3.1). Section 4 looks at the airship construction, gasbag (Sect. 4.1),
non-rigid envelopes (Sect. 4.2) and dirigible airframes (Sect. 4.3). Section 5 provides
an anatomy of Hj lift-gas fires. Section 6 revisits Peek’s formula for a single metal
electrode. Section 7 lists the airship under consideration in this paper. Finally, Sect. 8
provides summary of this review.

2 Saint Elmo’s Fire (SEF)

Since classical Greek and Roman times Ermus of Fomia has been the patron Saint of
Mediterranean sailors, to whom he appeared as SEF on the masts and spars of sailing
ships as an electrical storm began to dissipate in electrical intensity. These good
omens being manifest as characteristic cracking or hissing sound with a blue/violet
flame-like glow. Between the years 1610-1611, art emulates real life when William
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Table 1 WW!1 dirigible non-lethal airship-SEF encounters

255

Airship Date Location ‘Weather observations Reference [11]
LZ-41 (L-11) |Aug 10, 1915 Dogger bank | Thunderstorm, cloud-to- | Page 121-122
cloud and cloud-to-sea
lighting. 1,000-4,600 feet
LZ 41 (L-11) |Mar5, 1916 Spurn head Squall, cloud, snow and Page 148
ice
Wind speeds 55 m.p.h
Temperature 4+ 3F
LZ-53 (L-17) |May 3, 1916 North Sea Thunderstorm, rain and Page 160
hail
LZ-91 (L-42) | May 23-24, 1917 | Over London | Squall, hail, solid cloud Page 244
LZ-104 (L-59) | Nov 21, 1917 Eastern Crete | Thunderstorm, black Page 310
clouds and flashes of
lightning close-by

Strachey’s account of the ill-fated ‘Sea adventure’ voyage from the new world in
1610, is retold by William Shakespeare within the play ‘The Tempest’ [4]. In this play,
SEF takes on a more sinister role as the spirit ‘Arial” who manipulates the mariners
off the ship. By 1886, this atmospheric phenomenon started to be systematically
complied and reported as SEF, Ball lightning (BL) [5-8] and fireball (FB) [9, 10].
The latter two types proving to be more life threatening when compared to SEF. In
addition, it has become clear that BL has the ability to interfere with radio broadcasts
and to transfer part of its information through a glass windowpane with and without
damage to the glass [5-7]. During world war one (WW1; 1914-1918) reports of non-
lethal SEF encounters, both inside and outside of the airship airframe accumulates as
airships flew though bad weather on their bombing raids and reconnaissance, due to
the necessity of war, see for example Douglas W. Robinson’s book ‘The Zeppelin in
Combat’ [11]. Table 1 provides five examples of non-lethal SEF encounters, in each
case the prevailing metrological conditions being a squall or thunderstorm containing
lighting with a mixtures of rain, hail or snow.

Since the early 1900s, metrology has shown that cloud-to-cloud and intra-cloud
electrification has its origins in the Earth’s troposphere (0—12 km) [5—-10]. Fair
weather dc electric fields are modulated by ac and RF fields due to thunder and
lightning activity. Moreover, the appearance of SEF around conducting tips and
protrusions being due to the geometric field enhancement where equal-potential lines
become bunched [1]. By 1928, the term for this electrical phenomenon began to be
classified as ‘plasma’ (Greek: meaning mouldable substance), which considers an
assembly of gas molecules that has some of its atoms or molecules temporally ionized
or excited [12]. In 1952, Bostick [13] added the subclass ‘plasmoid’ that defines a
separate plasma-magnetic entity that may be ejected from the parent plasma.
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3 Airship Heuristic Selection Criteria and Classification

This section lists the Hj lift-gas airship heuristic elimination criteria used to identify
the airships destroyed by violent weather conditions. Figure 1, provides a chorolog-
ical (1895-1960) time-stamp of forty airship accidents against the number of deaths
per accident. In this period, two airship design generations appeared, the dirigible
(1905-1937), and blimp (Russian (ca, 1920-1947) and USA (1930-1960)). Within
this period, five-hundred and five lives were lost to airship disasters. In addition,
during this period there were twenty-two nonlethal airships accidents (not shown)
where airships were either lost or written-off. Note airships lost to enemy action
are excluded from these tallies. The data in Fig. 1, is given as a function disaster
type (fire/explosion, midair and ground collision, pilot error, structural failure, lost,
H; and helium (He) lift-gas airships destroyed in storm conditions. Where multiple
disasters occurred in one year (i.e. 1902, 1912, 1913, 1915...), the total loss of life
is denoted with a + sign.

3.1 Heuristic Elimination Criteria

Using the forty airships disasters listed in Fig. 1 as a starting point, the heuristic
elimination criteria (removal of airships from the list) is given as follows.

80
# Fire/explosion ® Akron
70 OCollision
60 4 Failure
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OPilot error 0\«1. 3 &
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ALost [m] <
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s 40 ® H2 weather ‘6\0
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Fig. 1 Lethal airships disasters between 1897 and 1960 as a function of related potential cause.
The + symbol denotes the total number of in each year. For reference purposes only, ten airships
are named here
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1.  Remove all airship decommissioned (for example SL-8, 1918 [11], page 281)

2.  Remove all airships set alight during inflation of gasbags within their hangar
(for example, L-6 and L-9, Fuhlabiittel air field, 1916 [11], page 199)

3. Elimination of airships involved in a collision (for example, high voltage power
lines (USS Roma TR-4, 1922 [14]), crash-landed on ice near the North Pole
(Italia, 1928 [16] and grounded on a hillside (R101, 1930 [15], and SSSR-V6
1938 [17]).

4. Remove all airships destroyed whist flying in good weather (for example, LZ-
104 (L-59), 1918 [11], page 315)

5. Remove due to pilot error (for example, SSSR-V10 1938 [17]

6. Remove all He lift-gas airships excluding the USS Akron and the USS Macon.

3.2 The Airship Classification

The airships disasters examined in this work are the LZ-40 (L-10) and SL-9 (Type
E), the NS.11, Dixmude (formerly the LZ-72) and the Hindenburg (LZ-129). For
comparison purpose, the He lift-gas airships, (USS Akron (ZRS-4) and USS Macon
(ZRS-5)) are used. Note in the American airship number system, Z refers to Zeppelin
mode of construction, R refers to ridged airframe and, S refers to flying aircraft carrier.
As all of the airships have aero-engines as a means of propulsion, the airships are
classified as either non-rigid or dirigible.

3.3 Zeppelin Production Number and Tactical Number
Classification

The Zeppelin company gave their airship a production number (LZ-xxx) whereas
the German military gave their airships a tactical number (L-xxx). This dual number
system has led to some confusion. In this work, the Zeppelin production number is
used. The Zeppelin tactical number is given in italics and is only used in Sects. 1, 2
and 3 to provide a link between the airships, after which only the production number
is used.

3.4 Non-rigid (Pressure) Airship

The non-rigid airship uses a H,, or He, lift-gas envelope that is pressurized with air-
filled ballonets (air-filled compartments) to control lift and pitch, plus envelope shape
and structural integrity. To achieve the weigh off (initial static-lift) the envelope is
filled with H; until the airship’s volume equalizes with ground-level air volume. In
equilibrium flight, the effect of slow varying updrafts, temperature changes and loss
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of fuel weight requires the airship to be maintained by blowing air into the ballonets
or releasing air from the ballonets. Whereas dynamic lift is achieved by altering the
elevator position with aero-engine power). When a rapid and violent updraft occurs,
automatic spring-loaded lift-gas valves open to prevent the airship pressure ceiling
being exceeded, resulting in a corresponding rapid loss of lift.

3.5 Dirigible Airship

Unlike non-rigid airships, the dirigibles LZ-40 and SL-9, the NS.11, Dixmude, and
the Hindenburg have multiple H; lift gasbags located within a metal or wood airframe.
In the case of the USS Akron and USS Macon, the lift gas is He. The Dirigible design
ensues the airframe provides structural protection to the gasbags and greater shape
protection from aerodynamic forces and moments. In the event of one of the gasbags
is compromised, buoyancy is maintained by discharging ballast at the location of
the compromised gasbag. See for example the USS Shenandoah (ZR-1) which was
torn from its mooring-mast in 1924, and crashed in 1925 [18] and the R-33 30-h
unscheduled flight in 1925 [19]. Again when a rapid and violent updraft occurs, the
automatic spring-loaded lift-gas valve opens, resulting in a rapid corresponding loss
of lift.

4 Airship Construction

This section reviews WW 1, lighter-than-air flight. Section 4.1 looks the development
of the gasbag (sometimes called cell), the non-rigid envelope (Sect. 4.2), and the
dirigible airframe structure (Sect. 4.3). The airships in question are the LZ-40 and
the SL-9, the Dixmude, the USS Akron and USS Macon and the Hindenburg, plus the
non-rigid airship NS.11. Ladislas D’Orcy’s ‘International register and compendium
of airships (built between 1873 and 1917)’ [20], and Robinson’s ‘“The Zeppelin in
combat’ [11] provides information on the techniques used in the manufacture of LZ-
40, SL-9 and LZ-72 (latter to be named the Dixmude). In addition, written articles
in the ‘Journal Dirigible’ are extensively used.

4.1 Gasbags

Since 1782 in Paris-France, 18-inch diameter balloons made from goldbeater skins
filled with H, were flown for recreational purposes [21]. The goldbeater skins origi-
nally obtained from cow intestines (cecum, or, caecum). This very lightweight mate-
rial was found to exhibit a high inherent strength and is almost impervious to H,
gas. When cleaned and stretched having an approximate area of 20 cm in length
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and 25 cm in width. In 1883 move from making toy balloons to manufacturing
for the 10,000 cubic foot balloon ‘Heron’ was performed by the Weinling family
under direction of Captain Templar at Chatham, England [22]. The Weinling family
tried very hard to keep their gasbag manufacturing process at secret, but there is a
suggestion of industrial espionage between Templar and the Italian government [23].
McKechnie’s (Vickers. Ltd.) 1919 patent details the manufacture of a lightweight
and gastight 4-layer gasbag for airships and balloons [24]. The layers comprise; a
single ply of linen coated with unvulcanized rubber followed by Goldbeater skin and
vanishes. The patent, also states ‘This represents about one ton increase of lift for a
million cubic feet capacity’ The quantity of Goldbeater skins for a standard WW 1
German Navy dirigible airship is in the order of 20,000. It is no wonder that the
Zeppelin Company had to recycle old gasbag material with greater outward (H,) and
inward (air) permeability properties that may lead to the loss of a dirigible and its
crew [25]. After WW 1, the number of skins used for dirigibles grew considerably.
For example, the USS Shenandoah used over 750,000 goldbeater skins [18].

The early Zeppelins had a multitude of gasbags within a metal airframe covered
with a waterproof, non-gas-tight skin. This construction allowed leakage of lift-gas
to mix with the natural airflow up and round the gasbags and eventually permeate
through the outer skin, see Fig. 2a. However, within certain H,-air mixing ratios
the gas mixture is flammable and liable to explode given a source of ignition. To
counter act this problem, Schiitte-Lanz airships improved on the design by adding
forced ventilation which expelled the gas mixture via ducting from the bottom skin
to the upper outer skin. In addition, a gas-tight coating to the bottom skin is added

a b

Air slipstream —»  H,-air mixture —» Air slipstream —» H, —air mixture —

Gasbag Gasbag

«t— Gas shaft
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+— Air shaft

T Air
0O Manoeuvring valve
m  Automatic spring-loaded ‘blow-off” valve
— — — Permeable outer skin
—— Non permeable outer skin
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Fig. 2 a Schematic of early zeppelin lift-gas venting arrangement: b, Schiitte-Lanz H, and latter
Zeppelin venting valve arrangement (schematic redrawn from Thomas [26]).



260 V.J. Law and D. P. Dowling

to prevent leaking lift-gas reaching the aero-engine exhausts. Both of these Schiitte-
Lanz designs were taken up by the Zeppelin Company during WW 1, and ultimately,
in a modified form for Hindenburg, see Fig. 2b.

4.2 Non-rigid Envelopes

Goldbeater skins, although having excellence gas-tightness, exhibited relatively low
tensile strength and proved less than satisfactory against water. To cope with the stress
encountered in non-rigid airship envelopes rubberized fabric of high tensile strength
is used. Typical 2-3 layers are used where the threads of each layer is diagonal
opposed. The envelope fabric, however, when subjected to an electrostatic fields
may become electrified; and under certain conditions (such as when the envelope is
deflated (less taut) whilst the Hj lift-gas is being released) a fire may be ignited.

By 1917, Britain’s answer to Germanys U-boat threat in the North Sea was the
North Sea (NS) class H; filled non-rigid airship. Using a tri-lobe lift-gas envelope
based on the Astra-Torres design [27], fourteen of these airships were built. Within
the envelope, there were six ballonets fitted with air-blowers for buoyancy control:
the control car and engine gondola being slung under the envelope. Initially designed
for 24-h flight endurance, on February 9-13, 1919 the NS.11 smashed the non-rigid
flight endurance specification by a record-breaking endurance flight of 400 miles in
100 h and 50 min [28]. Table 2 lists the gasbag/envelope details of the six dirigibles
and the one non-rigid airship discussed here.

4.3 Dirigible Airframe Structure

The Pre-WW1 Zeppelin designs and Schiitte-Lanz dirigible airframe designs are
notable for their very different materials and methods of construction [11, 20]. The
early Zeppelin designs on the Dave Schwarz of Zagreb patents using zinc aluminum
alloy airframes. The general appearance of a Zeppelin is one of cigar shaped, with
a parallel mid-section built from many transverse polygon rings of the same form.
While the short (with respect to the mid-section) front and rear sections use similar
reducing polygon rings apart from the aft section that has four tails fins built-in using a
cruciform girder construction. The overall design allows mass production techniques
to be used. By the start of WW 1, aged-harden aluminum alloy (duralumin) containing
copper (3.5-4%) and manganese (0.5—1%) began to be used for the airship airframes
in Germany [29].

In the case of the twenty-four airships built by Schiitte-Lanz, the airframe was
one of the first successful geodesic latticework constructions. All, but two [SL-23
and SL-24] used wood and laminated wood all boned together with minimal metal
fixings. Due to the large number of individual parts used, the construction time of
the airframe was considerably greater than a comparable Zeppelin. However, the
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Table 2 Airship gasbag and envelope information

Airship Classification | Gasbag Gas | Number of Gas capacity (m?)
construction gasbags/ballonets

LZ-40 Dirigible 3 layers of H, |12 31,900
goldbeater on
cotton

SL-9 Dirigible 3 layers of Hy |12 38,750
goldbeater on
cotton

NS.11 Non-rigid Rubberized cotton | H, | 6 ballonets in one | 10,194

envelope

Dixmude Dirigible 3 layers of Hy |16 68,470
goldbeater on
cotton

USS Akron | Dirigible Rubberized cotton, |He | 12 194,000
and cotton

impregnated with
gelatin-latex

USS Macon | Dirigible Cotton He |12 194,000
impregnated with
gelatin-latex

Hindenburg | Dirigible 2 cotton fabric Hy |16 200,000
layer with celluloid
in between which
was the
impregnated with a
gelatin-latex
applied

airframe tensgrity (tension and integrity) was flawed, as the laminated wood was
prone to delaminate under moist conditions encounter in maritime roles leading
the German Imperial Navy to mistrust these airships. Towards the end of WW1,
a Schiitte-Lanz engineering manager Hermann Miiller, (Swiss by birth) defected
to Britain and gave his knowledge of building wood airframe airships to the Short
Brothers [30]. The outcome of which was R-31 and R-32 airships, which proved to
have the same delaminating problem as the Schiitte-Lanz airships. Later in 1928,
Barnes Wallis patented the geodesic construction method using tubular metal for the
contiguous transverse space frame design in the R101 [31].

During WW1 Britain, France and USA studied the construction of shot-down
German airships, in particular the duralumin airframes. With final terms of the WW 1
armistice signed on June 28, 1919 Germany was mandated to handover its airships
(and High Sea Fleet) as war reparations. The political and revolutionary feelings
within Germany at the time resulted in the scuttling of the High Sea Fleet at Scapa
Flow and after seven airships were destroyed on the ground. Among the repara-
tion demands following this act of destruction, Germany had to make-good the lost
airships and handover all their airship technology. This forced reparation process
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meant that the allies received the ‘Height Climber’ class of Zeppelin that where
designed for high-altitude (such as the Dixmude) at the expense of airframe struc-
tural integrality whist maneuvering at low altitude, a design feature that would plague
the allied countries development of commercial airships for years to come.

In 1925, flying aircraft carrier proof-of-concept trails using the British R-33 airship
that involved the launching and recapture of parasitic fighters. By 1929, the USA
experimented (under land-based conditions) the concept of the flying aircraft carrier
airship using the USS Los Angeles (ZR-3) as the mother ship. With completion
of the British and American trials, the Goodyear-Zeppelin Corporation was formed
for the design and construction of the first purpose built He lift-gas flying aircraft
carrier: USS Akron and USS Macon. The hull design incorporated improvements in
transverse frames for rigid airships as lay out by Richmond and Scott [32], which
later appears to morph from the Barnes Wallis’s space frame design, 1928 [31]. The
airships used twelve He-lift gasbags using the Goodyear Tire and Rubber’s rubberized
cotton as the outer skin.

The original ship design used eight Maybach VL 11 aero-engines placed inside
the hull (four each side) for driving propellers located in-line outside of the hull.
In this configuration the engines disturbed air (wash) to the next inline propeller
resulting sever airframe vibration and loss in available aero-engine power. To reduce
vibration to the airframe, the propellers had to be operated in contra-rotation to the
next in-line aero-engine. This also provided greater engine thrust. In addition, during
the design stage, the Navy requested for the bottom of the lower fin to be visible from
the control car. To achieve this goal the goal car was moved 2.4 m aft and all the fins
were shortened and deepened. The alteration meant that the leading edge root of the
fins no longer coincided with an original main transverse frame fixing; instead, the
attachment was now to a weaker intermediate traverses frame. The contra-rotating
propeller preference combined with the weak tail fine attachment points have been
the subject of much speculation of the USS Akron’s many crashes and its final demise
of the USS Akron (Sect. 7.5) along her sister airship (USS Macon (Sect. 7.6).

5 Anatomy of a H; Lift-Gas Fire

To prevent an airship exceeding its safe pressure ceiling under rapid and violent
updraft conditions, automatic spring-loaded lift-gas valves blow-off gas from the
gasbags. Early Zeppelin airships (pre 1920s) the valves where located at the bottom
of the gasbags to enable contaminated H; gas to be blown off. Manually venting of
H, life-gas in storm conditions was prohibited in German airships from late 1915
(sect. 7.1)- During this automatic process, the released H, gas mixed with air within
the airship’s volume then diffuses through the outer airship fabric to mix with the
airship’s slipstream.

Unlike H,-air mixtures, pure H, is difficult to ignite as many aircraft pilots firing
solid metal bullets into the WWI Zeppelin and Schiitte-Lanz airships found, see for
example LZ-76 first and last raid on London [11]. When the metal bullets did hit
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the airship gasbags, they simply went through leaving small holes were H, would
slowly escaped and become quickly diluted by the surrounding air. It was not until the
autumn of 1916 when the newly developed explosive bullet (Pomperoy, containing
nitro-glycerin) and the incendiary bullet (Brock, containing potassium chlorate) were
fired in combination, the gasbags become blown apart when hit. As large quantities
of released H, mixes with atmospheric air, the incendiary bullet [33] ignites the
flammable oxyhydrogen gas mixture.

Pure H, gas burns with low radiant heat, almost without color, and becomes
red-yellow depending upon the amount and variety low molecular weight carbide
and carbon monoxide impurities). In early 1900, the German preferred method
of H, production was to pass steam over hot iron at high temperature to produce
Knallgas (bang gas). Today’s hydrogen economy the process is known as Steam
Methane Reforming and the product H, gas termed as gray H, (a mixture H, and
COy,) or Blue H; if the CO; is removed. However, as Zeppelin warfare increased
the production of blue H;, could not keep-up with lift-gas demand leading to greater
CO, impurities in the supplied life-gas. In addition, production accidents (Seddin
gas plant, June 7, 1917) and train supply problems between the North Sea and Baltic
bases [11], page 271-273 affected continuity of life-gas supply to the airships. In
the inter war years, Britain faced a smaller but similar problem which was overcome
by using mobile batch process units containing sodium hydroxide, ferrosilicon, and
water that generated sodium metasilicate and H, gas (99.3-99.6 pure), see (1) [34].

ANaOH(s) + 2HO0x(1) + Si(s) 25X 2NaSi 05(1) + 2Ha(g) (1)

Depending on pressure (p) and temperature (7), the flammability limit of H,
in air is generally between 4 and 75% H, by volume, and the explosive limit of
H, in air is 18.3-59% by volume. It only requires spark or electrical discharge of
sufficient energy to crack both the H-H bond (432 kJ.mol~!) and the O-O bond
(146 kJ.mol™") to ignite the mixture and burn until the H, fuel is consumed. Equa-
tion 2 depicts an almost physically impossible exothermic stoichiometric equation
for these reactants to form water vapor (H,O) along with the associated —482AH
value per two molecules of H, fuel.

2H>(g) + 02(g) — 2H,0(g), AH = —482KkJ )

At atmospheric pressure, the stoichiometric mixture auto ignition temperature is
in the order of 570 C (843.15 K) with a calculated minimum spark energy of the
order of 0.02 x 1073 J [35]. However, this simple thermodynamic equation greatly
misrepresents the electrical breakdown process of the gases, as both pressure and
temperature; electric field stress, ignition frequency (dc, ac, or radio frequency),
relative gas buoyancy, and the liquid—gas interface at the airship outer skin surface
in storm conditions all have a role in the breakdown process.
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5.1 H»-0; Gas Vapor Chain Reaction Mechanism

This section postulates a limited series of reaction steps within the H,—O, gas vapor
reaction. The steps proceed by initiation (3), branching (4, 5) and propagation (6).

Initiation : Hy + Oy — HO, - +H- 3)

where, the initiation step (2) proceeds with the dissociation of some amount of
molecular gas (H, and O,) by a spark, flame, or electric discharge.
The resulting hydrogen radical (H-) attacks the reactants O, through (4)

Branching : H-4+0, — HO - + O- 4)
Followed by the products above steps attack the H, fuel (5, 6)

Branching : O -+H, - HO - + H- 5

Propagation : HO - +H, + - — H - +H;0 + heat (6)

In these oxygen—hydrogen reactions, the chain cycle starts with one H- atom
product (4), then the cycle generates additional H- atoms (5, 6). Steps (4 and 5) are
named branching steps because they produce OH- radicals which further attacks the
H; fuel to generate two further radicals. The branching steps therefore promotes
the rate of heat release which may increase exponentially, to the point that the heat
generated cannot be removed faster enough from the vapor at which an explosion
occurs. In addition, in each chain cycle, the propagation step (6) produces a water
molecule with an associated release of energy, which in turn promotes steps (4 and
5) along with the energy kick from the Pomperoy and Brock bullets. When all of the
H, is consumed, the cycle process is terminated. In this context, reaction steps 3 to
6 redefine the role of H, from a lift-gas to an energy source.

In chemistry textbooks [36], the H,—O, reaction is shown to have a complex
dependence on pressure and temperature, specifically a zigzag curve that separates
the non-explosive (p, T') regimes from the explosive (p, T) regimes. The free branches
of the curve are called the first, the second and the third explosion limit. Early airships
could gain altitudes of 2.5 km [20] and later WW 1 version ‘Height Climbers’ reaching
altitudes of 6 km [11]. These altitudes equate a standard pressure range of 1013—
47.1 kPa along with ambient temperature variation of approximately 15 to —24 C
(~288 to ~249 K). This p, T range places the airship flight altitude is well within the
first and second explosive limits branching steps (7, 8) are explosively efficient.

On YouTube there are many slow motion photography sequences of balloon deto-
nations filled with stoichiometric mixtures of H,—O,, see for example [37]. The slow
motion films reveal that the initial shockwave ruptures the balloon, followed by the
oxyhydrogen mixture burning with a typically yellow-orange that expands out from
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center of where the balloon once was. When a balloon filed with pure Hj is ignited,
the reaction with the surrounding air is less rapid and the sound is less loud. From
these demonstrations, the explosion is caused by a sudden pressure effect through
the action of heat.

5.2 Fairweather Electric Field Between Cloud
and Ground/Sea

In this section, the heterogeneous chemistry within Cumulonimbus cloud is consisted
as a source of ignition for the Hj filled airships. First consider the convection of
warmed air (mainly a mixture of N, and O;) from the earth as it expands adia-
batically as it rises through the troposphere until it reaches the stratosphere, where
the sun’s energy reheats the circulated air. This natural convection process allows
the cloud to capture positive charged particles resulting in a initial electrification of
the cloud. With increasing electrification a negative charge begins to be formed on
the upper cloud boundary which then flows down outside to the base of the cloud.
The accumulation of negative charge at the base of the cloud, now by convention
called ‘Cumulonimbus’ reinforces the cloud-ground/sea electric field. The electric
field in this region is of the order of 1-3 kV cm™! that is not sufficient to over-
come the dielectric strength of air. To achieve the required field strength an inductive
charge process within clouds has been considered by Saunders [38] and Prevenslik
[39] where water moisture (H,O) is propelled to high altitudes by updroughts
and cools to form graupel (a mixture of water and ice particles) that undergoes
a continuous dissociation_recombination process forming hydronium ions (H3O0%)
and hydroxyl ions (OH™) intermediate products. This reversible reaction process is
given in (7) where approximately 20% of the intermediate product ions are available
for electrification.
graupel

2H,0 “% Hy0t + OH™ 7)

Under natural background acidic conditions, charge separation of the available
ions then follows, where the H3O* ions move into the vapor phase, and due to
their buoyancy are lifted by updroughts to the top of the cloud leaving the larger
and denser OH™ charged graupel to fall under gravity to bottom of the cloud. This
dynamic process generates a potential difference between the top and bottom cloud
boundaries. With increasing gravitational separation, the negative charged graupel
forms a negative space-charge that enhances the pre-existing fairweather electric field
between the cloud and ground/sea. When the charge attraction between the cloud
bottom boundary and ground strengthens, electrons and negative charged ions shoot
down from the cloud as stepped leaders to meet upward positive charged streamers
to produce a lighting channel. As the enhanced electric field subsides, sufficient
energy remains to partially ionized nitrogen molecules (N ) at the enhanced electrical
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fields at metal protrusions, at ground level, or in airships flying through, or near, the
cloud [9] to produce the characteristic blue/violet. Westcox, using optical emission
spectroscopy (OES) of SEF on aircraft measurement reveals a blue/violet emission
that can be attributed to the 2nd positive system of Ny (C°TT;} — B*I1]): < 18 eV
[40].

Prevenslik [39] proposed that where a cluster (10 or more) of charged graupel
particles fall to the ground in the absence of a metal protrusion SEF does not occur
but a collective discharge action occurs breaking down the surrounding atmospheric
air causing the production of buoyant BL. The characteristic optical emission of
which ranges from yellow, through orange, to red A = 550-780 nm) as indicated
by [41]. The associated atomic and molecular ion spectra are: atomic-H-Balmer-«
line (A = 656 nm), the 1st positive system nitrogen (A = 580 and 654 nm), the O
(3p5 P — 35°S) (A = 777 nm) and the excited NO," molecule continuum (A = 450-
800 nm) [42]. Plus metastable neutral molecular oxygen (O,; A = 557.7 nm) [43].
The emission lines and bands quenching as the graupel finally melts.

5.3 Precipitation Static

Wireless equipment having a range of 300 km started to be installed in airships as
early as 1910 [11, 20] followed by their installation in aircraft. From the outset, the
performance of the wireless communication degraded when flying through rain, mist
and snow and it is thought that this precipitation caused an accumulation of electrical
charge on the wireless antenna and other surfaces. To prevent electrical arcing and
flashovers the standard approach was to bond all electrical equipment along with the
airship’s outer surface to central Earth point so that the airship has ‘theoretically’
an equal-potential throughout. Operationally it becomes standard practice to reel-in
all wireless antennas when passing through a thunderstorm [9, 44], see Sect. 7.4
(Dixmude).

Marriot reports one of the first investigations of electrostatic interference in 1914
[45]. By 1937, this electrostatic interference became known as precipitation static,
or P-static [46]. With the advent of aircraft, high-speed flight the flux of charged
particle due to increased antenna drag became a major problem and aerodynamic
shielding measures where sought [47]. From the early 1990s it was shown, based
on space born X-ray measurements that lightning produces high-energy radiation,
in form of an abundance of electrons (up to 10 s MeV) and gamma-ray glow / flash
that drives the thundercloud electrostatic interference [48].

6 Peek’s Formula for a Single Metal Electrode

It is well known that increasing the electrical stress around a single metal electrode
tip (or protrusions) ultimately results in local air breakdown around the electrode.
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Fig. 3 Schematic of corona discharge boundary limits (g, and g,) for a single electrode. The ionic
wind region is where unipolar charge carriers (for dry air, No* and O,* ions) drift away for the
corona region with insufficient energy to generate further reactions and/or ion creation

At this level of stress, the local air volume is weakly ionized followed by a rapid
electron recombination back to the ground state discharge. On the milliseconds time
scale the outer boundary of this volume, the ionization frequency (v;) just balances
the electron loss frequency (v,) by attachment [49], see (8), and Fig. 3. Under these
condition a static corona discharge, or SEF, appears attached to the electrode with
the visual inception voltage being higher than the visual extinction voltage because,
once started there are always electrons to ionize gas molecules.

Vi—Va~x0 ®)

Upon increasing the voltage stress level further (~5 kV cm™!), the discharge
extends outward to form multiple streamers flowing from the electrode, where break-
down is enhanced by the production of electrons at the head of streamer. If the
voltage becomes large or a counter electrode is close by (1-10 cm) a conducting
trail or channel may form producing a flashover discharge. If the applied voltage is
maintained sparks may be also formed. Further increasing the voltage stress creates
bidirectional leaders are formed, which involve; space-charge and a gas heating
(>500 K) mechanisms, rather than corona onset alone.

From this sequence of increasing discharge energy states, it is reasonable to
assume that SEF influences streamer and leader production. Table 3 (adopted from
Gibson [50]) provides a guide to the inception voltage for the three different discharge
types. The data shows that although the corona inception voltage for lighting rods
has the lowest value for the three discharges (where the variation in the values is due
to physical structure orientation of the rods [51]).

Peek’s formula was originally proposed as an empirical formula for coaxial cylin-
drical configurations, parallel wires and spheres in the 1920s [1]. Peek’s empir-
ical formula utilizes the local atmospheric condition and the surface condition of a
conductor to estimate the corona visual inception voltage at local gas breakdown.
For a manmade ac voltage source, see (9).
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Table 3 Corona inception electrical field values and characteristic temperature (K) for atmospheric
discharge at ground/sea level

Parameter Corona discharge Streamer discharge | Leader discharge [51]

1-2 cm diameter [51]

grounded lighting rods

[50, 51]
Electric field (kV | 0.2-2.7 ~5 ~1-5
cm™!)
Gas temperature ~300 ~300 >3000 K
X)

k o .
gv = goom| 1+ N Measured in units of kV cm )
o

In (9), g, is the voltage gradient (kV cm™!) at the visual corona inception
voltage; g, is the disruptive electric gradient, for an ac voltage the value varies
from: 27.2 k.cm™! for a sphere, 30 kV.cm™! for parallel wires, and 31 kV cm~' for
coaxial geometries. The parameter § is the local relative air density (at sea level, § =
1 under fair weather conditions and 0.9—-0.8 for storm conditions), m is the surface
roughness factor (m = 1 represents dry and smooth clean surface under laboratory
conditions). For wet conditions, Peek found that the g, fell sharply and considered
this as a special case for m by substituting it with g, = 9 kV cm™!. The parameter k is
an empirical dimension factor (0.301-0.308) and 7, is the tip geometry radius (cm).
As energy is required to start a corona discharge the single electrode surface-to-space
boundary limits requires that the surface electrical stress be raised to g, so that at a
finite distance away in space where k+/r, is g, air breakdown occurs. For dry air, the
conducting carriers are typically N,* and O," ions within a background of neutral
gas molecules that drifts away from the corona discharge [52].

Natural occurring disruptive electric gradients formed by thunderstorms may also
have a direct current voltage component [ 1], therefore (9) may be rewritten as follows:

k
=21.98m( 1 + —— |Measured in units of kV cm™! 10
o (17 o

where 21.9 is the route mean square (RMS) of the ac disruptive electric gradient for
air (g,). The parameters: g,, k and ry having the same meaning as in (3).

Given that Peek’s Law, in its different forms (9 and 10), is an empirical math-
ematical construct, parameters § m k and r, may be varied to fit the scenario of
an airship entering a Cumulonimbus vertical cloud formation where the fair weather
electric field is enhanced. In this scenario, the electrically isolated airship may become
negatively charged with respect to the cloud were the amount of negative charge is
determined by the competing effects of the rate of positive ions pulled to the charge
surface as compared to the rate of electron generation by photoemission at the surface
under ion bombardment conditions. Under this negative corona condition, the initial
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visual inception voltage generates discrete discharge points, or tufts, on airship sharp
edges where the electrical stress is the greatest. These discrete discharges only grow
in number to produce a uniform discharge as the voltage is increased. In addition,
beyond the corona boundary (g,) electrons are propelled away from the discharge
with sufficient number and energy to drive electron-impact reactions with neutral
molecules [52, 53]. The presence of a visible SEF glow on flying aircraft surface
also appears to be dependent on its airspeed. Researchers at MIT have recently
demonstrated that high airspeed the SEF become detached leaving the electrical
stress level to raised to it pre-visible inception voltage level [53, 54]. Which of these
two corona mechanisms (positive or negative) has the greater potential as a Hj-air
ignition source is of interest when considering the destruction of Hj lift-gas airships?

7 Storm and Thunderstorm Activity Leading to Airship
Disasters

This section considers six notable dirigible and one non-rigid airship disaster
attributed to storm and thunderstorm activity. These are LZ-40 and SL-9; The Royal
Air Force (RAF) North Sea class NS.11; the French Navy Dixmude, originally built
by as LZ-114 for the Imperial German Navy; the USS Akron and USS Macon; and
the Hindenburg that ended the dirigible airship adventure.

7.1 LZ-40 (1915)

Two of the earliest known military H, lift-gas dirigible disasters caused by natural
atmosphere electrostatic disturbance were the LZ-40 and the SL-9 during WW1.
The LZ-40 took part in a number of bombing raids on England between June and
September 1915 [11, 54 and 55]. On the LZ-40 last reconnaissance (commanded
by Kapitinleunant Klaus Hirsch), the airship encountered a thunderstorm whilst
returning to base on September 3, 1915. Robinsons [11], page 124125, provides
details of the disaster. The following text is therefore complied from Robinson’s
account. In the afternoon of September 3, a radio message from LZ-40 informs Nord-
holz airship base that they would be returning at 3.30 pm. The metrology conditions
in the local area were thunder and lighting, and at 2.30 pm, a number of eyewitness
at the base saw in the direction of the town of Cuxhaven a ‘large flash of flame like
that of an explosion’. There accounts detailed how the explosion was red in color
and the LZ-40 smothered in flames falling into the tidal region between the island of
Neuwerk and Cuxhaven. Immediately rescue attempts were underway, but it was not
until the following day that the salvage teams were able to recover eleven bodies out
of a total of twenty on board the airship, along with the airships recording barograph.
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Posted on the www.wrecksite [55] is a photograph of the LZ-40 salvage operation
with the airship’s airframe laying in the shallow tidal sea.

In the report of the disaster (written by Kapitin Peter. Strasser; Chief of German
Imperial Naval Airship Division) it was detailed that the airship was above its pressure
ceiling, venting H; lift-gas at the time of the disaster and ventures to relate the disaster
to lighting even though there was no eyewitness to verify this. Strasser goes on to
not: ‘airships should in all circumstances try go around thunderstorms. If this is
not possible, they should go through as far as possible under the pressure height as
the squalls will allow. The Airships of the Division now have such orders; also in
thunderstorms they are ordered to reel in antennas’.

On a final note, D’Orcy mistakenly lists the LZ-40 destroyed at Ostend harbor
on August 10, 1915 by the Royal Navy Air Service (RNAS) [20], in reality it was
LZ-43 that was destroyed [11].

7.2 SI-9 (1917)

Commissioned into the Germany imperial Navy at Seddin in Pomerania, the SL-9
was the ninth in the series of twenty-four airships built by Schiitte-Lanz. Although it
wood and laminated wood airframe caused concerns to the German Imperial Navy,
in particular Strasser [11], page 56. However, thirteen reconnaissance flights were
made by SL-9, and in the summer of 1916, the airship bombed the port of Mariehimn,
Finland (July 25, 1916) [56] and later took part in joint Army-Navy bombing raids
over the South-East coast of England where airframe damage was sustained that
required a month of repairs. After these raids, the SL-9 fell in flames into the Baltic
Sea near Pillau on March 30, 1917 with the loss of twenty-three lives. Robinson [11],
page 393 mentions that SL-9 burnt in a thunderstorm, while the Wikipedia website
[57] claims the possible cause of the crash was a lightning strike. As with the LZ-40,
the ignition source has not been determined. A possible explanation is that SL-9 rose
above its pressure ceiling by a violent updraft causing an automatic blow off of H;
lift-gas which was then ignited by cloud electrification.

7.3 NS.11 Non-rigid Airship (1919)

The NS.11 entered service with the recently formed RAF in 1918. Based at RN airship
station Longside Aberdeenshire, the airship made its record-breaking endurance
flight of 400 miles in 100 h and 50 min on February 9-13, 1919 [28]. The R-34
broke this endurance record some months later when flying East-to-West transatlantic
flight from East Fortune, England to Mineola, long island, USA in 108 h on July
2-6, 1919. Following this new endurance record, Captain W.K.F.G. Warneford of
the NS.11 filed a circular 48-h flight plan over the North Sea from Pulham airship
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station. Thus, the NS.11, with Warneford and eight crewmembers rather than the
usual nine, commenced its last journey at 9 pm on July 13, 1919 from Pulham.

Some 8 min past midnight, a routine radio message revealed no problem with
the flight, but some 15 min later, a Mr. E.T. Elwin from the hamlet of Newgate
heard the NS.11 aero-engines making ‘a lot of noise’ and thought the NS.11 was in
trouble. A few minutes later in the town of Cley, Mr. A.E Stangroom heard the NS.11
pass overhead, again making ‘a ‘tremendous noise’. By 12.45 am a number, people
heard the NS.11 pass over Blakeney. At approximately 1.45 am, a violent explosion
out to sea was heard, with the noise being carried as far as Wells and Cromer. The
NS.11 underwent a midair explosion and fell burning and exploding again before
crashing into the shallow North Sea some 5-6 miles of the Norfolk coast with the loss
of nine lives [58, 59]. Unlike the ZL.-40 and SL-9, there were many ground-based
eyewitnesses to the unfolding NS.11 disaster. Several unsuccessful, rescue attempts
were made. Most of the eyewitness heard the noise of an explosion then turned to
look at where the noise came from, at which point they described what they saw.
Two eyewitnesses saw the explosion; an old seaman saw the airship turning under
the cloud before the explosion and then ‘turned on end’, whilst the other stated that,
‘she ‘took a header’. Both the witnesses inferring that the airship aft tail fins went
up as the ship took fire. The staff at Pulham airship station unaware of the unfolding
disaster until someone from Easter Daily Press (Norwich) phoned to ask if they could
comment on the disaster. As for the recovery of NS.11 crew, only the body of the
second Coxswain (Sgt. C.H. Lewry) was found, it was washed up on the beach at
Salthouse 2 weeks later on July 31.

In all of the accounts, the most notable metrological feature of the unfolding
disaster was the isolated ‘greasy black cloud’, which the NS.11 was approaching and
then turned away when the initial explosion occurred. Importantly there is no mention
of lightning. Peake [60] has reconstructed a plausible account of NS.11 destruction
that starts with the eyewitnesses seeing the NS.11 turning thereby presenting its rear
gasbag and tail fins to the cloud and the second explosion occurring as the remaining
gasbags rupture on impact with the sea. Figure 4 graphically shows the account.
In this account the appearance of the ‘greasy black cloud’ is characteristic of an
advancing ‘cold front’, Where the front is formed dry denser cold air pushes under
moisture-laden clear air which is forced up where upon moisture is condenses out
as water droplets to form the greasy appearance of the cloud. The condensation
process also releases heat that causes a self-sustaining warm updraft leading to the
formation of cumulonimbus and ultimately thunderclouds. Under these metrological
conditions, the fair weather electric field is enhanced as the ‘greasy black cloud’
grows with a potential to induce SEF on the outer fabric of the NS.11 envelope.
This scenario in itself does not explain the explosion. However, factoring in that
the caption and coxswain anticipated the updraft would force the NS.11 above its
pressure ceiling, and vent H; lift-gas to counteract the uplift thereby creating the
very distinct possibility that SEF would ionize the escaping H, gas particularly if
the H, gas was of poor purity and within the flammable limit. This scenario has
credibility if the reports were true that Captain Warneford was attempting to break
his own endurance record, by leavening Pulham with maximum fuel and minimum
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Fig. 4 A schematic depiction of the NS.11 near what the eyewitness described as a ‘greasy black
cloud’

crew. In which case there would be no air in airship bonnets and her pressure ceiling
would be much reduced. The official court of enquiry findings was inconclusive, but
lighting was considered as a possible cause, despite no forthcoming evidence.

7.4 Dixmude Dirigible (1923)

The L-72 was the third and final 1918 ‘Height Climber’ X-class Zeppelin, designed to
have a working altitude 6,000-6,400 m within a bombing raid duration of two-days.
These airships required a significant increase in length (addition of one gasbag) and
areduction in weight. The achieved weight loss through the removal of parts of the
original airframe, along with one of the original seven Maybach I'Va aero-engines
from the rear gondola, a reduction in fuel and water ballast capacity, as well as a
reduction in machine gun armaments.

As part of the war reparations, in July 1920, the LZ-72 was turned over to France
in ‘perfect condition’ and renamed the Dixmude. At the French naval air base
Cuers-Pierrefeu near Toulon, the airship came under the command of the charis-
matic twenty-eight year-old naval officer: Lt. Cdr. Jean Du Plessis du Grenedan. Du
Plessis supervised a three-year rebuild program of the Dixmude for extended flight
duration (4-5 days) at low altitude (2,000 m). To achieved this goal, new goldbeater’s
skin gasbags supplied by the newly formed Astra Company, rather than the original
German Company and the airframe strengthen to carry the increased fuel and water
ballast plus crew and passengers.

After a number of trial flights, the Dixmude began its last flight on December 18,
1923, a planned return flight from Cuers-Pierrefeu air field-Toulon to the Algerian
oasis of Ain-Salah (Fig. 5). At 8.00 am on Thursday (some 50 h of flying time) the
Dixmude turned north, bound for the Algerian coast, the airship encountered strong
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Fig. 5 The last flight of the Dixmude, December 1923. Route taken from Ridley-Kitts (2010) [64]
and overlaid on to a modern map of the western Mediterranean Sea, Algeria and Tunisia. Red
solid-line: known flight path. Red dashed-line: assumed ‘free-balloon’ flight path

impeding winds and as the Dixmude fought against the winds, radio messages were
sent reporting that fuel was running low and two aero-engines had broken down. The
Dixmude was now being force east to Tunisia as a ‘free-balloon’ and at the mercy of
the winds. The airships last radio message (02:08 am Saturday morning December
21) reported that they were following standard operating procedures to reel-in its
radio antenna due to thunderstorm activity. Soon afterwards (02:30 am) railway
workers and a hunter near Sciacca—Sicily reported a red flash in the Western night
sky followed by burning objects falling in to the sea. On the morning of December
26, 1923, burnt wreckage of the Dixmude was found along with the charged corpse
of her Commandant and the radio operator. As the news of the crash spread around
the world, many newspapers speculated that lightning struck the Dixmude and was
the cause of death of the fifty crew and passengers [61, 62].

Throughout this period, French newspapers reported the Dixmude voyage up to the
last radio massage, as for the 4-5 days the Dixmude was missing reports emerge that
the airship was lost in the Tunisian desert, and French, Italian and British naval ships
searched for the airship in the Mediterranean Sea. Confusion reigned in the French
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Ministry of Marine and international newspapers. Later the French commission of
enquiry confirmed the newspaper speculation that the Dixmude was destroyed by
lightning.

In 1924, Dr. Hugo Eckener (Manger of Luftschiffbau Zeppelin and later Comman-
dant of the Graf Zeppelin) wrote in the ‘Luftfahrt’ on the Dixmude disaster [44]. In
the article, the known German construction details of the L-72 and the subsequent
conversion to the Dixmude are analyzed and the probable last 4-5 days timeline of
the disaster presented. The following text provides a summary of his analysis. Firstly,
repurposing the L-72 airframe from one of a high altitude bomber to one intended for
extended flight duration by altering the distributed payload would cause excess stress
on the airframe at low altitude. Secondly, the six Maybach aero-engines were pushed
well beyond their military specification maintenance schedule of 1-2 days. Indeed,
Maybach refused to guarantee more than 48 h continuous use, especially for the
crankshafts. Thirdly, as for a lightning strike being the energy source of the disaster,
Dr. Eckener comments that duralumin airframe are designed to withstand routine
lighting strikes by dissipating the electrical charge throughout the metal airframe,
particularly at the nose and rear of the airship. [N.B. The Grafe Zeppelin and the
Hindenburg are a case in-point, as both were struck by lightning many time as they
voyaged between Europe and the Americas]. Fourthly, the burnt condition of the
wreckage and the body parts found were consistent with a gasoline fire rather than a
H; fire that is less destructive to immediate surroundings. Fifth, automatic opening
of the pressure ceiling valves due to violent updrafts may have been a contributing
factor. Finally, even the radio message sent by the Dixmude build a picture of the
storms it encountered; it is most likely that we will never know true cause of the
airframe sudden and catastrophic failure.

A contemporary in-depth analysis of the Dixmude may be read in Ridley-Kitts
three-part history of the Dixmude: published in Dirigible (2010 and 2011) [63-65].

7.5 USS Akron Dirigible (1933)

In 1929, the USS Akron (the first purpose built flying aircraft carrier airship) was laid
down and took her maiden voyage on November 2, 1931. After two ground-handling
accidents, both captured on newsreels February 22, 1932 [66] and May 8, 1932 [67],
a third ground handling occurred at the Lakehurst hangar 1 on August 22, 1932. On
April 4, 1933, the worst airship disaster unfolded as the USS Akron crashed at sea off
the coast of New Jersey with the loss of seventy-six crewmembers. The high death toll
being due to drowning or hypothermia a factor being that there were no life jackets
onboard the airship [68]. On this occasion, the surviving crewmembers were able
to give a firsthand account of the disaster. The disaster happened whilst the airship
was navigating at low altitude through a thunderstorm when her lower tail section hit
the water. As with the first three accidents, the fourth and final accident provides a
real-life and death example of the dangers of violent crosswinds and vertical winds
to airships at or close to ground/sea level.
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7.6 USS Macon (1935)

The USS Macron airship took to the sky on April 21, 1933, two week after the lost of
her sister airship, USS Akron. In April 1934, whilst maneuvering through mountains
in Arizona the USS Macron was forced to exceed its pressure ceiling height (910 m)
and climb to 1,800 m to past the mountain range which required 7,300 kg of ballast
and fuel to be jettisoned. To gain a safe altitude it became necessary to jettison Hj
lift-gas leaving the airship’s ability to compensate for further changes in buoyancy
greatly reduced. That is the USS Macon began take on balloon flying characteristics.
With minimal ballast, and fuel, she pasted through the next mountain range in Texas,
where violent up- and downdrafts could not be compensated for, resulting large
aerodynamic pressures buckling the leading tail fin girder ring (#17.5). Subsequent
repairs where made to the lower and lateral fins, but where not finished on the
upper tail before her next flight on February 12, 1935. In this flight, the USS Macon
encountered a storm off Point Sur-California where aerodynamic pressure at the
rear of the airship caused the upper fin to shear off. The tail fin structural failure
caused the USS Macon to climb above it pressure ceiling where the He lift-gas was
automatically released, subsequently the USS Macon slowly glided in to the sea.
Unlike the USS Akron, life jackets and rafts where on board and SOS messages sent,
resulted in only two lives being lost with the remaining eighty-one crewmembers
rescued [69]. Here again the tail fins attachment appears to be a contributing factor
under storm conditions. A similar tail cone problem was to plague the British R-100
airship test flights and on the airship’s maiden transatlantic crossing to Canada (July
29-August 1, 1930) where on a rival the outer fabric of the starboard elevator became
ripped [70].

7.7 Hindenburg Dirigible (1937)

At 18.001ocal time on May 6, 1937 the second worst dirigible airship disaster, with the
lost 36 lives, unfolded at Lakehurst, New Jersey when the Hindenburg commenced
its tethering procedure at the airship mooring-mast. The airship had been delayed by
poor weather and nearby thunderstorms as portrayed by British Pathé newsreel of
the unfolding disaster [71]. Out of the sixty-two survivors, many gave testament to
the disaster along with many ground witnesses. The disaster has evoked many books,
journal papers [26, 72—77] and aired TV programs [78]. This section considers the H,
lift-gas ignition theory based around four eyewitness accounts (Broadcaster: Herbert
Morrison [79]: history Professor Mark Healed [76, 77]: photographer Arthur Cofod
Jr [80]; and Helmsman Helmut Lau [81]. To aid the reader with these accounts, Fig. 6
shows a sketch of the Lakehurst airfield and a schematic of the final 30 min of the
Hindenburg flight. In addition, the approximate location of the external eyewitness
is as given: H. Lau position is within the Hindenburg’s lower tail fin auxiliary control
room.
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Fig. 6 Schematic of the Lakehurst airfield and the final flight of the Hindenburg

Positioned between Hangar # 1 and the mooring-mast, Herbert Morrison and
Charles Nehlson’s [79] sound recording of the Hindenburg disaster, transmitted on
the following day of the disaster, imprinted such public reflective memories to give
rises the ‘Hindenburg syndrome’ [72]. Morrison and Nehlson’s account would not
allow H; gas to be used in public transport for many decades. The German Board of
Inquiry into the Hindenburg disaster (picked out from many plausible reasons) two
H,; gas ignition theories: (a) and (b).

Theory (a), proposed that due to atmospheric electric disturbances at the time
of landing of the airship a corona discharge, otherwise known, as SEF or brush
discharge, was the ignition source.

Theory (b), after dropping of the landing ropes, the airships outer fabric became
less well grounded than the framework of the airship due to the lower conductivity of
the outer fabric. Under these conditions, a spark possibly caused ignition of a H-air
mixture present over the gasbags four and five.

Professor M. Heald with his wife and son were located outside the main gate of
the naval base on a trip to see the Hindenburg. From the car park lot, he records
seeing a dim blue flame flickering along the Hindenburg’s top ridge minutes before
the fire started [76, 77]. The Heald’s account from outside the airfield that gave a
starboard side view of the Hindenburg against the backdrop of darkening eastern sky
rather than the view from port side of the airship as told by Morrison and Nehlson.
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Given this information, it is generally thought that the blue color of the dim flicker
might be SEF, thus supporting theory (a).

Closet to the initial ignition of the fire was Helmsman H. Lau who was (stationed
with three over crewmembers) at the auxiliary control room within in the lower
tail fin. In his testimony to the board of inquiry, he states the first time he notices
anything wrong is when he ‘hears a muffed detonation and looked up and saw from
the starboard side down inside the gas cell a bright reflection on the front bulkhead
of cell No. 4’. He goes on to stay: “The bright reflection in the cell was inside. I saw
it through the cell. It was at first red and yellow and there was smoke in it. The cell
did not burst on the lower side. The cell suddenly disappeared by the heat.... The
fire proceeded further down and then it got air. The flame became very bright and
the fire rose up to the side, more to the starboard side, as I remember seeing it, and
I saw that with the flame aluminum parts and fabric parts were thrown up. In that
same moment the forward cell and the back cell of cell 4 also caught fire [cell 3 and
cell 5]. At that time parts of girders, molten aluminum and fabric parts started to
tumble down from the top. The whole thing only lasted a fraction of a second.

Helmut Lau’s testimony (translated by Willy von Mesiter) uses the word
‘aluminum’, which is assumed a simple transcription mistake as in the US Navy
the names are interchangeable [29]. Given this, the Hindenburg’s airframe would be
expected to exhibit pronounced airframe deformation at approximately 471 °C and
produce molted duralumin (aluminum-copper alloy) 630 °C [82].

Arthur Cofod Jr (AC) took a series of black and white photographs of the Hinden-
burg from a location to the north of Hangar # 1. His most memorable photograph
(Fig. 7) shows the starboard and aft section of the Hindenburg 10 s of seconds before
crashing to the ground. With the back of the dark cloudy sky, the image photograph
graphically details how the fire progresses forward with the keel just buckling aft
of the rear two aero-engines, suggesting that the temperature generated by the fire
is >471 °C. Some 250 m above the Hindenburg, the updraft from the fire forms as
a pyrocumulus mushroom-shaped cloud: where the upper bright region is normally
associated with condensation of water vapor and the lower dark region contains
burning debris of the airship with the most heaviest parts falling back down under
the force of gravity. The moving H;-air flame-front is said to create a mantle effect
between the patches of un-burnt outer fabric [74, 75]. It is also clear that at this stage
of the fire the lower tail fin with its auxiliary control room is horizontal and still
intact. Presumable, it is this aspect of the fire that enables H. Lau, (along with three
other crewmembers (H. Freund, R. Kollmer and R. Sautar)) to escape the inferno
when the intact lower tail fin crashes to the ground.

Alan Thomas writing in the Dirigible [26], advances the plausible theory of how
the last of the three vented H; lift-gas volumes may have be ignited. This theory may
be dived into both what is known and speculation as to what may have happened.
What is known is that, in the final minutes before mooring the maneuvering valves are
operated to vent H, gas to stabiles the airships neutral bouncy at the mooring-mast. In
addition, with all of the Hindenburg aero-engines reversed the airship comes to a stop
at the mooring-mast. At this point, the vent shaft theory may come into play that the
airship slows down and the aerodynamic extraction force at the top of the vent shaft
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12293A.C.

Fig. 7 Hindenburg seconds before dropping to the Lakehurst airfield. The photo is downloaded
from Wikimedia and attributed to Arthur Cofod Jr/Public domain [80]

is corresponding reduced. Thus, H, gas slowly builds-up in the vertical vent shaft
(Fig. 2), with little of the H,-air mixture diluted in the airships slowing slipstream.
With H,-air mixture, exiting the top of vent shaft becomes partially ionized by SEF.
In addition, the ionized H,-air mixture flows-back down the vent shaft to combust
the concentrated H, gas.

8 Discussion

Since the beginning of recorded history, St Elmo’s Fire (SEF) has been widely
observed at the closing stages of thunderstorm activity: both at sea level and in
mountain regions. The systematic study of these naturally occurring atmospheric
weather disturbances has proved difficult due to verifiable eyewitness accounts and
real-time high-voltage air breakdown measurements. However, at least five non-lethal
airship-SEF encounters are known to have occurred in WW1, see Table 1. The five
H, lift-gas airships (5 dirigibles and one non-rigid) disasters presented here repre-
sent the most notable storm weather related airships disasters. In contrast to these 5
airships disasters the He-lift-gas USS Akron disaster and its sister ship USS Macon
had similar tail fin structural and aero-engine design faults, both of which played a
significant part in their encounter with violent storms systems. Lightning, SEF or
another form of static discharge did not have a role in these two airship disasters.
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The boards of enquiries in to each disaster indicate a combination of Pilot error and
structural failures where the primary contributing factors in the destruction of the
two airships.

This review has looked at H; lift-gas airship disasters where blue H, gas is the
main source of lift. In the first two discussed (LZ-40 and SL-9), all the crew of both
the airship died, thus providing no firsthand evidence to the cause of either crash.
However, Nordholz airfield ground crew did see the LZ-40 burst into flames as the
airship prepared to land. The recovered barograph from the wreck indicted that the
airship was a height of 2,400 feet and valving Hj lift-gas at the time of the disaster.
As for the cause of SL-9 disaster, there can only be speculation.

This work has reviewed the anatomy of a Hj lift-gas airship fire along with cloud
electrification as the ignition source using Peeks formula to describe the point of
ignition. From the forgoing line of reasoning, it is hypothesized that a potential
ignition source in weather related airship disasters, in part, might be due to cloud
electrification and the production SEF. The mechanism of positive and negative
corona discharge along the airship airspeed may also have a role in the production
SEF. Notwithstanding this observation, SEF is most likely to be prevalent at high
electrical stress points on the airship external surface coupled with automatic H,
blow off, or the manual operations of maneuvering valves to blow off H, gas. Out of
five H; lift-gas airship disasters reviewed here, three airships (NS.11, Dixmude and
the Hindenburg) are likely candidates as the means of the airship destruction. The
scenario in which the disasters occurred is as follows.

The NS.11 disaster was witnessed by many people and recorded in newspapers
of the time where lighting strike was portrayed as the guilty party was even though
a thunderstorm was not present at the time. Without clear evidence, the board of
enquiry found that lightning was the most probable cause of the disaster thereby
deflecting blame form unauthorized flight endurance attempts by the captain of the
NS.11.

As Dixmude turned home on its endurance flight from the Algerian oasis of Ain-
Salah, there was no eyewitness of unfolding disaster. The disaster was pieced together
in French national newspapers from radio massages and the discovery of the airship
wreckage some four to six days after the event. One year later, a detailed forensic
analysis of the Dixmude disaster (by Dr. Hugo Eckener) highlights the failings of the
airship’s aero-engines and modification (strengthening) to the original L-72 airframe
as being a major contributing factors to the lost of the airship.

In the case of the Hindenburg, Professor Heald’s family provided visual evidence
of SEF flickering along the upper ridge close to the tail fin of the Hindenburg moments
before the disaster. This however was not given at the board of inquiry. Although
late, this new evidence gives weight to the first option (a), where atmospheric electric
disturbances at the time of landing of the airship, a corona discharge, otherwise known
as SEF or brush discharge was the ignition source of a H-air gas mixture. In this
case as manual maneuvering valves where operated to vent the H; lift-gas as the
airship approached the mooring mast.

It may be concluded that the NS.11, Dixmude and the Hindenburg fell victim to
the ‘first rough draft of history’ as portrayed in the newspapers where a lightning
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strike was stated to the likely guilty party. However, the Hindenburg disaster was
the first airship disaster to be captured using real-time sound-recordings, black-and-
white movie-reels and photos. Herbert Morrison’s recorded radio broadcast of the
Hindenburg disaster was the final death blow to Germanys dirigible travel, but in
reality the Pan American Airways M-130 China Clipper scheduled flight across the
Pacific on November 22, 1935, (some three months before the Hindenburg first took
to the air) was the first blow. In Russia, the end of H, lift-gas dirigible service did not
end until the SSSR-V6 and SSSR-10 crashed in 1948 with a combined lost of twenty
lives. Non-rigid airship service continued throughout the ‘Great Patriotic War’ and
beyond as unpressurised H, bulk transporters. The lost of the Patriot and Pobeda
(Victory) in 1947 may be considered as the end of the H lift-gas airship golden age.
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Abstract Whether in the Hawaiian, Bluegrass, Rock ‘n’ roll, film sound track or
animated cartoon genre, the swoop (glissando) sound made on a slide-guitar is one
the most instantly recognizable in western music. This paper reports on the complex
acoustical and perceptual glissando of the opening few seconds of Warner Brothers
‘Looney Tunes’ ascending glissando, and its counterpart (descending glissando), both
played on a ‘Dubro’ resophonic guitar. The aim is to analyze these guitar themes in an
attempt to provide both a historical development, as well as a technical understanding
of the generated sound. With the resophonic guitar tuned to open G (D-G-D-G-B-D),
the radiated sounds, includes the guitarist gestures and the glissando sound of steel
and glass bottleneck, Using the toolbox within Audacity software (time-domain,
standard autocorrelation, spectrogram and noise reduction), the recorded tracks are
transcribed for tempo, consonant, dissonant, string squeaks, and incoherent/coherent
noise. This study also attempts to map the complex psychoacoustic tonal quality of
a resophonic guitar, which has been demonstrated to impact emotionally on the
listener. It is found that dynamic slide movement divides the string scale length into
two coupled longitudinal vibrating segments, each producing a coherent continuous
mirrored exponential varying pitch that extends to the guitar brilliance region (4.5—
20 kHz). Incoherent or ‘hiss-like’ noise is found within the lower psychoacoustic
warm region (0-0.5 kHz). This incoherent noise is linked to a slip-stick friction
process between the slide and string. Slide material and slide direction varies the
intensity of the noise that has a Voss-Clarke 1/f-like response with a Brownian ~ —
7 dB/10 Hz roll-off. It is proposed that the guitarists fretting arm musculoskeletal
system plays a role in the generation incoherent or hiss-like noise.
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1 Introduction

Chordophones have an important cognitive and emotional role in the development of
world music [1], and western music, where the guitar is the main instrument in this
classification of stringed instruments. When playing a string instrument, the listener’s
perceptual experience can invoke a strong psycho physiological response (chills and
tears [2], change in heartbeat and respiration rate [3], pupil dilation response [4], and
dance [5]. Over riding these emotions is whether the music is played in the major or
minor cord: where a major cord instills joy and happiness, and calmness and sadness
is found in minor cords [6]. The average tempo of a composition also influences the
listener’s emotions. For example, an Allegro composition of 140 beat per minute
(BPM) has been found to increase listener’s blood pressure and heart rate, whereas
Andante of 80-82 BPM produces calmness [7]. For a human body mechanism to
produce these responses, Voss and Clarke [8] proposed that the natural chemical
oscillations within nerve membranes are a likely candidate. Arguably the resonant
guitar (or, resophonic guitar [9, 10] played with a bottleneck slide provides one of
the most distinctive glissando [11] sounds within the family of string instruments.
For example, Freddie Travares’s crystal-clear attention grabbing opening 2 s for the
Warner Brothers instrumental theme ‘Looney Tunes’ (based on the song Merry-go-
round broke down) [12, 13]. Travares’s credited guitar work on Elvis Presley’s ‘Blue
Hawaii’ [14] is another, if not well known, example of the guitar glissando. It is
no surprise then that ‘Loony Tunes’ is associated with comedy and happiness and
‘Blue Hawaii’ is associated with mellow emotions. Ry Cooders reworking of Blind
Willies Johnson slide guitar chords in the film ‘Paris, Texas’, goes one further by
introducing vibrato at the end of each fading cord to evoke the feeling of doubt,
sadness and yearning of the American dry desert landscape [15].

Beyond the resophonic guitar patents [9, 10], online commentary of partitioning
the resophonic guitar psychoacoustic pitch/frequency bands [16], mechanical modal
analysis of the resophonic guitar [17, 18] and the development of virtual slide guitar
software [19], detailed mapping of the resophonic guitar psychoacoustic space has not
be documented as played by a guitarist. The aim of this work is to analysis the radiated
sound of a ‘Dubro’ resophonic guitar with the guitarist playing the instantaneously
recognizable opening seconds of the ascending glissando of the ‘Looney Tunes’
instrumental theme and its counterpart associated with the instrumental theme music
to the film ‘Paris, Texas’. The capture and analysis of these guitar themes and guitarist
gestures maps the perceived sound by the musician and nonmusicians alike thus
providing a greater insight to the resophonic guitar psychoacoustics space.

This paper is organized as follows: Sect. 2 reviews the origins of the resophonic
guitar and open G tuning. Section 3 provides the experimental. Section 4 describes
Benchmarking of the guitar under steel- and glass-bottleneck at a fixed fret posi-
tion when strumming a using a plastic plectrum [20]. The frequency range of the
benchmark extends through three psychoacoustic regions: warm (0-2 kHz), bright
(2-4.5 kHz) and the lower brilliance region (4.5-8 kHz) [16]. Section 5 explores the
ascending and descending glissando in these three psychoacoustic regions. In Sect. 6
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the extended brilliance range up to the human audible threshold limit (20-22 kHz)
is examined for ascending and descending glissandos. In Sect. 7, the background
detailed in Sects. 4, 5 and 6, informs and identifies the incoherent noise produced by
the guitarist gestures. Finally, Sect. 8 provides a discussion on this work.

2 Development of Resophonic Guitar

2.1 Pythagoras String Instrument Theory

The employment of music in the treatment of disease dates back to the earliest times
including when David strummed his harp before Saul [21]. Later Pythagoras [ca,
570-495 BC] became interested in understanding the notes and scales used in Greek
music for the healing of disease. In particular, the use of the stringed instrument,
called the lyre. It is from this time the use of a mathematical approach to help
achieve a greater understanding of western music became established. Pythagoras
studies found that when two strings with the same length, tension, and thickness,
sounded the same when they were plucked, or picked. This means they have a unison
sound to the human ear (or consonant), when played together. He also found that
if the strings have different lengths (keeping the tension and thickness the same);
the strings have a different sound and generally sounds bad (or dissonant) when
played together. He also noted that strings having different lengths produce sounds
but were consonant rather than dissonant. Pythagoras called the relationship between
two notes an interval. Since these discoveries, music containing consonant tones has
treated disorders of the ear and epilepsy, sciatic gout and a range of mental disorders
[21]. Today, when two strings of the same length are plucked, or picked we say
they have the same pitch and, if one string is plucked, or, picked at exactly one-
half of the length of the other string, the pitch is doubled and are consonant when
played together. This interval is called an octave (harmonic). Furthermore, if one
string has a length that is two-thirds the length of the other, the strings again sound
consonant when played together and this interval is called a Perfect Fifth. Finally, if
one string has a length that is three-quarters the length of the other, the strings again
sound consonant, when played together and this interval is a Perfect forth. Hence,
the length of the strings being a certain ratio defines interval. Musically speaking the
intervals discussed have ratios of: unison (1:1), octave (2:1), a perfect fifth (3:2) and
perfect forth (4:3) and so on. The frequency response of the human ear however can
only spatially differentiate a limited number of tones within an octave, which are 12
half tones or semitones.
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2.2 Vincenzo Galilei’s Fret Fingerboard

In the late Renaissance period, the composer, experimentalist, mathematician, and
father to Galileo Galilei, Vincenzo Galilei [ca, 1520-1591], developed Pythagoras
linear ideas for string instrument to perhaps the first non-linear theory of stringed
instruments. From his work we get the rule of eighteen i.e., the division of the active
vibrational length of the string [string length (SL)] by 18, to obtain the first fret
position (fret;) on the string fingerboard (Eq. 1) and dividing the remaining string
length by 18 again to get the second fret, and so on. The distance from front of the
nut at the headstock to the bridge is defined as SL. Today we use the more precise
calculation of 17.817, although the rule of eighteen is still commonly used. This
rule places the string octave at the twelfth fret’, thus providing an equal temperament
between each fret. However, the exact overall length from nut to bridge varies slightly
with each string, due to the different mass of each string. In this case, the bridge is
orientated at an angle to make a slightly longer sounding length for the lower strings
and a shorter one for the high strings, thereby, altering each string scale length
minutely to improve intonation across all strings in relation to each other for more
accurate tuning when playing up the neck. Equations 1 and 2 help to demonstrate
this relationship [22].

SL
17.817

(D

fret1 =

Equation 2 computes the nth fret position from the front of nut at the headstock.

Fret, = SL— [ L @
(20/12)

The posture of the guitaristis in the seated position with the finger board held by the
left hand at about 45° to the horizontal. The area between the thumb Interphalangeal
joint and the Metacarpophalangela joints of the left hand are warped around the neck
two allow the bottleneck (placed on the ring finger) to act a mobile fret. In this position
the left hand is moved up- and -down the fingerboard using the musculoskeletal arm
system (with minimal wrist flexion). To produce the rich and complex Delta and
bluegrass sound, the index, second and fourth finger do not mute (dampen) the
strings. In addition, the guitarist uses a 0.5 mm thick plastic plectrum held in the
right-hand to down-stroke the cord string while the palm and lower fingers mute
(dampen) the remaining strings.

Using Eq. 2, the fret-offset distance to the nut (fret = 0) can be plotted as log
to the base 10 on the horizontal axis against the Fret number, as shown in Fig. 1.
This example is for a Dubro guitar that has a 19 fret fingerboard with a fixed SL
value of 61.2 cm, see experimental section. The exponential trend-line fitted to the
data points is associated with the fitting parameter. The trend-line deviation towards
fret = 0 and fret = 19, indicates that equal temperament is not directly achieved. In
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Fig. 1 Fret distance from nut plotted on a logjo-linear scale with the data points represented by
open-circles, fitted with a Microsoft Excel exponential trend-line

practice however, equal temperament is achieved by altering the bridge orientation
and string tension as mentioned above.

Unlike non-fretted instruments (violin), the guitar fretted fingerboard allows
people with limited musical knowledge to know when to stop at a given target pitch.
This is because the additional tactile and visual cues add to the audible cues to provide
an all round cognitive feedback system between the guitarist and the sound of the
guitar strings when plucked or picked.

2.3 Origins of the Six-String Acoustic Guitar

The six-string acoustic guitar as we know it today has its origins in post Braque
Europe, in particular in Spain where Antonio de Torres Jurado [1817-1892] devel-
oped the classical hour glass look and the introduction of the evolutionary “fan”
bracing pattern within the guitar’s body. Using a circular aperture (hole) in the top
plate as the principle mode of acoustic amplification and sound projection (see
Helmholtz Eq. 3) [23], his design improved the volume and tone of the guitar
when using the rapidly accepted standard guitar tuning of (lowest pitch, thickest
string) E-A-D-G-B- E (highest pitch, thinnest string).
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fo v A
* 7 2\ Vir,

3)

where f, is the resonant frequency of aperture in the guitar top plat, v is the speed
of sound (at 20 °C, v &~ 343 m s~ '), A is the area of the aperture, V, is the volume
of the guitar body and L., is the equivalent length of the neck plus end correction.

Jf-holes were originally developed for the violin in the Braque period and Antonio
Stradivari [1644—1737], is widely regarded as having produced the best design in
sound projection and pleasing appearance. Later the physicist Félix Savart [1791—
1841] brought this innovation to the guitar, thereby helping to separate the guitar
from its classical roots and gain a new audience in the form of country and jazz. In
2015, a study of f-hole sound projection revealed that the axial-length of the f-hole
rather than its area that determines the acoustic power projection [23].

2.4 The Steel-String Acoustic Guitar

The first steel-strings for the banjo and guitar are generally considered to have been
offered by Christian F Martin [1796-1867] in the mid 1920s, when Hawaiian music
became popular in the USA. The union of the steel-strings with the guitar produced
a brighter and louder sound that could complete with horns, pianos and drums at mid
west American barn dances. Here it’s worth noting that a direct and contemporary
comparison between the 5 steel-string banjo and the 6 steel-string guitar can be found
in the 1972 film Deliverance [24]. The emerging expressive music (Cajon, country,
Folk and Bluegrass music) also meant that standard guitar tuning had to change to
an open G (lowest pitch, thickest string first) D-G-D-G-B-D (highest pitch, thinnest
pitch last) to enable the G major chord (G-B-D) to be strummed on all six strings
without the use of the guitarists fret hand, or a capo.

As open G tuning only requires the re-tensioning of only three strings, this new
tuning style was readily adopted in bands with a wide spread of music genre. Open
G tuning requires the sixth and five strings pitch to be lowered in to D, and G,
respectively. The next three strings (4, 3, and 2) remain the same while the first
string (1) with the highest pitch and thinnest string is lowered in pitch from E4 to Dy.
Table 1 tabulates this process, where the last row provides the comparative frequency
compression (brightness) of open G tuning with respect to standard tuning.

2.5 Lap-Steel-Guitar and Slide-Guitar

It is said ‘that in the 1890s, Joseph Kekuku [1873-1932], accidently strummed a
Spanish guitar with a discarded bolt and from that day Kekuku become the inventor
of the Hawaiian ‘lap-steel-guitar’. This guitar music requires the guitar to be played
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Table 1 Standard and open G tuning of a guitar with pitch values rounded to the nearest whole
number

Standard Open G
String SPN? Pitch (Hz) SPN# Pitch (Hz)
6 Ex 82 D> 73
5 Aj 110 Gy 98
4 D3 147 D3 147
3 G3 196 G3 196
2 B3 247 B3 247
1 E4 330 Dy 294
Frequency range 248 221
(center point) (128) (110.5)

The rows emphasized with italic (string 4, 3, and 2) have no change of tuning
2 Scientific pitch notation (based on 400 Hz), subscript denotes the octave in which the note is
played

in a flat and horizontal position across the guitarist’s knee. Bolts, nails, back of a
pocketknife and steel combs all give a pleasing descending—glissando sound that
invokes a vision of Hawaiian palm beaches and rolling surf. Around the turn of the
nineteenth century, the Steel guitar began to be held against the body as in the Spanish
style with the guitarist using a metal, or glass cylindrical object worn on the fretting
finger. These fretting techniques, known as ‘Slide-guitar’ in the Mississippi Delta:
where in the Deep South, Blind Willie Johnson [25], Elmore James [26] and others
developed and popularized Gospel Delta blues and Bluegrass. By the early 1920s,
the term bottleneck came in use, due to a common idea that the remnants of broken
glass bottles left over from bar room fights were picked-up and played on the guitar
frets, and if not up to the task than another bottleneck could be picked-up from the
floor and used.

In practices, the bottleneck divides the guitar string into two coupled vibrating
string-lengths, with the extreme ends of the two sting lengths fixed and the opposing
ends coupled through the damping action point of the bottleneck. When it comes to
the sound quality ‘slide-guitar’ guitarists consider that glass slides offer a smoother
playing feel, and produces a warmer and thicker sound that emphasizes the low to
mid overtones within the harmonic series compared to metal slides that give a longer
sustain that is also brighter and harsher [16].

3 Experimental

This study firstly investigates the sound generated by the Dubro DM-33 Hawaiian
resonator guitar (Fig. 2a). The name ‘Dubro’ is a portmanteau of ‘Dopyera Brothers’
who invented this type of resonant guitar. The guitar has a chrome-plated brass
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Partial Legend

22 Body of sound well
Cone & bridge 24 Sound well apertures

30 Resonator diaphragm

33 Resonator apertures

36 Spider web bridge

48 Cover

Fig. 2 a-b Photo of the Dubro DM-33 resonator guitar (a). Cross-section of Dubro cone/resonator
diaphragm based on R. Dopyera’s 1932 US patent (b)

metal body with sandblasted palm trees, two rolled f-holes (axial length 112 mm x
15 mm at their widest point), and a 19-fret rosewood fingerboard with pearl dot inlays
(Fig. 2a). The average scale length of the strings is 61.2 cm, and the string action is
3.5 mm, to minimize accidental fret notes. The Dubro is a relatively complex string
instrument, compared to the classical acoustic guitar, where the primary mechanical
sound amplification is produced by a 26.7 cm diameter outward facing resonator
cone/diaphragm, at the top of which is attached a biscuit bridge (Fig. 2b and R.
Dopyera US patterns [9, 10]). The purpose of the cone is twofold, (1), to project the
string vibrational sound out and away from the guitar and (2), send part of the sound
in to sound-well and out via body ports. The two main ports being rolled f-holes
that are set symmetrically set either side of the strings. Using this arrangement, the
cone produces a harsh mid-high frequency range (1 kHz and above) while the f-holes
project sound energy in the low to mid frequency range 70-150 Hz. The mechanical
complexity of the Dubro does mean regular carful maintenance and regular tune-up
is required. A range of short videos of resophonic guitar tuning can be found on
YouTube, see for example [27, 28].
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3.1 Recording of the Dubro Guitar

For this study, the digital recordings of the acoustic resophonic guitar were made
during a performance in Kastollos, Crete in August 2020. The guitar radiated sound is
recorded using a Zoom H4n handy recorder (frequency response ~ 30 Hz to 22 kHz)
positioned one meter in front of the guitar. The sound levels were set using an alto
ZMX122FX mixer and the track recordings saved in waveform audio files on a SD
card. The choice of a microphone rather than an electric pick-up is deliberate as this
gives both acoustical and perceptual information of the guitar sound as played by
the guitarist.

The posture of the guitarist is in the seated position with the fingerboard held
by the left hand at about 45 degrees to the horizontal. The area between the thumb
Interphalangeal joint and the Metacarpophalangela joints of the left hand are warped
around the neck two allow the bottleneck (placed on the ring finger) to act a mobile
as the left hand is moved up- and -down the fingerboard using the musculoskeletal
arm system (with minimal wrist flexion). The bottleneck divides the strings into
two vibrating portions that are designated as string bridge (Sp) and string nut (S;)
respectively. The guitarist may choose to mute (dampen) S, to generate a crystal-
clear tone as in the case of Freddie’s swoop in the opening seconds of ‘Looney Tunes’
(Fig. 3a) or un-mute (Fig. 3b) to provide a rich and complex sound that is character
of Delta blues. Steel and glass bottleneck slides are used in the recordings. The steel
has a length = 51 mm, inside diameter = 19 mm and outside diameter = 26.5 mm
and glass has a length = 70 mm, inside diameter = 20 mm and outside diameter
= 2.5 mm). In the following text the slides are designates as s-slide and g-slide. In
addition, the guitarist uses a 0.5 mm thick plastic plectrum held in the right-hand
to down-stroke the cord string while the palm and lower fingers mute (dampen) the
remaining strings.

Track transcription is performed within a Lenovo laptop running Microsoft
Windows 10, therefore the xxx.wav files are fully combatable with Microsoft’s
Resource Interchange File format (RIFF) specification. Audacity® version 2.4.2 (a

a b
' Pressure | Pressure
String é
Action ! = i .
_________ fm—— —,.!._..;:,_-Q\Fl'ei ey
- i oard ' Nut—, s i~ -~
1
. I 1
Bridgestring Bridgestring |  Nutstring
=== >  —————— P ——————— >

Fig. 3 a-b Cross-section schematic of slide and fingers in the S, muted position (a). Cross-section
schematic of slide and fingers in the S, un-muted position (b)
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Table 2 Audacity software project rate and display information

Lower Upper Sampling rate | Display video | Screen shot
Frequency | Frequency | (s s~ bandwidth (Hz)
(Hz) (kHz)

‘Waveform N/A N/A 44,100 N/A Yes

32-float

Spectrum 30 22 44,100 N/A

analyzer 32-float

Spectrogram | 30 8 44,100 50 Yes

default 30 22 32-float

maximum

free, open-source, cross platform audio software) is used to transcribe the guitar sound
recordings [29]. The software uses a sampling rate of 44,100 Hz with a dynamic range
of 32-bit float to provide a coupled time-domain and spectrogram (3-D plot of sound
intensity (color) as a function of frequency and time) of the selected audio track
recording. Frequency spectrum analyzer is also available. Table 2 provides the basic
metadata for these displays.

Generally, open-access spectrometer software is limited in its ability to provide
real-time frequency analysis due to the latency within the software. The latency is
because of the lack of processing power to handle the large amount of time-series
data that is needed to be converted into the frequency-domain using a Fast Fourier
Transform (FFT) algorithm. To overcome this problem Audacity toolbox contains
a set autocorrelation algorithms used to identify the SPN frequencies. This option
measures how many times SPNs are repeated within the selected waveform record
length. This is achieved by taking two copies of the waveform data set, and moving
one waveform data set piecewise (n = 1) followed by multiplying the two waveform
data sets together. The piecewise process is repeated, up to the selected size option.
This mathematical noise reduction tool is one of many embedded delay time-series
analysis tools used in chaos theory to extract periodic signals (overtones, octave, and
harmonics) out of incoherent noise [30].

In the case of the spectrogram, a noise reduction algorithm (NRA) uses the FFT
with a Hann window to sample the local neighborhood noise to obtain an incoherent
noise profile. Subtracting the noise profile from the whole of spectrogram leaves
the coherent acoustic signature of the resophonic guitar. Three operator parame-
ters (amplitude, sensitivity, and frequency smoothing bands) settings determine the
impact upon the guitars acoustic signature and the surrounding noise floor. The RNA
is used here to estimate of the specific incoherent noise contribution for ascending
and descending glissandos, rather than to clean-up the musical signature of the guitar.
In mathematical terms this noise reduction technique is called spectral noise gating
[31] and is used the compare the SPN and glissando modes of the bottlenecks. Other
pixel thresholding methods may be applied using different software platforms, such
as LabVIEW [32].
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4 Benchmarking

Viewing the stereo sound tracks from the recordings, revealed that there was no
differentin X- and Y-tracks presumably this because the closeness of the microphones
to each other (0.01 m), with respect to the guitar position (1.5 m), even though
microphones have an XY orientation. Given this, only the X-tracks are used. The
purpose of the Benchmarking the plectrum down-stroke is to establish both the
acoustic signature of the guitar and the guitarist’s gesture. Two Benchmarks are
made, (1) strumming open G and (2) the first-string triad (strings: 3, 2, 1). The
first-string triad is frequently used in the Rock ‘n’ roll genre [33] and therefore is
included in this study. The knowledge gained from the Benchmarking informs the
identification process of ascending and descending glissandos and incoherent noise.

4.1 Open G Tuning Benchmark

To establish the plastic plectrum down-stroke Benchmark, the guitar is strummed,
and recorded, for 35 s. An initial analysis of the total waveform record-length yielded
an average BMP of 144. A more detailed standard autocorrelation of a 2.2-s period
encompassing both down and up cords yields the tones and overtones. To produce
the greatest definition, the autocorrelation algorithm is set with a Hann window and
sample size of 2048.

Figure 4 provides the computation where the correlation delay time is on the
horizontal axis and SPN level on the vertical axis. In this representation and Figs. 7
and 8, frequency decreases to the right, therefore the root tones are to the right and the
higher overtones progress to the left. Note, the delay time 0.01 and 0.025 corresponds
to the at-rest human heart beat range (60—100 BPM). Using this representation, the
tones G, By, and overtones C,, D, and G; fall within the at-rest heat beat range,
and the higher overtones (B,, and D3) are in the + 38 BPM elevated/stressed human
heart beat range.

4.2 First-String Triad Benchmark

The plastic plectrum down-stroke of the first-string triad (strings: 3, 2 and 1), with
the bottleneck slides damping the fifth fret produces corresponding values of sy, ~
45 cm and S;, ~ 15.3 cm, respectively. In this style of strumming, the second-string
triad (strings: 6, 5 and 4) are damped by the guitarist palm. This procedure changes
the open G cord by five semitones without changing the original open G tuning.
Figure 5a—d shows two typical strumming cord acoustic waveforms (5a-b) and
their associated default spectrogram (Sc—d) for both s-slide and g-slide positioned on
the fifth fret. In the case of the waveforms, there are two features of note. First is the
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Fig. 4 Standard autocorrelation of the 2.2 s Benchmark. The root tones are to the left and the higher
overtones to the rights. The human heart beat range is between G| and D3
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Fig.5 a-d Waveforms and spectrograms obtained from the first-string triad with bottleneck
damping on the fifth fret: s-slide 4a—c, g-side 4b—d
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Fig. 6 Typical bottleneck pressure-on and pull-off signatures

truncation of the first and second envelopes by the third envelope that fades out to
completion. Note also and that the s-slide fades by an additional 0.5 s compared to the
g-side. Second, for both s-slide and g-slide, a string speak caused by an involuntary
guitarist gesture is present in the first envelope (plectrum annotation in Fig. 5a-b).
Note also, string squeaks are not found in the second or third envelope. In addition,
at the end of the completed cord, a 10-20 Hz non-complex resonance is present.
Not shown in these figures, but shown in Fig. 6, are further examples of complex
resonances that appear at the start of additional recorded cords. The resonances have
similar timestamps to the guitarist applied bottleneck pressure-on (p-on) and release
(here called pull-off), thus bracketing the cord.

The two default spectrograms in Fig. Sc—d provide a greater insight to the fifth
fret bottleneck position. To aid the reader’s eye, the psychoacoustic terms: warm
(0-2 kHz), bright (2—4.5 kHz) and brilliance (4.5-8 k Hz, which extend to 22 kHz,
see Sect. 6) are located on the right-hand frequency axis of the spectrograms. Within
the two spectrograms there are five features of note, these are listed as follows:

1. The bottleneck p-off points at the end of the cord are located at the lower-end
of the warm region.

2. Anintermodulation of tones are observed in the psychoacoustic brilliance region
that are caused by energy being transferred up- and down- in frequency range
where addition and subtraction of consonant and dissonant tones result in fading
in-and-out in the higher frequency range. Unlike electromagnetic signals, the
origin of the acoustic energy (in this case the strings and body of the guitar) is
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Fig. 7 First-string triad (3, 2, and 1) with s-slide damping the fifth fret
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Fig. 8 First-string triad (3, 2, and 1) with g-slide damping the fifth fret

directly altered by the vibration mode of the strings and body, and the medium
that the sound is traveling through. Thus, each pitch has a non-zero bandwidth
[34, 35] that periodically fads when subtraction occurs.

3. A series short rising tones of approximately + 0.5 kHz (blue arrow annotation)
that have an initial timestamp corresponding the picking of the strings. A second
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set of descending glissandos of approximately—2 kHz (red arrow annotation)
are launched after the raised tones are also present.

4. There is a marked difference in the s-slide and the g-slide sustain periods within
the warm and bright regions. In the warm region, the s-slide produces a stronger
spectral density compared to g-slide. However both slide produce similar short
sustain periods.

5. The string squeaks caused by an involuntary guitarist gesture appear mixed and
muddled within the warm region.

Figures 7 and 8 shows the standard autocorrelation (Hann window and 2084-
sample size) of the waveform for the s-slide and g-slide damping the fifth fret. Note
for clarity, the sound level of the second and third envelopes are offset by + 100, and
+ 200, respectively. For each envelope, the major overtones and the root along with
prominent flat (dissonant) overtones are labeled.

In Fig. 7 (s-slide), the first envelope overtones E; 4 and Gz, and Cj3.; are clearly
defined, along with the flat (dissonant) F#4_s and A#;. Note also G, transposes up in
pitch to A, within the duration of the envelope period. In the second envelop the D4,
and the Bj, are present, in addition A#; transposes up in pitch to the root By, and
D, transposes up in pitch to E, within the envelope period. The F#5 is also present.
In contrast, the third envelope contains the major overtones Cy4.», E3, A, and F;, with
the flat (dissonant) tones less prominent.

Figure 8 reveals that the first envelope contains the overtones Gs_,, E;.3, and the
roots By and A, along with the flat (dissonant) tones F#, and G#,. In the second
envelope, D4, and B3 ; are present along with G#5 and F#3, but at reduced amplitude
compared to the s-slide. Again, in contrast, the first two envelopes, the envelope
exhibit the major tones C4,, Es, A; and F;), with the flat (dissonant) tones less
prominent.

5 Ascending and Descending Glissandos

This section looks at the glissando sound production between the seventh and twelfth
fret for open G tuning and different bottleneck material (steel and glass). Using Eq. 2,
Sy therefore varies between approximately 30 and 40 cm, and S, varies between
approximately 20 and 30 cm. For ease of comparison, spectrograms of a first-string
triad ascending glissando using the s-slide is presented followed by two pairs of
comparative ‘Looney Tunes’ and it counterpart tracks.

Figure 9a-b, depicts the default spectrograms for first-string-triad with steel and
glass bottleneck for the descending glissando (twelfth to seventh fret). Annotated
on the right-hand vertical axis is the warm, bright and brilliance regions and the
horizontal dashed-lines (at 2 and 4.5 kHz) delineate the regions. Within these two
spectrograms, three contrasting features are observed and are listed as:
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Fig. 9 a-b First-string triad: s-slide descending glissando (twelfth to seventh fret) for s-slide 9a,
and g-slide 9b

The root and overtones within the warm psychoacoustic region have differing
sustain lengths, where the s-slide produce longer and stronger tones compared
to the g-side.

As the slides physically moves perpendicular across the strings (at rate of
approximately 50 mm s~!) a mirrored bifurcation occurs where the glissandos
have an exponential trajectory with a frequency shift of approximately 2.2 kHz
with time. These mirrored glissandos extend through the bright region and fades
into the brilliance region.

There is a marked and contrasting noise floor between the two bottlenecks? In
the case of the g-slide, a greater incoherent (hiss-like [19]) noise is present at the
lower end of the warm region (0-0.5 kHz) as compared to the s-slide bottleneck.
Section 6 further quantifies these noise features.

Figure 10a-b depicts the default spectrogram for the ‘Looney Tunes’ ascending
glissando (seventh to twelfth fret, 10a) and its counterpart descending glissando
(twelfth to the seventh fret, 10b). Both spectrograms are for s-slide. Again,
the psychoacoustic regions are annotated on the right-hand vertical axis. The
spectrograms reveal a number of contrasting features.

1.

2.

The inclusion of the thicker strings (4, 5, and 6) generates a high-frequency
content that ranges to the top of the bright psychoacoustic region.

Now as the slides physically moves perpendicular across the strings at a rate
of approximately 50 mm s~! mirrored bifurcation of the glissando occurs. As
in Fig. 9a-b, the frequency shift is some 2.2 kHz, however in this case the
glissando extend through the bright and well in to the brilliance region. To
separate apart these mirrored glissandos it is reasonable to assigned the string
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Fig. 10 a-b ‘Looney Tunes’s-slide ascending glissando (seventh to twelfth fret) 10a; and s-slide
descending glissando (twelfth to seventh fret) 10b

ascending glissando with increasing fret number, hence the mirrored glissando
is assigned to the slip-stick friction process of the slide.

3. The noise floor at the lower-end of the warm (0-0.5 kHz) region is raised with
incoherent, or hiss-like, noise. For comparison, see Fig. 9a.

Figure 11a-b provides the default spectrogram for the ‘Looney Tunes’ ascending
glissando (seventh to twelfth fret, 10a), and its counterpart (twelfth to the seventh
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Fig. 11 a-b ‘Looney Tunes’ g-slide ascending glissando (seventh to twelfth fret) 11a; and g-slide
descending glissando (twelfth to seventh fret) 11b



302 V.J. Law and D. P. Dowling

fret, 10b). Both spectrograms are for the g-slide. Again the right-hand vertical axis
depicts the psychoacoustic regions. Main features of note are:

1.  As in Fig. 10a-b, mirrored bifurcation of the glissandos produce exponential
trajectories as the slide moves perpendicularly across the strings at a rate of
approximately 50 mm s~ !,

2. Incoherent, or hiss-like, noise is prominent has marked increase in lower-end
of the warm region (0-0.5 kHz) as compared to the s-slide (Fig. 10a-b).

3. Taking Figs. 9a-b, 10a-b and 1la—b together, psychoacoustic feature of
ascending and descending seventh to twelfth glissando may be summarized.
Firstly, the sound of the first-string triad slide extends to the bright region,
whereas the thicker strings extend the guitar response in to brilliance region.
Secondly, pronounced mirrored glissandos are produced when all six strings are
played with the slides. Third, incoherent, or hiss-like, noise in the lower-end of
the warm region is produced by the g-slide first-string triad mode, and when all
strings are played using either the s-slide or g-slide.

4. For a slide acoustic guitar, Pakarinen et al. [19] has demonstrated that slide
divides the damped string into two longitudinal excited string segments, where
the main sound originates from the slide to bridge string segment (here labeled
Sp) and second excitation originates from the slide to nut (here labeled S,)
segment. This excitation process appear to hold in the resophonic guitar,
although a string portion from bridge to the tailpiece must vibrate due to the
up-and-down motion of bridge, albeit a smaller bandwidth of Sy, and S,,. Given
this scenario, vibrational energy is continuously flowing between the string
segments as slide moves across the string. Following this, it is reasonable to
assign the origin of the mirrored exponentially varying pitch glissandos. Hence,
an ascending glissando associated with increasing fret number (7_12) originates
in Sy, whilst the mirrored descending glissando has it origin in Sj,.

Pakarinen et al. [19] has also identified incoherent, or hiss-like, noise in the steel-
string acoustic guitar and assigned this noise to contact points as the side moves across
the string. When they synthesized this form of noise they used a noise pulse train
thereby evoking an impact and friction modal, otherwise known as slip-stick friction
between the surface of the string and slide/Bow [36]. The low-frequency nature of
the noise also suggests there is Voss-Clarke flicker noise (1/f“ noise) content [8].
Section 6 further explores this psychoacoustic noise for the resophonic guitar.

6 Resophonic Guitar Upper Psychoacoustic Brilliance
(0-22 kHz) Region

Given the lack of full range psychoacoustic data for the resophonic guitar, this section
looks at the ‘Dubro’ resophonic guitar’s radiated sound in the 0 to 22 kHz frequency
range to understand the interaction and delineation of each psychoacoustic region.
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Fig. 12 a-b. Extended frequency range of ‘Looney Tunes’ g-slide ascending glissando (seventh to
twelfth fret) 12a, and g-slide ascending glissando (twelfth to seventh fret) 12b

This is achieved by using the Audacity spectrogram with a selected full frequency
range (22 kHz) for ‘Looney Tunes’ ascending s-slide (11a) and g-slide glissando
(11b).

Figure 12a-b provides the comparison between the s-slide and g-slide ascending
glissando. In the case of s-slide (12a), the ascending glissando overtones extend
through the warm region with typical sustain periods of 3 s and to a lesser extent
(0-2 s) in the bright region. Whereas the initial plastic plectrum attack overtones
have sustain periods of typically 0.5 s throughout the 4.5-22 kHz brilliance region.
In addition there is some evidence of weak glissando overtones with typical sustain
periods of 1 s. In comparison, the g-slide (12b) produces weaker sustain periods
in all three psychoacoustic regions. The least marked being in the brilliance region
where the initial plectrum attack overtones have sustain periods decaying from 1 s
at 4.5 kHz to 0.25 s at 22 kHz. Within the decay process, the ascending glissandos
overtones also become less pronounced.

7 Noise Reduction

Figure 9a-b has revealed, that for a first-string triad ascending glissando, the g-
slide induces more incoherent (or hiss-like) noise at the lower-end of the warm
region, when compared the s-slide. The aim of this section is therefore threefold:
First to isolate and remove the incoherent noise to, or below, the noise floor of s-side
glissando, thereby providing an estimate of the noise contribution. The second is to
extend the noise reduction knowledge to the ‘Looney Tunes’ (Figs. 10a and 11a) and
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the counterpart descending glissandos (Figs. 10b and 11b). Third, identify and map
the characteristic morphology of the noise [8].

7.1 First-String Triad Bottleneck Noise Reduction

The first step in estimating the incoherent noise contribution is to identify and isolate
the noise. This is performed by first defining the noise profile (np) within the spec-
trogram (13b). The selection criterion is based on that incoherent noise contains
random pixel variables with a well-defined statistical characteristic as compared to
the coherence pixel regions of glissando.

The removal step uses three parameters to control the noise reduction process.
These parameters are noise reduction level, sensitivity, and frequency-smoothing
band. The noise reduction controls the volume reduction (in dB) applied to the noise.
The sensitivity controls the amount the signal to be considered as noise (using a
scale of 0 to 24). In addition, the frequency-smoothing band controls the spread
of the smoothing in neighboring bands, therefore altering the original sampling rate
(using a scale of 0—12 and is set to zero so that direct comparison between the original
and modified dataset is made) (N. B. Further details on how the three parameters are
used, see Audacity software [29-31]). A series of iteration processes follows, where
the noise reduction value and sensitively value is changed, with the aim of reducing
the incoherent noise with minimal damage to the coherent glissando feature within
the spectrogram. Figure 13a—d shows the overall process in spectrogram format
where Fig. 13ais the first-string triad for the s-slide (taken from Fig. 9a). Figure 13b
is the first-string triad for the g-slide along with the incoherent noise profile region
selected. Figure 13c is the noise-reduced image using a noise reduction value of
12 dB and a sensitivity value of eight. A comparison of Fig. 13c with the s-slide
(13a) reveals similar coherent features and the incoherent spectral densities for both
slides is in the 0-0.4 kHz range. Thus the indicating the g-slide incoherent noise
contribution is in the order of 12 dB.

Figure 13d, depicts the removed residue noise spectrogram in the low-frequency
region of the acoustic spectrogram. It is noted that the isolated noise inevitably
captures part of the overtone structure, and therefore some of overtone in Fig. 13c is
lost. The overall discrimination process may not be perfect, but it is more beneficial
in this case when compared to a low-pass filter that would remove higher frequency
noise in the bright and brilliance regions [29-32].

7.2 Incoherent Noise Reduction

To quantify the visible incoherent noise in the audio spectrogram Figs. 10a-b and
11a—b, the same attenuation process as in Fig. 13b—d is undertaken. To allow a
direct comparison throughout, only the noise attenuation (dB) is altered, whist
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Fig. 13 a-d First-string triad ascending glissando spectrogram for s-slide 13a. First-string triad
ascending glissando for g-slide 13b. The g-slide reduced noise profile after noise reduction (—
12 dB) 13c. The g-slide residue noise spectrogram 13d

the sensitivity or frequency-smoothing band values are fixed at eight and zero,
respectively.

Table 3 depicts the required incoherent noise reduction values to achieve the
desired noise floors for each spectrogram. The results support the general concept
that a g-slide produces more (3 dB) incoherent, hiss-like, noise than an s-slide.
In addition, a descending glissando (twelfth to seventh fret) also produces more
incoherent. This finding suggests that the guitarist gesture whether emotional or and
musculoskeletal (movement of the upper extremity as the left moves away from the
body when play a descending glissando) may also have a role in the production of
slide noise.

Table 3 Incoherent noise reduction algorithm variable parameter values

Spectrogram figure Noise reduction (dB) | Sensitivity level | Frequency-smoothing band
10a (s-slide: 7-12 fret) |9 8 0
10b (s-slide: 127 fret) | 12 8 0
11a (g-slide 7-12 fret) |9 8 0
11b (g-slide:12-7 fret) |12 8 0
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Fig. 14 Frequency spectra of all five residue datasets (see Fig. 13d and Table 3)

7.3 Characteristic Noise Morphology

Using the Audacity FFT algorithm, the five-residue noise datasets obtained in
Sects. 7.1 and 7.2 are analyzed for their spectral morphology (color). Figure 14
depicts the FFT results as log—log plot, where frequency (Hz) plotted on the
horizontal-axis and the sound amplitude (dB) plotted on the vertical-axis. In this
representation, all five datasets exhibit a 1/f -like response: e.g. — 6 dB per 10 Hz
in the 10-20 Hz frequency band and — 7 dB per 10 Hz in the 30-150 Hz frequency
band. Note the 6 dB roll-off in 10-20 Hz band is most likely an artifact of the micro-
phone cut-off frequency. In addition, the structures above 150 Hz are the captured
coherent portions of the glissandos and are not considered further as they are not the
primary interest here.

Using the first-string triad (Fst, solid black line) as a comparative control,
remaining four six-string triads are partitioned around the control. Where the
descending glissando for both steel and glass produce the greatest residue noise
and therefore are above the control. The opposing ascending glissandos produce the
least noise and therefore are positioned below the control. The limited measurements
present here appear to indicate that the direction of the slide movement along the
fingerboard determines the relative residue noise level, also. One possible cause for
this differentiation in the musculoskeletal locomotion force required to extend and
retract the guitarist fret arm [37, 38], as similarly observed in violinist [39]. In the
case of guitar descending glissando, the guitarist musculoskeletal systems extends
the left arm, hand and hence bottleneck from the twelfth to seventh fret so altering the
body’s center of gravity from the seated position (and vice-versa for the ascending
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glissando). These varying locomotion conditions are known to induce ulnar nerve
entrapment, and therefore merit further investigation.

8 Discussion

This paper has presented a study of the ‘Dubro’ resophonic guitar psychoacoustic
response to a plastic plectrum applied in the down-stroke for ascending and
descending glissando where both steel and glass slide are used. The ‘Dubro’ is chosen
for its enhanced mechanical sound amplification as compared the classic acoustic
and electrical guitar. The slide is placed on the ring finger on of the left hand with
the index, second and fourth finger not used to mute (dampen) the strings. This style
of slide play provides the rich and complex guitar Delta bluegrass sound. The work
has focused on a guitarist’s gesture (rather than a mechanical modal based method
[17, 18]) to help provide the human psychoacoustic perception of the ‘Dubro’.

The measured radiated sound recordings extend through the psychoacoustic warm
(2-4.5 kHz), bright (4.5-8 kHz) and brilliance region up to a frequency of 22 kHz
where the initial attack, rather than chord overtones are present. It is worth noting
that online commentary declares that the resophonic guitar brilliance may extend
to 20 kHz [16]. As the guitarist musculoskeletal system physically moves the slide
perpendicular across the full six strings (at approximately 50 mm s~!) between
the seventh to twelfth fret, glissando overtones are generated that instantly undergo
mirrored bifurcation forming two exponential trajectories: one decreasing in pitch
and the other increasing in pitch.

The glissando overtones extend throughout the bright psychoacoustic region
and the lower brilliance region for both s-slide and g-slide. In the case of the s-
slide, the overtones are weakly present in the mid brilliance region (8—15 kHz).
The exponential trajectory of the glissandos as the slide traverses perpendicularly
across the strings demonstrates Vincenzo Galilei’s non-linear theory of fretted string
instruments (Eqs. 1 and 2 and graph 1).

Fading in the brilliance psychoacoustic region is also indentified, and is attributed
to intermodulation (or, addition and subtraction) of overlaying consonant and disso-
nant tones. Due to the inner ear’s inability to separate high pitch overtones, a listener
may perceive the fading process as roughness or timbre in the guitar overall sound.
Incoherent, hiss-like, noise is identified and shown to be associated with the slip-
stick friction processes between the moving slides and the vibrating strings, where
the intensity of the noise is more pronounced on the thicker (wound) steel strings.
The g-slides produce a higher intensity (some 3 dB) incoherent, hiss-like, noise than
the s-slide.

The direction of slide movement is observed to produce a variation in the amplitude
of the incoherent, hiss-like, noise. Slide movements away from the gustiest body
centre of gravity (associated with a descending glissando) produce an increase in
noise amplitude. As musculoskeletal pain and stress in string instrument players is
common [37-39] the measured noise may be a significant finding. This aspect of
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the work requires further research both in guitarist gesture and in mechanical based
modals.

The time-domain and frequency-domain information presented here provides
control-data (slide contact gestures) for improved slide-music and slide-noise
synthesis within virtual slide guitar systems as reported by Pakarinen, Puputti and
Vilimiki 2008 [19]. In their work an Omni-directional contact-noise building block
is used that did not differentiate the direction of slide movement. Our new work (this
paper) indicates that a bidirectional contact-noise building block should be used to
synthesize possible differences in musculoskeletal induce noise.

To conclude this work, the opening seconds of the original Warner Brothers instru-
mental theme ‘Looney Tunes’ as played by F. Travares is used as a control. In the
original Travares recording, muting (damping) of the strings is performed to make the
non-complex (crystal-clear) sound. Our findings reveal that the mirrored bifurcation
is present when the strings are not muted. This finding supports the two vibrating
string portion mechanism when the slide employ with muting and damping.

Acknowledgements With grateful thanks to Carl Axon for playing the ‘Dubro’ resophonic guitar
and Nick Dutton for recording the ‘Dubro’ sound.
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