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Continuous Facility Location Problems

Zvi Drezner

9.1 Introduction

Facility location models investigate the location of one or more facilities,
among a set of demand points, to achieve a certain objective. Discrete loca-
tion models assume that there is a set of potential locations for the facilities,
and a partial subset of locations is selected for locating them. Continuous
location problems assume that facilities can be located anywhere (usually
in the plane) or in a given area, and thus the set of candidate locations is
“infinite”. In this chapter we review continuous location models.

One of the earliest objectives investigated in the literature is minimizing
the weighted sum of distances between the demand points and their closest
facility. For example, locating warehouses to serve a given set of outlets. The
cost of service is proportional to the distance and if there are two or more
facilities, service to a demand point is provided by the closest facility.

Another objective is minimizing the maximum distance to the closest
facility so that the customer who gets the worst service is getting the service
as quickly as possible. For example, location of emergency facilities, such as
ambulances or fire trucks, so that the farthest customer is as close as possible
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to a facility. Some types of facilities such as polluting or noisy factories, land-
fills, airports, have a negative impact on neighborhoods and thus should
be located as far as possible from communities. Such facilities are termed
“obnoxious” facilities. Another objective is to locate facilities to provide equi-
table service to all demand points. Covering models attempt to cover as many
demand points as possible within a given distance from the closest facility.
Competitive location models, discussed in Chapter [52] in this book, involve
the location of facilities, such as retail outlets, to attract as much demand as
possible from competing facilities.

Commonly used distance measures between points (x, y) and (u, v)
include:

• Euclidean distance (also termed �2):
√

(x − u)2 + (y − v)2. This is a
straight line distance.

• Rectilinear (also termed Manhattan, or �1) distance: |x − u| + |y − v|.
This is a distance on a grid where roads are either in a North-South or
East-West directions and there are no diagonal roads.

• General �p distance: {|x − u|p + |y − v|p} 1
p . p = 2 is the Euclidean

distance, and p = 1 is the rectilinear distance.

There are extensions to the basic location models. For example, some
models are formulated on the surface of a sphere. Distances on the globe are
not “straight” lines but great circle distances used by airplanes flying between
origin and destination. Spherical models are discussed in Sect. 9.2.5.

9.2 Single Facility Location Problems

In this section we review single facility location models. The location of
multiple facilities is discussed in Sect. 9.3.

9.2.1 The Weber (One-Median) Location Problem

The first and most basic location problem is the Weber problem [202]. A set
of demand points with associated weights exist in the area. The problem is to
find a location for a facility that minimizes the weighted sum of distances to
the set of demand points. The formulation and solution methods are detailed
in Sect. 9.4.2.4. The simple form of the problem dates back to the French
mathematician Pierre de Fermat who lived in 1601–1665. For historical
reviews the reader is referred to [207, 39, 97]. As detailed in [39, 147], Pierre
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Fig. 9.1 Solution to the minimum sum of distances in a triangle

de Fermat asked the question of finding the point in a triangle that mini-
mizes the sum of the distances to the vertices of the triangle. The problem
was solved by Torricelli (1608–1647). Torricelli showed (see Fig. 9.1), that
the optimal location (Fermat point) is at a point forming three angles of 120◦
each with the sides of the triangle (and on a vertex if an angle at a vertex is
120◦ or greater).
This is the solution to connecting three cities by the shortest possible rail-

road. Suppose that we need to connect four cities on the vertices of a square
with a side of 1. Connecting three sides, or forming an H shape, has a total
length of 3. The two diagonals have a total length of 2

√
2 = 2.828. The

optimal solution to this problem is depicted in Fig. 9.2. The two points in
the interior of the square are Fermat’s points in the triangles formed by two
vertices and the square’s center C . Therefore, all the angles are 120◦. The total
distance is 1+ √

3 = 2.732. The general problem of connecting n points by
the shortest tree is called the Steiner tree problem [180].

9.2.1.1 Extensions to the Basic Weber Problem

Drezner et al. [90] investigated a model where travel time is not necessarily
proportional to the distance. Every trip starts at a speed of zero, then the
vehicle accelerates to a cruising speed, stays at the cruising speed for a portion
of the trip, and then decelerates back to a speed of zero. A time equiva-
lent distance which is equal to the travel time multiplied by the cruising
speed is defined. It is proved that every demand point is a local minimum
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Fig. 9.2 Solution to the minimum sum of distances in a square

for the Weber problem defined by travel time rather than distance. Accurate
estimate of travel time is especially important when evaluating hub location
[187, 176, 30, 46, 1]. When a flight has one or more stopovers, the under-
estimation of flight time is increased, in addition to the waiting time at the
stopover, because there are more acceleration and deceleration periods. There-
fore, when using distances rather than flight times, hub location models may
underestimate the decline in quality of service due to stopovers at hubs.

Drezner and Wesolowsky [110] and Drezner and Drezner [61] considered
the Weber problem when the distance from point A to point B is not the
same as the distance from B to A. This is common in rush hour traffic or
for flights that in one direction have tail winds and in the opposite direction
have head winds.

Drezner et al. [101] considered the Weber problem on a network where
demand points can be on nodes of the network or anywhere in the plane
off the network. Distances to demand points located on the network can
be either network distances or Euclidean distances, while distances to points
off-the network are Euclidean. Travel time on the network is slower by
a given factor but is cheaper than using Euclidean distances. Applications
include building a hospital providing emergency services either by an ambu-
lance using network roads, or by a helicopter flying directly to the patient,
especially when the patient is off the network. The facility can be located
anywhere on the network and the optimal solution is not necessarily on a
node. The problem is optimally solved by the “Big Segment Small Segment”
global optimization algorithm (see also Sect. 9.4.2.3 and Berman et al. [9]).
Locating a transfer point where service is switched from one vehicle to
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another on the way to a demand point or on the way back is investigated
in [13, 14, 15].

Drezner [74] considered the Weber problem when there is uncertainty in
the location of demand points. Each demand point can be located anywhere
in a circle. The set of all possible optimal locations is found.

Farahani et al. [120] investigated the Weber problem with multiple reloca-
tion opportunities. The weight associated with each demand point is a known
function of time. Relocations can take place at pre-determined times. The
objective function is the minimization of the total location and relocation
costs.

Drezner and Scott [100] considered the location of a facility that sells
goods to a set of demand points. The cost for producing an item and the
transportation cost per unit distance are given. The total cost is the sum of
the price charged at the source (mill price) and the transportation cost paid
by the customers. Demand by customers is elastic and assumed to decline
linearly in the total cost to customers.

Drezner [79] found the sensitivity of the optimal location of the Weber
problem to changes in the locations and weights of the demand points. An
approximate formula for the set of all optimal sites is found when demand
points are restricted to given areas and weights are within given ranges.

Drezner and Goldman [94] found the smallest set of points that may
include at least one optimal solution to the Weber problem for a given set
of demand points and any unknown set of weights.

Drezner and Simchi-Levi [103] proved that when n points with random
weights are randomly generated in a unit circle, the probability that the
Weber solution point with Euclidean distances is on a demand point is
approximately 1

n . One would expect that when the number of demand points
increases to infinity, the probability that a solution is on a demand point
converges to 1 because there is no “empty space” left in the circle. This
counter-intuitive result was verified by simulation.
The possibility that some of the weights in the Weber problem are negative

is proposed in [111, 160, 33, 178]. This problem is also termed “the Weber
problem with attraction and repulsion”. Schöbel and Scholz [184] generalized
it to multiple facilities.

Drezner et al. [72] proposed the Weber obnoxious facility location
problem. The facility location is required to be at least a given distance from
demand points because it is “obnoxious” to them. For example, locating an
airport that generates noise and pollution and thus should not be too close to
communities. However, it serves travelers and thus their total travel distance
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to the airport should be minimized. Kalczynski and Drezner [140] extended
this model to multiple facilities.

9.2.2 The Minimax (One-Center) Location Problem

The minimax facility location problem (also termed the one-center problem)
is to locate a facility so that the maximum distance to a set of demand points
is minimized. For planar Euclidean distances, this problem is equivalent to
finding the center of the smallest circle enclosing all points hence the term
“center” is used for this problem. When other metrics are used, the one-
center problem is equivalent to covering all points with a shape similar to
the unit ball of the metric. For example, when rectilinear distances are used,
the problem is to cover all points with the smallest possible rhombus (a square
rotated by 45◦). This objective can be viewed as locating a facility that will
provide the best possible service to the farthest community.
The smallest circle problem was first suggested and solved by the renowned

English mathematician James Joseph Sylvester [195, 196]. An almost iden-
tical algorithm is provided by Chrystal [38]. Chrystal [38] starts with a “large”
circle that encloses all the points and reduces the radius of the circle itera-
tively until the smallest circle is obtained. Drezner [86] reviewed planar center
problems and their history. Solution methods are discussed in Sect. 9.4.2.5.

A variation on the weighted one-center problem is proposed in [75]. The
objective is to maximize the total weight of n demand points within a given
distance from the facility. An optimal procedure of complexity O(n2 log n) is
proposed. This problem is a single facility covering problem. For its multiple
facility version see Sect. 9.3.4.

9.2.3 The Obnoxious Facility Location Problem

In most location problems, the closer is a facility to demand points the
better. However, there are facilities that have a negative impact on commu-
nities (being “obnoxious”) and being farther from communities is better. For
example, noisy or polluting factories, garbage dumps, airports, should not be
located close to communities. The maximin location problem is to find the
point that maximizes the minimum (weighted) distance to all demand points.
If no restrictions on the location of the facility are imposed, the best location
is at infinity. Therefore, the location is restricted to a finite region, such as the
convex hull of the demand points.
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Melachrinoudis and Xanthopulos [167] proposed a model of locating a
new facility that serves certain demand points. Two objectives are considered:
(1) minimize the undesirable effects introduced by the new facility by maxi-
mizing its minimum Euclidean distance with respect to all demand points,
and (2) minimize the total transportation cost from the new facility to the
demand points.

Drezner and Wesolowsky [112] and Drezner et al. [73] found the best
location of a facility inside a planar network. Drezner and Wesolowsky [112]
found a point that maximizes the minimum weighted distance to the links
and nodes of the network. Drezner et al. [73] investigated two equivalent
problems. In one problem it is assumed that the links of the network generate
a negative impact and the objective is to locate a facility, such as a school or
a hospital, where the total impact is minimized. An equivalent problem is
locating an obnoxious facility where the total negative impact generated by
the facility and inflicted on the links of the network is minimized.

Berman et al. [12] considered the location of an obnoxious facility by a
developer that has a given expropriation budget. Each demand point can be
bought by the developer at a given price. Demand points closest to the facility
are expropriated (bought and eliminated) with the given budget. The objec-
tive is to maximize the distance to the closest point not expropriated. This
model is similar to minimizing the population that is exposed to the negative
impact [40].

Melachrinoudis and Cullinane [165] considered the location of an obnox-
ious facility when some obnoxious facilities already exist in the area. The
facility must be located outside circles centered at the existing facilities.

A review of obnoxious facilities models is [41]. A review of single obnox-
ious facility location models is [164]. Solution approaches are discussed in
Sect. 9.4.2.4

9.2.4 Equity Models

The purpose of equity models is to provide equitable service to demand
points. Eiselt and Laporte [115] list nineteen equity objectives. Below are
some single facility location models with equity objectives. Models involving
location of multiple facilities are discussed in Sect. 9.3.6.

1. Minimizing the range of the distances to all demand points [55, 105].
2. Minimizing the variance of the distances to the facility

[55, 159, 31, 5, 54].
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3. Minimizing the quintile share ratio [119]. The quintile share ratio is the
ratio of total weight of the 20% of the demand points with the largest
distance (top quintile) to the weight of the 20% of the demand points
with the lowest distance (lowest quintile) [64].

9.2.5 Location on a Sphere

In this section we review several location models on the surface of a sphere.
For solution approaches see Sect. 9.4.2.7.

9.2.5.1 Calculating Spherical Distances

The distance between any two points on the sphere can be calculated by the
“great circle” formula, which is the shortest distance between two points on
the surface of a sphere, utilized by airplanes [106]. The distance d

∧

along the
great circle between two points whose latitudes are ϕ1, ϕ2 and longitudes
θ1, θ2 is:

d
∧

= R arccos{cosϕ1 cosϕ2 cos(θ1 − θ2) + sin ϕ1 sin ϕ2} (9.1)

where R is the sphere’s radius (3959 miles, or 6371 kilometers, for the earth).
This formula can be re-written to avoid large round-off errors for small

distances when cos d
∧

R ≈ 1 [93]. The identity cosα = 1 − 2 sin2 α
2 is used:

cosϕ1 cosϕ2 cos(θ1 − θ2) + sin ϕ1 sin ϕ2 = cosϕ1 cosϕ2 + sin ϕ1 sin ϕ2

− (1 − cos(θ1 − θ2)) cosϕ1 cosϕ2 = cos(ϕ1 − ϕ2)

− 2 sin2
θ1 − θ2

2
cosϕ1 cosϕ2

yielding

cos
d
∧

R
=1 − 2 sin2

d
∧

2R
= cos(ϕ1 − ϕ2) − 2 sin2

θ1 − θ2

2
cosϕ1 cosϕ2

→2 sin2
d
∧

2R
= 2 sin2

ϕ1 − ϕ2

2
+ 2 sin2

θ1 − θ2

2
cosϕ1 cosϕ2

→d
∧

= 2R arcsin

√

sin2
ϕ1 − ϕ2

2
+ sin2

θ1 − θ2

2
cosϕ1 cosϕ2

(9.2)



9 Continuous Facility Location Problems 277

Another way to calculate the great circle distance [146] is to convert the
points on the surface of the sphere to three-dimensional coordinates (x, y, z )
so that x2 + y2 + z2 = R2. A point (ϕ, θ) is transformed to: x =
R cosϕ sin θ; y = R cosϕ cos θ; z = R sin ϕ. The distance d between the
points (x1, y1, z1), (x2, y2, z2) in a three-dimensional space is

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. (9.3)

The angle of the segment connecting the two points seen from the sphere’s
center is α = 2 arcsin d

2R . Therefore, the great circle distance d
∧

is:

d
∧

= Rα = 2R arcsin
d

2R
(9.4)

because the great circle is on the plane connecting the two points and the
center of the sphere. d

∧

> d for d > 0 because arcsin α > α for α > 0. For
very small values of d

R , arcsin α ≈ α and thus d
∧

≈ d.
Drezner and Wesolowsky [106] showed that the spherical distance is

convex up to a distance of πR
2 and not convex for greater distances. Therefore,

if all demand points are within a circle of radius πR
4 (about 5000 kilometers

or 3100 miles on earth), the Weber problem on the sphere is convex and
has one local minimum which is the global one. They also constructed an
example of a problem with all demand points in a circle of radius πR

4 + ε

for any ε > 0 that has two local optima with different values of the objec-
tive function. Drezner et al. [93] analyzed small multiple facility location
problems on the surface of a sphere.

9.2.5.2 Various Location Models on the Sphere

The antipode of a point on a sphere is a point on the line connecting the
point with the center of the sphere “on the other side”. For example, the
antipode of Hong Kong is near Rio de Janeiro. The antipode of a point (ϕ, θ)

is (−ϕ, θ ± π). Every circle, centered at the sphere’s center, passing through
these two points is a “great circle”, and the distance between the point and its
antipode is πR which is the largest possible distance between any two points
on the sphere. This distance is obtained by the three formulas above.

By Eq. (9.1), d
∧

= R arccos
{− cos2 ϕ − sin2 ϕ

} = R arccos{−1} = πR.
By Eq. (9.2), d

∧

= 2R arcsin
{
sin2 ϕ + cos2 ϕ

} = 2R arcsin{1} = πR.
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By Eq. (9.3), d = 2R. Then, by Eq. (9.4), d
∧

= 2R arcsin{1} = πR.

The concept of the antipode can be useful for analyzing spherical prob-
lems. The distance between any point X and point Y plus the distance
between X and the antipode of Y is equal to πR. Therefore, if there are
negative weights in a location problem, a point with a negative weight can
be replaced by its antipode with a positive weight. The maximin problem
based on a set of points, is equivalent to the minimax problem based on
the antipodes of these points. This property was utilized in [109] for solving
the maximin and minimax problems on the sphere, and in [76] for solving
constrained maximin and minimax problems on the sphere.

Drezner [81] investigated the Weber objective on a surface of a sphere
when the demand points and weights are randomly generated. It is proven
that when the number of demand points increases to infinity: (i) the ratio
between the maximum value of the objective function and the minimum
value converges to one, and (ii) the expected number of points that are a
local minimum converges to one.

9.3 Multiple Facilities Location Problems

Most multiple facilities location models assume that customers are getting
their services from, or are affected by, the closest facility. If only one facility
is located, all customers are served by that facility. However, if several facili-
ties are located, the set of demand points is partitioned into subsets so that
all demand points in each subset are closest to the facility located in that
subset. When Euclidean distances are used, the plane is partitioned into
polygons based on the perpendicular bisectors between all pairs of facilities
which is a Voronoi diagram (see Sect. 9.4.2.2). Such problems are not convex
and may have several (may be many) local optima. Most of the solution
methods proposed for such problems are heuristics. For solution methods
see Sect. 9.4.3. Models that do not assume that services are provided by the
closest facility are discussed in Sect. 9.3.7.

9.3.1 Conditional Models

Conditional location models investigate locating one or more facilities when
some facilities already exist in the area. Customers select the closest existing
or new facility. Many of the models listed in the rest of this section
can also be formulated as conditional problems. The first to suggest such
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models was Minieka [168]. Some papers investigating conditional models are
[174, 135, 7, 83, 80, 36, 35, 18].

9.3.2 The p-Median Location Problem

The continuous p-median problem [89, 99], also known as the multi-source
Weber problem [22, 150, 132], or continuous location-allocation problem
[158, 23] is an extension of the single facility Weber problem [202] discussed
in Sect. 9.2.1. The problem is to find p sites for facilities that minimize a
weighted sum of distances from a set of demand points to their closest facility.

Let Xi = (xi , yi ) denote the location of facility i ∈ {1, . . . , p}, and
A j = (a j , b j ); w j > 0 the known location of demand point j and its
associated weight for j ∈ N = {1, . . . , n}. For distances measured by the

Euclidean norm: d(Xi , A j ) =
√

(xi − a j )2 + (yi − b j )2.

The planar p-median problem is: min
X⊂R2

{

f (X) =
n∑

j=1
w j min

1≤i≤p
{d(Xi , A j )}

}

,

where X = {X1, . . . , X p}.
This model was originally proposed by Cooper [47, 48], who also observed

that the objective function f (X) is not convex, and may contain several local
optima. The problem was later shown to be NP-hard [163]. For a recent
review of the planar p-median problem see Brimberg and Hodgson [24].
In the discrete version of this problem (reviewed in Daskin and Maass[51,
50]), there is a list of potential locations for the facilities, rather than locating
facilities anywhere in the plane.

It can be easily shown that in the optimal solution for Euclidean distances,
the facilities must be located in the convex hull of the demand points. The
proof is based on the theorem in Wendell and Hurter [206]: if a point is
located outside the convex hull of the demand points, then there exists a
point in the convex hull that is closer to all demand points. Therefore, if a
facility is located outside the convex hull, there is a better location for it in
the convex hull.

An extension to the p-median problem was proposed in Brimberg and
Drezner [20] based on the procedure proposed in Drezner et al. [67]. Suppose
that the set of demand points can be separated into k disconnected subsets,
such as a subset in New-York, a subset in Tokyo, etc., so that demand points
get their services from a facility assigned to a subset and not a facility assigned
to another subset. p > k facilities are to be built in these subsets. The
problem is finding how many facilities to assign to each subset so that the
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sum of the individual p-median objectives, which is the p-median objective
for the whole set, is minimized.

9.3.3 The p-Center Location Problem

The p-center location problem is an extension of the 1-center problem
discussed in Sect. 9.2.2. The objective is to minimize the maximum
(weighted) distance of demand points to their closest facility. The problem
was proposed in a network environment [145]. Solution approaches are
discussed in Sect. 9.4.3.2.

9.3.4 Cover Models

Facilities need to be located in an area to provide as much cover as possible.
A demand point is covered by a facility within a certain distance [44, 183].
Such models are used for cover provided by emergency facilities such as
ambulances, police cars, or fire trucks. They are also used to model cover
by transmission towers such as cell-phone towers, TV or radio transmis-
sion towers, and radar coverage. For a review see [179, 124, 188, 43].
Drezner et al. [65, 66] applied the cover concept to competing facilities. Each
competing facility has a “sphere of influence” [151, 121, 157, 37, 182], and
customers patronize a facility up to a certain distance.

9.3.4.1 Gradual Cover Models

In the gradual cover models, up to a certain distance R1 the demand point
is fully covered and beyond a greater distance R2 it is not covered at all.
Between these two extreme distances the demand point is partially covered.
Suppose that the cover distance in traditional cover models is 3 miles. At a
distance of 2.99 miles the demand point is fully covered, while at a distance
of 3.01 miles it is not covered at all. This assumption may be convenient for
analyzing and solving covering problems. However, in reality cover does not
drop abruptly but the decline in cover is gradual.

Church and Roberts [45] were the first to propose the gradual cover model
(also referred to as partial cover). The facilities must be located within a finite
set of potential locations. The network version with a step-wise cover func-
tion is discussed in [16]. The network and discrete models with a general
non-increasing cover function were analyzed in [17]. The single facility planar
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model with a linearly decreasing cover function between R1 and R2 was opti-
mally solved in [114], and its stochastic version (randomly distributed R1
and R2) analyzed and optimally solved in [62]. Additional references include
[143, 116, 60, 10].

Drezner et al. [68] proposed the directional gradual cover. Communities
are usually areas and not points. Not all residents are at the same distance
from a facility and in many instances only some of the residents, that are
closer to the facility, are covered. Suppose that customers residing at a demand
“point” reside in a disc (centered at the demand point) of radius r, and the
facility is located at a point. The facility covers customers within a given
distance D. All the points in the disc centered at the facility with a radius
D are covered. The intersection area between this disc and the disc centered
at the demand point of radius r is covered. Therefore, the partial cover by one
facility is the ratio between this intersection area and the area of the demand
disc. A facility within a distance D − r from the demand point covers the
whole disc, and at a distance exceeding D + r it covers none. Follow-up
papers extending the concept of the directional cover are [69, 71].

A different gradual covering model where facilities “cooperate” in
providing cover was proposed in [8]. Each facility emits a signal (such as
light posts in a parking lot) whose strength declines according to a distance
decay function. A point is covered if the combined signal from all facili-
ties exceeds a certain threshold. Recent papers on the cooperative cover are
[170, 144, 201, 3].

It is not obvious how to estimate the total partial cover of a demand point
when it is partially covered by several facilities. This issue is discussed in [10].
Let c j be the partial cover of a demand point by facility j for j = 1, . . . , p.

Eiselt and Marianov [116] proposed a total partial cover of min

{
p∑

j=1
c j , 1

}

.

Partial cover can be interpreted as the probability of cover. Assuming that the

partial covers are not correlated, the total partial cover is: 1 −
p∏

j=1

(
1 − c j

)

[12, 113, 57]. In the directional gradual cover [68], if a demand point is
partially covered by two or more facilities, the total cover (area) depends on
the distances between the facilities and the demand point, and on the direc-
tions of the facilities from the demand point. For example, if two facilities
are located North of the demand point, the cover areas overlap and the total
cover is equal to the larger cover area. If one facility is to the North and one to
the South, total cover is greater than the larger cover area unless the demand
point is fully covered by one of the facilities. Total cover is at least the largest
cover by one of the facilities and cannot exceed the sum of the covers by
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individual facilities. When r = 0, the demand point is either fully covered or
not covered at all. The cover is identical to the cover applied in the standard
non-gradual cover models.

9.3.5 The Multiple Obnoxious Facilities Location
Problem

In all models of locating obnoxious facilities, all facilities must be located in
a finite feasible area. Otherwise, facilities will be located “at infinity”. For a
review of obnoxious facilities models see [41].

One of the models for the multiple obnoxious facilities location problem is
to locate p facilities, that are at least a distance D from one another, with the
objective of maximizing the shortest distance between facilities and demand
points [205, 96]. The problem is “extremely” non-convex. The surface of the
shortest distance to the communities is depicted in Fig. 9.3. The hilltops are
Voronoi points discussed in Sect. 9.4.2.2. There are 202 hilltops in the figure.
Drezner et al. [96] proposed to find locations on hilltops for p facilities that
are at least a given distance D from one another with the objective of maxi-
mizing the shortest distance between demand points and facilities. Kalczynski

Fig. 9.3 Surface of the distance to the closest demand point in a square
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and Drezner [139] improved this procedure. Kalczynski et al. [141] general-
ized this problem to include weights associated with demand points. Rather
than maximizing the minimum distance, the objective is maximizing the
minimum weighted distance. Solution methods are described in Sect. 9.4.3.3

Eiselt and Marianov [117] modeled the locations of landfills and transfer
stations. The model is formulated as a bi-objective problem. One objective
is cost-minimization, while the other is minimizing pollution. Melachri-
noudis et al. [166] proposed a multi-objective model for the location of
landfills. Teran-Somohano and Smith [199] present a model for the obnox-
ious, multiple capacitated facility location problem on a Euclidean plane. The
problem is solved using a bi-objective evolutionary strategy algorithm that
seeks to minimize social and non-social costs. The effects of under and over
capacitating the facility are included in the cost functions.

Kalczynski and Drezner [138] proposed solving two variants of obnoxious
multi-facilities problems with the objective of maximizing the sum of the
shortest distances rather than the minimum, which can be termed p-maxian
following the terminology of [42]. Since there is no advantage to locating
facilities close to one another, there is no need to require a minimum distance
between facilities. One problem’s objective is maximizing the sum of weighted
distances between each demand point and its closest obnoxious facility. The
second objective is maximizing the sum of weighted distances between each
facility and its closest obnoxious demand point. They first solved the prob-
lems using three general purpose nonlinear software packages from many
randomly generated starting solutions: Matlab’s [129] interior point, SNOPT
[125], and MSLP (Multi-start Sequential Linear Programming [95] which
performed the best of the three). However, as in [96], the best quality solu-
tions and shortest run times were obtained by selecting p starting locations
among the Voronoi points.

Drezner et al. [70] defined a different objective function. The negative
impact emitted by the facilities declines by the square of the distance and
is additive. The facilities “cooperate” in inflicting the disturbance. The objec-
tive is to minimize the disturbance inflicted on the most affected community.
Since locating two facilities at the same location doubles the disturbance
generated at that location, there is no need to require a minimum distance
between facilities. The model is a generalization of the single facility location
model proposed by Hansen et al. [133].
The p-dispersion problem, originally described by Shier [186] on a tree

network, deals with facility to facility interactions as no demand points are
included in the model. The objective is maximizing the minimum distance
between facilities. Kuby [149] designed an integer programming formulation
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for the discrete case. It was approached in the continuous space by [92, 161].
For the continuous case, there is a bounded area with no demand points.
An equivalent problem is circle packing in a convex area (finding p non-
intersecting circles inside a convex area with the greatest possible radius [154,
161, 173, 197]). Common convex areas investigated in the literature include
a square, a rectangle, a disk, and an equilateral triangle [197, 155].

9.3.6 Equity Models

Equity models aim to provide similar service to the demand points rather
than minimizing or maximizing some objective. Single facility models are
discussed in Sect. 9.2.4. Examples of multiple facilities models include:

1. Minimizing the Gini coefficient of the Lorenz curve [156, 126] calculated
by service distances to the closest facility [63].

2. Equalizing the load serviced by the facilities [193, 4, 11].
3. The set of demand points is partitioned into groups. These groups are

not necessarily divided by their locations but by characteristics such as
neighborhoods’ wealth. The objective is to provide equitable service to
the groups by locating one or more facilities. For example, poor neigh-
borhoods should get comparable service level to rich neighborhoods
[59].

9.3.7 Not Necessarily Patronizing the Closest Facility

Most multiple facility location problems assume that customers get their
services from the closest facility. There are a few papers that do not assume
that. Brimberg et al. [26] assumed that there is a sequence of probabilities
p1, p2, . . .. A customer is served by the closest facility with probability p1,
by the second closest with probability p2, and so on. In competitive location,
discussed in Chapter [52] in this book, one approach termed the gravity or
Huff model [181, 136, 137] assumes that customers split their patronage
among several competing facilities rather than patronize the closest one. The
probability of patronizing a facility declines by a distance decay function.

Some models propose that customers obtain their services according to the
gravity rule. Drezner and Drezner [56, 54] proposed the gravity p-median
model. It is assumed that users choose from among the facilities providing
services according to the gravity rule rather than getting them from the closest
facility.
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Drezner and Drezner [53] applied the gravity rule to the hub location
problem. A traveler needs to fly from one airport to another. Several potential
hub airports are available. If the origin or the destination is a hub airport, the
traveler chooses a non-stop flight. Otherwise, the probability that a certain
hub is selected is governed by the gravity rule.

Drezner and Drezner [58] considered the gravity rule version of the
multiple server location problem [6]. Total service time consists of travel
time to the facility, waiting time in line, and service time. There is a given
number of servers to be distributed among the facilities. Each facility acts as
an M/M/k queuing system [162]. Customers select a server with a probability
proportional to its attractiveness and to a decay function of the distance, not
necessarily selecting the closest one.

9.4 Solution Methods

9.4.1 Generating Replicable Test Problems

In order to compare computational results of test problems in future research,
access to the parameters of the test problems is required. Drezner et al. [96]
suggested a simple method, that was used in many follow-up papers, to
generate a pseudo-random sequence of numbers distributed uniformly in the
open range between 0 and 1 based on the idea of Law and Kelton [152].
Such test problems can be easily replicated without a need for an access to a
data base.

A starting seed r1 and a multiplier λ, which are odd numbers not divisible
by 5, are selected. Note that r1 can be an even number not ending with a
zero. Drezner et al. [96] used λ = 12, 219. The sequence is generated by the
following rule for k ≥ 1:

rk+1 = λrk − 
 λrk
100, 000

� × 100, 000

The number rk is an integer between 1 and 99,999, so rk
100,000 is a number

in the open range between 0 and 1. If a random number between a and
b is sought, we can use a + (b − a)

rk
100,000 . It turns out that r5001 = r1

and if a sequence of more than 5,000 points is needed, the 100,000 can be
replaced by 1,000,000 and sequences of up to 50,000 numbers can be gener-
ated [142]. Drezner et al. [96] used r1 = 97 to generate the x coordinates,
and r1 = 367 to generate the y coordinates of their test problem. The surface
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plot for n = 100 for the obnoxious facility problem depicted in Fig. 9.3 is
based on the points generated this way.

9.4.2 Solving Single Facility Problems

9.4.2.1 Solving with the Solver in Excel

Convex single facility location problems can be solved with the Solver in
Excel, mainly for instruction purposes. Expression (9.5) is easy to program.
There are only two variables (x, y). For the one-center problem, it is better
to formulate it as minimize {L} subject to the constraints that each distance
≤ L . The distances (9.1) for problems on the sphere are somewhat more
complicated to program, but spherical problems can serve as a good example
for a global FedEx idea of planes flying to a central airport, exchange packages
and fly back. If the company serves 20 cities all over the world, flying directly
between all pairs of cities will require 380 airplanes to fly daily, while this
scheme requires only 20 airplanes.

If a problem is not convex, it can be heuristically solved by Solver using
VBA (Visual Basic for Applications) in a multi-start approach (for example
repeating the process 100 times). Each starting solution is randomly gener-
ated, and the problem is solved by calling Solver in the VBA code, and the
best solution is selected.

9.4.2.2 Voronoi Diagram and Delaunay Triangulation

A Voronoi diagram [200] is constructed by a set of generator points. The
plane is partitioned into polygons so that all the points inside a polygon are
closest to one generator point. The sides of the polygons are equidistant from
two generator points (and closest to them), and the vertices of the polygons
(termed Voronoi points) are equidistant from three generator points. So, for
example, if the generator points are facilities, the plane is partitioned into
polygons so that the points inside a polygon are closest to the same facility. If
a demand point gets its services from the closest facility, each facility provides
service to the set of demand points in its polygon.
The Delaunay triangulation [153] is based on the Voronoi diagram. A

polygon whose interior is the feasible set, has demand points in its interior
(and boundary). The polygon is partitioned into non-overlapping triangles
so that the vertices of the triangles are demand points, and the union of the
triangles covers the whole feasible polygon. Figure 9.4 depicts an example
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Fig. 9.4 Delaunay triangulation of the convex hull

of a Delaunay triangulation of the convex hull of a set of points. The
Delaunay triangulation can be generated by Mathematica [208]. For a review
of Voronoi Diagrams and Delaunay triangulation see [2, 194, 175].

9.4.2.3 General Global Optimization Algorithms

The first global optimization procedure suitable for the location of a single
facility is the “Big-Square-Small-Square” (BSSS) proposed by Hansen et al.
[133]. It is a branch and bound algorithm. A relative accuracy ε > 0 is
given. A square that covers the feasible region is defined, and a formula (or
procedure) for finding lower and upper bounds in a square is needed. The
following steps are executed for a minimization problem. A procedure for
maximization is very similar.

1. Find the lower bound LB1 and the upper bound UB1 in the square. The
upper bound is at a feasible point. The list of squares has one member. The
best upper bound (best solution found so far) in the list is UB = UB1.

2. Select the square i in the list with the minimum LBi . If LBi > UB(1−
ε), stop with UB as the solution.

3. Remove square i (the “big” square) from the list and create four “small”
squares by perpendicular lines, parallel to its sides, through the big square’s
center.

4. For each of the four small squares:
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a. Calculate the lower bound LB and the feasible upper bound UB in
the square.

b. Update UB if UB < UB.
c. If LB ≤ UB(1 − ε), add the small square to the list.

5. If UB was updated in Step 4b, check all the squares in the list and remove
squares for which LBi > UB(1 − ε).

6. If the list of squares is empty, stop withUB as the solution within a relative
accuracy ε. Otherwise, go to Step 2.

The BSSS branch and bound algorithm was modified in several ways.
Drezner and Suzuki [104] constructed the “Big-Triangle-Small-Triangle”
(BTST) procedure. The feasible set, such as the convex hull of the demand
points, is triangulated by the Delaunay triangulation [153] described in
Sect. 9.4.2.2. The initial list consists of the Delaunay triangles. In the first
phase bounds are calculated for each triangle, and some triangles are removed
from the list. The second phase is similar to BSSS. Four “small triangles” are
created by connecting the centers of the sides of the selected “big triangle”.
The BTST algorithm is more efficient, especially when the feasible area is not
the whole square. In order to evaluate the bounds for BSSS, the feasibility of
points in a square needs to be considered. In BTST all Delaunay triangles
and consequently all small triangles are feasible by design and no feasibility
check is required.

Drezner [85] constructed a general algorithm for solving by BTST any
location problem whose objective is a sum of individual terms, one for
each demand point. Specific bounds are constructed when each term can be
expressed as a difference between two convex functions of the distance which
are not necessarily convex in the coordinates x and y. For example, − ln(d)

is convex for d > 0 but it is not convex (or concave) in the coordinates.
Drezner and Nickel [98] constructed general bounds for problems that can
be formulated as an ordered median problem [172].

Drezner et al. [72] constructed the “Big-Arc-Small-Arc” (BASA) algorithm
for solving location problems on peripheries of circles. Berman et al. [9]
designed the “Big-Segment-Small-Segment” algorithm for solving problems
on networks. Schöbel and Scholz [184] proposed the “Big-Cube-Small-Cube”
(BCSC) algorithm for solving problems in k-dimensional space for k ≥ 3.
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9.4.2.4 Solving the Weber Problem

The first algorithm for solving the Weber [202] problem with Euclidean
distances was designed by [203] (translated to English in [204]). It is an iter-
ative procedure converging to the optimal solution because the problem is
convex [177].

Let (xi , yi ) for i = 1, . . . n with weights wi > 0 be a set of demand
points in the plane. The objective function is:

min
x,y

{
n∑

i=1

wi

√
(x − xi )2 + (y − yi )2

}

(9.5)

A starting solution (x
∧

, y
∧

) is selected. The next iterate is obtained by equating
the derivatives of Eq. (9.5) by x and y at (x

∧

, y
∧

) to zero, and solving for (x, y).
Define w

∧

i = wi√
(x
∧

−xi )2+(y
∧

−yi )2
, then

n∑

i=1

w
∧

i (x − xi ) = 0;
n∑

i=1

w
∧

i (y − yi ) = 0 → x =

n∑

i=1
w
∧

i xi

n∑

i=1
w
∧

i

; y =

n∑

i=1
w
∧

i yi

n∑

i=1
w
∧

i

.

(9.6)

When the Euclidean distance is replaced by the squared Euclidean distance,
the solution is at the center of gravity (w

∧

i = wi ). When Manhattan (�1)
distances are used, the problem is separable into two unrelated one dimen-
sional problems. The solution in one dimension (on a line) is at the median
point, hence the name “the one-median problem”. For �p distances, a proce-
dure similar to Weiszfeld [203] is designed by Brimberg and Love [25]. For
details see [158, 122].

Several improvements of the Weiszfeld algorithm [203] were proposed.
Drezner [82] proposed to multiply the change between two consecutive itera-
tions by a factor of 1.8. An “ideal” multiplier that needs to be computed every
iteration was also proposed. Drezner [84] proposed to accelerate the proce-
dure by estimating the limit of a geometric series by the ratio of the changes
of two consecutive iterations. Drezner [87] proposed the fortified algorithm
based on the values of the objective function at 9 points (the present itera-
tion and eight points around it on the vertices and sides’ centers of a square
depicted in Fig. 9.5), and fitting a paraboloid to these nine values by a least
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Fig. 9.5 The square configuration for the fortified algorithm

squares quadratic regression. The next iterate is the minimum point of the
paraboloid. For details see Drezner [87].

9.4.2.5 Solving the One-Center Problem

Elzinga and Hearn [118] proved that the smallest circle enclosing all points
passes through two points (in which case the solution is in the middle
between the points), or through three points. They proposed the following
algorithm for solving optimally the unweighted 1-center problem:

1. Pick any two points. Construct a circle based on the segment connecting
the two points as a diameter.

2. If the circle covers all points, a solution has been found, stop.
3. Otherwise, add a point outside the circle to the pair of points to form a

set of three points.
4. If the triangle with the three points at its vertices has an angle of at least

90◦, drop the point on the obtuse angle and go to Step 3.
5. If the circle passing through the three points covers all points, a solution

has been found, stop.
6. If there is a point outside the circle, choose such a point, and add it as a

fourth point. One of the original three points needs to be discarded. Go
to Step 4.

Once the solution based on three points is available [108], the following
modification is faster and can be used for the weighted case as well.
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1. Select a point such as the center of gravity of the demand points.
2. Select the three farthest points (weighted for the general case).
3. Find the solution point based on these three points.
4. This point is the next iterate. Note that the solution point may be based

on only two of the points.
5. Find the largest weighted point from the next iterate. If it is within the

(weighted) distance obtained in Step 4 stop.
6. Otherwise, replace each of the three points by the farthest point (actually

solving the four point problem) and select the center of the best solution
as the next iterate. Go to Step 4

Drezner and Shelah [102] constructed a special configuration that shows
that the Elzinga and Hearn [118] algorithm can have a complexity of at
least o(n2) even though in practice the complexity is linear for most tested
problems.

9.4.2.6 Solving the Obnoxious Facility Problem

In Fig. 9.3 the surface of the shortest distance to a set of 100 randomly
generated demand points is depicted. The solution is on the top of the tallest
hill. There are 202 hilltops in the figure. It turns out that these hilltops are
Voronoi points (see Sect. 9.4.2.2). The Voronoi points can be easily generated
by Mathematica [208], or special FORTRAN programs such as Sugihara and
Iri [190, 191]. Shamos and Hoey [185] observed this property. Their idea was
to generate all the Voronoi points and select the one with the largest shortest
distance. Dasarathy and White [49] solved the unweighted maximin problem
directly without resorting to Voronoi diagrams. Drezner and Wesolowsky
[107] solved the weighted version of the problem.

Hansen et al. [133] observed that the negative impact inflicted by an
obnoxious facility usually declines by the square of the distance. Let a facility
be located at location X , and the distance between community i for i =
1, . . . , n and location X is di (X). There are wi residents in community i.
The objective is to minimize the cumulative effect on the residents in the
area by locating the facility in a pre-determined region S , with the objective:

min
X∈S

n∑

i=1

wi

d2i (X)
(9.7)
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They optimally solved this problem by the Big-Square-Small-Square (BSSS)
global optimization method (described in Sect. 9.4.2.3) designed in that
paper.

9.4.2.7 Solving Spherical Problems

Hansen et al. [130] and Suzuki [192] constructed global optimization algo-
rithms for location on a sphere’s surface based on the algorithms described
in Sect. 9.4.2.3. For spherical surfaces, Hansen et al. [130] generalized the
BSSS algorithm [133], and Suzuki [192] generalized the BTST algorithm
[104]. The spherical Delaunay triangles are found by the method in Sugihara
[189].

9.4.3 Multiple Facilities Solution Methods

Most solution methods of continuous multiple facilities locations are
heuristic. Only small instances can be optimally solved in reasonable
computer time.

9.4.3.1 p-Median

The planar p-median problem is known to be NP-hard [163], and there-
fore many heuristics have been developed for its solution. Classical heuristics
include the famous alternating procedure [47, 48], the projection method
[19], and gradient-based methods [34, 171]. An algorithm that can optimally
solve medium size problems is designed by Krau [148]. For recent reviews of
solution approaches to the planar p-median problem the reader is referred to
[88, 89, 27].

Cooper [47, 48] proposed the alternating (sometimes called location-
allocation) method. Starting locations for p facilities are selected (randomly or
otherwise). The set of demand points is partitioned into subsets, each served
by one facility. The best location of the facility serving each subset (the Weber
problem which is convex) is found, and possibly a different partition is found.
The process is continued until the partition into subsets stabilizes

Genetic algorithms [134, 128] in combination of additional heuristics
such as variable neighborhood search [169, 131], tabu search [127], were
proposed in [198, 21, 123, 88, 99]. The best results were obtained in [91].
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9.4.3.2 p-Center

Drezner [78] optimally solved the two-center and the two-median problems
on the plane. It is proved that in the optimal solution there is a line separating
the set of demand points into two subsets such that the single facility solution
point for each subset yields the optimal solution to the two facilities problem.
There are at most 1

2n(n−1) such lines. Once all separating lines are evaluated,
the optimal solution is identified. A lower bound for each subset improves the
efficiency of the algorithm.

Drezner [77] suggested two heuristics and one optimal algorithm for the
solution of the weighted p-center problem. The two heuristic procedures
are similar to the location-allocation algorithm [47, 48]. The optimal algo-
rithm is based on the property that the solution to the one-center problem is
based on two or three demand points [118]. There are 1

6n(n2 + 5) possible
maximal sets. Based on a proof in [75], the number of relevant maximal sets
is bounded by n(n − 1). The proposed optimal algorithm is polynomial in n
for a fixed p. The extension of the modified center problem [75] is also solved
in polynomial time.

Callaghan et al. [28, 29] constructed the best optimal algorithm to
solve the p-center problem. They optimally solved problems with up
to 1,323 demand points. Earlier solution algorithms were proposed by
[32, 34, 36, 35].

9.4.3.3 Multiple Obnoxious Facilities Solution Methods

The Voronoi points (hilltops in Fig. 9.3) are found. The heuristic algorithm
proposed in Drezner et al. [96] is to select p hilltops so that the distance
between any two hilltops is at least D, and the lowest hilltop is as high as
possible. This is done by solving the following Binary Linear Program (BLP).

Let K be the number of hilltops, and di be the shortest distance between
hilltop i and all demand points (the height of the hilltop). The hilltops are
sorted so that d1 ≥ d2 ≥ . . . dK . The distance between hilltops i and j is
Di j , and we select only hilltops that are at least a given distance D from
one another. The proposed binary linear program is (For complete details see
Drezner et al. [96]):

Maximize {L}
subject to:
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K∑

i=1

xi = p

xi + x j ≤ 1 when Di j < D

L + xi (d1 − di ) ≤ d1 for i = 1, . . . , K

xi ∈ {0, 1} (9.8)

9.5 Summary and Suggestions for Future
Research

Location models involve locating one or more facilities among a given set of
demand points to achieve a certain objective. For example: locating a ware-
house that serves a set of stores; locating a landfill to serve communities but
should not be close to them; locating cell-phone towers with a certain range
to cover the population in an area. In discrete location models, a finite set
of potential locations for facilities is given. In continuous location models,
facilities can be located anywhere in the plane, or in a finite region with an
infinite number of possible locations.

Such problems are modeled as optimization problems, such as nonlinear
programming. Some models are convex and can be easily solved to optimality.
Single facility location problems can be optimally solved by the algorithms
detailed in Sect. 9.4.2.3. However, most multiple facility problems are non-
convex and optimal algorithms are difficult to construct. Therefore, specially
designed heuristic algorithms, meta-heuristic approaches such as genetic algo-
rithms [134, 128], variable neighborhood search [169, 131], tabu search
[127] and others, are applied for their solution.
There are many models that were proposed in discrete space but yet to be

investigated in continuous space. In discrete space such problems are combi-
natorial in nature: selecting p locations for facilities out of the list of potential
locations. Well-designed branch and bound algorithms may be able to solve
them to optimality. In continuous space, optimal algorithms are difficult to
construct, and heuristic algorithms are usually constructed for solving them.
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131. Hansen, P. and Mladenović, N. (1997). Variable neighborhood search for the
p-median. Location Science, 5:207–226.
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