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Competitive Facilities Location

Tammy Drezner

7.1 Introduction

The competitive facilities location problem is the location of one or more
facilities among existing competing facilities. The facilities attract demand
generated by customers in the area. The objective is to maximize the market
share captured by the new facilities. Over the years many ways to estimating
the market share captured by each facility were proposed. It is assumed that
customers divide their buying power among facilities according to the facil-
ities’ attractiveness and their distance relative to other facilities. Once the
market share attracted by one or more facilities can be estimated, a proce-
dure for finding the best locations for the new facilities can be constructed.
The objective function is not convex. Therefore, only heuristic procedures,
that do not guarantee optimality, were proposed for solving most models.
The basic competitive model is to find the location of one or more facil-

ities that maximize the market share captured by the new facilities. Some
extensions/variations to the basic model were investigated. These extensions
are listed below and are detailed in Sect. 7.4.
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Minimax Regret: Incorporating future market conditions, such as future
changes in demand, into the model. Future market conditions are defined
by a set of possible scenarios. For each scenario there is an optimal location
for a facility yielding the maximum possible market share for that scenario.
We find a location for a facility to accommodate the individual scenarios.
For each scenario, some market share is lost at a location, compared to
the optimal value at the best location for that scenario. The objective is to
minimize the maximum loss in market share across all scenarios.

The Threshold Criterion: Rather than the objective of maximizing the total
buying power attracted by the chain, there is a minimum buying power
threshold to be met. If the chain fails to attract the threshold buying power,
the company fails. The proposed objective is minimizing the probability
that the company fails to meet the threshold.

The Leader-Follower: (Von Stackelberg equilibrium [121]). We find the best
location in anticipation of future competition. The leader locates his facility
and the follower (competitor) locates his facility knowing the leader’s
location. The follower has all the necessary information for his location
decision. Therefore, the follower’s problem is the standard competitive loca-
tion problem. The leader’s problem is more complicated. The objective is to
maximize his market share following the follower’s decision.

Location and Design: A limited budget is available. The improvement in the
attractiveness of a facility depends on the budget allocated to it. We find the
location of a new facility, its attractiveness, and possibly improving existing
facilities subject to the limited budget.

Lost Demand: Customers may choose a substitute product if the product they
are looking for is located too far. For example, if potential customers are
interested in a Chinese restaurant but the closest one is too far, they may
choose a non-Chinese restaurant which is close by, or eat at home.

Cannibalization: Minimize the cannibalization of one’s chain facilities when
constructing new ones. Cannibalization at the retail chain facilities is impor-
tant, especially in the case of franchises. Franchisees may lose sales, which
may be more than is allowed by the contract they signed with the company.

Recent reviews of competitive facilities location models are Berman et al.
[6], Drezner [23, 24], Drezner and Eiselt [48], Eiselt [59], Eiselt et al. [60],
Kress and Pesch [87], Lederer [90], Marianov et al. [96], Pelegrín et al. [109].
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7.2 Approaches to Estimating Market Share

7.2.1 Deterministic Rules

According to the deterministic rules all customers residing at the same
demand point patronize the same facility.

Proximity Rule: Hotelling [79] proposed that competitors compete by
charging different mill prices and customers select the facility that provides
the lowest mill price plus the cost of travel. This approach led to many
papers, for example [50, 64, 69–72, 116, 119], that apply the proximity
rule, i.e., customers patronize the closest facility. The proximity rule implies
that all facilities charge the same price and thus are equally attractive.

Utility Function: The utility model is an extension of the proximity rule [16,
18]. A list of M quality measures, Qi , i = 1, . . . , M , each with a weight
wi , is determined. The utility function is

∑M
i=1 wi Qi − d, where d is the

distance to the facility. A customer selects the facility with the maximum
utility.

7.2.2 Probabilistic Rules

By the probabilistic rules, customers residing at the same demand point
divide their patronage among several competing facilities. It can be inter-
preted as “each facility is patronized with a certain probability”.

Random Utility: The random utility rule [25, 91] is an extension of the utility
rule. The utility function parameters, except for the distance, are randomly
distributed. Each customer patronizes the facility with the largest utility
according to his assessment of the parameters. Therefore, not all customers
residing at the same demand point patronize the same facility.

Gravity Model: The gravity model, sometimes referred to as the “Huff”
model, was proposed by Reilly [115] and refined by Huff [80, 81].
According to the gravity model, the probability that a customer patron-
izes a facility is proportional to its attractiveness and declines according to a
distance decay function. The basic gravity model is based on p competing
facilities and n demand points that exist in an area [17]. A distance decay
function f (d, λ) with a parameter λ depending on the retail category
is defined. For example, the distance decay function for grocery stores is
different from the one for shopping malls. Let:
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Bi be the buying power at demand point i for i = 1, . . . , n,
A j be the attractiveness level of facility j for j = 1, . . . , p,
di j be the distance between demand point i and facility j,
f (d, λ) be the distance decay function,
λ be the parameter of the distance decay function which depends

on the retail category.
Mj be the expected market share captured by facility j.

The estimated market share captured by facility j according to the gravity
model is:

Mj =
n∑

i=1

Bi
A j f (di j , λ)
p∑

k=1
Ak f (dik, λ)

. (7.1)

where the distance decay function f (d, λ) is the same for all competing
facilities in the same retail category. Note that some models assume a decay
function f (d ) without a parameter λ.

In the original gravity model [115] it is assumed that the distance decay
parallels gravity decay and thus f (d) = 1

d2
. Huff [80, 81] suggested a decay

function f (d, λ) = 1
dλ . Other distance decay functions include: exponen-

tial decay f (d, λ) = e−λd [77, 132], f (d) = e−1.705d0.409 [5], and a logit
function [56]. Based on a real data set, Drezner [20] showed that expo-
nential decay f (d, λ) = e−λd fits the data better than a power decay
f (d, λ) = 1

dλ . It is well recognized that the decay function varies across

retail categories. For example, for the decay function f (d, λ) = 1
dλ it was

found that λ = 3 for grocery stores [81], λ = 3.191 for clothing stores
[80], λ = 2.723 for furniture stores [80], and λ = 1.27 for shopping malls
[20].

Flow Interception: Berman and Krass [8] introduced a competitive location
model where demand is attracted from customers traveling en route to some
destination while passing by a facility (“impulsive” shoppers) and demand
originated at nodes of the network (planned purchase trips). Customers may
change their mind on the way to the selected facility and stop at a less
attractive facility just because they noticed it on the way. The latter issue is
discussed in [37] concluding with a recommendation to locate a small retail
facility “on the way” to a large shopping mall.

Cover Based Model: Launhardt [89] and Fetter [62] coined the term “Eco-
nomic law of market areas”. This concept was formalized by defining a
“radius of influence”, which is at the core of central place theory [11, 94].
According to central place theory there is a maximum “range of the good”,
depending on retail category, that customers are willing to travel to obtain
the good. Drezner et al. [38, 39] proposed that each competing facility has
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a “sphere of influence” determined by its attractiveness level. More attrac-
tive facilities have a larger sphere of influence. The buying power spent by
a customer in the sphere of influence of several facilities is divided among
the competing facilities. The buying power of a customer located outside
all the spheres of influence is lost. Drezner et al. [42] refined the model by
assuming that patronage does not drop abruptly at the radius of influence,
but declines gradually near that radius.

7.2.3 Estimating Attractiveness

The models for estimating the captured market share (except for the prox-
imity rule) rely on a good estimate of the facilities’ attractiveness levels. There-
fore, estimating the attractiveness of a facility is an important component
required for a successful implementation of the models.

Nakanishi and Cooper [101] suggested to determine a list of properties
and calculated the attractiveness of a facility as a product of these prop-
erties’ values, each raised by a power. Many researchers conducted public
opinion surveys to determine the attributes affecting the attractiveness of
the competing facilities and then establish their attractiveness. Properties that
were found by opinion surveys to affect attractiveness include:

Supermarkets: Square footage [81]; price [113]; price, freshness, availability,
convenience, quality service, parking [118]; choice range for daily/non-daily
goods, price for daily/non-daily goods, parking [127]; store image, layout,
appearance, accessibility, service, employee composition [83]; cleanliness,
brands I like, better produce, low prices [16]; cost of products [5].

Furniture: Square footage [80].
Clothing: Square footage [80]; parking availability, choice range [126].
Central Business District: price, visual appearance, reputation, range of goods,

shopping hours, atmosphere, design, service [15].
Shopping Malls: variety of stores, mall appearance, favorite brand names [49].

They tested 6 more attributes that were not found significant: Mall prices,
distance to mall, adequate parking, mall safety, food court/restaurants,
movies/entertainment.

There are other approaches to estimating and analyzing attractiveness
levels:

• Drezner and Drezner [29] observed that the annual sales of a retail facility
are a clear indication of its attractiveness. Higher attractiveness level is
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reflected in higher sales figures. However, sales figures alone cannot be
directly used as the attractiveness measures because sales are also depen-
dent on the affluence (or buying income) of potential customers in a retail
facility’s trade area. The proposed procedure adjusts the sales figures by
the demographic characteristics of the area, thus deriving the attractiveness
measures of the retail facilities mainly from these two pieces of data.

• Drezner [20] estimated the attractiveness of facilities by asking shoppers
about the zip code they came from and determined the attractiveness level
by a least squares approach. She found the best fit to the observed distances
by defining the attractiveness levels as variables.

• Drezner et al. [46] refined the gravity model by assigning different decay
functions to different facilities. Customers patronize a more attractive
facility at greater distances. A more attractive facility has a flatter decay
function. The multiplicative attractiveness values are replaced by different
decay functions. This approach is easier to implement because there is no
need for public opinion surveys. It yielded more accurate results on a real
data set. They modified the Drezner [20] approach by replacing the multi-
plicative attractiveness coefficients A j as variables, with different decay
parameter λ j as variables. There is no multiplicative attractiveness level,
i.e., A j = 1∀ j . Drezner et al. [47] incorporated the attractiveness level A j
in addition to variable decay parameters λ j into the model.

• Drezner et al. [45] observed that not all customers perceive the same attrac-
tiveness level for the same facility. They proposed that the attractiveness
level A j is normally distributed with some mean and variance. Existing
models use the mean attractiveness as A j . Drezner et al. [45] defined an
“effective” attractiveness level which is found to be lower than the average
attractiveness assumed in gravity models. Greater variances yield lower
effective attractiveness because the loss in market share by a given decline
in attractiveness is greater than the gain in market share by increasing the
attractiveness by the same amount.

7.3 Distance Correction

In most location models it is assumed that demand is generated at demand
“points”. In reality demand is generated in neighborhoods and not all resi-
dents in a neighborhood reside at the same distance from a facility. Demand
generated in an area (for non-competitive location models) is investigated in,
for example, [55, 122, 131].
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Fig. 7.1 Discrete and continuous market share surfaces

Drezner and Drezner [26] proposed a distance correction to the gravity
model. Data may be available by zip codes or census tracts. Listing all indi-
vidual customers is impractical. The distance correction incorporates these
considerations. Drezner and Drezner [26] suggested that if the area of a
demand “point” is A, the distance to a facility from the center of the area
(the demand point) is d , then the corrected distance to be used in the gravity
model is about

√
d2 + 0.24A.

Drezner and Drezner [26] used an example problem of 100 demand points
in a square of size 10 by 10 with seven existing facilities. This example
problem was used in many papers, for example [18, 106]. Each demand point
has an area of 1. The market share captured by the new facility is plotted in
Drezner and Drezner [26], and depicted in Fig. 7.1. On the left, the surface
plot of the “standard” gravity model using f (d) = 1

d2
as the decay function

is depicted. In the middle, the market share captured when demand is contin-
uous in the 10 by 10 square is shown. On the right, the market share surface
using a decay function of f (d) = 1

d2+0.24
(distance correction) is depicted.

When demand is generated at demand “points” there are many local maxima
at various locations. The surface on the right is “smooth” and very close to
the continuous surface with two local maxima.

7.4 Extensions

7.4.1 Minimax Regret Criterion

Drezner [21] incorporated future market conditions into the gravity model
for the retail facility location. Future market conditions were analyzed as a set
of possible scenarios. The best location for a new retail facility is at a location
where the market share captured at that location is as close to the maximum



216 T. Drezner

as possible regardless of which future scenario takes place. Each scenario may
also span different time horizons. The objective is the minimax regret which
is used in other models of location analysis, for example [4, 13, 114].

Suppose there are K possible scenarios, k = 1, . . . , K . For each scenario
we can calculate the market share Mk(X) at location X . The maximum
buying power that can be captured according to each scenario, M∗

k =
max
X

{Mk(X)}, is calculated. The minimax regret objective R (X ), to be

minimized, is then

R(X) = max
k=1,...,K

{
M∗

k − Mk(X)
}

Drezner [21] applied the multi-start heuristic approach to find M∗
k and

minimize R (X ) for the location of one facility in the plane.

7.4.2 The Threshold Objective

Drezner et al. [44] suggested a different objective for competitive location
models. Rather than the objective of maximizing the total buying power
attracted by a chain, there is a minimum buying power threshold T to be
met. If the chain fails to attract the buying power T , the company fails. The
proposed objective is minimizing the probability that the company fails to
meet the threshold. The threshold concept has been employed in financial
circles as a form of insurance on a portfolio, either to protect the portfolio or
to protect a firm’s minimum profit, for example [82, 84, 107].

In competitive facility location, let the buying power at demand point 1 ≤
i ≤ n be distributed according to some distribution with a mean of μi and a
standard deviation σi . The buying powers of two demand points i and j are
correlated with a correlation coefficient ri j . The total buying power attracted
by the chain has a mean of μ and a standard deviation σ (see [44] for detailed

calculations). The objective function is to minimize p(X) = P
(
Z ≤ T−μ

σ

)
.

By the Central Limit Theorem M (X ) can be assumed Normal but this is
unnecessary because any cumulative distribution is monotonically increasing,
thus minimizing p(X ) is equivalent to minimizing T−μ

σ
.

This problem was solved heuristically in [44]. It is possible to solve it opti-
mally using BTST [53], but to the best of our knowledge no such attempt
was made.
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7.4.3 Leader-Follower Models

Drezner and Drezner [36] provide a review of the leader-follower model.
Other papers on the topic are Küçükaydın et al. [112], Plastria and Vanhaver-
beke [88].
There are two well researched two players’ games: Nash equilibrium [102]

and the leader-follower game also termed the von-Stackelberg equilibrium
[121] and in voting theory is known as Simpson’s problem [120]. In the
Nash equilibrium game no player can improve his objective when the other
player does not change his strategy. In many cases no equilibrium exists. In
the leader-follower game the leader adopts a strategy and the follower adopts
his best strategy knowing the leader’s strategy. The follower’s goal is to maxi-
mize his objective function while the leader’s goal is to maximize his objective
function following the follower’s action.

Early contributions to Nash equilibrium location problems include Eaton
and Lipsey [58], Hotelling [79], Lerner and Singer [92], Wendell and
McKelvey [130]. The leader-follower location problem was introduced to
competitive location models by Hakimi [69], and published in Hakimi [70–
72], for location on network nodes using the Hotelling [79] premise that
each customer patronizes the closest facility, see also Hansen and Labbè [73].

Drezner [50] analyzed two competitive location models in the plane. One
is the location of a new facility that will attract the most buying power from
an existing facility (the follower’s problem). The other is the location of a
facility that will secure the most buying power against the best location of
a competing facility to be set up in the future (the leader’s problem). The
proximity rule using Euclidean distances is assumed.

Let n demand points be located in the plane. A buying power bi > 0
is associated with demand point i for i = 1, . . . , n. The leader locates his
facility at X and the follower locates his facility atY . Customers will patronize
the follower’s facility Y if the Euclidean distance between the customer and
Y is less than the distance between the customer and X . Two problems are
considered:

The follower’s problem: Given the location of an existing facility X serving the
demand points, find a location for a new facility Y that will attract the most
buying power from demand points.

The leader’s problem: Find a location for X such that it will retain the most
buying power against the best possible location for the follower’s facility Y .
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For given locations X and Y , the distribution of the buying power can be
found by constructing the perpendicular bisector to the segment connecting
X and Y . This perpendicular bisector divides the plane into two half planes.
All points in the closed half plane which includes X (including points on the
perpendicular bisector itself ) will patronize X and all the points in the other
open half plane which includes Y , will patronize Y . This is a generalization
of Hotelling’s analysis on a line [79].

It is shown in [50] that one of the optimal locations for Y when X is given
is infinitesimally close to X but not on X . It follows that the best location for
the follower, Y ∗, is “adjacent” (close) to X . The variable yet to be determined
is the direction in whichY is “touching” X . In conclusion, finding an optimal
location for Y is equivalent to finding the best line through X such that the
open half plane defined by this line contains the most buying power for Y .
Finding the best line by simple enumeration is detailed in [50].
The algorithm that solves the leader’s problem is based on the algorithm

used for solving the follower’s problem. It can be found whether attracting a
certain market share P0 or higher by Y is possible by finding whether there is
a feasible solution to a linear program. The algorithm is based on a bisection
on the value of P0. Complete details are given in [50].
The two problems can be modified by an extra restriction that the follower

cannot locate his facility closer than a given distance R from the leader’s
facility. To solve the modified follower’s problem for a given X it can be
shown that the best solution for Y is determined by open half planes defined
by tangent lines to the circle centered at X with a radius of 1

2 R rather
than lines through X . The details of the algorithms for solving the modified
problems are available in [50].

Drezner and Zemel [57] considered the following problem: a large number
of customers are spread uniformly over a given region A ⊆ R

2. What config-
uration of facilities that cover the area will best protect against a future
competing facility? The proximity rule is assumed, i.e., each customer patron-
izes the closest facility. There are three evenly spread configurations that cover
the whole R2 plane with equilateral polygons depicted in Fig. 7.2: a trian-
gular grid; a square grid; and an hexagonal grid (beehive). No other cover of
the plane by identical equilateral polygons exists. Drezner and Zemel [57]
found that the solution to the problem of covering the whole R

2 plane
is the hexagonal pattern. Then they analyzed the finite area problem and
found bounds on the difference between the configurations as the number
of facilities increases.

Since customers are attracted to the closest facility, the market share
captured by each facility is proportional to the area attracted to the closest
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Fig. 7.2 Various configurations

facility. This is similar to the Voronoi diagram concept [3, 104, 124, 129].
In the configurations depicted in Fig. 7.2, the market share attracted by each
facility is the area of the polygon. Let A be the area attracted by each facility
(the area of the triangle, square, or hexagon). It is shown in [57] that:

• For the triangular grid the competitor’s facility can attract a maximum of
2
3 A.

• For a square grid the competitor’s facility can attract a maximum of 9
16 A =

0.5625A.
• For an hexagonal grid the competitor’s facility can attract a maximum of

0.5127A.

The hexagonal pattern provides the best protection from a future
competitor. It is interesting that for hexagonal and square grids the
competitor captures at least half of A at any point in the plane.

Hexagonal pattern is optimal for many location problems with numerous
facilities covering a large area. For example:

• packing the largest number of circles in an area [12, 76, 125],
• p-median [105], p-center [122] and p-cover [54],
• p-dispersion [52, 93, 95, 103],
• equalizing the load covered by facilities [123].

It is also the preferred arrangement for a beehive in nature which has
developed over the years in the evolutionary process.

Drezner and Drezner [27] proposed three heuristic approaches for finding
a good solution to the leader-following model where market share is estimated
by the gravity model: brute force, pseudo mathematical programming, and
gradient search.
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The Brute Force Approach: A grid of potential locations for the leader that
cover the area is generated. For each grid location, the market share attracted
by the follower is found and the market share attracted by the leader (after
the follower locates at his best location) is calculated. If the grid is dense
enough, the vicinity of the global maximum can be identified. If a more
precise location is sought, a finer grid can be evaluated in that vicinity.

The Pseudo Mathematical Programming Approach: If the market share
captured by the leader and the follower were concave, the following math-
ematical programming formulation (termed the “pseudo” problem) would
have solved the problem: Maximize the market share captured by the leader
subject to the derivative of the market share captured by the follower equal
to zero (indicating a local maximum for the follower).

The Gradient Search Approach: A gradient search that directly finds a local
maximum for the leader-follower problem is suggested. It guarantees termi-
nation at a local maximum once the optimal market share attracted by the
follower can be found. It is recommended that this procedure is repeated
many times in order to have a reasonable chance of getting the global
optimum.

Drezner et al. [40] investigated a leader-follower competitive location
model incorporating facilities’ attractiveness (design) subject to limited
budgets for both the leader and follower. The competitive model is based
on the concept of cover [38, 39]. The leader and the follower, each has a
budget to be spent on the expansion of their chains either by improving their
existing facilities or by constructing new ones. The objective of the leader is
to maximize his market share following the follower’s reaction. The follower’s
problem is identical to the three problems analyzed in [39] because market
conditions are fully known to the follower. A branch and bound algorithm as
well as a tabu search [65–67] were proposed in [39] for the solution of each
of these three strategies. For complete details the reader is referred to [85].

7.4.4 Location and Design

Combining the location decision with the design (treating the attractive-
ness level of the facility as a variable) was investigated, for example, in
[1, 19, 61, 111, 128].

Drezner [19] assumed that the facilities’ attractiveness are variables. A
budget is available for locating new facilities and for establishing the new
facilities’ attractiveness levels. The problem is determining the facilities’
attractiveness levels within the available budget. It is solved by a gradient
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search when the budget constraint is kept as equality. Plastria and Vanhaver-
beke [112] combined the limited budget model with the leader-follower
model.
The analysis in [19] for various assumptions about the attractiveness as a

function of the investment in the facility leads to some interesting insights:

1. For firms with a decreasing marginal return on investment curve, the fixed
budget allocation solution with equally divided budget among the new
facilities is very close to optimality.

2. For firms with a fixed (constant) marginal return on investment the fixed
budget allocation solution with equally divided budget works well, and
can be used if the computational effort required to obtain the flexible
budget allocation solution is prohibitive.

3. For a rapidly increasing marginal return, one should consider opening
only one new facility investing all the budget in it.

4. Mildly increasing marginal return leads to a middle ground solution and
none of the extreme budget allocation strategies is appropriate. In this
case it is recommended to find the best budget allocation by applying the
algorithm in [19].

Aboolian et al. [1] studied the problem of simultaneously finding the
number of facilities, their location, and their design. For the problem with
discrete design scenarios the TLA (tangent line approximation) procedure
(see Sect. 7.5.3) can be applied. Aboolian et al. [1] assume that A j , the attrac-
tiveness of facility j, is a function of K attraction attributes. These attributes
can be continuous (e.g. facility size, product price) or discrete (e.g. number of
parking spots, product variety). Moreover, it is assumed that for any potential
facility j there is a basic design γ j and K levels of improvement y jk j ∈ Ē ,
k ∈ {1, . . . , K } over the basic design. The attractiveness of facility j can now
be expressed as:

A j = I jγ j

K∏

k=1

(
1 + y jk

)Qk

where Qk is the sensitivity parameter of the utility function with respect to
attribute k, 0 ≤ Qk ≤ 1, and I j = 1 if facility j is open and 0 otherwise.
When y jk is continuous, it is assumed to belong to an interval [0, ymax

jk ],
and when it is discrete it is assumed to belong to a certain discrete set (note
that y1jk > y jk if y1jk is preferred to y jk). The utility ui j is now defined as:

ui j = A j (di j + 1)−β .
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Two heuristics are introduced: an adapted weighted greedy and a steepest
descent. The adapted greedy heuristic starts with an empty set of facilities and
at each iteration the location design pair that results in the largest improve-
ment per unit cost is added as long as it is within the available budget. The
ascent approach starts with a given location set Q0 and at each iteration either
a new facility in the neighborhood of Q0 is added to Q0, or a facility is
removed from Q0 or an exchange of a new facility with one of the facilities
from Q0 takes place.

Drezner et al. [41] suggested the model assuming that the market can be
partitioned into mutually exclusive sub-markets. For example, expanding a
franchise around the world in New York, Paris, Tokyo, Beijing, etc., that
customers residing in one sub-market patronize facilities only in that sub-
market. Suppose that a procedure for finding the market share at each
sub-market for a given budget allocated to the sub-market is available. The
problem is then to determine the allocation of the budget among the sub-
markets. A constraint that the sum of these individual budgets is equal to the
available budget is added.
Three objectives were investigated: (i) maximizing the firm’s profit, (ii)

maximizing the firm’s return on investment, and (iii) maximizing profit
subject to a minimum threshold return on investment. Once the market share
for a given budget at each individual market can be determined, the alloca-
tion of the budget among the markets is found by dynamic programming.
For complete details see [41].

7.4.5 Lost Demand

Standard competitive location models assume that the total expenditures of
each customer are a constant and are not affected by the location or number
of service facilities. Therefore, locating new facilities only changes the alloca-
tion of the market share between the existing and new facilities. However, if
there are no facilities nearby, customers may choose a substitute facility and
the potential demand is lost.

As an example consider Chinese restaurants. There exists a certain buying
power in the area which people who “love” Chinese food are willing to spend
in Chinese restaurants. If there is at least one Chinese restaurant close to
a customer, the available buying power will likely be completely spent at
Chinese restaurants. If the closest Chinese restaurant is quite far from the
customer, this customer may patronize a closer non-Chinese restaurant or eat
at home rather than travel a long distance, and thus the buying power will be
lost by the chain of Chinese restaurants.
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Drezner and Drezner [33] suggested the following approach to estimating
lost demand. The buying power at a demand point will be completely spent
at a facility which is at distance “0” from the community. Furthermore, let
k retail facilities be located at distances d1, . . . , dk from a community with
buying power B. We assume that the probability that a customer located at
the community will not spend his/her buying power at facility j is 1−e−λ j d j

for some constant λ j . The probability that a customer will not spend his

buying power at any of the facilities is
k∏

j=1
[1 − e−λ j d j ]. The total buying

power spent at all competing facilities is therefore:

B

⎧
⎨

⎩
1 −

k∏

j=1

[
1 − e−λ j di j

]
⎫
⎬

⎭
(7.2)

and the buying power lost is

B
k∏

j=1

[
1 − e−λ j di j

]
(7.3)

Drezner and Drezner [33] suggested to adjust the buying power at each
community by Eq. (7.2).

Another approach to modeling lost demand is proposed in [35]. They
assume that there is a maximum distance D that customers are willing
to drive to a facility. A “dummy” competitor is created at an imaginary
location which is at a distance D from all demand points. This dummy
competitor attracts the lost demand. By the proximity rule, if the distance to
the closest facility is greater than D, demand is lost. By the gravity model, the
dummy competitor attracts the lost demand and the total market share is that
attracted by “real” facilities. By Eq. (7.1)

∑p
j=1 Mj = ∑n

i=1 Bi . However,

not including the dummy facility in the sum,
∑p

j=1 Mj <
∑n

i=1 Bi and the
difference is the lost market share.

7.4.6 Cannibalization

Marketers commonly use a definition of cannibalization that focuses on a
company eating into its own market by introducing a new product to an
existing product line or an established brand (product line extension and
multi-brand strategies) at the expense of the old brand. For example, if Coca
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Cola introduces Coke2, and customers buy Coke2 instead of the original
Coke, sales may be up for the new product, but these sales may be eating into
Coke’s sales of the original Coke. In such cases, overall company sales may
not be increasing. This form of cannibalization is well recognized and well
researched in the marketing literature. See for example [10, 22, 97, 98, 100].

Another form of cannibalization occurs at the retail level of chain facilities,
especially in the case of franchises. In this form of cannibalization, opening
a new retail outlet in close proximity to an existing outlet, the new outlet
cannibalizes the sales of the existing one. Though not a franchise, this applies
to Starbucks coffee and other chain retailers. Unlike cannibalization in new
product development and introduction that is well researched, cannibaliza-
tion at the retail level has been overlooked for the most part. With the growth
of franchise operations, this emerges as an important and timely issue. For as
long as companies wish to grow and expand, managers will be faced with
the strategic decision of optimally locating new, additional facilities so that
cannibalization of existing chain members is minimized.

Schneider et al. [117] report cases of lawsuits regarding cannibalization in
fast food franchise systems such as Arby’s, Burger King, KFC, McDonald’s,
Subway, and Taco Bell. This phenomenon is referred to as encroachment.
A similar problem is observed and documented in the hospitality/lodging
industry for such franchise systems as Holiday Inn, Days Inn, Howard
Johnson, Ramada, Comfort Inn, and Quality Inn [108]. Many franchisees
believe they have lost business as a result of cannibalization from new units
in the same chain, a phenomenon referred to in the lodging industry as
“impact”.

When a retail chain plans an expansion in a market by building addi-
tional outlets, two not necessarily compatible objectives should be considered:
(1) Maximize the market share captured by the expanding chain (if the expan-
sion cost is fixed, profit is an increasing function of the market share captured
and therefore maximizing market share is equivalent to maximizing profit).
(2) Minimize cannibalization of existing chain outlets so as not to gain market
share at the expense of member outlets. Cannibalizing chain members may
render them nonprofitable and may result in channel conflict (both hori-
zontal and vertical conflict). This consideration is especially critical when the
outlets are franchised and gain in market share at the expense of member
franchisees may be damaging to the profitability of the whole chain.

Drezner [22] formulated and solved the problem of maximizing the market
share captured by the chain facilities subject to a given limit of cannibaliza-
tion. The market share captured, and consequently the cannibalized portion
of it, was calculated using the gravity model [80, 81].
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Plastria [110] applied the utility function model [17] in which the optimal
solution to maximizing market share usually is not unique but there is an area
in the plane such that a facility located at any point in that area attracts the
same (maximal) market share. Plastria [110] suggested to locate the facility at
the point in that region that minimizes cannibalization, thus maintaining the
maximum market share. When the gravity model is used, there is only one
optimal solution point that maximizes chain’s market share and the planner
must accept the cannibalization at that point if he or she does not wish to
consider sub-optimal location solutions regarding the market share captured.

Zeller et al. [133] considered the market share captured by an expanding
chain. The franchisor attempts to maximize the total market share of the
chain (thus implicitly considers the cannibalization of existing outlets) while
the new franchisee considers the market share captured by his new outlet.
They conclude that the franchisee of a new store may choose a different loca-
tion for his store than the franchisor. In reality, the franchisee has no input
into the location decision and thus his objective is ignored.

Ghosh and Craig [63] developed the FRANSYS model for franchise
system growth. Firms seeking to expand franchise distribution systems have
to balance two incompatible goals, maximizing system revenues and mini-
mizing the cannibalization of sales of existing outlets. The model uses two
constraint types: (1) constraints that disallow new unit locations that do not
provide a minimum revenue threshold for the new unit, (2) disallow new
units that fail to either protect current revenue for existing units as a group,
or, protect current revenue for each existing unit. The first, weaker constraint
is not very satisfying to existing franchisees because individual units may lose
revenue. The “best” location in terms of maximizing system revenues while
protecting current revenue for all existing units, results in a mediocre new
location that barely meets its minimum revenue threshold [117]. Application
of the FRANSYS model to the hospitality industry would require modifica-
tion of data input to conform to the market and product characteristics of
the hospitality industry [108].

Fernández et al. [61] proposed a related model. Their model is a bi-
objective model of maximizing profit while minimizing cannibalization. They
consider the location of the new facility along with its attractiveness as a deci-
sion variable. The construction cost of the new facility is included in the
profit function. In addition, they added constraints forbidding the location
of a facility in the vicinity of demand points. All of these components lead
to a complicated model that requires extensive data collection and relies on
many modeling assumptions.
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7.5 Solution Methods

7.5.1 Single Facility

Drezner and Drezner [30] optimally solved the single facility gravity-based
competitive location problem by applying the Big Triangle Small Triangle
(BTST) global optimization algorithm [53]. The procedure BTST requires
effective upper and lower bounds on the market share captured when the
facility is located anywhere in a triangle. The procedure is very efficient
and finds the optimal solution for 10,000 demand points in less than six
minutes of computer time. The generalizedWeiszfeld algorithm [51] repeated
from 1,000 different starting solutions required about the same time for all
1,000 runs but does not guarantee optimality. However, it found the optimal
solution at least 17 times out of 1,000 on a set of test problems.

7.5.2 Multiple Facilities

Drezner et al. [43] proposed five heuristic procedures for the maximization
of the market share by locating p new facilities with given attractiveness levels
using the gravity rule. The most successful heuristic was found to be:

1. Applying a simulated annealing approach [86] for locations restricted to
grid points.

2. Finding a good location for each facility, one at a time, by the generalized
Weiszfeld algorithm [51].

3. The two steps are repeated 100 times from randomly generated starting
solutions and the best one is selected.

7.5.3 The TLA Method

The TLA (tangent line approximation) method [2] can find an optimal solu-
tion to the gravity model within a given accuracy. For its implementation,
the objective function should be a concave function, twice differentiable and
non-decreasing of a linear function. These conditions hold for the gravity
model. The idea is to replace the objective function by a piece-wise linear
function. The feasible range is divided into segments and a tangent line is
constructed in each segment touching the objective function at the segment’s
center. The objective function is formulated by adding a binary variable for
each segment and maintaining the original constraints. Optimal solutions of
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the modified problem are then found by non-linear solvers. The number of
segments is determined by the pre-specified accuracy. For details see [2].

7.6 Applying the Gravity Rule to Other
Objectives

The gravity rule can be applied to other commonly used non-competitive
location objectives. Rather than assuming that a user gets services from the
closest facility, he chooses a facility according to the gravity rule. The prob-
ability of patronizing a facility is proportional to the facility’s attractiveness
and to some decay function of the distance.

7.6.1 Gravity p-Median

In the standard p-median model [14] it is assumed that each user travels
to the closest facility. This implicitly implies that facility choice is centrally
controlled or that all facilities charge the same price for the service. Drezner
and Drezner [31, 32] proposed the gravity p-median model. It is assumed
that users choose from among the facilities providing services according to
the gravity rule rather than from the closest facility. Users consider facilities’
attractiveness in their choice. Similar to the standard p-median problem, the
objective is to minimize the sum of the expected weighted distances.

Brimberg et al. [9] suggested a similar p-median model based on this
idea that customers do not necessarily patronize the closest facility. A list of
probabilities P1 ≥ P2, . . . , ≥ Pp that add up to 1 is constructed. The prob-
ability that a customer patronizes the closest facility is P1. The probability he
patronizes the second closest facility is P2, and so on.

7.6.2 Gravity Hub Location

Drezner and Drezner [28] applied the gravity rule to the hub location
problem. A traveler needs to fly from one airport to another. Several potential
hubs are available. If the origin or the destination is a hub airport, the trav-
eler chooses a non-stop flight. Otherwise, the probability that a certain hub
is selected is proportional to the hub’s attractiveness (price, walking distance
from the arrival gate to the connecting one, chance of inclement weather,
etc.) and to a distance decay function such as the total travel distance (or
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time) raised to a given inverse power. Such a model can be generalized to
selecting a sequence of two or more hubs.

7.6.3 Gravity Multiple Server

Drezner and Drezner [34] considered the gravity rule version of the multiple
server location problem [7]. Total service time consists of travel time to the
facility, waiting time in line, and service time. There is a given number
of servers to be distributed among the facilities. Each facility acts as an
M/M/k queuing system. In [34] customers select a server with a probability
proportional to its attractiveness and to a decay function of the distance,
not necessarily the closest one. Two models are proposed: a stationary one
and an interactive one. In the stationary model it is assumed that customers
do not consider the expected waiting time in line and service time at the
facility in their facility selection decision simply because they do not know
these values. In the interactive model it is assumed that customers know the
expected waiting time in line and service time at the facility and do consider
them in their facility selection decision.

7.7 Summary and Suggestions for Future
Research

In this chapter we reviewed competitive location models which are part of the
field of facility location. Facility location models investigate the location of
one or more facilities to achieve a certain objective. In competitive location
models the objective is to attract as much buying power as possible from
competitors’ facilities by constructing new facilities and/or improving existing
ones. A main component of such models is the estimation of how customers
select the facility to patronize. Demand attracted by a facility depends on its
attractiveness, on the buying power customers are planning to spend, and on
the distance customers need to travel to get to the facility. What distinguishes
different models is the assessment of the relationship between these factors
and the market share captured. It is clear that higher attractiveness and buying
power lead to higher market share, and a greater distance lowers the expected
market share captured.
The gravity model [80, 81, 115] estimates the probability of patron-

izing a facility by these three components. Other approaches include the
proximity rule (customer patronize the closest facility), utility and random
utility models, cover-based models, and the flow interception model (all
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discussed in Sects. 7.2.1 and 7.2.2). One important implementation issue
is the assessment of these components, especially the attractiveness level of a
facility.

Many extensions to the basic models were investigated. For example, antic-
ipating future changes in the market, considering lost demand due to long
distances, cannibalization of one’s chain facilities. Optimal location of one
facility can be found by branch and bound algorithms such as Big Square
Small Square [75], or Big Triangle Small Triangle [53]. Location of multiple
facilities is usually solved heuristically by various approaches tailored to the
specific model, or metaheuristic methods such as tabu search [65–67], simu-
lated annealing [86], genetic algorithms [68, 78], variable neighborhood
search [74, 99] and others.
There are many opportunities for future research. Improving and fitting

the models better to real circumstances; obtaining better estimates for attrac-
tiveness of facilities. There are many solution methods for multiple facilities
location models and constrained models that can be improved by designing
more efficient heuristic algorithms that will enable practitioners to solve larger
problems.
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