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The Knapsack Problem and Its Variants:
Formulations and Solution Methods

Christophe Wilbaut , Saïd Hanafi, Igor Machado Coelho,
and Abilio Lucena

4.1 Introduction

The knapsack problem asks for the selection of items from a set N with n
elements, every item j ∈ N with a non-negative integer weight w j associ-
ated with it. A subset of items S ⊆ N is called feasible when

∑
j∈S w j ≤ c
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applies, where c is the capacity of a knapsack for carrying the items. Addition-
ally, a profit is incurred by choosing a feasible subset of items and is measured
through a properly defined function of N . The aim is to select a feasible
S ⊆ N which maximizes profit. The problem appears in distinct versions,
each of them characterized by a different type of objective function. Variants
to these versions, in turn, typically impose further restrictions on item selec-
tion. The linear and the quadratic objective function versions of the problem
are those that attract the most interest, with the latter version lagging well
behind the former.
The linear 0-1 Knapsack Problem (KP) maximizes a linear objective func-

tion. It associates a non-negative integer profit p j with the selection of every
j ∈ N and relies on binary variables, x ∈ {0, 1}n , for its standard formu-
lation. Accordingly, x j = 1 holds if j is selected and x j = 0 applies
otherwise. The Quadratic Knapsack Problem (QKP) is similarly formulated
but its objective function involves cross profits qi j ∈ Z, i, j ∈ N , i ≤ j ,
to account for eventual fringe benefits attained by simultaneously selecting
items i and j (for simplicity, we assume that qii = pi holds for every i ∈ N ).
Additional versions of the problem will not be treated here since they only
attract very marginal interest. The standard formulation of KP is given by:

max
n∑

j=1

p j x j (4.1)

subject to:
n∑

j=1

w j x j ≤ c (4.2)

x j ∈ {0, 1} j ∈ N = {1, . . . , n} (4.3)

Furthermore, to avoid trivial solutions, conditions

max{w j : j ∈ N } < c <

n∑

j=1

w j (4.4)

are generally assumed. A formulation for QKP is obtained by noting that
xi = xi xi holds for every i ∈ N and replacing objective function (4.1) by

max
n−1∑

i=1

n∑

j=i

qi j xi x j . (4.5)
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Given that the overwhelming majority of Knapsack Problem references are
associated with KP, we will assume here that QKP and all its variants simply
correspond to KP variants.

Historically, the first mention of KP dates back to 1896 [145], with
references to the subject appearing on early studies in [41] (in folklore,
the problem was probably studied under different names hundreds of years
before). In the 1950s, the first dynamic programming (DP) approach for
solving KP was introduced by Bellman in [13], and in the 1960s the branch-
and-bound (B&B) paradigm brought additional solution alternatives to the
problem. From that point on, KP has been intensively investigated, starting
especially with the works in [73, 129] or [150]. Due to the number of knap-
sack variants and the associated contributions some books were dedicated to
knapsack problems, such as [111, 143].

KP has a wide range of practical applications, such as: cargo loading,
cutting stock, capital budgeting or project selection (see, e.g., [129, 150]).
The problem can be solved by DP, which means it is not strongly NP-
Hard [70], only being limited by the integral magnitude of capacity c (the
complexity of such a DP algorithm is O(n · c)). A first survey on solution
approaches for KP appears in [166].

A few variants of KP directly follow from the standard formulation of
the problem. Among these we consider first the fractional or the continuous
knapsack problem, FKP, where (0, 1) fractions of the items are also allowed
to be selected. A formulation for FKP is obtained by simply replacing (4.3)
in the standard formulation of KP by

x j ∈ [0, 1] ∀ j ∈ N . (4.6)

This allows greedy techniques to work, as suggested by Dantzig in [40].
Indeed it is well-known that FKP can be solved in O(n log n) time, by
greedily selecting the items in descending order of the ratios p j

w j
, j ∈ N .

It is also possible to allow an integral selection of multiple items, leading
to the unbounded knapsack problem. From the standard KP formulation we
just need to replace (4.3) by

x j ∈ Z≥0 ∀ j ∈ N , (4.7)

in order to formulate the problem.
Finally, the mixed (linear) knapsack problem consists in a collection

composed by nD discrete and nF fractional items (see, e.g., when nF = 1
[136]). This problem has several practical applications (see, e.g., [200]) and
can be modeled in a generalized format, by allowing distinct lower and upper
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bounds for each item, namely l j and u j :

max
nD+nF∑

j=1

p j x j (4.8)

s.t. :
nD+nF∑

j=1

w j x j ≤ c (4.9)

l j ≤ x j ≤ u j ∀ j ∈ {1, . . . , nD + nF } (4.10)

x j integer ∀ j ∈ {1, . . . , nD} (4.11)

x j ∈ R ∀ j ∈ {nD + 1, . . . , nD + nF } (4.12)

In practice, instances of the KP variants we have just described involving
hundreds of thousands of items are routinely solved by most of mixed-integer
programming solvers. Among others, these solvers benefit from preprocessing
techniques and the use of facet defining inequalities for the knapsack poly-
tope, i.e., the convex hull of the feasible (integral) solutions to KP (see, e.g.,
[128] for details).

For the remaining of this chapter we consider several additional KP vari-
ants, classical or new. All of them can be formulated by changing the objective
function or adding constraints to the standard KP formulation. In prac-
tice, these variants are generally much harder to solve than KP and while
selecting them we focused on those associated with new interesting appli-
cations. First, in Sect. 4.2, we consider variants where a single knapsack
constraint must be satisfied. Next, in Sect. 4.3, we discuss additional vari-
ants involving two or more knapsack constraints. We conclude the chapter in
Sect. 4.4 by considering some future research directions on the topic.

4.2 Variants with a Single Knapsack Constraint

Several extensions of KP where only one knapsack constraint must be
enforced can be identified in the literature. In this section we consider some
of these variants where additional constraints conduct to some challenging
problems.
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4.2.1 The Multiple-Choice Knapsack Problem

The Multiple-Choice Knapsack Problem (MCKP) is a well-known variant
of the KP in which the set of items is partitioned into classes (or groups).
In this case the binary choice of taking an item or not in the knapsack is
replaced by the selection of exactly one item out of each class of items. Let
us denote by ng the number of disjoint groups N1, . . . , Nng of items and by
nk the number of items in group Nk . Then, N = ⋃ng

k=1 Nk and the total
number of items is n = ∑ng

k=1 nk . As for KP, every item j ∈ Nk is associated
with a profit pk j and a weight wk j and MCKP aims at choosing exactly one
item from each class such that the profit sum is maximized and the knapsack
capacity c is respected. By defining variable xk j = 1 if and only item j in
class Nk is chosen, MCKP can be mathematically formulated as follows:

max
ng∑

k=1

∑

j∈Nk

pk j xk j (4.13)

s.t.:
ng∑

k=1

∑

j∈Nk

wk j xk j ≤ c (4.14)

∑

j∈Nk

xk j = 1 k = 1, . . . , ng (4.15)

xk j ∈ {0, 1}, k = 1, . . . , ng, j ∈ Nk (4.16)

Like KP it is always assumed that all coefficients pk j , wk j and c are non-
negative integers. It is interesting to observe that some additional variants of
KP may be derived directly from MCKP. For instance when pk j = wk j for
all k = 1, . . . , ng and for all j ∈ Nk MCKP is called the multiple-choice
subset-sum problem. In addition, the Multidimensional Multiple-Choice
Knapsack Problem (MMCKP) can also be obtained by allowing into MCKP
one or more properly defined additional knapsacks. Finally, the discounted
0-1 knapsack problem (see Sect. 4.2.2) can be viewed as a particular case of
MCKP.

Several very efficient approaches were proposed to solve MCKP as those
described in [51, 155, 173]. In particular, Pisinger developed in [155] an
efficient dynamic programming-based algorithm using a list representation
and a core problem. Classes are consecutively added to the core and reduc-
tion rules are also used to fix some of the variables. Kellerer et al. provided
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in their book [, Chap. 11] experiments to compare the performance of the
approaches described in the last three articles cited above. The results demon-
strated the efficiency of all the three approaches for all types of instances,
except for strongly correlated ones for which only Pisinger’s approach was able
to provide results in the fixed time limit of one hour to solve 100 instances.
However, these works showed that MCKP can be solved in very reasonable
time for large instances.111
The situation is quite different for the multidimensional case. Some of

the current best approaches dealing with MMCKP are based on hybrid
approaches combining mathematical programming and heuristic strategies
like in [32, 33] where authors considered the use of column generation
techniques, whereas authors in [38] extended an iterative relaxation-based
procedure proposed in [83]. The proposed method was more general and
introduced what authors called the semi-continuous relaxation, where vari-
ables are constrained to take values close to zero or one. Mansi et al. proposed
some variants of an hybrid strategy consisting of new cuts and a reformula-
tion procedure used at each iteration to improve the iterative relaxation-based
heuristic framework in [132]. Chen et Hao developed in [31] a “reduce and
solve” heuristic combining problem reduction techniques (based on group-
fixing and variable-fixing rules) with an optimal solution of the resulting
integer linear problem. Another interesting work is presented in [183] where
authors introduced a reformulation of MMCKP as a set partitioning problem
allowing to reduce the decision variable dimension regarding the classical
model to one dimension, even if the total number of variables and constraints
remain the same. Experiments were conducted to compare this new model
with the classical one when using CPLEX and GUROBI solvers. The results
showed that the new model improved on average the objective function values
and the required computational time to converge to the best solutions. In
addition the use of this new formulation was competitive when compared
to some state-of-the-art approaches for solving MMCKP. We also noted the
work in [69] where authors proposed an iterative pseudo-gap enumeration
approach which is a two-step procedure. In the first step, a family of pseudo-
cuts is derived from the reduced cost constraints with regarding what authors
called a “pseudo-gap". In the second step the original problem enriched by
these pseudo cuts is solved with CPLEX. The pseudo-gap is used as a hypoth-
esized gap between the upper bound and the lower bound of the original
problem and authors proposed a strategy to enumerate it. When the pseudo-
gap become valid the proposed iterative approach converges to an optimal
solution. This approach obtained very good results compared with other
state-of-the art methods for solving MMCKP. Mansini and Zanotti proposed



4 The Knapsack Problem and Its Variants: Formulations … 111

very recently in [135] a new and very effective core-based exact approach. It
solves subproblems of increasing size by means of a recursive variable-fixing
process and stops when an optimality condition is satisfied. The proposed
method obtained 10 new optimal solutions on open benchmark instances in
the literature and improved several other best-known solutions.

MCKP and MMCKP have a wide range of classical applications including
resources allocation [71, 173], capital budgeting [157], telecommunication
networks [93], the management of resources in multimedia systems [113],
the VLSI design [146] or the reliability of complex systems [177]. They
also appear as a subproblem in several other diverse applications: in nurse
scheduling [78], in generalized assignment problems [10] or in the context
of warehouse optimization [11]. Fisher showed that MCKP appears when
using Lagrangian relaxation of several integer programming problems [62],
whereas Kellerer [110] proposed an approximation algorithm for a scheduling
problem based on a relaxation formulated as MCKP.

Several additional applications dealing with MCKP or MMCKP can be
found in the literature as in [179] where authors introduced what they called
the “selective MCKP” in the context of QoS-aware service evaluation and
selection. The formulation corresponds to the MCKP in which the choice
constraints are relaxed as

∑
j∈Nk

xk j ≤ 1. Zhong and Young used the MCKP
to obtain optimal solutions of transportation programming problems when
alternative versions of projects are under consideration in [202]. Authors
provided six steps to build a MCKP and solved it with the method from
[51]. Bae et al. considered in [9] the MCKP as a subproblem when solving
a problem of finding a reconnaissance route of an unmanned combat vehicle
in a terrain modeled as a grid. They proposed a two-phases method in which
all feasible partial routes are generated in a first step. They showed that the
problem of selecting partial routes from the set of candidates corresponds
to a MCKP. Caserta and Voß solved the reliability Redundancy Allocation
Problem (RAP) via the MCKP in [25]. They introduced the fact that the RAP
corresponds to look for an optimal distribution of resources among subsys-
tems. Then, they showed that RAP can be optimally solved in two steps: in
the first one a multidimensional knapsack problem (see Sect. 4.3.1) associ-
ated to each subsystem is solved, whereas in the second a MCKP is solved
to select the specific amount of resources to be assigned to each subsystem.
Ykman-Couvreur et al. showed in [199] how the MPSoC runtime manage-
ment can be modeled as MMCKP, whereas Fischer et al. considered MCKP
in a classification problem in [61]. Zhao et al. considered in [201] the opti-
mization of the quality of experience of multiple clients for video streaming
over wireless network. They showed that the problem of finding an optimal
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allocation of bitrate level for multiple wireless clients can be modeled via a
MCKP. Tisch et al. dealt with the configuration of learning factories as a
MMCKP combined with a two-dimensional bin-packing problem in [178].
Al-Dulaimy et al. showed in [3] that the placement of virtual machines
selected for migration in the context of energy efficient cloud data centers
management can be modeled as a MCKP, whereas authors in [148] consid-
ered an inventory problem under uncertain demand in which a seller stocks
an item in anticipation of a single selling season. The corresponding problem
is non-convex and they showed that it can be solved via the solution of a
polynomial number of particular MCKPs called “two-sided ” MCKP in which
both lower and upper bounds exist on the knapsack capacity. They proposed
a DP-based algorithm and a heuristic and showed their methods obtained
better results than a global optimizer for non-convex mixed-integer nonlinear
problems. Diallo et al. introduced in [48] a model for a selective maintenance
problem for serial systems and proposed a two-phase approach in which the
problem is transformed into a MMCKP. Finally, Rogeau et al. introduced
very recently what they called a “coupling constraint ” into MMCKP to model
a retrofit planning problem at territory scale, with a building-level resolution
[161].

4.2.2 The Discounted Knapsack Problem

An interesting variant of the KP is the discounted 0-1 knapsack
problem (DKP), where items are selected from 3-sized item groups [89, 163].
Although much harder than KP, fully polynomial approximation schemes and
DP-based solution approaches have been developed for it.

Given ng item groups having three items each, and one knapsack with
capacity c, where the items in the i-th (i = 0, 1, · · · , ng − 1) group are
denoted as 3i, 3i + 1 and 3i + 2, with value coefficients p3i , p3i+1 and
p3i+2 = p3i + p3i+1, and weights w3i , w3i+1 and w3i+2 (discounted
weight), w3i + w3i+1 > w3i+2, w3i+2 > w3i , and w3i+2 > w3i+1, the
goal is to maximize the profits by selecting at most one item in a group. We
assume profits and weights to be positive integers, so as the capacity c. DKP
can be formulated by (4.17)–(4.20):

max
ng−1∑

i=0

(p3i x3i + p3i+1x3i+1 + p3i+2x3i+2) (4.17)
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s.t. :
ng−1∑

i=0

(w3i x3i + w3i+1x3i+1 + w3i+2x3i+2) ≤ c (4.18)

x3i + x3i+1 + x3i+2 ≤ 1 ∀i ∈ {0, . . . , ng − 1} (4.19)

x3i , x3i+1, x3i+2 ∈ {0, 1} ∀i ∈ {0, l . . . , ng − 1} (4.20)

DKP has been introduced in the Master’s Thesis by Guldan [80] and it can
be viewed as a particular case of MCKP where the number of items in each
group is set to three. Specific relations between items in a group are defined
in DKP, which is not the case in MCKP.

DP-based algorithms were proposed to deal with DKP in [80, 89,
163]. Experiments reported in these works show that DP can be used to
solve instances with up to ng = 1, 000 groups in reasonable time under
the condition of having sufficient memory resources. A fully polynomial-
time approximation scheme, a 2-approximation algorithm and a particle
swarm optimization heuristic were also proposed in [89]. Several other
population-based metaheuristics have then been proposed to deal with DKP:
genetic algorithm [87], differential evolution algorithms [203], multi-strategy
monarch butterfly optimization heuristic [58], moth search [56]. Recently,
He et al. proposed a new kind of method to design an evolutionary algorithm
by using algebraic theory in [86]. The approach used two evolution opera-
tors using the addition, multiplication and inverse operation of the direct
product of rings. Wu et al. proposed in [195] a discrete hybrid teaching-
learning-based optimization algorithm. Very recently, Wilbaut et al. proposed
to combine Variable Neighborhood Search (VNS) with DP and showed that
all the instances from the literature can be solved in less than 2 seconds thanks
to reduction procedures [192].

4.2.3 The Knapsack Problem with Setup

Another feature which is common to several distinct KP variants is the pres-
ence of setup costs [27]. The setup knapsack problem (SKP) originates from
(and is named after) a particular machine scheduling problem which involves
setup costs [49]. SKP asks for the selection of items from families F , where
each item family needs to be set up before usage. Such a condition is modeled
through additional variables z f , which indicate whether or not family f
corresponding to item j ∈ N f has been set up [27]. A formulation for SKP
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is given by:

max
∑

f ∈F
(u f z f +

∑

j∈N f

p j x j ) (4.21)

s.t.
∑

f ∈F
(s f z f +

∑

j∈N f

w j x j ) ≤ c (4.22)

z f − x j ≥ 0 ∀ f ∈ F , j ∈ N f (4.23)

z f −
∑

j∈N f

x j ≤ 0 ∀ f ∈ F (4.24)

z f , x j ∈ {0, 1} ∀ f ∈ F , j ∈ N f (4.25)

Note that, in this case, we have u f , p j ∈ R, s f , w j ∈ Z
+ and N =⋃

f ∈F N f , with N f1 ∩ N f2 = ∅, ∀ f1, f2 ∈ F , f1 	= f2. Since KP can
be reduced to SKP, it is also NP-Hard [70].

A similar SKP variant is called the Multiple-class Integer Knapsack
problem with Setups (MIKS), where items are organized in distinct classes
with setups and multiplicity constraints [147]. From this perspective, the
weight of item at a given class is a multiple of the class weight, while also
allowing multiple items to be selected within lower and upper class limits.
A more constrained version of MIKS eliminates multiplicity constraints and
allows whole integer interval, being called Integer Knapsack Problem with
Setups (IKS), that allows the development of more efficient algorithms. In
this sense, class weights are restricted to negative factors. A further relaxation
of IKS yields the Continuous Knapsack Problem with Setups (CKS), and
further adaptations can generate the classic binary knapsack problem. CKS
appears as subproblem for capacitated multi-item lot sizing problems, and
IKS as subproblem for cutting stock problems. An interesting point is that
the relaxation of the binary knapsack with multiple choices is equivalent to
CKS [147]. When dealing with numerical experimentation, most success is
achieved by hybrid approaches that involve B&B and DP.

Regarding the SKP Khemakhem and Chebil proposed in [114] a tree-
search-based combination heuristic which is based on the Filter-and-Fan
method. The approach is an iterative local search in which moves are gener-
ated according to a tree-search strategy. The main particularity of the method
lies in a new technique that makes a bijection between a solution of SKP and
an integer index. The algorithm obtains better average results as CPLEX. The
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same authors proposed in [28] two DP-based algorithms for SKP. The first
one considers a stage associated with every item in the problem and computes
the optimal values of two auxiliary problems. In the second one authors intro-
duces a space reduction technique to exploit the bijection mentioned above.
The DP algorithm considers only the setup variables and a complete solution
is obtained by solving a particular KP. This approach is able to solve large
correlated instances with up to 10,000 items in reasonable CPU time.

4.2.4 The Knapsack Problem with Neighbor Constraints

For the 1-Neighbor Knapsack Problem (1-NKP), an item can be selected
only if at least one of its neighbours is also selected while items with no
neighbors can always be selected. Contrary to that, for the all-neighbours
knapsack problem (All-NKP), an item can be selected only if all its neighbors
are also selected. Approximation algorithms and hardness results for 1-NKP
and All-NKP are provided in [16, 17]. These two NKPs can be generalized
as described by the following 0-1 linear program NKPk :

max
∑

i∈N
pi xi (4.26)

s.t.:
∑

i∈N
wi xi ≤ c (4.27)

min(k, ni )xi ≤
∑

j∈Ni

x j ∀i ∈ N , Ni 	= ∅ (4.28)

xi ∈ {0, 1} ∀i ∈ N (4.29)

where Ni is the set of neighbors of vertex i in the graph G and k is an
integer less or equal to the maximum degree of vertices in G , i.e. k ≤ � =
max{|Ni | : i ∈ N }. Note that NKP1 is equivalent to 1-NKP and NKP� is
equivalent to All-NKP, while NKP0 corresponds to KP.
The Subset-Union Knapsack Problem (SUKP) is a special case of All-NKP

in which the input graph is directed and bipartite and such that the vertex
set is partitioned into vertices associated with items and vertices associated
with elements and every arc points from an item vertex to an element vertex.
The precedence-constrained knapsack problem [15] and the partially ordered
knapsack problem [118] are also special cases of All-NKP on directed graph.
The general, undirected 1-neighbor knapsack problem generalizes several
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maximum coverage problems including the budgeted variant considered in
[116].

4.2.5 The Knapsack Constrained Maximum Spanning
Tree Problem

The Knapsack Constrained Maximum Spanning Tree problem (KCMST) is
a combination of the knapsack problem and the maximum spanning tree
problem, introduced in [197]. The weight-constrained Minimum Spanning
Tree (MST) problem is to find a spanning tree of total edge weights at most
a given capacity and minimum total edge costs. A spanning tree of a graph
G is a subgraph connecting all vertices of G . For a spanning tree T of G ,
we define its profit p(T ) and weight w(T ), respectively, as the sum of the
profits and weights of its constituent edges. A spanning tree T is feasible for
KCMST if it satisfies w(T ) ≤ c. The problem is to fill the knapsack with
a feasible spanning tree such that the tree profit is maximized, which can be
formulated as follows:

max p(T ) (4.30)

s.t.: w(T ) ≤ c (4.31)

T is a spanning tree of G (4.32)

Based on the connectivity requirements of a tree, four distinct IP formu-
lations for MST are discussed in [55], namely subtour elimination, cut
set, single-commodity flow and Martin’s formulation. A subtour elimination
formulation is based on the fact that a treeT has no cycles and contains n−1
edges [53] and is described as follows:

max
∑

e∈E
pexe (4.33)

s.t.:
∑

e∈E
wexe ≤ c (4.34)

∑

e∈E
xe = n − 1 (4.35)

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ N (4.36)
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xe ∈ {0, 1} e ∈ E (4.37)

Martin’s formulation (see [35, 144]) uses binary variables ykji if j is the father
of i in the tree structure obtained by rooting T at k, 0 otherwise:

max
∑

e∈E
pexe (4.38)

s.t.:
∑

e∈E
wexe ≤ c (4.39)

∑

e∈E
xe = n − 1 (4.40)

xi j = yki j + ykji ∀(i, j) ∈ E, k ∈ N (4.41)

∑

j∈N
yki j = 1 ∀i 	= k ∈ N (4.42)

ykk j = ykii = 0 ∀(i, j) ∈ E, k ∈ N (4.43)

xe ∈ {0, 1} e ∈ E (4.44)

The KCMST problem can be extended directly to generalized variants of KP
where the MST is replaced by Generalized Maximum Spanning Tree. Pop
presented in [158] a survey on different integer programming formulations
of the generalized MST problem.

4.2.6 The Set Union Knapsack Problem

In the Set-Union knapsack Problem (SUKP), introduced in [77], we are given
a set N of n elements and a set M of m items. Each item i ∈ M is charac-
terized by its profit pi > 0 and by its set of associated elements Ni ⊆ N .
For any subset I ⊆ M , the profit of I is given by

∑

i∈I
pi , while the weight

of I is
∑

j∈∪i∈I Ni

w j , where w j is the weight of element j. The objective of

the SUKP is to select a maximum profit subset of M, while respecting the
capacity c > 0 of the knapsack. A generic set based formulation of SUKP
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can be expressed as follows:

max p(I ) (4.45)

s.t.: w(∪i∈I Ni ) ≤ c (4.46)

I ⊆ N (4.47)

The graph G = (M ∪ N , E), where an edge (i, j) ∈ E only for i ∈ M
and j ∈ Ni , is a bipartite graph (also known as a bigraph) and sets M and
N form a partition of the vertex set. It may be observed that SUKP includes
KP as a special case when Ni ∩ N

′
i = ∅ ∀i, i ′ ∈ M and |Ni | = 1 ∀i ∈

M . Since KP is NP-hard, SUKP is NP-hard as well. SUKP has various
domain-specific applications including information security systems, finan-
cial decision-making [7, 111], flexible manufacturing machine [77, 116],
database partitioning [76], smart city [180] and data stream compression
[198]. A mixed-integer programming model can be derived from the previous
set-based formulation. It is based on two sets of binary variables. The first one
is associated with items whereas the second one is associated with elements.
More precisely, we define binary variables xi and y j for each item i ∈ M and
for each element j ∈ N , respectively, as:

xi =
{
1 if item i is selected

0 otherwise

y j =
{
1 if element j is selected

0 otherwise.

Using these variables SUKP can be formulated as:

max
∑

i∈M
pi xi (4.48)

s.t.:
∑

j∈N
w j y j ≤ c (4.49)

xi ≤ y j ∀i ∈ M, ∀ j ∈ N (4.50)

xi , y j ∈ {0, 1} ∀i ∈ M, ∀ j ∈ N (4.51)
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The objective (4.48) maximizes the total profit associated with the selected
items whereas constraint (4.49) is the knapsack constraint. Constraints (4.50)
imply that the selection of item i forces the selection of all elements in Ni .

Several algorithms have been proposed to solve SUKP. Goldschmidt et al.
developed in [77] an exact DP algorithm for SUKP and derived sufficient
conditions for having a polynomial run time. Arulsevan showed in [7] that a
greedy algorithm for the budgeted maximum coverage problem approximates
SUKP within a constant factor. Following the same research direction, Taylor
proposed in [175] an approximation algorithm relying on an algorithm
for the densest k-subhypergraph problem. Other recent papers dealing with
SUKP can be found in the literature. He et al. developed a binary artificial
bee colony algorithm and used greedy repairing and optimization to handle
infeasibility of a solution in [88], whereas authors in [57] proposed several
versions of discrete moth search, while a hybrid approach that combines a
genetic algorithm and particle swarm optimization was developed in [151].
Wei and Hao proposed in [184] an iterated two-phase local search (I2PLS)
approach for solving SUKP, whereas the same authors proposed in [186] a
multistart solution-based tabu search and in [185] a kernel-based tabu search.
The last two algorithms conduct to the current best-known solutions for
several benchmark instances used in the literature.

4.2.7 The Precedence Constrained Knapsack Problem

The Precedence Constraint Knapsack Problem (PCKP), also called partially
ordered knapsack problem, is a generalization of KP which includes a partial
order on items described by an acyclic directed graph G = (N , A) with
weights and profits associated to its vertices. An arc (i, j) ∈ A means that
“item i precedes item j”, and implies that if item j is selected then item i must
be also selected.

Formally, PCKP can be described by the following 0-1 integer linear
program:

max
∑

i∈N
pi xi (4.52)

s.t.:
∑

i∈N
wi xi ≤ c (4.53)

xi ≥ x j (i, j) ∈ A (4.54)
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xi ∈ {0, 1} i ∈ N (4.55)

PCKP appears in many applications as network design, investment,
management problems, scheduling, production planning, see, e.g.,
[50, 103, 171, 174].

Johnson and Niemi were the first to propose DP algorithms when G is
out-tree, called left-right approach in [106]. Then, Samphaiboon and Yamada
presented heuristics and DP algorithms for general acyclic graph G in [167].

Beyond the wide range of applications available for PCKP, precedence
constraints are of theoretical and computational interest because by them-
selves they define a polyhedron with integer vertices. More precisely, the
convex hull of feasible integer points is the same as the region obtained by
relaxing the integrality restrictions. As a consequence, this property allows
to solve the Lagrangian relaxation of PCKP associated with the knapsack
constraint in polynomial time. Several researchers investigated the polyhedral
structure of PCKP by exploiting this property and the rich and large existing
results on the knapsack polytope, see e.g., [19, 152].

4.2.8 The Disjunctively Constrained Knapsack Problem

The knapsack problem with conflicts, also known as the Disjunctively
Constrained Knapsack Problem (DCKP), was introduced in [196]. Given
a conflict graph G = (N , E) describing incompatibilities between items,
DCKP consists in determining a maximum profit set of compatible items to
be packed into the knapsack. A compact integer linear programming formu-
lation for DCKP makes use of a set of binary variables xi associated with
every item i ∈ N and taking value 1 if item i is packed in the knapsack, 0
otherwise, and can be stated as:

max
∑

i∈N
pi xi (4.56)

s.t.:
∑

i∈N
wi xi ≤ c (4.57)

xi + x j ≤ 1 (i, j) ∈ E (4.58)

xi ∈ {0, 1} i ∈ N (4.59)
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Additional DCKP formulations are found in [92] where an aggregated
formulation is proposed, and in [14] where the authors suggest an equiv-
alent MIP based on the determination of a family of cliques in the conflict
graph G . Pferschy and Schauer showed in [153] that DCKP is stronglyNP-
hard and presented pseudo-polynomial algorithms for graphs of bounded tree
width and chordal graphs. DCKP is also known as KP with conflicts and is a
combination of the MaximumWeighted Independent Set Problem (MWISP)
and the KP. When no conflicts are considered, i.e., E = ∅, the problem
reduces to KP whereas when the knapsack constraint is omitted the problem
becomes the MWISP.

Several exact and heuristic approaches are considered in the literature.
We note in particular the B&B algorithms proposed in [14, 36, 165, 168,
196]. From a heuristic perspective Yamada et al. proposed a local search algo-
rithm [196], whereas more sophisticated approaches based on Tabu Search
(TS) were developed in [91] and [168]. The local branching framework was
also considered in [2]. Other metaheuristics were considered as scatter search
in [94] or the guided neighborhood search in [95], probabilistic tabu search
in [164]. Finally we note the memetic algorithms proposed in [164] and very
recently in [187].

4.2.9 The Product Knapsack Problem

The Product Knapsack Problem (PKP) is one of the most recent KP vari-
ants. It was introduced in [52] and is defined as we describe next. It aims
at determining a subset of items S ⊆ N that maximizes

∏
j∈S p j and such

that
∑

j∈S
w j ≤ c holds. With the usual binary variable x j equal to 1 iff item

j is selected, a mixed-integer nonlinear formulation of PKP is described as
follows:

max
∏

j∈N
max{1, p j x j } =

∏

j∈N
(1 + (p j − 1)x j ) (4.60)

s.t.:
∑

j∈N
w j x j ≤ c (4.61)

x ∈ {0, 1}n (4.62)

Denoting by N− = { j ∈ N : p j < 0} the sets of items with negative profits
and based on the observation that an optimal solution to PKP must include
an even number of items j ∈ N−, D’Ambrosio et al. proposed the following
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mixed-integer linear formulation for the problem:

max
∑

j∈N
log(

∣
∣p j

∣
∣x j ) (4.63)

s.t.:
∑

j∈N
w j x j ≤ c (4.64)

∑

j∈N−
w j x j = 2y (4.65)

(x, y) ∈ {0, 1}n × Z+ (4.66)

As for solution approaches to PKP, D’Ambrosio et al. proposed a DP algo-
rithm and a mixed-integer linear programming one. Pferschy et al. showed in
[154] that PKP is weakly NP-Hard and proposed a fully polynomial-time
approximation scheme for the problem.

4.3 Variants with Multiple Knapsack
Constraints

Some KP variants involve more than one knapsack constraints, a require-
ment that is straightforward to implement directly over the KP formulation.
Additionally, they may eventually combine that feature with, among others,
different types of objective functions. In this section we consider a few
KP variants that fall in such a group, starting with the simplest (from the
formulation point of view) of them, the multidimensional knapsack problem.

4.3.1 The Multidimensional Knapsack Problem

The 0-1 Multidimensional Knapsack Problem (MKP) is the most natural
generalization of the KP in which several capacity constraints have to be
satisfied. MKP is defined for a set M = {1, . . . ,m} of m > 1 capacity
constraints. Denoting by wi j the weight of item j ∈ N in constraint i ∈ M
and by ci the capacity of knapsack i ∈ M , MKP can be formulated as follows:

max
n∑

j=1

p j x j (4.67)
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s.t. :
n∑

j=1

wi j x j ≤ ci i ∈ M (4.68)

x j ∈ {0, 1} j ∈ N (4.69)

As for KP it is assumed that all coefficients p j , wi j and ci are non-negative
integers values. Some weights can be equal to 0, i.e. wi j = 0, as long as∑m

i=1 wi j ≥ 1 holds for all items j ∈ N . In addition, it is generally assumed
that wi j ≤ ci , ∀ j ∈ N ,∀i ∈ M to guarantee that every item can be selected.
Finally, in the same way as (4.4) for KP it is assumed that

∑n
j=1 wi j ≥

ci ,∀i ∈ M . It can be observed that MKP is also known under other names
such as m-dimensional KP or multi-constraint KP.

As mentioned in previous sections, many applications of KP and its vari-
ants can be listed in the selection and packing area. In most of the cases,
real-world applications require more than one constraint. Thus MKP can
be considered to deal with these practical problems. In addition, MKP is
a particular case of the general 0-1 integer programming problem. The first
references dedicated to the MKP include [129, 137, 188]. Cutting stock [73]
and loading problems [13] are other classical applications. The MKP was
also used in [182] to model the daily management of a satellite like SPOT.
In the computer science context, MKP enables to model the resource alloca-
tion in distributed data processing [71] and the planning of data-processing
programs [176]. Other recent applications can be listed. For instance Mansini
and Speranza showed in [133] how the problem of optimally selecting the
assets for leasing can be modeled as a MKP. Holte pointed out an equiva-
lence between a multi-unit combinatorial auction and a MKP in [97]. Kelly
considered in [112] a variety of auction winner determination problems and
their corresponding family of KPs. He also highlighted the fact that existing
algorithms dedicated for these problems can be applied effectively to solve the
corresponding auction winner determination problems. Finally, Chen et al.
considered a stochastic variant of MKP as an allocation resource problem in
which the demand may change over time in [30].
Theoretical works demonstrated that MKP is NP-hard and that it has

no fully polynomial-time approximation scheme unless P = NP (see,
e.g., [72]). In fact, despite its simple formulation, the problem remains very
difficult to solve at optimality, especially when the number of constraints
increases. This is undoubtedly what explains the success of MKP, which is
often used to calibrate and evaluate new approaches, in particular metaheuris-
tics and hybrid methods. However, one can observe that the number of papers
dedicated to exact methods is comparatively small. It is not possible to present



124 C. Wilbaut et al.

a summary of all interesting publications dealing with the MKP in a few
pages. We restrict our presentation to some of the recent approaches leading
to the current best-known solutions over the instances of the literature. Inter-
ested readers can find surveys dedicated specifically to MKP, see, e.g., [64,
119, 159, 190]. We do not consider either in this section the particular case
when m = 2 for which many references can also be found in the literature.

Efficient recent approaches dealing with the MKP concern mainly meta-
heuristics and hybrid methods combining mathematical programming with
specific components dedicated to the problem. One of the current best
approach to solve hard MKP instances is described in [18]. Authors proposed
a multi-level search strategy based on the reduced costs of the non-basic vari-
ables of the LP-relaxation solution. In their approach the top-level branches
of the search tree were enumerated following resolution search [34], the
middle-level branches were enumerated using a B&B and the lower-level
branches were enumerated with a depth first search enumeration strategy.
Mansini and Speranza proposed in [134] another approach using similar
concepts: the exact solving of a sequence of sub-problems, each with a
different cardinality constraint, and the use of a reduced-cost constraint based
on the objective function of the continuous relaxation. Each sub-problem
is built in a first phase through a recursive variable-fixing process up to a
predefined size, and is optimally solved in a second phase. Promising results,
especially in terms of running time were reported. Defining small-sized sub-
problems and considering different branching strategies to solve 0-1 integer
programming and mixed-integer programming models have also been consid-
ered in other works, as in [85, 189, 191] where authors proposed several
iterative schemes where pseudo-cuts are added to strengthen the problem
and direct the search. Angelelli et al. applied the kernel search to identify a
restricted set of promising items [5]. Starting from an optimal solution of
the LP-relaxation, new items are then identified and added in the kernel
according to solutions of small to moderate size sub-problems. Della Croce
and Grosso proposed in [46] another heuristic closely related to these works
and using an LP-based core problem. This heuristic is embedded in a partial
enumeration where the branching scheme is based on reduced costs of the
corresponding LP-relaxation solution value to fix variables. Very recently, an
interesting approach was proposed in [169, 170] in which the aim is to
reduce the number of constraints. The method reduces the number of dimen-
sions to be constrained by using new basis vectors to represent the optimal
item set with less coordinates. Promising results are reported on the largest
instances available in the literature, i.e., when m = 30 in the OR-Library



4 The Knapsack Problem and Its Variants: Formulations … 125

instances1 and the instances generated by Glover and Kochenberger in [74].
In particular, the proposed approach provides the optimal or best-known
objective values for most instances. It also improves the currently best-known
value of one of the Glover and Kochenberger MKP instances and proves the
optimality of one other best-known solution.

Concerning metaheuristics we note in particular the scatter search-based
algorithm in [84] and the TS-based approach in [115] where authors
proposed an hybrid tree-search algorithm that combined TS with a dynamic
and adaptive neighborhood search procedure. A two-phase tabu-evolutionary
algorithm was also proposed recently in [124]. Authors introduced two
solution-based TS methods into the evolutionary framework. They also used
a diversity-based population updating rule to keep an efficient population.
Computational experiments demonstrated the robustness of the approach
since it converged to many best-known solutions and it provided few new
best lower bounds. Metaheuristics field is constantly evolving and new
approaches are proposed regularly. A very large share of these new methods
are tested on MKP. Fingler et al. considered in [60] a parallel implementation
of Ant Colony Optimization (ACO) using CUDA and under the GPGPU.
They compared the results of this approach with a hybrid DP method, a
kernel search and a nested partition and showed that parallel ACO can be
an interesting alternative to deal with MKP. Very recently, Lai et al. intro-
duced in [123] a new quantum Particle Swarm Optimization (PSO) that
integrates a distance-based diversity preserving strategy and a variable neigh-
borhood descent-based local search method. The results are encouraging and
authors showed that the method performs well for instances with a limited
number of constraints. It provides better solutions in average than another
quantum PSO approach proposed in [81] in very reasonable running time
for larger instances. Several other nature-inspired or bio-inspired methods
can be identified such as the binary grey wolf optimizer proposed in [130]
with some specific components to deal with MKP: an initial elite population
generator, a pseudo-utility based repair operator. The results showed that the
approach obtained average better results than a few other nature-inspired and
bio-inspired methods. Abdel-Basset et al. introduced a modified multi-verse
optimization algorithm to solve binary problems [1]. They evaluated this new
approach on KP, MKP and MMKP. The results show an interesting behavior
of this metaheuristic to tackle different variants of KPs.
To conclude this section it should be observed that in many works dedi-

cated to population-based approaches some of the large instances in the

1 http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

http://people.brunel.ac.uk/%7emastjjb/jeb/info.html
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literature are not considered and that authors do not necessarily compare their
results with the state-of-the-art, making it difficult objective comparison.

4.3.2 The Multidimensional Knapsack Problem
with Demand Constraints

The 0-1 Multidimensional Knapsack Problem with Demand
Constraints (MKPD) is generalization of the MKP in which a set of
q greater than constraints, q ≥ 1, complements its multiple knapsack
constraints. Accordingly, MKPD extends the MKP formulation as follows:

max
n∑

j=1

p j x j (4.70)

s.t. :
n∑

j=1

wi j x j ≤ ci i ∈ {1, . . . ,m} (4.71)

n∑

j=1

wi j x j ≥ ci i ∈ {m + 1, . . . ,m + q} (4.72)

x j ∈ {0, 1} j ∈ N = {1, . . . , n} (4.73)

In this formulation we distinguish the first m classical knapsack constraints
from the subsequent q which are the demand constraints. Comparing with
MKP and other extensions of KP the MKPD can be viewed as a recent variant
if we consider the references to this problem in the literature. Indeed, to the
best of our knowledge the MKPD has been formally introduced at the begin-
ning of the twentieth century by Cappanera and Trubian, firstly in [21] and
then in the associated paper [22]. Like MKP the MKPD is embedded in
the models of many practical applications, in particular in obnoxious and
semiobnoxious facility location problems (see, e.g., [20, 162]) and portfolio-
selection problems [12]. More recently a possible application in the context of
the ideal product mix for a mobile retailer where a resource constraint repre-
sents the space of the retailer whereas a demand constraint models the fact the
product mix has to meet or exceed a given revenue threshold was considered
in [193]. We also noted the work presented in [96] where author considers
the constrained problem of multi-robot tasks allocation and compares dedi-
cated algorithms with approaches presented in [6, 102] for solving the more
general MKPD. The main conclusion is that a direct application of MKPD
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dedicated methods does not allow to obtain efficient solutions even for
medium-sized instances.

It is interesting to observe that finding a feasible solution of the MKPD
is an NP-complete problem [22] due to the presence of conflicting binary
constraints. Like for the MKP and other variants a large set of 810 instances
is available in the literature to compare the proposed approaches. Most of
the proposed approaches dealing with MKPD are based on heuristics and
metaheuristics. This can probably be explained by its practical difficulty and
the fact that exact methods cannot solve instances with more than 100 items
in reasonable running and memory limits. Concerning theoretical works we
noted the promising work in [45] in which the author introduced the use
of equality rather than inequalities in cutting planes (called equality cuts) in
binary programming in general to reduce the linear relaxation space, and the
concept of anticover inequality. He applied it on the MKPD and showed that
using these equality cuts with CPLEX improved the computational effort
by about 7% when considering instances with up to 250 items and m =
10 and q = 10. Wishon and Villalobos introduced in [194] new efficiency
measure calculations and some properties and showed that these measures are
applicable to all KP variants with a single linear objective function and linear
constraints of any quantity. They validated these measures with three solution
algorithms (a fixed-core algorithm, a kernel search algorithm and a Genetic
Algorithm (GA)) on instances randomly generated with up to 1,000 items
and m + q ≤ 25 + 25.

Among the heuristic and metaheuristic approaches, Cappanera and
Trubian proposed in [22] a sophisticated local search algorithm into two
phases, which combines a standard attribute-based TS with an oscillation
method based on the one proposed for the MKP in [74], but is restricted to
the feasible space. The approach was not able to provide a feasible solution to
every instance but provided better solutions in general than CPLEX. Arntzen
et al. proposed in [6] an adaptive memory search procedure which uses a
dynamic TS mechanism and a weighting scheme to manage infeasible solu-
tions. The computational results demonstrated the efficiency of the approach
which was able to provide a feasible solution for every instance, except one.
Then, Hvattum and Lokketangen conducted in [102] several implementa-
tions of Scatter Search (SS) for the MKPD based on some proposals about
SS in general [75]. They performed extensive experiments and obtained
good results compared with CPLEX and Cappanera and Trubian’s algo-
rithm. Gortázar et al. introduced in [79] a black box SS method for general
classes of binary optimization problems. According to its general descrip-
tion three of the five methods used in SS are problem-dependent. Authors



128 C. Wilbaut et al.

considered some diversification generators and combination methods and
evaluated the approach on four optimization problems among which is the
MKPD. The results showed that the approach was dominated by the one
in [6] but converged quickly to good solutions compared with commercial
solvers. Hvattum et al. proposed in [101] an alternating control tree-search
framework related to the relaxation-based heuristics proposed in [189] for
the MKP. The approach is based on three components: the first one solves
an LP-relaxation of the current problem; the second one partitions the set
of variables and build sub-problems that can be solved efficiently; the third
one updates the problem by adding inequalities and ensuring the conver-
gence of the approach. The overall method can be also used as a heuristic.
The algorithm is evaluated on the MKPD and the MKP. The results revealed
that the method was very effective for the MKPD compared to the TS algo-
rithm proposed in [6] and the SS algorithm proposed in [102]. It was also
competitive for the MKP when compared with some of the best solution
approaches. Recently, Lai et al. introduced in [125] a two-stage TS-based
algorithm for solving MKPD. The TS uses one-flip and swap neighborhoods
and a hash-based mechanism to determine the tabu status of neighbor solu-
tions. In the approach the fist stage aimed to identify a promising hyperplane
within the whole search space. The second stage is dedicated to the search
for an improved solution by examining both feasible and infeasible solu-
tions on the identified hyperplane. The computational results reported on
a subset of the available instances show that this approach performs well and
provides efficient solutions in reasonable running times. Very recently, Al-
Shihabi proposed a core-based optimization framework and evaluate it over
the MDMKP [4]. The main idea is to define a new core problem iteratively
using a kind of local search where the aim is to find the best neighbouring
core problem. The initial core problem is built from the reduced costs of
variables and a probing technique is used to control the number of changes
in two consecutive core problems. Author evaluates this framework when
using CPLEX and the approach proposed in [125] to solve the core prob-
lems. Promising results are presented and the method leads to several new
best-known solutions.

4.3.3 The Multiple Knapsack Problem

The Multiple Knapsack Problem (M-KP) is a generalization of KP in which
a set M of m ≥ 2 knapsacks are available for carrying the items. This
problem, one should note, is different from the multidimensional knapsack
problem (see Sect. 4.3.1) and the multidimensional multiple-choice knapsack
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problem (see Sect. 4.2.1) since in the M-KP every item has to be assigned to
one knapsack (at most). In the formulation of the M-KP a binary variable
xi j is associated with knapsack i and item j and is set to 1 if item j ∈ N is
assigned to knapsack i (0 otherwise). The problem aims at maximizing total
profit while respecting the capacity of every individual knapsack and can be
formulated as follows:

max
m∑

i=1

n∑

j=1

p j xi j (4.74)

s.t. :
n∑

j=1

wi j xi j ≤ ci i ∈ M (4.75)

m∑

i=1

xi j ≤ 1 j ∈ N (4.76)

xi j ∈ {0, 1} i ∈ M, j ∈ N (4.77)

Constraints (4.76) guarantee that every item is placed in at most one knap-
sack. A special case of the M-KP is obtained if all the knapsacks have an
identical capacity c. This variant is generally referred to as the multiple
knapsack problem with identical capacities. Additionally, one also finds
subset-sum variants for both models, with p j = w j , ∀ j ∈ N , thus applying.
The M-KP is also related to the classical bin-packing problem (BPP). Three
main differences can be listed: (i) items have both a weight and a profit in
the M-KP, whereas items only have a weight in BPP; (ii) bins (knapsacks) in
the M-KP have varying sizes, while bin capacities are uniform in BPP; (iii)
the aim of the M-KP is to maximize the total profits of the items packed in
a set of bins (knapsacks), and some items are not assigned, whereas all items
must be packed in the BPP. Finally one can observe that the M-KP is a special
case of the generalized assignment problem in which a profit pi j is defined
if item j is assigned to knapsack i. The M-KP and its variants are strongly
NP-Hard problems and it was proved that even when m = 2 the subset-
sum variants do not admit a fully polynomial-time approximation scheme
unless P = NP (see, e.g., [111]). Polynomial-time approximation schemes
were developed in [29] for the MKP and in [24] for the subset-sum variant.

Eilon and Christofides [54] were among the first to consider the M-KP
as a cargo loading problem. Ferreira et al. used in [59] a generalization
of the M-KP to solve real-world problems in the design of processors for
mainframe computers, in the layout of electronic circuits, and in sugar cane
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alcohol production in Brazil. Another application can be found in [107]
where authors considered the M-KP for task allocation among autonomous
agents, continuous double-call auctions. The M-KP was also used to model
multiprocessor scheduling and the assignment of files to storage devices
in order to maximize the number of files stored in the fastest storage
devices in [122]. More recently Laalaoui and M’Hallah [121] addressed a
single machine scheduling problem with machine unavailability as a M-KP,
whereas Simon et al. modeled problems of maintaining operational capability
without external support through M-KPs in [172]. Additional constraints
occur among which are demand constraints and some others related to the
application.

Some B&B methods were proposed to solve the M-KP as in [140] where
Martello and Toth solved at each node a relaxed version of the M-KP where
the assignment constraint is omitted. The branching item is chosen among
those which had been assigned to m̄ > 1 knapsacks and the branching
operation generates m̄ nodes by assigning the item to one of the m̄ − 1
knapsacks or excluding it from all of these. Next year, Martello and Toth
[141] proposed one of the most well-known B&B for the M-KP known as
MTM. In this algorithm a lower bound is derived at each node of the tree by
solving m individual KPs in the following way: the first KP is solved opti-
mally. Then, the chosen items are removed and the next KP can be solved
and so on until all the m knapsacks are filled. Upper bounds are computed
from a surrogate relaxation. The branching scheme is based on the obtained
solution by generating two nodes: the first one assigning the next item of
a greedy solution to the chosen knapsack, while the other excluding this
item from the knapsack. Pisinger [156] proposed a more efficient proce-
dure starting from MTM. In this approach called Mulknap lower bounds
are derived by solving a series of subset-sum problems which are also used
for tightening the capacity constraints of the knapsacks. He introduced effi-
cient reduction rules to determine which items cannot be packed into any
of the knapsacks and he derived upper bounds through surrogate relaxation.
He compared the results of MTM and Mulknap and showed that the latter
approach was able to solve very efficiently and optimally large-size instances
of the M-KP with up to n = 100, 000 items and m = 10 knapsacks.
However, Fukunaga showed in [66] that Mulknap performs less effectively
when the ratio of items to knapsacks (n/m) falls between 2 and 5 or when
the data are strongly correlated. Fukunaga and Korf [67] introduced a B&B
algorithm called bin-completion and based on a bin-oriented branching struc-
ture and a powerful dominance criterion. Authors showed that this new
method is particularly competitive for solving MKP instances when the ratio
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of items to knapsacks is small (i.e., n/m < 4). This work was extended in
[66] by integrating additional techniques from constraint programming like
path-symmetry and path-dominance criteria for pruning nodes in the M-
KP B&B search space. Experimental results confirmed the competitiveness
of the approach for instances with a small ration n/m and the integration of
Mulknap algorithm significantly improved the results for higher ratios. Very
recently, Dell’Amico et al. presented in [47] two pseudo-polynomial formula-
tions for the M-KP based on arc-flow and reflect models. Authors proposed a
new effective hybrid method combining B&B, Master/Slave decomposition,
Benders’s cuts and constraint programming. This approach outperforms other
exact methods and is able to solve optimally 1,988 instances over the 2,100
instances considered in the paper in reasonable running time.

Papers related to heuristics for the M-KP can also be found in the liter-
ature, especially the well-known MTHM polynomial-time heuristic based on
greedy algorithm and local search procedure proposed in [142], which was
tested on instances with up to n = 10, 000 and m = 40 in [143].
More recently, Lalami et al. proposed a heuristic based on the core concept
[126]. The approach recursively solves the core of different KPs through DP.
The method is tested on randomly generated instances with up to 100,000
items and m = 100 and compared with MTHM. The results showed that
the approach provided good solutions in very short time. Laalaoui [120]
proposed two simple extensions of the MTHM. It consists in applying a local
search starting from the solution of MTHM and considering two swap moves:
the replacement of one item currently assigned to a knapsack by one or
two others currently not assigned; or the replacement of two items currently
assigned by one item currently not assigned. The results demonstrates that
this method improves by around 15% the solution value provided by MTHM
with a reasonably increased execution time. Final solutions were at less than
1% in average of the solutions obtained by GAs proposed in [68]. Laalaoui
and M’Hallah considered in [121] a single machine scheduling problem with
machine unavailability periods corresponding to maintenance periods and
modeled it as a M-KP. They proposed a VNS that helps to yield better results
than MTHM and other heuristics on scheduling instances with up to 4,800
items and 2,400 knapsacks.
To conclude this section we would like to underline another variant of the

M-KP in the literature introduced in [109] and named the multiple knap-
sack assignment problem. In this variant items are partitioned into subsets
and additional constraints impose that a knapsack can only contain items
of the same class. This interesting problem which has managerial applica-
tions in transportation logistics was considered very recently in [139] where
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authors proposed some upper bounds derived from Lagrangian and surrogate
relaxation and a heuristic procedure.

4.3.4 The Compartmentalized Knapsack Problem

The Compartmentalized Knapsack Problem (CKP) is a variant of KP where
items are classified under some criteria or affinities and divided into several
classes, like for instance in the MCKP. However, in the CKP items of different
classes cannot be mixed in the knapsack. To select items some compartments
have to be built. The compartments are not predetermined and have to be
added inside the knapsack such that each compartment contains items of
the same class. Moreover, building a compartment incurs a fixed cost and a
fixed loss of the capacity in the original knapsack, and the compartments are
lower and upper bounded. The objective is to find the compartments while
maximizing the total value of the items loaded in the overall knapsack minus
the cost of the compartments. Like in KP each item has a weight and an
utility value.

CKP takes its origin from cutting application where it models a particular
two-stage cutting process where items are grouped into classes and only items
of the same class can be cut from an intermediate roll. It arises for instance in
the case of cutting steel coils in two phases in the metallurgical industry [160].
Items are associated to ribbon coils (corresponding to the classes of items)
that are grouped by their thickness. The ribbons are obtained by cutting the
steel coils available in stock, which correspond to the knapsack to be filled.
Another example in the literature is steel roll cutting where items are grouped
according to their thickness [127]. In that case the first cut on the original roll
generates different intermediate rolls (corresponding to the compartments in
the knapsack), which have the same thicknesses as the original roll. In these
applications items are modeled by integer variables. Hoto was among the first
to introduce and to define the CKP in his Ph.D. thesis [98]. He distinguished
the restricted (or constrained ) version where the number of copies for an item
is bounded and the unrestricted (or unconstrained ) case where this bound does
not exist. He provided an integer nonlinear optimization model for the unre-
stricted CKP and he proposed a B&B algorithm to solve it. Then, Marques
and Arenales proposed in [138] three new heuristics and a model for the
restricted case. Hoto et al. considered the cutting stock problem where each
cutting pattern is restricted to be compartmentalized [99]. They presented a
concise formulation of CKP and proposed heuristic and exact methods for
the unrestricted case. They also presented an integer nonlinear programming
formulation of the restricted CKP and proposed a two-phase heuristic which
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obtained better results than the heuristic proposed in [138]. Later, Hoto et al.
[100] introduced techniques based on column generation for the restricted
CKP, whereas Leão et al. proposed a linear treatment for the restricted CKP
and a hybrid heuristic to solve it in [127]. The natural formulation of CKP
is nonlinear and some works in the literature were devoted to propose a
linear formulation like in [104] where author extended previous works in [39,
100] by proposing new linearity studies of CKP together with a new exact
algorithm, called the exhaustive decomposition algorithm, to solve it. More
recently, Inarejos et al. [105] proposed an integer linear optimization model
for the restricted CKP and proved its linearity. This model was strengthened
in [160]. It can be observed from the literature that several variants of the
restricted CKP exist. The main difference among these variants is the objec-
tive function which is considered. Very recently, Baazaoui et al. proposed in
[8] a new variant of CKP with a formulation involving only binary variables.
This formulation is related to the one presented in [105] and is introduced
below to illustrate CKP. Let c be the capacity of the knapsack and N the
set of items which is partitioned into a set M of ng classes: N = ∪k∈MNk
with Nk ∩ Nk′ = ∅, k 	= k′ ∈ M . Each item j in class k is characterized
by a utility and a weight denoted by pkj and wk

j , j ∈ Nk, k ∈ M , respec-
tively. In addition, for each class k ∈ M there is a maximum and a minimum
capacity to be consumed by a compartment, namely ckmax and ckmin , respec-
tively, whereas building a compartment involves a fixed loss cost fk . In the
formulation a set Pk of all the possible compartments associated with group
k is used to define the set of variables (one can observe that the size of Pk
can be simply bounded by the number of items in Nk). Binary variable xkj is

introduced to know if item j in set Nk is selected, whereas binary variable yki j
is used to know if item j ∈ Nk is assigned to compartment i ∈ Pk . Finally,
binary variable zki is equaled to 1 if compartment i ∈ Pk is built. Then, a
binary variant of CKP can be stated as follows:

max
∑

k∈M

⎛

⎝
∑

j∈Nk

pkj x
k
j −

∑

i∈Pk

fkz
k
i

⎞

⎠ (4.78)

s.t. :
∑

k∈M

∑

j∈Nk

wk
j x

k
j ≤ c (4.79)

ckmin ≤
∑

j∈Nk

wk
j y

k
i j ≤ ckmax ∀k ∈ M, j ∈ Pk (4.80)



134 C. Wilbaut et al.

∑

j∈Pk

yki j = xki k ∈ M, i ∈ Nk (4.81)

xkj , y
k
i j , z

k
i ∈ {0, 1} k ∈ M, j ∈ Nk, i ∈ Pk (4.82)

Interested readers are invited to consult [105, 160] for other linear formula-
tions with integer variables.

4.3.5 The Multiple Knapsack Problem with Color
Constraints

The Multiple Knapsack Problem with Color constraints (MKPC) is another
generalization of KP in which: (i ) a new attribute, called color, is associated
with every item ; (ii ) assignment restrictions are introduced regarding the
compatibility of items in a given knapsack. MKPC can also be formulated in
different ways. The problem was first introduced with this name in [42] moti-
vated by a real application in the steel industry called the surplus inventory
matching problem. Here the orders correspond to items and the slabs corre-
spond to knapsacks. The goal of the problem is to maximize the total weight
of the surplus used to fulfill orders in the order book. Other objectives can
be considered as the minimization of the leftover weight of each used slab.
To introduce more formally the problem we have to provide some details
about the correspondence between MKPC and the related application [42].
For each item (order) j ∈ N characterized by a weight w j , a set Mj of appli-
cable knapsacks (slabs) from the surplus inventory can be identified. These
assignment restrictions are based on quality and physical dimension consid-
erations. In addition only knapsacks that are of the same quality or better can
be applied for any given item. Then, for each slab (knapsack) i ∈ M with
a weight bi a set Ni of applicable orders (items) is defined. The thickness
and width requirements for each item need to be compatible with those of
the applicable knapsacks. Another important notion in MKPC is the color
associated with each item. Color constraints restrict the sets of items that can
be matched to the same knapsack in the surplus inventory. In fact not all
items assignable to a given knapsack can be packed together on that knap-
sack, due to processing considerations in the finishing line of a steel mill. A
route associated with each item that specifies the set of process operations
that need to be applied is given. A unique color is associated with each route
and the number of colors on a knapsack is restricted (in practice to two).
The color can be introduced with parameter k j to denote the color of order
j ∈ N and with Ki to denote the set of colors incident on slab i ∈ M .
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Forrest et al. proved in [63] that the problem of applying orders against an
existing surplus inventory is the surplus inventory matching problem and can
be formulated as a multiple knapsack problem with color and assignment
constraints considering only one objective. This is achieved by introducing
the following binary variables: xi j , ∀i ∈ M, j ∈ N which is set to 1 if item j
is assigned to knapsack i; yki , ∀i ∈ M, k ∈ Ki which has value 1 if items of
color k obtain material from knapsack i; and zi , ∀i ∈ M which is set to 1 if
any item is incident to knapsack i. Then, MKPC can be modeled as follows
[63]:

max
∑

j∈N

∑

i∈Mj

w j xi j −
∑

i∈M
(bi −

∑

j∈Ni

w j xi j )zi (4.83)

s.t. :
∑

j∈Ni

w j xi j ≤ bi zi i ∈ M (4.84)

∑

i∈Mj

xi j ≤ 1 j ∈ N (4.85)

∑

c∈Ki

yci ≤ 2 i ∈ M (4.86)

xi j ≤ yc j ,i i ∈ M, j ∈ N (4.87)

xi j ∈ {0, 1} i ∈ M, j ∈ N (4.88)

yci ∈ {0, 1} c ∈ Ki , i ∈ M (4.89)

zi ∈ {0, 1} i ∈ M (4.90)

As mentioned by [63] nonlinear objective function (4.83) can be rewritten as

∑

j∈N

∑

i∈Mj

2w j xi j −
∑

j∈N
bi zi (4.91)

since zi = 0 implies xi j = 0, ∀i ∈ N j , whereas zi = 1 implies xi j zi = xi j
for all feasible solutions.

Some variants and formulations of MKPC can be found in the literature.
Dawande and Kalagnanam [42] proposed two integer linear programming
formulations, one by separating the set of variables for modeling the color
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constraints and another where these color constraints are implicitly modeled
without introducing new variables. They presented a polyhedral study of the
problem and showed that the color constraints significantly change the clas-
sical multiple knapsack integer polytope. In addition they demonstrated that
under certain sufficient conditions color constraints define the facets of the
integer polytope. Kalagnanam et al. considered a bi-objective version in [108]
where the second objective minimizes the unused weight of the slabs that are
matched with orders. Authors proposed a mathematical formulation of the
problem as well as a network flow-based heuristic. Experiments performed on
real instances proved the efficiency of the heuristic approach to provide near-
optimal solutions within a reasonable amount of time. Forrest et al. proposed
in [63] a branch-and-price algorithm to deal with the previous formulation
that helps in solving a real-life instance of MKPC, called mkc. However, the
method could not solve a larger real-life instance, called mkc7 (mkc and
mkc7 are two well-known instances in the MIPLIB2).

MKPC is also related to the variable-sized bin packing problem with color
constraints which consists in assigning to each used bin a capacity from a set
of available capacities. Each item is also characterized by a weight and a color
among a set of colors. The objective is to minimize the residual capacity in
the used bins such that: (i) each item is assigned to exactly one type of the
bins, (ii) the total weights of items assigned to each bin do not exceed its
capacity and (iii) no more than two colors appear in each used bin. This
variant was introduced in [42] where authors presented an asymptotic poly-
nomial approximation scheme that serves to classify the complexity of the
problem. Later, Dawande et al. [44] proposed several approximation algo-
rithms. They first considered the case where the maximum number of colors
is set to two and then the general case. Then, Dawande et al. [43] developed
an efficient heuristic algorithm which is used in a real context and the steel
plant savings achieved $2.5 million per year. In a recent work, Kochetov and
Kondakov [117] applied a VNS-based matheuristic to a special case where
each item has zero weight and arbitrary number of colors with the objective
of minimizing the number of bin used. VNS is used for the pricing problem
as well as for approaching near-optimal solutions for randomly generated
instances. Crévits et al. [37] considered another special case where each color
is assigned to only one item. They considered several different linear formu-
lations for that special case of the problem, including some standard ones.
Out of the computational experiments reported by the authors, the one that

2 http://miplib.zib.de.

http://miplib.zib.de
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appears to be the most promising is called the matching formulation. Exper-
iments provided promising results for this formulation when it is compared
to other classical ones. This work was extended in [82] where authors showed
that for that special case instances with up to 20 bin sizes can be solved in
less than 2 seconds.

Finally the constraint programming community also considered MKPC as
a bin-packing problem with color constraints. The corresponding problem
is problem number 38 in the CSPLIB3 and consists of 380 benchmark
instances. Frisch et al. proposed in [65] a constraint-based model for the
problem and added symmetry-breaking techniques as well as efficient implied
constraints that help reducing significantly the search space. Heinz et al.
solved all the 380 instances of CSPLIB using a column generation-based algo-
rithm in [90]. The approach also solved the mkc instance but was not able to
solve the mkc7 one. The problem was also efficiently solved in [181] where
authors used constraint programming with an improved symmetry breaking
scheme.

4.4 Conclusion and Suggestions

In this chapter we review a few variants of KP which are associated with
recently introduced interesting applications. Our choice of variants is obvi-
ously personal and is restricted by writing space limitations. Accordingly,
numerous existing KP variants are not addressed here. For each KP variant
we consider, at least one formulation is provided, together with a list of
existing applications for it. Then, we focused on the most recent and the most
effective approaches for solving the problem. Quite clearly, we could have
considered many other KP variants including quadratic knapsack problems
or multi-objective knapsack problems for instance. Likewise, stochastic and
robust versions of KPs have also been considered in the literature. For instance
Caserta and Voß introduced in [26] a robust version of the MMCKP and
studied the relation between the deterministic and the robust problems. They
showed that a given nonlinear model arising from the use of robust optimiza-
tion can be transformed into an equivalent linear model and thus that the
complexity of the deterministic version can be preserved. Online or bilevel
knapsack problems are other examples of interesting variants (see., e.g., [23,
149]).

3 http://www.csplib.org/Problems/prob038/.

http://www.csplib.org/Problems/prob038/
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In our opinion the number of publications dealing with KP variants is not
about to decrease, for the following reasons: (i) many of KP variants remain
extremely challenging problems, even when considering very simple versions
of them; (ii) as shown in this chapter and in the literature several recent works
identify KP variants as sub-problems within even more difficult problems.
Thus, the need of very effective approaches to solve KPs is still relevant; (iii)
we can imagine that other new variants will emerge in the next few years,
in particular by combining the characteristics of existing KPs. For instance
Mansini et al. introduced recently the multiple multidimensional knapsack
with family-split penalties which combines the M-KP and the MKP in [131].
In this problem the profit is not associated with each single item but with the
family as a whole and to earn this profit it is necessary to select all the items
of the family. A splitting penalty incurs when items from the same family are
assigned to different knapsacks. The problem arises in distributed computing
resource management items that are grouped into families. As noted by the
authors efficiently handling large instances can be an interesting challenge.
Thus, we encourage interested readers to consider both theoretical and more
practicable works to help resolve the more emerging and difficult knapsack
problems.
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