
17
Input Uncertainty in Stochastic Simulation

Russell R. Barton, Henry Lam, and Eunhye Song

17.1 Introduction

A stochastic simulator refers to a computer model that takes random inputs
in and generates outputs by following a set of deterministic system rules.
The simulation outputs are collected and used to estimate a performance
measure of interest. For instance, a simple queueing simulator may prescribe
the system rules on how jobs are processed by servers, where the goal is to
estimate the expected waiting time of jobs in the queue. The inputs to the
simulator consist of interarrival times of jobs and service times of the servers.
These inputs are typically generated from probability distributions referred to
as input models. According to the system rules, the simulator calculates each
job’s waiting time in the queue from the inputs and returns it as an output.
Simulating many such jobs, the expected waiting time can be estimated
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by averaging the outputs. Typically, the estimated performance measure is
subject to stochastic error since one can only generate finitely many simu-
lation outputs. As the simulation sample size increases, the hope is that the
estimated performance measure converges to the true performance measure
in some probabilistic sense.

When the simulator is built to mimic a real-world system, the input
models may be estimated from input data (e.g., interarrival and service times)
collected from the system. Then, there is statistical error in estimating the
input models from the finite input data. As a result, any simulation outputs
computed from the inputs generated from these models are subject to the
estimation error. In turn, the performance measure estimate now has addi-
tional uncertainty caused by the input-model estimation error. The latter is
referred to as input uncertainty and is the main focus of this chapter.
To summarize, the two sources of stochastic variability in the performance

measure estimate are: (i) the finiteness of the simulation output sample, and
(ii) the finiteness of the input data used to fit the input models. These two
sources of variability in the simulation literature have been given a number
of different names. Perhaps most intuitive are simulation variability and
parameter variability by Cheng and Holland [26], with the former charac-
terizing uncertainty or error in a (deterministic) function of the simulation
output random variable due to the stochastic nature of the output, and the
latter characterizing uncertainty in estimated input model’s parameters. Other
names for simulation variability include simulation error, Monte Carlo error,
variance error, stochastic uncertainty, sampling error, and intrinsic output uncer-
tainty. Other terms used for parameter variability (and beyond to cover other
errors stemming from input fitting) include input uncertainty, input-model
uncertainty, bias error, and extrinsic error. In the Bayesian setting, structural
uncertainty captures both model uncertainty (probability model forms and
system logic) and probability model parameter uncertainty. See [6, 7, 28, 29,
63, 75, 92, 120] and Chapter 7 of [92] for additional information. For this
chapter we will use Monte Carlo error and input uncertainty to name the two
sources of variability in simulation output.

We distinguish analyzing input uncertainty from uncertainty quantifica-
tion (UQ) of a computer model. For UQ, the computer models typically
are differential equation-based and have deterministic outputs; the uncer-
tainty is in the values of model parameters. For instance, [121] perform
UQ of a fire-spread model, which calculates the spread speed of forest fire
based on a set of differential equations. Here, the source of uncertainty is
the unknown values of wind speed, moisture level in the air, size of the fuel
in the forest, etc. Closely related to UQ is the topic of sensitivity analysis,
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again typically associated with differential equation models. See [107] for an
overview. Examples of this work include [94, 97] and, more recently, [95].
A main distinction of input uncertainty from computer model UQ is the
stochasticity of the considered model, which adds variability on top of real
data noise that complicates estimation. Another distinction is the type of data
used. Input uncertainty often considers the availability of observations that
directly inform the input distributions while UQ can involve output-level
data [11, 33, 70, 124]. The latter, which is sometimes known as calibra-
tion [64, 125, 134] or simulation-based inference [32], has nonetheless been
also considered in the stochastic simulation literature in the context of model
validation [4, 73, 108, 112] and more recently [58, 59, 101], though still
relatively open.

Concepts closely related to Monte Carlo error and input uncertainty
from the UQ setting are named aleatory uncertainty and epistemic uncer-
tainty [114]. Aleatory refers to inherent randomness in the output, and
this variability cannot be reduced by better modeling or using more data.
On the other hand, epistemic refers to lack of knowledge of model param-
eter value and model bias, and can be reduced by modeling or more data.
While these terms have erudite philosophical roots, they are not as widely
known in stochastic simulation and it would benefit to have more systematic
connections.

Another related topic is robust analysis. We review some of robust
analysis methods applied to stochastic simulation. See for example,
[42, 53, 66, 75, 99].

17.2 Characterizing Input Uncertainty

Consider the estimation of a performance measure ψ that depends on
the input distributions P = (P1, . . . , Pm), where P1, . . . , Pm denote the
individual distributions for independent random sources. For instance, in
queueing models, P1 and P2 can denote the interarrival time and service time
distributions, respectively. Sets of dependent random sources can be consid-
ered to be captured by multivariate distribution Pj of P. The performance
measure ψ , given P, can be evaluated with error via simulation runs, i.e., we
can generate ψ

∧

r , r = 1, . . . , R where R is the simulation budget, and output
the average ψ

∧

= (1/R)
∑R

r=1 ψ
∧

r as a natural point estimate of ψ . We call
ψ
∧

− ψ Monte Carlo error.
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Input uncertainty arises when the ground-truth P is not known but only
observed via data. Thus, P needs to be estimated, and this statistical error can
propagate to the output and affect the accuracy of the point estimate of ψ .
Typically, the data set to inform each Pi is assumed independent of others

and comprises i.i.d. observations (though can be generalized to serial depen-
dence with sufficient mixing). In the parametric regime, we assume Pi is from
a parametric family, say Pθ with unknown true parameter vector θ . In this
case, an estimate of Pi reduces to estimating θ . In the nonparametric regime,
no parametric assumption is placed on Pi , and a natural estimate of Pi is the
empirical distribution (or its smoothed variants).

While simulation output analysis in general may consider any characteri-
zation of the probability distribution of simulation output, ψ

∧

, there are two
main, and closely related, approaches to quantify input uncertainty. First is
the construction of confidence interval (CI) on ψ that accounts for both
the input uncertainty and Monte Carlo error. Second is the estimation of
the variance of the point estimate ψ

∧

, which involves decomposition of the
variance into the input uncertainty variance and Monte Carlo error vari-
ance components. The input uncertainty variance component is typically
more difficult to estimate than the Monte Carlo variance, as the latter can
be quite readily estimated by using the sample variance of replicate simula-
tion runs. The former, however, not only involves a variance of a nonlinear
functional, but also can only be evaluated with added Monte Carlo error.
The CI approach and the variance estimation approach are closely connected
as the variance estimate provides the standard error for a variance-based (as
opposed to quantile-based) CI. Note, however, that when ψ is a steady-state
measure such as average queue length or average time in system, ψ

∧

may have
infinite expectation and its variance is undefined [111]. In this case CIs may
still be obtained, but they cannot be variance-based.

17.3 Confidence Interval Construction
and Variance Estimation

A (1 − α)-level CI for ψ is an interval [L, U ] that satisfies

P(ψ ∈ [L ,U ]) ≥ 1 − α
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where P refers to the probability with respect to both input data and Monte
Carlo runs. We say that a CI is asymptotically valid if

lim inf
n→∞ P(ψ ∈ [L ,U ]) ≥ 1 − α

for some scaling parameter n. We call CI asymptotically exact if

lim
n→∞P(ψ ∈ [L ,U ]) = 1 − α.

Besides coverage, the efficiency of the CI measured by the length of the
interval (in expectation) is also important. Obviously, the infinite interval
L = −∞,U = ∞ is asymptotically valid but not useful.
As will be described in further detail in the following sections, we typically

have

Var(ψ
∧

point ) = VIU + VMC (17.1)

where ψ
∧

point is a natural point estimate of ψ , by “plugging in” the point
estimate of the input parameter and conducting simulation runs based on the
resulting input model, and Var refers to the variance from both input uncer-
tainty and Monte Carlo error. (17.1) implies that the variance of the natural
point estimate of ψ can be decomposed into an input uncertainty variance
component, VIU , and a simulation Monte Carlo error variance component
VMC . The variance estimation approach in input uncertainty often refers to
the estimation of this decomposed variance, in particular VIU which is the
more challenging piece as mentioned before.

CIs and variance estimation are closely connected. Under suitable regu-
larity conditions, not only (17.1) holds, but also we have a central limit
theorem (CLT) for ψ

∧

point such that it is approximately N (ψ,Var(ψ
∧

point )).

Thus, to construct a CI for ψ , it suffices to estimate the variance of ψ
∧

point
and then use

[L ,U ] =
[

ψ
∧

point − z1−α/2

√
Var(ψ

∧

point ), ψ
∧

point + z1−α/2

√
Var(ψ

∧

point )

]

where Var(ψ
∧

point ) is plugged in with the variance estimate, and z1−α/2
denotes the (1 − α/2)-level normal critical value, given by the (1 − α/2)-
quantile of standard normal.

In the following, we divide our review into methods that primarily apply
to parametric regimes (i.e., when the input model is specified up to a para-
metric family with unknown parameters), and methods that can handle
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nonparametric settings (which typically are also applicable to parametric
cases). Moreover, we will focus on the problem of CI construction as, in view
of our discussion above, variance estimation often serves as an intermediate
step in obtaining the CI.

17.3.1 Parametric Methods

When the input probability distributions are assumed to have a parametric
form, the uncertainty characterization is simplified. For each Pj , rather than
dealing with an unknown functional form (restricted to the class of proba-
bility distribution functions), the uncertainty is over a finite set of parameters
that define a particular member of the assumed parametric family. While
easier to handle, parametric assumption should be viewed with caution: In
real-world systems, random phenomena rarely follow any parametric distri-
butions (or mixtures) exactly [20], and sometimes this error ignored by the
existing frequentist and Bayesian input uncertainty quantification methods
described below could be substantial.

17.3.1.1 Central Limit Theorem and Delta Method

To highlight the dependence on θ , we denote ψ = ψ(θ) where ψ(·) is
a map from the input parameter to the performance measure value. From
input data, we give an estimate of the ground-truth parameter vector θ given
by θ

∧

. Then, given θ
∧

, we estimate ψ(θ
∧

) by running and averaging R simula-
tion runs, each denoted by ψ

∧

r (θ), to get ψ
∧

(θ
∧

). This point estimate ψ
∧

(θ
∧

) is
contaminated by both the input and Monte Carlo noises, with the two “hats”
indicating the two sources of noises.

From the decomposition

ψ
∧

(θ
∧

) − ψ(θ) = [ψ
∧

(θ
∧

) − ψ(θ
∧

)] + [ψ(θ
∧

) − ψ(θ)]

it can be inferred that

ψ
∧

(θ
∧

) − ψ(θ) ≈ N

(

0,Var(ψ(θ
∧

)) + Var(ψ
∧

r (θ))

R

)

, (17.2)

where Var(ψ(θ
∧

)) is the input variance, with Var on the randomness of input
data, and Var(ψ

∧

r (θ))/R is the variance of the Monte Carlo error, with Var
on the simulation noise in ψ

∧

r (see, e.g., [24, 57]).
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Moreover, by the delta method, asymptotically as the input data size
increases,

Var(ψ(θ
∧

)) ≈ ∇θψ(θ)′ �
n

∇θψ(θ) (17.3)

where �
n is the estimation variance of θ

∧

, typically scaling in a data size param-
eter n (e.g., a parameter linear in all the individual data sizes for different
input models) and ∇θψ is the gradient of ψ with respect to θ , known as
the sensitivity coefficient. If we use maximum likelihood for instance, then
� would comprise the inverse Fisher information matrices.
Thus, when both the input data size and simulation replication size are

large, we have

ψ
∧

(θ
∧

) − ψ(θ) ≈ N

(

0,
∇θψ(θ)′�(θ)∇θψ(θ)

n
+ Var(ψ

∧

r (θ))

R

)

which then can be used to generate [L, U ] in Section 17.3. Note that
∇θψ(θ) needs to be estimated by simulation (as ψ itself also needs to be
estimated by such), via one of the following ways:

Unbiased gradient estimator: ∇θψ(θ) estimated via unbiased methods
such as the likelihood ratio or score function method [55, 103, 106]. This,
however, may have high variance especially for long-horizon problems.

Finite-difference or zeroth-order gradient estimator: ∇θψ(θ) estimated by
using finite difference that requires only unbiased function evaluations [47,
140]. The rate of convergence, however, is subcanonically slow, and a precise
complexity analysis for the use in (17.3) is not available in the literature.

Two-point methods: ∇θψ(θ) estimated by using finite difference, but only
using a couple of “perturbation directions” for the θ vector, judicially chosen
(the “two points”). [25, 26] show some advantages in this approach.
Though the delta method is based on the normality approximation

common in statistics, in the context of input uncertainty its implementation
requires the estimation of a gradient or sensitivity coefficient that may not
always be easy. Moreover, in finite-sample situations this method may under-
cover [8]. This partially motivates the alternatives that are discussed later in
this section.
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17.3.1.2 Bayesian Methods

The delta method and the resulting CI discussed above take the clas-
sical frequentist perspective. In the input uncertainty literature, Bayesian
methods provide an alternate approach. Assume we have data D for a single
input model parametrized by the unknown parameter vector θ , which is
distributed according to p(ξ |θ). In the Bayesian framework, we impose a
prior distribution pprior (θ) on θ , and compute the posterior distribution

ppost (θ |D) ∝ pprior (θ)p(D|θ) (17.4)

where p(D|θ) is the likelihood of the data D, which is often a product of
terms p(ξ |θ) (note that we could have multiple input models each with its
own set of parameters, in which case we multiply these likelihoods together
if the data are all independent). Computing the posterior ppost (θ |D) is a
subject of long-standing interest, where in some cases (e.g., conjugate prior)
it is readily computable, while in other cases more elaborate techniques such
as Markov chain Monte Carlo (MCMC) are required [27]. Compared to
the frequentist interpretation, a commonly viewed advantage of a Bayesian
approach is the flexibility in specifying prior belief about uncertain param-
eters, which can be used to incorporate expert knowledge [63]. Moreover,
Bayesian approaches are especially convenient in handling dynamic prob-
lems where data are sequentially assimilated, since the posterior distribution
can be naturally used as an updating mechanism to reflect all the historical
information.

In translating the above into inference on ψ = ψ(θ), note that, much like
the frequentist case, we encounter two sources of uncertainty, one from the
statistical error in estimating θ , and one from the simulation error. There are
two views in handling this combination of uncertainties:

Direct Combination: This approach uses a distribution to capture the
overall uncertainty that “lumps” the two sources together. More precisely,
the sampling scheme repeatedly draws a sample from the posterior of θ ,
and given this sample that is used to calibrate the input model, a simulation
run is conducted. The distribution of all these simulation outputs comprises
a quantification of the combined input-simulation error. This approach is
conceptually straightforward, and is used in, e.g., [27].

Variance Decomposition: The second approach resembles more closely
the frequentist approach described in the last subsection. It consists of a two-
layer sampling, where at each outer layer, a posterior sample of θ is drawn,
and given this value that calibrates the input model, several (i.e., R ) simula-
tion runs are conducted which forms the inner sampling layer. Then the input
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variance and the simulation variance can be estimated via methods much like
the analysis-of-variance to be presented in the variance-based bootstrap in
Section 17.3.2.1. This approach is used by [143, 144].

17.3.1.3 Metamodel-Based Methods

The direct bootstrap, whether used to construct variance-based or quantile-
based CIs (to be discussed in Section 17.3.2.1), is corrupted by Monte Carlo
error. When the Monte Carlo error is large relative to the input uncertainty,
the result can be significant overcoverage of CIs, providing the experimenter
with lower precision than what they should be.

For the parametric setting, constructing a metamodel for ψ(θ) can greatly
reduce the impact of Monte Carlo error on the bootstrap distribution of
ψ
∧

(θb), where the bootstrap resamples are indexed by b. This phenomenon
is easiest to see by considering the case where ψ can be modeled with linear
regression (to full fidelity), and then considering prediction in the CLT case.
To further simplify the motivation for metamodeling, assume that ψ includes
a transformation of the simulation output so that ψ

∧

r (θ) has homogeneous
variance with respect to θ .
That is, we have the full-fidelity metamodel:

ψ(θ) = g(θ)′β + ε, ε ∼ N (0,Var(ψ
∧

r/R)) (17.5)

where g is the vector-valued regression function. Denoting the fitted regres-
sion metamodel prediction by ψ

∧

mm , the approximate variance decomposition
of ψ

∧

mm(θ
∧

)−ψ(θ) can be compared with (17.2), where Var(ψr/R) in (17.2)
is multiplied by

(g(θ)′(G′G)−1g(θ)), (17.6)

andG is the design matrix of g values used to fit the metamodel. This assumes
that the design matrix has one row per different design condition, which
would result in R replications of each row in G. The multiplier will be smaller
than one for θ values inside the design space. For simple linear regression
with θ ∈ R

d , design region scaled to (+/ − 1)d and a 2d factorial design,
the largest value for θ ′(G′G)−1θ occurs at the corners of the hypercube, with
value (d + 1)/2d . This provides one motivation for metamodeling: using
metamodel-predicted bootstrap estimates for ψ

∧

can have greatly reduced
Monte Carlo error. The second motivation is that the bootstrap resamples
of θ each requires an inexpensive evaluation of the metamodel, rather than
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several replications of the expensive simulation model. If the metamodel
fitting design has fewer runs than the bootstrap, the computational effort
will be less.

Linear regression metamodels are essentially identical to the delta method
reviewed in Chapter 17.3.1.1. Here we focus on the use of nonlinear
metamodels with the bootstrap to characterize the distribution of ψ(θ

∧

).
When the input data is limited, the potential for highly nonlinear response

of the simulation as a function of θ makes low-order polynomial regres-
sion less attractive, since Taylor’s Theorem is less likely to apply. Further, the
assumption of homoscedastic variance (independence of Var(ψ

∧

r/R) from θ )
is harder to support.

In a series of papers [9, 137, 138], Xie, Nelson, and Barton employed
stochastic kriging [1] to provide metamodel-based bootstrap CIs for input
uncertainty. The work covers frequentist, Bayesian, and dependent input
variable cases.

Key to the method was the experiment design strategy. Unlike linear
regression, prediction error for stochastic kriging models increases when the
prediction point is far from any experiment design point. In this setting,
space-filling designs are preferred to traditional factorial experiment designs.
Since the metamodel is used to evaluate bootstrap-resampled θb values, the
design should focus on the bootstrap-resample space. The design proposed by
the authors had two phases. In the first phase, a large number of bootstrap
sample θb values were generated (without simulating the resulting perfor-
mance), then a hyperellipse enclosing a high fraction (e.g., 99%) of the θb
values was fitted. In the second phase, a space-filling design for a hypercube
(e.g., Latin hypercube design) was transformed to cover the fitted ellipsoid.
The experiment design was executed (with replications) for specified θ

values to fit a stochastic kriging metamodel. Then bootstrap-resampled θb
values were used with the metamodel to generate approximate bootstrap
ψ(θb) values to assess input uncertainty.

Metamodel-assisted bootstrapping has two advantages over direct boot-
strapping. It makes efficient use of simulation budget by assigning simulation
effort through a designed experiment that evenly covers the uncertain θ input
space. The direct bootstrap over-emphasizes simulation effort in the design
region of the most commonly occurring realizations of θb, which are unlikely
to contribute much to confidence interval or quantile estimation. Second, the
metamodeling approach produces the reduction in Monte Carlo uncertainty
described above. This makes bootstrapping not only efficient but also robust
to Monte Carlo error.
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But metamodel-assisted bootstrapping may have disadvantages over the
direct bootstrap when θ is high-dimensional. The number of simulation
experiment runs required to fit a high-fidelity metamodel can increase rapidly
with the dimension of θ . Thus, for a simulation model with many input
parameters, the number of runs for the metamodel fitting experiment may
exceed the number of direct bootstrap simulation model runs required for
adequate input uncertainty characterization.

17.3.1.4 Green Simulation

Green simulation is an application of the likelihood ratio method, where
simulation replications made to estimate ψ(θ) are reused to construct an
estimator of ψ(θ ′) for θ ′ �= θ [44, 45].

Green simulation has been applied to reduce the computational cost
of input uncertainty quantification. We focus on the Bayesian setting in
this section, although the same approach can be applied in the frequen-
tist setting as well. Suppose θ1, θ2, . . . , θB are sampled from the poste-
rior, ppost (θ |D). At each θb, 1 ≤ b ≤ B, R simulation replications,
ψ
∧

1(θb), ψ
∧

2(θb), . . . , ψ
∧

R(θb), are made and let ψ
∧

(θb) denote their sample
mean. Moreover, let ζ b

r be the vector of input random variables gener-
ated within the r-th replication given θb and f (·|θb) denote the probability
density function of ζ b

r . Thus, ψ
∧

r (θb) is a deterministic function of ζ b
r .

The following change of measure allows us to reuse the inputs and outputs
generated from the R replications made at θb to estimate ψ(θb′) for θb′ �= θb:

ψ(θb′) = E

[

ψ
∧

r (θb)
f (ζ b

r |θb′)

f (ζ b
r |θb)

]

=
∫

ζ

ψ
∧

r (θb)
f (ζ |θb′)

f (ζ |θb) f (ζ |θb)dζ.

Here, an implicit assumption is that the support of the input vector does not
depend on θ . Therefore, ψ̃b(θb′) below is an unbiased estimator of ψ(θb′):

ψ̃b(θb′) = 1

R

R∑

r=1

ψ
∧

r (θb)
f (ζ b

r |θb′)

f (ζ b
r |θb) .

Using this trick, [43] propose pooling all BR replications to estimate each
ψ(θb) to improve computational efficiency. However, this approach should
be taken with caution; although ψ̃b(θb′) is unbiased, its variance may be
unbounded. The exact derivation of Var(ψ̃b(θb′)) cannot be obtained in
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general, but it can be estimated. Thus, one can choose not to pool replications
made at some θb to estimate θb′ , if the estimated variance is large.

Expanding on the idea, [46] study an experiment design scheme to mini-
mize the total number of replications so that the resulting pooled estimators
have (approximately) the same variances as the original two-layer design that
requires BR replications. The experiment design can be optimized prior to
running any replications as long as f (·|θb) is known. For a special case, they
show that the minimized simulation budget is O(B1+ε) for any ε > 0, which
is a significant reduction from BR.

17.3.2 Nonparametric Methods

We now turn to methods that apply to nonparametric regimes in which the
input distribution is not assumed to follow any parametric family. Following
Section 17.2, we write ψ = ψ(P), where P = (P1, . . . , Pm) is a collection
of m input distributions. Suppose we have a collection of data sets D =
(D1, . . . , Dm), where each Di = (ξi1, . . . , ξini ) is the data set of size ni
distributed under Pi . Suppose the data are all independent. Then, naturally
we construct empirical distributions P

∧

= (P
∧

1, . . . , P
∧

m) from these data sets,
where

P
∧

i (·) = 1

ni

ni∑

j=1

δξi j (·)

for Dirac measure δξi j (·). With these input distributions, we generate R
simulation runs to obtain

ψ
∧

(P
∧

) = 1

R

R∑

r=1

ψ
∧

r (P
∧

)

where ψ
∧

r , r = 1, . . . , R are independent simulation runs.
Under regularity conditions, we have a CLT

ψ
∧

(P
∧

) − ψ(P) ≈ N

(

0,Var(ψ(P
∧

)) + Var(ψ
∧

r (P))

R

)

(17.7)

much like the parametric case in Section 17.3.1.1 [57].
Though conceptually similar, a main difference between the nonpara-

metric and parametric setups is the representation of the input variance
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Var(ψ(P
∧

)). In particular, to specify this quantity, we would need to
employ the nonparametric delta method, which involves the notion of func-
tional derivatives. More specifically, the so-called influence function [61]
I F(ξ ;P) = (I F1(ξ1;P), . . . , I Fm(ξm;P)), which maps from the image
of random variable ξ = (ξ1, . . . , ξm) to R

m , is a function satisfying the
property

ψ(Q) ≈ ψ(P) +
∫

I F(ξ ;P)d(Q − P) + remainder (17.8)

where Q = (Q1, . . . , Qm) is a sequence of independent distributions Qi
each defined on the same space as Pi ,

∫
I F(ξ ;P)d(Q − P) is defined as

∫

I F(ξ ;P)dQ =
m∑

i=1

∫

I Fi (ξi ;P)d(Qi − Pi ),

and the remainder in (17.8) goes to zero at a higher order than Q − P
(which can be rigorized). Note that we can replace

∫
I F(ξ ;P)d(Q − P)

by
∫
I F(ξ ;P)dQ, by redefining I F(ξ ;P) as I F(ξ ;P)−EP[(ξ ;P)]. Thus,

without loss of generality, we can use a canonical version of IF that satis-
fies (17.8) and also the mean-zero property (under P). From (17.8), we see
that the influence function dictates the linearization of ψ(P) as P perturbs
to Q, and plays a distributional analog of the derivative in Euclidean space,
which leads to the notion of Gateaux, Frechet or most relevantly Hadamard
derivatives [128].

With the influence function IF , it turns out that the input variance
Var(ψ(P

∧

)) is given by

Var(ψ(P
∧

)) =
m∑

i=1

Var(I F(ξi ;P))

ni
(17.9)

where the variance in the RHS is on the random variable ξi generated from
Pi . This formula is a nonparametric analog to (17.3).
A major challenge in the nonparametric case that distinguishes from para-

metric is that the influence function generally requires more effort to estimate
than the sensitivity coefficient for parametric input models. Efficient estima-
tion of the variance of influence function is potentially doable [84], but quite
open in the literature, and the input uncertainty literature has focused on
resampling, cancellation methods or nonparametric Bayesian approaches, as
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we describe below. We also note that many of these approaches, by design,
also apply naturally for parametric settings.

17.3.2.1 Bootstrap: Elementary Schemes

The bootstrap method in input uncertainty can be roughly categorized into
two frameworks, quantile-based and variance-based.

Quantile-based bootstrap: The bootstrap approach is principled on the
observation that the variability of a statistic, under the data distribution, can
be approximated by the counterpart of a resampled statistic, conditioned on
the realized data [34, 40]. To be more precise, suppose we have a point esti-
mate of ψ(P) given by ψ(P

∧

), and we want to construct a (1 − α)-level
CI. This problem can be recast as the search of [q, q] such that P(q ≤
ψ(P

∧

) − ψ(P) ≤ q) = 1− α which then gives [ψ(P
∧

) − q, ψ(P
∧

) − q] as the
CI. The bootstrap stipulates that

P∗(q ≤ ψ(P∗) − ψ(P
∧

) ≤ q) ≈ P(q ≤ ψ(P
∧

) − ψ(P) ≤ q) (17.10)

where P∗ is a resampled distribution, namely the empirical distribution
formed by sampling with replacement from the data with the same size (or,
in the case of m independent input distributions, the resampling is done
independently from each input data set), and P∗ denotes the probability
conditional on the data. Thanks to (17.10), we can use Monte Carlo to
approximate q and q, say q∗ and q∗, which then gives [ψ(P

∧

) − q∗, ψ(P
∧

) −
q∗] as our CI.

The above principle has been used in constructing CIs for ψ(θ) under
input uncertainty. A main distinction in this setting compared to conven-
tional usage of the bootstrap is that the performance function ψ itself needs
to be estimated from running many simulation runs. Thus, applying the
bootstrap in the input uncertainty setting typically requires a nested simula-
tion, where in the first layer, we resample the input distributions B times, and
then given each resampled input distribution, we draw in the second layer a
number, say R, of simulation runs driven by the resampled input distribution.
The overall simulation complexity is BR.

The basic bootstrap method gives precisely the interval [ψ
∧

(P
∧

)−q∗, ψ
∧

(P
∧

)−
q∗], where ψ

∧

(P
∧

) is a point estimate that uses the empirical distribution
and enough simulation runs, and q∗ and q∗ are obtained as described
above, using R large enough to approximate ψ sufficiently accurately in each
resampled performance measure ψ

∧

(P∗).
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On the other hand, (Efron’s) percentile bootstrap uses the interval [q∗, q∗]
directly, where q∗ and q∗ are defined as in the basic bootstrap above. This
approach does not require computing the point estimate, and is justified
with the additional assumption that the limiting distribution of the statistic
(centered at the true quantity of interest) is symmetric, which is typically
true because this limiting distribution in many cases is a mean-zero normal
distribution. Barton [10, 5] studies this approach.

Variance-based bootstrap: Instead of using quantiles q and q to construct

CI, we can also estimate Var(ψ(P
∧

)) directly and then use the CLT (17.7) to
deduce the interval

⎡

⎣ψ
∧

(P
∧

) ± z1−α/2

√

Var(ψ(P
∧

)) + Var(ψ
∧

r (P))

R

⎤

⎦ (17.11)

where z1−α/2 is the 1− α/2-level normal critical value. Note that in (17.11)
the simulation variance Var(ψ

∧

r (P)) is typically easy to estimate by simply
taking the sample variance of all simulation runs in the experiment, and the
difficulty, as noted in the introduction, is the input variance.
To estimate Var(ψ(P

∧

)) using the bootstrap, we once again invoke the
approximation principle of resampling distribution for the original distribu-
tion of a statistic, that

Var∗(ψ(P∗)) ≈ Var(ψ(P
∧

)) (17.12)

where Var∗ is the variance of the resampling randomness conditional on
the data. Note that in the simulation setting, ψ has to be estimated from
an enough number, say R, of simulation runs for each resampled input
distribution P∗. Thus, once again, this approach typically requires a nested
simulation like in the quantile-based method.

Note that the accuracy of estimating Var∗(ψ(P∗)) can be improved
by using analysis-of-variance (ANOVA) to debias the effect coming from
finite simulation runs. To explain, note that a naive approach to estimate
Var∗(ψ(P∗)), with B first-layer resampling and R second-layer simulation is

1

B − 1

B∑

b=1

(ψ
∧

(P∗b) − ψ(P∗))2 (17.13)

where P∗b denotes the b-th resample distribution, ψ
∧

denotes the sample
mean from R runs, and ψ(P∗) denotes the sample mean of B resample
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performance measures. Viewing the resample simulation experiment as a
random-effect model, where each resample corresponds to a group and the
simulation per resample corresponds to the sample within a group, we can
readily see that the mean of (17.13) is actually

Var∗(ψ(P∗)) + E∗[Var(ψ
∧

r (P
∗)|P∗)]

R
(17.14)

where ψ
∧

r refers to the r-th inner simulation run, and E∗ refers to the expec-
tation on the resampling randomness of P∗ conditional on the data. Thus,
since we are interested in estimating the between-group variance in (17.14),
we can use

1

B − 1

B∑

b=1

(ψ
∧

(P∗b) − ψ(P∗))2 − 1

BR(R − 1)

B∑

b=1

R∑

r=1

(ψ
∧

r (P
∗b)

− ψ
∧

(P∗b))2 (17.15)

to remove the within-group variance. The formula (17.15) is used in, e.g.,
[117].

Note that both quantile-based and variance-based frameworks can be
applied to the case when the parametric bootstrap is adopted. In parametric
bootstrapping, an input model and its parameter vector θ

∧

are first fitted from
the data, then bootstrap samples are generated by sampling from the input
model.

17.3.2.2 Bootstrap: Computational Enhancements

The bootstrap methods discussed above, though natural and straightforward
to understand, unfortunately require high-computational load in general.
This computational load arises from the need of running nested simula-
tion (resampling at the outer layer, and simulation runs per resampled input
model at the inner layer), which requires a multiplicative amount of simu-
lation runs where, in order to control the overall error that is convoluted by
both the input and simulation noises, the sampling effort in each layer has to
be sufficiently large. To explain more concretely, consider the variance-based
bootstrap where we use B outer samples and R inner samples. Under suitable
assumptions and using [123], we obtain that the variance (conditional on the
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data as we are using the bootstrap) of (17.15) is

O

(
1

Bn2
+ 1

BR2

)

(17.16)

where n is a scaling for the data size (i.e., the input data ni for each input-
model i is assumed to scale proportionally with n for some proportional
constant). Now, note that the target quantity that (17.15) estimates is the
input variance given by (17.9), which is of order 1/n. Since this input vari-
ance shrinks to 0 as n increases, if we want to get a good input variance
estimator, a basic requirement is relative consistency, which means the ratio
of (17.16) and 1/n2 needs to go to 0. This in turn means, from the first term
in (17.16), that B needs to go to ∞ and, from the second term, that R needs
to be at least order n, which then gives a total required effort of strictly larger
order than the data size n. [82] calls this a simulation complexity barrier for
using naive variance-based bootstrap.

Some methods that improve the computational complexity motivated
from the barrier above include subsampling, which has been used in the
variance-based bootstrap framework, and shrinkage, which has been used in
the quantile-based framework.

Subsampling: On a high level, the difficulty in using nested simulation
to accurately estimate Var∗(ψ(P∗)), or subsequently Var(ψ(P

∧

)), is due to
the small magnitude of these quantities that are in the order of 1/n. This
small magnitude requires one to wash away the noise coming from the inner
sampling and necessitates the use of a large inner sample size. This issue
manifests explicitly when we analyze the variance of the variance estimator
in (17.16).

[82, 83] proposes to use subsampling to reduce sampling effort. Their
main insight is the following. Suppose we had a smaller data size, say with a
scale s, to begin with. Then, from our discussion above, this becomes an easier
problem and in particular we would only need a larger order than s (instead
of n) total simulation effort to ensure relative consistency. Of course, s is not
the original scale of the sample size. However, we can utilize the reciprocal
form of the input variance in terms of data size shown in (17.9) to rescale
our estimate in the s-scale back to the n-scale.
To make the argument above more precise, denote the bootstrap input

variance as

Var∗(ψ(P∗
n))
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where we introduce a subscript n in P∗
n to explicitly denote the data size in

the resample. From (17.9) and (17.12), we know

Var(ψ(P
∧

)) ≈ Var∗(ψ(P∗
n)) ≈

m∑

i=1

Var(I F(ξi ;P))

ni
(17.17)

Now, if we use a resample size of scale s, or more precisely we use si = ρni
for some factor 0 < ρ < 1, then the bootstrap input variance becomes

Var∗(ψ(P∗
s )) ≈

m∑

i=1

Var(I F(ξi ;P))

si
(17.18)

which now requires order larger than s effort instead of n effort due to
(17.16). Now, comparing (17.17) and (17.18), we see that we have

ρVar∗(ψ(P∗
s )) ≈

m∑

i=1

ρVar(I F(ξi ;P))

si

=
m∑

i=1

Var(I F(ξi ;P))

ni
≈ Var∗(ψ(P∗

n)) (17.19)

So, by subsampling input distributions using a size scale s, running the nested
simulation to estimate the bootstrap input variance, and then multiplying
back by a factor of ρ gives rise to a valid estimate of the input variance,
now with a total computational effort controlled by s instead of n. We could
choose s to be substantially smaller than n, in principle independent of the
data size.

Shrinkage: The principle of quantile-based bootstrap relies on the close-
ness between the distribution of a resampled estimate ψ(P∗) (conditional on
data) and the original estimate ψ(P

∧

), when suitably scaled and centered. In
other words,

ψ(P∗) − ψ(P
∧

) ≈ ψ(P
∧

) − ψ(P)

where ≈ denotes approximation in distribution, conditional on data for the
LHS, which then gives rise to (17.10) as a way to generate CI for ψ(P).
When ψ(·) needs to be computed via simulation, then the point estimate
becomes ψ

∧

(P
∧

), and we would use

ψ
∧

(P∗) − ψ(P
∧

) ≈ ψ
∧

(P
∧

) − ψ(P)
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where each ψ
∧

(·) is estimated from a number of simulation runs. To use the
basic bootstrap, we would use the quantiles of the LHS above to approximate
the quantiles of the RHS. Unfortunately, this means we also need to estimate
the “center" quantity ψ(P

∧

) in the LHS via simulation. Moreover, we need to
use enough simulation to wash away this noise so that

ψ
∧

(P∗) − ψ
∧

(P
∧

) ≈ ψ
∧

(P
∧

) − ψ(P) (17.20)

In other words, we need a large simulation size, say R0, to get a point esti-
mate ψ

∧

(P
∧

) that has negligible simulation error. And if we do so, then the
bootstrap-resample estimate ψ

∧

(P∗) in (17.20) would each require a matching
simulation size R0, and at the end the computation load is R0B where B is
the bootstrap size, which could be very demanding.
The shrinkage method proposed by [8] is an approach to reduce the

simulation size in each bootstrap-resample estimate, while retaining the
approximation (17.20). The approach is inspired from a similar concept to
adjust for variances in statistical linear models [34]. Suppose each bootstrap-
resample estimate ψ

∧

(P∗) uses R < R0 runs (while the point estimate ψ
∧

(P
∧

)

uses R0 runs), then the quantity

ψ
∧

(P∗) − ψ
∧

(P
∧

) (17.21)

has a larger variance than

ψ
∧

(P
∧

) − ψ(P).

To compensate for this, we scale down the variability of the outcomes of
(17.21) by a shrinkage factor

S =
√
√
√
√
√

Var(ψ(P
∧

))

Var(ψ(P
∧

)) + Var(ψ
∧

r (P))

R

which comes from the ratio between the standard deviation of (17.21) when
ψ
∧

(P∗) is estimated using R0 simulation runs (which is assumed so large
that the simulation noise becomes negligible) and R simulation runs. To
execute this shrinkage, we can either scale the resample estimate, i.e., multiply
each ψ

∧

(P∗) by S before applying the basic bootstrap, or scale the quan-
tile obtained from the basic bootstrap directly. The shrinkage factor itself is
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estimated using ANOVA described in Section 17.3.2.1. Moreover, a similar
shrinkage approach can be applied to the percentile bootstrap.

17.3.2.3 Batching, Sectioning, and Sectioned Jackknife

Recall the CLT in (17.7) that, when combined with (17.9), gives

ψ
∧

(P
∧

) − ψ(P) ≈ N

(

0,
m∑

i=1

Var(I F(ξi ;P))

ni
+ Var(ψ

∧

r (P))

R

)

(17.22)

The batching method studied by [57] utilizes a pivotal t-statistic constructed
from asymptotic normal variables in (17.22) to efficiently generate a CI.
Divide the input data for each input-model i into say K batches, each of size
mi (so that Kmi = ni , ignoring integrality). For each batch (which includes
the data corresponding to all input models), we construct the empirical distri-
bution Fk and run R simulation runs to obtain the k-th batched estimate
ψ
∧

(Fk). When K is a fixed, small number (e.g., K = 5), then as ni → ∞
we have the CLT

(
ψ
∧

(P
∧k

) − ψ(P)
)

k=1,...,K

≈
(

N

(

0,
m∑

i=1

Var(I F(ξi ;P))

mi
+ Var(ψ

∧

r (P))

R

))

k=1,...,K

(17.23)

where the normal variables are all independent. Thus, we can form a t-statistic

ψ̄ − ψ(P)

S/
√
K

where

ψ̄ := 1

K

K∑

k=1

ψ
∧

(P
∧k

), S2 = 1

K − 1

K∑

k=1

(ψ
∧

(P
∧k

) − ψ̄)2

which is distributed as tK−1, the t-distribution with degree of freedom K−1.
This gives a CI

[

ψ̄ − tK−1,1−α/2
S√
K

, ψ̄ + tK−1,1−α/2
S√
K

]
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where tK−1,1−α/2 is the (1− α/2)-quantile of tK−1. This idea resembles the
batch means method commonly used in steady-state analysis [56, 109, 110],
but here as a means to generate a CI capturing input uncertainty. The main
strength of this approach is its light computation effort. To use batching with
K number of batches, we need a simulation effort KR, and K in principle can
be as small as 2. The caution here is that a small K would give a long interval
(note the critical value tK−1,1−α/2 is large when K is small). Nonetheless, as
K increases from 2, the decrease in interval width is steep and then stabilizes
quickly [109]. In general, K equal to 5 would already reasonably approach
the limiting critical value, i.e., the normal critical value z1−α/2.

If we have a point estimate ψ
∧

(P
∧

) constructed from using all the input
data, then we can also use the interval

[

ψ
∧

(P
∧

) − tK−1,1−α/2
S√
K

, ψ
∧

(P
∧

) + tK−1,1−α/2
S√
K

]

.

where now the simulation effort for each sectioned estimate needs to be
1/K of the effort used for the point estimate ψ

∧

(P
∧

) to elicit a proper
self-normalization. This corresponds to the sectioning method.
The above can also be generalized to the jackknife, resulting in a sectioned

jackknife method [2] for constructing CI under input uncertainty. The
roadmap for deriving such a CI is similar in that a pivotal statistic is proposed,
the difference being that due to the leave-one-section-out estimates in jack-
knife the cancellation needed in the pivotal statistic becomes more delicate
to analyze. The benefit of sectioned jackknife, however, is that its resulting
point estimate has a lower-order bias [2, 88], and that it is less sensitive, or
more robust, against the adverse effect of a small batch size, because it uses
all data except the batch.

17.3.2.4 Mixture-Based and Nonparametric Bayesian

When the sample size of the input data is relatively small, selecting a single
parametric input model may be difficult. Instead of taking a purely nonpara-
metric approach, Zouaoui and Wilson [144] propose to apply the Bayesian
model averaging (BMA) scheme to construct a mixture of candidate input
distributions and account for parametric as well as model uncertainties in
their input uncertainty quantification framework.

Recall the Bayesian framework for modeling uncertainty about θ discussed
in Section 17.3.1.2. The posterior update in (17.4) implicitly assumes that
the distribution family is known. In BMA, in addition to imposing a prior
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distribution for each candidate distribution’s parameter vector, a prior is
assumed for the weights that determine the mixture. Given the real-world
data, both priors are updated to their posteriors. Using both posteriors,
Zouaoui and Wilson [144] propose variance decomposition method that
accounts for Monte Carlo error and estimation error in θ as well as uncer-
tainty about the parametric distribution family, which they refer to as model
uncertainty.

Although BMA provides flexibility in choosing the parametric family, one
must come up with a set of candidate distributions. Bayesian bootstrap [105],
on the other hand, is a Bayesian analog to the frequentist’s bootstrap method.
For the (nonparametric) bootstrap scheme discussed in Section 17.3.2.1,
recall that P∗ is an empirical distribution of resampled observations from
the original data set, say, D = {ξ1, ξ2, . . . , ξn}, with replacement. Therefore,
P∗ can be written as a n-dimensional probability simplex assigning a prob-
ability mass to each ξ j in D. For P∗, each ξ j is assigned with a multiple of
1/n, e.g., 0, 1/n, 2/n, · · · . In Bayesian bootstrap, the probability simplex is
modeled as a realization of a Dirichlet distribution whose density function is
proportional to

n∏

j=1

p
δ j−1
j 1

⎧
⎨

⎩

∑

j

p j = 1

⎫
⎬

⎭
,

where p j is the probability mass assigned to ξ j and {δ1, δ2, . . . , δn > 0}
are the concentration parameters. Therefore, the Bayesian bootstrap allows
more flexibility in modeling P∗ than the frequentist’s bootstrap. The Dirichlet
distribution is a conjugate prior for the multinomial distribution with prob-
abilities {p j }; the resulting posterior distribution of {p j } is still Dirichlet.

In the input uncertainty context, [10] show their uniform resampling
method to be a kind of Bayesian bootstrap, [116] and [130] include nonpara-
metric input models in their stochastic kriging metamodels by sampling
the probability simplex from the Dirichlet posterior given data, and [136]
study the use of Dirichlet process mixture to construct credible intervals for
simulation outputs.

17.3.2.5 Robust Simulation

In recent years, an approach based on (distributionally) robust optimization
has been studied to quantify input uncertainty. Robust optimization [15, 16]
is a framework that originated from optimization under uncertainty, in which
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the decision-maker uses a worst-case perspective, i.e., makes a decision that
optimizes the worst-case performance over the unknown or uncertain param-
eter in the optimization problem. This uncertain parameter is postulated to
lie in a so-called uncertainty set or ambiguity set that reflects the belief of
the modeler which, roughly speaking, is a set where the truth is likely to lie
in. The approach thus typically results in a minimax optimization problem,
where the outer optimization is over the decision and the inner optimization
computes the worst-case scenario constrained within the uncertainty set.

Distributionally robust optimization (DRO) [35, 60, 133] can be viewed
as a branch of robust optimization when the uncertain parameter is the
underlying probability distribution in a stochastic optimization. The uncer-
tainty set can take a variety of forms, but mainly falls into two categories.
The first consists of neighborhood balls surrounding a baseline distribution,
where the ball size is measured by statistical distance such as ϕ-divergence
[12, 14, 68], which includes for instance Kullback-Leibler (KL) and χ2-
distance, and Wasserstein distance [19, 23, 41, 48]. The second class consists
of distributional summary constraints including moments and support [50,
62], marginal information [22, 36, 37], and distribution shape such as
unimodality [79, 89, 102, 127].
The DRO approach, when applied to input uncertainty, can be viewed as

a nonparametric approach, since the uncertainty sets can be created nonpara-
metrically. The goal of this approach, much like the methods described above,
is to construct intervals that cover the truth. This can be attained by imposing
a worst-case optimization problem over the uncertainty set. Here, we use the
term DRO broadly to refer to worst-case optimization, not necessarily having
a decision to determine but only standard output analysis. More concretely,

max /minψ(Q) subject to Q ∈ U (17.24)

where max /min refers to a pair of maximization and minimization, and U
is the uncertainty set in the probability space, and the decision variable is the
unknown input distribution Q. When the uncertainty set U is a confidence
region on the unknown input distribution, then the worst-case optimization
pair above would output an interval covering the true target quantity with
at least the same confidence level. This implication can be readily seen and
forms the basis of data-driven DRO [14, 17].

Regarding the construction of CIs, a main benefit of DRO is the flexi-
bility to capture certain types of uncertainties beyond traditional statistical
methods. For instance, in some problems, the modeler might be concerned
about the misspecification of, say, i.i.d. assumptions, but is confident about
the marginal distribution specification of the input process. In this case, the
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modeler can constrain the marginal information in the uncertainty set, but
leave the dependence structure open to some extent. Then the resulting values
of the optimization pair (17.24) would give the worst-case interval subject to
this level of uncertainty or information. As another example, in other prob-
lems with little knowledge or very few data on the input distribution, one
cannot fit a distribution and needs to rely on expert knowledge or crude a
priori information. In this situation, the modeler can impose an uncertainty
set on the first-order moments only.

In general, the DRO problems (17.24) need to be solved via simulation
optimization, since the objective function is the target performance measure
that can be only be approximated via the simulation model. (17.24) is thus
a constrained stochastic optimization where the constraints are built from
the uncertainty set, and moreover the decision variable is probability distri-
bution, i.e., constrained by probability simplex constraints. When ψ(·) is
a linear function in Q, i.e., an expectation, the problem can be solved by
sample average approximation [53, 54, 66, 67]. In more general cases such
as discrete-event systems where ψ(·) is nonlinear in the input distributions,
[51, 52, 85] devise approaches using stochastic approximation to iteratively
solve these problems, which involve stochastic Frank-Wolfe or mirror descent
that specializes to a variety of uncertainty sets.

Another perspective that has been taken to utilize (17.24) is to conduct
local sensitivity analysis. In this context, the modeler imposes an uncer-
tainty set whose size signifies the deviation of some model parameters away
from a baseline value, with auxiliary constraints in the uncertainty set that
capture the model structure or quantity that is kept unchanged. When the
size shrinks, the values of the worst-case optimization (17.24) are express-
ible as a Taylor-type expansion around the baseline value in terms of the
ball size, with the coefficients representing the worst-case sensitivity of the
performance measure due to these input model changes subject to the auxil-
iary constraints. [76] develops these expansions when the balls are measured
in KL, and [77] further develops expansions under auxiliary constraints on
p-lag serial dependency and when the ball size is measured by Pearson’s
ϕ2-coefficient.

17.3.3 Empirical Likelihood

Relating to the last subsection, when U is set as the neighborhood ball
measured by a statistical distance surrounding the empirical distribution,
the optimization (17.24) has a close connection to the empirical likelihood
(EL) method [96]. The latter is a nonparametric analog to the celebrated



17 Input Uncertainty in Stochastic Simulation 597

maximum likelihood estimator (MLE) in parametric inference, and oper-
ates with the nonparametric MLE that turns out to equate to the (empirical,
reverse) KL distance. EL uses a so-called profile likelihood that is the optimal
value of an optimization problem with objective being this reverse KL
distance and constraint being the quantity to be estimated, and conducts
inference based on an analog to the classical Wilks’ theorem.

It can be readily seen that when U uses the reverse KL distance, then
(17.24) becomes the dual of the EL in the sense that the roles of objective
and constraint in the profile likelihood are now reversed. This implies that the
optimal value of (17.24) gives rise to CI that matches those generated from
EL, when we choose the ball size of U to be a suitable χ2-quantile [39, 87].
In other words, (17.24) provides an alternate approach to construct asymp-
totically exact CIs that is different from the delta method and the bootstrap.
Notably, this interpretation goes beyond the rationale of data-driven DRO
presented in Section 17.3.2.5 [78]. Lastly, it is notable that the statistical
distance in U does not have to be reverse KL, but can also be any of a wide
class of ϕ-divergence, and more recently Wasserstein distance [18].

Lam and Qian [80, 81] use the EL, in the form of the DRO (17.24),
to construct CI under input uncertainty. More precisely, [81] use a tractable
approximation of (17.24), via linearization, to obtain solution of the worst-
case distributions encoded in terms of probability weights on the data points.
They then run simulation using input distributions that are weighted by these
worst-case probability weights to obtain upper and lower bounds. Compared
to the delta method, this approach demonstrates better finite-sample perfor-
mance because its bound construction does not rely on linearization directly,
which can give poor coverage especially for performance measures that
are close to some “natural boundaries” (e.g., small probability estimation).
Compared to the bootstrap, it does not involve nested simulation whose
configuration can be difficult to optimize, but instead replace the resampling
with solving a pair of optimization problems derived from (17.24).

17.4 Other Aspects

In addition to the construction of CIs and variance estimation, there are a
few other aspects regarding the handling of input uncertainty.
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17.4.1 Bias Estimation

Input uncertainty affects not only the variance of ψ
∧

, but also its bias relative
to ψ as well. With small input data samples and highly nonlinear simulation
response, this bias can be substantial. Morgan [91] employs a quadratic linear
regression metamodel to compute a bias estimate:

b
∧

= 1

2
tr(�

∧

H
∧

(θ
∧

)), (17.25)

where �
∧

is the estimated covariance matrix of the MLE θ
∧

and H
∧

approxi-
mates the Hessian of ψ(θ), computed via a quadratic regression metamodel.
In addition to providing a bias estimate, the authors construct a hypothesis
test to identify statistically significant bias.

17.4.2 Online Data

Zhou and Liu [141] first study an online input uncertainty quantification
problem, where additional real-world observations are sequentially made
available and the posterior distribution on θ , ppost (θ |D), is updated at each
stage. They apply green simulation techniques (see Section 17.3.1.4) to reuse
replications made at the parameters sampled from a previous stage in the
current stage.

17.4.3 Data Collection vs Simulation Expense

In some applications, additional data collection is feasible at a cost. A natural
question in this setting is how to allocate the finite resource for data collection
among a number of data sources so that input uncertainty can be minimized.
Ng and Chick [93] study this problem for a parametric Bayesian setting
where all input distributions are independent. They also consider a joint
resource allocation problem among simulation and data collection when the
cost of a simulation replication is relatively expensive. Xu et al. [139] expand
this framework to the case with correlated inputs.

Relatedly, Song and Nelson [117] focus on decomposing the total input
uncertainty into each input distribution’s contribution when there are m
independent input distributions; note a nonparametric version of such
decomposition is shown in (17.9). They also propose a sample-size sensi-
tivity measure that indicates how much input uncertainty can be reduced
by collecting an extra observation from each data source.
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17.4.4 Model Calibration and Inverse Problems

While the input uncertainty literature has focused on situations where the
input models are observable from direct data, in some applications the
output-level instead of input-level data are observed. In these cases, calibrating
the input model becomes an inverse problem where the unknown parameters
or input distributions can only be observed through the input-output relation
described by the simulation model, which is usually analytically intractable
but evaluatable only via noisy simulation runs. This problem resembles the
UQ literature in computer experiments [64, 70, 125, 134], but now with
additional stochastic noise in the simulator (recall our introduction). In
discrete-event simulation, the problem of informing input parameter values
through output data falls traditionally under the umbrella of model valida-
tion and calibration [4, 73, 108, 112], in which a modeler would compare the
simulation model output with real output data using statistical tests or Turing
tests, re-calibrate or enhance the model if the test concludes a mismatch, and
iterate the process.

Recently, some approaches have been suggested to directly calibrate the
input unknowns by setting up (simulation) optimization problems. In partic-
ular, [59] use entropy maximization, and [3, 58] use DRO with an uncer-
tainty set constructed from a statistical distance between simulated and
real output data. Furthermore, [86, 101] study the correction of output
discrepancies between the simulated and real data at the distribution level.

17.5 Simulation Optimization under Input
Uncertainty

Thus far, the focus was on quantifying input uncertainty of a simulation
model. In this section, we discuss how one can formulate and solve a simu-
lation optimization problem in the presence of input uncertainty. We first
define the generic simulation optimization problem with the following form:

x∗ = argmaxx∈X ψ(x,P), (17.26)

where X is a feasible solution set, and P and ψ are as before. The parametric
form is:

x∗ = argmaxx∈X ψ(x, θ). (17.27)
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The performance measure is parameterized by both solution x and input
parameter vector θ . What makes (17.26) and (17.27) “simulation” optimiza-
tion problems is that ψ(x, θ) must be estimated by running simulations.
When ψ(x, θ) is replaced with its estimate, ψ

∧

(x, θ), Monte Carlo error is
introduced. Therefore, as long as the simulation budget is finite, we cannot
find x∗ with certainty in general. Instead, a simulation optimization algo-
rithm aims to provide an estimate x

∧∗ of x∗ with some statistical guarantee
on closeness of x

∧∗ to x∗. One such guarantee may be

P{|ψ(x
∧∗, θ) − ψ(x∗, θ)| ≤ ε} ≥ 1 − α

for some ε > 0 and 0 < α < 1, where the probability is taken with respect
to the Monte Carlo error in simulation. This implies that the probability that
the optimality gap between x

∧∗ and x∗ is within a tolerable level (< ε) is at
least 1 − α.

In the traditional simulation optimization setting, P or θ is assumed
to be given. Thus, the only source of stochasticity is Monte Carlo error
in estimating ψ

∧

(x, θ), which can be reduced by running more simulation
replications. The problem becomes more complex once input uncertainty is
considered in conjunction with Monte Carlo error.

One may be tempted to solve the “plug-in” version by replacing the input
distributions with their “best estimates” given the data. For instance, in the
parametric case, θ may be replaced with its point estimate θ

∧

in (17.27) to
find

x∗(θ
∧

) = argmaxx∈Xψ(x, θ
∧

),

which is the conditional optimum given θ
∧

. In general, x∗(θ
∧

) �= x∗ as
x∗(θ

∧

) depends on the random vector, θ
∧

. However, when a generic simulation
optimization algorithm is applied to the plug-in problem, it provides a statis-
tical guarantee for finding x∗(θ

∧

), not x∗. Therefore, to properly account for
the effect of input uncertainty in simulation optimization, one must explic-
itly consider dependence of ψ(x, θ) on θ when designing the simulation
optimization algorithm to provide a statistical guarantee for finding x∗.

Once again, consider the delta method:

ψ(x, θ
∧

) ≈ ψ(x, θ) + ∇θψ(x, θ)′(θ
∧

− θ).

If this linear model is exact for all x and the gradient, ∇θψ(x, θ), does not
depend on x, then x∗(θ

∧

) = x∗. However, this is an unrealistic assumption
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for many practical problems as ψ(x, θ
∧

) tends to have an interaction effect
between x and θ

∧

.
Suppose we compare performance measures at x and given x∗θ

∧

. We have
from the delta method,

ψ(x∗, θ
∧

) − ψ(x, θ
∧

) − {
ψ(x∗, θ) − ψ(x, θ)

}

≈ [∇θψ(x∗, θ) − ∇θψ(x, θ)
]′
(θ
∧

− θ). (17.28)

The distribution of (17.28) lets us infer the value of ψ(x∗, θ) − ψ(x, θ)

from that of ψ(x∗, θ
∧

)−ψ(x, θ
∧

). Here, ∇θψ(x∗, θ)−∇θψ(x, θ) quantifies
how differently the performance measures at x∗ and x are affected by a small
change in the parameter vector. [118] refer to the right-hand side of (17.28)
as the common-input-data (CID) effect since it captures the impact of input
uncertainty caused by the same set of real-world data in comparing x∗ and
x . Notice that the CID effect is random due to the uncertainty in θ

∧

. If θ
∧

is a
maximum likelihood estimator, then from the asymptotic distribution of θ

∧

,
(17.28) is approximately distributed as

N

(

0,
[∇θψ(x∗, θ) − ∇θψ(x, θ)

]′ �(θ)

n

[∇θψ(x∗, θ) − ∇θψ(x, θ)
]
)

.

(17.29)

Observe that uncertainty about θ
∧

measured by �(θ)/n is amplified or
reduced by the gradient difference. For instance, if the gradient difference
is near 0 along a dimension of θ

∧

, then even if its marginal variance is large, it
may have very little impact on the variance of the CID effect. On the other
hand, if the gradient difference is large, then the variance of (17.29) becomes
large, which makes it difficult to infer that ψ(x∗, θ) − ψ(x, θ) > 0.

In fact, we do not observe ψ(x∗, θ
∧

) − ψ(x, θ
∧

), either. Suppose ψ(x, θ
∧

)

is estimated by a sample average of noisy simulation outputs, i.e., ψ
∧

(x, θ
∧

) =
1

R(x)

∑R(x)
r=1 ψr (x, θ

∧

), where R (x ) is the number of replications run at
x. Assuming that all simulations are run independently, the variance of
ψ
∧

(x∗, θ
∧

) − ψ
∧

(x, θ
∧

) − {ψ(x∗, θ) − ψ(x, θ)} is approximately

[∇θψ(x∗, θ) − ∇θψ(x, θ)
]′ �(θ)

n

[∇θψ(x∗, θ) − ∇θψ(x, θ)
]

+ Var(ψr (x∗, θ
∧

))

R(x∗)
+ Var(ψr (x, θ

∧

))

R(x)
.

(17.30)
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Clearly, the latter two terms can be reduced by increasing R(x∗) and R (x ),
whereas the first term may be reduced only by collecting more real-world
data.

In the following subsections, we first discuss the case when the data size, n,
is fixed (17.5.1 and 17.5.2) and when streaming data are available (17.5.3).

17.5.1 Selection of the Best under Input Uncertainty

In this section, we consider the case when the set of feasible solutions, X ,
contains a finite number of solutions. In particular, when |X | is relatively
small, say k, we are able to simulate them all and compare their estimated
performance measures to select the best (ranking and selection) or return a
set of solutions that contains the best (subset selection). We refer the readers
to Kim and Nelson [72] for foundations of ranking and selection, subset
selection, and related work. Our main focus in this section is integration of
input uncertainty into these methodologies.

17.5.1.1 Ranking and Selection

A classical problem formulation for ranking and selection (R&S) is

k∗ = argmax1≤k≤Kψ(k, θ) (17.31)

where θ is assumed known. Notice that we replaced x with its index k given
that the total number of alternatives in comparison is K . Typically, ψ(k, θ) is
assumed to be the expectation of a stochastic simulation output, ψr (k, θ). A
R&S procedure controls the numbers of replications assigned to each alterna-
tive in comparison given the total budget, N , so that it achieves the statistical
guarantee that it is designed to provide upon termination. Depending on
how the allocation is made, R&S procedures can be categorized into single-
stage [13], two-stage [104], or sequential [71] procedures. Upon termination,
an estimate of k∗, k

∧∗
, is returned. Typically, k

∧∗
is the alternative that has

the best sample mean given the simulation replications made throughout the
procedure, namely,

k
∧∗ = argmax1≤k≤Kψ

∧

(k, θ),

where ψ
∧

(k, θ) = 1
R(k)

∑R(k)
r=1 ψr (k, θ) and R (k) is the number of replica-

tions allocated to the k-th alternative.



17 Input Uncertainty in Stochastic Simulation 603

To provide a statistical guarantee for selecting k∗, R&S procedures typically
control the probability of correct selection (PCS)

PCS = P{k
∧∗ = k∗}

to be at least 1/K < 1−α < 1. Equivalently, one may control the probability
of false selection (PFS)

PFS = P{k
∧∗ �= k∗}

to be lower than 0 < α < 1 − 1/K . There are two main approaches to
provide the PCS guarantee: one is to control the exact PCS given finite simu-
lation budget N and the other is to control the asymptotic convergence rate
of PFS assuming N is sufficiently large.

For the former, most procedures assume the simulation outputs are
normally distributed to get a handle on the distribution of ψ

∧

(k, θ) and its
variance estimator is given finite R (k). Moreover, the procedures adopt the
indifference zone (IZ) assumption, which states that all suboptimal alterna-
tives have performance measures that are at least δ less than the best for some
known δ > 0. Mathematically, this can be written as

ψ(k∗, θ) − ψ(k, θ) ≥ δ, ∀k �= k∗. (17.32)

First introduced by Bechhofer [13], the IZ assumption turns out to be crucial
for providing the finite-sample PFS guarantee; without the assumption, any
suboptimal alternative’s performance measure can be arbitrarily close to the
best solution so that they may not be distinguished given finite N . The PCS
under the IZ assumption is denoted as

PCSδ = P{k
∧∗ = k∗|ψ(k∗, θ) − ψ(k, θ) ≥ δ, ∀k �= k∗}

to differentiate it from the PFS. Under the normality assumption, several
procedures have been designed to guarantee PCSδ ≥ 1 − α after spending a
finite amount of simulation budget, N , for any chosen δ > 0.

When input uncertainty is considered, Problem (17.31) must be reformu-
lated as θ is unknown. As discussed for the generic simulation optimization
problem, one can construct the “plug-in” version of (17.31) by replacing
θ with its point estimate θ

∧

. The corresponding optimum of the plug-in
problem, k∗(θ

∧

), is then conditional on θ
∧

. Song et al. [119] propose to
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consider the following average PCS

PCSδ = E
θ
∧[P{k

∧∗
(θ
∧

) = k∗|θ
∧

}|ψ(k∗, θ) − ψ(k, θ) ≥ δ, ∀k �= k∗],

where the outer expectation is with respect to the distribution of θ
∧

. In words,
PCSδ evaluates the probability that k∗(θ

∧

) is indeed k∗. Of course, we have
a single realization of θ

∧

computed from the set of real-world observations.
Nevertheless, if PCSδ ≥ 1 − α can be guaranteed, then in expectation
(over both Monte Carlo error and input uncertainty), the PCS guarantee is
achieved.

From the definition of k
∧∗
, PCSδ can be rewritten as

PCSδ = E
θ
∧[P{ψ

∧

(k∗, θ
∧

) > ψ
∧

(k, θ
∧

), ∀k �= k∗|θ
∧

}|ψ(k∗, θ) − ψ(k, θ)

≥ δ, ∀k �= k∗].

Thus, computing PCSδ requires characterizing the joint distribution of

{
ψ
∧

(k∗, θ
∧

) − ψ
∧

(k, θ
∧

) − [ψ(k∗, θ) − ψ(k, θ)]
}

∀k �=k∗ . (17.33)

Applying the delta method as in the beginning of Chapter 17.5, the joint
distribution of (17.33) can be approximated with a multivariate normal
distribution whose mean is the (K − 1)-dimensional zero vector and the
elements of its variance-covariance matrix can be computed similarly as
in (17.30). Under some additional assumptions on the variance-covariance
matrix, Song et al. [119] derive the expression for PCSδ for a single-stage
R&S procedure.

However, unlike any δ > 0 is allowed for the generic R&S problem, the
values of α and δ may not be chosen as desired when there is input uncer-
tainty. To see this, consider the minimum indifference zone parameter, δα

min,
given α defined as

δα
min = inf

{
δ : limN→∞ PCSδ ≥ 1 − α

}
.

Loosely speaking, δα
min is the smallest performance measure difference one

can detect with desired precision (1−α) in the presence of input uncertainty
captured by estimation error of θ

∧

. Note that δα
min is an increasing function

of α and may be strictly positive when the input data sample size, n, and α

are small. For any δ smaller than δα
min, we cannot guarantee PCSδ ≥ 1 − α

even with an infinite simulation budget. Such a positive lower bound on the
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IZ parameter is a result of input uncertainty. Derivation of δα
min depends on

the specific R&S procedure; Song et al. [119] derive the expression for a
single-stage R&S procedure.
This challenge motivates one to consider formulations other than the plug-

in version of (17.31). One popular variant studied by Fan et al. [42] is the
distributionally robust R&S problem:

k = argmax1≤k≤K minθ∈U ψ(k, θ), (17.34)

where U is the uncertainty set that contains the possible values of θ . Specifi-
cally, they consider when U has a finite number of candidate θ values; namely,
U = {θ1, θ2, . . . , θB}. The inner problem of (17.34) finds the worst-case
input parameter θb in U for each alternative k, whereas the outer problem
selects the alternative with the best worst-case performance. Similar to the
generic R&S problem, k is estimated by

k
∧

= argmax1≤k≤K minθb∈U ψ
∧

(k, θb),

where the number of replications allocated to each (k, θb) is determined by
the procedure. Under this formulation, the probability of correct selection is
modified to

PCS = P{k
∧

= k}. (17.35)

A benefit of Formulation (17.34) is that the input uncertainty is completely
characterized by solving the inner minimization problem. By limiting θ to
be among a finite number of candidates in U and simulating all alternative-
parameter pairs, it eliminates the need to model the effect of θ

∧

to ψ(k, θ
∧

) for
each k. Thus, one only needs to control the Monte Carlo error in ψ

∧

(k, θb)
for each (k, θb) to achieve correct selection.
To provide a finite-sample probability guarantee for solving (17.34),

Fan et al. [42] extend the IZ formulation in classical R&S procedures.
First, they relabeled the performance measures at solution-parameter pairs
{ψ(k, θb)}1≤k≤K1≤b≤B such that ψk,1 ≤ ψk,2 ≤ · · · ≤ ψk,B for all
1 ≤ k ≤ K and ψ1,1 > ψ2,1 ≥ · · · ≥ ψK ,1. Therefore, k = 1. The IZ
formulation is modified to

ψk,1 − ψ2,1 > δ (17.36)

for given δ > 0. That is, the worst-case performance measure of k is at least
δ better than those of other k − 1 alternatives. Instead of providing the PCS
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guarantee under the IZ assumption, they guarantee the following probability
of good selection (PGS):

P{ψk,1 − ψ
k
∧

,1
≤ δ} ≥ 1 − α. (17.37)

In words, (17.37) grants that the selected solution’s worst-case performance
is within δ from that of k. If (17.36) holds, then (17.37) is equivalent to
(17.35) ≥ 1 − α. Therefore, δ here can be interpreted as the allowable error
tolerance.

Fan et al. [42] further split δ to δI = δO = δ/2, where δI is the allowable
error in solving the inner-level minimization problem of (17.34). Specifically,
they aim to achieve

ψk,bk − ψk,1 ≤ δI , ∀1 ≤ k ≤ K ,

where bk = minθb∈U ψ
∧

(k, θb). Assuming the IZ assumption holds, this
implies that to make a correct selection at the outer level, ψk,bk and ψ1,b1

must be at least δ − δI = δO apart for all 1 ≤ k ≤ K . Similarly, they also
split the error level α for inner-level and outer-level comparisons so that the
overall probability error is no larger than α. Based on these parameters, Fan
et al. [42] propose two-stage and sequential R&S procedures that provide
PGS guarantee (17.37) after spending a finite number of replications.

We close this subsection by mentioning that Gao et al. [49] also study
(17.34). Instead of creating a R&S procedure with a finite-sample guarantee,
they develop an optimal computing budget allocation scheme for (17.34)
aiming to maximize the convergence rate of 1 − PCS as the simulation
budget increases. Shi et al. [115] further extend Gao et al. [49] to solve
stochastically constrained version of (17.34).

17.5.1.2 Subset Selection and Multiple Comparisons
with the Best

The objective of a subset selection procedure is to return a set of alternatives
I that contains k∗ defined in (17.31) with probability 1 − α:

P{k∗ ∈ I} ≥ 1 − α. (17.38)

A subset selection procedure does not necessarily guarantee |I| = 1, but
when |I| = 1, then the element of I is indeed k∗ with probability of at least
1 − α.
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Corlu and Biller [30] first consider accounting for input uncertainty in a
subset selection procedure aiming to guarantee (17.38) under the IZ assump-
tion (17.32). Similar to Song et al. [119], they also find that there is a positive
lower bound to δ to guarantee (17.38) when there is input uncertainty. Corlu
and Biller [31] take an approach to average out both input uncertainty and
Monte Carlo error when they define the optimum. That is, their subset I
contains

k̄ = argmax1≤k≤KEθ [ψ(k, θ)] (17.39)

with probability no less than 1−α, where the expectation is taken with respect
to the posterior distribution of θ conditional on the input data. A benefit of
this approach is that one is guaranteed to have |I| = 1 for sufficiently large
simulation budget. However, this formulation may be misleading when the
size of the input data is small as no warning is given regarding the risk caused
by uncertainty about θ .
The multiple comparisons with the best (MCB) procedure provides simul-

taneous confidence intervals [Lk,Uk] for all 1 ≤ k ≤ K such that

P{ψ(k, θ) − ψ(k∗, θ) ∈ [Lk,Uk], 1 ≤ k ≤ K } ≥ 1 − α, (17.40)

where {Lk,Uk}1≤k≤K can be constructed from the confidence intervals of
the pairwise difference between performance measures [65]:

P{ψ(k, θ) − ψ(�, θ) ∈ [ψ
∧

(k, θ) − ψ
∧

(�, θ) ± wk�],∀k �= �} ≥ 1 − α.

(17.41)

In words, the intervals in (17.40) cover the difference between each alterna-
tive’s performance and the optimum’s. By design, either Lk or Uk is equal
to 0 for each k and if we define S = {k : Uk > 0}, then we have
P{k∗ ∈ S} ≥ 1 − α.

With input uncertainty, θ is unknown. Thus, ψ
∧

(k, θ) in (17.41) is
replaced with ψ

∧

(k, θ
∧

) for each k. As a result, wk�, ∀k �= � that satisfy (17.41)
comes down to estimating (17.30) under a normality assumption on the
simulation outputs for each alternative and regularity conditions on θ

∧

.
Focusing on the case that all K alternatives’ simulators share the same
input models, Song and Nelson [118] propose to split wk� into two parts,
where one covers the difference in the CID effects for solutions k and
�, {∇θψ(k, θ) − ∇θψ(�, θ)}′(θ

∧

− θ), and the other covers the stochastic
error difference in ψ

∧

(k, θ
∧

) − ψ
∧

(�, θ
∧

) conditional on θ
∧

. Upon choosing the
coverage error appropriately for each interval, they show that the resulting
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{wk�}1≤k �=�≤K provide MCB intervals with asymptotically correct coverage
probability.

17.5.2 Global Optimization under Input Uncertainty

Continuous optimization in the stochastic simulation setting is also affected
by uncertainty in input distributions used to drive the simulation model.
Both searching for the optimal solution and characterizing its error should
take input uncertainty into account.

Consider the continuous optimization problem (17.26) where X is a
nonempty subset of R

n . Zhou and Xie [142] provided one of the first
approaches for this setting by defining a risk measure, ρ (e.g., expected value,
mean-variance, Value-At-Risk). For the parametric case, this can be written
ρPθ |ξ where Pθ |ξ is the posterior distribution for P (i.e., for θ ) given the
observed input data ξ . Their approach replaces the optimization in (17.27)
with Hρ(x) = ρPθ |ξ (ψ(x |P)). Although the development was for the para-
metric case, the authors suggested that the approach could be applied in a
nonparametric setting using a Dirichlet process prior. Under general condi-
tions, as the input data sample size goes to infinity, they show that the
risk-based objective using posterior ψPθ |ξ converges in probability to the risk-
based objective using P. A stochastic approximation method for this approach
and associated stochastic gradient estimators are presented in [21].

When the performance measure ψ can be modeled as a Gaussian process
(GP) over x, θ space, Bayesian methods can be employed to include input
uncertainty in the GP model optimization process given a prior distribu-
tion G for the unknown θ . Then the optimization is of EG(θ)(ψ(x, θ)). In
[98] efficient global optimization (EGO—see [69]) and knowledge gradient
(KG—see [113]) sequential optimization methods were modified to include
input uncertainty. Also in the GP setting, [74] proposed a robust opti-
mization method based on Kullback-Leibler distance with a modified EGO
criterion.

Wang et al. [131] modified the method of Pearce and Branke [98] to
determine the next x, θ pair sequentially (x then θ ) rather than simulta-
neously. The θ value is selected by minimizing IMSE or IMSE weighted
by the posterior distribution for θ . They showed somewhat better results
for KG search with small data samples and similar results in EGO and
other KG settings while reducing computational time. In addition to EGO
and KG, they also incorporated the two-stage search with Informational
Approach for Global Optimization (IAGO—[129]) and Expected Excursion
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Volume (EEV—[100]) metrics for selecting search points in the GP-based
optimization.

Bayesian optimization has also been employed for handling the nonpara-
metric optimization case posed in (17.26). In two recent papers, Wang et al.
[130, 132] approached the simulation optimization problem similarly to
[98] but employed Bayesian updating of the unknown input distribution,
beginning with a (presumably diffuse) Dirichlet process prior.

When there is the option to collect more input-model data or continue an
optimization, Ungredda et al. [126] suggest an extension to the approach in
Pearce et al. [98] that they call Bayesian Information Collection and Opti-
misation (BICO). The decision is based on a Value of Information (VoI)
measure for an additional simulation evaluation (at cost c f ) vs. the VoI for
an additional input data sample (at cost cs).

17.5.3 Online Optimization with Streaming Input Data

Thus far, our discussion in Section 17.5 has focused on the case when a batch
of finite input data is available, but no additional data can be collected. In
many practical problems, however, a stream of input data may be collected
continuously. Assuming that the input data-generating process is stationary,
Wu and Zhou [135] propose a R&S framework to solve Problem (17.39)
by continuously updating the posterior distribution of θ from the sequence
of incoming data. They also consider the case when there is a trade-off
between real-world data collection versus simulation replication and study
a computational budget allocation scheme.

Song and Shanbhag [122] study a simulation optimization problem with
continuous variables when a sequence of streaming data is made available at
each period. Their propose to update θ

∧

at each period using the cumulative
data and solve the plug-in version of (17.27) given θ

∧

using stochastic approx-
imation (SA). Under a strong convexity assumption, they derive an upper
bound on the expected optimality gap of the solution returned from SA for
the original problem (17.27) as a function of number of SA steps taken as
well as the sample size of accumulated data in the period. From the upper
bound, they propose a stopping criterion for SA at each period, i.e., they
take SA steps until the error rate of SA matches that from the finite-sample
size.

Both work mentioned here assume that the streaming data are independent
and identically distributed. A framework that can account for a nonstationary
data-generating process will broaden the applicability of the online simulation
optimization schemes.
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17.6 Future Research Directions

As computation resources increase in power with decreasing cost, simula-
tion analysis has evolved from accepting the point estimate of the input
distribution as the truth to incorporating the estimation error in uncer-
tainty quantification and in simulation optimization. However, many open
questions remain to be addressed.

First, the majority of work introduced in this chapter assumes the collected
data are i.i.d. observations from real-world distributions that do not change
over time. In many applications, such assumptions fail to hold due to
dependence among the sequence of observations or nonstationarity of the
data-generating process. Also, even if the real-world distribution can be
characterized as generating i.i.d. input vectors, only marginal observations
may be available so that the dependence structure cannot be estimated in
a straightforward way. Among the tools that have been investigated in the
input uncertainty literature, robust optimization and robust simulation come
closest to handling such issues, but there remains much work to be done
including: (i) making the methodology computationally efficient, (ii) quanti-
fying the reliability when facing nonstationarity in a rigorous statistical sense,
and (iii) exploring alternative methods to tackle these challenges.

In some cases, the input data themselves are unobservable and we can
only access the “output data” from the real-world system. For instance, in
a queueing system, we may observe the departure times of the jobs, but not
their arrival times nor service times. In this case, finding the “right” input
model for the simulator can be viewed as a calibration problem. However,
unlike a typical calibration problem in the computer experiment literature
that calibrates the model parameter so that the model output matches a
given benchmark, here, we need to choose the input model so that the
sequence of outputs generated from the simulator matches the real-world
output data. This can be a high-dimensional inference problem that faces
difficult statistical challenges, including the unavailability of the likelihood
function, non-identifiability issues for over-parametrized models (i.e., more
than one set of parameter values give the simulation-real output match),
and model bias (i.e., the best fitting model in the class has parameter values
bearing a discrepancy with reality). Both traditional model validation tools
and more recent approaches on this problem require further developments.
Moreover, there are several other open questions, including what metric
should be adopted to measure the discrepancy between real and simulation
outputs, and how to incorporate uncertainty from both input and output
data.
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Lastly, creating more application-specific methods and addressing chal-
lenges in these areas will enrich the literature. Although input uncertainty
appears ubiquitous in simulation applications, there has been little work
in applying input uncertainty methods to support decision-making. For
instance, a company may run a market simulation study where the key input
being the utility parameters that customers use to decide which product
to buy (if any) among the competing offers. One way to estimate the
utility parameters is to survey (often a very small fraction of ) the customer
basis. Thus, the estimation error of the utility parameters may cause signifi-
cant uncertainty in the sales prediction obtained from the simulation study.
Without quantifying input uncertainty, the company may face a significant
risk. How to quantify and mitigate the uncertainty, both statistically and in
a computationally efficient way, is an important question to resolve.
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