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Formulation Space Search Metaheuristic

Nenad Mladenovic®, Jack Brimberg, and Dragan Urosevic

12.1 Introduction

Many methods for solving discrete and continuous global optimization prob-
lems are based on changing one formulation to another, which is either
equivalent or very close to it, so that by solving the reformulated problem
we can easily get the solution of the original one. These types of methods
include

1. dual methods,
ii. primal-dual methods,
iii. Lagrange methods,
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iv. linearization methods,

v. convexification methods,

vi. (nonlinear) coordinate system change methods (e.g., polar, Cartesian,
projective transformations, etc.),

vii. discrete/continuous reformulation methods,

viii. augmented methods,

to mention a few. However, in all those classes, the set of formulations of one
problem are not considered as a set having some structure provided with some
order relation among formulations. The usual conclusion in papers oriented
to a new formulation is that a given formulation is better than another or
the best among several. The criteria for making such conclusions are typically
the duality or integrality gap provided (difference between upper and lower
bounds), precision, efficiency (the CPU times spent by the various methods
applied to different formulations of the same instances), and so on.
Formulation space search (ESS) is a metaheuristic first proposed in 2005
by Mladenovi¢ et al. [37]. Since then, many algorithms for solving various
optimization problems have been proposed that apply this framework. The
main idea is to provide the set of formulations used for solving a given class or
type of problem with some metric or quasi-metric. In that way, the distance
between formulations can be induced from those (quasi) metric functions,
and thus, the search space is extended to the set of formulations as well.
Therefore, the search space becomes a pair (F, §), consisting of formulation
space F and solution space S. Most importantly, in all of the above mentioned
method classes (i)—(viii), the discrete metric function between any two formu-
lations can easily be defined. For example, in Lagrange methods, the distance
between any two formulations can be defined as the difference between their
relaxed constraints (the number of multipliers used); in coordinate change
methods the distance between formulations could be the difference between
the number of entities (points) presented in the same coordinate system, etc.
The work of Mladenovi¢ et al. [37] is also motivated by the following
important observation: when solving continuous nonlinear programs (NLPs)
with the aid of a solver that uses first-order information, the solution obtained
may be a stationary point that is not a local optimum. Stationary points
may be induced by the objective function (F) or the constraints. In the
first case, they are found at points in the solution space where the first-
order partial derivatives of F are all equal to zero. In the second case, they
may occur at points on the boundary of one or more constraints where the
derivatives of F are not all zero, but no feasible and improving direction
of search can be found because of the imposed constraints. Unfortunately,
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these stationary points are often neither local minima nor local maxima.
Checking the second-order conditions may help to identify these artificial
local optima and escape them, but may also be computationally expensive,
since the number of stationary points can be huge. Alternatively, different
formulations of the same problem may have different characteristics that can
be exploited in order to move in an efficient manner from these stationary
points to better solutions. That is, while the improving search is stuck at a
stationary point in one formulation, this solution may not be a stationary
point in another formulation.

To illustrate the fact that a local solution in one formulation may behave
differently in another, consider the following simple problem in the plane

(R?):
min F(x,y) =x+y, (12.1)
subject to

x4 y? =1,
x>0,y>0.

The objective function is linear, and therefore convex, but the feasible region
is not a convex set, resulting in a nonconvex program. This problem may
be reformulated from Cartesian coordinates in (12.1) to Polar coordinates to
obtain an equivalent model:

min G(r, 0) = r(cosf + sinf), (12.2)
subject to
r>1,0<6<mn/2.

Interestingly, in (12.2), the objective function is nonconvex, while the
constraints are linear, and therefore define a convex feasible set. Referring
to Fig. 12.1(a) for model (12.1) with (x, y) coordinates, we see that a local
solution occurs at the point (1/ «/E, 1/ \/5) This is because no feasible move
direction exists at this point that will improve the solution (i.e., there is
an immediate increase in the objective function or no improvement at all).
Hence, any (local) improving search would be stuck at this point, even
though the iso-contours of F show that this solution is not a local minimum.
Referring to Fig. 12.1(b) for model (12.2), we find that the situation is not
the same at the corresponding point in (r, 0) space, (r,60) = (1,7/4).
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(a) Cartesian coordinates (b) Polar coordinates

Fig. 12.1 lllustrative example

Moving down (or up) along the vertical line r = 1 is a feasible direction
that immediately improves the solution. Continuing down (or up) along
this vertical line eventually leads to an optimal solution at (r,68) = (1, 0)
(or (r,0) = (1, /2)). This is equivalent to moving clockwise (or counter
clockwise) along the circumference of the circle in Fig. 12.1(a) from the local
solution at (x,y) = (1/«/5, 1/\/5) to the optimal solution at (x,y) =
(1, 0) (or (0, 1)). Thus, this small example illustrates that a local solution in
one coordinate system may not be one in another coordinate system.

The FSS approach was first applied to the circle packing problem (Mlade-
novi¢ et al. [37]), which is a highly nonconvex NLP due to the imposed
constraints, and as a result, contains a large number of stationary points. Here
the authors used the nonlinear transformation demonstrated in the example
above, where the mathematical formulation of the problem switches back and
forth between Cartesian and Polar coordinate systems when convergence to
a stationary point is detected, and proceeds in this manner until no further
improvement is possible in either coordinate system. This simple application
of FSS produced excellent results, and several successful applications of FSS
have appeared since. The rest of this chapter is organized as follows. In the
next section, we do a brief literature review of several papers that examine
a range of optimization problems, continuous and discrete, and that have
applied FSS in different ways. This is followed in Sect. 12.3 by a discussion
of the general procedure or methodology at the base of FSS. Section 12.4
examines in detail how the steps of FSS have been incorporated in solution
methods used to solve the circle packing problem, and the graph coloring
problem (Hertz et al. [23]). We also examine in this section the reformulation
local search methodology proposed in Brimberg et al. [6], which is closely
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related to FSS and was developed to solve continuous location problems.
Section 12.5 provides some conclusions.

12.2 Literature Review

A sample of papers using FSS and related ideas is presented here, and briefly
discussed.

Circle Packing - Reformulation Descent (Mladenovi¢ et al. [37]).
Several years ago, classical Euclidean geometry problems of densest packing
of circles in the plane were formulated as nonconvex optimization prob-
lems, allowing to find heuristic solutions by using any available NLP solver.
The faster NLP solvers use first-order information only, and so may stop at
stationary points which are not local optima. A simple switch from Carte-
sian coordinates to polar, or vice versa, can destroy this stationarity, and
thus allow the solver to move further to better solutions. Such formulation
switches may of course be iterated. For densest packing of equal circles
into a unit circle, this simple feature turns out to yield results close to the
best known, while beating second-order methods by a time-factor well over
100. This technique is formalized as a general reformulation descent (RD)
procedure, which iterates among several formulations of the same problem
until the applied local searches obtain no further improvement.

Circle Packing (Mladenovi¢ et al. [38]). This paper extends the RD idea
by using several formulations instead of only two. This is formalized as a
general search in formulation space. The distance between two formula-
tions is defined as the number of centers whose coordinates are expressed
in different systems in each formulation. Therefore, the search is performed
through the formulation space as well. Results with up to 100 circles
compare favorably with the RD method.

Packing Unequal Circles Using Formulation Space Search (Lépez and
Beasley [30]). This paper presents a heuristic algorithm for the problem
of packing unequal circles in a fixed size container such as the unit circle,
the unit square or a rectangle. The problem is viewed as scaling the radii
of the unequal circles so that they can all be packed into the container.
The presented algorithm has an optimization phase and an improvement
phase. The optimization phase is based on the formulation space search
method, while the improvement phase creates a perturbation of the current
solution by swapping two circles. The instances considered are categorized
into two groups: instances with large variations in radii, and instances
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with small variations. Six different containers: circle, square, rectangle,
right-angled isosceles triangle, semicircle, and circular quadrant are inves-
tigated. Computational results show improvements over previous work in
the literature.

Packing Unequal Circles in a Fixed Size Circular Container (Lépez and
Beasley [32]). This paper considers the problem of packing unequal circles
in a fixed size circular container, where the objective is to maximize the
value of the circles packed. Two different objectives are examined: maxi-
mize the number of circles packed; maximize the area of the circles packed.
For the particular case where the objective is to maximize the number of
circles packed, the authors prove that the optimal solution has a partic-
ular form. A heuristic is developed for the general problem based upon
formulation space search. Computational results are given for a number of
publicly available test problems involving the packing of up to 40 circles.
Computational results are also provided for test problems taken from the
literature, relating to packing both equal and unequal circles.

Mixed Integer Nonlinear Programming Problem (Lépez and Beasley
[31]). An approach based on FSS to solve mixed-integer nonlinear (zero-
one) programming problems is presented. Zero-one variables are presented
by a well-known single nonlinear constraint, and an iterative method
which adds a single nonlinear inequality constraint of increasing tight-
ness to the original problem, is proposed. Computational results are
presented on 51 standard benchmark problems taken from MINLPLib and
compared against the Minotaur and minlp_bb nonlinear solvers, as well as
against the RECIPE algorithms [28].

Timetabling Problem (Kochetov et al. [26]). This paper examines a well-
known NP-hard teacher/class timetabling problem. Variable neighborhood
search and tabu search heuristics are developed based on the idea of formu-
lation space search. Two types of solution representation are used in the
heuristics. Each representation considers two families of neighborhoods.
The first uses swapping of time periods for the teacher (class) timetable.
The second is based on the idea of large Kernighan-Lin neighborhoods.
Computational results for difficult random test instances show that the
proposed approach is highly efficient.

Multi-item Capacitated Lot-Sizing Problem (Erromdhani et al. [16]).
This paper proposes a new variant of Variable neighborhood search (VNYS)
designed for solving Mixed integer programming problems. The proce-
dure is called Variable neighborhood formulation search (VNES), since
the neighborhoods and formulations are both changed during the search.
The VNS part is responsible for the integer variables, while an available
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(commercial) solver is responsible for the continuous variables and the
objective function value. The procedure is applied to the multi-item capac-
itated lot-sizing problem with production time windows and setup times,
under the non-customer specific case. This problem is known to be NP-
hard and can be formulated as a mixed 0-1 program. Neighborhoods are
induced from the Hamming distance in 0-1 variables, while the objective
function values in the corresponding neighborhoods are evaluated using
different mathematical programming formulations of the problem. The
computational experiments show that the new approach is superior to
existing methods from the literature.

Graph Coloring (Hertz et al. [23]). This paper studies the k-coloring
problem. Given a graph G = (V, E) with vertex set V, and edge set
E, the aim is to assign a color (a number chosen in {1, ..., k}) to each
vertex of G so that no edge has both endpoints with the same color. A
new local search methodology, called Variable Space Search is proposed and
then applied to this problem. The main idea is to consider several search
spaces, with various neighborhoods and objective functions, and to move
from one to another when the search is blocked at a local optimum in a
given search space. The 4-coloring problem is thus solved by combining
different formulations of the problem which are not equivalent, in the
sense that some constraints are possibly relaxed in one search space and
always satisfied in another. The authors show that the proposed heuristic is
superior to each local search used independently (i.e., with a unique search
space). It was also found to be competitive with state-of-the-art coloring
methods, which consisted of complex hybrid evolutionary algorithms at
the time.

Cutwidth Minimization Problem (Pardo et al. [41]). This paper proposes
different parallel designs for the VNS schema. The performance of these
general strategies is examined by parallelizing a new VNS variant called
variable formulation search (VEFS). Six different variants are proposed,
which differ in the VNS stages to be parallelized as well as in the communi-
cation mechanisms among processes. These variants are grouped into three
different templates. The first one parallelizes the whole VNS method; the
second parallelizes the shake and the local search procedures; the third
parallelizes the set of predefined neighborhoods. The resulting designs
are tested on the cutwidth minimization problem (CMP). Experimental
results show that the parallel implementation of the VES outperforms
previous state-of-the-art methods for the CMP.

Maximum Min-Sum Dispersion Problem (Amirgaliyeva et al. [1]). The
maximum min-sum dispersion problem aims to maximize the minimum
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accumulative dispersion among the chosen elements. It is known to be a
strongly NP-hard problem. In Amirgaliyeva et al. [1], the objective func-
tions of two different problems are shifted. Though this heuristic can be
seen as an extension of the variable formulation search approach (Pardo
etal. [41]) that takes into account alternative formulations of one problem,
the important difference is that it allows using alternative formulations
of more than one optimization problem. Here it uses one alternative
formulation that is of a max-sum type of the originally max-min type,
maximum diversity problem. Computational experiments on benchmark
instances from the literature show that the suggested approach improves
the best-known results for most instances in a shorter computing time.
Continuous Location Problems (Brimberg et al. [6]). This paper presents
a new approach called Reformulation local search (RLS), which can be
used for solving continuous location problems. The main idea is to exploit
the relation between the continuous model and its discrete counterpart.
The RLS switches between a local search in the continuous model and a
separate improving search in a discrete relaxation in order to widen the
search. In each iteration new points obtained in the continuous phase are
added to the discrete formulation making the two formulations equiva-
lent in a limiting sense. Computational results on the multi-source Weber
problem (a.k.a. the continuous or planar p-median problem) show that
the RLS procedure significantly outperforms the continuous local search
by itself, and is even equivalent to state-of-the-art metaheuristic-based
methods.

12.3 Methodology

The general methodology of FSS and related ideas are presented here. We
first analyze two usual types of search methodologies, stochastic and deter-
ministic. Then we present FSS methods that combine both stochastic and
deterministic elements.

12.3.1 Stochastic FSS

Let us denote with (¢, x) an incumbent formulation-solution pair, and with
fopr = f(@,x) the current objective function value. One can alternate
between formulation space F and solution space S in the following ways:

i. Monte-Carlo FSS. This is the simplest search heuristic through F:
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a. take formulation - solution pair (¢, x’) € (F,S) at random and
calculate the corresponding objective function value f';

b. keep the best solution and value;

c. repeat previous two steps p (a parameter) times.

ii. Random walk FSS. For a random walk procedure we need to introduce
neighborhoods of both, the formulation and the solution: (N (¢), N (x)),
¢ € Fand x € S. Then we simply walk through the formulation-solution
space by taking a random solution from such a defined neighborhood in

each iteration.

iti. Reduced FSS. This technique for searching through F has already been
successfully applied in [37]. It represents a combination of Monte-Carlo
and random walk stochastic search strategies. Here we take a formulation-
solution pair from a given neighborhood as in the random walk. However,
we do not move to that solution if it is not better than the current one. We
rather return, and take a two-step walk move (in other words, we jump to
a random point in the formulation-solution neighborhood of the current
solution, and then jump to a random point in the formulation-solution
neighborhood of that point (two jumps)). If a better solution is found,
we move there and restart the process; otherwise we return and perform a
three-step walk, etc. Once we unsuccessfully perform kpmax (a parameter)
steps, we return to the one-step move again.

In all three FSS routines above, we choose (¢’, x") at random and then
simply calculate the objective function value. However, (¢’, x) could be used
as an initial point for any usual descent (ascent) optimization method through
(F,S). Moreover, as an improvement method, one can use a Reformula-
tion descent procedure described below. The final results should be of better
quality in that case, but require much more computing time. Thus, some
problem specific strategy in balancing the number of calls to an optimization
routine is worth considering.

12.3.2 Deterministic FSS

i. Local FSS. One can perform local search through F as well. That is, find
local solution x’ for any ¢’ € N(¢) (starting from x as an initial solution)
and keep the best; repeat this step until there is a formulation in the neigh-
borhood that gives an improvement. Local FSS is probably not as efficient
and effective as LS in the solution space, since it is not very likely that many
solutions will be different in the neighboring formulations. Moreover, local
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ESS is a very time-consuming procedure since for each neighboring formu-
lation, some optimization method is applied. Therefore, we do not give
detailed pseudo code for local FSS here.

ii. Reformulation Descent (RD). Up to now, we choose the next formula-
tion in the search at random. A procedure that changes the formulation

in a deterministic way is called Reformulation descent. The following
procedure describes in more detail how we propose to exploit the avail-
ability of several formulations of a problem. We assume that at least two
(€max > 2) not linearly related formulations of the problem are constructed
(@e, £ =1, ..., €nay), and that initial solution x and formulation (£ = 1)
are found. Our RD performs the following steps:

a. Using Formulation ¢; and an optimization code, find a stationary or
local optimum point x” starting from x;

b. If x’ is better than x, move there (x < x’) and start again from
the first formulation (¢ <— 1); otherwise change the formulation (¢ <«
¢+ 1);

c. Repeat the steps above until £ > £,,4y.

This algorithm was used for solving the circle packing problem in Mlade-
novi¢ et al. [37]. Results obtained were comparable with the best-known
values. Moreover, the RD was 150 times faster than a Newton type
method.

iii. Steepest Descent FSS. If objective functions f; of all formulations ¢,
i = 1,..., €may are smooth, then, after finding an initial solution x, the
Steepest descent FSS may be constructed as follows:

a. Find descent search directions —V f; (x).
b. Perform a line search along all directions (i.e., find 17 > 0) to get a
set of new solutions

1@ x® _ ATV fi(x).

c. Let fi < fi(x®), and let i* be the index where f; is a minimum.
Set x < x{) and Jopt < fix.
d. Repeat the previous three steps until fope > fix.

For constrained optimization, replace V f;(x) by feasible move direction
Ai(x) in the formula in step (b), such that the inner product V fi(x) -
Ai(x) > 0.



12 Formulation Space Search Metaheuristic 415

12.3.3 Variable Neighborhood FSS and Variants

i. Variable Neighborhood Formulation Space Search (VNESS). As in Variable
neighborhood search (VNS), we can combine stochastic and determin-
istic searches, to get VNESS. Traditional ways to tackle an optimization
problem consider a given formulation, and search in some way through
its feasible set X. The fact that the same problem may often be formu-
lated in different ways allows to extend search paradigms to include jumps
from one formulation to another. Each formulation should lend itself
to some traditional search method, its “local search” that works totally
within this formulation, and yields a final solution when started from some
initial solution. Any solution found in one formulation should be easily
transformed to its equivalent solution in any other formulation. We may
then move from one formulation to another using the solution resulting
from the former’s local search as the initial solution for the latter’s local
search. Such a strategy will of course only be useful when local searches in
different formulations behave differently. This idea was first investigated in
[37] while examining the circle packing problem. Only two formulations
of the circle packing problem (one with Cartesian coordinates, and the
other with polar coordinates) were used. The nonlinear solver used by the

authors alternates between these two formulations, each time starting from
the solution reached in the previous iteration (but transformed into the
corresponding solution (point) in the other formulation) until there is no
further improvement. This approach was named Reformulation Descent.
The same paper also introduced the idea of Formulation space search (ESS)
where more than two formulations could be used. In [38], the collection
of formulations is enlarged by presenting a subset of circles in Cartesian
coordinates, while the rest are presented in polar coordinates. Also, the
distance between any two formulations is introduced, and neighborhoods
are defined as collections of formulations based on this distance. So, neigh-
borhood Ny (¢) of formulation ¢ contains all formulations ¢’ that are at
distance % from formulation ¢. The basic idea behind FSS is to continue
the search in one of the given formulations ¢ until it gets trapped at
a stationary point, then choose a new formulation ¢’ belonging to the
current neighborhood of ¢, then transform the stationary point in ¢ to
the corresponding solution in ¢, and continue the search in ¢’ from that
point. An improved version of FSS for solving the circle packing problem
is proposed in [29]. One methodology that uses the variable neighborhood
idea in searching through the formulation space is given in Algorithms 1
and 2. Here ¢ (¢’) denotes a formulation from given formulation space
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F, x (x’) denotes a solution in the feasible set defined with that formu-
lation, and £ < £y is the formulation neighborhood index. Note that
Algorithm 2 uses a reduced VNS strategy [19] in F.

We can extend to the full VNFSS with the following changes:

a. the shake step involves only the random selection of formulation ¢ €
N¢(@); then set x” € ¢’ to the same solution as x € ¢;

b. in between the shake and formulation change steps, add a local search
to map x’ onto a stationary point under formulation ¢’: x" <= LS, (x”).

Algorithm 1: Formulation change function.

1 Function FormulationChange(x, x’, ¢, ¢’, £);
3 if f(¢’, x") < f(p, x) then

s | o @ix — x5 bpin

6 else

8 | £ C+Lsreps

9 end

Algorithm 2: Reduced variable neighborhood FSS.
1 Function VNFSS(x, ¢, €max);

3 repeat

5 —1 // Initialize formulation in ¥ ;

7 while £ < €,,,,x do

9 ShakeFormulation(x,x’,¢,¢’,€) I/ (¢’,x") €(N¢(w), N(x)) atrandom;
11 FormulationChange(x,x’,¢,¢’,£) // Change formulation ;

12 end

13 until some stopping condition is met;

ii. Variable Objective Search (VOS). Butenko et al. [10] propose a variant
they call Variable Objective Search (VOS). Their idea uses the fact that
many combinatorial optimization problems have different formulations
(e.g. the maximum clique problem with more than twenty formulations,
traveling salesman with more than 40 formulations, quadratic assignment
problem, max-cut problem, etc). They assume that all formulations share
the same feasible region, but have different objective functions. Also, all
formulations have the same neighborhood structures. However,

e a stationary point for one formulation may not correspond to a
stationary point with respect to another formulation;
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e aglobal optimum of the considered combinatorial optimization problem
should correspond to a global optimum for any formulation of this
problem.

Based on the previous assumptions, Butenko et al. [10] propose the
following method (named Basic Variable Objective Search):

— Arrange formulations in prespecified order: @1, ¢2, ..., ¢,. Denote with
fi the objective function for formulation ¢;.

— Choose an initial feasible solution, and perform a local search in a
proposed neighborhood N, yielding local optimum x™" with respect
to formulation ¢;.

— Perform a local search starting from the previous local optimum x™" in
neighborhood N/, but with respect to formulation ;. In other words
the neighbors of current local optimum x! are mapped into corre-
sponding points in formulation @2, and checked to see if a better
solution can be obtained according to formulation ¢2 (and according
to objective function f3). This local search produces a local optimum
with respect to formulation ¢2, and this local optimum will be presented
(remembered) as a point in the solution space of formulation ¢j.

— After performing local search with respect to formulation ¢; (i < n),
local search starting from the last obtained local optimum with respect
to formulation ;11 is performed.

— After performing local search with respect to formulation ¢,, the
complete procedure repeats until there is no improvement with respect
to all formulations.

A Variable Objective Search is demonstrated on the Maximal Indepen-
dent Set Problem. A so-called Uniform Variable Objective Search is also
proposed in [10]. Instead of local search with respect to a single formu-
lation, this method performs simultaneous local search by exploring the
complete neighborhood N of the current solution, thereby determining
a collection of local optima with respect to all formulations. The move is
then made to the best of all obtained local optima.

iii. Variable Formulation Search (VES). Many optimization problems in
the literature, for example, min—max types, present a flat landscape. This
means that, given a formulation of the problem, there are many neigh-
boring solutions with the same value of the objective function. When this
happens, it is difficult to determine which neighborhood solution is a more
promising one to continue the search. To address this drawback, the use of
alternative formulations of the problem within VNS is proposed in [36, 39,
41]. In [41] this approach is named Variable Formulation Search (VES). It
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combines the change of neighborhood within the VNS framework, with
the use of alternative formulations. In particular, the alternative formula-
tions will be used to compare different solutions with the same value of the
objective function, when considering the original formulation.

Let us assume that, beside the original formulation and the corre-
sponding objective function fy(x), there are p other formulations denoted
as f1(x),..., fp(x),x € X. Note that two formulations are equiva-
lent if the optimal solution of one is the optimal solution of the other,
and vice versa. Without loss of clarity, we will denote different formu-
lations as different objectives fij(x),i = 1,..., p. The idea of VFS
is to add the procedure Accept(x,x’, p), given in Algorithm 3 in
all three steps of Basic VNS (BVNS): Shaking, LocalSearch and
NeighborhoodChange. Clearly, if a better solution is not obtained by
any formulation among the p pre-selected, the move is rejected. The next
iteration in the loop of Algorithm 3 will take place only if the objective
function values according to all previous formulations are equal.

Algorithm 3: Accept procedure with p secondary formulations.

1 logical function Accept (x, x’,p) ;
2 fori — Otopdo

3 conditionl « f;(x') < fi(x);

4 condition2 « f;(x") > fi(x);

5 if conditionl then

6 ‘ Accept « True; return;

7 else

8 if condition2 then

9 ‘ Accept « False; return;
10 end

1 end
12 end

13 Accept « False; return;

If Accept (x, x/, p) is included in the LocalSearch subroutine of
BVNS, then it will not stop the first time a non-improved solution is found.
In order to stop LocalSearch, and thus claim that x” is a local minimum,
x’ should not be improved by any among the p different formulations. Thus,
for any particular problem, one needs to design different formulations of the
problem considered and decide the order they will be used in the Accept
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subroutine. Answers to those two questions are problem specific and some-
times not easy. The Accept (x, x’, p) subroutine can obviously be added
to the NeighborhoodChange and Shaking steps of BVNS as well.
In Mladenovi¢ et al. [39], three evaluation functions, or acceptance
criteria, within the Neighborhood Change step are used in solving the
bandwidth minimization problem. This min-max problem consists in finding
permutations of rows and columns of a given square matrix such that the
maximal distance of a nonzero element from the main diagonal in the corre-
sponding row, is a minimum. Solution x may be presented as a labeling of a
graph and the move from x to x” as x <= x’. The three criteria used are:

1. the simplest one which is based on the objective function value fp(x)
(bandwidth length);

2. the total number of critical vertices fi(x) (f fo(x’) = fo(x) and
() < fi(x));

3. f3(x,x") = p(x,x") —a (f (fox') = fo(x) and fi(x") = f1(x)),
but x and x” are relatively far from each other; that is, the distance between
solutions x and x’, p(x, x") > &, where « is an additional parameter).

The idea for a move to a mildly worse solution if it is very far, is used
within Skewed VNS [19]. However, a move to a solution with the same value
is performed in [39] only if its Hamming distance from the incumbent is
greater than .

In [36], a different mathematical programming formulation of the orig-
inal problem is used as a secondary objective within the Neighborhood
Change function of VNS. Two combinatorial optimization problems on
graphs are considered here: the Mezric dimension problem and the Minimal
doubly resolving set problem.

iv. Variable Space Search (VSS). Hertz et al. [23] developed this variant of
ESS to solve the graph coloring problem (GCP). Their solution method
exploits the relation between the k-coloring problem and the GCP. Three
solution spaces are defined as follows: S7 containing all 4-colorings of a
given graph G, S containing all partially legal 4-colorings of G, and S3
containing all cycle-free orientations of the edges of G. The VSS procedure
cycles through these spaces in an empirically determined sequence. We will
examine their VSS procedure in more detail in a later section.

(v) Reformulation Local Search (RLS) was originally proposed for solving
continuous location problems (Brimberg et al. [6]). This approach differs
from FSS in that the different formulations used are not equivalent to
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each other. There is a base model, which is a single formulation of a given
continuous location problem, and a series of discrete formulations, which
are improving approximations of the continuous model.

The RLS switches between the continuous model (the original problem)
and a discrete approximation in order to expand the search. In each iter-
ation, new facility locations obtained by the improving search in the
continuous phase are added to the discrete formulation. Thus, the two
formulations become equivalent in a limiting sense. As in FSS, the solu-
tion found using the current formulation becomes the starting point for
the next formulation.

There are many ways to construct an RLS-based algorithm (e.g. choice
of: rules for inserting promising points or removing non-promising points
in the discrete phase, improving searches for both phases, the initial discrete
model, and so on). RLS can be applied not only to continuous location
problems, but also other types of problems having continuous and discrete
formulations. More details are given in the next section.

12.4 Some Applications
12.4.1 Circle Packing Problem

The circle packing problem can be stated in the following way. Given a
number 7 of circular disks of equal radius 7, determine how to place them
within a unit circle without any overlap in order to maximize the radius 7.

i. Circle Packing Problem Formulation in Cartesian Coordinates. The
circular container is the unit radius circle with center (0, 0). The circles to
be packed within it are given by their centers (x;, y;) (i = 1,...,n), and
their common radius 7, which is to be maximized. This may be formulated

as:
max r (12.3)

subject to

(i — X))+ i —y)>—4r>0, Vi, j(1<i<j<n)
Py <1 -r2 Vi(l<i<n)

r>0, xj,yi €R, Vi(l<i<n).
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The first set of inequalities expresses that any two disks should be disjoint:
the squared Euclidean distance between their centers must be at least (2r)2.
The second set states that the disks must fully lie within the unit circle. This
smoother quadratic form is preferred to the more standard constraint

,/xl.2—|—yi2+r§1.

ii. Circle Packing Problem Formulation in Polar Coordinates. The circular
container is centered at the pole and has unit radius. The disks to be
packed within it are given by their centers at polar coordinates (p;, 6;)
i =1,2,...,n), and their common radius », which is to be maximized.
The equivalent problem may be formulated as:

max r (12.4)

subject to

p}+ 07 —2pipjcos(®; —6;) —4r2 = 0,¥i, j (1<i<j<n)

pi +r <1, Vi(l<i<n)
r>0,
pi >0, 6; €l0,2nr], Vi(l<i<n).

Note that, unlike the Cartesian formulation, the second constraint set,
expressing inclusion of the disks inside the container, is now linear.

12.4.1.1 Reformulation Descent

These two formulations are used to solve the circle packing problem in [37],
using MINOS (an off-the-self nonlinear program solver). The starting solu-
tion is a set of randomly chosen points within the container acting as centers
of the circles. The radius of the circles is a maximal number 7 such that the
corresponding circles do not overlap and each circle is completely inside the
unit circle. The centers of the circles are first expressed in Cartesian coordi-
nates. As already noted, MINOS is applied to the current solution, in this
case, the selected initial solution. After MINOS finishes at some stationary
point, the coordinates of the obtained centers are converted to polar coordi-
nates, and MINOS is applied on the optimization problem written in polar
coordinates with the set of current centers and current value of 7 as the initial
solution. If MINOS is unable to increase the radius of the circles, the method
finishes, and the final solution is the corresponding solution. Otherwise, if
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MINOS is able to increase 7, the centers of the obtained circles are converted
in Cartesian coordinates and a new iteration begins using the current solution
as the initial solution.

This procedure, referred to as Reformulation Descent (RD), is illustrated
in Fig. 12.2 for n = 35 equal circles. As can be seen, seven executions are
applied until the final (which is also optimal) solution is obtained.

Reformulation Descent (RD) is implemented in [37] on packing » (n =
10, 15, 20, ..., 100) circles in the unit circle. For each value of #, RD is

ry = 0.112010 (Cartesian) ro = 0.114301 (Polar) rq = 0.117013 (Cartesian)

r5 = 0.121525 (Cartesian) rg = 0.148819 (Polar)

ry = 0.149316 (Cartesian)

Fig. 12.2 lllustration of reformulation descent applied on packing 35 circles in the
unit circle ([37])
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executed 50 times. The same problem is also executed 50 times using Carte-
sian coordinates only from the same set of initial solutions, and again in Polar
coordinates only from the same set of initial solutions. Initial solutions are
generated by choosing at random Polar coordinates p and 6 and converting
them into Cartesian coordinates (if it is necessary). The value of radius p is
set to (1 — 1/4/n) - +/rnd where rnd is uniformly distributed on [0, 1]. The
value of angle € is uniformly distributed on [0, 27].

Summary results are given in Table 12.1. The first column contains the
value of 7 (number of circles). Column 2 contains the best-known result
(radius of the circle) for the corresponding value of 7. Columns 3—5 contain
the percentage deviation of best results obtained respectively by MINOS with
RD, MINOS with Cartesian coordinates only, and MINOS with Polar coor-
dinates only, from the best-known results (radius). Columns 6-8 contain
the percentage deviation of average results obtained by RD, Cartesian coor-
dinates, and Polar coordinates, respectively, from the best-known results
(radius). Columns 9-11 contain the average running time respectively for
RD, Cartesian coordinates, and Polar coordinates.

Table 12.1 Summary results of 50 executions of RD, Cartesian coordinates only, and
Polar coordinates only [37]

% dev. of best % dev. of avg. Running time

n Best Mgrp Mc Mp Mgrp Mc Mp MRrp Mc Np

10  0.262258899 0.00 0.00 0.00 1.03 2.01 0.88 0.00 0.02 0.01
15 0.221172537 0.00 0.13 0.13 0.49 0.65 0.77 0.01 0.03 0.02
20  0.195224535 0.00 0.00 0.00 1.15 2.80 2.49 0.04 0.11 0.08
25 0.173827671 0.00 0.00 0.00 0.62 5.07 3.21 0.08 037 0.19
30 0.161349111 0.00 0.00 0.00 0.97 249 1.40 0.16 0.52 0.29
35 0.149316779 0.00 0.01 0.02 0.73 12.27 2.17 090 184 173
40  0.140373593 0.00 0.00 0.00 0.97 9.36 4.21 .11 292 1.91
45  0.132049600 0.10 0.11 0.04 0.69 3.75 2.31 1.47 3.08 2.19
50 0.125825494 0.06 0.03 0.00 0.79 6.90 4.26 3.19 5.16 441
55 0.121786333 0.00 1.13 1.57 2.09 480 240 337 6.73 5.15
60 0.115657478 0.03 0.10 0.57 1.40 1.58 1.78 471 7.54 6.00
65 0.110896748 0.00 0.47 0.44 133 586 2.79 16.24 1294 1043
70  0.106990091 0.10 0.55 0.32 0.99 7.83 215 19.56 17.61 14.54
75 0.103323461 0.10 0.22 0.44 0.77 456 1.69 26.46 22.67 17.16
80 0.100294988 0.10 0.41 0.29 0.93 3.38 1.69 39.15 30.99 23.62
85 0.098395059 0.72 143 1.10 1.75 331 1.90 3879 29.85 24.04
90 0.094822061 0.02 0.02 0.45 1.27 10.59 432 96.82 47.19 47.70
95 0.092249178 0.18 0.26 0.48 0.93 1155 6.87 147.35 59.51 41.84
100 0.090232120 0.30 0.52 0.38 1.01 8.39 3.39 180.32 64.96 45.02
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iti. Mixed formulation of Circle Packing Problem. There are many possible
formulations obtained by expressing the locations of some centers in Carte-
sian coordinates, and the remaining centers in Polar coordinates. Suppose
that centers of circles are numbered 1,2, 3, ..., n. Then the pair of disjoint
sets Cy and P,, whose union is the set {1,2,3,...,n}, determines one
formulation (¢) as follows:

max r (12.5)

subject to

(i —x)2+ (i —y))? —4r? >0, Vi,jeCyli <}j)
pi2+p]2-—2p,~pjcos(9i—9]')—4}’220, Vi, je Py <j)
(xi — pjcos(@))? + (i — p;sin(@;)> —4r* >0,Vi e Cy,V je P,
xFyi <1 —-r)? VieC,

pi+r =<1, VieP,

r >0,

Xi, Vi € R, Vi € C¢

pi >0, 06; €][0,2r], VieP,.

A general reformulation descent procedure could be constructed by replacing
the two pure formulations (Cartesian and polar) used above by a specified
sequence of mixed and pure formulations.

12.4.1.2 Formulation Space Search

We will call the set of all possible formulations Formulation Space F. Each
of these formulations can be used by MINOS (or any other NLP solver) for
solving the circle packing problem. In Mladenovi¢ et al. [38], a distance func-
tion in the formulation space is introduced as the cardinality of the symmetric
difference of sets representing the subsets of circles which are in Cartesian
coordinates:

d(p1, ¢2) = |C<p1ACg02| = |P<P1AP<P2|-

The defined distance allows the definition of neighborhoods in the Formula-
tion space:

Ni(p) = {¢'ld (¢, ') =k},
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and introduces Formulation Space Search for the circle packing problem. A
pseudo code for FSS is given in Algorithm 4 ([38]).

Algorithm 4: VNFSS heuristic for solving CPP.

1 Function FSSCPP(1, kinin» kmaxs Ksteps tmax)s
2 (x,y,0,0,r) < Initial_solution(n);
3C«—{,2,....n};

4 P 0

5 keurr < Kkmins

6 (x,y,p,6,r) < MinosMix(x, y, o, 6, P, C);

7 repeat

8 let O be a random subset of {1, 2, ..., n} with k., elements;
9 P’ — PAQ;

10 C’ — CAQ;

1 ',y 0,0, ,r") « MinosMix(x, y, p, 0, P’, C’);
12 if ¥’ > r then

13 (X%, y,0,0,1) = (X,y,p0,0,1");

14 P — P

15 C «(C;

16 Keurr < kmin;

17 else

18 kcurr — kcurr + kstep;

19 if kcwrr > kmax then

20 ‘ keurr < Kmin

21 end

22 end

23 t « CpuTime();

24 until # > t,,4x;

25 returnr;

Execution of FSS for n = 50 circles is shown in Fig. 12.3. The starting
solution is not randomly selected, but is instead a solution obtained after
applying Reformulation Descent. Each picture shows an improved solution
obtained by execution of function MinosMix. Below each picture we see
the value of circle radius (7) as well as the neighborhood in the Formulation
Space in which the improved solution is obtained.

In Mladenovi¢ et al. [38], kmin and Kqp are both set to 3, and kpay is set
to n = 50. Note that the first improvement was obtained for k¢ = 12. This
implies that no improvement was found with ke = 3,6 and 9. Since the
initial formulation is all Cartesian, this also means that a mixed formulation
with 12 polar and 38 Cartesian coordinates was used (|Cr| = 38, |Pr| =
12). In the next round, a formulation with 3 randomly chosen circle centers
(kecurr = 3), was unsuccessful, but a better solution was found with 6, and
so on. After 10 improvements, the algorithm ends up with a solution with

radius 7. = 0.125798.
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r=0.121858 r = 0.122858
RD result Keiive = 12 Biiive =18

r = 0.123995
kcurr =9 kcurr =15 kcurr =3

r=0.125794
kcurr - 21 kcur'r =3 kcurr = 21

P\ -
r=0.125796
kcurr' = 12 k{:urr = 18
Fig. 12.3 lllustration of execution of formulation space search applied on packing

50 circles in the unit circle. Starting solution is a solution obtained by Reformulation
Descent ([38])
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Table 12.2 Comparison of reformulation descent and formulation space search on
circle packing problem [38]

RD FSS

n Best known Best Avg. Time Best Avg. Time

50 0.125825494 0.06 0.79 3.19 0.00 0.24 80.54
55 0.121786333 0.00 2.09 3.37 0.00 0.60 72.81
60 0.115657478 0.03 1.40 4.71 0.00 0.95 84.39
65 0.110896748 0.00 1.33 16.24 0.00 0.21 108.25
70 0.106990091 0.10 0.99 19.56 0.01 0.27 151.64
75 0.103323461 0.10 0.77 26.46 0.02 0.20 164.51
80 0.100294988 0.10 0.93 39.15 0.04 0.23 229.49
85 0.098395059 0.72 1.75 38.79 0.18 0.72 256.17
920 0.094822061 0.02 1.27 96.82 0.02 0.56 294.77
95 0.092249178 0.18 0.93 147.35 0.07 0.39 308.34
100 0.09023212 0.30 1.01 180.32 0.12 0.68 326.67

A comparison of results obtained by 50 executions of Reformulation
Descent and Formulation Space Search for the circle packing problem is given
in Table 12.2. The first column in Table 12.2 contains the number of circles
n. The second column contains the value of the best-known solution for the
corresponding value of 7z Columns 3-5 contain results for Reformulation
Descent: percentage deviation of best solution from best-known solution,
percentage deviation of the average of solutions and average running time.
Columns 6-8 contain the corresponding values for solutions obtained by
Formulation Space Search.

The table shows that the average error of the FSS heuristic is smaller, i.e.,
solutions obtained by FSS are more stable than those obtained with RD.

12.4.2 Graph Coloring Problem

A graph G = (V, E) with vertex set V' and edge set £, and an integer £ are
given. A k-coloring of G is a mapping ¢ : V — {1, ..., k}. The value ¢(x),
where x is a vertex is called the color of x. The vertices which have color :
(1 <i < k) represent a color class, denoted V;. If two adjacent vertices x and
y have the same color 7, vertices x and y, the edge (x, y) and color 7 are said to
be conflicting. A k-coloring without conflicting edges is a legal coloring and
its color classes are called stable sets.

The Graph Coloring Problem (GCP for short) requires that the smallest
integer 4 be determined, such that a legal 4-coloring of G exists. Number £ is
also called the chromatic number of G, and is denoted as x (G). Given a fixed
integer 4, the optimization problem k-GCP is to determine a 4-coloring of
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G which has the minimal number of conflicting edges. If the optimal value
of the #-GCP is zero then graph G has a legal k-coloring. A local search
algorithm for the GCP can be used to solve the #-GCP by simply stopping
the search as soon as a legal 4-coloring is found. Also, an algorithm that solves
the &£-GCP can be used to solve the GCP, by starting with an upper bound 4
on x(G), and then decreasing £ as long as a legal 4-coloring can be found.

Hertz et al. [23] define three solution spaces for solving the GCP and
k-GCP problems. Note that a solution of the AGCP should satisfy two
conditions if possible: there are no edges where both endpoints have the same
color, and all vertices must be colored. The first two solution spaces relax one
of these two conditions; the third search space satisfies both conditions.

The first proposed solution space S; consists of all (not necessarily legal)
k-colorings of graph G. In solution space Si, objective function fi(s) (for
s € 81) is defined as the number of conflicting edges in coloring s. In solu-
tion space S, neighborhood Nj(s) consists of all £-coloring s” obtained by
changing the color of exactly one vertex. Based on the proposed neighbor-
hood, Hertz and de Werra [22] developed a Tabu search algorithm, also called
TabuCol, for solving the 4-coloring problem.

The second solution space Sy consists of all partially legal 4-colorings.
More precisely each solution is a partition of the set of vertices into k + 1
disjoint sets Vi, Va, ..., Vi, Viq1, where sets V1, Va, ..., Vi are stable sets,
while Vi1 is a set of non-colored vertices. In solution space S, the objec-
tive function f3 is defined, such that f2(s) is the cardinality of subset Vj.
Morgenstern [40] proposed the objective function f,(s) = ZveVH L d),
where 4(v) denotes the number of edges incident to vertex ». Neighborhood
Na(s) consists of all solutions obtained by moving a vertex v € Vi in the
set (color class) V;, and moving to Vi1 all vertices u € V; adjacent to vertex
v. Bloechliger and Zufferey [2] obtained very good results by using reactive
tabu search and the number of non-colored vertices as the objective function.
Solution space S3 consists of the cycle-free orientations of the edges of graph
G. Gallai [18], Roy [43], and Vitaver [46] independently proved in the sixties
that the length of a longest path in an orientation of graph G is at least equal
to the chromatic number of G. As a corollary, the problem of orienting the

edges of a graph so that the resulting digraph G is cycle-free, and the length
—>

A(G) of a longest path in G is minimum, is equivalent to the problem of
finding the chromatic number of G.
Indeed, given a x (G)-coloring ¢ of a graph G, one can easily construct a
—
cycle-free orientation G with X(Z;)) < x(G) by simply orienting each edge
[#, v] from % to v if and only if c(u) < c(v). Conversely, given a cycle-free
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orientation 6) of G, one can build a k(g)—coloring of G by assigning to

each vertex v a color ¢(v) equal to the length of a longest path ending at » in
—

G.

So, objective function f3 can be defined, such that f3(s) is the length of
the longest oriented path. Many local searches can be defined in S3. One of
them is removing all arcs (oriented edges) not contained in the longest path,
choosing vertex # and changing the orientation of all arcs ending at vertex #
or beginning at vertex #. It can be proved that the length of a longest path in
the so obtained graph is bigger by at most one than the length of the longest
path in the starting graph.

Translators can be constructed that translate the solution belonging to one
of the three solution spaces into the corresponding solution belonging to
another solution space. After some preliminary experiments, Hertz et al. [23]
found that the sequence S| — S3 — Sy — S of search spaces, called a
cycle, appears to be a good choice, each translation from an S; to its successor
being easy to perform.

A variable space search (VSS) algorithm (Hertz et al. [23]) is executed on
16 graphs from the DIMACS Challenge. After a preliminary set of exper-
iments, the following graphs were selected as representative of the most
challenging ones.

e Six DSJCn.d graphs: the DSJCs are random graphs with 7 vertices and a
density of ld_O‘ It means that each pair of vertices has a probability of ld_o to
be adjacent. Hertz et al. [23] use the DSJC graphs with n € {500, 1000}
and d € {1, 5,9}

e Two DSJRn.r graphs: the DSJRs are geometric random graphs. They are
constructed by choosing 7 random points in the unit square and two
vertices are connected if the distance between them is less than 5. Graphs
with an added end letter “c” are the complementary graphs. The authors
use two graphs with n = 500 and, respectively, r = 1 and r = 5.

e Four flatn_y_0 graphs: the flat graphs are constructed graphs with 7
vertices and a chromatic number x. The end number “0” means that all
vertices are incident to the same number of vertices.

e Four len_xx graphs: the Leighton graphs are graphs with 7 vertices and
a chromatic number x equal to the size of the largest clique (i.e., the
largest number of pairwise adjacent vertices). The end letter “x” stands for
different graphs with similar settings.

Detailed results of the VSS coloring algorithm are presented in Table
12.3. The first column contains the name of the graph. The second column
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Table 12.3 Detailed results of VSS coloring with a time limit of 1 hour ([23])

Instance X UB k Succ./run 103 iter. Time
DSJC1000.1 * 20 20 03/10 285,624 2396
21 10/10 757 11

DSJC1000.5 * 83 88 08/10 55,971 2028
89 10/10 22,852 820

DSJC1000.9 * 224 224 01/10 48,348 3326
225 05/10 21,667 1484

226 10/10 27,429 1751

DSJC500.1 * 12 12 10/10 19,799 97
DSJC500.5 * 48 48 03/10 78,667 1331
49 10/10 10,524 162

DSJC500.9 * 126 126 08/10 76,927 1686
127 10/10 7754 169

DSJR500.1c * 85 85 09/10 48,530 736
86 10/10 20,020 291

DSJR500.5 * 122 126 09/10 61,849 1409
127 10/10 9066 183

flat1000_50_0 50 50 50 10/10 625 318
flat1000_60_0 60 60 60 10/10 1242 694
flat1000_76_0 76 82 87 04/06 48,609 1689
88 10/10 36,924 1155

flat300_28_0 28 28 29 01/10 45,611 867
30 02/10 217,647 2666

31 10/10 4173 39

1e450_15c¢ 15 15 15 10/10 497 6
le450_15d 15 15 15 10/10 4761 44
le450_25c 25 25 26 10/10 183 1
le450_25d 25 25 26 10/10 117 1

* Chromatic number was not known
contains the chromatic number (“*” when it is not known), and the third
column contains the best-known upper bound. The VSS algorithm was
run 10 times on each graph with different values of 4. The fourth column
reports various values of 4 ranging from the smallest number for which they
had at least one successful run, to the smallest number for which they had
10 successful runs. The next columns respectively contain the number of
successful runs and the number of tries, the average number of iterations
in thousands (i.e., the total number of moves performed using the 3 neigh-
borhoods, divided by 1000) on successful runs, and the average CPU time
used (in seconds).

The VSS algorithm is compared with TabuCol [22], PartialCol [2] as well
as with three graph coloring algorithms which are among the most effective
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Table 12.4 Comparisons between VSS-Col and five other algorithms ([23])

Instance X UB  VSS-Col TabuCol PartialCol GH MMT MOR
DSJC1000.1 * 20 20 20 20 20 20 21
DSJC1000.5 * 83 88 89 89 83 83 88
DSJC1000.9 * 224 224 227 228 224 226 226
DSJC500.1 * 12 12 12 12 12 12 12
DSJC500.5 * 48 48 49 49 48 48 49
DSJC500.9 * 126 126 127 127 126 127 128
DSJR500.1c¢ * 85 85 85 85 - 85 85
DSJR500.5 * 122 126 126 126 - 122 123
flat1000_50_0 50 50 50 50 50 50 50 50
flat1000_60_0 60 60 60 60 60 60 60 60
flat1000_76_0 76 82 87 88 88 83 82 89
flat300_28_0 28 28 29 31 28 31 31 31
le450_15c 15 15 15 16 15 15 15 15
le450_15d 15 15 15 15 15 15 15 15
le450_25c 25 25 26 26 27 26 25 25
le450_25d 25 25 26 26 27 26 25 25

* Chromatic number was not known

ones: the GH algorithm in [17], the MOR algorithm in [40], and the MMT
algorithm in [34]. A detailed comparison is given in Table 12.4.

12.4.3 Continuous Location Problems
12.4.3.1 Preliminaries

Location models in the literature typically determine where to place a given
number of new facilities in order to serve a given set of demand points (also
called existing facilities, fixed points, or customers) in the best way. Contin-
uous models, also known as site-generating models (Love et al. [33]), allow
the new facilities to be located anywhere in N-dimensional Euclidean space
(EN) or a sub-region thereof. A specified distance function is required in
practical applications in order to measure the distances between new facilities
and the customers they will serve. Most applications in the literature occur
in the plane (N = 2), and use the Euclidean norm as the distance function.

Consider the unconstrained planar p-median problem with Euclidean
distances (also known as the multi-source Weber problem (MWP)), which
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may be written as:

(min) f(X1, X2,....X,) = Y w;min{d(X;, Aj) :i € [pl},
J€ln]
(12.6)

where 7 denotes the number of demand points; p denotes the number of
new facilities to be opened; [t] = {1, 2, ..., t} for any positive integer #; w;
is a positive weight equivalent to the demand at given point A; = (a;, bj),
J € [nl; Xi = (xi, yi) denotes the unknown location of new facility i € [p];
and d(X;, Aj) is the Euclidean distance between X; and Aj, for all pairs
(Xi, Aj).

The objective function f in (12.6) is a weighted sum of distances between
the demand points and their closest facilities. Since the minimum of a set
of convex functions is nonconvex, the function f is itself nonconvex and
may contain several stationary points. This was recognized by Cooper [11,
12], who was also the first to propose this continuous location—allocation
problem. Among the methods proposed by Cooper to solve (12.6), one
became quite famous, and is referred in the literature as Cooper’s algorithm.
It is based on the following simple observation. When the facility locations
are fixed, the problem reduces to allocating each demand point to its closest
facility. Then when the resulting partition of the set of demand points is fixed,
the problem reduces to p independent and convex single facility location
problems, which are easily solved by gradient descent methods such as the
well-known Weiszfeld procedure (Weiszfeld [47]). Cooper’s algorithm iterates
between location and allocation steps until a local minimum is reached.

Solving the planar p-median problem is equivalent to enumerating the
Voronoi partitions of the set of demand points, which is NP-hard (Megiddo
and Supowit [35]). The complexity of the problem has been demonstrated
in the literature. For example, Brimberg et al. [5] test the well-studied 50-
customer problem in Eilon et al. [14] by running Cooper’s algorithm from
10,000 randomly generated starting solutions for each p € {5, 10, 15}. They
obtain 272, 3008, and 3363 different local minima, respectively. The worst
deviation from the best solution found (later shown to be optimal by Krau
[27]) was, respectively, 47%, 66% and 70%. The best-found solution was
obtained 690 times for p = 5, 34 times for p = 10, and only once for
p = 15. Considering that n = 50 is a small instance by today’s stan-
dard, these results demonstrate quite dramatically the complex topology of
the objective function. For further reading, see e.g., Brimberg and Salhi [9].
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12.4.3.2 Reformulation Local Search for Continuous Location

Any continuous location model can be formulated as a discrete problem by
restricting the potential sites of the new facilities to a finite set of given
points in the continuous space. The distance between any pair of points is
measured by the same distance function used in the continuous model. For
example, the continuous p-median problem in (12.6) becomes the classical
discrete p-median problem when the facility locations are restricted to the 7
given demand points. Exploiting the relation between these two formulations
was suggested in the original work of Cooper [11, 12]. Hansen et al. [20]
proposed an effective heuristic that first solves the discrete p-median exactly
using a primal-dual algorithm by Erlenkotter [15], and then completes one
iteration of “continuous-space adjustment” by solving the p continuous single
facility minisum problems identified by the partition of the set of demand
points found in the discrete phase. The excessive computation time needed
to solve larger instances of the discrete model limits the size of instances that
can be considered (Brimberg et al. [4]). A similar approach is proposed in
Salhi and Gamal [44], but this time a heuristic is used to solve the discrete
p-median approximately. Kalczynski et al. [25] describe a greedy, random
approach to construct good discrete starting solutions. They go on to show
the rather counter-intuitive result that using good discrete starting solutions
can be more effective and efficient than the optimal discrete solution.

A general procedure known as reformulation local search (RLS) that
iterates between the continuous location problem under consideration and
discrete approximations of this problem was proposed in [6]. The RLS proce-
dure may be viewed as a special case of formulation space search (FSS),
i.e., its extended Reformulation descent variant. In the latter case, two or
more equivalent formulations of a given problem are combined in the search
process. Meanwhile, in RLS we have the original continuous location model
coupled with a series of discrete approximations. Each succeeding discrete
formulation presents a better approximation of the original (continuous)
problem until the algorithm terminates at a local optimum in both spaces. We
will also see later that the series of approximations can be made to converge
in an asymptotic sense to an equivalent formulation of the original problem.
The general steps of RLS are examined next (see [6] for further details).

Consider a continuous location problem of the following general form:

min (or max) f(X1, X2,..., X)), (12.7)
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requiring p new facility sites X; € R¥, i € [p], to be found. The multi-
source Weber problem (MWP) given in (12.6) is an example. Another impor-
tant, but less-studied class of location problems is given by the continuous
p-centre problem,

min g(Xy, X, ..., Xp) = max{min{d(X;, A;) :i € [pl} : j € [n]},
(12.8)

where the objective is to minimize the furthest distance from a demand point
to its closest facility, and which is used when quality of service (e.g., emer-
gency response) is the main goal. (Note that the unweighted version of MWE,
where w; = 1, for all j, minimizes the average distance from a demand point
to its closest facility.) The continuous p-dispersion problem is used to locate
obnoxious facilities. Here we have a max min min objective:

max h(X1, X, ..., Xp) = min{min{d(X;, A;) :i € [pl} : j € [n]}.
(12.9)

In this case, constraints are required to limit the locations of the new facilities
to a closed sub-region of RY. Constraints specifying a minimum separa-
tion distance between the new facilities may also be included. Other types
of constraints, such as limits on the capacities of the facilities, may be added
to the general model in (12.7) without affecting the discussion below. We will
refer to (12.7) (+ any required constraints) as (GLP) for the general location
problem in continuous space.

Using the notation in Brimberg et al. [6], let (GLP)" denote the current
discrete approximation of (GLP), and S the finite set of potential sites spec-
ified in (GLP)'. The discrete approximation of the unconstrained (GLP) in
(12.7) may be written as:

min (or max)xcs, |x|=p f(X). (12.10)

For the case of p homogeneous facilities, and where no constraints are
included in (GLP), there are (A;I) possible solutions to (GLP)". When

constraints are included in (GLP), they must also be respected in (GL P)’,
and so to be effective, the constructed set S should contain several feasible
solutions. To complete the preliminaries, let Lc and L p denote the selected
improving searches for (GLP) and (GL P)’, respectively. These searches stop
at a current solution, if and only if, a better solution cannot be found in
the respective neighborhood of the search. The framework for reformulation
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local search (RLS) is now presented assuming that (GLP) is a minimization
problem (see [6]).

Algorithm 5: Basic Reformulation Local Search (RLS).

1 Step 1: Select an initial solution X° = {X?, ..., X3}, and initial set S for (GLPY.

2 Step 2 (solving the continuous problem): L (X%) — X (where X€ # X9, only if
FXC) < f(XO).

3 Step 3 (augmenting S): S «— S U XC.

4 Step 4 (solving the discrete problem): Ly (X€) — XP (where XP # X€, only if
FXP) < f(XY.

5 Step 5:If XP = X, stop (final solution = XP); else X < XP and return to step 2.

Referring to Algorithm 5, we can note the following useful features of RLS:

e The initial set S is not restricted to the set of demand points as in other
methods that combine a discrete approximation of the original continuous
problem. For example, § can include some “attractive” demand points
combined with a sufficient number of “attractive” sites obtained by local
search from several random initial solutions. The choice of initial solu-
tion X© is also left up to the analyst. It can be, for example, a randomly
generated solution or one obtained by a constructive method (e.g. [8]).

e The analyst also selects the algorithms, L¢ and L p for improving the solu-
tion in the continuous and discrete spaces, respectively. These can be the
simplest of local searches, metaheuristic based methods, and in the case of
L p, even an exact method. Thus, the RLS framework is very flexible.

e Step 3 (augmenting S) is an important feature. It allows new, attractive
facility sites to be added to the discrete model. For example, referring to
the continuous p-median problem (12.6), new median points found by L¢
in the continuous space allow new partitions of the set of demand points
to be investigated in the discrete phase by Lp, which in turn may give
improved solutions of the original problem (12.6). We demonstrate this in
the following example. (Also see [6] for a different example.)

An Hlustration

Consider the small example in Fig. 12.4 with five demand points arranged
to form two equilateral triangles, a small one with sides of length = 1, and a
large one with sides of length = 3. The two triangles share a common vertex
A3 located at the origin (0, 0), and the large one is symmetrically inverted
above the small one with the vertical axis bisecting the two triangles. The
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Fig. 12.4 lllustration of RLS
weights at the demand points are all equal to 1; w; =1, j = 1,...,5,
and three facilities are to be located (p = 3). The initial set S (step 1)

comprises the complete set of demand points. Suppose also that the initial
solution consists of p randomly selected demand points (a commonly used
procedure), and this time X = {A}, A2, A4}. Assigning demand points to
their nearest facilities, with ties broken arbitrarily, results in the following
partition:

{A1, Az}, {A2), {A4, As)

The objective value for this solution is f = d(A1, A3)+d(As, As) = 1+
3 = 4. Since the facilities are optimally located with respect to their assigned
demand points, the current solution is a local minimum, and L¢ (Cooper’s
algorithm is chosen) cannot improve it in step 2. As a result, no new points
are added to § in step 3. Using the common single vertex swap move for Lp
in step 4 (where only one facility can move from its current vertex to any
unoccupied vertex) leads to an improved solution where X, moves from Aj
to As, and a better partition of the demand points is achieved:

{A1, Az, A3}, {As), {A4)

The objective value is reduced to f = d(A1, A3)+d(A1, A2) =14+1=2.

In the next iteration of the continuous phase, X| moves from Aj to the
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median point of its assigned cluster {A1, A, A3}, X, = (0, —1/\/5), with
new f = d(Xpm, A1) +d(X;m, A2) +d (X, A3) = 3 x % = /3. The
new point X,, is added to S. The next iteration of the discrete phase cannot
improve this solution; so the algorithm terminates with final solution, X| =
Xm, X2 = As, and X3 = A4, which is also the optimal solution. The
summary of RLS moves is as follows:

X0 = (A1, Ag, Ag} =S X' = X0 L2 X2 = (A, As, Ag) =S

X3 = (X, As, Ag) =2 x4 = X3,

A Small Instance (n = 50) from the Literature

Brimberg et al. [6] carry out a detailed computational experiment on the
well-studied 50-customer problem from [14]. The aim of the experiment
is to compare RLS to Cooper’s classical algorithm, which is referred to as
MALT to signify multi-start alternating (locate—allocate), and which is used
as a basis of comparison to this day for heuristics developed to solve the
multi-source Weber problem (12.6). Note that MALT was originally devel-
oped for MWD, but can also be adapted to many other classes of location
problems, continuous or discrete, such as the p-centre problem, by simply
changing the objective function. Five different values of p are tested (p =
5, 10, 15, 20, 25). Each of these five instances is run 100 times from random
starting solutions generated within the smallest rectangle containing the set
of demand points, for both MALT and RLS. The most basic form of RLS
is used, where the improving search in the continuous phase (L¢) is the
same Cooper algorithm used in MALT, and the improving search in the
discrete phase (Lp) is the standard single vertex exchange (Teitz and Bart
[45]) discussed above in the illustrative example. The number of distinct local
minima (LM), the number of occurrences of the 1st, 2nd, and 3rd best solu-
tions, and the number of solutions within given fractional deviations of the
optimal solution (from Krau [27]) are tabulated. Sample results are provided
here in Table 12.5.

Some interesting observations are noted.

o The number of distinct local minima is much smaller for RLS than MALT.
For p =5, this number = 50 for MALT and only 4 for RLS. For p = 15,
all 100 runs in MALT produce different local minima, while RLS only
produces two different local minima. We may attribute the small number
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Table 12.5 Sample results comparing MALT and RLS on 50-customer problem
(Brimberg et al. [6])

p Local minima infos MALT RLS
5 # Distinct local minima (LM) 50 4
# 1st best 7 19
# 2nd best 3 32
# 3rd best 4 20
# LM with dev < 0.0005 10 19
# LM with dev < 0.005 19 51
# LM with dev < 0.05 57 96
15 # Distinct local minima (LM) 100 2
# 1st best 1 70
# 2nd best 1 30
# 3rd best 1 0
# LM with dev < 0.0005 0 70
# LM with dev < 0.005 1 70
# LM with dev < 0.05 4 100

of local minima found by RLS to the much larger search neighborhood
compared to MALT obtained by adding the discrete phase.

e The first best solution obtained by RLS turns out to be the optimal solu-
tion in all five instances tested. However, MALT finds the optimal solution
only for the smallest instance, p = 5.

e The quality of the few local minima obtained by RLS is very good. Consid-
ering the poor quality of the random starting solutions, this would indicate
that RLS is able to descend deep down along the surface (or landscape) of
the objective function, and certainly avoid many of the local optima traps
that MALT gets stuck in. As a result, the quality of the solutions found by
RLS is vastly superior to MALT. The improvement for the smallest instance
with p = 5 is not as dramatic as the larger instances. For example, for
p = 15 (see Table 12.5), 70 out of 100 runs of RLS produce the optimal
solution compared to 0 for MALT. The remaining 30 runs of RLS produce
its second best solution, which is within 0.05 (5%) of the optimal, while
MALT produces only 4 solutions out of 100 within 0.05 of optimal.

Further analysis (see [6] for details) also reveals that the augmentation step
in RLS (step 3), where new median points from the continuous phase are
added to the set S containing the nodes of the discrete model, is a useful
feature. This step enhances the algorithm by increasing the number of itera-
tions between continuous and discrete phases; i.e., more descent moves and
better solutions are obtained.
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Table 12.6 Summary of results on larger instances, MALT and RLS (see [6] for details)

Average deviation (%) Average CPU time (sec)
Data set (n) MALT RLS MALT RLS
287 78.79 0.04 9.86 4.79
654 22.82 0.21 54.82 43.32
1060 4.17 0.21 133.79 119.95

Computational Results on Large Instances

Three other data sets commonly used for the MWD (e.g., see [4])
are also examined in [6]. These are the 287 - customer problem
from Bongartz et al. [3], and the 654- and 1060 - customer prob-
lems from the TSP library (Reinelt [42]). Values of p were taken from
{2,3,4,...,15,20,25,...,100} for n = 287, and {5, 10, 15, ..., 150}
for n = 654 and 1060, giving a total of 91 instances tested. CPU time for
each instance and each algorithm was set at 20, 120, and 300 sec, respec-
tively, for n = 287, 654, and 1060. The average percentage deviation from
the best-known result over all instances run for the specified data set is
given in Table 12.6 for MALT and RLS (see [6] for detailed results for each
instance). Note that these best-known solutions were shown to be optimal
for the n = 287 instances (Krau [27]). As we might expect, Table 12.6 shows
that RLS significantly outperforms MALT. It is also noteworthy that despite
the simple RLS procedure used in Brimberg et al. [6], this algorithm was
able to improve on two best-known solutions for n = 654, obtained by a
much more sophisticated metaheuristic-based method. These results are quite
encouraging. They also demonstrate that simple algorithm designs can be as
effective (or nearly so) as more complicated ones, in support of the “less is

more” (LIMA) philosophy discussed in a separate chapter of this book.

Injection Points

Brimberg et al. [7] suggest that injection points be added to set S once the
basic RLS procedure terminates. The idea here is to add “attractive” points
to the discrete model in order to improve the discrete approximation of the
original model. In that way, the improving search L p may find a better solu-
tion, and hence, jump out of the current local optimum trap. The steps of
the new procedure, called augmented reformulation local search (ARLS), are
shown in Algorithm 6 below for convenience. Note the new parameter K
in step 1 denoting the total number of injection points that will be added.



440 N. Mladenovic et al.

Otherwise, the procedure is the same as basic RLS (Algorithm 5) until step
5 where the algorithm starts to add the injection points (Y;) once the basic
RLS cannot improve the solution any further. The injection points are added
one at a time, and each time one is added, the search in the discrete phase
(step 4) is resumed. If a better solution is found than the current best (X 0y,
the algorithm returns to the continuous phase (step 2) with this new solu-
tion, and resumes the basic RLS. The algorithm ends when all K injection
points are added, and the solution cannot be improved further.

Algorithm 6: Augmented Reformulation Local Search (ARLS).

1 Step 1: Select an initial solution X0 =({x9 ..., Xg }, an initial set S for (GLP)', and a
value for parameter K; set j = 0.

2 Step 2: (solving the continuous problem): L (X%) — X€ (where X€ # XO, only if

FXE) < f(XO)).

Step 3: (augmenting S): S « S U XC.

4 Step 4: (solving the discrete problem): Lp(X€) — X (where XP # X, only if
FXP) < f(XO).

5 Step 5: If XD £ X€ X% — XP and return to step 2; elseif j < K, obtain the next
injection point Y;, set S <= S U {Y;}, j «<— j + 1, and return to step 4; else stop.

w

The injection points can be determined in different ways. In Brimberg
et al. [7], two strategies are specified. The first requires the injection points
to be convex combinations of two or more demand points (or facilities, or
combinations of the two). The second strategy involves the use of a local
search in the continuous problem that can be different from L¢, and that
can generate local optima with new and attractive points to add to the set S.
However, in the computational experiments, they only use the first strategy
with pairs of randomly selected demand points, e.g.,

Yi=A;/2+A;/2,

where Y is placed at the midpoint of the line segment joining A; and
A j,. The computational results are comparable to basic RLS, suggesting this
is only a preliminary study, and more work is needed to develop effective
strategies for inserting injection points.

Some interesting features of ARLS are noted:

o A small example in [6] demonstrates that a multi-start version of basic RLS
is not guaranteed to be globally convergent. In this case, the starting solu-
tion is a randomly selected combination of p demand points, and Cooper’s
algorithm is used to improve the solution in the continuous phase. They
show that the optimal solution of the MWP is unattainable under these
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conditions. On the other hand, injecting median points into the discrete
approximation easily fixes this issue.

e Adding injection points, for example, median points for the MWD, makes
the discrete model a better approximation of the original (continuous)
model. By generating all possible local solutions, and adding the obtained
facility sites to the set S, the discrete model becomes an equivalent formula-
tion of the continuous one. That is, solving one model automatically solves
the other. Thus, we may view the RLS approach as falling within the FSS
framework in an asymptotic sense.

12.5 Conclusions

Many methods for solving global optimization problems are based on
changing one formulation to another. These types of methods include dual,
primal-dual, Lagrangian, linearization, surrogation, convexification methods,
coordinate system change, discrete/continuous reformulations, to mention a
few. The main idea of Formulation Space Search (FSS) is to provide the set
of formulations for a given problem with some metric or quasi-metric func-
tions. In that way, the (quasi) distance between formulations is introduced,
and the search space is extended to the set of formulations as well. Most
importantly, in all solution method classes mentioned, the discrete metric
function between any two formulations can easily be defined. Those simple
facts open an avenue to a new approach where heuristics are developed within
the FSS framework. Instead of a single formulation with corresponding solu-
tion space, as in the traditional approach, there are now multiple formulations
and solution spaces to explore in a structured way. This opens up immense
possibilities in designing new and powerful heuristics. For example, it may
be that new types of distances in the formulation space will make some hard
problems easier to solve.

Computational results demonstrate that the FSS framework can produce
simple and effective heuristics that support the less is more (LIMA) philos-
ophy discussed in a separate chapter of this book. The authors hope they have
convinced the reader that FSS is an exciting direction for future research.

A Tribute to Professor Nenad Mladenovic

We sadly announce that Professor Nenad Mladenovi¢ passed away in May 2022,
before the publication of this book was completed. His sudden death from a heart
attack shocked his many friends and colleagues at universities and research institutes
around the globe. It was a privilege for me to work with Nenad on this chapter,
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and on numerous other projects over the 30 years I have known him. Borrowing
on ideas from Variable Neighborhood Search, a popular metaheuristic framework
that he pioneered, Nenad later introduced the notion of Formulation Space Search,
which is the topic of this chapter. The novel idea in FSS is to structure a formulation
space containing different formulations of a problem by using a distance metric in
the same way a solution space is structured with defined neighborhoods in VNS.

I consider myself very lucky to have known Nenad. He has had a tremendous
impact on my work, as I am sure he has for many others. His ideas will inspire
researchers for many years to come. Rest in peace, my good friend.

Jack Brimberg.
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