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An Overview of Heuristics
and Metaheuristics

Said Salhi and Jonathan Thompson

11.1 Introduction

We live in a world of limited resources, including food, water and energy.
As society becomes more advanced, the need to make efficient use of these
limited resources becomes more pressing. The study of optimisation enables
many real-life problems to be solved and leads to many positive outcomes.
For example scheduling the shift patterns of nurses can lead to optimal use
of resources and shift patterns that are conducive to good staft wellbeing.
The optimal routing of delivery trucks can lead to reduced carbon dioxide
emissions. Optimal scheduling of jobs leads to efficient use of resources and
increased profits for manufacturers.

There are many real-life applications that can be solved optimally by one
of the exact optimisation techniques known to the Operational Research
community such as linear programming, integer programming, non-linear
programming and dynamic programming among others. However, there are
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many applications where the combinatorial effect of the problem makes the
determination of the optimal solution intractable, and hence, these standard
techniques become unsuitable. This is because the computer time needed
to find the optimal solution becomes too large to be practical for real-
life situations, or specialist software is required that is not easily usable by
many companies and organisations. To overcome this drawback, heuristic
methods were introduced with the aim of providing the user with reasonably
good solutions in a reasonable time. Heuristics can be likened to algorithms
which are step-by-step procedures for producing solutions to a class of prob-
lems. In many practical situations they seem to be the only way to produce
concrete results in a reasonable time. To date, heuristic search methods have
been widely used in a large number of different areas including business,
economics, sports, statistics, medicine and engineering.

The word ‘heuristic’ originates from the Greek word ‘heuriskein’ that
means discover and explore. Heuristics are also sometimes referred to as rules
of thumb. They have been used throughout history as humans are natural
problem solvers and can naturally construct heuristic methods. An example
given by Sorenson [101] is that when deciding the trajectory of a spear to
throw at a wild animal, it is more important that the trajectory is selected
quickly rather than optimally. The time spent to calculate the optimal trajec-
tory will almost certainly mean the creature has disappeared long before
the spear is thrown. Therefore a quick but not precise trajectory is supe-
rior. However the scientific study of heuristics began more recently and still
continues to this day, with numerous academic papers each year proposing
new heuristic methods for a wide variety of problems. Figure 11.1 shows the
number of publications listed in Scopus with ‘heuristic’ as a keyword over the
last 10 years and shows an increasing trend throughout the decade showing
that advancements in computer software and hardware have not removed the
need for heuristic solution methods.

The main goal in heuristic search is to construct a model that can be
easily understood and that provides good solutions in a reasonable amount of
computing time. A good insight into the problem that needs to be addressed
is essential. Slight changes to the problem description can lead to major
changes to the model being applied, for example a slight change to a problem
that was easy to solve exactly may change the complexity of the problem and
necessitate the use of a heuristic.

In this chapter we will provide a short introduction to optimisation and
state the need for heuristics. Heuristics can be classified into various categories
and we will consider improvement-only heuristics in Sect. 11.2, heuristics
that accept worsening moves in Sect. 11.3, and population-based heuristics



11 An Overview of Heuristics and Metaheuristics 355
16000
14000
12000
10000
8000

6000

2010 2012 2014 2016 2018 2020

Fig. 11.1 The number of mentions of ‘heuristics’ on SCOPUS over the last 10 years

in Sect. 11.4. Some examples of applications will be provided in Sect. 11.5
and the chapter concludes with some suggestions for future research.

11.1.1 Optimisation Problems

An optimisation problem for the case of minimisation can be defined in the
following form:

P = Minimise F(X)

S.t.

XeS

Here, F(X) defines the cost or value of each solution X. When the set S
is discrete, (P) falls into the category of discrete optimisation problems (also
known as combinatorial optimisation), whereas if it is a continuous set, (P)
is referred to as a continuous optimisation problem (also known as global
optimisation).

11.1.1.1 Local vs Global Optimality

Consider X € § and let N(X) C S be a given neighbourhood of X. N (X)
could be defined as being a set of solutions that are similar to X in some
way. The decision of which neighbourhood to use in different applications is
a vital one when applying an improvement heuristic.
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X is a local minimum (maximum) with respect to neighbourhood N (X)
if F()A() < (>)F(X)VX € N(X). X* is a global minimum (maximum)
if F(X*) < (>)F(X)VX € S. For instance, if 2 represents all the possible
neighbourhoods and A the set of all local minima (maxima), X* can also be
defined as X* =Arg Min{F (X); X € Q(X)} or X* =Arg Min {F(X); X €
A}.

In brief, the global minimum (maximum) X* is the local minimum
(maximum) that yields the best solution value of the objective function F
with respect to all neighbourhoods.

Local search is the mechanism (i.e. operator or transformation) by which
X is obtained from X in a given neighbourhood N(X). In other words,
X =Arg Min{F (X); X € N(X)} denotes choosing the best member of the
neighbourhood.

11.1.1.2 Modelling Approach

When approaching complex real-life problems, a possible modelling approach
is to follow the following four steps. Note that this ordered list is not
exhaustive as other possibilities do exist.

The aim is to apply:

1. an exact method to the exact (true) problem, if not possible go to (2)

2. a heuristic method to the exact problem, if not possible go to (3)

3. an exact method to a modified (approximated) problem, if not possible go
to (4)

4. a heuristic method to the approximated problem.

Though these rules are presented in the above ranking, the complexity in
the design of the heuristic in step (2) which aims to retain the true character-
istics of the problem, and the degree of modification of the problem in step
(3) are both crucial points when dealing with practical problems. It may be
argued that steps (2) and (3) could swap places. The idea is to keep the char-
acteristics of the problem as close as possible to the true problem and then
try to implement (1) or (2). Another related approach would be to start with
a simplified or a relaxed version of (P), find a solution and check whether the
solution satisfies the constraints to the original problem. If it is the case, there
is no need to worry about the original problem as the solution is optimal.
If some constraints are violated, which is likely to happen especially at the
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beginning of the search, additional characteristics are then introduced grad-
ually. The process is repeated until the problem becomes impractical to solve
and hence, the feasible solution found at the previous stage can then be used
as the final solution of the problem. The choice of whether to use a heuristic
method or to modify the problem into one that can be solved exactly is
crucial. It appears that applying a heuristic is a straightforward approach and
this concept is highlighted by the following observation that it is better to
have a good and acceptable solution to a true problem rather than an optimal
solution to a problem that has very little resemblance to the original problem.

11.1.2 The Need for Heuristics

Heuristics are usually used only when exact methods, which guarantee
optimal solutions, are impractical because the computational effort required
is excessive. They are often used to produce solutions to problems in the class
NP-complete, a set of problems for which there are no known efficient ways
to find optimal solutions to large problems. However solutions to problems
in this category can be verified efficiently. The most well-known example is
the Travelling Salesman Problem (TSP) which consists of finding the shortest
route to visit a set of cities and return to the starting point. The TSP is a
computationally difficult problem and an optimal solution to even a rela-
tively small problem can be difficult to find, leading to the widespread use of
heuristics. The decision of whether to use exact or heuristic solution methods
also depends on the context of the problem and how much time is available to
find a solution. Heuristics may also be used where the problem is ill-defined,
or a solution of reasonable quality is all that is required. Salhi [87], [92], [93]

provides further reasons for accepting and using heuristics.

11.1.3 Some Characteristics of Heuristics

The following characteristics are worth considering in the design of a given

heuristic. Some are by-products of the attributes that make heuristic necessary

as mentioned in the previous section, whereas others are added for generalisa-

tion purposes. For simplicity these characteristics are only summarised below

while more details can be found in [63], [87], [92], [93], [48] among others.
Heuristics should be:

i. Simple and coherent—the method should follow well defined steps which
are not ambiguous in any way.
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ii. Effective and robust—the method should be reliable enough to provide
good or near optimal solutions irrespective of the instances solved.

iii. Efficient—the run time needs to be acceptable. The solution time will
depend to some extent on how the method is implemented.

iv. Flexible—so they can be easily adjusted to solve variants of the problem
with minimum changes while retaining the strengths of the heuristic.
This may include the flexibility to allow interaction with the user so they
can take some control over the algorithm.

11.1.4 Performance of Heuristics

One difficulty with heuristics is measuring the quality of their performance,
given they are typically used on problems for which the exact solution is
unknown. The main criteria for evaluating the performance of a heuristic are
the quality of the solutions provided and the computational effort, measured
in terms of CPU time, the number of iterations or the number of func-
tion evaluations. Other criteria such as simplicity, flexibility, ease of control,
interaction and friendliness can also be of interest, but are more difficult to
measure precisely.

Solution Quality There are various ways in which the solution quality of
a heuristic may be measured. These include:

e Comparison with lower or upper bounds, which is most useful when
bounds are tight

e Benchmarking against optimal results for smaller problems where the
optimal solutions are known

e A theoretical understanding of worst-case behaviour
Comparison with other heuristic techniques

Many papers merely use the latter method for evaluating solution quality
and this is fraught with danger, particularly where the authors of a particular
heuristic have also implemented the other heuristic methods for the compar-
ison. One positive step is that an increasing number of authors are making
their code and results available for evaluation by others.

11.1.4.1 Computational Effort

Heuristics are also evaluated in terms of their computational effort. Compu-
tational effort is usually measured by how long a heuristic takes, and how
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much memory it uses. The former describes the computing time the method
requires for a given instance whereas the latter measures the storage capacity
needed when solving a given instance. Unfortunately, the latter is seldom
discussed in the literature. It should be noted that the concept of large or
small computer time should be relative to both the nature of the problem
(whether it is strategic, tactical or operational) and the availability and quality
of the computing resources. The time for interfaces is usually ignored in
research though it can constitute an important part of the total computing
time in practice. The importance of computing effort is directly related to the
importance of the problem. So if the problem relates to short-term planning
and needs to be solved several times a day, it is essential that the algorithm
is quick, whereas if the problem is solved at a medium or at a strategic level
(so once every month or year), the cpu time is less important, and more
consideration can be given to the quality of the solution. So for example a
supermarket routing delivery vehicles need a quicker solution than a univer-
sity scheduling its examinations twice per year. It should be noted that for
some strategic problems, users may require the need to investigate different
options and scenarios in which case the heuristic would need to be run several
times and therefore should not be too slow.

11.1.5 Heuristic Classification and Categorisation

There are several ways to classify heuristics. Heuristics can be greedy where
solutions are constructed from scratch or improvement where an existing
solution is improved over time. Other classifications take into account
whether the heuristic is deterministic or stochastic, uses memory or is
memory-less, and whether it considers one solution at a time or a popula-
tion of solutions. Salhi [93] categorises heuristics into four groups, namely,
(a) improving solutions only, (b) not necessarily improving solutions, (c)
population-based and (d) hybridisation. The first two groups are completely
disjoint, whereas the last two could interrelate with each other as well as with
the first two. We discuss the first three of these in the next three sections.
Hybridisation is discussed in the following chapter.

11.2 Improvement-Only Heuristics

In this section, we briefly discuss approaches that only allow improving
moves. The simplest such method is a descent or hill-climbing method
but more sophisticated improvement-only methods commonly used include
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GRASP (Greedy Randomised Adaptive Search Procedure), multi-level, vari-
able neighbourhood search, perturbation schemes, adaptive large neighbour-
hood search, iterated local search and guided local search. Some of these will

be described below

11.2.1 Hill-Climbing Methods

The basic hill-climbing or descent method has two main components, the
generation of an initial solution and the means of improving this solu-
tion. The initial solution is typically generated either randomly or using a
simple constructive type heuristic that builds the solution piece by piece
until the final solution is constructed. For example for the Travelling Sales-
person Problem (TSP), the starting solution may be constructed by selecting
the nearest unvisited city at each step. Different heuristics may be used
instead, which may be more computationally expensive but could result in
better quality starting solutions. For example for the TSP, the heuristic could
insert an unvisited city into the partial tour in the position which causes
the minimum increase in the tour distance. Typically these rules are myopic
(short-sighted) so can lead to large increases in cost towards the end of the
construction.

The initial solution is then subject to improvement. The process of
improvement requires a cost function F(s) which attributes a cost or value to
each solution s, and a neighbourhood N (s) that defines a set of solutions that
can be reached from the current solution via a small change. For the TSP, the
cost is the total length of the tour and the neighbourhood could be defined as
the set of solutions constructed by deleting 2 edges from the current solution
and then forming a new tour, or swapping the positions of two cities in the
tour, etc. A selection mechanism also needs to be defined that determines
which neighbouring solutions are sampled. The neighbourhood structures
and the selection mechanism adopted are crucial elements that contribute
considerably to the success of improving heuristics. The most commonly used
selection strategies are (i) the best improving move where we evaluate all or
a part of the neighbourhood and select the feasible move that yields the best
cost, or (ii) the first improving move where we select the first feasible solution
that is better than the current solution. Note that (i) may take longer as all
moves have to be evaluated at each stage but do mean the heuristic ends in a
locally optimal solution and the search can terminate as soon as none of the
neighbouring solutions provides an improvement. In (ii) neighbouring solu-
tions are sampled at random so the selection is much quicker and at first, it
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is often straightforward to find improving moves. However as the number of
iterations increases, fewer moves result in improvements and the search can
only estimate that a locally optimal solution has been reached. Such heuristics
normally terminate when there have been a certain number of iterations Nyq
without improvement, and the value of this parameter N.,q depends on the
size of the problem/neighbourhood and is problem and instance dependent.
In this case, the search may need to be repeated several times as different
solutions may be produced depending on the random number stream used.

Algorithm 1 summarises the main features of (a) the best improving move
and (b) the first improving move.

Algorithm 1: The Basic Descent method

(a) Best Improvement (b) First Improvement
Select initial solution s € S Select initial solution s € S
Repeat the following steps: Set max, = max number of consecutive
Find the best member s’ € N(s) moves without improvement
If f(s”) < f(s) then Setn =0
Lets =5’ Repeat the following steps while n < max,
Else Choose s’, a random member of N(s)
Terminate run If f(s”) < f(s) then
Lets =5’
n=0
Else
n=n+1

It is also possible to employ a compromise strategy that sits between the
best improvement and first improvement methods. This could be achieved in
several ways, for example by selecting the best improving move found after a
certain time has elapsed since the previous improvement.

These methods typically search a very small part of the solution space,
and solution quality depends on the starting solution. Therefore they are
of limited use but can provide quick improvements to solutions produced
heuristically that may not be local optima.

11.2.2 Classical Multi-Start

The local search procedure is efficient when the objective function is unimod-
ular (i.e. has one local minimum only). However, when there are several
minima, it is impossible to get out of the neighbourhood of a local minimum
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Fig. 11.2 Local optimality

using the same neighbourhood as shown in Fig. 11.2. In the second diagram
representing a multi-modular function, if the search begins at position A or
B, it converges to a poor quality local optimum whereas if it starts from
position C or D, it converges to the global optimum. In practice for many
combinatorial optimisation problems there are numerous local optima and
the likelihood of finding a high-quality solution using a descent only strategy
is quite small.

One way of improving the likelihood of finding a high-quality local
optimum is to use a multi-start method where the search is repeated from
different starting solutions to ensure a broader section of the solution space
is searched. An example is Braysy et al. [8] who apply a multi-start local
search method to the vehicle routing problem with time windows. They use
a randomised constructive heuristic to generate a set of starting solutions
and then apply local search to each. The best solution found is then subject
to a further improvement process. In practice they construct 420 starting
solutions but only apply the descent phase to solutions consisting of the
minimum number of routes.

The basic multi-start method is summarised in Algorithm 2.

Algorithm 2: The multi-start method.

Step 1. Set besty = oo

Step 2. Repeat the following m times
(2a) Create an initial solution s
(2b) Perform a descent move to find a locally optimal solution s”
(20) If f(s”) < best, then set bestg = f(s”)
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If starting solutions are created randomly, then multi-start methods are
well suited to parallelisation which can improve solution quality. However
the search can be considered to be blind as it may re-visit local optima
that have already been considered. Therefore methods that deliberately create
starting solutions that differ to previously visited solutions are more popular.
For example for the TSP, a list of the frequency of edges being included in
solutions can be maintained, and future starting solutions can be weighted
towards selecting edges that have not been frequently selected previously.

11.2.3 Greedy Randomised Adaptive Search Procedure
(GRASP)

GRASP is an extension of multi-start methods and was introduced by
Feo and Resende [39]. A more formal description is given in Feo and
Resende [40]. It is a multi-start heuristic which consists of two phases, the
construction phase that constructs an initial solution and a local search phase
that improves the initial solution. This is repeated several times. GRASP can
be considered as a memory-less multi-start heuristic. GRASP differs from
multi-start in the way the initial solution is generated as it combines random-
ness with greediness. The idea is that at each step of the construction phase
a selection rule is used that is less rigid and allows flexibility in choosing not
necessarily the best option but to choose any options that are close in some
way to the best. Typically a restricted candidate list (RCL) is used made up
of either the top 4 best options or those options that are within a certain
deviation from the best. For instance, for the case of minimisation: RCL=
{set of attributes ¢ such that gmin < g2(€) < gmin + ¥(gmax — &min)} Where
0 < a <1 and g, is the cost of incorporating element ¢ into the solution.
The element to be added to the partial solution e* is then randomly chosen
from the RCL. Note that if &« = 0 this reduces to a greedy method whereas
if @ = 1 the search becomes the classical random multi-start approach. The
basic GRASP is described in Algorithm 3.

Algorithm 3: The GRASP method.

Step 1. Set besty =

Step 2. Repeat the following m times
(2a) Create an initial solution s using a greedy-randomised procedure and an RCL
(2b) Perform a descent move to find a locally optimal solution s”
(2¢) If f(s”) < bests then set bests = f(s”)
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There are several possible variations to GRASP. For instance the choice of
o does not need to be fixed beforehand but can be adjusted from one cycle
to another depending on the solution quality found in previous solutions
(this is known as reactive grasp). The definition of @ can also be defined as a
function of the gain/loss at a given iteration, or as a convex or a concave func-
tion dependent on the number of iterations. Path-relinking can be introduced
which involves exploring the path between different locally optimal solutions
to search for better solutions. Learning can also be introduced, either to guide
the search towards new unexplored areas of the solution space or to maintain
in future solutions attributes that appear to commonly occur in high-quality

solutions. For examples see [46], [70] and [94].

11.2.4 Variable Neighbourhood Search (VNS)

Variable Neighbourhood Search (VNS) requires the definition of several
neighbourhoods for the given problem. VNS attempts to escape local optima
by moving to a new, usually larger, neighbourhood whenever there is no
possible improvement through a local search in a given neighbourhood, and
then reverts back to the first one, usually the smallest, if a better solution
is found. VNS was originally developed by Mladenovi¢ and Hansen [75]
for solving combinatorial and global optimisation problems. VNS contains
mainly three phases, namely, a shaking phase (given a set of neighbourhood
structures, a neighbouring solution is generated), an improvement phase (a
local search or a local search engine is deployed to improve the currently
perturbed solution) and finally a neighbourhood change phase (move or not
move). VNS takes advantage of the fact that a local minimum with respect
to a given neighbourhood may not be a local minimum for other neigh-
bourhoods, but local optima for several different neighbourhoods are often
close to each other. However, a global minimum is a local minimum for all
neighbourhoods.

VNS starts from some starting solution x and local search is applied using
an initial neighbourhood Nj(x). The locally optimal solution found under
the initial neighbourhood is then used as the starting solution for a local
search under neighbourhood N> (x). If an improving move is identified, the
search reverts to the first neighbourhood; otherwise the search moves onto
neighbourhood N3(x) and so on. See Algorithm 4 for a description.
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Algorithm 4: Variable Neighbourhhod Search (basic VNS).

Step 1.
(la) Set bests = o
(1b) Generate an initial solution s and define the neighbourhood structures
Nl’ NZ’ B Nkmux
(lc) Setk =1
Step 2. Repeat until stopping criteria are satisfied
(2a) Choose a solution s in the neighbourhood Ny (s) (shaking procedure)
(2b) Perform a descent move (a local search or a series of local searches) to find a
locally optimal solution s”
(20) If f(s”) < best, then set bests = f(s”)
(2d) If f(s”) < f(s) then Move or not
Sets =s"and k =1
Else
Setk =k+ 1;If k > kmax, setk =1

Compared to other powerful heuristics, VNS has the advantage of being
simple and easy to implement as it requires only the definition of the neigh-
bourhoods and the local search and there are no parameters to consider. A
number of variants have been applied to different combinatorial problems
with success. These include:

e Reduced VNS is useful for large problems where local search is too time-
consuming and hence omitted from the search. In other words, this is
mainly a VNS without the local search (i.e. the use of the shaking proce-
dure and the move or not step) but allows to be used either in a systematic
manner (reverting to the first neighbourhood, or to the next one, or a
combination).

e VND, short for variable neighbourhood descent, is focused on the local
search phase and the move or not move phase. Here the way the local
search phase is implemented is critical. Usually there are a number of local
searches used either in series or in a VNS type format like the multi-level
heuristic described earlier.

General VNS is a VNS where the local search phase is a VND.

Skewed VNS explores areas of the solution space which can be far from the
current solution by accepting non-improving solutions based on a certain
threshold. In other words the move or not move phase is made slightly
relaxed.

Note that in the improvement phase within the local search either a first
improvement or a best improvement is adopted which can lead to several
other variants. The move or not move step can also have several options
such as sequential, cyclical or in a pruning way as defined in [49]. For more
description on these and other variants, see [48], [49] and [93].
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11.2.5 Iterated Local Search (ILS)

This consists of two main phases known as the construction/diversification
phase and the local search phase. At each iteration the current solution is
diversified, and then is subject to local search. These are performed repeatedly
while an acceptance step is embedded to retain the best solution found so far.
The aim is to ideally keep using the same local search as a black box while
providing interesting solutions to it through diversification. This approach is
simple and efficient and has shown to be powerful in obtaining interesting
results in several combinatorial problems. One possible implementation of a
strong ILS could be the combination of LNS (diversification/construction)
with a VND or randomised VND (local search). For more details and
possible applications of this heuristic, see [67].

11.2.6 A Multi-Level Composite Heuristic

Multi-level composite heuristics are similar to variable neighbourhood
descent and involve improving the solution using a small number of local
searches, known as refinement procedures in sequence, with the method stop-
ping when there is no further improvement possible. The resulting solution
should be a high-quality solution as it is a local minimum with respect to
the selected procedures. The heuristic starts by finding a locally optimal solu-
tion using the first refinement procedure, and then this solution becomes a
starting solution for a second refinement procedure, etc. In addition, once a
new better solution is found, it can be used as an initial solution for any of the
other refinements, not necessarily the next one in the list. For simplicity, we
can restart the process using the first one which is the simplest refinement in
our list of available refinements. This is the backbone of multi-level heuristics
initially proposed in Salhi and Sari [90] for the multi-depot routing problem
with a heterogeneous vehicle fleet. This approach has now been successfully
applied to many other combinatorial and global optimisation problems. The
choice of the refinement procedures, the sequence in which these are used
and the choice of the refinement to go back to, once a new better solution
is found, can be critical. Note that once a solution is found at a given level,
it is appropriate to go to any of the other refinements of the earlier levels. A
standard approach is to revert back to the first level where computations are
relatively fast. More details on this approach can be found in [90], [96].
The way the levels are organised can have a significant effect on the solu-
tion quality and this requires careful consideration. The choice of successive
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refinements may be critical as one may wish to consider the next local search
to be drastically different in structure to the previous one so as to provide
diversity. The search does not necessarily have to return to the initial refine-
ment once a solution is determined and the choice of the refinement to return
to does not need to remain constant throughout the run. It may be that
the obtained solution would be better suited to another refinement chosen
randomly or based on certain rules that consider the structure of the current
solution. It can be a challenging task to match the structure of a given solu-
tion with the characteristics of the set of refinements used. The integration
of learning within the search could render this approach more adaptive and
hence more powerful as demonstrated in [103], [104].

11.2.7 Problem Perturbation Heuristics

The idea of problem perturbation heuristics is to perturb the original problem
to obtain a series of gradually perturbed problems. Local search is applied
to the initial problem and a locally optimal solution is then obtained. The
problem is then perturbed in some way and local search is applied again
to this new problem leading to a different solution. It can be considered
whether this new solution is a better solution to the original problem than
the previously found local optimum.

The perturbed problem may be found by adding a violation that means
the current local optimum is infeasible. As there is a well-defined perturba-
tion built up between successive perturbed problems, the successive solutions
may have the tendency of retaining some of the important attributes in their
respective configurations. After a set of perturbed problems are found, the
search may proceed by gradually relaxing the problem by removing the viola-
tions again, one by one. This continues until the problem returns to the initial
problem again. At this stage a local search to improve the solution can be used
again and then either the process starts adding violations again or making the
original problem even less restricted by removing some of the constraints.
This process can be repeated several times.

For instance, consider the p-median problem where the objective is to
identify the optimal location of a fixed number of facilities (say p) with
the aim of minimising the total transportation cost. A local search can be
performed and a local optimum identified. Then, the solution is allowed
purposely to become infeasible in terms of the number of facilities by
accepting solutions with more than or less than p (say p & g where ¢ €
[p/4, p/3]). By solving the modified problems, infeasible solutions can be
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generated that when transformed into feasible ones may yield a cost improve-
ment. Initially a feasible solution with p facilities is found, then one facility
is added at a time and after each, a simple local search is activated. Once we
reach p + ¢ facilities, we then start removing one facility at a time till we get
to a feasible solution with p facilities where a more powerful local search is
applied for intensification purposes to try to obtain a better local minimum.
At this stage we also allow the solution to be infeasible by removing one
facility at a time until we reach say p — g, from where we start adding facili-
ties again until we reach a new feasible solution. This up and down trajectory
makes up one full cycle. The process is then repeated until there is either no
improvement after a certain number of cycles or the overall computing time is
met. When this process is repeated several times going through several cycles,
it acts as a filtering process where the most attractive depots will have the
tendency to remain in the best configuration, which is a form of survival of
the fittest. Such an approach was developed by Salhi [90] and it performed
well when tested on a class of large facility location problems with known
and unknown values of p. Zainuddin and Salhi [120] adapted this approach
to solve the capacitated multisource Weber problem and Elshaikh et al. [38]
modified it for the continuous p-centre problem.

A similar strategy is Strategic Oscillation where the search moves between
the feasible and infeasible regions. Consider Fig. 11.3 which illustrates a solu-
tion space with a disconnected solution space. A search is performed in a

. Feasible Region

Fig. 11.3 Strategic oscillation to search a disconnected solution space
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feasible region, ending in say point A but the constraints are then relaxed,
enabling the search to move into the infeasible region (say point B). At this
stage, the constraints are re-imposed and the local search is used to guide the
search back towards a feasible region, point C in this case. In this way the
search investigates a broader area of the solution space and is able to navigate
between different parts of a disconnected solution space.

The amount of infeasibility allowed is dealt with by attaching penalties to
broken constraints. These penalties are dynamically updated. This concept
is useful particularly when the solution space is disconnected or non-convex
as it is impossible to cross the infeasible region using only feasible solutions.
The only difference with problem perturbation heuristics is that the latter is
designed purposely to explore these infeasible solutions in a guided manner
without any penalty attached so that some useful and promising attributes

could then be identified.

11.2.8 Some Other Improving Only Methods

Large Neighbourhood Search (LNS): The idea is to use not necessarily small
neighbourhoods but larger ones as well. The need for these large neighbour-
hoods is sometimes crucial to get out of local optimality as pointed out by
Ahuja et al. [1]. This was proposed by Shaw [100] and can be seen to be
similar to the ‘ruin and recreate’ procedure of Schrimpf et al. [98]. The idea
is to perturb the solution configuration in an intelligent way by deleting
some of the attributes of the solution using some removal strategies and
then reintroducing them using some insertion strategies. This has similari-
ties with perturbation methods described earlier except here the removal of
many attributes is performed at the same time. Some of the considerations
when implementing this method include the number of attributes to remove,
the removal strategies adopted and the insertion or repair strategies used. The
way these strategies are implemented and developed is critical to the success
of the search. As the method is repeated several times some form of learning
is worth exploring to efficiently guide the search. For instance [103], [104]
introduced interesting new operators and successfully integrated LNS with
VNS in an adaptive way. LNS is now becoming a useful tool to solve many
complex combinatorial problems.

Random Noise: A related method that perturbs the problem space by intro-
ducing random noises to the data is the noising method developed by Charon
and Hudry [13]. The idea is to solve the problem with the perturbed objec-
tive function values via a local search where at each iteration, or after a fixed
number of iterations, the level of perturbation is reduced until it reaches zero



370 S. Salhi and J. Thompson

and the problem reverts to the original one. The way the noise is introduced
and how randomness is gradually reduced as the search progresses are two key
factors that are critical to the success of the method. Relatively recent work
by Charon and Hudry [14] explored the self-tuning of the parameters of such
a method.

Guided Local Search: This is an adaptive local search which attempts to
avoid local optimality and guide the search by using a modified objective
function. This objective function contains the original objective and a penalty
term which relates to the less attractive features of the configuration of a given
local optimum. The local search used can be a simple improvement procedure
or a powerful heuristic. In other words, at every locally optimal solution the
feature which has a large utility value receives an increase in its unit penalty.
For instance, in the case of the TSP, the edges can represent features of the
tour and the largest edge of the obtained tour will have its penalty increased.
Note that this type of penalty is related to the so-called ‘bad’ features and not
to the amount of infeasibility as usually carried out in constrained optimisa-
tion. The way the features are selected and penalised plays an important part
in the success of this approach. Voudouris and Tsang [112] provide an inter-
esting review with an emphasis on how to implement this approach when
addressing several combinatorial problems.

11.3 Not Necessarily Improving Heuristics

In this section, we discuss those popular heuristics that improve the solution
by not necessarily restricting the next move to be an improving move. This
enables the search to escape from local optima. However note that allowing
such inferior solutions to be chosen needs to be controlled as the search may
diverge to even worse solutions. Some of the well-established techniques that
are based on this concept are covered here, and include simulated annealing,
threshold accepting and tabu search. These methods have been around for
many years and are still extremely popular, being used to solve both real-life
and academic problems.

11.3.1 Simulated Annealing

The concept of simulated annealing (SA) is derived from statistical mechanics
which investigates the behaviour of very large systems of interacting compo-
nents such as atoms in a fluid in thermal equilibrium, at a finite temperature.
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Metropolis et al. [74] studied the simulation of the annealing of solids.
This work was built on by Kirkpatrick et al. [59] and later by Cerny [12]
who considered how to apply a method based on simulated annealing to
large combinatorial optimisation problems. In the context of an optimisation
problem, the process of a body cooling is an analogy for a search algorithm
seeking a good solution with the aim of approaching the global optimum.
The energy function in our case will represent the objective function of the
problem. The configuration of the system’s particles becomes the solution
configuration of the problem. The temperature acts as the control parameter.
Cooling too fast resulting in defective crystal is analogous to a neighbour-
hood search that yields a poor local optimum. Kirkpatrick et al. adopted these
analogies for the context of combinatorial optimisation, to explicitly formu-
late the algorithm that is now widely known as Simulated Annealing (SA).
The way in which the temperature decreases is called the cooling schedule
and the probability function used is that of Boltzmann’s Law (see [74]) which
is a negative exponential function. The reasoning behind this choice is that it
has the tendency to choose more non-improving solutions initially but as the
search progresses this random-based technique will have a smaller probability
of selecting inferior solutions meaning the search converges to a high-quality
local optimum. For more details see [37], [78], [34] and [33]. A simple
implementation of SA is shown in Algorithm 5.

Algorithm 5: Basic Simulated Annealing Algorithm

Step 1. Choose an initial temperature 7" which is sufficiently high that many worsening
moves are likely to be accepted.
Step 2. Create an initial solution s and evaluate its cost value f(s). Set best = s
Step 3. Repeat the following n times.
(3a) Choose a neighbouring solution s’ and evaluate its cost function.
If f(s”) < f(s), then set s = s’ as it is an improving or equivalent move.
If f(s”) < f(best) set best = s’
(3b) If f(s”) > f(s) then calculate d = exp(—(f(s”) — f(s))/T) and if a random
number r(0, 1) < d, then accept the move and set s = s’. Otherwise reject.
Step 4. Reduce the temperature according to some cooling schedule.
Step 5. If the stopping criteria are not met, return to step 3,
Otherwise, stop the search and return best.

A disadvantage of simulated annealing is that it is heavily dependent on
parameters. These relate to the start and end value of the temperature, the
means for reducing the temperature and the number of iterations at each
temperature.

There are various methods for reducing the temperature (cooling). The
most common is Tx+1 = BT, 0 < B < 1 where the closer 8 is to 1, the
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better the solution quality will normally be but the run time will increase
also. Other possible cooling methods include:

Ti+1 = Ty — t (t = constant) or Ty41 = Ty — tx where #; is randomly
chosen at each iteration £ or Ty41 = 1/t(1 + Bt) [69], etc. Typical stop-
ping criteria are a maximum number of iterations is reached, a time limit is
attained or the temperature becomes sufficiently small that the likelihood of
accepting any worsening moves is likely to be extremely small, so at this stage
it is likely that a local optimum has been reached.

The value of the initial temperature (7p) should be large enough to accepta
large number of moves. Therefore an initial phase may be used where random
moves are sampled and an appropriate value of the temperature parameter
can be calculated to ensure that a given percentage of these moves would
be accepted. However, if the value of Tp is too large, most solutions will
be initially accepted which can be a waste of time as the search is in effect
performing a random walk. On the other hand, if the value is too small, too
many non-improving solutions will be rejected and the method becomes a
simple local search method. See [62] for details of some possible implemen-
tations, and see [93] for more details. The temperature Ty theoretically needs
to be a non-increasing function of iteration # (e.g. Tr+1 = g(Tx) < Ti).
However it is possible to allow the temperature to remain constant or to
increase marginally at a given iteration. One idea is to reset the temperature
at higher values after getting stuck in a flat region, say if no improvement
is found after a certain number of iterations (i.e. consecutive uphill rejec-
tions). The current solution is locally optimal and since the temperature
is low, the SA algorithm becomes self-destructive as it restricts the accep-
tance of less attractive solutions. These non-improving moves are rejected
with a probability of almost one. The following resets are commonly used
based on the temperature when the best solution was found, say Tj.s and
the last temperature reset Tr: Ti41 = Tpesr OF ¢Tpese + (1 — )Ty or
BToese + (1 — B)Tg (initially Tr = Tpess), with «, B € [0, 1] repre-
senting the corresponding weight factors. Some of these resetting schemes
are initially given by Connolly [16], [17] and successfully applied by Osman
and Christofide [76] to solve the VRP.

One may argue that the update function using such a reset scheme violates
the property of g(7j) as it should be theoretically a non-increasing func-
tion of 4. This is true if g(7}) was optimally defined but not heuristically
as derived here. Such a statement needs therefore to be relaxed and allowing
such flexibility is appropriate. Another way of relaxing such an update would
be to incorporate flexibility by allowing the temperature to increase relatively
according to the change in the cost function, see [30] and [31]. If a number of



11 An Overview of Heuristics and Metaheuristics 373

worsening moves are accepted the temperature should be reduced whereas if
few worsening moves are being accepted and it appears the search has become
trapped in a specific part of the solution space, the temperature should be
increased. For more information on SA, see [33].

11.3.2 Threshold-Accepting Heuristics

This heuristic is a simplified version of simulated annealing. It generally
involves accepting all moves that fall below some threshold value which varies
as the search progresses. This avoids the probabilistic effect of simulated
annealing when selecting a non-improving move, as the acceptance decision is
entirely deterministic. When implementing threshold acceptance, one again
needs to define a starting solution, cost function and neighbourhood. Addi-
tionally, the value of the threshold needs to be selected as well as the method
for updating it. If the threshold is too high, almost all moves will be accepted
and the search will just perform a random walk. If the threshold is too low,
no moves will be accepted. Dueck and Scheurer [35] were the first to propose
the Threshold Acceptance heuristic formally and they presented empirical
studies comparing the results against simulated annealing when solving the
TSP. The results were encouraging and Threshold Acceptance has the advan-
tage of requiring fewer parameters and being a simpler method. The method
is shown in Algorithm 6.

Algorithm 6: Basic Threshold Accepting Algorithm.

Step 1. Choose an initial threshold value T
Step 2. Create an initial solution s and evaluate its cost value f(s). Set best = s
Step 3. Repeat the following n times.

(3a) Choose a neighbouring solution s” and evaluate its cost function.

Bb)If f(s’) < f(s)or f(s’) <T,thensets = s’

Bo) If f(s”) < f(best) set best = 5’
Step 4. Reduce the threshold value according to T = T * @ where @ < 1.
Step S. If the stopping criteria are not met, return to Step 3,

Otherwise stop the search and return best.

An alternative is to record a list of the top non-improving solutions which
can then be used to guide the threshold target (the size of such a list can be
made constant or dynamically changing). This is similar to SA except that
there is flexibility in accepting a non-improving solution deterministically

through thresholding instead.
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Threshold Acceptance has proved to be computationally efficient when
tackling hard combinatorial problems especially routing-based problems
(see [107] and [66]). For further references on TA and its implementation,
see [52] and [64].

The following two simple but successful variants of TA have proved to be
promising and hence are worth mentioning.

Record to record heuristic: This is developed by Dueck [36] where the
threshold is based on the relative deviation from the best solution instead
of the absolute deviation from the current solution. Therefore moves are
accepted if they improve the current move or if the difference between the
two costs is below some threshold value. This takes into account the fact that
different problems may have very different magnitudes of costs which can be
misleading if the classical TA is blindly implemented. Li et al. [66] adopted
this approach for solving the heterogeneous vehicle routing problem.

List-based threshold accepting: This approach is developed by Tarantilis
et al. [107] where instead of having a threshold value based on the objective
function only, a list containing a number of the top solutions is used with its
cardinality being the only parameter (M) that needs to be controlled which
makes the search easier to implement. During the search, the list is reduced
gradually by decreasing the value of M. The authors produced competi-
tive results when testing this scheme on a class of routing problem with a
heterogeneous vehicle fleet.

11.3.3 Tabu Search

This approach was proposed by Glover [43] and independently discussed
by Hansen [47] as a meta-heuristic optimisation method. Tabu Search (TS)
concepts are derived from artificial intelligence where the intelligent use
of memory helps to exploit useful historical information. Tabu Search is a
best acceptance method that escapes from local optima by accepting non-
improving moves. However merely accepting worsening moves will lead to
the search cycling between a small number of solutions. To avoid this, a tabu
status is allocated to those attributes involved in recent moves. The search
is not permitted to return to solutions with these attributes for a certain
number of moves. Tabu Search (TS) shares with SA and TA the ability to
accept non-improving moves and to escape from local optima.

An attribute of a solution is recorded rather than the entire solution as it is
more efficient, but it can lead to solutions being classed as tabu even if they
have not been visited before. Therefore an aspiration criterion is normally
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used which means that a tabu solution can still be accepted if its cost is better
than the best solution found so far.

Tabu search can be considered as an aggressive method as it selects the
next best move in a deterministic manner. It will converge quickly to a
local optimum before starting to accept worsening moves unlike simulated
annealing and threshold methods that may only find locally optimal solutions
towards the end of the run. TS also takes into account past information of
already found solutions to construct short and/or long-term memories. These
memories are useful in guiding the search via diversification to explore other
regions of the solution space, and intensification to intensify the search within
the same vicinity of the current solution. TS, as other metaheuristics, has also
the power of searching over non-feasible regions which, in some situations,
can provide an efficient way for crossing the boundaries of feasibility. The
general method is shown in Algorithm 7.

Algorithm 7: Basic Tabu Search Algorithm.

Step 1. Create an initial solution s and evaluate its cost value f(s). Set best = s
Step 2. Repeat the following n times.
(3a) If there exists a tabu solution s” in N(s) for which f(s”) < f(best) then
Set s = s’ and update Tabu list.
(3b) Else
Choose the best non-tabu solution s’ in N(s)
Set s = s’ and update Tabu list
Be) If f(s) < f(best) then best = s.

A key question is how to define the right restriction or tabu status. For
instance in routing, if the best move was to exchange customer 7 from route
Ry with customer j from route Ry, a very restrictive approach would be to
say that both customers cannot be allowed to go back to their original routes,
respectively, for a certain number of iterations, a tight restriction would be
that either customer 7 or j is not allowed to go back to its original route but
one could return, and a less tight restriction would be that both customers are
able to go back to their original routes but cannot be allowed to be inserted
between their original predecessors and successors.

The time that a solution remains tabu must also be selected. Small values
may increase the risk of cycling whereas large values, on the other hand, may
overconstrain the search. Additionally a larger tabu list (size | 75l) can be more
computationally demanding. The ideal value may be difficult to decide, and
will vary from problem to problem and even instance to instance. It can be
defined dynamically so that it updates according to observations made as the
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search progresses. It can periodically change between a set of values gener-
ated randomly within a fixed range at each iteration. This is known as robust
tabu as it provides a more flexible approach. Another scheme is to have a rule
that the size of the tabu list switches between the two extreme values. This
implementation was found to be successful when adopted by Drezner and
Salhi [34] for the one-way network design problem. Finally |75l can be depen-
dent on the change in the cost function for that selected move. For instance
for the p-median problem, a functional setting was successfully adopted by
Salhi [88].

The construction of such functions is seldom attempted in the literature as
it is challenging but it is an interesting idea as it incorporates both learning
and problem characteristics in an integrated way.

The size of the tabu list can also be updated dynamically by increasing
or decreasing its value as the search progresses. For example, |Ts| could be
increased according to (|Ts| = (1 + B|Ts|) with B = 0.1 or decreased
by setting § = —0.1 depending on the number of repetitions, their risk
of collision, etc. Collision is usually identified through hashing functions
or other forms of identification. This is originally proposed by Battiti and
Tecchiolli [4] who named this variant as reactive TS (RTS). This approach
is adopted by several researchers including Wassan [115] who successfully
addressed a class of routing problems, namely, the vehicle routing with
backhauls problem.

The level for which the aspiration level overrides the tabu status is crucial
in the search as it defines the degree of flexibility of the method. The most
common method as mentioned above is to relax the tabu restriction if a solu-
tion produces a better result than the currently best-known solution. This
is obviously correct as the search would be missing out on the opportunity
to identify a new best solution. Another consideration that arises in some
circumstances is what will happen if all of the solutions are either tabu or
non-improving solutions. Is it appropriate to look for the first non-tabu solu-
tion down the list or to choose one from those tabu top solutions? The
elements which will constitute the decision need to include the tabu status
of the attribute for that solution, the objective function value (or the change
in the objective function) and other factors such as frequency of occurrence
during a certain number of iterations and so on. One possible attempt is to
use the scheme developed by Salhi [88] who introduced a softer aspiration
level which is based on the concept of criticality in the tabu status.

Most tabu search implementations include a Diversification step with
the aim of guiding the search to new, different parts of the solution space.
Diversification moves use some form of perturbation (jumps) to explore new
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regions. It uses long-term memory to guide the search out of regions which
appears to be either less promising according to the results provided from the
short-term memory, or have not been explored previously. The use of diver-
sification is nowadays embedded into most metaheuristics either as a post
optimisation step or as a perturbation step as in large neighbourhood search.

Alternatively intensification can be used which stimulates moves to go to
a nearby state (neighbourhood) that looks myopically good. This uses short-
term memory as it observes the attributes of all performed moves. This is
usually achieved by a local search or a series of local searches where the
focus of the search is on promising regions of the solution space. In brief,
intensification is aimed at detecting good solutions and performing a deeper
exploration.

An important question is how to decide when it is better to carry out
an intensification and when it is time to perturb the solution and activate
diversification. What is the right balance between intensification and diver-
sification? None of these questions are straightforward as these are related to
the problem characteristics, the power of the local search used and the type
of perturbation the overall search is adopting.

11.4 Population-Based Heuristics

In this section, we present those methods that generate a set of solutions
from one iteration to the next instead of only one solution at a time. We
give an overview of the most commonly used approaches in this class which
include genetic algorithms, ant systems, bees algorithm and particle swarms.
For completeness, we also briefly mention other ones such as path relinking,
scatter search, harmony search, heuristic cross-entropy, artificial immune
systems and the psycho-clonal algorithm.

11.4.1 Genetic Algorithms

Genetic algorithms (GAs) were initiated to mimic some of the processes
observed in natural and biological evolution. This approach was initially
developed by John Holland and his associates at the University of Michigan
in the 1970s. The method was formally introduced for the context of solving
general optimisation problems by Holland [50] and Goldberg [45].
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In brief, GA is an adaptive heuristic search method based on population
genetics. A GA consists of a population of chromosomes (set of solutions)
that evolve over a number of generations (iterations) and are subject to genetic
operators (transformations) at each generation. The initial population is typi-
cally generated at random and a fitness function is defined to measure the
quality of each solution. Parent solutions are chosen from the population,
typically with a bias towards selecting high-quality solutions. A crossover
operator is defined to combine attributes of the parent solutions to create
offspring, and then mutations are used to add random variation to the child
solutions. The population is updated according to some rules which usually
ensures that better solutions have more chance of surviving into the next
generation. The process continues for many generations.

A key decision is the chromosome representation of a solution which may
involve a binary, permutation, integer or continuous encoding depending on
the nature of the problem. For example for the p-median problem where
there are 7 possible sites for p facilities, a binary representation of length 7
can be used where position i = 1 means the site is used and i = 0 means it
is not. A permutation representation is more suitable for the TSP where the
chromosome can consist of a string of integers listing the cities in the order
in which they should be visited. An integer representation may be suited to
scheduling problems where the value in position 7 represents the time job 7
should start. Thought needs to be given to select the right representation as
this can either facilitate or hinder the chromosomes’ transformation that will
be generated via the crossover and mutation operators.

Crossover operators should ensure that children inherit characteristics of
the parent solutions. For binary and integer representations possible crossover
operators include 1-point, 2-point and uniform which are illustrated in
Fig. 11.4. For 1-point crossover, a random cut point is chosen and the
child solutions are made up of the elements before the cut point from one
parent, and the elements after the cut point from the other parent. For 2-
point crossover, 2 random cut points are selected. The child solutions are
made up of the elements before the first cut point and after the second cut
point from one parent and the elements between the two cut points from
the other parent. Uniform crossover selects each element of the child solu-
tions randomly from either parent. For permutation representations, 1-point
crossover is not appropriate as it causes infeasible children due to repeated and
missing values. Alternatives for permutation representations include partially
mapped crossover and order crossover, which are illustrated in Fig. 11.5. For
partially mapped crossover, two random cut points are chosen and mapping
systems relate the elements between the cut points. In the example shown the
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Fig. 11.5 Crossover for permutation representations

mapping systems are [3, 1], [4, 2], [5, 5]. These values are swapped and the
remaining values are added if they do not cause any conflict. So for Child 1
for example, 6 and 7 can be added in their positions in Parent 1 but 2 and
1 cannot as they are already present in the child solution. Therefore 2 and 1
are replaced according to the mapping systems by 4 and 3, respectively. For
the order crossover, two random cut points are chosen. The child solution is
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made up of the values between the two cut points in the first parent, and the
remaining values are added in the order they appear in the second parent.

Mutation operators may flip a binary value (0— > 1 or 1— > 0),
replace the value in an integer representation or swap values in a permuta-
tion representation. A mutation rate A is typically defined, normally in the
range [0.01, 0.1] and then a value is subject to mutation if a random value
between 0 and 1 is less than A.

Other decisions that must be made when using a genetic algorithm include
which solutions should be chosen as parents. A commonly used selection
scheme is the tournament selection where a subset of the population is chosen
randomly and the best of these are selected as parents based on their fitness
values (i.e, f(.) ). There are several other ways to select a chromosome #
from population P. Roulette wheel selection is commonly used, where the
probability of selecting chromosome 4 is Prob(k)= f(k)/ ) ,..p f(r). This
simple rule seems to suffer where the population contains some outstanding
individuals as these tend to be chosen with a high probability and can lead to
premature convergence. However if the population contains solutions that are
equally fit, then there is insufficient selection pressure. Other selection rules
are based on linear ranking, power and exponential ranking, among others.
One interesting approach would be to sort the chromosomes according to
their fitness, then construct in addition to the top chromosome, three groups
consisting of good, not so good and mediocre or bad chromosomes with
respective sizes n1, ny and n3, respectively. The weights of the three respective
groups at generation # say o1 () > a2(t) > a3(t) > 0 with Z?:l aj(t) =1
can be defined. We can also assume that the first weight «1(¢) is a non-
decreasing function of r with lim;, o a(t) — 1 while the other weights
converge towards zero. Using the roulette wheel, the group will be selected
based on these weights and then a chromosome within that group is chosen
randomly for crossover or mutation, etc.

It is also important to provide diversity and hence an opportunity for
improvement is possible through some form of migration. In a GA, a
small number of completely new chromosomes which are generated either
randomly or constructed can be injected into the population to provide diver-
sity from time to time. The number of injected chromosomes and when the
injection takes place are issues that deserve careful investigation. Usually the
injection starts being active once the GA shows some form of stagnation and
then from that point onward injection is activated periodically or adaptively
depending on the behaviour of the overall results.

Figure 11.6 illustrates the new combined generation scheme which
includes both the flexible reproduction and the effect of immigration which
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Fig. 11.6 Injection of chromosomes and new generation composition (adapted from
(93D

was successfully explored by Salhi and Gama [91], and Salhi and Petch [86]
for a class of location and routing problems, respectively. More details can
also be found in the recent book on heuristic search in [93].

GAs are powerful at exploring the wider space by identifying promising
regions, but lack the fine mechanisms to pinpoint the exact local minima
(maxima) that may be required. Therefore many Genetic Algorithms in liter-
ature are actually Memetic Algorithms, which are hybrids of GAs and local
search. The initial population is produced but is then subject to local search
so the population consists of a set of local optima. The algorithm continues as
normal but each child that is produced is also subject to descent. In this way,
better solutions may be produced but at a cost of additional computational
time.

11.4.2 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a meta-heuristic inspired by the observa-
tion of the behaviour of real-life ant colonies, in particular the way in which
real ants find the shortest path between food sources and their nest. Ants
create paths from the nest to their food and leave pheromone trails which
influence the decisions of other ants as to which path to take. The effect of
this is the pheromone trail will build up at a faster rate on the shorter paths.
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This will influence more ants to follow the shorter paths due to the fact that
the ants prefer to follow a path with a higher pheromone concentration. As a
greater number of ants choose the shorter path, this in turn causes a greater
level of pheromone and hence encourages more ants to follow the shorter
path. In time, all ants will have the tendency to choose the shorter path. In
other words, the greater the concentration of the pheromone on the ground,
the higher the probability that an ant will choose that path. Good quality
solutions are developed as a result of this collective behaviour of the ants. For
more information see [21].

This real-life behaviour of ants has been adapted to solve combinatorial
optimisation problems, as initially proposed by Dorigo et al. [29]. Ant system
algorithms employ a set of agents, known as ants, who search in parallel
for good solutions using a form of indirect communication. The artificial
ants co-operate via the artificial pheromone level deposited on arcs which is
calculated as a function of the quality of the solution found. The amount
of pheromone an ant deposits is proportional to the quality of the solution
generated by that ant helping direct the search towards good solutions. The
artificial ants construct solutions iteratively by adding a new node to a partial
solution exploiting information gained from past performance using both
pheromone levels and a greedy heuristic. A local search could also be intro-
duced to improve the solutions. Once that is completed, a global updating
of the pheromone trail levels is activated to reinforce the best solutions by
adding an extra amount of pheromone to those arcs of the best solutions.
This amount can be based on the length of the best tour as well as the number
of ants that produced that best tour.

A variant of ACO named Ant System (AS) was initially proposed by
Colorni et al. [15] to solve the travelling salesman problem. The algorithm
is illustrated in Algorithm 8. Assume the TSP contains 7 cities and distance
matrix 4 (4, j) defines the distance between each pair of cities (7, 7).
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Algorithm 8: Basic Ant System Algorithm.

Step 1. Initialise the placement of M ants and their respective pheromone trail matrix
7(i, j) to a constant value ¢ where ¢ > 0.
Step 2. While none of the stopping criteria witin the inner loop is met, for each ant
(k =1, ..., M) perform the following steps:
(2a) Form the complete solution configuration by keep selecting the next customer to
visit probabilitistically using the formula:
(@i, ) = (i, j)P | Tk T(i, k)® = 1(i, k)P where 1;; is known as the visibility and
is the greedy cost of going to unvisited city j from current city i to the tour and
equals 1/d(i, j). @ and B are the respective weights on the trail and the visibility.
(2b) Apply a local search if needed (this can be optional, applied once in a while or
adaptively using a learning scheme)
(2c) Record the objective function value for each ant (Ly, k =1, ..., M).
(2d) Use the local update of the trail matrix according to the formula
7(i, k) = (1 - p)r(i, k) + X}, At¥ (i, k) where the amount of trail added by ant
k, AT*(i, j) = Q/Ly for each path (i, j) included in solution k with Q and p
being the correction and the evaporation factors respectively.
Step 3. If the stopping criteria for the outer loop is met then stop, otherwise
(3a) Apply the global updating of the pheromone trail by adding a constanty > 0 to
those arcs that belong to the best solution configurations. For example,
Y = Npest % Lpest Where Np ¢ represents the number of ants that produced the
best
objective function value Lpe ;-
(3b) Return to Step 2.

Colorni et al. also evaluated a trail update rule which add a constant value
to the trail which is independent of the total distance of the tour. This made
little difference to solution quality. They also showed that it was better to
update the trail matrix after the entire tour had been produced rather than
after each construction step.

In addition, an elitism strategy that provides a strong reinforcement to the
tour corresponding to the global best solution may be used. Arcs belonging to
the global best tour have their pheromone increased by a quantity that favour
the number of ants that produce the best tour and the length of the global
best tour. The consequence of the global updating rule is that arcs belonging
to short tours and arcs which have been used frequently are favoured by
receiving a greater amount of pheromone. Dorigo and Gambardella [27]
proposed updating the pheromone based only on the global best-found solu-
tion. Stutzle and Hoos [102] introduced other variants such as the Max-Min
ant system, known as MMAS. Their method is similar to AS using the same
state transition rule in the selection process with some modifications, the
main one is to restrict the pheromone trail values to be in a certain interval
[Tmin, Tmax]- The aim is to reduce the risk of stagnation and make sure
that certain choices do not become either dominant with high trail values,
or have such small trail values that the probability of them being selected
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is approximately zero. It should be noted that although the idea of intro-
ducing restrictions on the trail values is interesting as it avoids stagnation
and provides a chance for less visited solutions to exist, the choice of these
additional parameters Tpin and Ty need to be made appropriately. ACO
already has many parameters including the parameters @ and B that balance
the emphasis on trail and visibility, the number of ants, the number of cycles
and the evaporation rate.

Bullnheimer et al. [9] introduced another modification to AS by ranking
the ants according to their tour length, and using the ranking to weight the
amount of pheromone each ant contributes. Wade and Salhi [113] investi-
gated the use of ACO in a class of VRP by incorporating a visibility factor
based on the remaining load in the selection rule, the frequency of occur-
rence of a given arc in the local updating rule and both elitism and ranking
are combined to yield a compromise global updating rule. For more informa-
tion, references and applications on ant systems in general, the review paper
[28] and the book [93] can be useful references.

11.4.3 The Bee Algorithm

This optimisation algorithm is inspired by the behaviour of swarms of honey
bees when searching for their food. It shares some similarities with the way
the ants behave. The best example of individual insects to resolve complex
tasks is by the collection and processing of nectar. Each bee finds sources of
the nectar by following another bee which has already discovered a patch of
flowers. Once the bee returns to the hive with some food, the bee can either
abandon the food source and then becomes again an uncommitted follower,
continue to forage at the food source without recruiting new bees, or recruit
more bees and return to the food source.

The basic bee algorithm, originally developed for continuous optimisation
problems, can be found in [81]. In brief, the bees are first assigned to some
chosen sites with the idea that those sites that attract more bees are considered
more promising. This is repeated several times till a certain stopping criterion
is met. The way a site is considered attractive is the most important point.
This is measured by the fitness function of each bee at that site where the top
sites will receive more bees either in an equal number or proportionally to
their fitness.

Another popular and related bee algorithm is the Artificial Bee Colony
(ABC) algorithm proposed by Karaboga [56]. The ABC algorithm is inspired
by the intelligent foraging behaviour of a swarm of honeybees. The foraging
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bees are classified into three categories: employed, onlookers and scouts. All
bees that are currently exploiting a food source are classified as employed
and they provide information to the waiting bees (onlooker bees) in the hive
about the quality of the food source sites which they are exploiting. Onlooker
bees wait in the hive and decide on a food source to further exploit based on
the information shared by the employed bees. Scouts search the neighbouring
areas to find a new food source. Scout bees can be visualised as performing
the job of exploration or diversification, whereas employed and onlooker bees
can be considered as performing the job of exploitation or intensification.
The ABC algorithm is an iterative algorithm that starts by assigning all
employed bees to randomly generated food sources (solutions). At each iter-
ation, every employed bee determines a food source in the neighbourhood of
its currently associated food source and evaluates its nectar amount (fitness).
If the new fitness value is better than the previous one then that employed
bee moves to this new food source, otherwise it retains its old food source.
When all employed bees have finished this process, the bees share the nectar
information of the food sources with the onlookers, each of whom selects
a food source according to the food quality. This scheme means that good
food sources will attract more onlookers than those of poorer quality. After
all onlookers have selected their food sources, each of them determines a food
source in its neighbourhood and computes its fitness. If an onlooker finds a
better fitness value, it changed the employed food source with this new infor-
mation. However, if a solution represented by a particular food source does
not improve for a predetermined number of iterations then that food source
is abandoned by its associated employed bee which becomes a scout (i.e. it
will search for a new food source randomly). The whole process is repeated
until the termination condition is met. The method is shown in Algorithm 9.
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Algorithm 9: Basic Bee Colony Algorithm.

Step 1. Perform the following
(1a) Initialise the number of bees B and construct B solutions at random. These are
the initial food sources (X;, i = 1, ..., B). Evaluate the fitness of each, say F(X;).
(1b) Initialise 73,4 x as the maximum number of iterations and L,,,,x as the
maximum number of successive iterations without improvement.
(1c) Set the number of successive iterations without improvement = 0 for all bees
ie. L; = 0Vi = 1, ..B and set the neighbours of X;, say S; = N(X;) = 0.
Step 2. Repeat the following until the stopping conditions are met
(2a) For each food source, X;, find X,f € N(X;).
If F(X}) < F(X;)setX; = X; and L; = 0. Otherwise let L; = L; + 1
(2b) For each onlooker, choose a food source X; randomly; find X! € N(X;)
and set S; = S; UX]
(2¢) For each food source X; and S; # 0, find the member of S; with
the lowest cost = X.
If F(X]) < F(X;) thenset X; = X/ and L; = 0, else set L; = L; + 1
(2d) For each food source i, if L; = L,,;4x, then select a random move
ie., select X; € N(X;) and set X; = X;. Set L; = 0.

The main steps of the ABC algorithm can be found in Szeto et al. [105]
where efficient implementations are presented for solving the vehicle routing
problem.

11.4.4 Particle Swarm Optimisation (PSO)

This is a further meta-heuristic method based on the social behaviour of
animals, in this case birds or fish. This evolutionary stochastic heuristic is
introduced by Kennedy and Eberhat [58] where a population of individuals
which searches a region of solutions that is recognised as promising is called a
swarm and individual solutions are referred to as particles. It is interesting to
stress the similarities which exist in the classical non-linear numerical optimi-
sation techniques where the next point is based on the previous point and the
displacement. In other words, the new point at iteration (k + 1) lies along
the direction Sy from the previous point X* with an optimal step size A
(ie. X = XK 4+ 1, Sp). In these numerical optimisation methods the aim
is to design a suitable direction and then to derive optimally or numerically
the value of the step size. See for instance the classical textbook in numerical
optimisation by Fletcher [41] for further information. Here, a particle 7 (at
position p;) is flown with a velocity V; through the search space, but retains
in memory its best position (p; ). In the global PSO each particle, through
communication, is aware of the best position of the particles of the swarm
(ﬁ; ). At a given iteration 4, the position of the ith particle i =1, ..., n) is
updated as follows X;x = X;(k — 1) + Vl.k . The velocity (or displacement)
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is defined as a linear combination of three velocities, namely, (i) the velocity
at the previous iteration, (ii) the velocity with respect to the best position of
this particle up to this iteration and (iii) the velocity with respect to the global
best position of all particles up to this iteration.

PSO has been found to be suitable for solving combinatorial optimisation
and especially unconstrained global optimisation problems. As the swarm
may become stagnated (early convergence) after a certain number of itera-
tions, a form of diversification or perturbation is often recommended. One
way would be to introduce a simple chaotic perturbation that adds diversity
to the system and avoids the search from getting stuck.

11.4.5 A Brief Summary of Other Population-Based
Approaches

In this subsection, other population-based metaheuristics are briefly described
in turn.

Cross-Entropy Based Algorithms (CE): This is an iterative population-based
method made up of two steps that are applied in sequence until a stopping
criterion is met. These steps are (i) the generation of feasible solutions pseudo-
randomly based on a probability distribution representing the frequency of
the occurrence of the attributes of a given solution, and (ii) the distribu-
tion is then updated. The idea is that this adaptive technique will have the
tendency to estimate and learn better probabilities and hence generate better
solutions. CE was initially presented by Rubinstein [84] for estimating rare
events (financial risk, false alarms, etc) and then Rubinstein and Kroese [85]
gave a formal description of this approach and presented its uses in solving
combinatorial optimisation problems.

Scatter Search (SS): This is proposed by Glover et al. [44] with the aim
of constructing new solutions by combining parts of existing solutions. This
method can be considered as one of the earliest steps towards deep learning
which is discussed in the next chapter. The idea is to generate a large number
of diverse trial solutions which are then improved. The set of these solutions
needs to be of high quality while being diverse. A subset of these solutions
are classed as the reference solutions; these are typically the best ones but
some additional solutions may be included to increase the diversity of the
reference set. It could for example consist of 10% of the entire solution set.
New solutions are constructed from the solutions in the reference set and
these are then improved. Any new solutions that outperform solutions in the
reference set are added to it. The process continues until the reference set no
longer improves. The main steps of the SS can be found in Marti et al. [72].
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Harmony Search (HS): This was originally proposed by Geem et al. [42] to
imitate the success of music players in their improvisation when searching for
a music harmony that is pleasing to the ear. Such a harmony is made up of a
combination of sounds at certain pitches played by different instruments. The
aim of the musician is to identify the best pitch for each sound so that when
combined they make an excellent harmonious noise. The analogy with opti-
misation can be seen as follows: A given harmony relates to a given solution
configuration, the sounds of the instruments represent the decision variables,
their respective pitches are the values of the decision variables, and the quality
of the harmony is the objective function value. Each practice by the musi-
cian(s) represents the iteration or the generation number. At each practice
the musician tries to identify new pitches based on the ones he/she remem-
bers to be of good quality, known as the HS memory, while introducing some
extra changes to create a new harmony. This process is repeated until the best
harmony already discovered can no longer be improved. HS is a population-
based approach where the memory contains the pool of harmonies, similar
to the population of chromosomes in GA. However the way the attributes
of a new harmony (new solution) are constructed does not depend on two
parents only as in GA but on all previously found harmonies. The obtained
solution (harmony) is then adjusted for possible improvement with a certain
probability. HS relies on its parameter values that are set at the outset. The
first atctempt to enhance HS was made by Mahdavi et al. [71] followed by a
further enhancement by Pan et al. [80].

Artificial Immune Systems (AIS): The immune system’s aim is to defend
us against diseases and infections. It recognises antigens using immune cells
which are known as B-cells whose jobs are to circulate through the blood
continuously watching and waiting to encounter antigens (foreign molecules
of the pathogens). Each antigen has a particular shape that can be recog-
nised by the receptor of the B cell. AIS is a fast emerging method in some
applied areas of computer science such as data analysis and data mining,
pattern recognition and has now been adapted to the area of optimisation.
In other words, when a pathogen invades the organism it was observed that a
number of immune cells which recognise the pathogen will reproduce in large
numbers, known as clones. This process is known as reinforcement learning.
The clones are then diversified using two methods: (i) a high mutation
rate (known as hyper-mutation) which is performed by introducing random
changes, and (ii) receptor editing which aims to remove the less attractive
antibodies (poor solutions) and replaced them with new ones. In this way,
those cells that bind with their antigens are multiplied whereas the others
are eliminated following the survival of the fittest. In addition, some of the
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successful ones are also kept in memory to face future similar invaders. This
concept is similar to the intensification of the search in promising regions
whereas the hyper-mutation acts as a diversification strategy. In brief, AIS
shares some similarities with GA with the exception that there is no crossover
but just a hyper-mutation.

Psycho-Clonal Algorithm: This meta-heuristic was initially developed by
Tiwari et al. [110] and it is based on the artificial immune system (AIS)
as discussed earlier (mainly based on the clonal selection) and the theory of
the hierarchy of social needs as proposed by Maslow [73]. This hierarchy
is composed of five levels where the lowest level A refers to the physiolog-
ical needs (each antibody represents a solution), level B refers to safety needs
(the evaluation of the objective function), level C refers to the social needs
(the best solutions are selected and cloned proportionally to their objective
function value), level D refers to the growth needs (diversification used to
generate new solutions via hyper-mutation) and finally the highest level E
refers to the self-actualisation needs (the best solutions are chosen to be part
of the new population including the injection of new ones). This approach
can be considered as a mixture of AIS and guided GA where the manage-
ment of the population is maintained in a guided way based on the quality
of cloning whereas diversity is controlled through the hyper-mutation.

There are numerous examples of heuristics being hybridised with other
heuristics. Researchers are only limited by their imaginations as to what is
possible. These are discussed in detail in the following chapter. Some hybrids
have become extremely common. For example memetic algorithms combine
a genetic algorithm with a hill climber meaning all members of the popula-
tion are local optima according to the neighbourhood definition used. This
helps the genetic algorithm identify high-quality solutions but adds consid-
erably to the run time. Similarly a hill climber is often added to Ant Colony
Optimisation.

11.5 Some Applications

In this section we present some real-life applications that are addressed by
meta-heuristic approaches. There are numerous applications of heuristic and
metaheuristic so we can only provide a small overview of a few problems.
However we hope this gives an idea of the wide range and variety of problems
that are solved in practice.
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11.5.1 Radio-Therapy

One of the techniques adopted in treating cancerous tumours is the intensity
modulated radiotherapy treatment (short for IMRT). This consists of sending
a dose of radiation to the cancerous region with the aim to sterilise the
tumour while avoiding damage to the surrounding healthy organs and tissues.
This is performed by defining the number of angles, their respective angles
and the intensity chosen for the radiation beams at each of these angles. For
instance, Bertsimas et al. [5] present a hybridisation of a gradient descent and
an adaptive Simulated Annealing method. The initial solution is generated
by solving an LP based on using equi-spaced angle beams. Their approach is
tested on real-life pancreatic cases (kidneys, liver, stomach, skin and pancreas)
at the Massachusetts general hospital of Boston, USA. A case study dealing
with patients with head-and-neck tumours at the Portuguese Institute of
Oncology in Coimbra is conducted by Dias et al. [24] who adopted a
hybrid Genetic Algorithm with a Neural Network. Here, each chromosome
is binary and represented by 360 genes, one for each possible angle, with the
angles selected represented by 1. Also, Dias et al. [25] proposed Simulated
Annealing, with a dynamically adjusted neighbourhood (in terms of angles),
and successfully tested it on the same case study in Coimbra. Their results
suggest that a reduced number of angles (and hence less technical adjust-
ment) is required and an improvement in organ sparing and coverage of the
tumours is observed.

11.5.2 Sport Management

A variety of metaheuristics have been used to schedule fixtures across many
different sporting activities. Wright [117] uses Tabu Search to schedule the
English county cricket fixtures, Willis and Terrill [116] opt for Simulated
Annealing to schedule Australian state cricket, Costa [19] adopts an evolu-
tionary Tabu Search to schedule National Hockey League matches in North
America while Thompson [109] also uses Tabu Search to schedule the 1999
Rugby World Cup. Wright [119] produces schedules for New Zealand cricket
matches using Simulated Annealing whereas Kendall [57] uses a form of local
search to schedule English football fixtures over the Christmas period.
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11.5.3 Educational Timetabling

Constructing timetables including examination timetables at schools, colleges
and universities can be a hugely time-consuming and difficult task if
performed manually. Computer systems that incorporate some form of
heuristics are nowadays used frequently and reduce the time required to
produce solutions considerably. For instance, Wright [118] constructs a
tool that incorporates Tabu Search for a large comprehensive school of
over 1400 pupils and 80 teachers in Lancashire, England. Dowsland and
Thompson [31] construct an examination timetable for the University of
Swansea using Simulated Annealing. The examination timetabling problem is
also solved by Di Gaspero and Schaerf [26] using Tabu Search and by Pillay
et al. [82] using a Genetic Algorithm. The problem of optimising lecture
timetables is considered by, amongst others Borchani et al. [6] using Variable
Neighbourhood Descent, Corne et al. [18] using evolutionary algorithms
and Basir et al. [3] using Simulated Annealing. For more information and
references therein on educational timetabling, see [65].

11.5.4 Nurse Rostering

This problem plays an important part in efficiently managing the personnel
at a hospital. The aim is to balance the workforce workload while providing
flexibility and satisfying preferences whenever possible leading to a reduction
in stress, an increase in staff satisfaction and a happier working environment.
Dowsland and Thompson [32] integrate ideas from knapsack problems,
network flow models and Tabu Search to construct an efficient computer
software tool to solve the nurse rostering problem in a large UK hospital
in Wales. Aickelin and Dowsland [2] use an indirect Genetic Algorithm to
produce nurse rosters. Burke et al. [11] used Variable Neighbourhood Search
to solve the same problem. For more information on this area see the review

papers by [10] and [111].

11.5.5 Distribution Management (Routing)

Planning routes by efficiently scheduling the sequence of the customers as
they are served and in some cases determining strategically the right vehicle
fleet constitutes a huge component of logistic costs (in the range of 30%) and
therefore any improvement gained will provide the company with a compet-
itive edge over its competitors. For instance, Semet and Taillard [99] used
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Tabu Search to solve a real-life distribution problem in Switzerland leading
to a 15% reduction in cost. Rochat and Semet [83] developed a Tabu Search
approach for a pet food company having 100 farms and stores leading to
about 16% a cost saving. Brandao and Mercier [7] also used Tabu Search for
the multi-trip problem at a British biscuit company in the UK. Threshold
Acceptance was adopted by Tarantilis and Kiranoudis [107] to schedule
the fresh meat distribution with heterogeneous fleet in a densely populated
area of Athens. Tarantilis and Kiranoudis [108] used a two-phase approach
based on Large Neighbourhood Search for both a dairy and a construction
company in Greece. The delivery of blood products to Austrian hospitals for
the blood bank of the Austrian Red Cross for Eastern Austria was conducted
by Hemmelmayr et al. [51] using a combination of integer programming and
Variable Neighbourhood Search.

11.5.6 Location Problems

There is always a challenge in deciding where to locate something which
may require a massive investment such as plants and warehouses, consoli-
dation points and in some cases less expensive equipment that are required
in large numbers. For instance, when it comes to locating emergency facili-
ties such as police stations, fire stations etc, the aim is to locate the facilities
in such a way that the longest time to reach the customer is minimised.
This type of problem is known as the p-centre problem where the param-
eter can be changed for scenario analysis purposes. Pacheto and Casado [79]
adopted Scatter Search to locate a number of geriatric and diabetic health
care clinics in the rural area of Burgos in Spain. Lu [68] implemented Simu-
lated Annealing to locate urgent relief centres in Taiwan to respond to a major
earthquake. Cunha and Silva [20] presented an efficient configuration of such
a hub and spoke network for one of the top ten trucking companies in Brazil
using a Genetic Algorithm. Also, electricity providers seek to locate their large
number of protection devices (costing approximately £10K each) on their tree
network to protect the users from having an electricity cut in the case of big
storms, etc. James and Salhi [53], [54] explored this unusual network location
problem for the UK Midland Electricity Board using a constructive heuristic
and Tabu Search.
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11.5.7 Chemical Engineering

In several industries such as pharmaceutical, wastewater treatment, biotech-
nology, the control and the regulation of the pH value, which needs to be
around 7, is critical. The modelling of pH control is an important issue which
turns out to be an operational decision problem that fits into the class of
global optimisation. There is a good amount of research into advanced non-
linear control techniques but in practice linear control techniques are usually
adopted due to their simplicity and robustness. Research on how to monitor
some of the parameters that control the pH is carried out for instance by
Mwenbeshi et al. [77] who adopted a powerful GA implementation to intel-
ligently control and model pH in reactors using a lab-scale pH reactor. In
this study, a strong base, namely sodium hydroxide is used to neutralise the
process made up of four acids whose levels need to be determined in real
time as the change in the pH in the reservoir keeps changing all the time.
Interesting studies along this area can also be found in their references therein.

11.5.8 Civil Engineering Applications

The design of water distribution networks is very important and costly in
the area of civil engineering. This can be seen as a hydraulic infrastruc-
ture composed of several pipes of different diameters, hydraulic devices with
various powers and different reservoirs. The aim of the problem is to deter-
mine the minimal diameter for each pipe in such a way that the total cost is
minimised and appropriate water pressure is reached at each of the nodes of
the network. HS was tested on this complex non-linear problem based on the
water distribution network of Hanoi in Vietnam by Geem et al. [42]. A real
coding GA that incorporates neighbourhood reduction with several crossover
and mutation operators was proposed by Kadu et al. [55] for the same case
study. Reservoir management is also one of the key aspects in water resource
planning. Each reservoir has several conflicting objectives as well as different
operating rules and operating policies due to the land or the cities around it.
The aim is to determine the right policy among a large set of possible ones at
a given period. For instance two basic conflicting objectives are the minimi-
sation of the lack of irrigation against the maximisation of the generation
of electricity (e.g. hydropower generation). The problem is transformed into
a weighted multi-objective approach and solved efficiently using an adapta-
tion of Particle Swarm Optimisation by Kumar and Reddy [61]. The same
authors a year earlier in 2006 [60] put forward an approach based on Ant
Colony Optimisation to solve the multi-purpose reservoir problem.
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There are many applications in other areas of engineering such as electrical,
chemical, mechanical, environmental and civil engineering where evolu-
tionary methods including GA are commonly used. See for instance the
edited book by Dasgupta [22] which can be a useful and informative addition
to the reader.

11.6 Conclusion and Research Issues

In this final section we summarise our findings and provide some research
avenues that could be worth pursuing.

11.6.1 Conclusion

In this chapter several heuristic-based techniques that are used in solving
difficult combinatorial and global optimisation are described and their pros
and cons are highlighted. The methods range from those that only accept
improving solutions such as hill-climbing, Variable Neighbourhood Search
and GRASD, to those that accept non-improving ones while incorporating
some form of guidance to avoid the risk of diverging and cycling like Simu-
lated Annealing, Threshold Acceptance and Tabu Search. Those techniques
that use simultaneously more than one solution at a time, also known
as population or evolutionary methods, are also discussed include Genetic
Algorithms, Ant Colony Optimisation and Bee Colony Optimisation. As
strengths and weaknesses can be found in any heuristic, many modern imple-
mentations hybridise a number of these methods, leading to better results
overall. Of particular interest is metaheuristics, where exact and heuristic
methods are combined.

The efficiency of heuristics depends on several aspects and one key element
is the quality of the implementation. Each meta-heuristic can be applied in
different ways and reviewing the academic literature to understand which
sorts of methods have worked well on particular problems is crucial. Also key
is parameter optimisation and here methods that require fewer parameters e.g.
tabu search, threshold acceptance may be considered superior to methods that
require many parameters such as simulated annealing and ant colony opti-
misation. Methods that automatically set parameters or dynamically adjust
them as the search proceeds may remove this advantage. The coding is crucial
also—much time can be saved by using efficient data structures, reducing
neighbourhoods, etc.
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Heuristic search has made huge advances in the last 25 years and this is
likely to continue as problem complexity and size also increase. Advances
in computer technology and commercial optimisation software are enabling
larger problems to be solved exactly than previous, however there is still a
huge need for high-quality heuristic solution methods.

Heuristics have arisen from a variety of applications, from different people’s
expertise and sometimes just as a by-product of curiosity of some researchers
whose original aim was to disprove their usefulness. We believe this less struc-
tured area, known by some as a grey research area, will remain for many years
to come and will become even greyer and open to more challenges. Heuris-
tics remain the most appropriate and attractive optimisation approaches for
tackling many complex combinatorial and global optimisation problems.

11.6.2 Potential Research Issues

An exciting future topic is hybridisation, be it between purely heuristic
methods or heuristic and exact methods. This suggestion will be discussed
in another chapter in this book [97].

The understanding of how a given method works and then the design
of a data structure that incorporates interesting information found during
the search so as to avoid re-computing unnecessary calculations is vital. This
process though may increase some level of memory and may require an initial
fixed cost in terms of development and computation time, but it does often
lead to a massive time saving without affecting the solution quality at all.
This aspect can also be enhanced further by the construction of effective
neighbourhood reduction schemes that helps the search to avoid checking
combinations and operations that are unlikely to result in improving the solu-
tion. A note of caution here is that the latter schemes will have a considerable
saving in computational time and are usually simple to construct, but could
affect the solution quality if they happen to be too restrictive. The compro-
mise in the design between a neighbourhood reduction method which is
powerful enough (removing as many as possible irrelevant checks) while not
excluding promising moves is exciting and hence worth exploring.

Evolutionary heuristics are relatively easy to be parallelised and hence can
be used for larger instances and in a practical setting if the computing facilities
are available.

The design of adaptive search that dynamically learns and makes use of the
obtained information is crucial. This learning mechanism which ought to be
continuously or at least periodically updated is then used to pseudo-randomly
select at regular intervals the decision rules to be used. These can include
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a subset of neighbourhoods to choose from, a number of local searches to
be used for intensification purposes, or even the powerful heuristics or exact
methods to select from. This kind of search is self-adaptive and also efficient
as it uses only what it needs with the expectation that a good solution may
be found. This research issue though challenging and practically useful will
probably be one of the most popular research areas in the near future as it
has the additional benefits of being applicable in several areas ranging from
engineering to medicine.

In a related but different aspect, it is well known that most exciting
powerful heuristics seem to suffer from parameter tuning. It is therefore
worthwhile concentrating on schemes that incorporate ways of reducing the
number of parameters or adjusting the parameters’ values dynamically and
adaptively. This is very welcome and in our view is also one of the ways
forward. Results from such studies will provide us with tools that avoid
requiring excessive time for fine tuning of the parameters, besides making
the heuristic less sensitive to parameter values and hence reliable to use.
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