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Bilevel Discrete Optimisation: Computational

Complexity and Applications

Yury Kochetov , Alexander Plyasunov, and Arteam Panin

1.1 Introduction

The first bilevel optimisation problem was formulated by the German
economist Heinrich Freiherr von Stackelberg as the economic two players
game in 1934 [1]. Therefore, bilevel optimisation problems are sometimes
called Stackelberg games and their solutions are called the Stackelberg equi-
libria. In 1973, Jerome Bracken and James T. McGill proposed a modern
formulation of the bilevel programming problems (BPPs) [2]. These prob-
lems contain two levels of decision-making: upper and lower. Each level
has its optimisation problem. The upper-level problem is called the leader’s
problem. The lower-level problem is the follower’s problem. Each problem
has its objective function, constraints, and decision vector as variables. The
lower-level problem is a parametric optimisation problem with an upper-level
decision vector as the parameter. The follower’s problem is used to form an
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extreme constraint to the leader’s problem. This constraint is usually written
as a set-theoretic inclusion [3]. It implies that the lower-level variables are the
optimal solution to the lower-level problem parameterised by the upper-level
variables.
This extreme constraint is the reason why the bilevel problems turned out

to be surprisingly difficult to solve. For example, the linear programming
problem is polynomially solvable, but its bilevel analogue is NP-hard in the
strong sense. Moreover, to check the feasible domain is empty or not is an
NP-hard problem in the strong sense too. This property is preserved for very
special cases of the bilevel linear programming problems with the follower’s
variables in the leader’s constraints.

Currently, there are no direct or simple modifications of standard
approaches to design exact and approximate algorithms for the bilevel cases.
The main reason is that the set of feasible solutions usually turns out to
be non-convex and disconnected. For the bilevel mixed-integer linear prob-
lems, the optimal value of its linear programming relaxation cannot guarantee
a lower bound for the integer global minimum. Moreover, if the optimal
solution to the relaxed problem is a feasible solution to the original bilevel
problem, then it does not follow that it is the optimal solution to the original
problem. If we look at one of the standard approaches for solving optimi-
sation problems, namely local search, then even in this case we will not be
successful. This is due to the non-polynomiality of even the simplest neigh-
bourhoods since they require the optimal solution to the follower’s problem
which, as a rule, is NP-hard.

What makes bilevel models highly relevant is that they are typically char-
acterised by very large unexpected effects on the economy and surrounding
environment. Given the far-reaching future impacts of the decisions, it is
not surprising that the interest in bilevel optimisation has grown strong
especially among researchers dealing with large-scale public sector decision-
making problems. To date, a huge number of articles have appeared that
study the bilevel models from theoretical and empirical sides. Similarly, there
is a rapid increase in the number of papers devoted to bilevel programming
applications in various fields of science and industry.
This chapter is organised as follows. Section 1.2 presents bilevel discrete

optimisation in general formulation, definitions of feasible and optimal
solutions for this ill-posed problem, main concepts, and examples. The rela-
tionship of the bilevel problems with Stackelberg games and multi-objective
problems is discussed here. A short survey of exact and approximate methods,
including metaheuristics as the most strong technique for application, is given
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in Sect. 1.3. Section 1.4 addresses important questions related to the compu-
tational complexity of bilevel discrete optimisation and the approximation
complexity. Section 1.5 provides an overview of the literature with practical
bilevel problems in economics, industry, transport, engineering, facility loca-
tion, network design, etc. Finally, Sect. 1.6 concludes the paper and shows
some future research directions and perspectives.

1.2 Main Definitions and Properties

Let us consider a sequential game where the first player (leader) chooses her
solution (vector x ∈ X ) and incorporates the optimal reaction (vector y ∈ Y )
of the second player (follower) into her optimisation process. This game can
be described mathematically as bilevel programming problem:

min
x∈X,y∈Y F(x, y)

s.t. G(x, y) ≤ 0,

y ∈ opt (x),

where opt (x ) is the set of optimal solutions to the follower’s problem
parameterised by the vector x:

min
y∈Y f (x, y)

s.t. g(x, y) ≤ 0.

In this formulation, F (x, y) is the leader’s objective function and f (x, y) is
the follower’s objective function. The leader’s and the follower’s constraints
are defined by the vector functions G (x, y) and g (x, y), respectively. In
this program, the leader is free, whenever the set opt (x ) does not shrink
to a singleton, to select an element of opt (x ) that suits her best. This case
corresponds to the optimistic formulation. Alternatively, in the pessimistic
formulation, we consider the case when the leader protects herself against
the worst possible situation. To this end, we change the objective function of
the leader as follows:

min
x∈X max

y∈opt (x) F(x, y)
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and must guarantee that the follower cannot violate the upper-level
constraints. In other words, all optimal solutions for the follower’s problem
must satisfy these joint (or coupling) constraints [4]. As a result, the
pessimistic bilevel problems are very difficult to solve. Most theoretical
and algorithmic contributions relate to the optimistic formulations. Detail
discussion of the pessimistic formulations can be found in [4, 5].

In real-world applications, we often know nothing about follower
behaviour. In such a case, the optimistic and pessimistic solutions show the
lower and upper bounds for the optimal value of the objective function of the
leader. We deal with the ill-posed problem indeed in the case of the multiple
optimal solutions for the follower’s problem. The difference between the opti-
mistic and pessimistic approaches can also be explained from the follower
viewpoint. The optimistic solution results from the friendly or cooperative
behaviour of the players, while an aggressive follower produces the pessimistic
solution.

Program BPP is often called the upper (first level, outer, leader) problem.
The mathematical program parameterised by the vector x is the lower
(second level, inner, follower) problem. The set of follower’s optimal solutions
opt (x) = {y | y ∈ argmin{ f (x, y′) | y′ ∈ sol(x)}} is also called the set of
rational reactions where sol(x) = {y | g(x, y) ≤ 0} is the set of follower’s
feasible solutions.
The set of feasible optimistic solutions for the BPP is defined as Sol =

{(x, y) | G(x, y) ≤ 0, y ∈ opt (x)}. This set is usually non-convex and
might be disconnected. Sometimes, it is called the inducible region. The set of
optimal optimistic solutions for the BPP is the set of the best feasible optimistic
solutions for the leader, that is the set {(x, y) | (x, y) ∈ argmin{F(x ′, y′) |
(x ′, y′) ∈ Sol}}. The relaxed constraint region is defined as S = {(x, y) |
G(x, y) ≤ 0, g(x, y) ≤ 0}.

For a better understanding of the bilevel formulations, let us consider an
example of the bilevel knapsack problem [6]. Two players hold their own
knapsacks and choose items from a common item set. Firstly, the leader
packs some items into her knapsack. Later on, the follower packs some of
the remaining items into his knapsack. The objective of the follower is to
maximise the total profit of the items in his knapsack. The objective of the
hostile leader is to minimise this profit. In other words, we face the following
bilevel discrete optimisation problem with n items, pi is the profit of item i,
coefficients ai and bi are its weights for the leader and the follower, A and B
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are the capacities of the leader’s and the follower’s knapsacks, respectively.

min
x,y∈{0,1}

n∑

i=1

pi yi

n∑

i=1

ai xi ≤ A;

y ∈ opt (x),

where opt (x ) is the set of optimal solutions of the lower-level problem:

max
y∈{0,1}

n∑

i=1

pi yi

n∑

i=1

bi yi ≤ B;

yi ≤ 1 − xi , 1 ≤ i ≤ n.

Note that we have to solve the NP-hard problem for arbitrary feasible solu-
tion x to calculate the value of the leader’s objective function. Thus, the
finding of the best leader’s solution is a very hard problem. Below, we will see
that it is harder than NP-complete problem, unless P = NP. This example is
also interesting because the optimistic and pessimistic solutions coincide here
even if the set opt (x ) contains multiple solutions. The upper-level constraint
contains only the leader’s variables. The follower cannot violate them. It is a
simple case of BPPs.

For the pessimistic case, we have to modify the definition of feasible solu-
tion. The set of feasible pessimistic solutions is the set of pairs (x, y) ∈ Sol
which satisfy two conditions:

– G(x, y) ≤ 0, ∀ y ∈ opt (x);
– F(x, y) ≥ F(x, y)), ∀ y ∈ opt (x).

For given x, all optimal follower’s solutions must satisfy the joint
constraints and y is the worst answer of the follower according to the leader
objective function [7]. Optimal solution in pessimistic case is the best feasible
pessimistic solution for the leader.
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Consider some properties of the bilevel discrete optimisation problems. Let
us find the minimum of the leader’s objective function F (x, y) for (x, y) ∈ S
in the relaxed constraint region. In other words, the leader makes a decision
instead of the follower. It is so called high point relaxation. In that case, the
optimal solution (with rare exceptions) will be infeasible for original bilevel
problem. This is due to the non-optimality of the follower’s response to the
leader’s decision. But we have got a lower bound for the global optimum.
The next unusual property deals with the integrality constraints. For the

classical discrete optimisation, relaxation of this type of constraints lead to
a lower bound. Moreover, if the optimal solution to the relaxed problem is
integer, we have got the optimal solution to the initial discrete problem. It is
not the case for the bilevel discrete optimisation. Let us consider an illustra-
tive example of the pure integer bilevel linear problem proposed by James T.
Moore and Jonathan F. Bard [8]:

min
x,y

F(x, y) = −x − 10y

s.t. x ≥ 0, integer ; y ∈ opt (x);

min
y

f (x, y) = y

s.t. − 25x + 20y ≤ 30; x + 2y ≤ 10;

2x − y ≤ 15; 2x + 10y ≥ 15; y ≥ 0, integer .

The solution (x, y) = (8, 1) with the value F(x, y) = −18 is optimal to
the relaxation and it is integer. But the optimal integer solution is (x∗, y∗) =
(2, 2) with the value of −22 (see Fig. 1.1).
The lower green lines show the feasible domain to the relaxation. As we

can see, it is a non-convex area for this linear bilevel program. Moreover,
the feasible domain of linear BPP, even with continuous variables, may be
disconnected in general case [9]. Therefore, the idea of the simplex method
does not work here. The red domain is the convex hull for the feasible discrete
points. It is a small part of the relaxed constraint region S .

Let us slightly modify this example and include a new upper-level
constraint x + y = 5. Now only three integer points (2, 3), (3, 2), (4, 1)
satisfy all constraints. The first one is the most interesting for the leader with
value of −32 but y = 3 is not optimal for the follower’s problem with x = 2.
For the second point, we have the same property. Hence, the last point is
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Fig. 1.1 The illustrative example

optimal now with a value of −15. Note that it is not a vertex of the convex
hull of the integer feasible discrete points. Moreover, if we move this new
constraint to the lower level, we have got another bilevel problem with an
optimal value of −32.

Bilevel programming problems can be divided into three categories: (1)
all solutions are real-valued vectors; such problems are known as contin-
uous BPPs, (2) all solutions are discrete-valued vectors, discrete BPPs, (3)
all solutions are vectors of continuous or discrete components, mixed BPPs.
Further in this section, we consider various reformulations and generalisa-
tions of bilevel problems and their connections with Stackelberg games and
multi-criteria optimisation problems.
The bilevel optimisation problem can be considered as a generalisation of

the two-stage Stackelberg game [10]. For the first time, such a game was
studied by Von Stackelberg in the context of unbalanced economic markets
[1]. Indeed, BPPs are more or less similar to Stackelberg games in game
theory [11]. In Stackelberg games, the lower-level problem is an equilibrium
problem, while in bilevel optimisation, an optimisation problem arises in the
lower level. A Stackelberg game may differ from the BPP when the reaction
set of the lower-level decision-maker is not a singleton for some decisions of
the leader. As a result, a solution of the static Stackelberg game may not be a
solution to the BPP [12].
The optimal solution of the BPP is not necessarily a Pareto optimal

solution of the corresponding bi-objective problem composed with the
upper-level and the lower-level objectives and vice versa [13, 14]. The rela-
tionship between the bilevel problem and bicriteria optimisation is illustrated
in [15–18]. In [19–23] the authors propose a methodology in which the
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BPP is transformed to an equivalent multi-objective optimisation problem.
A specific cone dominance concept is used. An application of these results to
solve linear bilevel optimisation problems is given in [24]. The discrete bilevel
problems with multiple followers are studied in [25–27]. The bilevel prob-
lems with multiple leaders are considered in [28, 29]. Nine different kinds of
relationships between followers can be found in [30]. A surprising fact is that
the globally optimal solutions to the bilevel optimisation problem need not
remain globally optimal if a constraint is added to the lower-level problem
which is inactive at the optimal solution [31, 32].

1.3 Computational Methods

The main purpose of this section is to present some state-of-the-art exact
methods, metaheuristics, and hybrids of metaheuristics with exact methods to
bilevel discrete optimisation. We have to skip the approximation schemes and
polynomial-time approximation algorithms with a guaranteed performance.
Some negative results in this area for the BPPs establish the inapproximability
of various �P

2 -hard optimisation problems [33–35], unless P = NP. Never-
theless, the first approximation scheme for a �P

2 -hard optimisation problem
is designed in [36]. It is excellent result for the bilevel knapsack problem from
Sect. 1.2 for the case bi = ai , ∀i . To the best of our knowledge, it is the first
and still unique PTAS for the �P

2 -hard BPP.

1.3.1 Exact Methods

This class of methods can be divided into four types. The first one includes
reformulation approaches. The BPP is reformulated as a single-level opti-
misation problem with a large number of variables and (or) constraints.
Another approach here is the mathematical decomposition to reduce the orig-
inal bilevel problem to the single-level problems. The second type includes
branch and bound/branch and cut techniques. It is the basis of the mixed-
integer bilevel optimisation solvers [37, 38] (see also [39, 40]). The third type
includes the parametric programming approaches. The fourth type includes
hybrid methods which may have the characteristics of the first three types.

The methods are based on reformulations. An algorithm based on the
Benders decomposition method is proposed in [41]. The KKT optimality
conditions are used as a reformulation procedure. The only assumption of
the proposed algorithm is that although integer variables could appear in both
levels, they should be controlled by the upper optimisation problem.
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In [42], the linear BPP with binary leader variables and continuous
follower variables is considered. The bilevel problem is reduced to a single-
level problem using KKT conditions, a suitable linearisation technique, and
the Benders decomposition method is applied.

In [43], a decomposition algorithm based on a column-and-constraint
generation scheme using a single-level reformulation is proposed to solve the
general bilevel mixed-integer linear problem. Another approach for binary
lower-level problems is recently proposed in [44].

An algorithm for solving bilevel problems with boolean variables based on
optimal value reformulation and the cutting plane technique is proposed in
[45]. A similar technique is used in [46]. Some new results in this area are
obtained in [47, 48].

The branch and bound/branch and cut methods. The first branch and
bound method for discrete bilevel optimisation is developed in [8]. The
bilevel problems with the linear programming problem at the lower level and
the integer programming problem at the upper level are studied in [49]. A
branch and bound method is designed for this special case.

In [50], a class of the BPP is considered where the leader controls contin-
uous and discrete variables and wants to minimise a convex nonlinear
objective function. The follower’s objective function is a convex quadratic in
a continuous decision space. All constraints are linear. A branch and bound
algorithm is developed to find the global optima.

A new version of the branch and bound method for the mixed-integer
upper- and lower-level problems with joint constraints at the upper level is
proposed in [51]. The linking variables are discrete and all discrete variables
are bounded. The high point relaxation is used to find the optimal solution
in optimistic case.

In [52], two exact algorithms are proposed. The first one is based on the
cutting plane technique, and the second one belongs to the class of branch
and cut algorithms. In [6, 53], an algorithm based on a branch and cut
approach is proposed for the BPP problems without continuous variables and
without joint constraints at the upper level. A generalisation of this algorithm
that allows a mixed-integer environment at both levels is proposed in [54].
Other efficient cutting plane algorithms can be found in [51, 55–58]. Some
valid inequalities and facets for the network pricing problem with connected
toll arcs and its variants are designed in [59].

Parametric programming approaches. Two exact algorithms for the
integer and mixed-integer bilevel programming problems via multi-
parametric programming are proposed in [60]. The first algorithm addresses
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the integer case of the linear BPP and employs a reformulation linearisa-
tion technique to construct a parametric convex hull representation of the
inner problem constraint set. The second algorithm addresses the mixed-
integer case and employs a similar convexification procedure as the previous
algorithm. In contrast to the first algorithm, where a continuous multi-
parametric programming approach is used, the second algorithm utilises
multi-parametric mixed-integer programming to solve the inner problem.

In [61], exact global optimisation algorithms are presented for two classes
of BPP, namely: the mixed-integer linear BPP and the mixed-integer convex
quadratic BPP. The proposed algorithms are a result of multi-parametric
programming theory. The main idea here is to recast the lower-level problem
as a multi-parametric programming problem where the optimisation variables
of the upper-level problem (both continuous and integer) are considered as
parameters for the lower-level problem. The resulting exact parametric solu-
tions are then substituted into the upper-level problem and it is solved as a
set of single-level deterministic mixed-integer programs.

A BPP with only integer decision variables at the lower level and
constraints at both levels is studied in [62]. The leader has integer or contin-
uous decision variables. The solution approach is based on the theory of
parametric integer programming and runs in polynomial time when the
number of decision variables of the follower is fixed.

Non-standard solution methods. In [63], an algorithm based on the
concept of k-th best solution, first developed for the linear case, is devel-
oped for the integer linear fractional BPP. The correctness of this algorithm is
shown in [64]. Upper approximations of the optimal objective function value
of the lower-level problem are used for solving mixed-integer BPP in [65].

A multi-way branching method is used for solving the mixed-integer
bilevel linear program in the case all leader variables are integer and bounded
[66]. An exact algorithm for solving the discrete linear bilevel optimisation
problems using multi-way disjunction cuts to remove infeasible solutions for
the bilevel problem from the search space is presented in [67]. Additional
information about the exact methods for solving (mixed-integer) linear bilevel
optimisation can be found in [61].

1.3.2 Metaheuristics

The word heuristic (from the Greek word heuriskein) means the art of
discovering new strategies to solve problems. The suffix meta (Greek) means
upper-level methodology. The term metaheuristic has been introduced by
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Fred Glover [68]. Unlike exact methods, metaheuristics allow finding effec-
tive approximate solutions to large-scale problem instances in a reasonable
time without guarantee to get global optimal solutions or even solutions with
small deviation from the optimal value. Metaheuristics became popular in the
last 30 years. They demonstrate efficiency and effectiveness to solve large and
sophisticated problems in many applications [69–71].

Due to the intrinsic complexity of bilevel models, BPPs have been recog-
nised as one of the most difficult classses to solve. Hence, metaheuristic
algorithms have been applied here. We can divide them into two classes [70]:
population-based search and single-solution-based search. Single-solution-
based algorithms (e.g. local search, variable neighbourhood search, tabu
search, simulated annealing) manipulate and transform a single solution
during the search while in population-based algorithms (e.g. particle swarm,
evolutionary algorithms) a whole population of solutions is evolved. These
two families have complementary characteristics: single-solution-based meta-
heuristics are exploitation-oriented. They have the power to intensify the
search in local regions. Population-based metaheuristics are exploration-
oriented. They allow better diversification in the whole search space.

Metaheuristics are approximate algorithms. In bilevel problems, there is
a limitation that forces us to solve the lower-level problem exactly. This
fact makes it impossible to use metaheuristics directly to the bilevel prob-
lems. The following classification distinguishes metaheuristics according to
the way they work with the lower-level problem: (1) Single-level transforma-
tion approach; (2) Nested sequential approach; (3) Multi-objective approach;
(4) Co-evolutionary approach.

In the single-level transformation approach, we try to reformulate the BPP
into a single-level optimisation problem. Then, the classical metaheuristics
can be used to solve the single-level problem.

In the nested sequential approach, the lower-level optimisation problem is
solved in nested and sequential ways to evaluate the solutions generated at
the upper level of the BPP.

In the multi-objective approach, the BPP is transformed into a multi-
objective optimisation problem. Then, any multi-objective metaheuristic can
be used to solve the generated problem.

Finally, the co-evolutionary approach is the most general methodology to
solve the BPPs. In this case, metaheuristics for different levels of the problem
coevolve in parallel and exchange information during the search.

A detailed description of this classification with links to corresponding
algorithms can be found in [70]. For solving bilevel linear problems, heuristic
approaches such as evolution algorithms, tabu search, simulated annealing,
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grid search, and other algorithms can be found in [71, 72]. Computational
results for the metaheuristics to the (r |p)-centroid problem and other bilevel
competitive facility location models can be found in [70, 73]. Implementa-
tion of genetic and memetic algorithms, ant colony systems, tabu search, local
search, particle swarm optimisation, simulated annealing, and other heuristic
approaches are presented in [70, 71, 74, 75].

Let us return to the definition of a feasible solution to the BPP. The set of
feasible solutions is defined as Sol = {(x, y) | G(x, y) ≤ 0, y ∈ opt (x)}.
Hence, we need an optimal solution to the follower’s problem to get a feasible
solution for given x. As a result, metaheuristics have to include an exact
method for this aim. Thus, they are hybrid methods. Now we will consider
the case when the follower’s problem has multiple solutions. For the opti-
mistic case, we face an additional problem to pick up the best solution for the
leader in the set opt (x ). To this end, we must solve the following optimisation
problem for given x:

min
y∈Y F(x, y)

s.t. G(x, y) ≤ 0,

f (x, y) = f ∗(x),

g(x, y) ≤ 0,

where f ∗(x) is the optimal value to the follower’s problem. If this auxiliary
problem is infeasible then we must change the solution for the leader. Note
that we need the optimal solution here. Hence, we need an exact method
again.

In the pessimistic case, we have a more sophisticated position. As we have
noted in Sect. 1.2, the leader wishes to protect herself against the worst
possible answer of the follower and upper-level joint constraints must be satis-
fied for all possible answers. Hence, we need to solve the following bilevel
optimisation problem:

min
x∈X max

y∈opt (x) F(x, y),

s.t. G(x, y) ≤ 0,∀y ∈ opt (x), x ∈ X.
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For given x, we can find the worst follower’s answer by solving new auxiliary
problem:

max
y∈Y F(x, y)

s.t. f (x, y) = f ∗(x),

g(x, y) ≤ 0.

Later on, we must be sure that all optimal solutions to the follower’s problem
satisfy the joint constraints. If the follower’s variables are not presented in the
upper-level constraints then this step can be omitted [3]. Otherwise, we need
to check all solutions in the set opt (x ).

Let G(x, y) = (G1(x, y), . . . ,Gm(x, y)) and we wish to find an optimal
solution for the follower which does not satisfy the leader’s constraints. Thus,
we solve m problems for given x:

α j = max{G j (x, y)| f (x, y) = f ∗(x), g(x, y) ≤ 0}, j = 1, . . . ,m.

If max α j > 0 then we have infeasible solution in pessimistic case and
the point x must be replaced. The pessimistic case is the most difficult and
interesting line for future research.
The following simple example illustrates that the optimistic and pessimistic

bilevel problems are similar but their optimal solutions can differ considerably
[4].

min
x∈{−1,0,1} x

x ≥ y, y ∈ opt (x),

and opt (x ) is the set of optimal solutions to the follower’s problem:

max
y∈{−1,0,1} y

2

The follower’s problem is optimised by y ∈ {−1, 1}, independent of the
leader’s decision. The pessimistic bilevel problem requires x to exceed 1,
resulting in an optimal objective value of 1. In contrast, the optimistic bilevel
problem requires x to exceed −1, which results in an optimal objective value
of −1.
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1.4 Computational and Approximation
Complexity

According to the principle of bounded rationality [76], economic agents
cannot use excessively large resources to find the optimal solution. In
operations research, the interaction of economic agents is described by math-
ematical models. Therefore, computational resources are the most critical
type of resource here. From this point of view, the theory of computational
complexity is a natural mathematical tool for describing and investigating
the behaviour of economic agents based on the principle of bounded ratio-
nality [77]. Thus, the knowledge of the relations of the optimisation problem
with complexity classes allows us to estimate what computational resources
are needed to find a rational solution.

When we discuss the computational complexity of the single-level prob-
lems, we usually refer to the complexity classes P and NP for the decision
problems and the classes PO, NPO for the optimisation problems. The pecu-
liarity of bilevel (multi-level) problems is that many of them are outside
of these classes. Therefore, we are forced to introduce the concepts of a
polynomial and approximation hierarchy of complexity classes for the BPP.

1.4.1 Polynomial Hierarchy

We remind the notations used in computational complexity theory to
describe the polynomial hierarchy of complexity classes [78, 79]. The first
two main classes of the decision problems P and NP are defined with deter-
ministic and non-deterministic Turing machines [78]. The class P contains
the decision problems solvable in polynomial time on deterministic Turing
machines. The class NP is defined as the class of the decision problems solv-
able in polynomial time on non-deterministic Turing machines. It means that
we can verify the answer Yes in time polynomial in the size of the input data
of the problem. The third class co-NP consists of decision problems whose
complements belong to the class NP. It means that we can verify the answer
No in time polynomial in the size of the input data of the problem. These
classes form the first level of the polynomial hierarchy. They are denoted as
�P

1 , �
P
1 , and �P

1 , respectively. The second level of the polynomial hierarchy
is defined with deterministic and nondeterministic oracle Turing machines
[78].

A decision problem belongs to the class �P
2 if there exists a determin-

istic Turing machine with an oracle that solves this problem in polynomial
time, using as oracle some language (decision problem) from the class NP. A
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Fig. 1.2 The first two levels of hierarchy

decision problem belongs to the class �P
2 if there exists a non-deterministic

Turing machine with an oracle that solves this problem in polynomial time,
using as oracle some language from the class NP. The class �P

2 consists of
decision problems whose complements belong to �P

2 . The class �P
2 is often

denoted as PN P and the class �P
2 is denoted as N PNP . Figure 1.2 shows all

inclusions between hierarchy classes on the first two levels.
It is clear that this hierarchy can be expanded if we take the class �P

k−1 as
the oracle. It is known that if NP �= co-NP then these inclusions are strict
[78]. The notions of completeness and hardness commonly used for the class
NP are translated directly to the classes �P

k . In particular, the k-level optimi-
sation problems with binary variables, linear constraints, and linear objective
functions are �P

k -hard [80]. We will focus our attention on the class �P
2

as the most appropriate for the BPP and difficult from the point of view of
optimisation methods. A compendium of �P

2 -complete/hard problems can
be found in [81], [82], with more recent updates available online.

1.4.2 Σ P
2 -Hard Bilevel Programming Problems

The structure of the bilevel problems makes their standard decision problem
a natural candidate for membership in the �P

2 class. This is the case if the
lower-level parametric problem lies in the class NPO. If the standard decision
problem for the lower-level parametric problem is NP-complete, then as a
rule, the corresponding bilevel problems turn out to be �P

2 -hard.
Three �P

2 -hard bilevel knapsack problems can be found in [36]. One of
them we have discussed in Sect. 1.2. Let us formulate two remaining prob-
lems. In the first one [83], the leader controls the capacity x of the knapsack
while the follower controls all items and decides which of them are packed
into it. The objective function of the leader depends on the capacity x and the
packed items, whereas the objective function of the follower solely depends
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on the packed items.

min
x,y

{
Ax +

n∑

i=1

ai yi

}
s.t. C ≤ x ≤ C

′
, y ∈ opt (x),

where opt (x ) is the set of optimal solutions of the lower-level problem:

max
y

n∑

i=1

bi yi s.t.
n∑

i=1

bi yi ≤ x; yi ∈ {0, 1}, 1 ≤ i ≤ n.

In the second problem [84], players pack items into the same knapsack with
a prespecified capacity of C . The leader controls part of the item set. The
follower controls the rest of this set. The leader starts the game by packing
some of her items into the knapsack. Later on, the follower adds some further
items from his set. The objective function of the leader depends on all items
packed by the leader and the follower, whereas the objective function of the
follower solely depends on his items.

min
x,y

⎧
⎨

⎩

m∑

j=1

a j x j +
n∑

i=1

a
′
i yi

⎫
⎬

⎭ s.t. x j ∈ {0, 1}, 1 ≤ j ≤ m, y ∈ opt (x),

where opt (x ) is the set of optimal solutions of the lower-level problem:

max
y

n∑

i=1

bi yi s.t.
n∑

i=1

c
′
i yi ≤ C −

m∑

j=1

c j x j , yi ∈ {0, 1}, 1 ≤ i ≤ n.

To show the �P
2 -hardness of these bilevel knapsack variants, the following

�P
2 -complete decision problem (Subset-Sum-Interval) is used [85].
Instance: A sequence q1, q2, ..., qk of positive integers; two positive integers R

and r with r ≤ k.
Question: Does there exist an integer S with R ≤ S < R + 2r such that

none of the subsets I ⊆ {1, ..., k} satisfies �i∈I qi = S?
Reducibilities guarantee �P

2 -hardness of all three bilevel knapsack variants
under the optimistic and pessimistic scenarios [36].

In the field of bilevel facility location, we have some variants of (r |p)-
centroid problem which are �P

2 -hard [86, 87]. Let us consider a two-
dimensional Euclidean plane in which n clients are located. We assume that
each client j has a positive demand w j . Let X be the set of p points where
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the leader opens her facilities and let Y be the set of r points where the
follower opens his facilities. The distances from client j to the closest facility
of the leader and the closest facility of the follower are denoted as d (j, X )
and d (j, Y ), respectively. The client j prefers Y over X if d( j, Y ) < d( j, X)

and prefers X over Y otherwise. By

U (Y ≺ X) := { j | d( j, Y ) < d( j, X)}

we denote the set of clients preferring Y over X . The total demand captured
by the follower by locating his facilities at Y while the leader locates her
facilities at X is given by

W (Y ≺ X) :=
∑

(w j | j ∈ U (Y ≺ X)).

For X given, the follower tries to maximise his own market share. The
maximal value W ∗(X) is defined to be

W ∗(X) := max
Y,|Y |=r

W (Y ≺ X).

This maximisation problem will be called the follower problem. The leader
tries to minimise the market share of the follower. This minimal value
W ∗(X∗) is defined to be

W ∗(X∗) := min
X,|X |=p

W ∗(X).

For the best solution X∗ of the leader, her market share is
∑n

j=1 w j −
W ∗(X∗). In the (r |p)-centroid problem, the goal is to find X∗ and W ∗(X∗).
The discrete (r |p)-centroid problem and the (r |p)-centroid problem on a

network are �P
2 -hard [86]. The hardness proof uses a reduction from the

�P
2 -complete decision problem ∃∀3SAT [86]. It is shown in [87] that the

(r |p)-centroid problem in the plane is �P
2 -hard. The hardness proof uses a

reduction from the �P
2 -complete decision problem ∃∀3, 4SAT [87]. Based

on this reducibility, the following results are also obtained:

– the discrete (r |p)-centroid problem is �P
2 -hard even the clients and

facilities are placed in the two-dimensional Euclidean plane;
– the (r |p)-centroid problem on a network is �P

2 -hard even for planar graphs
with vertices in the two-dimensional Euclidean plane and weights of the
edges are Euclidean distances between corresponding points.
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Another �P
2 -hard problem of competitive facility location is considered in

[88]. The hardness proof uses a reduction from the �P
2 -complete decision

problem ∃1∀3Sat [88].
In [89, 90], there is a leader–follower location and pricing problem that

is also �P
2 -hard. In [89] the hardness proof uses a reduction from the �P

2 -
complete standard decision problem of the (r |p)-centroid problem. In [90]
the hardness proof uses a reduction from the �P

2 -complete decision problem
∃∀3, 4SAT [87].
The bilevel problem of strategic base station placement in cognitive radio

networks is studied in [91]. It is shown that the problem is �P
2 -hard. The

proof uses a reduction from the �P
2 -complete decision problem ∃∀3, 4SAT

[87].
�P

2 -hard problems of public–private partnership can be found in [92, 93].
In [92], it is shown that the problem without tax benefits and infrastruc-
ture projects still remains �P

2 -hard even in the case of a three-year planning
horizon and the optimistic and pessimistic setting. The hardness proofs use
a reduction from the �P

2 -complete decision problem Subset-Sum-Interval
[85].

1.4.3 Approximation Hierarchy

Let us consider the computational complexity of finding near optimal solu-
tions for bilevel discrete optimisation problems. In the classical case, we study
the computational complexity from the point of view of approximate algo-
rithms with a performance guarantee for the optimisation problems from the
class NPO [79]. By definition, this class consists of optimisation problems
for which the standard decision problem belongs to class NP. The class PO is
the subclass of the NPO problems that admitting an exact polynomial-time
algorithm.

Remind some definitions from [79]. Given an optimisation problem Q
in NPO, an approximation algorithm A for Q , and a function r : N �→
(1,∞), we say that A is an r (n)-approximate algorithm for Q if, for any
instance x with a non-empty set of feasible solutions, the performance ratio
of the feasible solution y = A(x) with respect to x verifies the following
inequality:

R(x, A(x)) = max

(
f (x, y)

f ∗(x)
,

f ∗(x)
f (x, y)

)
≤ r(|x |),
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where f (x, y) is the value of the objective function of the problem on a
feasible solution y for x, f (x∗) is the optimal value of the objective function
for x.

An algorithm A is said to be a polynomial-time approximation scheme
(PTAS) for Q if, for any instance x and for any rational value r > 1, A
returns an r-approximate solution of x in time polynomial in |x |.

An algorithm A is said to be a fully polynomial-time approximation
scheme (FPTAS) for Q if, for any instance x and for any rational value r > 1,
A returns an r-approximate solution of x in time polynomial both in |x | and
1/(r − 1).
The class FPTAS is the class of NPO problems that admitting a fully

polynomial-time approximation scheme, while the class PTAS is the class of
NPO problems that admitting a polynomial-time approximation scheme.

Given a class of functions F , F -APX is the class of all NPO problems Q
such that, for some function r ∈ F , there exists a polynomial-time r (n)-
approximate algorithm for Q .

Denote by APX, Log-APX, Poly-APX, Exp-APX classes F -APX with F
equal to the set of constant functions, to the set O(log n) functions, to the
set ∪k>0O(nk) functions, and to the set ∪k>0O(2n

k
) functions, respectively.

The classes APX, Log-APX, Poly-APX, and Exp-APX consist of the prob-
lems for which there exist polynomial approximate algorithms with constant,
logarithmic, polynomial, and exponential performance guarantee, respec-
tively. In the last three cases, the values of the above-mentioned functions
depend on the length of the problem input data.
To determine the approximation complexity of an optimisation problem,

it is enough to find its position in the hierarchy of approximation classes:

PO ⊆ FPT AS ⊆ PT AS ⊆ APX ⊆ Log-APX ⊆ Poly-APX

⊆ Exp-APX ⊆ N PO.

Assuming P �= N P , these inclusions are proper [79, 94].
This hierarchy is used to describe the properties of optimisation problems

from the class NPO. To compare the approximability properties of arbitrary
two problems from the class NPO, reducibility that preserves approximability
is used [79, 94]. Similar approximation classes for the BPPs can be found in
[89]. The definition of each of these new approximation classes is obtained
from the original one by replacing the polynomial-time deterministic algo-
rithm by a polynomial-time deterministic algorithm with an oracle from the
class NP.
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Bilevel knapsack problems are studied in [36, 95]. In [36], a polynomial-
time approximation scheme is developed for the bilevel knapsack problem
proposed in [6]. It is the first approximation scheme for a �P

2 -hard optimi-
sation problem in the history of approximation algorithms.
The question of the complexity of the approximation of optimisation

problems associated with pricing processes is presented in [96–100]. In [96],
it is shown that the unit demand envy-free pricing problem is APX-hard.
APX-hardness of the Stackelberg network pricing problem is shown in [97].
The Stackelberg minimum spanning tree game is also APX-hard [98]. In [99],
it is shown that the bilevel problem with the mill pricing belongs to the class
Log-APX.
The approximability of the bilevel facility location and pricing problems

is discussed in [100]. It is shown that such problems with different pricing
strategies are Poly-APX-hard if we can open a fixed number of facilities.
Without the last constraint, such problems are complete in the class Poly-
APX. The approximability of the discrete bilevel strategic planning model
for public–private partnership is discussed in [101]. It is shown that this
problem is NPO-hard, and the investor’s problem is NPO-complete. As in
the previous case, AP-reducibility is used to give these results. Unless P=NP,
there cannot exist polynomial-time approximate algorithms with guaran-
teed perfomance that correspond to the classes APX , Log-APX , Poly-APX ,
and Exp-APX , and there also cannot exist polynomial-time approximation
schemes for the investor’s problem at the lower level. Hence, we have the
same negative result for the bilevel linear problem.

1.5 Applications

The mixed-integer bilevel programming problems have a wide range of
applications in various spheres of life. A comprehensive overview of such
applications can be found in [9, 71]. A lot of results are related to the
chemical industry, network design, environmental problems, military applica-
tions, competitive facility location, pricing, interdiction problems, and many
others. Moreover, the review [9] contains some studies on the natural gas
cash-out problem, the deregulated electricity market equilibrium problem,
biofuel problems, a problem of designing coupled energy carrier networks,
and so forth. Most part of them deals with the bilevel models with continuous
variables. Below we present some applications of integer or mixed-integer
bilevel models.
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Network design. The term network design means any model that involves
the variables to define the structure of a graph or a network. In many cases,
we discuss a transportation network. Usually, the objective of network design
models is to satisfy data communication requirements and minimise the
total expenses. Requirement scope can vary widely from one network design
project to another based on geographic particularities and the nature of the
data requiring transport.
The network design problem is first modelled as a bilevel program by Gao

et al. [102]. The leader determines new road links to minimise the system
travelling costs. The follower’s problem is design to characterise the user equi-
librium. Fontaine and Minner [103] reformulate the network design problem
as a mixed-integer linear problem using the same approach as Labbé et al.
[104]. An improved Benders decomposition technique is devised. In a recent
paper, Fontaine and Minner [105] apply this decomposition method to an
extended version of the problem. Different vehicle flow patterns are consid-
ered in a time-varying fashion. Bagloee et al. [106] study the interaction of
two types of vehicles in the follower’s problem, and propose a hybrid algo-
rithm that combines a generalised Benders decomposition with the branch
and bound approach. In [107] the joint design and pricing problems are
considered. These problems are related to designing freight carrying services
and determining their associated prices as observed by the shipper firms. In
[108] the bilevel model for the discrete network design problem on trains
and its solution method based on the genetic algorithm are proposed.

Interdiction games play an important role in military and drug enforce-
ment applications. In both cases, the goal is to disrupt elements of a
transportation network to reduce as much as possible the enemy’s move-
ments on the network. In [109] a bilevel problem of network interdiction
is proposed and studied. In [110], the discrete network design problem
is defined as a bilevel optimisation problem. The leader wants to identify
the optimal network structure and minimise the network travel time. The
follower problem represents the network user’s reaction as a static traffic
assignment problem under user equilibrium. The bilevel optimisation model
for the hazardous materials (hazmat) transportation problem with lane reser-
vation is studied in [74]. The problem lies in selecting lanes to be reserved
in the network and planning paths for hazmat transportation tasks. The
trade-off among transportation cost, risk, and impact on normal traffic is
considered. In the context of vehicle transportation in congested roads,
an optimisation framework to integrate the operator decisions on network
pricing, regulation, and expansion while accounting for the shipments of
hazardous materials is proposed in [75].
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Defence and cybersecurity applications. The literature on the Stack-
elberg security games and the bilevel defender–attacker models is quite
extensive. A large part of publications are devoted to applied problems of
ensuring the security of objects (see [111–113] and references in them). For
example, in security resource optimisation problems, research has led to deci-
sion aids for real-world security agencies which need to deploy patrols and
checkpoints to protect targets from terrorists and criminals. Stackelberg secu-
rity games are a powerful tool to study a competition between a defender
and an adversary. The defender commits to a mixed strategy—a randomised
resource allocation specified by a probability distribution over deterministic
schedules—which takes into account the adversary’s best response to his
observation of the mixed strategy.

In [73, 114–120], another line of research deals with the r-interdiction
median problems with fortification are studied. The leader protects q objects,
and the follower attacks r unprotected objects. The defensive maximal
covering location model as a leader–follower attacker–defender game–theo-
retic model is studied in [73].

Among modern publications, we can also highlight papers [121–123]. In
the attacker–defender model [121], a more general situation is considered.
The attacker and the defender have various means (methods) for attacking
and defending objects, respectively. The losses of the attacking side and the
result of the attack depend on the means. In such a situation, the attacking
side enters into a game interaction with the defence side and take into
account the response of the other side which, choosing its solution, aims to
inflict maximum losses for the attacker. To find the optimal solution of the
bilevel mixed-integer problem, the feasible region is split into subsets and the
bilevel problem is reduced to a sequence of bilevel subproblems. Each bilevel
subproblem is reformulated as a mixed-integer programming problem. Previ-
ously, the same idea was used to design exact polynomial-time algorithms for
the bilevel problems with knapsack problem and continuous variables at the
lower level [7, 124–127].

In [122], the leader does not know the attack scenario and the follower’s
priorities for selecting targets for the attack. But, she can consider several
possible scenarios that cover the follower’s plans. The leader’s problem is to
select the set of objects for protection to minimise the total costs of protecting
the objects and eliminating the consequences of the attack associated with
the reassignment of the facilities for customer service. Reformulation of the
bilevel problem as some single-level problems is proposed.

In the bilevel optimisation framework, a leader chooses her solution
assuming that a follower answers by an optimal reaction according to the
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lower-level problem. However, the lower-level problems might be nontrivial.
In practice, it might be inexactly solved by metaheuristics. Zare et al. [123]
study a broad class of bilevel optimisation problems where the follower might
not optimally react to the leader’s actions. The authors provide algorithmic
implementations of a new framework for a class of nonlinear bilevel knap-
sack problems and illustrate the impact of incorporating this realistic feature
in the context of defender-attacker problems.

Recently proposed attacker-defender models for power system vulnera-
bility assessment perform a worst-case analysis considering both natural-
occurring events and malicious attacks. The worst-case analysis is crucial
for vulnerability assessment and mitigation of critical infrastructure such as
power systems. Defence applications including electric grid defence planning
and defence models in interdiction problems can be found in [71].

Information protection and cybersecurity discrete bilevel problems can be
found in review [9]. In the bilevel formulation from [128], the goal of the
destructive agent is to minimise the number of power system components
that must be destroyed in order to cause a loss of load greater than or equal
to a specified level. The system operator will implement all feasible corrective
actions to minimise the level of system load shed. The resulting nonlinear
mixed-integer bilevel programming formulation is transformed into an equiv-
alent single-level mixed-integer linear program and solved by commercially
available software.
The bilevel model specifically allows one to define different objective

functions for the terrorist and the system. Researchers have begun to look
into some new ways of addressing the security assessment problem. For
example, in [129], a multiagent system is proposed capable of assessing
power system vulnerability, monitoring hidden failures of protection devices,
and providing adaptive control actions to prevent catastrophic failures and
cascading sequences of events.

Attack tree is another widely used combinatorial model in the cyberse-
curity analysis [130]. Defence trees have been developed to investigate the
effect of defence mechanisms using measures such as attacker’s cost and secu-
rity cost, return on investment and return on the attack. In an attack response
tree, an attacker–defender game is used to find an optimal policy from the
countermeasures’ pool.

Cybersecurity is becoming an area of growing concern in the electric
power industry with the development of the smart grid. A false data injec-
tion attack has recently attracted the ever wider interest of researchers. A
special type of false data injection attack or a Load redistribution (LR)
attack is developed in [131]. The damage from LR attacks to power system
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operations can manifest in an immediate or a delayed fashion. For the imme-
diate attacking goal, the most damaging attack can be identified through a
max–min attacker–defender model.

Facility location. Facility location problems arise as real-life applications
in both public and private sectors try to determine the optimal location
for facilities such as warehouses, plants, distribution centres, shopping malls,
hospitals, and post offices. They can have different objectives such as maximi-
sation of the profit obtained from customers and minimisation of the total
cost incurred by locating facilities and serving customers. There are many
different bilevel settings for the facility location models [71, 73, 132, 133].
For example, mathematical models and computational methods for the clas-
sical competitive facility location model so-called (r |p)-centroid problem, can
be found in [70].
The facility location problems with customer’s preferences are studied in

[134–141]. In these problems, the upper-level problem describes the facility
location process as opposed to the lower-level problem that describes the
customer allocation process. In [142], there is the problem of locating differ-
entiated waste collection centres. Another bilevel programming problem of
locating waste collection centres can be found in [143]. The model of
competitive facility location and pricing is investigated in [90]. The choice
of prices is based on the Bertrand model of price competition and the possi-
bility of splitting a client’s demand if it is profitable for both players. In [144],
a firm wants to open p facilities to enter a market and maximise its market
share, where other firms already operate. Customers can patronise any open
facility and maximise their utility function. A comprehensive overview of
bilevel facility location models can be found in [145].
The mixed-integer bilevel problem of strategic base stations placement

in cognitive radio networks is considered in [91]. Two operators want to
exploit the unused capacity of the primary network and maximise their profits
derived from operating the base stations installed and clients served. The
leader is aware of the future arrival of the follower, who is able to capture
clients by placing its own base stations. It has also to limit the interfer-
ence power at some measurement points defined by the primary user. The
authors develop a matheuristic where a mixed-integer program derived from
the follower’s problem is solved by CPLEX software.

An interesting leader–follower facility location model for 5G high-speed
networks is presented in [146]. Two mobile operators compete to attract
customers with high-speed internet connections. The leader acts first by
opening some base stations, anticipating that the follower will react by
creating her own base stations and renting some leader’s stations. Each
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customer patronises an operator with the highest speed of connection for
him. The leader and the follower maximise their profits at the first and second
levels, respectively and the customers move from one operator to another
until the Nash equilibrium is reached.

Another line of interesting application is presented by the leader–follower
hub location problems. The discrete hub network design model in a compet-
itive environment is investigated in [147] with a flow threshold. Two firms,
a leader and a follower, compete with each other to maximise their profits.
The level of captured passengers is determined by the logit function and each
route contains one hub only.

In [148] the authors consider the bilevel problem which extends the p-hub
median problem [149], taking into account intentional hub disruptions. In
this formulation, the leader chooses p hubs and additionally the emergency
hub to minimise two objectives, one of which corresponds to the total trans-
portation cost in the normal situation while the other corresponds to the total
transportation cost in the worst-case after r-interdiction. Two formulations,
the multiple allocation hub interdiction problem and hub protection problem
are studied in [150]. The first formulation refers to the bilevel programming
problem and the second one to the three-level programming problem. For
the multiple allocation hub interdiction problem, two reductions to mixed-
integer problems are proposed. The first one is based on the dual problem to
the linear programming lower-level problem. The second reduction is based
on replacing the lower-level problem with an equivalent system of closest
assignment constraints. The ideas developed on the multiple allocation hub
interdiction problem are used to solve the hub protection problem (see also
[151, 152]).
The paper [153] addresses the (r |p)-hub centroid problem. The leader

locates p hubs, later on, the follower locates r hubs. The customers choose
one firm with respect to provided service levels. The goal of each firm is
market share maximisation. An exact solution method is proposed.
Three variants of the bilevel hub interdiction problem are presented in

[154]: the multiple allocation p-hub median, the p-hub maximal covering,
and the p-hub centre problems under intentional disruptions. In these prob-
lems, the leader locates p hubs, whereas the follower tries to interdict r such
hubs that their loss would diminish the network performance the most. The
simulated annealing heuristic is applied as a solution approach.

In [155] the leader–follower hub location problem under fixed markups is
introduced deploying an alternating heuristic as a solution approach. In [156]
the authors investigate the leader–follower single allocation hub location
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problem under fixed markups. Two variants of this Stackelberg competi-
tion are addressed: deterministic and robust. For the deterministic variant,
a mixed-integer linear reformulation of the follower’s model is given. For the
robust variant, it is shown how to reformulate the follower’s program as a
mixed-integer conic quadratic one. As a solution approach for the leader, the
alternating heuristic is used also.
The (r |p)-hub centroid problem under the price war can be found in [157].

It was shown that there is a solution when the objective is profit maximisa-
tion, and the customer demand is split according to the logit model. The
equilibrium price equations are presented, accompanied by some compu-
tational complexity observations. In [158], an extension of this model is
presented. The paper provides a theoretical indication of the effect of the
price sensitivity parameter on profit. It is shown that the optimal routes under
the Bertrand-Nash price equilibrium are among the lowest cost ones. As a
solution approach is used the basic variable neighbourhood search algorithm,
based on a novel local search stopping rule and objective function estimation.

Supply chain. A bilevel optimisation problem to model the planning of a
distribution network is proposed in [159]. In this problem, there are manu-
facturing plants, depots, and customers. The purpose is to decide which
depots should be used and how the product should be distributed from
depots to customers and from plants to depots aiming to minimise the total
fixed costs and delivery costs. A metaheuristic approach based on evolutionary
algorithms is developed.
The paper [160] formulates the joint configuration of a product family and

its supply chain. The upper-level problem optimises the selection of modules,
module instances, and product variants. The lower-level problem responds
to decisions of the upper level in order to determine an optimal supply
chain configuration and inventory policies. To solve this nonlinear optimi-
sation model, a bilevel nested genetic algorithm with constraint reasoning is
developed and implemented.
The distribution centre problem is represented in [161]. The upper and

lower levels are to find the minimum transportation cost of shipping prod-
ucts from plants to distribution centres and from distribution centres to
customers, respectively.

Bilevel models associated with timberlands systems are proposed in [162,
163]. The paper [162] investigates the economic impact of a new biorefinery
on an established timberlands system. The work [163] studies the supply
allocation problem for an established timberlands supply chain with an addi-
tional decision of new biorefinery investments. The paper [164] focuses
on a multi-product vendor–buyer supply chain considering environmental
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factors in the product manufacturing process. The model determines the
optimal selling prices, advertising expenditures, wholesale prices, vendor’s
environmental improvements, and ordering policies of the vendor and the
buyer.

Scheduling problems. The bilevel flow shop scheduling problem is
proposed in [165, 166]. The shop owner (upper level) assigns the jobs to
the machines in order to minimise the flow time while the customer is at the
lower level and decides on a job schedule in order to minimise the makespan.
The authors use the concepts of tolerance membership function at each
level to define a fuzzy decision model for generating optimal (satisfactory)
solutions for the bilevel flow shop scheduling problem.
The bilevel multi-objective job-shop scheduling problem is considered in

[167]. At the upper level, idle time on the system bottleneck is minimised.
At the lower level, a decision is made to plan other machines while main-
taining the maximum use of the bottleneck and gaining improvements in
other performance measures.
The problem of scheduling inbound trucks at the inbound doors of a

cross-dock facility under truck arrival time uncertainty is proposed in [168].
A single-level and a bilevel optimisation problem are formulated. A genetic
algorithm and its modification are discussed for the single- and bilevel
optimisation problems.

Multi-job scheduling problems are considered in [169, 170]. In these
problems, the variation of energy consumption with the performance of
servers is taken into account for cloud computing. Moreover, task-scheduling
strategies depend directly on data placement policies. To solve the bilevel
discrete model efficiently, specific-design encoding and decoding methods are
designed. Based on these, an effective genetic algorithm is proposed, in which
a local search operator is introduced to accelerate the convergent speed and
enhance searching ability.

Other application. A new approach to the development of a strategic
program for a mineral resource region based on public–private partnership
mechanisms is proposed in [92, 93, 101, 171–173]. The government not
only carries out general-purpose infrastructural projects but also provides a
part of the costs related to compensating for ecological losses caused by the
investment projects. As we discussed in Sect. 1.4.2, these bilevel problems are
�P

2 -hard even in case of a three-year planning horizon.
Evacuation models are proposed in [174, 175]. In [174] to enable an effi-

cient evacuation, a network optimisation model which integrates lane-based
reversal design and routing with intersection crossing conflict elimination for
evacuation is constructed. The proposed bilevel model minimises the total
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evacuation time to leave the evacuation zone. A tabu search algorithm is
applied to find an optimal lane reversal plan in the upper level. The lower
level utilises a simulated annealing algorithm. The paper [175] develops a
model to optimise the issuance of evacuation orders with explicit consid-
eration of the highly uncertain evolution of the storm and the complexity
of the behavioural reaction to evolving storm conditions. A solution proce-
dure based on progressive hedging is developed. A realistic case study for the
eastern portion of the state of North Carolina is presented.

1.6 Conclusion

In this chapter, we have presented discrete bilevel optimisation models,
discussed their computational complexity and applications. We have pointed
out some lines for future research and wish to discuss below one of them
without details. In real-world applications, we often try to choose a solution
that is strong (optimal or near optimal) not only for the current input data
but also for a wide range of similar instances. Common methods for analysing
such situations lead us to solve more computationally difficult problems than
the original ones [176]. A new idea in this area had been suggested based
on a threshold approach [177, 178]. Let us consider a single-level income
maximisation problem with uncertainty in the input data. Now instead of
maximising the income, we wish to maximise the norm of possible variations
in the input data subject to the income is at least as the given threshold. This
elegant approach allows us to significantly improve the quality of the solu-
tion obtained in terms of stability with small degradation of the income. In
[178], this approach is applied to the facility location problems and analysed
as bi-objective optimisation.

Another line of research is related to the uncertainty arising from the ratio-
nality of the follower behaviour. As we have mentioned above, economic
agents cannot use excessively large resources to find the optimal solution. A
new approach which deals with the solution method uncertainty at the lower
level is developed in [123]. Earlier we assume that the follower must respond
by the optimal solution to the leader’s solution. However, the follower has
to respond by a feasible solution using some approximate algorithms in case
of resource constraints, time or computational resources. Three approaches
are presented for this case in [123]. The leader does not know the algorithm
that is used by the follower but knows a set of possible follower’s solution
methods. A similar approach in a simplified form was used in [179, 180].
The optimistic and pessimistic models and the strong-weak approach from
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[181–184] of the standard bilevel optimisation also can be viewed as special
cases of approach from [123]. We guess that it is a promising area for future
research.
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