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9.1  Background

Materials with a dimension less than 100 nm and a high surface-to-volume ratio are 
called nanomaterials due to their small size. They have unique physicochemical 
properties like increased reactivity and a small surface area with a typical surface 
structure. They are highly reactive because of their small size, accumulation of 
nanoparticles, stability, surface structure, shape, and chemical composition (Wang 
et al. 2016). Nanomaterials, in addition to their unique physicochemical features, 
are highly receptive to surface conjugation, allowing them to be produced as adapt-
able platforms with a wide range of applications in plant science (Machado et al. 
2020; Hu et al. 2020). Nanotechnology has showed great promise in agriculture: it 
can increase plant stress tolerance by scavenging reactive oxygen species (ROS) 
with nanozymes (nanomaterials that imitate antioxidant enzyme functions) (Gao 
et al. 2007; Pirmohamed et al. 2010). Cerium oxide enhances tolerance against abi-
otic stresses (heat, cold, salinity, and drought) in plants (Liu et al. 2021b; Wu et al. 
2018; Djanaguiraman et al. 2018; Wu et al. 2017b). Nanobiotechnology also enables 
the targeted and controlled release of agrochemicals (Zhang et al. 2020b; Santana 
et al. 2020); stress detection at early stages (Giraldo et al. 2019; Kwak et al. 2017) 
by using carbon nanotubes for sensing Ca2+, H2O2, and NO (Wu et al. 2020); suc-
cessful delivery of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) in non-
model plant species (Demirer et  al. 2019; Kwak et  al. 2019); as well as stress 
tolerance by seed priming (nanopriming) with nanoparticles (Rizwan et al. 2019; 
Mahakham et al. 2017).

By 2050, the world’s population is expected to reach 9 billion, and feeding such 
a large number is a great challenge. Scientists have estimated that Agriculture pro-
duction must grow by 60% from 2005–2007 levels to feed a population of nearly 9 
billion people by 2050 (Van Ittersum et al. 2016). Many efforts have been made 
through plant breeding, cultivation practices, and farm management to reduce the 
gap between demand and supply of food, but it is still an emerging problem that can 
only be solved by modern techniques, like nano- enabled agriculture, to mitigate 
food shortage. An emerging field called nano-enabled agriculture has the potential 
to increase plant tolerance to biotic and abiotic challenges, as well as plant breeding 
and agriculture. By 2050, it is expected that plant nanobiotechnology will address 
food shortage and have great importance in sustainable agriculture.

Previously, plant biotechnology was not much focused on by researchers; rather, 
they emphasized nanosensors, nanotoxicity, and nanoparticles in agricultural pro-
duction (Zhao et al. 2020; Xin et al. 2020; Zhang et al. 2020a; Acharya et al. 2019). 
Nanomaterials’ biosafety concern might be substantially handled with adequate 
management and design (Gilbertson et al. 2020; Adisa et al. 2019). The use of nano-
materials in sustainable agriculture is being focused on in the current chapter. The 
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Fig. 9.1 Role of nanobiotechnology in various aspects of agriculture

major objective of this chapter is to encourage researchers specializing in plant 
biotechnology to further work on nano-enabled agriculture. Figure 9.1 illustrates 
the dynamic role of nanobiotechnology in various aspects of agriculture to improve 
the current agricultural production system.

9.2  Plant Stress Tolerance by Nanoparticles

9.2.1  Nano vs Bulk

Many researchers have recently worked on nano- and bulk materials in plants for 
agricultural production. By comparing the technique of using nanofertilizers and 
nanopesticides with conventional approaches, it was proved that nanomaterials are 
20–30% more efficient (Dietz and Herth 2011). Therefore, we emphasize the higher 
efficacy of using nanomaterials as compared to conventional methods. Nanomaterials 
offer features like catalytic ROS (reactive oxygen species) scavenging ability and 
self-fluorescence that bulk or commercial equivalents lack due to changes in physi-
cal and chemical properties at the nanoscale level. It was reported that CeO2 
nanoparticles are ROS scavengers, and they have a wide application in plant sci-
ences, industries, and medical research (Kah et  al. 2018). CeO2 nanoparticles 
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feature a significant number of surface oxygen vacancies that alternate between two 
oxidation states Ce3+  and Ce4+  to offer substantial ROS scavenging capacity, in 
contrast to bulk cerium oxide (Walkey et al. 2015). ROS is catalyzed; the dangling 
bonds in Ca3+ efficiently scavenge ROS, while lattice strain increases surface oxy-
gen vacancies by redox reactions (Boghossian et al. 2013). Another newly devel-
oped nanoparticle is Mn3O4, which has a greater in vivo ROS scavenging ability 
because it exists in two oxidation states, Mn2+ and Mn3+, at a ratio of 1:2 (Yao et al. 
2018). Salinity stress tolerance in crop plants (Brassica napus) was observed after 
the application of cerium oxide. The plants treated with cerium oxide had 48% more 
fresh biomass than the control plants (Rossi et al. 2016). 

In two other studies, polyacrylic acid coated cerium oxide nanoparticles improved 
salt tolerance in Arabidopsis (50 mg L1,  10.0 nm, –17.0 mV, foliar spray) and cotton 
(100 mg L1, 8.0 nm, –15.3 mV, foliar spray), with plants under salinity stress show-
ing 18% and 40% increases in biomass, respectively, compared to no-nanoparticle 
controls (Wu et al. 2018; Liu et al. 2021b). The mechanism was described as 
nanoceria scavenging of ROS.  Thus, it enabled the modulation of channels and 
transporters for K+ retention in the mesophyll (KOR gene expression with down-
regulation) and the exclusion ability of N+ from the shoot (HKT1 gene expression 
with upregulation) (Liu et al. 2021b; Wu et al. 2018). Salt tolerance in cucumber was 
induced by foliar application (1 mg plant-1, 226.4 nm, –7.7 mV) of Mn3O4. A 19% 
increase in the fresh biomass of cucumber was observed as compared to the control 
(Lu et al. 2020). Sorghum plants were treated with cerium oxide nanoparticles and 
were recorded to have drought stress tolerance. CeO2 nanoparticle application also 
enhanced the temperature and UV and high light tolerance in Arabidopsis thaliana.

Carbon-based nanoparticles are another example of nanomaterials being used in 
the improvement of crop production. Carbon quantum dots (CD) have a wide appli-
cation in agriculture due to their various physical and chemical properties, i.e., 
superficial synthesis, lower toxicity, higher stability, adjustable surface functions, 
higher water stability, strong photoluminescence, and biocompatibility. Drought 
resistance has been induced in peanut plants by applying carbon nanodots through 
leaf infiltration (Su et al. 2018); however, its mechanism is still unclear. The appli-
cation of multiwalled carbon nanotubes increased salinity stress tolerance in 
Brassica napus. The nanotubes were added into Skoog medium and Murashige 
(Zhao et al. 2019). Hydroponically applying carbon nanotubes also induced salinity 
stress tolerance in broccoli (Martínez-Ballesta et al. 2016). Carbon nanotubes pro-
moted nitric oxide (a gas-signaling molecule) and the transduction of aquaporins. 
Silicon nanoparticle is another nanomaterial used to increase stress tolerance in 
crop plants. The soil application of silicon nanoparticles increased fresh biomass 
(up to 27%) and chlorophyll content (up to 17%) in barely grown plants under 
drought stress, so recovery from drought stress was observed in these plants 
(Martínez-Ballesta et al. 2016). ZnO, Fe nanoparticles, and TiO2 nanoparticles have 
also played a crucial role in improving plant tolerance against abiotic stresses (Sun 
et al. 2020; Abdel Latef et al. 2018). Drought tolerance was also observed in maize 
through the application of ZnO nanoparticles in soil. Plants treated with ZnO 
(100 mg L-1, 37.7 nm, 14 mV) had a 75% increase in proline and an 18% decrease 
in H2O2 (Sun et  al. 2020). A list of nanoparticles, their concentration, and their 
effective performance against certain abiotic stress are provided in Table 9.1.
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Table 9.1 Nanoparticles, their concentrations, plant species, application, and the type of abiotic stress

Sr 
#. Nanoparticle Concentration Species Treatment Stress Reference

1 Ag 25, 50, 75, 
and 100 mg/L

Triticum aestivum Potting soil Heat stress Iqbal et al. 
(2019)

2 Ag 0, 2, 5, and 10 
mM

Triticum aestivum Seed priming Salinity 
stress

Mohamed 
et al. (2017)

3 Ag 0, 10, 20, 30, 
and 40 μg 
mL−1

Trigonella 
foenum-graecum

Petri dish 
exposure

Salinity 
stress

Hojjat and 
Kamyab 
(2017)

4 Ag 1 mg/L Triticum aestivum Seed priming Salinity 
stress

Abou-Zeid and 
Ismail (2018)

5 Al2O3 50 ppm Glycine max L. 
cv.

Petri dish 
exposure

Flooding 
stress

Mustafa and 
Komatsu 
(2016)

6 CeO 500 mg/L Gossypium 
hirsutum L.

Seed priming Salinity 
stress

An et al. 
(2020)

7 Chitosan NPs 0, 30, 60, and 
90 ppm

Hordeum vulgare 
L.

Foliar 
application

Drought 
stress

Behboudi et al. 
(2018)

8 Chitosan- 
PVA and 
CuNPs

50, 100, and 
150 mg/L

Solanum 
lycopersicum L.

Nutrient 
solution

Saline 
stress

Hernández- 
Hernández 
et al. (2018)

9 CNTs and 
graphene

50 and 200μg/
ml

Catharanthus 
roseus

Murashige 
and Skoog 
medium

Salinity 
stress

McGehee et al. 
(2019)

10 CNTs and 
graphene

50 and 200μg/
ml

Gossypium 
hirsutum

Seed priming Drought 
stress

Pandey et al. 
(2019)

11 Cu 3.333, 4.444, 
and 5.556 
mg/L

Zea mays Plants 
priming

Drought 
stress

Van Nguyen 
et al. (2021)

12 Fe 0, 25, 50, and 
100 mg/kg

Triticum aestivum Potting soil Cadmium 
and drought 
stress

Adrees et al. 
(2020)

13 Fe2O3 0, 10, 20, and 
30 μM

Mentha piperita 
L.

Hoagland 
solution

Salinity Askary et al. 
(2017)

14 Fe3O3 0, 30, 60, and 
90 ppm

Dracocephalum 
moldavica L.

Foliar 
application

Salinity 
stress

Moradbeygi 
et al. (2020)

15 Fe3O4 0.8 ppm Fragaria × 
ananassa

Murashige 
and Skoog

Drought 
stress

Steinfeld et al. 
(2015)

16 FeSO4 2 g/L Helianthus 
annuus

Foliar spray Salinity 
stress

Torabian et al. 
(2017)

17 Mn 0.1, 0.5, and 1 
mg/L

Capsicum 
annuum L.

Nanopriming Salinity 
stress

Ye et al. (2020)

18 MWCNT 10, 30, 50, 
100, and 200 
mg/L

Dodonaeaviscosa 
L.

Nanopriming Drought 
stress

Yusefi-Tanha 
et al. (2020)

(continued)
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Table 9.1 (continued)

Sr 
#. Nanoparticle Concentration Species Treatment Stress Reference

19 Poly(acrylic)- 
CeO

∼50 mg/L Arabidopsis 
thaliana

Leaf 
infiltration

Multiple 
stress

Wu et al. 
(2017a)

20 Se 10 mg/L Sorghum bicolor 
(L.) Moench

Foliar and 
water spray

Heat stress Djanaguiraman 
et al. (2018)

21 Se 0, 1, 4, 8, and 
12 μM

Lycopersicum 
esculentum

Hydroponic 
solution

High and 
low 
temperature 
stress

Haghighi and 
Pessarakli 
(2013)

22 Si 10 μM Triticum aestivum Nutrient 
solution

UV-B 
stress

Sedghi et al. 
(2013)

23 SiO2 0.5, 1, 2, and 
3 mM

Solanum 
lycopersicum L.

Exposure in 
vitro

Salinity 
stress

Almutairi 
(2016)

24 SiO2 50 and 100 
mg/L

Strawberry Exposure in 
nutrient sol

Salinity 
stress

Avestan et al. 
(2019)

25 SiO2 0, 200, 400, 
and 600 mg/L

Musa acuminata 
“Grand Nain”

In vitro Salinity 
and water 
deficit

Mahmoud 
et al. (2020)

26 TiO2 0, 10, 100, 
and 500 mg/L

Linum 
usitatissimum

Leaf 
treatment

Drought Aghdam et al. 
(2016)

27 TiO2 0.01, 0.02, 
and 0.03%

Triticum aestivum 
L. cv. “Pishtaz”

Spraying by 
backpack 
sprayer

Drought Jaberzadeh 
et al. (2013)

28 TiO2 0, 2, 5, and 10 
ppm

Cicer arietinum 
L.

Amended 
soil

Cold stress Mohammadi 
et al. (2013)

29 TiO2 500, 1,000, 
and 2,000 mg/
kg

Triticum aestivum Amended 
soil

Drought 
stress

Faraji and 
Sepehri (2020)

30 Yttrium 
doped

100, 160, 200, 
and 400 mg 
per plant

Brassica napus Nutrient 
solution

Drought Palmqvist et al. 
(2017)

31 ZnO 0, 0.5, and 1 
g/L

Glycine max Petri dish 
exposure

Drought Sedghi et al. 
(2013)

32 ZnO 10 mg/L Abelmoschus 
esculentus L.

Foliar 
application

Salinity 
stress

Alabdallah and 
Alzahrani 
(2020)

33 ZnO and Si 50, 100, 150 
mg/L; ZnO 
NPs and 150, 
300 mg/L; 
SiNPs

Mangifera indica 
L.

Foliar spray Salinity 
stress

Elsheery et al. 
(2020)

Additionally, diseases and insects can impact the quality and harvest of crops. 
There are concerns about the health and environmental impacts of pesticides and 
an increase in fungal and insect resistance (Damalas and Eleftherohorinos 2011). 
Despite this, novel tactics for biotic stress defense that are both environmentally 
benign and effective are still required. The use of nanobiotechnology in the 
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production of insecticides (Jameel et al. 2020), fungicides (Ma et al. 2020), and 
herbicides (Cao et al. 2017) has the potential to improve their effectiveness. For 
example, Spodoptera litura larvae fed with a mixture of thiamethoxam (10–90 mg 
L-1) and ZnO nanoparticles (TEM size 30 nm) died at a 27% greater rate than the 
larvae fed in the control. Plants have been exposed to a wide range of nanopar-
ticles to determine whether they can improve their biotic stress tolerance, includ-
ing Ag- and Cu-based nanomaterials. Ag-based nanoparticles are effective in 
inhibiting diseases as well as nematodes (Mishra et  al. 2014; Ali et  al. 2015). 
Disease control and pest activity inhibition are two applications for copper-based 
nanoparticles that are commonly applied (Cumplido-Nájera et al. 2019; Borgatta 
et al. 2018; Ayoub et al. 2018). A 58% reduction in the progression of Fusarium 
oxysporum infection in watermelon was demonstrated by Cu3(PO4)23H2O 
nanoparticles (10 mg L-1, 151 nm) because of their smaller size, distinct struc-
ture, and faster initial release of copper ions (Borgatta et al. 2018). Carbon nano-
tubes (Wang et  al. 2014), carbon dots (Li et  al. 2020), Si-based nanoparticles 
(Buchman et al. 2019), MgO nanoparticles (Huang et al. 2018; Cai et al. 2018), 
TiO2 nanoparticles (Paret et al. 2013), and CeO2 nanoparticles (Adisa et al. 2018) 
are examples of nanomaterials that have shown the capacity to prevent plant dis-
eases. Many researchers have applied nanoparticles to reduce biotic stress on 
plants (Servin et al. 2015).

Crop losses resulting from diseases, insects, and weeds amount to more 
than $2000 billion every year globally (Popp et al. 2013). Applied fungicides 
for disease management cost more than $600 million per year in the United 
States (González- Fernández et al. 2010). Pyricularia oryzae is a pathogen that 
causes rice blast, reducing rice production by as much as 80% in Thailand 
(Kongcharoen et al. 2020; Srivastava et al. 2017). The fungi can quickly evolve 
and become resistant to present fungicides if they are applied to resistant rice 
varieties. Therefore, the use of nanoparticles to combat rice blasts is worth 
studying in the future.

Drought stress is a substantial hindrance to the production of agricultural 
crops in semi-arid regions. Crop yields are increased by using environmen-
tally safe nanoparticles. Farmers in water-stressed areas may benefit from 
drought resilience, which can help them maintain or enhance their revenue. 
The use of nanotechnology to strengthen drought tolerance has been demon-
strated in several plant species (Sun et al. 2021; Taran et al. 2017). Drought 
tolerance in sorghum increased with the use of cerium oxide nanoparticles 
(nanoceria). Salt tolerance in cotton was improved by seed priming using 
polyacrylic-acid-coated nanoceria (An et al. 2020). Making polyacrylic acid-
coated cerium oxide nanoparticles for nano-priming cotton seed for sowing a 
one-hectare area costs less than $30, while foliar spraying a one-hectare area 
costs more than $100. If output were to grow, chemical expenses would be 
reduced as a result. Personnel, equipment, and utilities (such as water, gas, 
and electricity) are all factors that contribute to the cost of manufacturing a 
commercial product.
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9.2.2  Dispersion of Nanomaterials

Heavy metal nanoparticles, such as Cd2+ quantum dots (Li et al. 2018), cerium oxide 
nanoparticles, and Ag nanoparticles, may constitute a threat to human health and the 
environment. The use of cerium oxide nanoparticles to improve plant stress toler-
ance has raised concerns about their biosafety, despite cerium being the most abun-
dant rare-earth element in the soil (Tan and Chi-Lung 1970). Nanoparticles applied 
to plants can also reduce their ability to respond to stress (Tan et al. 2017). Therefore, 
aggregated nanoparticles have a smaller surface area and less cellular absorption 
than scattered ones (Spicer et al. 2018). As a result, the use of appropriate nanoma-
terials will be required for the development of nano-enabled agriculture. One tech-
nique for increasing the longevity of nanomaterials is surface conjugation, which is 
shown to limit heavy metal leakage (Sharifi et al. 2012). Gold nanoparticles with 
diameters ranging from 4 to 22  nm displayed the least intracellular degradation 
(Balfourier et al. 2020), with the smallest particles degrading the most rapidly. It 
would be good to increase the dispersion quality of nanoparticles to prevent agglom-
eration after application to support consistent biological activity and the application 
of nanomaterials in agriculture (Kobayashi et al. 2014). The dispersion of Cu—the 
combination of copper and chitosan—improves chitosan nanomaterial compared to 
their bulk equivalents (Saharan et  al. 2015). Cu–chitosan nanomaterials boost 
tomato fresh weight (16%) and seedling length (18%) while simultaneously decreas-
ing harmful fungus mycelial development and spore germination (Saharan 
et al. 2015).

Nanomaterials that are free of heavy metals and are highly dispersible in water 
should be considered. These molecules should be used in sustainable agriculture, 
which can be accomplished by using nanotechnology. It seems that employing 
nanoparticles derived from plant nutrients would be beneficial in preliminary stud-
ies. For example, manganese is vital for plant health and is typically found in agri-
cultural fertilizers due to its high concentration. Mn3O4 nanoparticles, a novel type 
of nanoenzyme, can scavenge ROS.  Utilizing Mn3O4 nanoparticles in cucumber 
cultivation enhanced salt resistance in cucumber (Lu et al. 2020).

9.3  Stress Detection and Early Exposure by Nanoparticles

9.3.1  Nanoparticle Sensors

Sessile crop plants have evolved erudite stress-tolerance systems. Stress sensing and 
signaling are two very important systems. The oxidant H2O2 has been shown to 
operate as a signaling molecule in plants (Mittler 2017; Gilroy et al. 2016). Other 
signaling molecules involved in plant stress responses include sugars and gaseous 
molecules like acetic acid esters, acetic acid, ethylene, methyl salicylate, jasmonic 
acid, abscisic acid, hydrogen sulfide, carbon monoxide, and nitric oxide. The 
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signals were transported from the root to the shoot in plants subjected to salt stress 
mediated by Ca2+ signaling events (Choi et al. 2014). In response to various environ-
mental stresses, the patterns of these signaling molecules can change. Plants pro-
duce different Ca2+ signals when exposed to salinity and drought stress (Shabala 
et al. 2015). It is still possible to detect several signaling chemicals, including Ca2+ 
(Toyota et  al. 2018), H2O2 (Nietzel et  al. 2019), glucose (Zhu et  al. 2017), and 
sucrose (Chaudhuri et al. 2011) in nonmodel plant species without becoming inva-
sive plants. Several technologies, including ratiometric quantum dot sensors, DNA 
aptamers coated on single-walled carbon nanotubes (SWCNTs), AT15-coated car-
bon nanotubes for nitrogen oxide detection (Giraldo et al. 2014), and nanoneedle 
transistor-based Ca2+ sensors are effective for monitoring signaling molecules in 
nonmodel plant species. Glucose concentration in the leaf of Arabidopsis plants was 
evaluated using the TGA–QD method after 60 minutes of incubation. QD and 
boronic acid are used to determine whether the glucose level in the leaf has changed. 
In addition, they created QD nanosensors (11.3-nm leaf infiltration) to use in envi-
ronmental monitoring. These nanosensors have demonstrated excellent perfor-
mance in conjunction with other sensors that monitor temperature, humidity, and 
even stomatal activity (Di Giacomo et  al. 2015; Oren et  al. 2017; Koman et  al. 
2017). Researchers developed an electrical conductometric sensor that measures the 
delay between single stomata opening and closing in real time.

Nanosensors can be useful tools in the plant research field since they can fix 
some fundamental complications. Still, there is not much information about how 
plants detect the presence of Na+ in their surroundings (Jiang et al. 2019; Wu 2018). 
Through Na+-specific nanosensors, the researchers were able to track Na+ transit in 
plants at both granular and temporal scales. A similar problem exists with hydroxyl 
radicals (Mittler 2017), the most destructive ROS. This is owing to a lack of a reli-
able tool for researching their biological activities in stressed plants. Because fluo-
rescent dyes such as hydroxyphenyl fluorescein do not detect hydroxyl radicals only 
(Setsukinai et al. 2003), also present visualization approaches rely on them to detect 
changes in plant development and defense. Their inclusion hampers this research in 
these luminous dyes. Developing hydroxyl radical-specific nanosensors will allow 
scientists to better understand how hydroxyl radicals function within plants.

9.3.2  Plants Sensors for Initial Stress Recognition

Early detection of stress may aid in the reduction of agricultural losses. Modern 
approaches for detecting chlorophyll fluorescence in leaves, evaluating morphologi-
cal changes in plants, and monitoring water status employ remote sensing or hyper-
spectral imaging. However, these features only represent plant performance after 
the stress has been established (Giraldo et al. 2019). Therefore, the early detection 
of stress signals should be carefully observed and investigated. It is possible to 
improve remote sensing by using high-resolution nanosensors that monitor stress- 
signaling molecules to identify crop stress. It was also proposed in the case of 
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transforming plants into smart plants using nanosensors (Giraldo et  al. 2019). 
Nanosensors can detect and indicate the presence of analytes by quenching or 
changing the fluorescence of the light emitted by the sensor (Rong et al. 2019; Lew 
et al. 2020; Kwak et al. 2017). The detection of chemical signals by agricultural 
equipment is made possible by nanosensors, which can detect and respond to stress- 
signaling molecules such as H2O2, glucose, and NO, and convert them to optical or 
radio waves. Agricultural management and the early identification of plant stress 
could be made more efficient and effective in the future using this type of technol-
ogy. Recent advancements in the noninvasive real-time in vivo detection of glucose 
H2O2 in stressed plants by a QD system (Lew et al. 2020) illustrate the agricultural 
potential of nano-enabled smart plants. Using nanosensors is possible to detect 
stress in plants at an earlier stage and develop smart plant sensors.

Making the smart plant sensor a reality will necessitate further effort, particu-
larly in the field of agriculture. A common occurrence in the field is a combination 
of high temperatures and drought (Suzuki et al. 2014). It is possible for chemical 
signaling to become more complex when many stresses are present at the same 
time. In this case, the employment of nanosensors in response to specific signaling 
molecules can decode signals with a higher resolution. It is possible to improve 
nanosensor sensitivity, selectivity, and accuracy to get a higher-decoded signal reso-
lution in field conditions. Therefore, an important study objective should be to cre-
ate a database of chemical signaling molecule alterations that respond to stress, such 
as Ca2+ and ROS scavengers. An organic field-effect transistor for detecting carbon 
monoxide, a signaling molecule in plants, was constructed using zinc oxide nanopar-
ticles as the active medium (Narayana et al. 2020).

9.4  Agrochemicals Based on Nanoparticles

9.4.1  Nanofertilizers and Nanopesticides

Commercial fertilizers are expected to account for 30% and 50% of total crop 
yields. However, 40–90% of agrochemicals are lost to the environment each year. 
Even though plants have high nutrient utilization efficiency for essential nitrogen 
(N), phosphorus (P), and potassium (K) components, there is still room for improve-
ment in terms of agrochemical efficacy in plants (Adisa et al. 2019). This is because 
plant nutrient utilization efficiency for essential N, P, and K components is between 
30–35%, 18–20%, and 35–40%, respectively (Adisa et al. 2019). Plant performance 
can be improved by using engineered nanomaterials. There are two types of engi-
neered nanomaterials (ENMs) that deliver one or more nutrients directly to plants 
and boost plant performance. “Engineered nanomaterials” are “any pesticide for-
mulation or product that comprises designed nanoparticles as active components 
and demonstrates biocidal action.” Nanoagrochemicals are expected to perform bet-
ter in agricultural production compared to conventional agrochemicals. 
Nanoagrochemicals are projected to boost efficacy by 20–30% as compared to con-
ventional ones (Kah et al. 2018). Foliar Mn nanoparticle treatment increased rootlet 
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number, root and shoot length, and biomass by 40–70% (Pradhan et  al. 2013). 
Nanoparticles encapsulating common agrochemicals like dsRNA, siRNA, ascorbic 
acid, and abscisic acid might be used to release the nanoparticles in a controlled and 
targeted manner. Several recent studies have added to the body of knowledge about 
nanopesticides and nanofertilizers (Mikula et al. 2020; Dimkpa and Bindraban 2017).

It is possible to control the release and dispersion of nanoagrochemicals by alter-
ing their surface properties. In experiments involving the controlled release of nano-
formulations (37% of the studies), the most frequently used trigger is pH (Camara 
et al. 2019). Using the GA3-HMSN/Fe3O4 combination, the release of the growth 
promoter GA3 (gibberellic acid 3) at pH greater than 5 or less than 4 resulted in a 
44% increase in cabbage growth. Temperature- and pH-responsive nanopolymers 
were developed to administer and release agrochemicals into tomato plants (Zhang 
et al. 2020b). Three days after foliar spraying tomato with the star polymer PAA50- 
b- PNIPAm450, up to 43% of the star polymer was translocated to other plant com-
partments, including the roots (Zhang et  al. 2020b). Stimuli including light, 
temperature, enzymes, and the redox state are all used to produce a response. To 
improve the surface functionalization of nanoagrochemicals, aptamers, which are 
oligonucleotide or peptide molecules that bind precisely to specific targets, have 
been proposed for use. It was discovered that beta-cyclodextrin-conjugated quan-
tum dots coupled to a shorter chloroplast transit peptide were significantly more 
effective than random peptides or controls that did not contain any peptides. A better 
understanding of the uptake and fate of customized nanofertilizers or nanopesti-
cides and their impacts on plants and the surrounding environment may pave the 
way for their application in sustainable agriculture.

Until now, nanofertilizers and nanopesticides are still not commonly used in 
agriculture due to concerns about biosafety, ambiguities about their long-term envi-
ronmental impact, and the likelihood of interspecies transfer. However, these con-
cerns have been addressed. A lack of information about the long-term effects of 
nanoproduct accumulation in the environment on ecological systems and a lag in 
the development of legislation and regulations governing their usage are also con-
tributing to the current situation. Still, more research work is needed to understand 
the long-term environmental destiny and accumulation of nanomaterials. It is neces-
sary to develop policies and laws governing the use of nanoparticles in agricultural 
production. Farmers and the general public may be more accepting of 
nanotechnology- enabled farming if they are taught about the benefits of the technol-
ogy and the most effective ways to use it.

9.4.2  Targeting the Chloroplast to Synchronize 
Plant Performance

Nanomaterials can be used to aid the regulated release and transport of agrochemi-
cals to specific organelles, organs, or tissues in plants and the transport of agro-
chemicals to specific organelles, organs, or tissues in animals, and this can help 
reduce agrochemical waste by increasing the efficiency of the process. Nanoparticles 
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are transported in a regulated manner in animal cells (Anselmo and Mitragotri 
2016), suggesting that the distribution of nanoproducts to plants might be tailored. 
Methyl viologen and ascorbic acid have been successfully delivered into chloro-
plasts to manage their redox state by employing quantum dots coated with beta- 
cyclodextrin and truncated guidance peptides (Santana et al. 2020) to regulate the 
redox status of the chloroplasts. This work indicated fine-tuning in the activities of 
cell organelles while using fewer agrochemicals in their experiments. To obtain 
superior chloroplast colocalization, the results imply that QDs alone are insufficient 
and that an optimal nanoplatform design is required.

However, it has taken an extremely long period and high cost to get to the high 
efficiency of targeted distribution in plants. It has been achieved principally through 
a combination of nanomaterials and peptide-guiding molecules (Zhu et al. 2012; 
Santana et al. 2020). The discovery of novel technologies for the targeted adminis-
tration of nanoparticles will enable a wider range of agricultural applications for 
this methodology. Changing the size and charge of nanoparticles allow for the infil-
tration of cell compartments such as the apoplast in plants and the epidermis and 
guard cells in leaves (Hu et al. 2020). This method has certain advantages and also 
limitations. Future nanoparticle delivery systems may be capable of efficiently 
delivering nanoparticles to plant tissues or organs and specific cell types and com-
partments through the engineering of nanomaterials with controllable features, such 
as size, charge, shape, and hydrophobicity/hydrophilicity, among other 
characteristics.

It is necessary to develop methods for dispersing nanomaterials into certain cell 
organelles, along with developing ways for dispersing nanomaterials to specific 
plant tissues such as the apical meristem of a shoot or organs such as flowers. 
Neutral and negatively charged nanoparticles are more effective at migrating from 
the roots to the shoot compared to positively charged CeO2 nanoparticles, which are 
demonstrated to attach to and primarily reside on roots (Spielman-Sun et al. 2019). 
Therefore, an in-depth examination of the nanomaterials transported into plant tis-
sues and organs, cells, and organelles is required. Furthermore, the development and 
management of nanoparticle mobility in plants should be carried out within the 
intended application of the studied materials.

Abiotic stress causes a decline in photosynthetic activity in all plants, regardless 
of the type of stress experienced (Foyer and Shigeoka 2011). This mechanism is 
related to an increase in ROS in plants when subjected to abiotic stress. An excess 
of ROS can induce oxidative damage to proteins, lipids, and cell structures and 
programmed cell death (Liu et al. 2021a; Das and Roychoudhury 2014). Plant biol-
ogists and breeders are working on producing more efficient plants against scaveng-
ing reactive oxygen species to increase their abiotic stress tolerance. Genetic 
transformation is restricted to model plants or species that are easily altered. Thus, 
plants must be protected from abiotic stress, and their photosynthetic efficiency 
must be increased. A scalable and universal approach is needed to achieve these 
goals. This technique may use ROS-scavenging nanoparticles, such as cerium oxide 
nanoparticles and manganese oxide nanoparticles, to reduce the formation of reac-
tive oxygen species. When plants are treated with nanoceria, the improved ROS 
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scavenging capacity of leaf mesophyll cells increased the carbon assimilation rate. 
Plants treated with SWCNT had higher ROS scavenging capacities and higher elec-
tron transport rates than control plants (Giraldo et al. 2014). Other ROS-scavenging 
nanomaterials may aid in protecting chloroplasts from oxidative stress and increas-
ing photosynthesis in plants. By utilizing a newly developed targeted delivery 
method, it may be possible to preserve chloroplasts from stress and convert them 
into a “chloroplast factory,” allowing for a wider range of applications. This newly 
developed technique may have applications in the pharmaceutical and bioenergy 
industries and the field of plant photosynthesis research.

9.5  Transgenic Events Assisted by Nanoparticles

9.5.1  Nanomaterials as Delivery Platform

Agrobacterium tumefaciens or gene gun bombardment are the two most prevalent 
methods of transformation to produce transgenic plants. These two approaches tar-
get a small number of genetically sensitive plant species or cause harm to the plants 
(Landry and Mitter 2019; Yu et al. 2017). Other than model species, callus cultiva-
tion (Altpeter et al. 2016) is inefficient and labor-intensive. Nanobiotechnology has 
recently demonstrated a considerable promise in creating transgenic wild-type 
plants, and it has the potential to be used in a much wider range of plant species than 
model plants. Single-walled carbon nanotubes have the potential to transport func-
tional genetic elements into chloroplasts and nuclei (Demirer et  al. 2019; Kwak 
et al. 2019). Wide properties have been shown to allow carbon nanotubes to enter 
plant cells (Wong et al. 2016; Chaudhuri et al. 2011). Variations in pH across cell 
organelles should trigger the release of plasmid loads. These studies advocate 
employing nanoparticles rather than Agrobacterium or gene cannon bombardment 
to provide functional genetic resources to plants (Kwak et al. 2019).

The use of positively charged carbon dots (2.0–10.0 nm in diameter) to transport 
siRNA to plants resulted in a reduction in GFP (green fluorescent protein) expres-
sion in plants. For the first time, carbon dots were used to deliver siRNA to plants to 
silence genes. GFP was precisely delivered to tobacco chloroplasts by using pep-
tide/pDNA complexes (Thagun et al. 2019). They employed nanomaterials to make 
transgenic plants, which included nonmodel and model species. Nanomaterials can 
also be used as scaffolding to transfer unstable molecules such as RNA and RNA 
polymerase (e.g., siRNA or dsRNA). After loading dsRNA onto a clay nanosheet, 
which had a mean diameter of 45 nm and side dimensions ranging from 20–80 nm 
(d-value = 0.82), the stability of the loaded dsRNA significantly improved for 20 
days (Mitter et al. 2017). A siRNA delivery system based on DNA nanostructures 
was used to enhance the growth of tobacco (Zhang et al. 2019).

Researchers and farmers may favor carbon nanotubes over other nanomaterials 
because they are less expensive or more biocompatible (Mohanta et al. 2019). It is 

9 Nanobiotechnology and Its Applications in Plant System Biology



226

possible that increasing the number of nanoparticles for supplying functional 
genetic resources may improve adoption. A study of Arabidopsis plants found that 
polyethylenimine (PEI)-coated gold nanoparticles effectively delivered siRNA to 
the NPR1 gene (Lei et al. 2020). Carbon dots built on PEI can be used to carry DNA 
or RNA molecules. It is feasible under theoretical conditions to use positively 
charged nanomaterials such as carbon dots or silica nanoparticles to transport nega-
tively charged functional genetic components into plant cells. The fact that nanopar-
ticles are associated with biosafety issues suggests that this could be a cost-effective 
method to conserve costs. The availability of nanomaterials will impact the fre-
quency by which this nano-enabled transgenic approach will be employed.

9.6  Nano-Enabled-CRISPR-Cas Complex

As an added benefit to the construction of transgenic plants, nanomaterials may be 
employed to provide a platform for organelle-specific CRISPR-Cas genome edit-
ing, which would otherwise be impossible. Although tissue culture is now widely 
employed in plant breeding, it is still crucial in the process. It is still restricted to a 
few numbers of plant species, genotypes, and organs. It was demonstrated that 
nanoparticles might be used to deliver the CRISPR-Cas9 system (Wei et al. 2020). 
However, there have been no reports of plant-based nano-enabled CRISPR-Cas 
genome editing that have been published. One of the most likely causes is barriers 
within the plants’ cell wall (Albersheim et al. 2011). Recently, it was discovered 
that a virus was carrying the ultra-compact genome editor CRISPR Cas, which was 
previously thought to be inactive. A minimally functional CRISPR-Cas system 
comprises the Cas protein (70 kDa, about 3  nm Rmin (Erickson 2009) and a 
CRISPR array (Pausch et al. 2020)). Due to the ability to manipulate the size of the 
complex, it may be possible to deliver nanoparticle CRISPR-Cas complexes to 
plants more efficiently and precisely using this technology. The complex’s size can 
be adjusted to pass more easily through the plant’s cell membrane. As a result, 
nanoparticles may prove to be a useful vector for the CRISPR-Cas system, target-
ing certain organelles or plant regions. The CRISPR-Cas system may be supplied 
to the chloroplast using nanoparticles directed by a chloroplast transit peptide, 
transforming it into a plant factory (Santana et al. 2020). Nanotechnology can be 
utilized to enable CRISPR-Cas gene editing in plants (Demirer et al. 2021). Details 
on the application of nanomaterials for CRISPR genome editing in transportation, 
species independence, germline transformation, and gene editing efficiency have 
been discussed.
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9.7  Seed Nanopriming

Drought, salt, and heat are all factors that impact seedling growth, with the most 
noticeable influence occurring during the germination stage of most crops. The ger-
mination, establishment, and adaptation of plants to a range of conditions are all 
assisted by seed vigor. The rate of seed germination and the uniformity of seed 
germination can be improved by utilizing a range of approaches and strategies. A 
range of techniques is available for priming seeds, including the use of a salt solu-
tion, an osmotic solution with a low-water potential, bioactive chemical combina-
tions, solid matrix priming, and chemo-priming. As the stressed green gram (Vigna 
radiata (L.) Wilczek) variety Pusa Ratna was halo primed with 35 mmol L-1 NaCl, 
the fresh weight increased by 47% (under salt stress) and 28% (under drought 
stress) compared to unprimed controls under stress (Jisha and Puthur 2014).

It is a novel method of seed priming that, compared to conventional priming 
strategies, can significantly improve crop development and performance, particu-
larly in adverse conditions such as drought, salty environment, and heat. Priming 
seeds with nanoparticles has the potential to improve crop development and perfor-
mance significantly. When cotton seeds were primed with cerium oxide nanoparti-
cles (2nm, 51.7 mV, 500 mg L-1, nanopriming) and grown under salt stress (200 
mmol L-1 NaCl), fresh seedling weight increased by 41% (An et al. 2020), com-
pared to a water-primed control. Many crop species have been shown to benefit 
from nanopriming, including wheat, Fe2O3 nanoparticles (Sundaria et  al. 2019), 
ZnO nanoparticles (Rizwan et al. 2019), rice, silver nanoparticles (Mahakham et al. 
2017), sorghum (Maswada et  al. 2018), broad bean (Younis et  al. 2019), cotton, 
cerium oxide nanoparticles, onion (An et al. 2020), and gold nanoparticles (Acharya 
et al. 2019). In comparison to an untreated control, onion seed nanopriming with 
gold nanoparticles (93.6 nm, –8.5 mV, 5.4 mg L1, nanopriming) resulted in a 69 
percent increase in emergence percentage and a 24 percent increase in mean yield. 
Gilbertson et al. stated that nanoZn/ZnO is one of the most promising seed-coating 
options based on the increase in seed germination and the environmental effect of 
the embodied energy (Gilbertson et al. 2020).

Despite the promising findings obtained by seed nanopriming, additional 
research is required to comprehend the fundamental principles fully. Nanoceria 
priming can improve crop salinity stress resistance, which modulates the plant’s 
reactive oxygen species (ROS) and ion homeostasis signaling pathways (An et al. 
2020). Many additional seed nanopriming methods have been identified or pro-
posed. There are four techniques for reducing electrolyte leakage: using ZnO 
nanoparticles (Rizwan et al. 2019), Fe2O3 nanoparticles (Maswada et al. 2018), or 
silver nanoparticles (Younis et al. 2019) or a combination of the three methods. The 
first goal is to reduce lipid peroxidation, and the second is to improve the amount of 
water in plants and the effectiveness of photosynthesis and respiration.
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What methods of seed nanopriming persist when a single nanomaterial is applied 
to a range of plant species, and how does this affect the experiment’s outcome? 
What processes, such as changed redox state or seed dormancy, can be used to 
explain the phenomenon of seed nanopriming? The uptake, distribution, and fate of 
nanoparticles and their interactions with seeds should all be investigated further by 
looking at the mechanisms that cause these events to occur in the first place. When 
it comes to nanomaterial uptake, the size of the hole pores in the seed coat matters. 
A concern has been expressed regarding differences across plant species in the 
spread of nanomaterials. Is there a relationship between the distribution pattern of 
nanomaterials in seeds and their biological effects? What is the relationship between 
this and the scavenging of reactive oxygen species (ROS) mediated by nanomateri-
als or epigenetic changes? Is there a critical stage or position in the seed nanoprim-
ing process critical for nanomaterials’ biological impacts? Combining seed 
nanopriming with seed coating technologies may be worth investigating to ensure 
that efficacy and performance are not degraded over time. The nano-enabled seed 
coating technique used in the agrochemical business is only vaguely known by the 
general public (Acharya et al. 2019).

9.8  Light Harvesting by Nanoparticles

Photosynthesis is largely dependent on the availability of visible light. Plants do not 
make good use of most natural light sources. nIR light is absorbed mostly by chlo-
rophylls in plants, whereas UV light causes chlorophylls to deteriorate (Antonaru 
et  al. 2020). Even though the ozone layer prevents UV-C (100–280 nm), UV-A 
(315–400 nm) and UV-B (280–315 nm) are still able to reach the Earth (Stapleton 
1992). It is difficult to see through the bottom leaves of plants in high-density crop-
ping systems because of limited visible light. Visible light is diminished during 
overcast or rainy days. Sustainable agriculture may benefit from developing new 
photosynthesis technologies that allow plants to utilize a greater proportion of lost 
light resources.

Although cyanobacteria contain chlorophyll d and f, which absorb near-infrared 
light (Airs et al. 2014), cyanobacteria could only utilize light with wavelengths up 
to approximately 750 nm. Chlorophyll d and f are pigments that can be introduced 
into higher plants to escape the photochemical red limit of the light spectrum. nIR 
light has a wavelength limit of 800 nm and cannot be used. The use of nanomaterials 
to transform ultraviolet and near-infrared radiation into visible light for plant photo-
synthesis may pique the interest of scientists, farmers, and even the industrial sector. 
By fine-tuning and complementing plant photosynthesis, this revolutionary technol-
ogy can potentially enhance food production by as much as 50% considerably.

The upconversion and downconversion of nanoparticles are two types of nanopar-
ticles commonly employed in biophotonics and nanomedicine to convert near- 
infrared and ultraviolet light to visible light (Loo et  al. 2019). It has been 
demonstrated that upconversion nanoparticles (UCNPs) doped with Yb, Nd, and Er 
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can convert light stimulated between 808 and 980 nm to visible light between 510 
and 570 nm (Wiesholler et al. 2019). When downconversion nanoparticles (DNCP), 
such as bNaYF4:Gd3+ and Tb3+, were encapsulated in PEI, they converted ultraviolet 
light with a wavelength of 273 nm into visible light (between 480 and 630 nm in 
wavelength) (Malik et al. 2019). Shoot length and dry weight were increased in rice 
by 19% and 64%, respectively, when CD 1:0.2 was used as a converter for convert-
ing UV radiation to PAR (photosynthetically active radiation). These UCNP and 
DCNP nanoparticles can be sprayed on the surface of leaves or injected directly into 
cells to assist plants in maintaining photosynthesis during periods of low light, such 
as shadow or continuous cloudy days. Because of advances in nanotechnology, this 
approach to photosynthetic light amplification may be helpful for agriculture and 
allied industries, such as biofuel manufacturing. Nanomaterials can be used to 
transform near-infrared and ultraviolet energy into visible light in plants.

9.9  Capturing More Electrons

Photosynthesis eliminates more than 120 billion tons of CO2 from the atmosphere 
each year in terrestrial ecosystems. Photosynthesis in green plants is based on the 
harvesting of light and the passage of captured electrons into the electron transport 
chain, both critical processes. Reactive oxygen species can form when an excessive 
number of electrons are removed (Foyer 2018). On overcast and rainy days, espe-
cially when plants are shaded, they might not capture enough electrons to complete 
the light response. New tactics that allow plants to gather more electrons in low- 
light conditions may considerably boost plant photosynthesis and output. Plants 
may be able to collect more electrons with the assistance of nanomaterials. A struc-
ture is formed by a combination of organic and metallic components.

Nanomaterials are capable of both absorbing and transmitting electromagnetic 
radiation. The excited state can be transmitted to gold nanoparticles that have been 
triggered by light (Robatjazi et al. 2015). Thus, photosynthesis could be enhanced 
in low-light conditions by incorporating light-capturing nanomaterials into the chlo-
roplasts. Research on innovative light-harvesting nanomaterials and their tailored 
distribution to chloroplasts should be carried out in the future. Scientists have pro-
posed the use of nanomaterials to fine-tune plant photosynthesis under low-light 
conditions. These materials have the potential to trap more electrons.

9.10  Future Perspectives

We discussed the potential applications of plant nanobiotechnology in modern and 
sustainable farming practices. Plant nanobiotechnology could improve stress toler-
ance, sensing and early detection, pesticide targeted delivery and controlled release, 
nonmodel crop species transgenic events, and seed nanopriming. Heavy metals 
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should be avoided in agricultural nanomaterials, and their dispersibility should be as 
high as possible. As previously asserted, more research into the biological effects of 
nanoenzymes, such as Mn3O4 nanoparticles, on stressed plants is required. It is criti-
cal to keep looking into the mechanisms that influence nanoparticle absorption, 
dispersion, and fate, as well as their interactions with seeds. With the help of nano-
materials, plants can be converted into chloroplast factories, enhancing their func-
tionality. In addition, nanomaterials can transform ultraviolet and near-infrared light 
into visible light, enabling more electrons to be retrieved for photosynthesis when 
employed in low-light settings. According to the researchers, understanding how 
nanoparticles help plants cope with stress should make it easier to develop nanoma-
terials specifically useful in agricultural applications. Legislation and regulatory 
restrictions may help reduce the biosafety risks associated with the use of nanopar-
ticles in agriculture and assuage public worries about nanomaterials. Nanotechnology 
has the potential to have a substantial impact on agriculture.
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