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14.1  Introduction

Cereals are the principal stable crops for global population and thus are the primary 
source of micronutrients. However, cereals have a low level of micronutrients, and 
majority of them are lost during processing. Around two billion people mainly in 
Africa, South Asia, and Latin America suffer from malnutrition or nutrient defi-
ciency which is responsible for the death of around 24,000 people daily all over the 
globe (Majumder et  al. 2019). To achieve nutrient security, fortification of food, 
especially cereals, is necessary owing to the primary source of energy and nutrition 
in human diet. The availability of biofortified staple food crops would be a sustain-
able approach to provide a nutritious diet to people having limited access to variable 
dietary resources.

The principal aim of the breeders is to improve the yield potential of the cereals. 
Improving grain nutritional quality of cereals to attain nutritional security seems to 
be a newer area for breeders. Conventional and molecular approaches have enabled 
the breeder to develop cereals with higher micronutrients. QTLs for various micro-
nutrients, identified in rice, maize, wheat, barley, and pearl millet, have been intro-
gressed to develop improved versions of these cereals (Mahender et  al. 2016; 
Govindaraj et al. 2019; Gaikwad et al. 2020; Saini et al. 2020; Prasanna et al. 2020; 
Swamy et al. 2021). HarvestPlus, a program under CGIAR (Consultative Group on 
International Agricultural Research), is working on development of biofortified 
crops in low- and middle-income countries. Under this program, cereals like maize, 
wheat, rice, and pearl millet along with other important crops have been biofortified 
(Bouis and Saltzman 2017). The biofortified crops developed under this program 
are being planted by over 8.5 million farmers across Africa, Asia, and Latin America 
(https://www.harvestplus.org). With the combined efforts of HarvestPlus and the 
institutions working with it, over 300 varieties of biofortified crops have been 
released for commercial cultivation in 40 developing nations using conventional 
and molecular breeding. A successful biofortified cereal in addition to enhanced 
nutritional value must be high yielding and acceptable to stakeholders.

In some cases, germplasm lacks the genetic variability in the desired trait for 
biofortification. Therefore, genetic modification (GM) of crops is a possible way to 
overcome the problem. GM technology involves introduction of the desired trait 
from the novel source (Yadav et al. 2018). With the low acceptability of GM crops, 
the ongoing agricultural practices are struggling to meet the nutrient security of the 
increasing global population (Rani et  al. 2021; Jangra et  al. 2021a, b). GE has 
emerged as a potential tool to overcome the challenges associated with the current 
crop improvement technologies. GE-assisted breeding has been successfully 
employed to modify the trait of interest in various crop plants without introduction 
of any foreign gene. In a very short time, GE had a great impact on crop improve-
ment with its high precision and efficient genetic modification (Chen et al. 2019). 
The era of GE began with the introduction of double-stranded breaks (DSBs) at 
specific sites using endonucleases like zinc figure nucleases (Kim et al. 1996), tran-
scription activator-like effector nucleases (TALENs) (Christian et  al. 2010), and 
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clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 
(Cas9) (Jinek et al. 2012). Since its development, GE has been employed to improve 
various crop plants (Park et al. 2019). Recently, there is an exponential increase in 
the utilization of GE for crop improvement. In this chapter, we will be focusing on 
the advancements made in the field of grain quality improvement in cereals using 
genomic regions/QTLs and GE.

14.2  Genomic Regions/QTLs for Cereal Grain 
Quality Improvement

The primary requirement for breeding biofortified crops is to look into the available 
germplasm to identify genomic regions with higher micronutrient content. The wild 
relatives of the crop plants are a rich source of various micronutrients and therefore 
can be utilized in the breeding program. The quality traits are polygenic and are 
controlled by several genes. Therefore, improvement of these traits through conven-
tional breeding is quite difficult (Jangra et al. 2017; Jangra et al. 2018). The advance-
ment in molecular marker technology has gained the interest of plant breeders to 
improve crop plants against complex traits. Molecular markers can be employed to 
identify the exact location of the genomic region/ QTL, determining the trait for 
nutritional quality. Once identified, these QTLs can be introgressed to elite culti-
vars/ varieties. QTL mapping based on biparental mapping populations is found to 
be less significant. However, genome wide-association mapping studies (GWAS) 
utilized the diverse germplasm which offers a large number of variations. The extent 
of linkage disequilibrium determines the marker-trait association. The identified 
markers linked to the target trait can be utilized in the breeding program to improve 
the crop plants. The overview of crop improvement based on genomic regions/ 
QTLs is denoted in Fig. 14.1.

14.3  QTLs for pro-Vitamin A

Deficiency of vitamin A is responsible for irreversible loss of vision and is one of 
the serious health issues in developing nations. It has been reported that over 30% 
of children and 19 million pregnant women are facing the problem of vitamin A 
deficiency in developing nations (Duo et  al. 2021). Two alleles, viz. β-carotene 
hydroxylase 1 (crtRB1) and lycopene epsilon cyclase (lcyE), have been identified 
which favors pro-vitamin A biosynthesis in maize (Muthusamy et al. 2015). This 
has gained the interest of researchers to identify QTLs related to pro-vitamin A 
content in maize. Maize is an important cereal and consumed across the globe. 
Several QTLs for vitamin A content have been identified in maize (Table  14.1) 
(Babu et al. 2013; Azmach et al. 2013).
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Fig. 14.1 Schematic representation of QTL-mediated improvement of crop plants

14.4  QTLs for Iron (Fe) and Zinc (Zn) Content

Cereals consumed as food are deficient in various micronutrients including Fe 
and Zn (White and Broadley 2005). As per WHO reports, 30% of the global 
population are suffering from anemia. To overcome this problem, there is a need 
to develop cereals with higher Fe and Zn content. In the past few years, several 
mapping populations have been developed to identify QTLs associated with Fe 
and Zn content (Table 14.1). In wheat, QTLs for Fe and Zn content have been 
reported by several authors (Hao et al. 2014; Srinivasa et al. 2014; Tiwari et al. 
2016; Crespo-Herrera et al. 2016; Velu et al. 2017, 2018; Gorafi et al. 2018; Liu 
et al. 2019). Similarly, in barley, QTLs for Fe and Zn were identified on chromo-
somes 6 and 2 (Mamo et  al. 2014; Sadeghzadeh et  al. 2015). In rice, several 
QTLs for Fe and Zn have been mapped on almost all chromosomes. Recently, 
two QTLs for Fe (qFe9.1 and qFe12.1) and four QTLs for Zn (qZn1.1, qZn5.1, qZn9.1, 
and qZn12.1) content were identified in double haploid rice (Calayugan et  al. 
2020). Novel QTLs, qFe3.3 and qFe7.3 for Fe content and qZn2.2, qZn8.3, and 
qZn12.3 for Zn content, were identified using association mapping (Pradhan 
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Table 14.1 List of genomic regions/ QTLs for grain quality in cereals

Trait Genomic region/QTLs Chromosome Crop References

Vitamin A LcyE5′TE, LcyE3′Indel, 
rtRB1–3′T,

10 Maize Babu et al. (2013)

PSY1, lcyE, crtRB1 10 Azmach et al. 
(2013)

Fe and Zn 
content

QGzncpk.cimmyt_2BL 2BL Wheat

QZn.bhu_2B, QZn.bhu_6A, and 
QFe.bhu_3B

2B, 6A, 3B Srinivasa et al. 
(2014)

QZn.bhu_2B, QFe.bhu_2B 2B Tiwari et al. (2016)
QZn.Across_4BS, QFe.
Across7DS

4BS, 7DS Crespo-Herrera 
et al. (2016)

QGzn.ada_1B, QGzn.sar_1B, 
QGFe.ada_2B

1B, 2B Velu et al. (2017)

QGFe.iari-2A, QGFe.iari-5A, 
QGFe.iari-7A and QGFe.iari-7B, 
QGZn.iari-2A, QGZn.iari-4A, 
QGZn.iari-5A, QGZn.iari-7A 
and QGZn.iari-7B

2A, 4A, 5A, 7A, 
7B

Krishnappa et al. 
(2017)

QZn 2A, QZn7B 2A, 7B Velu et al. (2018)
qFes1, qfes2, qZns1, qZns2 4D, 2D, 5D, 1D Gorafi et al. (2018)
QGZn.co-5A, QGZn.co-7A, 
QGFe.co-3B.1, QGFe.co-5A.2

5A, 7A, 3B Liu et al. (2019)

QZn.caas-1DS, QZn.caas-2AS, 
QZn.caas-3BS, QZn.caas-4DS, 
QZn.caas-6AS, QZn.caas-6DL, 
QZn.caas-7BL, QFe.caas-3BL, 
QFe.caas-4DS, QFe.caas-6AS, 
QFe.caas-7BL

1DS, 2AS, 3BS, 
4DS, 6AS, 6DL, 
7BL, 3BL

Wang et al. (2021a, 
b)

Zn-qtl-6H_ SCRI_RS_10655 6HL Barley Mamo et al. (2014)
QTL.Zn 2HS, 2HL Sadeghzadeh et al. 

(2015)
Fe-2H-84.74, Fe-2H-139.62, 
Fe-4H-67.9, Fe-1H-54.5, 
Fe-1H-57.85, Fe-1H-90.04, 
Fe-2H-84.74, Fe-4H-53.87, 
E-4H-54.95, Fe-6H-102.03, 
Fe-7H-17.62, Zn-2H-87.34, 
Zn-1H-21.97, Zn-2H-148.16, 
Zn-2H-40.12, Zn-2H-86.84

2H, 4H, 1H, 4H, 
6H, 7H

Gyawali et al. 
(2017)

qFe2, qZn5 2, 5 Rice Zhang et al. (2014)
qFe1.2 (gene OsYSL1), qFe5.1 
(gene OsZIP6), qFe7.2 (gene 
OsZIP8)

1, 5, 7 Agarwal et al. 
(2014)

qFe6, qZn8 6, 8 Xu et al. (2015)

(continued)
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Trait Genomic region/QTLs Chromosome Crop References

qFe10.1, qZn6.2, qZn7.1 10, 6, 7 Descalsota et al. 
(2018)

qFe1.2, qFe11.1, qZn2.1, qZn3.2, 
qFe3.2, qFe4.1, qZn5.1, qZn12.1

1, 11, 2, 3, 4, 
5, 12

Swamy et al. (2018)

qFe1.1 qFe1.2, qZn1.1, qFe6.1, qZn6.1, 
qFe6.2, qZn6.2

1, 6 Dixit et al. (2019)

QTL.Fe.9, QTL.Zn.4 9, 4 Islam et al. (2020)
qFe3.3, qFe7.3, qZn2.2, qZn8.3, 
qZn12.3

3, 8, 12 Pradhan et al. 
(2020)

qFe9.1, qFe12.1, qZn1.1, qZn5.1, 
qZn9.1, qZn12.1

9, 12, 1, 5 Calayugan et al. 
(2020)

qFe7, qZn7 7 Jeong et al. (2020)
qZPR.1.1, qZPR.11.1 1, 11 Suman et al. (2021)
Fe, Zn LG 3, 5, 7 Pearl 

millet
Kumar et al. (2016)

Fe, Zn LG 3, 5, 7 Anuradha et al. 
(2017)

qFe1/54 and qZn1/54 LG 1, 7 Kumar et al. (2018)
PglZIP, PglNRAMP, PglFER 
(gene families)

LG 7 Mahendrakar et al. 
(2020)

Fe, Zn Pgl01, Pgl02, 
Pgl04, Pgl05, 
Pgl06 (2), Pgl07

Pujar et al. (2020)

QFe2.1, QFe2.1, QFe3.1, 
QFe5.1, QFe7.1, QZn2.1, 
QZn3.1, QZn3.2, QZn6.1,

LG 1, 2, 3, 5, 6, 7 Singhal et al. (2021)

Amino 
acids and 
GPC

QPro.mgb-4B, QPro.mgb-5A, 
QPro.mgb-6A.1, QPro.mgb.6A.2, 
QPro.mgb.6B, QPro.mgb-7A, 
QPro.mgb-7B

4B, 5A, 6A, 6B, 
7A, 7B

Wheat Blanco et al. (2002)

GPC 2AS, 6AS and 
7BL

Blanco et al. (2006)

QGpc.sdau-3B, QGpc.sdau-5A, 
QGpc.sdau-6A

3B, 5A, 6A Sun et al. (2008)

QGpc\tgw.WL-1D, QGpc.WL-2A, 
QGpc\yld.WL-2B, QGpc.WL-3B, 
QGpc.WL-4A, QGpc\yld.WL-4A, 
QGpc.WL-5B, QGpc.WL-5D, 
QGpc.WL-6B, QGpc.WL-7A

1D, 2A, 2B, 3B, 
4A, 5B, 5D, 6B, 
7A

Wang et al. (2012)

QGPC.bhu_1A 1A Tiwari et al. (2016)
GPC, Protein yield 1A, 1B, 2A, 2D, 

3A-1, 3A-2, 3B, 
3D-2, 4A, 4B, 
5A, 5B, 5D, 6A, 
7A-1, 7B

Mahjourimajd et al. 
(2016)

(continued)

Table 14.1 (continued)
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Trait Genomic region/QTLs Chromosome Crop References

QGpc.sdau-1D, QGpc.sdau-2D, 
QGpc.sdau-4A, QGpc.sdau-1A, 
QGpc.sdau-2A.2, QGpc.sdau-4B, 
QGpc.sdau-5D, QGpc.sdau-7A, 
QGpc.sdau-2A.1,

1A, 1D, 2A, 2D, 
4A, 4B, 5D, 7A

Sun et al. (2016)

QGpc.2B-yume 2B Terasawa et al. 
(2016)

QGpc.uhw-4B, QGpc.uhw-5A.1, 
QGpc.uhw-6B, QGpc.uhw-7B.2

4B, 5A, 6B, 7B Fatiukha et al. 
(2020)

QGpc-1B-2, QGpc-4B-1.4 1B, 4B Guo et al. (2020)
QGPC.cib-4A 4A Li et al. (2020)
PC 6, 7 Rice Tan et al. (2001)
pro1 1 Aluko et al. (2004)
qCP-12 12 Zhang et al. (2008)
qPC11.2 11 Qin et al. (2009)
qPC-3, qPC-4, qPC-5, qPC-6, 
qPC-10

3, 4, 5, 6, 10 Yu et al. (2009)

qAa1, qAa7, qAa9 1, 7, 9 Zhong et al. (2011)
qPro-2, qPro-10 2, 10 Yun et al. (2014)
qPro-2 2 Lee et al. (2014)
qPC1 1 Peng et al. (2014)
qPC-1 1 Yang et al. (2015)
qPC6.2 6 Kinoshita et al. 

(2017)
qGPC1.1, qSGPC2.1, qSGPC7.1 1, 2, 7 Chattopadhyay 

et al. (2019)
qPC3.1, qPC5.1, qPC9.1 3, 5, 9 Pradhan et al. 

(2019)
QTL.pro.1 1 Islam et al. (2020)
qAAC6.1, qAAC7.1, qPC1.2 1, 6, 7 Jang et al. (2020)
qGPC1–1 1 Wu et al. (2020)
PC 6H Barley See et al. (2002)
GPC 2, 6 Mickelson et al. 

(2003)
GPC 2H, 4H, 5H 7H Emebiri et al. 

(2003)
Qgpc1H, Qgpc2H, Qgpc4H, 
Qgpc5Ha, Qgpc5Hb, Qgpc5Hc, 
Qgpc7H

1H, 2H, 4H, 5H, 
7H

Emebiri et al. 
(2005)

Qcp2a, Qcp3a, Qcp5a, Qcp6a, 
Qcp7a, Qcp7b

2H, 3H, 5H, 6H, 
7H

Abdel-Haleem et al. 
(2010)

QGpc.ZgSc-2H.1, QGpc.
ZgSc-2H.2, QGpc.ZgSc-2H.3, 
QGpc.ZgSc-4H.1, QGpc.
ZgSc-4H.2, QGpc.ZgSc-4H.3, 
QGpc.ZgSc-5H.3, QGpc.
ZgSc-5H.1, QGpc.ZgSc-5H.2, 
QGpc.ZiSc-7H.1, QGpc.
ZiSc-7H.2, QGpc.ZiSc-7H.3

2H, 4H, 5H, 7H Fan et al. (2017)

Table 14.1 (continued)
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et al. 2020). Pearl millet is a nutrient-rich cereal; QTLs/ candidate genes for Fe 
and Zn content were identified on linkage group (LG) 3 and 5 (Kumar et  al. 
2016), LG 3, 5, and 7 (Anuradha et al. 2017), LG 1 and 7 (Kumar et al. 2018), 
LG 7 (Mahendrakar et  al. 2020), Pgl01, Pgl02, Pgl04, Pgl05, Pgl06 (2), and 
Pgl07 (Pujar et al. 2020), and LG 2 and 3 (Singhal et al. 2021).

14.5  QTLs for Amino Acids and Grain Protein Content

Grain protein content (GPC) of cereals is an important component of human diet 
and is the determining factor of nutritional quality of plant-based diet. In the past 
few years, several researchers have mapped QTLs for GPC in both durum and 
hexaploid wheat (Table  14.1) (Blanco et  al. 2002, 2006; Mahjourimajd et  al. 
2016; Sun et al. 2016; Fatiukha et al. 2020). In rice, QTLs for GPC have been 
mapped on all the chromosomes. However, most of them are located on chromo-
somes no 1, 2, 6, 7, 10, and 11 (Tan et al. 2001; Aluko et al. 2004; Zhang et al. 
2008; Qin et al. 2009; Yu et al. 2009; Zhong et al. 2011; Lee et al. 2014; Yun et al. 
2014; Yang et  al. 2015; Chattopadhyay et  al. 2019; Pradhan et  al. 2019; Jang 
et al. 2020; Wu et al. 2020). Similarly, in the case of barley, QTLs for GPC have 
been reported on all seven chromosomes by several researchers. It has been 
found that seven consensus QTLs are present on chromosomes 2H, 4H, 5H, 6H, 
and 7H (See et al. 2002; Mickelson et al. 2003; Emebiri et al. 2003, 2005; Abdel-
Haleem et al. 2010; Fan et al. 2017).

14.6  Commercial Varieties with Improved Nutritional Value

Once the QTLs get identified, marker-assisted breeding (MAB) can be employed 
to develop improved versions of commercial hybrids/ cultivars. This started with 
the development of improved version of commercial pearl millet hybrid against 
downy mildew (Hash et al. 2006). Thereafter, marker-assisted selection (MAS) 
has been widely adopted to improve cereals like rice (Improved Pusa Basmati 1, 
Improved Samba Mahsuri, Swarna sub1, IR64 sub1, PRR78/IRBB60, Pusa 6A, 
and Improved Pusa RH10), wheat, and maize. Various commercial hybrids/ cul-
tivars of rice have been improved against bacterial blight, submergence toler-
ance, rice blast, drought tolerance, and several other traits (Kottapalli et al. 2010; 
Reddy et al. 2009; Singh et al. 2011; Das et al. 2017). Similarly, wheat varieties 
(Patwin, Expresso, Lassik, Farnum, Westmore, and AGS2026) have been 
improved against various biotic and abiotic stresses using MAS (Gupta et  al. 
2010). Several attempts have been made to improve the nutritional value of cere-
als using MAS. One of the success stories in cereals is development of quality 
protein maize (QPM) (Vivek et al. 2008). Marker- assisted backcrossing (MABC) 
was utilized to introgress the Opaque 2 allele on chromosome 2 and led to the 
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release of ‘Vivek-QPM-9’ in 2008 (Gupta et al. 2013). The improved hybrid pos-
sessed 41% more tryptophan and 30% more lysine than the original hybrid 
(Vivek Hybrid 9). Later on in the year 2017, improved versions of three popular 
hybrids, viz. Pusa HM-4, Pusa HM-8, and Pusa HM-9, were released for com-
mercial cultivation in India (Hossain et  al. 2018). MABC has been utilized to 
develop biofortified rice with higher Zn content. With the efforts of BRRI 
(Bangladesh Rice Research Institute), five high Zn content varieties, viz., BRRI 
dhan62, BRRI dhan64, BRRI dhan72, BRRI dhan74, and BRRI dhan84, have 
been released for commercial cultivation. Similarly, high-Zn varieties, DRR 
Dhan45 and Chhattisgarh Zinc Rice-1 in India, NSIC Rc 460 in Indonesia, and 
Nutri Zn in Philippines, have been commercialized (Calayugan et al. 2021). In 
2017, two Fe and Zn biofortified varieties, WB 02 and HPBW 01, have also been 
released for commercial cultivation by the Indian Institute of Wheat and Barley 
Research (Yadava et  al. 2020). In the same year, two Fe and Zn biofortified 
hybrids of pearl millet, viz. AHB 1200 and HHB 299, were released with the 
combined efforts of CCS Haryana Agricultural University, Hisar and ICRISAT, 
Hyderabad (Yadava et al. 2020).

Over the past decade, the MAB has been widely adopted to develop improved 
cereals. However, the global population is rising at an alarming rate and is pro-
jected to touch the mark of 9 billion by 2050 than its present level 7.53 billion 
(Priti et al. 2018). To keep pace with the rising population, researchers need to 
develop healthier and high-yielding cereals. The present, modern, and conven-
tional agricultural practices are not capable of meeting such high demands. There 
is a need for newer technology that is fast with higher precision rate. GE is one 
such technology which can be utilized to its full potential to meet the global 
demands.

14.7  Genome Editing (GE)

The existing modern breeding technologies need to be supplemented with 
advanced techniques like GE to develop nutrient-rich cereals. The emergence of 
GE technology has revolutionized the cereal improvement program with its 
superior precision rate and speed (Matres et al. 2021). GE allows site-specific 
modification of DNA.  This offers significant advantage over GM technology 
that mostly relied on random integration of introgressed DNA. Since the devel-
opment of GE in 2010, it has been consolidated into three major platforms, viz., 
ZNFs, TALENs, and CRISPR-Cas. These use designed nucleases to introduce 
targeted DSBs. These breaks are repaired in an error-prone pathway and muta-
tions are introduced within the target gene. These genetic changes have been 
utilized for crop improvement (Christou et al. 2021). The utilization of the three 
above-mentioned GE platforms for grain quality improvement in cereals is dis-
cussed below.
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14.8  Zinc Finger Nucleases (ZFNs)

In recent years, new advances empowering targeted alteration of plant genomes 
have been made possible and new genome editing technologies have been devel-
oped including ZFNs (Bibikova et al. 2002). ZFNs are a class of designed restriction 
enzymes that proves to be a powerful means for GE. ZFNs are chimeric proteins 
that consist of an N-terminal DNA-binding domain and a nonspecific DNA cleav-
age domain. Each designed zinc finger (ZF) identifies a specific 3-bp DNA sequence 
by binding and a FokI nuclease. FokI space dimerization is profoundly a basic 
requirement for ZFN enzymatic action (Kim et al. 1996). FokI belongs to the type 
IIS class of restriction endonucleases. The capacity of these designed nucleases to 
make targeted double-stranded breaks at assigned locations throughout the genome 
has enabled the editing of genes with great precision. A couple of Zinc finger arrays 
(30 amino acid residues) exhibit ties to respective sequences and get aligned in 
contrary style with one another resulting in a particular configuration (Petolino 
2015). The binding sites of two Zinc finger arrays are 18–24 bp in length separated 
by 5–8 bp. This space is important for creating DSB in the target sequence. The 
DSBs introduced by these endonucleases are followed by error-prone nonhomolo-
gous end joining (NHEJ) repair results in deletions or insertions, base substitutions, 
or incorporation of exogenous donor sequences at the ZFN cleavage site. If this 
damaged repair is in the coding region of a gene, it can interrupt the reading frame 
resulting in an inactive gene creating new genetic variations either by addition or 
deletion. The mechanism of action of ZFNs is represented in Fig. 14.2. ZFNs were 
first reported in Arabidopsis (Wright et al. 2005; Llyod et al. 2005) and tobacco (Cai 
et al. 2008; Maeder et al. 2008; Townsend et al. 2009), and later on, effectively used 
in different plants such as soybean (Curtin et al. 2011) and rice (Cantos et al. 2014; 
Jung et al. 2018).

One of the most significant examples of GE for grain quality improvement by 
ZFNs targeted the IPK1 gene which encodes inositol-1,3,4,5,6-pentakiphosphate 2– 
kinase, which is an important enzyme in phytate biosynthesis in maize seeds (Shukla 
et al. 2009), resulting in herbicide tolerance and altered inositol phosphate profiles 
in the developing seeds. Starch biosynthesis pathway was targeted in rice with engi-
neered ZFNs which can effectively cleave and induce mutations at SSIVa locus. 
This modification resulted in dwarfism and reduced starch content (Jung et al. 2018).

The field of GE has been revolutionized by Zinc finger nucleases, showing the 
ability to utilize genomic sites of concern and opened the entryways for both essen-
tial and applied research. As for productivity, ZFNs give an advantage over different 
tools, extraordinary explicitness, and insignificant nontarget impacts and present 
challenges are focused on further improving plan and conveyance just as expanding 
their utilization in different crops. The advances in ZFN-based GE give huge free-
dom to focus on any DNA sequence in the genome. However, there are a few intrin-
sic detriments that have confined their wider scope of utilization, for example, 
costly and tedious cycles for enhanced assembly of the ZF domains and off-target 
effects (Eid and Mahfouz 2016; Mushtaq et al. 2019).
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Fig. 14.2 An overview of nonhomologous end joining (NHEJ) and homology-directed repair 
(HDR)-mediated genome editing

14.9  TALENs

Precise genetic editing or modification has remained the fundamental goal for 
researchers engaged in the fields of molecular breeding and agricultural biotechnol-
ogy. Engineered nucleases are dynamic tools for precise in vivo genetic modifica-
tions in genomes (Bogdanove and Voytas 2011). TALENs promptly turn up as an 
alternative to ZFNs, by introducing targeted DSBs for GE, and provide a novel and 
excellent route for crop improvement. TALENs and ZFNs have similar features of 
containing FokI nuclease domain combined with customizable DNA-binding 
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domain (Fig. 14.2). This DNA-binding domain is comprised of highly conserved 
repeats which are derived from transcription activator-like effector proteins 
(TALEs), which are fused with nonspecific cleavage domain of FokI endonucleases. 
TALEs are Type III effector proteins that were discovered in plant pathogenic bac-
teria Xanthomonas spp. from rice and cotton (Boch and Bonas 2010). Similar to 
ZFNs, TALENs facilitate specific GE via induction of DSB in a specific target 
sequence of genome, followed by nonhomologous end joining (NHEJ) (Moehle 
et al. 2007) or homology-directed repair (HDR) (Rémy et al. 2010). The emergence 
of engineered nucleases has revolutionized the field of genetic engineering and 
TALENs use these engineered nucleases to introduce specific additions and dele-
tions in targeted genes. TALEN assembly comprises central DNA-binding domain, 
highly conserved acidic transcription activation domain at C terminal, secretion, 
and translocation at N terminal and nuclear localization signal (NLS). In central 
DNA-binding domain, 33–35 amino acids tandem repeats are present which recog-
nizes one nucleotide in the target sequence (Li et  al. 2011). The specificity of 
TALEN mainly depends on amino acids of polymorphic nature located at 12 and 13 
positions, also called repeat variable di-residue (RVD). Many RVDs have been 
reported; some major ones are NI (Asn ile), HD (His Asp), NN (Asn Asn), and NG 
(Asn Gly), which recognize nucleotides adenine (A), cytosine (C), guanine (G), 
thymine (T), respectively. These tandem repeats are followed by a sequence of 20 
amino acids, which are called half repeats.

TALENs have been used widely for crop improvement for engineering disease 
resistance and increasing shelf life (Haun et al. 2014; Wang et al. 2014; Wendt et al. 
2013; Lor et al. 2014). TALENs have also been used for grain quality improvement 
in cereal crops being utmost priority for sustainable agriculture (Table 14.2). In a 
study by Ma et al. (2015), the storage tolerance of rice was increased by knocking 

Table 14.2 Overview of various crop plants improved for grain quality using GE

Sr. 
No. Crop Gene Trait References

ZFNs
1. Maize IPK1 Phytic acid Shukla et al. (2009)
2. Rice SSIVa locus Starch content Jung et al. (2018)
TALENS
1. Rice LOX3 Storage Ma et al. (2015)
2. Rice OsBADH2 Fragrance Shan et al. (2015)
CRISPR-Cas
1. Maize ZmIPK1 Phytic acid Sun et al. (2007)
2. Maize ZmIPK1 Phytic acid Liang et al. (2014)
3. Maize ZmMADS47 Protein content Qi et al. (2016)
4. Maize Wx1 Starch content Waltz (2016)

(continued)
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Table 14.2 (continued)

Sr. 
No. Crop Gene Trait References

5. Maize Wx1 Starch content Qi et al. (2020)
6. Maize Wx1 Starch content Gao et al. (2020)
7. Maize BADH2 Fragrance Wang et al. (2021a, 

b)
8. Rice OsFAD2–1 RBO Abe et al. (2018)
9. Rice OsFAD2 RBO Bahariah et al. 

(2021)
10. Rice BADH2 Fragrance Shao et al. (2017)
11. Rice BADH2 Fragrance Fuhua et al. (2018)
12. Rice BADH2 Fragrance Usman et al. (2020)
13. Rice BADH2 Fragrance Ashokkumar et al. 

(2020)
14. Rice Osor Vitamin A Endo et al. (2019)
15. Rice Osor Vitamin A Dong et al. (2020)
16. Rice Wx Amylose content Zhang et al. (2018a, 

b)
17. Rice Wx Amylose content Yunyan et al. (2019)
18. Rice Wx Amylose content Li et al. (2020a)
19. Rice SBEI and SBEII Amylose content Sun et al. (2017)
20. Rice SBEII Amylose content Baysal et al. (2020)
21. Rice Rc Proanthocyanidins and 

anthocyanins
Zhu et al. (2019)

22. Wheat α-Gliadin Gluten content Sánchez-León et al. 
(2018)

23. Wheat α-And γ-gliadin Gluten content Jouanin et al. (2019)
24. Wheat α-Gliadin Gluten content Sánchez-León et al. 

(2018)
25. Wheat Pinb, waxy, and DA1 Grain hardness, starch quality, 

and kernel size
Zhang et al. (2018a, 
b)

26. Wheat α-Amylase/trypsin 
inhibitors

Protein quality Camerlengo et al. 
(2020)

27. Wheat TaSBEIIa Amylose content Li et al. (2020b)
28. Wheat Pinb, waxy, ppo and 

psy
Grain hardness, starch quality, 
and dough color

Zhang et al. (2021)

29. Barley HvPAPhy_a Phytic acid Holme et al. (2017)
30. Barley HvITPK1 Phytic acid Vlčko and 

Ohnoutková (2020)
31. Barley D-hordein Glutenins Yang et al. (2020)
32. Sorghum k1C Kafirins Li et al. (2018)
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out LOX3 gene. Fragrant rice is favored over non-fragrant rice all over the world. In 
fragrant rice, more than a hundred volatile compounds are found, one of which is 
2-acetyl-1-pyrroline (2AP). Its quantity is higher in fragrant rice than non-fragrant 
rice. Shan et al. (2015) employed TALENs to disrupt OsBADH2 gene which inhib-
ited the synthesis of 2AP. The study showed that the 2AP content of non- fragrant 
rice increased from 0 to 0.35–0.75 mg/kg, which was almost similar to the positive 
control variety with mutation in BADH2 gene.

14.10  CRISPR/ Cas9

The combination of research and technology in developing improved genotypes of 
crop plants has led to the basis of modern agriculture. Though nowadays traditional 
breeding is much faster than 50 years back, it is not able to cope with the increasing 
food demand with the global climate change making the situation more challenging. 
As far as crop improvement is dependent on conventional breeding, i.e., exploita-
tion of natural germplasm variation and introgressing the desired trait in target 
crops, time and resources will always limit the crop improvement (Jangra et  al. 
2017, 2019a, b). These limitations can be overcome by exploiting CRISPR tech-
nologies and crop improvement can be accelerated at a rate that was not possible 
earlier. CRISPR in agriculture can be considered as a novel breeding method that is 
much faster, predictable, and cheaper and the results are identical to conventional 
breeding (Gao et al. 2018). Since its first report in 2012, this technology has revolu-
tionized research in life sciences.

Initially, CRISPR was identified as repeats (Ishino et  al. 1987) and was later 
characterized in 1990s. The term CRISPR was coined by Jansen et al. (2002). It is 
a bacterial and archaeal defense mechanism that provides immunity against bacte-
riophages through RNA-programmed DNA cleavage. The Cas9 system is composed 
of a cascade of different proteins generally classified into two classes according to 
the structure, 6 type and 19 subtype (Shmakov et  al. 2017). The composition of 
effector nucleases determines the level of variation among the classes. The class I 
effectors comprise of a complex of several proteins with different functions; how-
ever, the class II effector comprises a multi-domain single protein (Makarova et al. 
2015). The most used CRISPR is type II-A CRISPR/Cas9 system, and due to its 
high efficiency in producing double-stranded breaks, the spCas9 is derived from 
Streptococcus pyogenesis. Some restrictions like proto-spacer adjacent motif (PAM) 
were showed by spCas9. PAM is NGG (N-Any nucleotide, G-Guanine), making its 
application difficult in sequences having higher AT and also prone to produce off- 
target effects. These limitations have been overcome by high fidelity variants of 
Cas9 with mutations that prevent nonspecific interactions between DNA and nucle-
ase domains leading to reduced off-target effects (Kleinstiver et  al. 2016). 
Expression, interference, and adaptation are the three stages of which the CRISPR/
Cas9 system is comprised. In the expression of CRISPR array, sequences that are 
homologous to the target sequence (proto-spacers) get transcribed into pre-CRISPR 
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RNA (pre-crRNA). Homologous bonds with trans activating crRNA (tracrRNA) are 
formed by these pre-crRNAs. After the formation of pre-crRNA/tracrRNA com-
plex, the Cas9 protein gets attached and RNase III cut the long pre-cdRNAs into 
separate crRNA/tracrRNA complexes (gRNA). Interference starts with guiding of 
Cas9 complex by crRNA/tracrRNA to target sequence and gRNA binds to target 
sequence after PAM. As the PAM sequence is not present in CRISPR array, PAM 
allows the discrimination between self/nonself. The target sequence, unwound as 
Cas9, is equipped with helicase and nuclease activity and the cuts are produced by 
the RuvC and HNN domain of Cas9, leading to DSB in the target sequence. NHEJ 
or HDR repairs the DSB and the repaired sequence is transcribed and adapted into 
the genome as described in Fig. 14.2 (Jackson et al. 2017). CSISPR/Cas9 offers 
several advantages over other GE technologies being simple and cost-effective. 
Also, the Cas9 system is readily available making it a highly valuable GE tool. The 
multi-target approach of this technique could be utilized to target multiple genes 
simultaneously. The off-target effects of the Cas9 could be reduced by mutating 
RuvC domain.

CRISPR allows researchers to perform gene knockout, DNA-free gene editing, 
gene insertions or knock-ins, and transient gene silencing. In the case of gene 
knockout/ gene silencing, CRISPR utilizes a single guide RNA (sgRNA) to initiate 
double-stranded breaks at the target site using Cas9 endonuclease. The repairing of 
these breaks through NHEJ mechanism (error-prone) results in genomic deletions 
or insertions, leading to permanent silencing of target gene. The DNA vector-free 
CRISPR-based GE requires only RNA or protein components. This DNA-free edit-
ing eliminates the possibility of unwanted genetic alterations that may be caused 
due to integrating plasmid DNA or random vector integration at the cut site. The 
double-stranded breaks induced through CRISPR can be utilized for creating gene 
‘knock-ins’ through homology-mediated repair. The gene codon can be altered by 
the precise addition of donor template. In earlier studies, it has been found that pre-
cise insertions can be made by CRISPR-Cas9 system with the help of single- 
stranded DNA (Cong et  al. 2013). Transient gene silencing or suppression of 
transcription can be done with modified Cas9 which is unable to cut DNA. The 
promoter region is targeted by the modified Cas9 and the transcriptional and gene 
expression activity is hampered. This can also be utilized for transient activation or 
upregulation of target genes (Ishino et al. 2018).

An efficient CRISPR-Cas delivery system is the only prerequisite for the 
application of this technology in crop improvement. The transformation of 
major crop plants is generally confined to a few genotypes per species, which 
are not probably the elite cultivars. Therefore, the development of user-friendly 
and robust CRISPR delivery system for commercial varieties is essential. A 
recent study showed that the transformation efficiency of cereals can be 
improved with the help of morphogenic regulators (Lowe et  al. 2016). The 
transformation of recalcitrant elite cultivars of wheat and corn can be improved 
by haploid-inducer-mediated GE approach (Kelliher et  al. 2019; Wang et  al. 
2019). The time-taking process and labor-intensive process of plant regenera-
tion through tissue culture after transformation could be avoided by 
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administrating the CRISPR components to shoot apical meristem, pollen, or 
flowering tissues (Hickey et  al. 2019). This tissue culture-free technique has 
been recently employed to develop gene-edited plants by de novo meristem 
induction (Maher et al. 2020). Though in eukaryotes NHEJ is the major mecha-
nism involved in DNA repair in crops, many desired traits can be attained by 
specific substitution or insertion of DNA segments. A novel method of base 
substitution is provided by base editing; however, it is currently restricted to 
A-G or C-T substitutions (Komor et al. 2016; Gaudelli et al. 2017). In a recent 
development, a ground- breaking genome editor called ‘prime editing’ has been 
developed that delivers genetic information directly into specific DNA sites pro-
viding a powerful tool to expand the scope and capabilities of GE (Anzalone 
et  al. 2019). In prime editing, the Cas9 is engineered to function as nickase 
combined with reverse transcriptase, and the sgRNA is replaced with pegRNA 
(prime editing guide RNA), which comprises both a sgRNA for target site iden-
tification and RNA template for determining the DNA sequences that are to be 
integrated at the target site (Anzalone et  al. 2019). Similar applications may 
follow in crop plants in the not-so-distant future.

Since the recognition of CRISPR as cutting-edge technology, it has gained the 
interest of researchers and industries to improve major crop plants. In a very short 
time since its first application in plants, it has been utilized to improve various traits 
like tolerance against biotic and abiotic stresses, quality, nutritional value 
(Table 14.2), and yield (Arora and Narula 2017; Jaganathan et al. 2018; Gao et al. 
2018; Wang et al. 2019; Ahmad et al. 2020; Zaidi et al. 2020; Zhang et al. 2020; 
Zhang et al. 2021). At present, CRISPR/Cas has become a major biotechnology tool 
to introgress the desired trait.

14.11  CRISPR/Cas for Grain Quality Improvement 
in Cereals

CRISPR/Cas has been widely employed to edit quality-related genes in the case of 
cereals to enhance their nutritional value. Maize, rice, wheat, barley, oats, rye, and 
sorghum are the principal cereal crops across the globe. In the following section, an 
overview of CRISPR-Cas9-based improvement of grain nutrient quality in cereals 
is summarized in Table 14.2.

14.12  Maize (Zea Mays)

Maize is the most cultivated cereal all across the globe. It is widely used for human 
consumption, animal feed, and biofuel production. Phytic acid (inositol 1, 2, 3, 4, 5, 
6-hexakisphosphate) is an anti-nutritional compound present in maize and reduces 
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the assimilation of minerals after human and animal consumption (Feil 2001). To 
overcome this problem, the gene (Inositol phosphatase kinase 1, ZmIPK1) encoding 
for phytic acid production was knocked out using CRISPR-Cas9. The study showed 
that over 50% of the IPK1 open reading frames were interrupted in leaves and seeds 
(Sun et  al. 2007). Similarly, ZmIPK1 was targeted, knocked out by mutagenesis 
induced by specifically designed gsRNA (Liang et al. 2014).

Zeins are the most abundant storage protein in maize and are deficient in 
two essential amino acids (lysine and tryptophan), contributing to poor nutri-
ent quality. Opaque 2 (O2), a basic leucine zipper protein-based transcription 
factor, regulates the synthesis of zeins in maize (Schmidt et al. 1990). It has 
been reported that this problem can be overcome by altering the zeins produc-
tion, which allows production of other proteins with higher lysine and trypto-
phan content. CRISPR technology has been employed to target ZmMADS47 
gene encoding a MADS-box protein, an interacting partner of O2. A reduction 
of 12.5% in zeins content was recorded in MADS/CAS9–21 lines (Qi 
et al. 2016).

Starch (amylose and amylopectin) content is another important target trait. 
Generally, the starch content in normal maize is around 70%, of which 75% is 
amylopectin and 25% is amylose. Waxy maize that has high amylopectin content 
was first discovered over 100 years ago in China. The high starch content makes 
waxy corn an ideal product for implementing CRISPR-Cas to overcome the chal-
lenges associated with conventional breeding. CRISPR-Cas technology has been 
utilized to alter the waxy gene (Wx1), which encodes granule-bound starch syn-
thase responsible for amylose production in endosperm. The alteration can lead 
to accumulation of high amylopectin content in endosperm, making it suitable 
for various industries like processed foods, adhesives, and high-gloss paper. For 
commercialization, CRISPR-Cas-based editing of WX1 has been applied to elite 
commercial cultivars and crossbreed as CRISPR-waxy hybrids (Waltz 2016). 
Waxy maize was presented among first CRISPR-edited crops that can be culti-
vated and sold free from USDA regulations and will be available in the market 
by DuPont Pioneer in the coming years after field trials (Waltz 2018). In another 
study, the Wx1 gene has been targeted to develop waxy maize employing 
CRISPR-Cas9 (Qi et al. 2020). Field trials of CRISPR-edited waxy corn hybrids 
of 12 elite inbred lines indicated that these were agronomically superior to the 
introgressed line and produced on an average 5.5 bushels per acre higher yield 
(Gao et al. 2020).

Recently, aromatic maize has been developed using CRISPR-Cas9. Two maize 
betaine aldehyde dehydrogenase 2 (BADH2) homologs, ZmBADH2a and 
ZmBADH2b, were identified in maize. Zmbadh2a and zmbadh2b single mutants 
and the zmbadh2a-zmbadh2b double mutant were developed by CRISPR/Cas in 
four inbred lines. The double mutants accumulated 0.028 and 0.723  mg/kg 
2-acetyl- 1-pyrroline (2AP) in fresh and dried kernels, respectively (Wang et  al. 
2021a, b).
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14.13  Rice (Oryza Sativa)

Rice is consumed by more than 3.5 billion people across the globe and accounts for 
around 20% of the global dietary supply (Fiaz et al. 2019; Ku and Ha 2020). It has 
been estimated that there should be a 40% increase in production by 2030 to meet 
the global rice demand (Khush 2005). In addition, with the improvement in people’s 
living standards, the demand for rice with higher nutritional quality is expected to 
increase. Therefore, newer technologies like CRISPR can be utilized to improve the 
nutritional value of rice at a much faster rate than conventional breeding. Rice bran 
oil (RBO) is widely used in Asian countries and the major components of RBO are 
monounsaturated oleic acid (37–52%) followed by 13–22% of linoleic acid (polyun-
saturated) and 27–40% palmitic acid (saturated) (Taira et al. 1988). The presence of 
oleic acid in RBO makes it good for health which has increased the demands of rice 
bran oil. Further, increasing the oleic acid in rice can add to the health benefits. In 
plants, the conversion of oleic acid to linoleic acid is catalyzed by an enzyme fatty acid 
desaturase 2 (FAD2). In rice, three functional FAD2 genes are present, of which 
OsFAD2–1 is highly expressed in seeds. Thus, by altering this gene, the oleic acid 
content in RBO can be elevated. The disruption of OsFAD2–1 gene by targeted muta-
genesis utilizing CRISPR led to two-fold increase in oleic acid content, thereby 
increasing the quality of RBO (Abe et al. 2018). In another study, CRISPR-Cas9 was 
utilized to knock out FAD2 gene using two sgRNA. The knocked-out plants showed 
higher oleic acid content as compared to wild-type plants (Bahariah et al. 2021).

The demand for fragrant rice, particularly Indian Basmati, is gaining worldwide 
due to the presence of a characteristic fragrance in its grains. This fragrance is due 
to the presence of defective OsBAD2 which favors the production of 2AP, one of the 
most abundant components of various volatile compounds responsible for fragrance 
(Zafar et al. 2020). Fragrance gene BADH2 of Zhonghua 11 rice was edited using 
CRISPR/Cas9. An additional base (T) was introduced in the first exon of BADH2, 
leading to higher 2AP content in edited rice (Shao et al. 2017). CRISPR-Cas9 was 
applied to alter the BADH2 gene in Zhengdao 19, a rice variety suited for direct 
sowing. The 2AP content in field planted T0 was found to be increased from 
0.003 μg/g (in the wild type) to 1.259 ± 0.072 μg/g for T0 mutants. In greenhouse- 
planted T1, it increased from 0.002 μg/g (in the wild type) to 0.537 ± 0.111 μg/g for 
T1 mutants (Fuhua et al. 2018). A significant increase in grain yield and fragrance 
(2AP) was observed in CRISPR-edited rice. The mutants exhibited 2AP levels rang-
ing from 0.72–0.78 mg/kg while 2AP was absent in wild type (Usman et al. 2020). 
CRISPR was used to introduce aroma in elite rice variety ASD16 by creating novel 
alleles of OsBADH2 gene. SgRNA-mediated mutations were introduced in the sev-
enth exon of OsBADH2 gene. Novel aromatic comparatives, viz. pyrrolidine, pyri-
dine, pyrazine, pyridazine, and pyrozole, were detected in the comparative volatile 
profiling of T1 progenies grains (Ashokkumar et al. 2020).

Rice, one of the staple crops worldwide, is known to be deficient in vitamin 
A.  Golden rice was developed to overcome this deficiency by enhancing the 
β-Carotene content in the endosperm (Paine et al. 2005). CRISPR-Cas has also been 
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utilized to improve the vitamin A content in rice. An ortholog of Orange (Or) gene 
in cauliflower, the Osor gene in rice was targeted using CRISPR-Cas9. Accumulation 
of orange color in the callus showed the enhanced β-carotene level in edited rice 
(Endo et al. 2019). A 5.2 kb carotenoid biosynthesis cassette at two genomic safe 
harbors was introduced in rice. An enhancedβ-carotene level was detected in seeds 
with no change in yield. Whole-genome sequencing revealed that no off-target 
mutations were created in Cas9 engineered plants (Dong et al. 2020).

Soft rice with 7–10% amylose content is quite popular in south China. The amy-
lose content is determined by Waxy (Wx) gene. CRISPR-Cas9 has been recently 
applied to alter this gene to produce softer versions of elite cultivars. A loss of func-
tion in Wx gene of two widely cultivated elite japonica varieties, Xiushui134 
(XS134) and Wuyunjing 7 (9522), was introduced by CRISPR-Cas9. A two-fold 
increase in gel consistency (GC) and a marked reduction in gelatinization tempera-
ture (GT) for CRISPR-waxy seeds were observed as compared to wild (Zhang et al. 
2018a, b). The Wx gene of two elite rice cultivars, Huaidao 5 (HD5) and Suken 118 
(SK118), was targeted to develop soft rice. The amylose content in the edited lines 
was around 2.6%–3.2% (Yunyan et al. 2019). Three elite rice cultivars, viz. Suijing 
18 (SJ18), Songjing 2 (SJ2), and Longqingdao 3 (LQD3), were targeted for 
CRISPR-based editing of Waxy gene. The edited lines showed a significant reduc-
tion in the amylose content (Li et al. 2020a). An elite indica variety TianFengB was 
targeted to improve the cooking quality by reducing the amylose content using 
CRISPR-Cas9. The edited lines showed a significant reduction in amylose content. 
The study showed that in some of the edited lines the amylose content was similar 
to glutinous rice (Zeng et al. 2020). Cereal grains with higher starch content are 
known to be a good source of resistant starch (Jiang et al. 2010). Resistant starch is 
a form of nondigestible starch and is not absorbed in the body and protects from 
various noninfectious diseases (Regina et  al. 2006). Keeping in mind the health 
benefits of resistant starch, CRISPR has been utilized to increase the starch content 
in rice. The calli derived from japonica cv. Kitaake was targeted for introduction of 
CRISPR-mediated mutagenesis in starch branching enzymes (SBE, SBEI, and 
SBEIIb). The SBEI and SBEII mutants showed a significant increase in amylose 
content and resistant starch by 25.0 and 9.8%, respectively (Sun et  al. 2017). In 
another study, CRISPR-Cas9-mediated mutagenesis in SBEII resulted in increased 
amylose and resistant starch content from 19.6 to 27.4% and from 0.2 to 17.2%, 
respectively (Baysal et al. 2020).

Proanthocyanidins and anthocyanins are the major health-promoting nutrients 
present in rice. The red color in rice is governed by two recessive complementary 
genes, Rc and Rd. The wild species Oryza rufipogon has RcRd genotype which is 
responsible for red pericarp. However, a 14-bp frame-shift deletion in the seventh 
exon of Rc gene results in white phenotype in most of the cultivated rice varieties. 
Recently, this frame-shift mutation in recessive Rc was revered with the help of 
CRISPR-mediated editing, resulting in the conversion of white cultivar to red culti-
var. The mutants showed high accumulation of proanthocyanidins and anthocyanins 
than the wild type. No significant difference in other agronomic traits was observed 
in the mutants as compared to wild type (Zhu et al. 2019).
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14.14  Wheat

Wheat is an economically important cereal that supplies 20% of the calorie intake 
to over 60% of the global population. Presently, it is cultivated on around 220 mil-
lion hectares with an annual production of 700–750 million tons and used in a wide 
range of products. The continued economic development has led to increased 
demand for premium quality wheat with improved grain quality. Grain quality is a 
mutagenic trait and the hexaploid genome of around 16 Gb with around 85% repeti-
tive elements makes it more complex (Zhang et al. 2021). The advent of CRISPR- 
Cas9 has allowed researchers to create novel allelic variations to improve wheat 
grain quality. Recently, a web-based tool has been developed to design sgRNA for 
GE in wheat (Cram et al. 2019).

Celiac disease (CD) is the most common disease associated with wheat. It is an 
autoimmune disease prevalent in around 1–2% of the global population (Jouanin 
et al. 2020). Among food intolerances, CD is relatively well-understood from the 
standpoint of human immunity (Tye-Din et al. 2010). Gluten-free diets (GF), which 
exclude all wheat products, are the only way to prevent CD and this is very difficult 
as wheat gluten is present in almost every product. In the case of wheat, the gene 
family responsible for this autoimmune disease is α-gliadin, of which 33-mer is most 
immunogenic. The coding region of 33-mer was targeted using CRISPR and 21 
mutant lines were developed. A total of 35 different genes were mutated and the 
immunoreactivity was reduced by 85%. These GE lines could be utilized in making 
low-gluten foodstuffs (Sánchez-León et  al. 2018). In another study, both α- and 
γ-gliadins were targeted using CRISPR-Cas9. The T1 generation showed altered glia-
dins production (Jouanin et al. 2019). Two genes related to grain quality, pinb (grain 
hardness) and waxy (starch quality), and one for kernel size DA1 were mutated using 
CRISPR. Three mutant lines were generated and a mutation efficiency of 54.17% 
was recorded (Zhang et al. 2018a, b). Two subunits of α-amylase/trypsin inhibitors 
(ATI), viz. WTAI-CM3 and WTAI-CM16, were targeted to reduce allergen proteins 
in durum wheat using CRISPR (Camerlengo et al. 2020). The resistant starch content 
of modern wheat varieties is quite low. Targeted mutagenesis of TaSBEIIa using 
CRISPR was employed to increase amylose content in winter wheat cv. Zhegmai 
7698 (ZM) and spring wheat cv. Bobwhite. Flour quality analysis showed that the 
triple-null lines possessed significantly increased amylose content (Li et al. 2020b). 
Four-grain quality genes, viz. pinb (grain hardness), waxy (starch quality), ppo, and 
psy (dough color), were targeted using CRISPR-Cas9. The mutants showed a signifi-
cant reduction in expression of all four genes (Zhang et al. 2021).

14.15  Barley (Hordeum Vulgare)

Barley is one of the first crops to be domesticated, a major constituent of the brew-
ing industry and primarily used as feed and food. Like other cereals, the presence of 
phytic acid is a major drawback associated with barley (Cosgrove 1980). 
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CRISPR- Cas9- mediated mutations in the promoter of the barley phytase gene 
HvPAPhy_a showed reduced mature grain phytase activity (Holme et al. 2017). In 
another study, HvITPK1 gene responsible for phytic acid production in barley was 
mutated. The mutants contained altered levels of phosphate in the mature grains, 
ranging from 65% to 174% of the wild-type content (Vlčko and Ohnoutková 2020). 
D-hordein component of barley storage protein was mutated using CRISPR. Barley 
grains without D-hordein protein in T2 seeds showed a decrease in the prolamines 
and an increase in the glutenins. Further, there was increase in starch, amylose, and 
β-glucan content (Yang et al. 2020).

14.16  Sorghum (Sorghum Bicolor)

Sorghum, a drought-tolerant crop, is a major staple food and feed crop in semiarid 
regions where cultivation of other cereals is not possible. Sorghum is deficient in 
essential amino acids like lysine and its protein is difficult to digest (Aboubacar 
et al. 2001). The reason behind the nondigestibility is the presence of prolamins, 
known as kafirins, which account for 70% of the total seed protein (Hamaker et al. 
1995). Kafirins mainly comprise α-kafirins encoded by gene family k1C. The gene 
family k1C was targeted using CRISPR.  A reduced T1 and T2 α-kafirin and 
increased grain protein digestibility and lysine content were observed in T2 genera-
tion seeds (Li et al. 2018).

14.17  Conclusion and Future Prospects

Over the past several decades, conventional and molecular breeding has made sig-
nificant contributions to agriculture. They utilize the variations in the available 
germplasm to develop improved versions. However, the improvement through these 
technologies is limited due to nonavailability of diverse germplasm. Moreover, 
these methods are time- and labor-intensive. GE, an advanced biotechnological tool, 
can be utilized to overcome the limitations. GE opens new avenues for researchers 
in the field of plant sciences to modify the target trait to interest, leading to a prodi-
gious success in plant biotechnology. The use of genome editing has allowed effi-
cient, rapid, specific, and targeted editing for increasing yield and nutritional value 
in cereals and other horticultural and fruit crops. These technologies add an edge to 
the existing genetic engineering struggles in attaining food security and combating 
malnutrition with the increasing global population. As GE crops are not likely to 
undergo strict regulations as in the case of GM crops (Yadav et al. 2018), they have 
come up as the first choice of researchers to develop improved crop plants. Despite 
several advancements in the field of GE, several challenges are associated with GE 
in cereals. Some of the major challenges are development of efficient transforma-
tion protocol, off-target effects, multiplexing, requirement of specific promoters, 
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and complex design (Ansari et  al. 2020). There are also certain restrictions and 
regulations for application of GE to crops (Zhang et al. 2020). All these challenges 
must be resolved to utilize GE to its full potential. The development of crop plants 
with enhanced nutritional value using GE promises that everyone gets a health-
ier diet.
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