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12.1  Introduction

CRISPR (clustered regularly short palindromic repeats)/Cas (CRISPR-associated 
proteins) is an acquired and advanced phage immune system discovered in many 
arches and bacteria to protect them against invasive genetic materials such as nucleic 
acid (Ahmar et  al. 2020; Barrangou et  al. 2007; Fineran and Charpentier 2012; 
Horvath and Barrangou 2010; Wiedenheft et al. 2012). Since its first application in 
2013, it was first introduced in mammalian cells. CRISPR mechanism is based on 
RNA-guided programmed nuclease, which has altered much more functions than 
just editing of genome (Cong et al. 2013; Mali et al. 2013). The CRISPR/Cas tech-
nology is based on functionalized target sequences, core components, and multiple 
subunits that have been characterized into three classes and their subtypes (Gasiunas 
and Siksnys 2013; Makarova et al. 2011a, b). The Type I CRISPR systems consisted 
of CRISPR-associated complex for antiviral defense (CASCADE) structure that 
comprised various subunits of Cas proteins that bind and form complexes with 
CRISPR RNA (crRNA) to initiate and signal the desired target loci. However, in 
Type III, crRNAs are integrated into various subunits complex called Csm or Cmr 
to signal, bind, and cleave the invaded RNA. On the contrary, in Type II systems, the 
Cas9 protein is the only prerequisite for the integration of DNA (Brouns et al. 2008; 
Garneau et al. 2010; Hale et al. 2009; Hsu et al. 2014). The Type II Cas system from 
specie Streptococcus pyogenes has a broad-term application in biomedical research 
due to the processive features such as high efficiency, specificity, rapid, inexpensive, 
simplicity as well as great versatility (Bikard et al. 2014; Cho et al. 2013; Hwang 
et al. 2013; Nekrasov et al. 2013; Wu et al. 2015). This system consists of two func-
tional components: guide RNA (gRNA) and a DNA endonuclease (Cas9), which 
were engineered by the fusion of tracrRNA and a crRNA into a single RNA mole-
cule. Usually, gRNA is easily switched by a synthetic single-guide RNA (sgRNA). 
Target site recognition begins in the presence of protospacer-adjacent motif (PAM) 
that is immediately located at (50-NGG) site, where the Cas9 signals the sgRNA to 
be positioned to the targeted site to initiate and unwind the site-specific double- 
stranded DNA breaks (DSBs); in these cases, the two cellular repair pathways, 
homology-directed repair (HDR) and nonhomologous end joining (NHEJ), can 
ensure to initiate with the potential alterations or error-prone insertions/deletions 
(indel) products (Garneau et  al. 2010; Gasiunas et  al. 2012; Jinek et  al. 2012; 
Sapranauskas et  al. 2011). Furthermore, in recent years, CRISPR interference 
(CRISPRi) technology has been developed that utilized deactivated dead Cas9 
(dCas9) protein showing absence or no endonuclease activity, thus actively regulat-
ing the genes in a well-defined manner (Gilbert et al. 2013; Larson et al. 2013; Qi 
et al. 2013). In addition, the Cas9 nickases (HNHH840A or RuvCD10A), which 
cleave only a single strand other than both strands of the target site, have become 
effective for genome editing mechanism (Guilinger et al. 2014; Ran et al. 2013a). 
Due to its high versatility, this mechanism is much appropriate for the editing of the 
genome with less off-target effects in any model organism (Kleinstiver et al. 2016; 
Shen et al. 2014). More recently, an alternate technology based on CRISPR-nuclease 
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Cpf1 has been efficiently developed that showed various advantages as well as dis-
advantages of each Cas9 system (Zetsche et al. 2015, 2017).

Presently, the delivery approaches of the CRISPR/Cas system are primarily 
focused on physical strategies (transformation, electroporation, microinjection, and 
so on) via viral and/or nonviral vectors (Adeno-associated virus (AAV), lentivirus, 
adenovirus), etc. (Niu et al. 2014; Xue et al. 2014; Yu et al. 2017). In the above- 
mentioned platforms, the physical and viral vectors have been subjected to be 
achieved through powerful delivering components of CRISPR/Cas9 systems. 
Despite high editing efficiencies, most of the physical delivery methods are only 
applicable for in vitro but not fit for in vivo applications (Chen et al. 2017). For viral 
vectors, the potential apprehensions are the limited DNA packaging capacity, lim-
ited scale-up production rate as well as clinical therapeutics such as carcinogenesis 
and immunogenicity (Chen and Gonçalves 2016). Nonetheless, the current delivery 
strategy for nonviral-based nanoparticles showed its significant considerations to 
overcome the limitations of safety concerns (Mintzer and Simanek 2009; Pack 
et al. 2005).

The emergence of material sciences and nanotechnology has offered tunable and 
significant aspects that hold potent applications in the field of genome editing (Yin 
et al. 2017). However, lipid and polymeric-based nanoparticles (NPs) offered encap-
sulation of large size genetic payloads and favor high efficiency and immunogenic-
ity response (Liu et al. 2018a, b). However, gold-based nanoparticles (AuNPs) have 
triggered the delivering approach of ribonucleoprotein (RNP) in vitro and in vivo 
applications in mice (Lee et  al. 2017). Up to date, previous pieces of literature 
focused on nonviral NPs-based delivery in the CRISPR system, which aims to 
enhance the delivery efficiencies, mitigate the off-target effects, and recognize Cas9 
protein on the target sites (Dever et al. 2016; Yin et al. 2016). This chapter exclu-
sively elaborates the recent barriers for the delivery of the CRISPR/Cas9 system 
with great emphasis on the potential development of vector delivery in CRISPR/
Cas9 based on nanomaterials for transgene-free genome editing applications.

12.2  Limitations and Challenges of CRISPR/Cas9-Based 
Genome Editing

So many technical pitfalls need to be addressed before CRISPR/Cas genome editing 
system can be efficiently utilized for clinical use. Based on a genetic basis, three 
consecutive limitations are subjected to be addressed. First, signaling and targeting 
the desired site actively, accurately, and efficiently of both cleavage and repair 
machinery to mitigate the chances of off-target possibility. Second, consider switch-
ing repair pathways such as HDR- or-NHEJ that handicamp on various experimen-
tal designs. Third, the system requires to be more specific to trigger therapeutics 
applications in diagnosing multiple diseases. However, due to the high probability 
of infrequent recombination efficiency, there are various shortcomings to achieve 
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potential applications, as presented in Fig.  12.1 (Wang et  al. 2013; Weber et  al. 
2015; Yang et al. 2013; Yu et al. 2015). Therefore, the gene-based delivery vehicle 
of CRISPR components governs the integration of foreign genes into the desired 
genomic site, and the resultant leads to poor immune feedback. However, various 
viral vectors are functionally utilized for in vitro delivery vehicles of CRISPR-based 
reagents, and the frequency of activation mutagenesis leads to the generation of 
proto-oncogenes due to the insertion of viral genes into the desired target genome, 
which results in the development of tumorigenesis (Yin et  al. 2016). Recently, 
in vivo delivery of nano-based vectors in the CRISPR system could resolve these 
concerns to overcome these pitfalls for transgene-free editing.

12.3  Modes of CRISPR/Cas9 Delivery Approaches

Usually, sgRNA can be integrated into the vector plasmids (pX459, pX330, etc.) 
that consist of sgRNA complex or can be achieved through in vitro transcription. In 
contrast, the desired template single-stranded oligodeoxynucleotide (ssODN) 
required for the gene correction through HDR-mediated pathway can be constructed 
in plasmids or achieved through in vitro mechanism.

Fig. 12.1 Limitations and challenges of CRISPR/Cas9 genome editing system
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Multiple CRISPR/Cas9 cargoes having different characteristic features can be 
integrated into various genetic payloads, such as DNA, mRNA, sgRNA, protein, 
and plasmids, respectively. Each of these genetic repertories encapsulated with NPs 
for vector delivering system showed pros and cons to fulfill the possessive chal-
lenges as summarized in Table 12.1.

The most forthcoming strategy is to integrate the Cas9 cassette into the sgRNA 
scaffold efficiently. Principally, this procedure triggers immediate gene editing as 
there are no chances of transcriptional and translational control. It also progres-
sively offers transient gene expression with less toxicity and mitigates off-target 
effects. Moreover, the positively charged Cas9 protein, the negatively charged 
sgRNA, as well as large-sized Cas9 protein (~160 kD) can inhibit the direct and 

Table 12.1 Various forms of CRISPR/Cas9 repertories and NPs for vector delivery system

CRISPR/
Cas9 
repertories

Nano-based 
delivering 
platforms Advantages Disadvantages

Cas9 
protein, and 
sgRNA

Lipid NPs Low toxicity, minimum off-target 
effects, poor stability, less 
inflammatory response (Chen 
et al. 2020)
Commercially utilized cationic 
transfection lipids that form 
stables complexes with genetic 
payloads such as DNA, RNA, 
mRNA, and proteins, respectively 
(Chen et al. 2020)
Significant scale-up and 
manufacturing efficiency (Evers 
et al. 2018)

High cost, low transfection 
efficiency, high encapsulation 
risk, rapidly degraded from the 
nucleases. Poor stability, 
endotoxin effect that leads to 
cellular toxicity (Li et al. 2018)

Cas9 
mRNA and 
sgRNA

Polymeric 
NPs

A novel form of PACE-based 
cationic polymers showed higher 
transfection capacity (Wahane 
et al. 2020)
Provide a broad-term application 
based on biocompatibility, 
biodegradability, temperature, 
light-sensitive, pH, and low 
immunological response, 
respectively (Wahane et al. 2020)

Difficulty in manufacturing 
large-scale efficiency, cellular 
toxicity, rapidly escape from 
the endosomal membrane 
during DNA repair mechanism 
(Wahane et al. 2020)

CRISPR/
Cas9 
plasmid

Gold NPs High delivering, editing 
efficiency, and reduced off-target 
effects (Lee et al. 2017)
The modified form of the 
CRISPR-gold RNP vector 
proposed a low toxic effect (Mout 
and Rotello 2017)
Handy to maintain by the context 
of charge and size distribution 
(Chen et al. 2019)

Existence of cationic charge 
governs the speedy escape from 
the endosomal barrier (Deng 
et al. 2019)
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efficient delivery of Cas9/sgRNA ribonucleoprotein (RNPs) cassettes (Subburaj 
et al. 2016; Zuris et al. 2015). On the contrary, the suitable and handy option is the 
interaction of Cas9/mRNA with sgRNA (Shen et al. 2014). Furthermore, the third 
choice is the encapsulation of plasmid-based CRISPR/Cas9 complexes (Ran et al. 
2013b). Interestingly, this is an attractive delivering strategy due to its cost- 
effectiveness, efficiency, and simplicity. The Cas9 and sgRNA complexes, as well 
as the desired HDR template, can be easily integrated into the same plasmid, which 
reveals higher stability than mRNA and protein. However, the larger plasmid size 
(>7 kb), as well as Cas9 protein (~4.5 kb) potentially, enhances the limitations of 
delivery cargoes and the mechanism of CRISPR/Cas9 genetic payloads (Ran 
et al. 2015).

12.4  Recent Nano-Based Vector Delivery Modes 
for the CRISPR System

12.4.1  Viral and Nonviral Delivery Modes 
for the CRISPR System

The systematic CRISPR/Cas genome editing technique has rapidly expanded sig-
nificant concerns in the area of biomedical research, especially for the treatment of 
genetic disorders and cancer therapeutics, respectively. The efficient delivery 
approaches showed a pivotal role in the applications of the CRISPR/Cas9 genome 
editing system. In recent years, both viral and nonviral vector approaches have been 
studied well for sgRNA delivery systems. Conventionally, the viral vectors consist-
ing of lentivirus (Chakraborty et al. 2014) and adeno-associated virus (Long et al. 
2016) have tremendously limited the capacity for the delivery of CRISPR/Cas com-
ponents because of the generation of undesired mutations ratios, high off-target 
effects, integrational mutagenesis (Schumann et al. 2015), immunogenicity, limited 
packaging capacity, as well as carcinogenesis probability (Kay 2011). In contrast to 
viral vectors, the deliveries of nonviral vectors of the CRISPR/Cas system through 
nanoparticles (NPs) may significantly address various challenges recently. These 
recent challenges include safety issues (Schmidt and Grimm 2015), huge packaging 
of genetic payloads (Chamberlain et  al. 2016), constructed protocols (Li et  al. 
2015), low cost, and robust scale-up production (Ramamoorth and Narvekar 2015), 
which may tremendously address the above-mentioned challenges. Furthermore, 
the nonviral vectors can be constructed to deliver the genetic cargoes to the desired 
cell lines. The delivery system can be widely categorized into lipids, polymers, and 
gold NPs, respectively, as demonstrated in Fig. 12.2. The delivery of nonviral vec-
tors based on CRISPR systems in the form of DNA, mRNA, protein, and Cas9 
plasmid together with sgRNA has governed efficient delivering strategies in 
CRISPR/Cas systems for the applications of genome editing.
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Fig. 12.2 Illustration of various NPs for the delivery of sgRNA and CRISPR/Cas system
(a) Different strategies of CRISPR/Cas system. (b) Different types of NPs-based delivery systems 
for sgRNA and CRISPR/Cas system. (c) Genome editing of nanoparticles-based delivered Cas9/
sgRNA plasmid DNA complex

12.4.2  Nonviral Delivery Modes of CRISPR/Cas9 System

12.4.2.1  Lipid NPs

Lipids hold the most remarkable and promising material for the potential delivery 
of nonviral-based genome editing systems (Mohammadinejad et  al. 2020). The 
chemistry of various lipids is amphiphilic that possesses hydrophilic head and 
hydrophobic tails for the gene delivery system. More precisely, cationic lipid com-
plexes progressively showed a helpful characteristic and have been considered ade-
quate due to possessing charge-charge interaction with negatively charged DNA/
RNP complexes. Previous studies literature proposed that these lipid-based com-
plexes turn to decrease the chances of genetic cargoes by the degradation of nucle-
ases (Möller et al. 2016). The ability of the most arsenal lipid-based nanoparticles 
(LNPs) is being the most versatile system for the delivery of genetic payloads and 
any other LNPs that have been an effective gene therapy for clinical researches 
(Felgner et al. 1987).

Appropriately, anionic charges present on DNA, mRNA, and gRNA are electro-
statically attached with cationic charged lipids complexes to formulate LNPs (Cong 
et al. 2013). The lipid bilayer is not only helpful for the barrier of genetic payloads 
across the cell membrane barrier, but also hinders the genetic payloads from the 
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degradation of enzymatic, RNases, and immunological feedback (Liu et al. 2018b). 
Next, the context of commercially accessible lipids is a deep-rooted engineered 
delivery approach that was generated for CRISPR gRNA, mRNA, plasmids, and 
Cas9/sgRNA/RNPs complexes like RNAiMAX and lipofectamine that are utilized 
in combination with various cell lines for the treatment of gene therapeutics or gene 
knock-in/out in model organisms (Mout et al. 2017).

The positively charged Cas9 protein hampers the valuable characteristics of the 
commercially engineered cationic lipids owing to poor stability, high toxic effect, 
less inflammatory response, less transfection efficiency, and poor target delivery to 
the target sites. Though the engineered cationic lipids are used as a carrier in the 
CRISPR system, there are still some boundaries that hinder their further applica-
tions (Whitehead et al. 2009). Therefore, extensive alterations have been navigated 
for the modification of the above-mentioned pitfalls.

Engineered Cas9-sgRNA RNPs with Cas9 proteins forming complexes have 
been proposed to achieve 80% gene modification with the potential delivery 
achieved by LNPs in human cell lines (Zuris et al. 2015). Modified liposomes, such 
as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol (Ch), and 
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), showed a great enhance-
ment in cellular uptake efficiency and also modified pharmacokinetic distribution 
in vivo (Onuki et al. 2016). Engineered solid-LNPs can enhance the sustainability 
and storage stability for a wide range of applications for the lyophilization process 
(Leung et al. 2014). Previously reported literature ameliorated that the chemically 
modified lipids can progressively expand transfection efficiency and mitigate the 
toxic nature of cationic lipids (Kish et al. 2007) by structural modification of the 
ammonium groups via DOTAP (Wang et  al. 2018), DC-Chol (Cardarelli et  al. 
2012), DOPE (Wang et al. 2018), as well as DOTMA (Lotti 2017), respectively. The 
first-generation liposomal-based vectors constructed through DOTMA were 
employed for the in vitro delivery of plasmid DNA. Moreover, DOTMA-based con-
structions mainly triggered cellular toxicity with the activation of immunological 
response owing to the presence of cationic charge. Therefore, DOTMA-based con-
structions cannot be applicable for in vivo studies. Additionally, LNPs are somehow 
distinct from liposomes due to the rapid integration with ionizable lipids and rapidly 
interact with genetic payloads such as nucleic acids and do not possess aqueous core 
components. Wheeler and his correspondence for the first time generated LNPs by 
utilizing stabilized plasmid particles (SPLPs) by following a detergent dialysis tech-
nique. Various synthetic lipids such as dioleoyl-ammonium chloride (DODAC) act 
as cationic lipids with a helper lipid 1,2-dioleoyl-sn-glycerol-3- phosphoethanolamine 
(DOPE), and polyethylene glycol (PEG) was utilized for the encapsulation of plas-
mid cytomegalovirus chloramphenicol transference (pCMVCAT). The results 
showed  that produced small particles own 70 nm is size to achieved encapsulation 
efficacy up to 70% (Wahane et al. 2020). Recently, LNPs are fabricated with differ-
ent techniques such as microfluidic hydrodynamic focusing (MHF), T-junction mix-
ing, and staggered herringbone mixing (SHM) consisting of ethanol that acts as a 
controller phase for the rapid solubilization of lipids (Evers et al. 2018). Furthermore, 
many lipids complexes have been synthesized to drive the efficient delivery of 
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mRNA, gRNA, plasmids, and Cas9-sgRNA RNPs complexes for various in vitro 
and in vivo applications (Chen et al. 2020).

12.4.2.2  Polymeric NPs

Polymeric vector is an extensively utilized nonviral strategy for the delivery of 
CRISPR cargoes which aims to drive the significance for the functionalization and 
chemical diversity for the CRISPR delivery applications with strong biodegradabil-
ity, biocompatibility, and low immunological response. Recently reported studies 
concerning polymeric-based NPs, viz., polyethyleneimine (Givens et  al. 2018), 
poly (L-lysine) (Spoelstra et al. 2021), chitosan (Qiao et al. 2019), and polyamido-
amine (PAMAM) (Givens et al. 2018), have captivated a tremendous consideration 
for efficient delivery of genome editing. Usually, polymeric vectors can be con-
structed from chemical subunits, viz., chitosan and PLGA, with a wide range of 
applications. Like lipid carriers, polymeric carriers can diffuse across the cell mem-
brane and defend the genetics cargoes from degradation pathways and immunologi-
cal responses (Zou et al. 2016). Furthermore, owing to the flexible configuration of 
polymeric carriers, many polymeric carriers possess specific applications for a vari-
ety of in vitro and in vivo approaches such as: discharging of intracellular microen-
vironments, specificity for in vivo targeting of receptors across the cell membrane, 
and encapsulation of various genetic payloads (Chen et al. 2015). To overcome the 
toxicity issue, many scientists revealed that either formulation of cationic polymeric 
vectors by itself or with other lipids and polymers could mitigate the chances of 
toxicity (Zhang et al. 2019). Therefore, to overcome the pitfalls as mentioned above, 
next-generation cationic-based polymeric platforms such as poly[(2- dimethylamino) 
ethyl methacrylate] (pDMAEMA), biodegradable poly (B-amino ester) (PBAE) 
polymers, and PAMAM dendrimers were synthesized. Owing to consisting of ter-
tiary amine groups, the synthesized pDMAEMA and PBAE polymers also assist in 
escaping from the endosomal layer and have proven to be of higher transfection 
efficacy (Wahane et al. 2020).

Scientists also confirmed that polymer-based NPs are prone to deliver CRISPR- 
mediated cargoes with superior editing efficiency for a desired target antimicrobial 
in contrast to lipids (Kang et al. 2017). Polymeric carriers were encapsulated with 
Cas9/sgRNA networks that facilitated delivery effectively into the human genome 
with low toxicity and higher editing efficiency (Sun et al. 2015). Previously reported 
studies suggested that PEI 25 kDa (BPEI-25K) is an efficient nonviral vehicle for 
in  vitro CRISPR genome editing systems (Ryu et  al. 2018). Subsequently, the 
amine-terminated polyamidation (PAMAM) dendrimer cationic polymer signifi-
cantly triggered the potential delivery of intracellular cytosolic Cas9 proteins and 
achieved high genome editing in multiple cell lines (Liu et al. 2019). Therefore, 
researchers enhance the rate of transfection efficiency and reduce the chances of 
nontarget binding sites by synthesizing new and promising synthetic poly (amino- 
co- ester) (PACE)-based cationic polymers for the potential delivery of genetic pay-
loads. The newly developed mechanism demonstrates a reduced cytotoxicity effect 
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in contrast to other forms of cationic-based polymers. The high molecular weight 
PACE system navigates higher transfection capacity owing to the formation of DNA 
systems as well as narrowing the range of genetic materials (Wahane et al. 2020).

12.4.2.3  Gold NPs

Gold nanoparticles (AuNPs) are extensively utilized for the CRISPR-mediated 
RNP delivery. The gRNA, Cas9 proteins, and AuNPs are co-encapsulated into syn-
thesized NPs (Wang et al. 2018). Distinct from lipids, viruses, and polymer vectors, 
AuNPs are facile concerning charge distribution and size (Chen et  al. 2019). In 
genome editing, the synthesized AuNPs demonstrated ~90% delivery efficacy and 
~30% gene-editing potentiality for CRISPR/RNP-mediated strategy in multiple cell 
lines (Mout et al. 2017). Previously reported literature on mice assumed that AuNPs 
are attributed for both HDR in vivo and CRISPR gene editing through in vivo deliv-
ery of donor DNA and CRISPR RNP-mediated approach with reduced off-target 
effects and high editing efficiency in many cell lines (Lee et al. 2017). Scientists 
confirmed that the CRISPR-Au-RNP complex vector delivery system could edit 
various genes in the brains of multiple mice and showed no toxic effect (Mout and 
Rotello 2017). The CRISPR-Au complex was synthesized by AuNPs and co- 
assembled with poly(N-(N-(2-aminoethyl)-2-aminoethyl) aspartamide) 
(PAsp(DET), glutathione, donor DNA, and Cas9 RNP complexes (PAsp(DET)) that 
increase in vitro and in vivo endosomal escape in DNA repair mechanism. This 
research revealed a benchmark study for the efficient nonviral delivery for HDR in 
treating genetic disorders (Deng et al. 2019).

12.5  Critical Challenges for Nonviral Delivery 
of CRISPR System

Compared with other efficient delivering approaches, the native CRISPR/Cas sys-
tems circumvent stringent obstacles for in vivo applications. The first challenge is 
the active integration of genetic payloads in vector delivery due to possessing large 
size and presence of various charge characteristics of donor DNA, mRNA, and Cas9 
protein, respectively (Subburaj et al. 2016). Hence, cationic polymers and lipids are 
more likely prone to encapsulate negatively charged proteins that cannot be feasible 
to deliver Cas9 proteins. Like other types of protein, large size (~4.5 kb) of DNA 
and Cas9/mRNA also triggers hindrance for the potential encapsulation application. 
Although the novel and newly generated Cas9 system isolated from the specie 
Staphylococcus aureus strain (SaCas9) possesses 1 kb in size that is shorter than 
previously developed SpCas9, the average size of genetic payloads is still too large 
for genome editing applications (Kleinstiver et  al. 2015). Furthermore, CRISPR 
tools integrated into nonviral vectors must be stable during the extracellular and 
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intracellular transport until they reach the desired target sites. A nonviral delivery 
platform consisting of CRISPR/Cas9 tools at first meets extracellular degradation 
components such as RNases, proteases, DNases in the blood, activation of cyto-
kines, signaling of immune cells, and phagocytosis by macrophages (Li et al. 1999). 
Second, the effective signaling of the CRISPR/Cas9 tools to recognize the target- 
specific site and remove the extravasation out from the bloodstream to mitigate the 
off-target effects and enhance the efficiency of gene editing in the untargeted locus. 
Furthermore, cell-penetrating peptides or target-specific ligands can be chemically 
assembled on the surface of NPs and easily trafficked and reached to the membrane 
of the target sites to attain desired gene editing (Cabral et al. 2011). After the NPs 
are attached to the desired cell lines, the third obstacle rapidly escapes the NPs from 
the endosomal barrier (pH ~ 5.0) to circumvent the degradation from the endosomal 
effect (Harush-Frenkel et al. 2007). Subsequently, the system based on CRISPR/
Cas9-plasmid-DNA complexes must ameliorate many challenges as compared to 
CRISPR/Cas9 RNP or mRNA complexes because the ability of plasmid DNA needs 
to cross nucleus membranes to transcribe the nucleus likewise, in the same manner 
actively, get entry to the cytoplasm to translate the Cas9 proteins and efficiently edit 
the desired target genome site (Chen et al. 2020).

12.6  Conclusion

CRISPR/Cas9 genome editing system is one of the most robust editing tools, which 
potentially simplifies previous gene manipulation strategies. Recently, this system 
has been extensively applied for vector delivery to achieve transgene-free gene- 
editing applications. Besides this, the modification of the vector delivery system is 
also one of the serious concerns. The delivery through viral vectors showed various 
issues of their own such as high cost and restriction in packaging efficiency. 
Therefore, the construction of nonviral vectors is an efficient and safe delivery 
approach with significant applications. The nonviral vectors showed hindrance to 
trigger the valuable advantages for the CRISPR/Cas9 genetic cargoes that include 
large-sized packaging stability, high retention time, and preventing safekeeping 
from the degradation through enzymes during transportation (Wan et  al. 2019). 
Though the synthesized lipids, polymerics, and gold nanoparticles have demon-
strated rapid progression for all delivery approaches of CRISPR-mediated payloads, 
for the targeted delivery of various gene-editing components, the applications of 
novel NPs substantially investigated more to achieve tunable desired translation for 
genome editing. Overall, despite these obstacles, the novel and rapid achievements 
in the field of gene editing and tailored nano-based vector delivery will significantly 
facilitate the shortcomings to accelerate the clinical translation of CRISPR-based 
transgene-free editing shortly in the near future.
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